Annex D

D.1 CONDICIONS DE BENESTAR TERMIC ... 271
 D.1.1 GENERALITATS .. 271
 D.1.2 BALANÇ ENERGÈTIC .. 272
 D.1.2.1 PARÀMETRES CARACTERÍSTICS DEL BALANÇ ENERGÈTIC 272
 D.1.2.2 SUPERFÍCIE DEL COS HUMÀ .. 275
 D.1.2.3 REGIMS DEL BALANÇ ENERGÈTIC ... 276
 D.1.3 METABOLISME .. 278
 D.1.4 LA ROBA ... 279
 D.1.5 ZONES DE CONFORT ... 280
 D.1.5.1 PARÀMETRES AMBIENTALS ... 280
 D.1.5.2 ÍNDEX AMBIENTALS, TEMPERATURA EFECTIVA I OPERATIVA 281
 D.1.5.3 CONDICIONS DE BENESTAR I CONFORT ... 283
 D.1.5.4 ESCALA SENSACIONS TÈRMIQUES ... 284
 D.1.5.5 MALESTAR TÈRMIC ... 286
 D.1.5.5.1 ASSIMETRIA DE LA TEMPERATURA RADIANT 286
 D.1.5.5.2 CORRENTS D’AIRE .. 287
 D.1.5.5.3 EFECTE DE LA DISTRIBUCIÓ DE TEMPERATURES 288
 D.1.6 SOROLLS I VIBRACIONS ... 288
D.2 ESTUDI D’IMPACTE AMBIENTAL ... 289
 D.2.1 OBJECTE ... 289
 D.2.2 NORMATIVA APLICACIÓ ... 289
 D.2.2.1 NORMATIVA EUROPEA .. 289
 D.2.2.2 NORMATIVA DE L’ESTAT .. 290
 D.2.2.3 NORMATIVA DE LA GENERALITAT DE CATALUNYA 290
 D.2.3 REQUISITS LEGALS I MEDIAMBIENTALS ... 290
 D.2.4 ASPECTES MEDIAMBIENTALS ... 291
 D.2.5 CONTROL OPERACIONAL MEDIAMBIENTAL .. 293
 D.2.5.1 GESTIÓ DE RESIDUS ... 293
 D.2.5.2 EMERGÈNCIA MEDIAMBIENTAL .. 293
 D.2.5.3 RESIDUS PERILLOSOS .. 295
D.3 PLEC CONDICIONS TÈCNIQUES ... 296
 D.3.1 GENERALITATS .. 296
 D.3.2 MUNTATGE .. 296
 D.3.2.1 CANONADES ... 296
 D.3.2.2 LEGIONEL·LA .. 297
 D.3.2.3 CONDUCTES ... 299
 D.3.2.4 VALVULERIA .. 302
D.3.2.5 BOMBES EN CANONADA (IN LINE) ... 304
D.3.2.6 COMPORTES DE REGULACIÓ ... 304
D.3.2.7 GRUP FRIGORÍFIC ... 304
D.3.2.8 CLIMATITZADORS .. 305

D.3.3 PROTECCIÓ DE PARTS EN MOVIMENT I ELEMENTS SOTMESOS A ALTES TEMPERATURES ... 306

D.3.4 PROBES, POSADA EN MARXA I RECEPCIÓ ... 307
D.3.4.1 MATERIALS ... 307
D.3.4.2 NETEJA DE CANALITZACIONS .. 308
D.3.4.3 SENYALITZACIÓ ... 308
D.3.4.4 PROBES ... 308
D.3.4.5 RECEPCIÓ, PROVISIONAL I DEFINITIVA .. 308

D.3.5 MANTENIMENT .. 309
D.1 CONDICIONS DE BENESTAR TERMIC

D.1.1 GENERALITATS

El disseny d’un sistema de climatització és el fruit de l’estudi de molts factors que provenen de l’esforç per obtenir una sensació de benestar. El control de tots aquests factors que influeixen en el benestar, és la clau d’una bona climatització.

Està demostrat que certes condicions ambientals, proporcionen sensació de plaer. És per aquest motiu que sorgeix la necessitat de definir i controlar la qualitat de l’ambient o benestar. El conjunt de factors ergonòmics que es refereixen a la qualitat de:

- L’ambient tèrmic
- L’aire Interior
- L’ambient Acústic
- L’ambient Lluminós

i el control de tots ells, dona la clau per obtenir el nivell de benestar requerit.

La sensació de benestar dels ocupants no sols depèn del confort total de l’ambient sinó que hi ha altres paràmetres com els hàbits, la condició social, el nivell cultural i als criteris subjectius deguts a les diferències de sensibilitat entre individus.

Una situació confortable és aquella en la que es compleix l’equació del balanç tèrmic. És necessari que els mecanismes fisiològics de la termoregulació siguin capaços de portar l’organisme a un estat d’equilibri tèrmic entre l’ambient i ell mateix, un equilibri on temperatura de la pell i la quantitat de suor secretada han d’estar dins d’uns límits establerts.

L’equilibri tèrmic però, es troba lluny de proporcionar sensació de confort ja que l’organisme pot resoldre el balanç tèrmic en una gran gamma de situacions ambientals i taxes d’activitat, però una estret franja de les mateixes condueixen a situacions que el propi subjecte qualifiqui de confortables.

Per controlar els paràmetres determinants del confort tèrmic existeixen dos línies d’actuació:
- La **climatització passiva**, que utilitza mitjans naturals com el bon disseny, l’eficàcia de l’edifici, utilització de l’energia solar...

- La **climatització activa** que utilitza mitjans mecànics per impulsar l’aire o l’aigua de les instal·lacions, és un sistema més agressiu però més eficient en general.

Per aconseguir valorar o quantificar el Benestar Tèrmic, s’utilitza el Percentatge de Persones Insatisfetes (PPI) i representa el número d’ocupants que expressen insatisfacció en una situació i ambient determinat. L’índex PPI no podrà ser mai nul, valors entre el 5% (mínim valor assolible) i el 20% s’asseoleixen només amb instal·lacions d’alta qualitat.

D.1.2 BALANÇ ENERGÈTIC

D.1.2.1 PARÀMETRES CARACTERÍSTICS DEL BALANÇ ENERGÈTIC

Una sensació de fred o de calor excessius no és satisfactòria, com a conseqüència la temperatura del medi ambient serà un dels paràmetres fonamentals.

Un ambient sec produeix una sensació més agradable, en general que un ambient humit, però si la sequedat és acusada apareixen problemes a les mucoses, excés d’electricitat estàtica...

Un ambient molt humit produeix sensació d’ofegament, amb l’afegit que no es pot eliminar-se fàcilment la suor corporal. Així doncs la humitat de l’aire serà un altre paràmetre fonamental a tenir en compte.

Paral·lelament a l’ambient, actua molts termes sobre i del cos humà ja que el cos humà es pot considerar com una màquina tèrmica que consumeix un combustible per poder fer un treball mecànic i dissipa calor a l’ambient.

Existeixen molts paràmetres que regulen els intercanvis tèrmics entre els dos sistemes:

- Característiques del vestit
 - resistència tèrmica
 - resistència al pas del vapor d’aigua
 - temperatura superficial
factor d’augment de la superfície del cos nu
emissivitat de la superfície exterior

- Característiques del cos humà
 calor generat, diferència entre l’activitat metabòlica i el treball generat
temperatura i superfície de la pell
humitat de la pell deguda a la difusió de l’aigua des dels teixits interiors
percentatge de superfície de pell mullada pel suor

- Característiques de l’ambient
temperatura seca de l’aire
pressió parcial del vapor d’aigua a l’aire
velocitat relativa de l’aire
temperatura mitja radiant dels tancaments

(Nota: els dos primers determinen la posició d’un punt sobre el diagrama de l’aire humit. El segon paràmetre, enlloc de la pressió parcial podria ser la humitat relativa, la temperatura del bulb humit, la temperatura de rosada o la humitat específica)

La figura següent, mostra la temperatura de diverses parts del cos humà en repòs, en funció de la temperatura ambient.
S'observa que la temperatura de les diverses parts del cos disminueix al allunyar-se del nucli del mateix, a més a més, disminueix amb la temperatura exterior cada cop que s'allunya també del nucli.

La figura següent, representa la temperatura mitja de la pell, d'un cos humà en repòs, vestit i sense roba, al variar la temperatura de l'ambient.
D.1.2.2 SUPERFÍCIE DEL COS HUMÀ

Tots els termes de les equacions del balanç tèrmic que a continuació es citen, es representen amb \(\text{W/m}^2 \), i es refereixen a la superfície del cos humà despullat. La superfície d’un cos despullat \(A \) (m\(^2\)) es calcula segons Du Bois, a través de la massa del cos, \(m \) (kg), i l’altura \(h \) (m).

\[
A = 0.202m^{0.425}h^{0.725} \quad \text{[m}^2]\]

(eq.D.1.1)

![Gràfic D.1.3 Superfície del cos humà en funció de l’altura i el pes](image-url)

Les gràfiques anteriors, mostren la variació de la superfície del cos en funció de l’altura i del pes de les persones.
D.1.2.3 REGIMS DEL BALANÇ ENERGÈTIC

El balanç energètic entre el cos humà i l’ambient que el rodeja es pot estudiar en règim permanent i en règim transitori.

