<table>
<thead>
<tr>
<th>SUMARIO DE LOS ANEXOS</th>
<th>SUMARIO DE LOS ANEXOS</th>
<th>SUMARIO DE LOS ANEXOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ESPECIFICACIONES DE LOS MATERIALES Y EQUIPOS UTILIZADOS</td>
<td>A</td>
</tr>
<tr>
<td>A.1</td>
<td>Reactivos, disoluciones y material</td>
<td>A.1. Reactivos, disoluciones y material</td>
</tr>
<tr>
<td>A.2</td>
<td>Equipos</td>
<td>A.2. Equipos</td>
</tr>
<tr>
<td>A.2.1</td>
<td>Electrodo de referencia</td>
<td>A.2.1. Electrodo de referencia</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Electrodo tubulares selectivos de iones</td>
<td>A.2.2. Electrodo tubulares selectivos de iones</td>
</tr>
<tr>
<td>A.2.3</td>
<td>Bomba peristáltica</td>
<td>A.2.3. Bomba peristáltica</td>
</tr>
<tr>
<td>A.2.4</td>
<td>Válvulas solenoides</td>
<td>A.2.4. Válvulas solenoides</td>
</tr>
<tr>
<td>A.2.5</td>
<td>Soldador</td>
<td>A.2.5. Soldador</td>
</tr>
<tr>
<td>A.2.6</td>
<td>Balanzas</td>
<td>A.2.6. Balanzas</td>
</tr>
<tr>
<td>A.2.7</td>
<td>Refrigerador</td>
<td>A.2.7. Refrigerador</td>
</tr>
<tr>
<td>A.2.8</td>
<td>Espectrometría de adsorción atómica (AAS)</td>
<td>A.2.8. Espectrometría de adsorción atómica (AAS)</td>
</tr>
<tr>
<td>A.2.9</td>
<td>Otro material utilizado</td>
<td>A.2.9. Otro material utilizado</td>
</tr>
<tr>
<td>A.2.10</td>
<td>Sistema de adquisición de datos</td>
<td>A.2.10. Sistema de adquisición de datos</td>
</tr>
<tr>
<td>A.3</td>
<td>Fichas de equipos</td>
<td>A.3. Fichas de equipos</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Ficha válvulas solenoides</td>
<td>A.3.1. Ficha válvulas solenoides</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Tarjeta de adquisición de datos NI</td>
<td>A.3.2. Tarjeta de adquisición de datos NI</td>
</tr>
<tr>
<td>A.3.3</td>
<td>Procesador de señal</td>
<td>A.3.3. Procesador de señal</td>
</tr>
<tr>
<td>B</td>
<td>FICHA INTERNACIONAL DE SEGURIDAD QUÍMICA</td>
<td>B.1. Ficha del Cobre</td>
</tr>
<tr>
<td>B.1</td>
<td>Ficha del Cobre</td>
<td>B.1. Ficha del Cobre</td>
</tr>
<tr>
<td>B.2</td>
<td>Nitrato de Sodio</td>
<td>B.2. Nitrato de Sodio</td>
</tr>
<tr>
<td>B.3</td>
<td>Nitrato de cobre trihidratado</td>
<td>B.3. Nitrato de cobre trihidratado</td>
</tr>
<tr>
<td>C</td>
<td>EFECTOS NOCIVOS DEL COBRE</td>
<td>C.1. Efectos del cobre sobre la salud</td>
</tr>
<tr>
<td>C.1</td>
<td>Efectos del cobre sobre la salud</td>
<td>C.1. Efectos del cobre sobre la salud</td>
</tr>
<tr>
<td>C.2</td>
<td>Efectos ambientales del cobre</td>
<td>C.2. Efectos ambientales del cobre</td>
</tr>
<tr>
<td>D</td>
<td>ASPECTOS GENERALES DE LA BIOSORCIÓN</td>
<td>D.1. Biosorbertes</td>
</tr>
<tr>
<td>D.1</td>
<td>Biosorbertes</td>
<td>D.1. Biosorbertes</td>
</tr>
<tr>
<td>D.2</td>
<td>Modelos de sorción</td>
<td>D.2. Modelos de sorción</td>
</tr>
<tr>
<td>D.3</td>
<td>Modelo teórico de adsorción</td>
<td>D.3. Modelo teórico de adsorción</td>
</tr>
<tr>
<td>E</td>
<td>DEFINICIÓN Y FUNCIONAMIENTO DE LOS SENSORES QUÍMICOS</td>
<td>E.1. Definición y funcionamiento de los sensores químicos</td>
</tr>
<tr>
<td>F</td>
<td>ESQUEMA TEÓRICO DEL CIRCUITO GENERAL DE FLUJO</td>
<td>F.1. Esquema teórico del circuito general de flujo</td>
</tr>
</tbody>
</table>
G DESCRIPCIÓN DEL SOFTWARE UTILIZADO ..46
G.1 Programa de Control y Adquisición Semiautomático ..46
G.2 Programa de Control y Adquisición ...48
G.3 Programa de Calibración ...50
H PREPARACIÓN DE LOS ELEMENTOS DEL SISTEMA PARA LA
REALIZACIÓN DE LOS EXPERIMENTOS ...51
H.1 Preparación de los electrodos indicadores ...51
H.2 Preparación del electrodo de referencia ...51
H.3 Control de caudal del trabajo y mantenimiento de los tubos de bomba51
H.4 Refresco del sistema de flujo ...52
I PARTE EXPERIMENTAL: Gráficos y datos ...53
I.1 Estudio 1 ...53
I.2 Estudio 2 ...53
I.3 Estudio 3 ...54
I.4 Estudio 4 ...54
I.5 Estudio 5 ...56
I.6 Estudio 6 ...56
I.7 Estudio 7 ...59
I.8 Estudio 8 ...60
I.9 Estudio 9 ...63
I.10 Estudio 10 ...65
I.11 Estudio 11 ...66
I.12 Estudio 12 ...68
I.13 Estudio 13 ...72
J FOTOGRAFÍAS DEL MONTAJE ...74
K LEGISLACIÓN ...76
A ESPECIFICACIONES DE LOS MATERIALES Y EQUIPOS UTILIZADOS