REGIM PERMANENT

El règim permanent utilitza el Mètode d’avaluació del confort tèrmic segons Fanger que determina el confort i el resultat l’expressa com el percentatge de persones que es sentiran incòmodes en un ambient determinat.

El balanç energètic s’escriu igualant el calor generat pel cos (diferència entre el metabolisme (M) i el treball mecànic desenvolupat (W)), a les pèrdues de calor a través de la pell (Qp) i la respiració (Qr).

\[M - W = Q_p - Q_r \quad [W/m^2] \]
(eq.D.1.2)

El primer terme representa el calor generat pel cos, i el segon està compost per sis termes que expressen l’intercanvi de calor del cos cap a l’ambient per radiació, convecció (pèrdua o guany sensible), respiració (pèrdua o guany sensible i pèrdua latent), difusió d’aigua a través de la pell (pèrdua latent) i suor (pèrdua latent).

Les pèrdues de calor a través de la pell, Qp, és la suma de les pèrdues de calor sensible per convecció, radiació i conducció (encara que aquestes últimes són despreciables en la majoria dels casos) i de les pèrdues de calor latent per l’evaporació de suor i de la humitat que traspasa per la roba.

Les pèrdues degudes a la respiració Qr, són la suma de les pèrdues de calor sensible i latent de l’aire expirat (que surt casi en condicions de saturació).

Quan s’arriba a la igualtat el cos es trobarà en equilibri tèrmic. Si els membres de l’equació són diferents, la diferència entre la producció interior de calor i les pèrdues de calor cap a l’ambient es troba el desequilibri tèrmic (DT). Si l’individu sent calor, el desequilibri és positiu i el calor generat és major que les pèrdues. Si l’individu sent fred, el desequilibri és negatiu i el calor generat és menor que les pèrdues.

REGIM TRANSITÒRI

El règim transitòri, es basa en el mètode d’avaluació del confort tèrmic segons Gagge.

Aquest considera el cos humà dividit en dos compartiments, l’interior, o nucli que representa l’esquelet, la massa muscular i els òrgans interns; l’exterior, que representa la...
pell, la fracció de pell respecte la massa total del cos depèn de la sang que flueix des del nucli a la pell.

El balanç energètic sota les hipòtesis següents,

- L’intercanvi de calor per conducció des de la pell cap a l’exterior es despreciable.
- La de cadascun dels compartiments és uniforme, 36.8°C pel nucli i 33.7°C per la pell.
- El metabolisme, el treball extern i les pèrdues per respiració van associades al nucli.
- L’intercanvi de calor entre el nucli i la pell (\(Q_{n,p}\)) tenen lloc per contacte directe, conducció, i a través del flux perifèric de la sang controlat pel mecanisme de termoregulació, convecció Estableix en règim transitori que el calor emmagatzemat, \(A\), és igual a la variació de calor:

\[
A_n = (M - W) - Q_r - Q_{n,p}
\]

(eq.D.1.3)

\[
A_p = Q_{n,p} - Q_p
\]

(eq.D.1.4)

\[
A = A_p + A_n = (M + W) - (Q_p + Q_r)
\]

(eq.D.1.5)

En règim permanent el calor emmagatzemat al cos, \(A\), és nul, i l’equació es transforma en la utilitzada per Fanger.

A continuació es mostra una gràfica que relaciona les pèrdues de calor en funció de la temperatua ambient i segons el calor sensible, calor latent i calor total. Com es pot observar, al augmentar la temperatura disminueixen les pèrdues de calor sensible i augmenten les pèrdues de calor latent, desviant-se de les condicions de benestar.
D.1.3 METABOLISME

La producció de calor per part del l’home creix en proporció a la intensitat de l’activitat que desenvolupa. El calor metabòlic es mesura en met, unitats de potència emesa per unitat de superfície. Esta definit de tal manera que l’emissió mitja d’un home sigui d’un met.

\[1\text{met} = 58.2 \frac{W}{m^2} = 50 \frac{kcal}{h \cdot m^2} \]

En la taula següent s’indiquen els guanys per calor sensible i latent en funció de l’activitat considerant el 50% d’homes i el 50% de dones (el metabolisme d’una dona és del 85% i el d’un nen el 75% del metabolisme de l’home), per una temperatura seca de l’aire de 24°C, considerant valors mitjans entres periods d’activitat i de descans.
<table>
<thead>
<tr>
<th>ACTIVITAT</th>
<th>Sensible (W)</th>
<th>Latent (W)</th>
<th>met</th>
</tr>
</thead>
<tbody>
<tr>
<td>dormint</td>
<td>50</td>
<td>25</td>
<td>0.76</td>
</tr>
<tr>
<td>estirat</td>
<td>55</td>
<td>30</td>
<td>0.86</td>
</tr>
<tr>
<td>assentat sense treballar</td>
<td>65</td>
<td>35</td>
<td>1.0</td>
</tr>
<tr>
<td>dret i relaxat</td>
<td>75</td>
<td>55</td>
<td>1.3</td>
</tr>
<tr>
<td>passejant</td>
<td>75</td>
<td>70</td>
<td>1.5</td>
</tr>
<tr>
<td>caminant a 1.6 km/h</td>
<td>50</td>
<td>110</td>
<td>1.6</td>
</tr>
<tr>
<td>caminant a 3.2 km/h</td>
<td>80</td>
<td>130</td>
<td>2.1</td>
</tr>
<tr>
<td>caminant a 4.8 km/h</td>
<td>110</td>
<td>180</td>
<td>2.9</td>
</tr>
<tr>
<td>caminant a 6.4 km/h</td>
<td>150</td>
<td>270</td>
<td>4.2</td>
</tr>
<tr>
<td>ballant moderadament</td>
<td>90</td>
<td>160</td>
<td>2.5</td>
</tr>
<tr>
<td>atlèctica al gimnàs</td>
<td>210</td>
<td>315</td>
<td>5.0</td>
</tr>
<tr>
<td>esport d’equip masculí</td>
<td>290</td>
<td>430</td>
<td>6.9</td>
</tr>
<tr>
<td>treball</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>molt lleuger, assentat</td>
<td>70</td>
<td>45</td>
<td>1.2</td>
</tr>
<tr>
<td>moderat en oficina</td>
<td>75</td>
<td>55</td>
<td>1.3</td>
</tr>
<tr>
<td>sedentari restaurant</td>
<td>80</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>lleugera dret (indústria lleugera, de compres…)</td>
<td>70</td>
<td>90</td>
<td>1.6</td>
</tr>
<tr>
<td>mitja dret (treballs domèstics, botigues…)</td>
<td>80</td>
<td>120</td>
<td>2.0</td>
</tr>
<tr>
<td>manual</td>
<td>80</td>
<td>140</td>
<td>2.1</td>
</tr>
<tr>
<td>lleuger (fàbrica)</td>
<td>110</td>
<td>185</td>
<td>2.8</td>
</tr>
<tr>
<td>pesat (fàbrica)</td>
<td>170</td>
<td>285</td>
<td>4.0</td>
</tr>
<tr>
<td>molt pesat (a fàbrica)</td>
<td>185</td>
<td>285</td>
<td>4.5</td>
</tr>
</tbody>
</table>

| Taula D.1.2 Activitat metabòlica |

(Nota: el 55% del calor sensible s’emet en forma de calor radiant i per aquest motiu s’ha de tractar pel càlcul de la càrrega térmica d’un local)

(Nota: per una informació més detallada sobre l’activitat metabòlica es pot consultar la norma ISO 8996)

La temperatura del cos disminueix a l’augmentar l’activitat metabòlica per la necessitat d’evacuar el calor, segons Fänger, la temperatura mitjana de la pell t_m (ºC) del cos amb roba és:

$$t_m = 35.7 - 1.5 \cdot M$$

(Nota: eq.D.1.6)

On,

M activitat metabòlica [met]

D.1.4 LA ROBA

El calor sensible dissipat a l’entorn ve donat per la suma del calor cedit per convecció i per radiació. Com que normalment part del cos està despullada i part porta roba, es trobarà a diferent temperatura.
La roba té la funció d’aïllar tèrmicament el cos de l’ambient exterior.

El valor de la resistència tèrmica de les peces o el conjunt de peces de roba s’ha determinat a través de maniquins calents. Aquests valors estan tabulats en la norma ISO 9920. En aquesta norma es troben els valors de la permeabilitat del valor d’aigua de diferents peces de roba.

Les unitats amb les que s’expressa la resistència tèrmica de l’aïllament de la roba són els \(\text{clo} \).

\[
1 \text{clo} = 0.155 \frac{m^2 \cdot k}{W} = 0.18 \frac{h \cdot m^2 \cdot \circ C}{kcal}
\]

A l’interior d’un local es considera un valor mig a l’estiu de 0.5 clo i a l’hivern d’1 clo. En edificis residencials o de sanitat es consideren 0.4 clo i a l’hivern de 0.8 clo.

Cal notar, que l’activitat metabòlica pot disminuir el nivell d’aïllament tèrmic de la roba, degut a la disminució de la capa d’aire aïllant en la superfície exterior de les peces de roba, i la sortida cap a l’exterior de l’aire existent sota de les mateixes, a través d’obertures i dels mateixos teixits (els dos casos deguts al moviment del cos).

D.1.5 ZONES DE CONFORT

D.1.5.1 PARÀMETRES AMBIENTALS

Els paràmetres que defineixen l’ambient tèrmic són mesurables directament, junt amb la temperatura del termòmetre de globus (mirar norma ISO 7726).

- Temperatura seca de l’ambient
- Velocitat de l’aire
- Temperatura mitja radiant dels tancaments \((I_r) \). Aquest és un paràmetre fonamental ja que en una habitació existeixen diferents temperatures radiant, és degut a l’asimetria a l’ambient provocada per les diferents temperatures radiant sobre les superfícies oposades d’un element pla. El valor d’aquesta temperatura es troba combinant les lectures d’un termòmetre de globus, d’un termòmetre sec, i d’un anemòmetre. També es pot calcular segons els valors de les temperatures dels tancaments del recinte \((t_r) \), dels angles amb el que es veuen els tancaments...
des d’on és la persona (a través del factor de l’angle de la cadascuna de les parets (f_i).

$$
\bar{t}_r = \sqrt[4]{\sum_{i=1}^{n} (f_i \cdot t_i^4)} \quad [\degree C] \quad \text{(eq.D.1.7)}
$$

- Temperatura humida (t_{wh}), Temperatura del Punt de Rosada (t_r), Pressió parcial del vapor d’aigua, Humitat Relativa (HR), Humitat específica
- Pressió Atmosfèrica Total

D.1.5.2 ÍNDICE AMBIENTAL, TEMPERATURA EFECTIVA I OPERATIVA

Tenint en compte les zones de confort i la necessitat de limitar el consum energètic, el RITE [2] el qual estableix unes condicions higromètriques extremes, a qualsevol local o habitació climatitzada que no s’han de sobrepassar.

Es defineixen dos índex ambientals que seran vàlids només en condicions pròximes a la neutralitat tèrmica: la temperatura operativa (t_o) i la temperatura efectiva (t_e).

La temperatura operativa està relacionada amb les pèrdues o guanys de calor sensible del cos cap a l’ambient. La seva expressió depèn dels coeficients de transferència tèrmica superficial a la roba (h), amb els subíndex r per les magnituds relatives a la radiació i subíndex c per les correctives. En condicions normals el coeficient $h_r=4.7$ W/m$^2\cdot$K és constant, en canvi el coeficient correctiu, h_c, varia entre 3 i 6 W/m$^2\cdot$K.

La temperatura operativa és per tant la mitja de la temperatura dels tancaments del local, t_c, i la temperatura seca, t_s.

$$
\bar{t}_o = \frac{h_r \cdot t_r + h_c \cdot t_a}{h_r + h_c} = \frac{4.7 \cdot t_r + 4.5 \cdot t_a}{4.5 + 4.7} \approx 0.51 \cdot t_r + 0.49 \cdot t_a = \frac{t_s \cdot t_r}{2} \quad \text{(eq.D.1.8)}
$$

La temperatura efectiva considera també les pèrdues de calor latent. Representa un ambient amb el 50% d’humitat relativa que produeix les mateixes pèrdues de calor del cos d’una persona que el local actual. Es defineix com:

$$
\bar{t}_e = t_a + c \cdot (p(t_a) - 0.5 \cdot p(t_e)) \quad \text{(eq.D.1.9)}
$$
c és igual al producte de la fracció de pell mullada per l'eficiència de permeabilitat al pas de vapor de la roba i la capa d'aire a prop de la pell i per la relació de Lewis entre els coeficients de transferència de calor evaporatiu i convectiu.

$p(ta)$ és la pressió de vapor d'aigua a la temperatura de l'aire ambient [kPa]

$ps(te)$ és la pressió parcial del vapor a saturació [kPa] a la temperatura efectiva

La temperatura efectiva expressa l'efecte compost de la temperatura de l'aire amb la humitat relativa sobre el cos.

Per determinar-la es poden utilitzar gràfics o àbacs.

Es mostra un exemple d'obtenció de la temperatura humida a través d'un àbac. Els paràmetres que actuen a l'àbac són la temperatura seca (temperatura que marca un termòmetre) la temperatura humida (temperatura donada per un termòmetre que té el bulb humit per una gassa. La temperatura humida és l’índex de la humitat de l’ambient. El funcionament d’un termòmetre de bulb humit s’explica al capítol 3 de la mateixa memòria) i la temperatura efectiva.

Suposant una sala on el termòmetre de bulb sec marca 25°C, i el termòmetre de bulb humit marca 21°C, es tira una recta que uneixi aquests dos punts, el punt de intersecció és la temperatura efectiva, en aquest cas $te=23.5°C$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{d1e5.png}
\caption{Àbac benestar}
\end{figure}
D.1.5.3 CONDICIONS DE BENESTAR I CONFORT

Els resultats de tots els aspectes que s’han anat comentant es recullen en uns gràfics anomenats gràfics de confort. No existeix un model únic, sinó diversos realitzats a varis laboratoris i països. ASHRAE (American Society of Heating and Air-Conditioning Engineers) va desenvolupar el seu standard 55: *Thermal Environmental Conditions for Human Occupancy*.

Aquest diagrama marca dins del diagrama psicromètric de l’aire les zones de confort tèrmic a l’estiu i a l’hivern. Considera que els individus tenen una activitat sedentària (≤1.2 met) i vesteixen una roba equivalent a l’estiu 0.5 clo, a l’hivern 0.9 clo. El 80% de les persones troba un ambient acceptable dins d’aquestes zones.

![Diagrama confort tèrmic](image-url)
Tant la zona d’estiu com la d’hivern, tenen una gran amplitud pel que fa a la humitat relativa, ha d’estar limitada entre el 40% i 60% per condicions sanitàries relatives a la irritació de les mucosos, sequedat de la pell, creixement de microorganismes i altres fenòmens relacionats amb la humitat. Les toleràncies seran de $\pm 1.5^\circ C$ per la temperatura operativa i $\pm 15\%$ per la humitat.

En el centre de les zones marcades l’individu tindrà una sensació molt propera a la neutralitat. Mentre que els voltants dels límits de la zona corresponen a valors $+0.5$ i -0.5 en funció de si està a la part dreta o esquerra respectivament de la zona. Els límits nomenats fan referència a l’escala de sensacions tèrmiques que s’explica a l’apartat 1.3.3 amb detall. El valor mínim és el $+3$ (ambient molt calorós), passa pel 0 (neutre) i arriba al -3 (molt fred).

Per altres nivells de vestimenta les zones de confort es poden aproximar disminuint els límits de temperatura de la zona $0.6^\circ C$ per cada augment de 0.1clo de la roba i viceversa.

Anàlogament, els límits de temperatura es poden disminuir $1.4^\circ C$ per cada met que augmenti l’activitat de l’individu (per sobre 1.2 met)

D.1.5.4 ESCALA SENSACIONS TÈRMIQUES

Existeix la necessitat de crear una escala de sensacions per valorar el benestar tèrmic, ja que expressa la satisfacció amb l’ambient tèrmic. Cal recórrer a l’estadística per la previsió del percentatge de persones insatisfetes. S’ estableix un criteri basat sobre la resposta mitjana d’un conjunt de persones que defineixen la seva sensació tèrmica segons una escala numèrica de sensacions tèrmiques (creada per ASHRAE).

![Gràfic D.1.7 Escala sensacions tèrmiques](image)

Es defineix el Vot Mig Previst (VMP) i només es pot utilitzar quan els sis paràmetres principals Taula D.1.3, es troben dins dels límits establerts (segons UNE-EN ISO 7730).
\[VMP = DT\left[0.303e^{-0.036M} + 0.028\right] \, [%] \]
(eq.D.1.10)

<table>
<thead>
<tr>
<th>Paràmetre</th>
<th>Límit inferior</th>
<th>Límit superior</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activitat metabòlica</td>
<td>0.8</td>
<td>4</td>
<td>met</td>
</tr>
<tr>
<td>Grau de roba</td>
<td>0</td>
<td>2</td>
<td>clo</td>
</tr>
<tr>
<td>Temperatura seca de l’aire</td>
<td>10</td>
<td>30</td>
<td>ºC</td>
</tr>
<tr>
<td>Temperatura mitja radiant dels tancaments</td>
<td>10</td>
<td>40</td>
<td>ºC</td>
</tr>
<tr>
<td>Velocitat de l’aire en la zona ocupada</td>
<td>0</td>
<td>1</td>
<td>m/s</td>
</tr>
<tr>
<td>Humitat relativa</td>
<td>30</td>
<td>70</td>
<td>%</td>
</tr>
</tbody>
</table>

Taula D.1.3 Paràmetres principals benestar

L’ambient tèrmic no és jutjat de la mateixa forma satisfactòria per tots els ocupants de l’ambient encara que anessin vestits iguals i fessin la mateixa activitat. Per això es defineix l’índex PPI, percentatge de persones insatisfetes, que estableix una predicció quantitativa del número de persones tèrmicament insatisfetes. Es relaciona amb el VMP.

\[PPI = 100 - 95e^{-0.2179VMP^2 + 0.03353VMP^2} \, [%] \]
(eq.D.1.11)

Aquesta relació dona lloc a la divisió en tres categories segons el nivell de persones insatisfetes. La categoria A, B i C, els paràmetres dels quals es troben a la taula següent:

<table>
<thead>
<tr>
<th>Categoria</th>
<th>-0.2 < VMP < +0.2</th>
<th>PPI < 6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>categoria A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>categoria B</td>
<td>-0.5 < VMP < +0.5</td>
<td>PPI < 10%</td>
</tr>
<tr>
<td>categoria C</td>
<td>-0.7 < VMP < +0.7</td>
<td>PPI < 15%</td>
</tr>
</tbody>
</table>

Taula D.1.4

El disseny dels sistemes d’acondicionament d’aire i calefacció està habitualment basat en complimentar únicament el valor establert per la norma. Encara que la tendència actual en les normes que provenen d’Europa és la d’establir nivells i categories de benestar (A,B,C).