A.1 Reactivos, disoluciones y material

En este apartado se especifican todos los reactivos y materiales utilizados hasta el momento para la realización de los experimentos en el laboratorio.

- Para la preparación de las disoluciones, patrones de calibración y solución portadora:
 - Nitrato de Cobre (II) trihidratado: (Cu NO$_3$)$_2$ * 3 H$_2$O Merck.
 - Agua desionizada: Modelo Milli-Q-PLUS MILLIPORE.

- Para la preparación de la fuerza iónica (ISA)
 - Nitrato de sodio: NaNO$_3$ 0,2 M Merck.
 - Agua desionizada: Modelo Milli-Q-PLUS MILLIPORE.

- Para la cámara interna del electrodo de referencia
 Inner Filling Solution, 900002, THERMO ORION.

- Para la cámara externa del electrodo:
 Nitrato de sodio: NaNO$_3$ 0,1 M.

- Para el pulido de los electrodos Indicadores
 Papel abrasivo Orion modelo 948201 THERMO ORION.

- Otros materiales utilizados son:
 Parafilm, micropipetas, embudos, botes de plástico, material general del laboratorio…
A.2 Equipos

Los equipos utilizados en el montaje del sistema de flujo son:

A.2.1 Electrodo de referencia

Se utiliza un electrodo comercial Ag/AgCl de doble unión de la casa ORION, modelo 900200. Este electrodo puede trabajar en un rango de temperaturas entre 10 y 100 °C usando disoluciones Orion.

El electrodo consta de dos cámaras (una exterior y una interior) que se rellenan de dos disoluciones diferentes. La cámara interna es la que contiene el electrodo de Ag/AgCl y como solución interna se utiliza una disolución comercial saturada de cloruro de plata (ORION, 900002) que proporciona un potencial equivalente al del electrodo de calomelanos.