Finalment notar que les medicions dels paràmetres ambientals per trobar aquests percentatges, s’han d’efectuar, dins de la zona ocupada definida a la taula 2 del RITE [2] a les altures del terra següents:

<table>
<thead>
<tr>
<th>Posició de les persones</th>
<th>Altura de medició sobre el terra (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>superior</td>
</tr>
<tr>
<td>Assentades</td>
<td>1.1</td>
</tr>
<tr>
<td>De peu</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Taula D.1.5 Altures medicions confort
D.1.5.5 MALESTAR TÈRMIC

La neutralitat tèrmica no és la única condició per complir per obtenir el benestar tèrmic. Una persona pot sentir satisfacció tèrmica a tot el cos, però pot estar incòmode si en alguna part del cos té sensació de fred o calor.

El RITE [2] no es fixa límits per les causes del malestar tèrmic (només per la velocitat mitja de l’aire). A continuació es mostraran 4 causes de malestar tèrmic que es consideren un complement de les condicions tèrmiques que s’han nomenat als apartats anteriors.

Aquestes s’han de considerar fonamentals per disminuir el percentatge de persones insatisfetes.

D.1.5.5.1 ASSIMETRIA DE LA TEMPERATURA RADIANT

S’ha de considerar l’asimetria de la temperatura radiant deguda a la variabilitat en la il·luminació, o la radiació solar, ja que aquesta asimetria afecta al conjunt de persones amb insatisfacció tèrmica. Es mesura sobre un pla a 0.6 metres del terra per persones assentades i a 1.1 metres del terra per persones dretes. El pla serà horitzontal per l’asimetria causada per elements horitzontals, anàlogament per les verticals.

Aquesta gràfica representa el %PPI en funció de la temperatura des de 4 modalitats diferents de climatització: TC (sostres calents), PF (parets fredes), TF (sostres freds) i PC (parets calentes). Els valors màxims acceptats de l’asimetria radiant surten tabulats a la taula següent:
<table>
<thead>
<tr>
<th>persones insatisfetes</th>
<th>sostre calent</th>
<th>sostre fred</th>
<th>paret calenta</th>
<th>paret freda</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI = 5%</td>
<td>4.5 ºC</td>
<td>14 ºC</td>
<td>22.5 ºC</td>
<td>10.5 ºC</td>
</tr>
<tr>
<td>PPI = 10%</td>
<td>6.5 ºC</td>
<td>17.5 ºC</td>
<td>35 ºC</td>
<td>12.5 ºC</td>
</tr>
</tbody>
</table>

Taula D.1.6 Valors màxims acceptats assimetria radiant

D.1.5.5.2 CORRENTS D’AIRE

Les corrents d’aire són la major causa de queixes, depenen de la velocitat mitja, la intensitat de la turbulència i la temperatura de l’aire. La sensibilitat a les corrents és màxima quan les queden exposades a la corrent la nuca o els turmells.

El PPI de les corrents s’obté de la eq.D.1.12. i amb les gràfiques posteriors es pot veure la resposta dels individus sota corrents a diferents velocitats. A la gràfica de l’esquerra la intensitat de la turbulència és del 30%, mentre que a la dreta és del 5%.

\[PPI = (34 - t_a)(v - 0.05)^{0.62} \cdot (0.37 \cdot \nu \cdot T_u + 3.14) \] \([%] \) (eq.D.1.12)

On

- \(t_a \) és la temperatura local de l’aire \([°C] \)
- \(v \) és la velocitat mitja \([m/s] \)
- \(T_u \) és la intensitat de la turbulència \([%] \)
D.1.5.5.3 EFECTE DE LA DISTRIBUCIÓ DE TEMPERATURES

En una habitació acondicionada, la distribució de temperatures no es uniforme. En general dependerà del tipus de climatització que hi hagi. Per un millor confort, interessa que no hi hagi molta estratificació entre el cap i els peus. Un altra aspecte a considerar són les superfícies fredes, com una finestra, que per una banda poden produir sensació de fred al cursar-les, i per l’altra el perill de condensació.

Per mantenir el PPI inferior al 5%, la diferència vertical de temperatura si està asseguda, ha de ser inferior a 3ºC. Si esta dreta es recomana mantenir el diferencial en 2ºC/m.

Esta demostrat, que el cap fred i els peus calents, no es crític pels ocupants i que els gradients que es poden suportar són superiors els anomenats.

D.1.6 SOROLLS I VIBRACIONS

El disseny acústic d’un sistema d’aire acondicionat ha de conduir a un nivell de soroll de fons que tingui una intensitat suficientment baixa per no interferir amb els requeriments dels ocupants dels espais. Els sorolls i les vibracions de la maquinaria i les instal·lacions poden afectar el benestar dels usuaris, encara que moltes vegades la diferència entre soroll i so és subjectiva.

El RITE [2] a través de la ITE 02.2.3 regula els màxims sorolls permesos. En una residència geriàtrica, com es el cas d’aquest projecte, el valor màxim de nivell sonor de dia són 40dBA, de nit són 30 dBA.

El so es caracteritza per la seva intensitat (fort o débil), el to (freqüència aguda o greu), el timbre (de gut a harmònics de ona fonamental). El disseny acústic ha de tenir una intensitat sensiblement constant sense que les vibracions siguin superiors a 3 dB i una distribució espectral ben equilibrada en una amplia dama de freqüències. No ha de tenir sons de característiques sonals importants com xiulets, gemecs o cops.
D.2 ESTUDI D’IMPACTE AMBIENTAL

D.2.1 OBJECTE

L’estudi d’impacte mediambiental té com objecte establir la sistemàtica per assegurar la conformitat de la execució dels treballs amb els requisits mediambientals legals, s’ha dissenyat amb la finalitat de minimitzar l’impacte mediambiental associat, prevenir la contaminació així com sotmetre a control els aspectes mediambientals significatius lligats a la instal·lació.

Aquest pla s’aplicarà a les activitats descrites en el projecte.

- Instal·lació de climatització
- Bombes de calor
- Climatitzadors
- Calderes
- Fan-coils
- Bombes de circulació
- Trames de polipropilè
- Instal·lació Fontaneria
- Dipòsits d’acumulació
- Instal·lació solar
- Plaques solars

D.2.2 NORMATIVA APLICACIÓ

Es recull la normativa bàsica referent als procediments d’avaluació d’impacte ambiental, i les activitats i els projectes sotmesos a aquests procediments.

D.2.2.1 Normativa europea

Directiva 1985/337, relativa a l’avaluació de les repercussions de determinats projectes públics i privats sobre el medi ambient. DOCE-L núm. 175, de 05.07.1985.

D.2.2.2 Normativa de l'Estat

D.2.2.3 Normativa de la Generalitat de Catalunya

Decret 114/1988, d'avaluació d'impacte ambiental. DOGC núm. 1000, de 03.06.1988.

D.2.3 REQUISITS LEGALS I MEDIAMBIENTALS

La legislació aplicable, és en funció de l'àmbit mediambiental afectant així, el desenvolupament de l’obra, i es fixa a l’apartat D.2.4. del present pla.

Segons la legislació aplicable (apartat D.2.1.) és la procedent de les disposicions legals de la Unió Europea i de l’estat espanyol. Així mateix, i en funció dels aspectes mediambientals fixats seran d’aplicació la legislació de la comunitat autònoma de Catalunya i de l’ajuntament de Barcelona.

Les obligacions en matèria mediambiental a l’hora de l’execució de l’obra són les següents:

s’emmagatzemaran, retiraran i si cal es gestionaran els residus generats per la utilització de materials, màquines i eines utilitzades per a la realització de les activitats d’obra. Sempre que així s’estableixi la legislació o els residus s’hauran de retirar o transportats per gestors autoritzats.
D.2.4 ASPECTES MEDIAMBIENTALS

Els aspectes mediambientals es presenten a continuació. De la taula posterior [Taula D.1.8] es seleccionen, i s’identifiquen els aspectes aplicables a aquest estudi. Dels aspectes considerats com a significatius, han de ser sotmesos a un control i un seguiment especial per les parts implicades.

Per cada aspecte mediambiental, s’indica la maquinaria, servei o producte en el que apareix l’aspecte considerat. S’especifica l’impacte mediambiental que pot causar l’aspecte considerat. Es valora si aquest efecte és una activitat normal o anormal, amb una escala de valors del 0 al 2. Es quantifica la freqüència amb la que pot passar, la magnitud i la severitat. Finalment, s’avalua si aquest aspecte és significatiu o no.

Cal notar, que en els casos on el total de la situació normal o anormal, valorada segons la freqüència, magnitud i severitat, tingui 4 punts, tot i estar al límit, la normativa europea obliga a millorar-los.
<table>
<thead>
<tr>
<th>Sí/No</th>
<th>Mediambiental</th>
<th>Activitat/ Productes/ Servei</th>
<th>Impacte ambiental</th>
<th>Situació normal - Anormal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Freqüència</td>
</tr>
<tr>
<td>x</td>
<td>Emissions de gasos</td>
<td>Ús de petita maquinària auxiliar</td>
<td>contaminació atmosfèrica</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Prova d’equips</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Emissions de pols</td>
<td>execució de demolicions petita obra</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Operacions de pintura</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Generació de soroll i vibracions</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Utilització d’equips auxiliars en la execució de treballs</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Utilització de vehicles a motor</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Ús de maquinària d’oficina</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Abocaments a l’aigua</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>Neteja d’obra</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>Purga d’equips de climatització</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>Consum d’aigua</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Consum de combustibles fósils</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Consum d’energia elèctrica</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Generació de residus</td>
<td>Residus orgànics</td>
<td>Contaminació per residus</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Urbans</td>
<td>Envasos i embalatges</td>
<td>Urbans</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Paper i cartró</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Plàstics</td>
<td>x</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Generació de residus inerts</td>
<td>Productes no conformes, embalatges (cartró, plàstic, vidre, fusta)</td>
<td>Contaminació per residus d’obra i construcció</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>Petites reparacions</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Utilització de productes químics perilosos</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Reposició de làmpares d’enllumenat</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Restes d’equips elèctrics i electrònics</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Productes de neteja de tallers i oficines</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Operacions amb pintures</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>Bateries i acumuladors de Pb i Ni-Cd</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula D.1.8 Aspectes mediambientals en fase Normal / Anormal
D.2.5 CONTROL OPERACIONAL MEDIAMBIENTAL

Aquells aspectes mediambientals que han resultats significatius en l’avaluació en el present pla són somesos a control operacional.

D.2.5.1 GESTIÓ DE RESIDUS

La gestió de residus generats en obres són d’especial importància, especialment aquells residus que són catalogats com a perillosos d’acord amb la legislació vigent.

Els residus s’han de gestionar per separat en funció de les seves característiques.

Per gestionar adequadament els residus, és necessari separar-los des de l’origen.

S’ubiquen diferents contenidors per a cada tipus de residu generat.

Cadascun dels contenidors és degudament etiquetat i diferenciat.

Els residus perillosos són retirats per un Gestor Autoritzat de Residus Perillosos.

D.2.5.2 EMERGÈNCIA MEDIAMBIENTAL

A continuació s’adjunta una taula on s’avaluen aspectes d’emergència mediambiental.
<table>
<thead>
<tr>
<th>Sí No</th>
<th>Mediambiental</th>
<th>Aspecte</th>
<th>Activitat/ Productes/ Servei</th>
<th>Impacte ambiental</th>
<th>Situació emergència</th>
<th>Significatiu</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td>Emissions de gasos</td>
<td>Incendi i explosió</td>
<td>contaminació atmosfèrica</td>
<td>2 2 no</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>escapaments accidentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Emissions de compostos orgànics volàtils i CFC</td>
<td>Abocament de líquids amb emissió de volàtils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>escapaments accidentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Generació de soroll i vibracions</td>
<td>Explosió</td>
<td>contaminació acústica</td>
<td>2 2 no</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Abocaments a l’aigua</td>
<td>Incendi i explosió</td>
<td>Alteració de la qualitat de l’aigua</td>
<td>2 2 no</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Abocaments incontrolats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Consum d’aigua</td>
<td>Escapaments en la xarxa de subministre d’aigua</td>
<td>Consum de recursos naturals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Inundació</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Consum de combustibles fòsils i derivats del petroli</td>
<td>Abocaments i escapaments incontrolats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Abocaments a l’aigua</td>
<td>Incendi i explosió</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Consum d’energia elèctrica</td>
<td>Apagada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Consums anormals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Generació de residus urbans</td>
<td>Incendi i explosió</td>
<td>Contaminació de residus urbans</td>
<td>2 2 no</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Generació de residus d’obra i construcció</td>
<td>Incendi i explosió</td>
<td>Generació de residus d’obra i construcció</td>
<td>2 2 no</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>Generació de residus perillosos</td>
<td>Incendi i explosió</td>
<td>Generació de residus perillosos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula D.1.9 Aspectes mediambientals en situació d’emergència
D.2.5.3 RESIDUS PERILLOSOS

A la Taula D.1.10, es mostra una taula resum dels residus perillosos més freqüents.

<table>
<thead>
<tr>
<th>DESCRIPCIÓ</th>
<th>ETIQUETA</th>
<th>CODI CER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terres i pedres que contenen substàncies perilloses</td>
<td>nociu</td>
<td>170503</td>
</tr>
<tr>
<td>Productes químics inorgànics que consisteixen en, o contenen, substàncies perilloses</td>
<td>tòxic irritant</td>
<td>160507, 160508</td>
</tr>
<tr>
<td>Envases que contenen restes de substàncies perilloses o estan contaminades per aquestes</td>
<td>tòxic irritant</td>
<td>150110</td>
</tr>
<tr>
<td>Absorbents, materials de filtració, draps de neteja i robes protectores contaminades per substàncies perilloses</td>
<td>Irritant nociu</td>
<td>150202</td>
</tr>
<tr>
<td>Tubs florescents i altres residus que contenen mercuri</td>
<td>Tòxic</td>
<td>200121</td>
</tr>
<tr>
<td>Olis d'aïllament i transmissió de calor</td>
<td>Nociu Inflamable</td>
<td>130301</td>
</tr>
<tr>
<td>Olis minerals no clorats de motor, de transmissió mecànica i lubricants</td>
<td>Tòxic inflamable</td>
<td>130205</td>
</tr>
<tr>
<td>Olis sintètics motor, de transmissió mecànica i lubricants</td>
<td>Tòxic inflamable</td>
<td>130206</td>
</tr>
</tbody>
</table>

Taula D.1.10 Residus Perillosos més freqüents
D.3 PLEC CONDICIONS TÈCNIQUES

D.3.1 GENERALITATS

El present plec de condicions pretén fixar les condicions sobre l’execució de les instal·lacions de la Residència. Les mesures definides en el present plec són instruccions sobre proves, posada en marxa, recepció, instal·lació i manteniment.

Totes aquestes instruccions definides segons el Reglament d’Instal·lacions Tèrmiques en Edificis [2].

Un correcte seguiment de les instruccions, implica una cooperació amb l’impacte ambiental a la fase d’execució.

D.3.2 MUNTATGE

D.3.2.1 CANONADES

Tots els canvis de diàmetre es portaran a terme mitjançant accessoris de reducció i els canvis de direcció per mitjà de corbes normalitzades. A la canonada negra i fins a dues polysades de mida, es permetrà el revingut d’aquesta sempre i quan s’evitin deformacions i es mantingui tota la secció. Les connexions de les canonades als equips es faran sempre d’acord amb els detalls que indiqui el fabricant.

A la canonada negra, els canvis de diàmetre s’efectuaran mitjançant accessoris de reducció excèntrics, de manera que la part superior de la canonada mantingui un perfil pla. A les verticals les reduccions seran concèntriques.

Es subministrarà instal·laran purgadors manuals o automàtics d’aire en tots el punts elevats de la instal·lació. Les connexions de les derivacions s’executaràn de forma que quedi assegurada una circulació expedita, s’elimina les bosses d’aire i s’obtingui un drenatge complet del sistema.

S’instal·larà desguassos, que consistiran en canonades d’acer galvanitzat o PVC, els punts més baixos de les canonades principals a cada “anell” de planta, a la proximitat de les calderes, dipòsits, refredadores o en altres llocs necessaris pel complet drenatge de les instal·lacions de canonades. El pendent d’aquestes canonades en cap cas serà inferior a l’1%.
Totes les vàlvules, equips, aparells, etc., s’instal·laran de forma que seran fàcilment accessibles en cas de reparació i recanvi. Al costat de descàrrega de totes les vàlvules i en les connexions definitives a equips, s’instal·laran brides o rècords d’unió. Totes les canonades, vàlvules, accessoris, etc. s’instal·laran de forma que un cop s’hagi aplicat el recobriment o aïllament quedin com a mínim 2 cm de separació entre l’aïllament acabat i altres instal·lacions i entre l’aïllament acabat de les canonades contigües.

COL·LECTORS

Es fabricaran i muntaran els col·lectors indicats en els plànols. Les dimensions i formes seran realitzades de tal forma que s’adaptin a l’espai previst pel seu muntatge, garantint un correcte recorregut del líquid transvasat.

Les escomeses de les canonades seran perpendiculars a l’eix longitudinal, podent en determinats casos escometre pels extrems.

Es prestarà especial atenció a les interseccions amb la canonada, per tal que no quedi introduïdes en el col·lector.