La cámara externa aisla al electrodo de Ag/AgCl de la muestra y como disolución externa se utiliza una disolución 0,1 M de NaNO₃ de preparación propia. Esta disolución cumple los requisitos exigidos para el electrodo de referencia: presenta una fuerza iónica muy superior a la de la muestra y un pH menor a 8, es equitransferente y no puede presentar iones sulfuro y yoduro, que podrían reaccionar con los iones plata (I) de la disolución interna.

A.2.2 Electrodos tubulares selectivos de iones

Durante la realización de todos los experimentos se utilizaron cuatro electrodos selectivos de iones que fueron construidos anteriormente por compañeros de laboratorio. Estos electrodos se consideraron más adecuados que el electrodo convencional para las mediciones en continuo de un sistema de flujo, por varios motivos:

- Por su mejor adaptación al sistema de flujo, gracias a su configuración tubular, provocando así menos alteraciones en las características hidrodinámicas del
mismo: no se crean cámaras de dilución, ni puntos muertos de mezcla y las posibles burbujas no encuentran resistencia para circular por el montaje.

Porque éstos electrodos se integran perfectamente en el sistema, lo que permite la incorporación secuencial de varios detectores.

El gráfico siguiente, ilustra brevemente la configuración y construcción de los mismos:

(a) piezas del cuerpo, (b) construcción del cuerpo, (c) relleno con mezclado de grafito y resina, (d) perforación de 2 mm de diámetro, (e) relleno con membrana sensora, (f) perforación de 0,8 mm de diámetro.

Los parámetros característicos de estos electrodos son:

Límite de detección práctico: de 10^{-7} M

Rango de respuesta lineal: 10^{-6} a 10^{-7} M

Necesidad de ISA: recomendable utilizar ajustador de fuerza iónica para disminuir el ruido del potencial obtenido en la monitorización y aumentar la velocidad de respuesta del electrodo.

Efecto de la luz: afecta levemente provocando una diferencia en las medidas de 1 o 2 décimas de milivoltios.
A.2.3 Bomba peristáltica

La bomba utilizada en el montaje es una bomba peristáltica de 8 canales modelo Mimpuls 3 de la casa GILSON. El aparato ofrece un intervalo de caudales entre 0,3 µl/min y 30 ml/min.

El caudal de la bomba puede ser regulado mediante la variación de la velocidad de la bomba, el ajuste de la rosca de cierre de los canales o la selección del diámetro interno de los tubos de bomba.

Como en todos los diferentes ensayos se utilizan tubos de Tygon (PVC) REFERENCE: 070534-10I / ENE10-SC0010 COLOR CODE: WHITE/BLACK con un diámetro interior de 0,95 mm y un grosor de 0,86 mm, el caudal se tendrá que regular mediante alguna de las otras dos posibilidades.

A.2.4 Válvulas solenoides

Las válvulas utilizadas en el proyecto son válvulas solenoides de la casa NResearch incorporated cuyo P/N es PNLBT032, las especificaciones se muestran en la ficha correspondiente en el apartado A.3.1

A.2.5 Soldador

Utilizado con la finalidad de soldar los tubos de teflón de forma que queden ajustados a los conectores de las válvulas solenoides. El soldador es de la casa Hamilton, Reno, Nevada con el P/N es el 32909.

A.2.6 Balanzas

Para realizar las diferentes mediciones, ya sea para la obtención de caudal, como la preparación de disoluciones, se utilizó la balanza de la casa Uni Bloc modelo UW620H con un error de 0,01 g, un peso máximo de 620g y mínimo de 0,02g.
A.2.7 **Refrigerador**

Con la finalidad de mantener nuestro sistema a una temperatura constante (25º), ya que en proyectos anteriores se demostró la sensibilidad de los sensores a los cambios de temperaturas, se ha utilizado un refrigerador MEDILOW de la marca P.Selecta cuyo rango de temperaturas es de 2ºC a 40ºC, estabilidad de +- 1,25 %.

Este refrigerador presenta ciertas características como que está especialmente indicado para la determinación de DBOs a 20ºC, la medida de actividad encimática a 25ºC, la conservación de muestras, etc.