CANONADES DE CIRCULACIÓ EN CIRCUIT TANCAT

Les canonades d’aigua en cicle tancat seran d’acer estirat DIN-2440, per les de diàmetre inferior i igual a 6”, mentre que per les diàmetre superior a l’indicat seran d’acer estirat segons norma DIN-2448.

Totes les canonades, vagin o no aïllades, es pintaran.

1ota la canonada que vagi encastada per envans, quan vagi sense aïllament, anirà protegida totalment amb un paper adhesiu gruixut.

D.3.2.2 LEGIONEL·LA

El reglament d’instal·lacions tèrmiques en edificis RITE ITE 02.5 [2], sobre temperatures de preparació (ITE 02.5.1) fa referència a la norma UNE 100.030/2001 sobre la prevenció de la legionel·la en les instal·lacions i la multiplicació ambiental amb la fi de limitar els riscos de contraure la malaltia, a continuació es presenta un resum del que s’ha de tenir més en compte per el cas que es tracta.

La legionel·la es un microorganisme que, a més de trobar-se en medis aquàtics, troba un hàbitat adequat en sistemes d’aigua creats i manipulats per l’home, que actuen com a multiplicadors d’aquesta bactèria. Si es dispersa en l’aire, pot penetrar en el sistema
respiratori i produir malalties tal com pneumònia o la malaltia del legionari, que pot derivar-se en casos més greus.

Acostuma a presentar dues formes clíniques diferenciades: la infecció pulmonar o malaltia del legionari, que es caracteritza per pneumònia amb febre alta, i la forma no pneumònica, coneguda com la febre de Pontiac, que es maniusta com un síndrome febril agut i de pronòstic lleu.

La bactèria es desenvolupa en funció de la temperatura de l'aigua, del seu estancament, de la presència d'altres contaminants, incloent la brutícia en l'interior de les instal·lacions.

Pot presentar-se en forma de brots o casos aïllats i esporàdics.

La temperatura òptima de desenvolupament és al voltant dels 37ºC, per tant s'han de prendre precaucions en temperatures compreses entre 20ºC i 45ºC. A temperatures superiors a 70ºC la bactèria es mort.

Les mesures preventives per evitar l’aparició i multiplicació de la legionel·la, es basen en dos criteris:

- Eliminació i reducció de zones brutes mitjançant un bon disseny i el manteniment de la instal·lació.
- Evitar condicions que afavoreixin la supervivència i multiplicació de la legionel·la, mitjançant el control de la temperatura de l’aigua i desinfecció continuada d’aquesta.

S’ha d’evitar la formació de tal bactèria, actuant en les dues fases de les instal·lacions:

- Diseny i muntatge
- Explotació

Accions durant el disseny i el muntatge:

S’evitarà tan com sigui possible que la temperatura de l’aigua estigui dins l’interval entre 20 ºC i 50 ºC.

Els materials resistiran l’acció agressiva dels biocides i desinfectants, per evitar corrosions.

S’han de prevenir i evitar en la mesura que sigui possible les zones d’estancament d’aigua.
Tots els equips hauran de ser fàcilment accessibles, per la revisió, manteniment, neteja i desinfecció.

Les xarxes de canonades tindran vàlvules de drenatge en els punts baixos.

Les plates de recollida d’aigua de les bateries de refrigeració, la part fonda es disposaran amb grans pendents (més de 1%).

El sistema de producció d’aigua calenta, ha de ser capaç d’elevar la temperatura fins a 70°C durant 10minuts. La temperatura de distribució no podrà ser menor que 50°C.

Els dipòsits hauran d’estar aïllats per evitar el descens de la temperatura.

Els dipòsits estaran dotats de boques de registre per a la seva neteja interior i de connexió per acoblament d’una vàlvula de buit.

D.3.2.3 CONDUCTES

CONDUCTES RECTANGULARS

Conductes de xapa metàl·lica

L’obra de conductes de xapa metàl·lica requerida pel sistema es construirà i muntarà en forma irreprotxable. Els conductes, sinó s’aprova un altre mode, s’ajustaran amb exactitud a les dimensions indicades en els plànols i seran rectes i llisos a l’interior, amb juntes o unions curosament acabades.

Els conductes es fixaran fermament a l’edifici d’una forma adequada i s’instal·laran de tal forma que estiguin exemptes per complert de vibracions en totes les condicions de funcionament.

Dispositius per salvar obstruccions

S’instal·laran dispositius de línies aerodinàmiques al voltant de qualsevol obstrucció que passi a través del conducte i s’augmentarà proporcionalment la mida del conducte per qualsevol obstrucció que ocuí més del 10% de la secció d’aquest.

Espessors i suports

Es consideraran els especificats a les Normes UNE.

CONDUCTES CIRCULARS

Conductes de fleix metàl·lic
L’obra de conductes de xapa metàl·lica requerida pel sistema es construirà en forma irreprotxable. Els conductes, sinó s’aprova un altre mode, s’ajustaran amb exactitud a les dimensions indicades en els plànols i seran rectes i llisos a l’interior, amb juntes o unions curosament acabades.

Els conductes es fixaran fermament a l’edifici d’una forma adequada i s’instal·laran de tal forma que estiguin exemptes per complet de vibracions en totes les condicions de funcionament.

Espessors i suports

Es consideraran els específicats a les Normes UNE.

GENERALITATS ÀÏLLAMENT TÈRMIC

Els components d’una instal·lació [equips, aparells, conduccions i accessoris) disposaran d’un aïllament tèrmic amb l’espessor mínim afegit a sota quan continguin fluids a temperatura:

- Inferior a la del ambient
- Superior a 40°C i estiguin situats en locals no calefactats, entre els que s’ha de considerar els petits patis, galeries, sales de màquines i similars.

Els components que vinguin aïllats de fàbrica tindran el nivell d’aïllament marcat per la respectiva normativa o determinat pel fabricant. En cap cas el material podrà interferir amb parts mòbils del component aïllat.

Espessors mínims en interiors

Els espessors, expressats en [mm], seran els indicats en els següents apartats:

- Canonades i accessoris.
<table>
<thead>
<tr>
<th>Diàmetre exterior (1) [mm]</th>
<th>Temperatura del fluid (2) ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 a 64</td>
</tr>
<tr>
<td>D ≤ 34</td>
<td>20</td>
</tr>
<tr>
<td>34 < D ≤ 60</td>
<td>20</td>
</tr>
<tr>
<td>60 < D ≤ 90</td>
<td>30</td>
</tr>
<tr>
<td>90 < D ≤ 140</td>
<td>30</td>
</tr>
<tr>
<td>140 < D</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diàmetre exterior (1) [mm]</th>
<th>Temperatura del fluid (3) ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-20 a -10</td>
</tr>
<tr>
<td>D ≤ 34</td>
<td>40</td>
</tr>
<tr>
<td>34 < D ≤ 60</td>
<td>40</td>
</tr>
<tr>
<td>60 < D ≤ 90</td>
<td>40</td>
</tr>
<tr>
<td>90 < D ≤ 140</td>
<td>60</td>
</tr>
<tr>
<td>140 < D</td>
<td>60</td>
</tr>
</tbody>
</table>

Taula D.1.11 *Aïllament canonades General*

(1) Diàmetre exterior de la canonada sense aïllar.

(2) S’escull la temperatura màxima a la xarxa.

(3) S’escull la temperatura mínima a la xarxa.

- Conductes i accessoris.

<table>
<thead>
<tr>
<th>Aire</th>
<th>Espessor [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calent</td>
<td>20</td>
</tr>
<tr>
<td>Fred</td>
<td>30</td>
</tr>
</tbody>
</table>

Taula D.1.12 *Aïllament conductes General*

En cas de conductes fabricats amb panxes aïllants s’admetrà l’espessor de material determinat pel fabricant.

- Aparells i dipòsits.
<table>
<thead>
<tr>
<th>Superfície m²</th>
<th>Espessor [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>menor 2</td>
<td>30</td>
</tr>
<tr>
<td>major 2</td>
<td>40</td>
</tr>
</tbody>
</table>

Taula D.1.13 Aïllament aparells i dipòsits

Espessors mínims en exterieurs

Quan els components estiguin instal·lats a l’exterior, l’espessor indicat a les taules anteriors serà incrementat, com a mínim, en 10 mm per fluids calents i 20 mm per fluids freds.

CONDENSACIONS

Quan el fluid estigui a temperatura menor a la del ambient s’haurà d’evitar la formació de condensacions superficials i intersticials.

CANNONADES ENTERRADES

Per xarxes de cannonades podrà justificar-se en projecte una solució diferent a l’exigida aquí.

D.3.2.4 VALVULERIA

VÀLVULES D’ESFERA

Las vàlvules d’esfera seran amb cos de llautó, bronze o acer al carboni, amb esfera de llautó o ferro perfectament polides i seient de tefló.

Totes les vàlvules fins a 2” de ø, seran de connexions roscades; les de diàmetres superiors a 2 1/2” inclòs, seran de connexions amb brides i vindran dotades de contrabrides, juntes, femelles i cargols.

La maniobra d’obertura serà per gir de 90º, sense direcció i sense fregaments amb altres diàmetres. La posició de la palanca serà indicativa del posicionament de la vàlvula.

VÀLVULES DE PAPALLONA

Les Vàlvules de papallona s’utilitzaran per tall en els circuits indicats en plànols. Estaran compostes per cos, eix, disc i anell. Les vàlvules tindran el cos construït d’una sola peça de fundició.
La papallona serà de fundició. L’anell de tipus envolvent permetrà el tancament estanc amb la pressió requerida. L’eix serà d’acer, fermament unit al disc. Les vàlvules estaran equipades amb brides i contrabrides d’atac.

El comandament podrà ser de palanca, desmultiplicador axial amb volant manual o actuador elèctric amb reductor segons l’ús al qual estigui destinada.

MANÒMETRES

S’instal·laran mitjançant un by-pass a totes les canonades d’impulsió i aspiració de les bombes amb dues claus de tall per poder escollir. Tindran com a mínim 60 mm. de diàmetre i la seva connexió de 1/2".

La graduació estarà d’acord amb la pressió que van a mesurar.

Estaran instal·lats de tal forma que la seva lectura sigui fàcilment accessible.

JUNTES ANTIVIBRANTS

A les canonades connexionades a aquells equips sotmesos a vibracions, com condensador i evaporador frigorífics, bombes d’impulsió d’aigua, així com la resta d’equips especificats, es muntaran juntes antivibrants de simple esfera constituïdes per una part central de cautxú.

VÀLVULES DE REGULACIÓ

Aquestes vàlvules s’utilitzaran per l’equilibri de la instal·lació així com per ajustar els cabals projectats, instal·lant-se en els llocs indicats en les plànols.

Es fabricaran en metall amb clau de nylon vermell. Estanqueïtat del seient. L’obturador disposa d’un anell de tefló (DN-10 junta metàl·lica). Junta d’estanqueïtat prensa estopes sense amiant.

VÀLVULES DE RETENCIÓ

S’utilitzaran per evitar la circulació de l’aigua en sentit invers al requerit. Per evitar el cop d’ariet s’evitarà l’ús de vàlvules de retenció tipus clapeta substituint-les per vàlvules de disc i serà recomanable que s’utilitzin vàlvules motoritzades de tancament lent per diàmetres superiors a 140 mm.

El muntatge de les vàlvules serà adequat per permetre un registre fàcil.
TERMÒMETRES

S’instal·laran en els llocs indicats en plànols i la seva connexió serà de 1/2”.

Podran ser rectes, a esquadra o circulars i estaran instal·lats de tal forma que la seva lectura sigui fàcilment accessible. La graduació estarà d’acord amb la temperatura que van a mesurar.

D.3.2.5 BOMBES EN CANONADA (IN LINE)

S’instal·laran totes les bombes per circulació d’aigua amb les características indicades a plànols.

Las carcasses de les bombes seran del tipus envolvent amb connexions d’entrada i sortida segons Normes DIN. En cap cas la potència al fre dels motors, estant les bombes treballant a la màxima capacitat, excedirà la potència nominal del motor.

Seran del tipus centrífug amb acoblament directe al motor, formant un grup monobloc i intercalades a la canonada amb manigots elàstics a la interconnexió estant perfectament aïllades.

D.3.2.6 COMPORTES DE REGULACIÓ

Es subministraran i s’instal·laran als llocs indicats als plànols, als climatitzadors i als ramals principals de distribució d’aire.

Les comportes estaran constituïdes amb perfils d’alumini extruït i les aletes seran del tipus perfil “ala d’avió” amb pèrdua de càrrega mínima. També podran ser construïdes amb xapa d’ac.

Les comportes destinades a regulacions tipus “tot-res”, tindran gir d’aletes “en paral·lel”, en canvi les destinades a regulacions tipus proporcional tindran gir d’aletes “en oposició”.

En qualsevol cas, els mecanismes d’accionament estaran situats fora de la corrent d’aire.

D.3.2.7 GRUP FRIGORÍFIC

S’instal·laran sobre bancades als llocs indicats en els plànols.

Estaran concebuts amb compressors de cargol de parcialització contínua 17% ÷ 100%. Inclourà de fàbrica els següents components:
- Quadre per arrencada part-winding instal·lat a la unitat.
- Cablejat necessari entre arrancades i grup de fred.
- Interruptor seccionador general amb fusibles.
- Quadre de control de la unitat amb microprocessador UCM, “Adaptive Control”, susceptible de connexió a programa per monitorització.
- Càrrega de refrigerant R-22 i d’oli inicial d’operació.
- Àïllament de l’evaporador.
- Resistència d’escalfament d’oli.
- Vàlvula (es) d’expansió electrònica.

Manòmetres d’alta i baixa pressió.

D.3.2.8 CLIMATITZADORS

Els climatitzadors de tractament d’aire compliran les següents característiques:

Els plafons de tancament serà fàcilment desmuntables; entre plafons i perfiles es muntaran juntes d’estanqueïtat.

Les portes de registre per qualsevol secció estaran concebudes expressament per un accés ràpid, construïdes amb doble xapa d’acer galvanitzat a l’interior amb àïllament, marc amb frontisses d’acer i tancaments amb maneta doble amb un punt d’ajust.

SECCIÓ DE VENTILADOR

L’estructura es subministrarà amb plafó sandwich amb xapa llisa. En els casos que es pretengui reduir el nivell sonor, el plafó serà de xapa perforada.

Aquesta secció a l’interior estarà formada per un ventilador centrífug de doble aspiració, motor amb la corresponent placa tensora, transmissió i bancada per la subjecció del conjunt. Es munta sobre amortidors de suspensió metàl·lica, l’embocadura de descàrrega del ventilador queda unida amb una junta flexible totalment estanca.

SECCIÓ DE MESCLA

Aquesta secció es subministrarà amb una sola comporta o amb dues comportes. AIRE EXTERIOR I AIRE RETORN.
Les comportes estaran construïdes en alumini extruït, les lamel·les en oposició seran de perfil aerodinàmic i junta de goma per garantir l'estanqueïtat, inter-connexionades entre si mitjançant dents a l'interior del marc, l'accionament pot realitzar-se amb comandament manual o bé preparat per connexió a servo-motor.

SECCIÓ DE FILTRES O PRE-FILTRES

Mètode de prova: Eficàcia segons classificació Eurovent EU-3 ó EU-4.

La secció de filtres lliscarà per carrils, per la neteja o canvi.

El bastidor del filtre serà de xapa d'acer galvanitzat. La manta es suportarà mitjançant una malla galvanitzada, plegada en “V” successives per aconseguir major superfície de filtrat.

SECCIÓ DE BATERIES

Tant per calefacció com per refrigeració aquesta secció conté al seu interior les bateries, el desmuntatge serra senzill, efectuant-se lateralment; en els casos de refrigeració, disposa d’una safata de condensats en acer inoxidable amb tub de desguàs, per garantir el buidat de tota la safata es dóna una inclinació.

Les bateries seran construïdes en tub dem coure i aletes d'alumini tipus continu, estampats de colls equidistants de perfecta adherència, entre tubs i aletes s'aconsegueix mitjançant expandit mecànic. Els col·lectors es fabricaran en tub d'acer, incorporant desguassos i purgadors.

D.3.3 PROTECCIÓ DE PARTS EN MOVIMENT I ELEMENTS SOTMESOS A ALTES TEMPERATURES

Cap superfície de la instal·lació amb la que hi pugui haver un contacte accidental, menys les superfícies d'elements emissors de calor, poden tenir una temperatura superior a 60ºC. Si existeix el cas, s'ha de protegir sense prejudici del compliment de la reglamentació aplicable als aparells i equips coberts per la reglamentació específica de seguretat en la matèria de baixa tensió i aparells a gas. Segons *ITE 02.15.2 del RITE* [2].

Tots els elements en moviment, tals com transmissions de potència, rodets de ventiladors, etc., en especial els dels aparells situats en els locals, han de complir el disposit en la reglamentació sobre seguretat de màquines aplicable.

Elts elements de protecció s’han de poder desmuntar de tal manera que es facilitin les operacions de manteniment. Segons *ITE 02.15.4 del RITE* [2].
Els manigots passamurs han de col·locar-se a l’obra civil o en elements estructurals quan aquestes s’estan executant. L’espai comprès entre el maneguet i la canonada s’ha d’omplir amb una massilla plàstica, que segelli totalment el pas i permeti la dilatació lliure del la conducció. El maneguet s’ha d’acabar al ras de l’element d’obra menys quan passin a través de forjats. En aquest cas hauran de sortir aproximadament uns 2 cm per la part superior.

Els maneguet es construeixen amb un material adequat i amb les dimensions suficients perquè pugui passar la canonada amb el seu aïllant tèrmic. Aquest espai no pot ser superior a 3 cm.

Quan el manigot travessi un element al que se li exigeixi una determinada resistència al foc, la solució constructiva del conjunt ha de mantenir, com a mínim, la mateixa resistència.

Es considera que els passos a través d’un element constructiu no redueixen la seva resistència al foc si es compleix alguna de les condicions establertes, en aquest respecte, en la NBE-CPI, condicions de protecció contra incendis els edificis vigent. Segons ITE 05.2.4 del RITE [2]

D.3.4 PROBES, POSADA EN MARXA I RECEPCIÓ

D.3.4.1 MATERIALS

Quan arriba el material a la instal·lació, s’emmagatzemaran o es situaran en una zona protegida per mantenir-lo en perfectes condicions pel seu posterior muntatge. Tots els equips que no s’ubiquin en el moment de lliurament en el lloc definitiu seran degudament situats al magatzem a fi i efecte que no pateixin cap desperfecte.