Además dispone de otras características como:

- El mueble exterior está recubierto de epoxi, mientras que el recinto interior está moldeado en ABS.
- En el interior del recinto hay una turbina para la circulación del aire, y un grupo compresor hermético y sin vibraciones.
- Dispone de un orificio para entrada de conexiones, sondas, etc. situado en el lateral del armario.
- Presenta unos soportes pie delanteros que son regulables en altura para conseguir una perfecta nivelación.

Por último comentar que el peso del refrigerador es de 8 Kilos, y consume una potencia de unos 25 W.

A.2.8 **Espectrometría de adsorción atómica (AAS)**

Para realizar la adsorción atómica a las muestras preparadas se ha utilizado el espectrofotómetro de Adsorción Atómica de la casa VARIAN, modelo SPECTRAA 640, con una longitud de onda de ? = 22.6, o lo que supone un rango de 0 a 60 ppm.
A.2.9 **Otro material utilizado**

Se incluyen dentro de este apartado los tubos y las piezas de metacrilato utilizados en los diferentes montajes.

- **Tubos de teflón** de 0,8 mm de diámetro interno.
- **Conectores y roscas de OMNIFIT** utilizados para empalmar los tubos de teflón entre ellos o bien con otros elementos del sistema del flujo, como el desburbujeador, conectores de metacrilato…
- **Conectores BNC**, banana Ariston, que transmiten la señal captada por los sensores al sistema de monitorización.
- **Piezas de metacrilato**, preparadas para ser incorporadas al montaje en cualquier punto. Constán de una entrada y salida roscadas que pueden acoplarse perfectamente a los conectores del sistema de flujo. Entran en este grupo los soportes para fijar los electrodos tubulares y el electrodo de referencia, así como las piezas con configuración en T, en las que confluyen tres canales.

Los canales internos de todas estas piezas miden 0,8 mm de diámetro interno.

- **Conector en ocho y conector en tres** de OMNIFIT del tipo Standard bore size 1,5 mm, que permiten realizar las mezclas correspondientes de las distintas soluciones que circulan a través de ellos.
- **Desburbujeador** de metacrilato, para evitar que pasen burbujas de aire y se produzca el cortocircuito en el conjunto que forman el electrodo indicador y el de referencia.

![Desburbujeador](image1)

- **Tubo de mezcla**, que se ha utilizado para garantizar la mezcla correcta de la corriente de muestra y la de ISA. Su fabricación consta de 25 cm de tubo de teflón enrollado en un lápiz.

![Tubo de mezcla](image2)

A.2.10 Sistema de adquisición de datos

El sistema de adquisición de datos permite registrar y almacenar las medidas de potencial en el ordenador.

Se pueden diferenciar 3 partes:

- **Procesador de señal**, es un dispositivo electrónico que amplifica y depura la señal generada en el sistema y la transforma en una señal controlada y regulada. (ver ficha en el apartado A.3.3)
 El procesador utilizado consta de 16 canales,
lo que permite la evaluación simultánea de 16 electrodos indicadores diferentes. La entrada de cada uno de estos canales es un conector BNC.

El electrodo de referencia se acopla en la parte posterior del modulo mediante una conexión BNC. El dispositivo consta de una tercera conexión BNC para la toma de tierra del sistema pero que no ha sido utilizada en el presente proyecto, pues no se observaba mejora en su conexión.

- **Tarjeta de adquisición de datos**, de National Instrument PCI 6221, cuya función es conectar el procesador de señal y la instrumentación virtual (para ver especificaciones ir al apartado A.3.2)

- **Instrumentación virtual**, que agrupa la unidad CPU y un software adecuado para facilitar la visualización y el control del proceso de medida. El software utilizado en este caso son los programas de Calibración, Control y Adquisición y Control y Adquisición Semiautomático construidos en el entorno LabVIEW.
A.3 Fichas de equipos

Se ha considerado oportuno adjuntar algunas de las fichas de las características y especificaciones de algunos los equipos.

A.3.1 Ficha válvulas solenoides

The new CoolDrive™ driver circuits by NResearch Inc.*, complement of NResearch Inc.* standard solenoids. The CoolDrive™ driver circuit incorporates five drivers on one compact board measuring 6 inches long by 2.3 inches wide. The driver circuit allows for independent operation of five solenoid valves using 5V logic level signals from your PC.

The CoolDrive™ driver circuit uses a holding voltage that is automatically achieved within 150 ms of activating the solenoid. The holding voltage applied is 1/3 of the full rated voltage for the particular solenoid. The scope trace shown left was taken of a 24-vdc 225 series solenoid in action using the new CoolDrive™ driver circuit.

The new CoolDrive™ driving/holding circuit will prolong valve life and reduce the overall power consumption required to operate your valve network. By utilizing a holding voltage, over-heating the solenoid valve is eliminated extending the valve’s probable life while reducing the risk of transferring heat to process media. In addition, the holding voltage lowers the overall power consumed in a cycle by not requiring the full rated voltage to hold the solenoid open or energized.

Using new NResearch Inc.* CoolDrive™ valve drivers in conjunction with NResearch Inc.* solenoid operated valves will give you the most dependable, compact, cost effective valving solution available anywhere.

<table>
<thead>
<tr>
<th>P/N Ref.</th>
<th>161 series</th>
<th>225 series</th>
<th>360 series</th>
<th>648 series</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 vdc</td>
<td>161D5X12</td>
<td>225D5X12</td>
<td>360D5X12</td>
<td>648D5X12</td>
</tr>
<tr>
<td>24 vdc</td>
<td>161D5X24</td>
<td>225D5X24</td>
<td>360D5X24</td>
<td>648D5X24</td>
</tr>
<tr>
<td>List Price</td>
<td>$138.52</td>
<td>$138.52</td>
<td>$138.52</td>
<td>$138.52</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION:

Neptune Research & Development Inc.
267 Fairfield Avenue, West Caldwell, NJ. U.S.A.
Phone: 973-664-6111 Fax: 973-664-3985
E-mail: sales@research.com Website: www.research.com
CoolDrive™ Technical Information

Specifications

<table>
<thead>
<tr>
<th>161D5Xxx</th>
<th>12 vdc</th>
<th>24 vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical:</td>
<td>Inputs (1 through 6): see below</td>
<td>Inputs (1 through 6): see below</td>
</tr>
<tr>
<td>Mounting Holes: Use #4-40 (3mm) Phillips Head Screws</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 12 volts DC Minimum 94 mA / Valve at 12 volts DC</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 24 volts DC Minimum 46 mA / Valve at 24 volts DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>225D5Xxx</th>
<th>12 vdc</th>
<th>24 vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical:</td>
<td>Inputs (1 through 6): see below</td>
<td>Inputs (1 through 6): see below</td>
</tr>
<tr>
<td>Mounting Holes: Use #4-40 (3mm) Phillips Head Screws</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 12 volts DC Minimum 135 mA / Valve at 12 volts DC</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 24 volts DC Minimum 85 mA / Valve at 24 volts DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>360D5Xxx</th>
<th>12 vdc</th>
<th>24 vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical:</td>
<td>Inputs (1 through 6): see below</td>
<td>Inputs (1 through 6): see below</td>
</tr>
<tr>
<td>Mounting Holes: Use #4-40 (3mm) Phillips Head Screws</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 12 volts DC Minimum 355 mA / Valve at 12 volts DC</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 24 volts DC Minimum 176 mA / Valve at 24 volts DC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>648D5Xxx</th>
<th>12 vdc</th>
<th>24 vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical:</td>
<td>Inputs (1 through 6): see below</td>
<td>Inputs (1 through 6): see below</td>
</tr>
<tr>
<td>Mounting Holes: Use #4-40 (3mm) Phillips Head Screws</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 12 volts DC Minimum 600 mA / Valve at 12 volts DC</td>
<td>Power Inputs: VCC 5 to 7 volts Valve Power: 24 volts DC Minimum 306 mA / Valve at 24 volts DC</td>
</tr>
</tbody>
</table>

INPUTS (1 through 6): High Level = Min. 2 to 5.5 Volts Max. Low Level = 0 to 0.8 Volts Max. Valve(s) ON at High level Leading edge sensitive.

WARNING: INPUTS and OUTPUTS are NOT over voltage and/or short circuit protected.