Durant l’emmagatzematge a l’obra, es protegiran els materials de la humitat i de qualsevol agent que pugui causar algun dany.

Durant el transcurs del muntatge es tindrà cura dels materials per tal que per qualsevol dels seus extrems o accessos no s’introdueixin elements aliens.

En cas que existeixin riscos d’oxidació de canonades o altres materials durant l’amuntegament en obra, aquests s’hauran de protegir mitjançant pintura o qualsevol altre producte que elimini el risc.

Requereix especial cura dels materials fràgils o de precisió durant la seva manipulació o instal·lació.
D.3.4.2 NETEJA DE CANALITZACIONS

Abans de la seva instal·lació, les canalitzacions s’han de recréixer i rentar-se per eliminar els cossos estranyos segons l’apartat ITE 05.3.3 del RITE. [2]

D.3.4.3 SENYALITZACIÓ

Les conduccions de les instal·lacions han de quedar senyalitzades amb franges, anells i fletxes, disposats sobre la superfície exterior, d’acord amb la Norma UNE 100-100.

La sala de màquines disposa el codi de colors al costat de l’esquema de principi.

A acabar l’obra tots els equips que no vinguin reglamentàriament identificats de fàbrica, s’han de marcar mitjançant una plaça d’identificació sobre la que es reflectiran les característiques de l’equip en qüestió.

Les plaques es coloraran en lloc visible i es fixaran mitjançant rebllons, soldadura o material resistent a les condicions ambientals.

D.3.4.4 PROBES

Un cop muntades les canonades es realitzaran les proves d’estanqueïtat total o parcialment segons les necessitats de muntatge.

A la instal·lació corresponent a la distribució d’aire es realitzaran proves mesurant directa o indirectament el cabal de la unitat de tractament d’aire i en els seus elements terminals.

Tots els circuits hidràulics, si disposen d’elements de regulació i mesura de cabal, seran ajustats als cabals de projecte.

D.3.4.5 RECEPCIÓ, PROVISIONAL I DEFINITIVA

Tant els components de la instal·lació com el seu muntatge i funcionament han de quedar garantits per un any com a màxim, a partir de la recepció provisional, la qual es realitzarà un cop acabades les instal·lacions.

L’instal·lador estarà obligat a reparar els desperfectes o anomalies que es detectin quan es realitzi la inspecció, disposant del termini que es consideri per esmenar aquests desperfectes en el cas que hi fossin i es determini que han estat provocats per un mal muntatge.
La recepció definitiva es portarà a terme amb un interval de temps d'un any, que començarà a comptar a partir de la recepció provisional.

D.3.5 MANTENIMENT

Per mantenir les característiques funcionals de les instal·lacions i aconseguir la màxima eficiència dels equips, així com per garantir la seguretat, és necessari realitzar tasques de manteniment preventiu i correctiu.

Les comprovacions que com a mínim s’han de realitzar i la seva freqüència són les que s’indiquen a continuació, on s’utilitza la simbologia següent:

<table>
<thead>
<tr>
<th>Simbol</th>
<th>Significat</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>una vegada al mes</td>
</tr>
<tr>
<td>m</td>
<td>una vegada al mes per potència tèrmica entre 100 i 1000 kW</td>
</tr>
<tr>
<td>M</td>
<td>una vegada cada 15 dies per potència tèrmica mes gran de 1000 kW</td>
</tr>
<tr>
<td>2 A</td>
<td>dues vegades per temporada (any), un al principi de la mateixa</td>
</tr>
<tr>
<td>A</td>
<td>una vegada a l’any</td>
</tr>
</tbody>
</table>

Taula D.1.14 Simbologia freqüència accions manteniment

MESURES A LES CALDERES

<table>
<thead>
<tr>
<th>Operació</th>
<th>Temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. consum de combustible</td>
<td>M</td>
</tr>
<tr>
<td>2. consum d’energia elèctrica</td>
<td>M</td>
</tr>
<tr>
<td>3. consum d’aigua</td>
<td>M</td>
</tr>
<tr>
<td>4. temperatura o pressió del fluid portador en entrada i sortida</td>
<td>m</td>
</tr>
<tr>
<td>5. temperatura ambient de la sala de màquines</td>
<td>m</td>
</tr>
<tr>
<td>6. temperatura del gassos de combustió</td>
<td>m</td>
</tr>
<tr>
<td>7. contingut de CO</td>
<td>m</td>
</tr>
<tr>
<td>8. index de fums opacs amb combustibles sólids o liquids i de contingut de partícules solides amb combustibles sólids</td>
<td>m</td>
</tr>
<tr>
<td>9. tiratge a la caixa de fums de la caldera</td>
<td>m</td>
</tr>
</tbody>
</table>

Taula D.1.15 Freqüència manteniment calderes
MESURES A MÀQUINES FRIGORÍFIQUES

<table>
<thead>
<tr>
<th>Operació</th>
<th>temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. temperatura del fluid exterior a l'entrada i sortida de l'evaporador</td>
<td>m</td>
</tr>
<tr>
<td>2. temperatura del fluid exterior a l'entrada i sortida del condensador</td>
<td>m</td>
</tr>
<tr>
<td>3. pèrdue de pressió en l'evaporador</td>
<td>m</td>
</tr>
<tr>
<td>4. pèrdue de pressió en el condensador</td>
<td>m</td>
</tr>
<tr>
<td>5. temperatura i pressió de l'evaporador</td>
<td>m</td>
</tr>
<tr>
<td>6. temperatura i pressió de condensació</td>
<td>m</td>
</tr>
<tr>
<td>7. potència absorbida</td>
<td>m</td>
</tr>
</tbody>
</table>

Taula D.1.16 Freqüència manteniment màquina frigorífica

OPERACIONS DE MANTENIMENT

<table>
<thead>
<tr>
<th>Operació</th>
<th>temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. neteja dels evaporadors</td>
<td>A</td>
</tr>
<tr>
<td>2. neteja dels condensadors</td>
<td>A</td>
</tr>
<tr>
<td>3. drenatge i neteja del circuit de les torres de refrigeració</td>
<td>2 A</td>
</tr>
<tr>
<td>4. comprovació dels nivells de refrigeració i oli en els equips frigorífics</td>
<td>m</td>
</tr>
<tr>
<td>5. neteja del circuit de fums de les carteres</td>
<td>2 A</td>
</tr>
<tr>
<td>6. neteja dels conductes de fums i ximeneia</td>
<td>A</td>
</tr>
<tr>
<td>7. comprovació del material refractari</td>
<td>2 A</td>
</tr>
<tr>
<td>8. comprovació del l'estanqueitat de tancament entre el cremador i la caldera</td>
<td>M</td>
</tr>
<tr>
<td>9. revisió general de calderes individuals de gas</td>
<td>A</td>
</tr>
<tr>
<td>10. revisió general de calderes individuals de gas-oil</td>
<td>2 A</td>
</tr>
<tr>
<td>11. detecció de fugues amb xarxa de combustible</td>
<td>M</td>
</tr>
<tr>
<td>12. comprovació nivells d'aigua en els circuits</td>
<td>M</td>
</tr>
<tr>
<td>13. comprovació d'estanqueitat de circuits de comprovació</td>
<td>A</td>
</tr>
<tr>
<td>14. comprovació d'estanqueitat de vàlvules d'intercepció</td>
<td>2 A</td>
</tr>
<tr>
<td>15. comprovació de seguretat d'elements</td>
<td>M</td>
</tr>
<tr>
<td>16. revisió i neteja de filtres d'aigua</td>
<td>2 A</td>
</tr>
<tr>
<td>17. revisió i neteja de filtres d'aire</td>
<td>M</td>
</tr>
<tr>
<td>18. revisió de bateries d'intercanvi tèrmics</td>
<td>A</td>
</tr>
<tr>
<td>19. revisió d'aparells de humectació i refredament evaporatiu</td>
<td>M</td>
</tr>
<tr>
<td>20. revisió i neteja d'aparells de recuperació de calor</td>
<td>2 A</td>
</tr>
<tr>
<td>21. revisió de les unitats terminals d'aigua -aire</td>
<td>2 A</td>
</tr>
<tr>
<td>22. revisió d'unitats terminals de distribució d'aire</td>
<td>2 A</td>
</tr>
<tr>
<td>23. revisió i neteja d'unitats d'impulsió i retorns d'aire</td>
<td>A</td>
</tr>
<tr>
<td>24. revisió d'equips autònoms</td>
<td>2 A</td>
</tr>
<tr>
<td>25. revisió de bombes i ventiladors amb mesura de potencia absorbida</td>
<td>M</td>
</tr>
<tr>
<td>26. revisió del sistema de preparació ACS</td>
<td>M</td>
</tr>
<tr>
<td>27. revisió del estad de l'aillament tèrmic</td>
<td>A</td>
</tr>
<tr>
<td>28. revisió del sistema de control automàtic</td>
<td>2 A</td>
</tr>
</tbody>
</table>

Taula D.1.17 Freqüència operacions manteniment