Dimensions

![Diagram](image-url)
A.3.2 Tarjeta de adquisición de datos NI

Low-Cost M Series Multifunction DAQ – 16-Bit, 250 kS/s, up to 80 Analog Inputs

NI M Series – Low-Cost
- NI recommends high-speed M Series for 5X faster sampling rates or high-accuracy M Series for 4X higher resolution
- 16, 32, or 60 analog inputs at 16-bit, 250 kS/s
- Up to 4 analog outputs at 10 bits, ±10 V full-scale setting time
- Programmable input range (±10, ±5, ±2, ±1 V) per channel
- Up to 64 TTL/CMOS digital I/O lines (up to 32 hardware-timed at 1 MHz)
- Two 32-bit, 80 MHz counter/timers
- Digital triggering
- NI-NICal calibration technology for improved measurement accuracy
- 6 DMA channels for fast data throughput
- Available lifetime warranty and calibration services

Operating Systems
- Windows 2000/XP
- Mac OS X
- Linux®

Recommended Software
- LabVIEW
- LabWindows/CVI
- Measurement Studio

Other Compatible Software
- SignalExpress
- VI Logger
- Visual Studio .NET
- C/C++/C#

Measurement Services
Software [included]!
- NI-DAQmx driver software
- Measurement & Automation Explorer configuration utility
- VI Logger Lite data-logging software

Lifetime Warranties: NEW!

Overview and Applications

National Instruments M Series low-cost multifunction data acquisition (DAQ) devices provide optimized functionality for cost-sensitive applications. Low-cost M Series devices have up to 80 analog inputs, 48 digital I/O lines, four analog outputs, two counter/timers, and digital triggering. All low-cost M Series devices are available with lifetime warranties and additional calibration services. Low-cost M Series devices have a one-year calibration interval. For better accuracy, faster speeds, and an extended 2-year calibration service, consider the high-speed and high-accuracy M Series devices.

<table>
<thead>
<tr>
<th>Family</th>
<th>Rate</th>
<th>Analog Inputs</th>
<th>Analog Input Resolution (Bits)</th>
<th>Analog Outputs</th>
<th>Output Resolution (Bits)</th>
<th>Max Output Rates (kHz)</th>
<th>Analog Output Range (V)</th>
<th>Digital I/O</th>
<th>Calibrated (checked) DIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI-6259</td>
<td>600</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>±10</td>
<td>0.5</td>
<td>24</td>
<td>4, up to 1 MHz</td>
<td></td>
</tr>
<tr>
<td>NI-6251</td>
<td>600</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>±10</td>
<td>0.5</td>
<td>24</td>
<td>4, up to 1 MHz</td>
<td></td>
</tr>
<tr>
<td>NI-6251 ST-PM1</td>
<td>600</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>±10</td>
<td>0.5</td>
<td>24</td>
<td>4, up to 1 MHz</td>
<td></td>
</tr>
<tr>
<td>NI-6254</td>
<td>100</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>±10</td>
<td>0.5</td>
<td>24</td>
<td>4, up to 1 MHz</td>
<td></td>
</tr>
<tr>
<td>NI-6255</td>
<td>100</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>±10</td>
<td>0.5</td>
<td>24</td>
<td>4, up to 1 MHz</td>
<td></td>
</tr>
<tr>
<td>NI-6256</td>
<td>100</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>±10</td>
<td>0.5</td>
<td>24</td>
<td>4, up to 1 MHz</td>
<td></td>
</tr>
</tbody>
</table>

NI High-Speed Series devices are not compatible with NI-DAQ Studio.

Note: 1. Low-Cost M Series Selection Guide

M Series for Test

For test, you can use 16-bit, 250 kS/s analog inputs and 1 MHz digital lines in conjunction with NI signal conditioning for applications including data logging and sensor measurements. Low-cost M Series devices are compatible with National Instruments SCC and SCD signal conditioning platforms, which provide amplification, filtering, and power for virtually every type of sensor. These platforms also are compliant with IEEE 1451.4 smart transducer electronic data sheet (TEDS) sensors, which provide digital storage for sensor data sheet information.
Low-Cost M Series Multifunction DAQ – 16-Bit, 250 kS/s, up to 80 Analog Inputs

M Series for Control

M Series digital lines can drive 24 mA for relay and actuator control. With up to four analog outputs, two 80 MHz counter/timers, and six DMA channels, M Series devices can capture multiple control loops simultaneously. Low-cost M Series devices also have direct support for encoder measurements, protected digital lines, and digital disconnect filters for control applications. With up to 80 analog inputs, 32 clocked digital lines at rates of 1 MHz, and four analog outputs, you can execute multiple control loops with a single device. For higher-count control loops, you can use M Series devices in conjunction and tightly synchronized with National Instruments analog output devices for up to 128 inputs or 64 outputs.

M Series for Design

You can use the wide range of I/O – from analog inputs to 40 digital lines – to measure and verify prototype designs. M Series devices and National Instruments SignalExpress interactive measurement software bring benchtop measurements to the PC. With NI SignalExpress interactive configuration-based steps, you can quickly create design verification tests. The fast acquisition and generation rates of low-cost M Series devices along with SignalExpress provide on-the-fly design analysis. You can convert your test and verify SignalExpress projects to NI LabVIEW applications for immediate M Series DAQ use and bridge the gap between test, control, and design applications.

Hybrid-Slot-Compatible PXI Modules

PXI M Series modules are hybrid-slot-compatible so that you can use them in both PXI slots and the hybrid slots found in new PXI Express chassis. The PXI Systems Alliance specifies that hybrid-slot-compatible PXI modules use modified slot connectors to mechanically fit in both PXI slots and hybrid slots. This mechanical change:

• Provides compatibility to past, current, and future PXI chassis
• Maintains existing product specifications
• Requires no software changes (application or driver)
• Maintains speed and capability of all PXI communication (PXI Express signaling is not provided)

However, hybrid-slot-compatible PXI modules do not include the pins used to implement PXI local bus communication, which is used for backplane SCI control from the right most PXI slot in PXI/SCI or combination chassis (PXI-1010, PXI-1011, PXI-1050, and PXI-1052). For these applications, NI provides unmodified PXI M Series modules that maintain the required local bus capabilities. Refer to SCI Control of PXI/SCI Combination Chassis section within Ordering Information for part numbers.

Simultaneous and Intelligent Data Acquisition

When you need to obtain performance from a data acquisition device beyond the capabilities of a multifunction DAQ device, National Instruments provides simultaneous sampling with NI S Series and intelligent DAQ with NI R Series. The S Series architecture dedicates an ADC per channel to provide higher aggregate sampling rates compared to multiplexed devices. S Series devices are ideal for applications including IF digitization, transient recording, ultrasound, and sonar testing, and high-energy physics.

The multifunction R Series data acquisition devices contain a 1M/3M gate FPGA that is recordable using the NI LabVIEW FPGA Module. Multifunction R Series devices have up to eight independent 16-bit analog inputs with up to 20 kHz simultaneous sampling, up to eight independent 16-bit analog outputs with up to 1 MHz simultaneous update rates, and up to 66 digital I/O lines configurable at rates up to 40 MHz. You can customize these devices to develop capabilities such as complete control over the synchronization and timing of all signals and operations; user-defined on-board decision-making logic; and digital lines individually configurable as input, output, counter/timer, PWM, flexible encoder inputs, or user-defined communication protocols.

Recommended Accessories

Signal conditioning is required for sensor measurements or voltage inputs greater than 10 V. National Instruments SCI is a versatile, high-performance signal conditioning platform optimized for high-channel-count applications. NI SCC provides portable, flexible signal conditioning options on a per-channel basis. Visit ni.com/sci for resources on available NI signal conditioning.

The new National Instruments PCI-6221 (37-Fin) is the first M Series device to offer the 37-pin D-Sub connector that lowers connectivity cost by 80 percent. The D-Sub connector makes the NI PCI-6221 (37-Fin) ideal for OEM applications. For applications that do not require signal conditioning, refer to Table 2 for recommended cabling and accessories.

Recommended Training and Services

All M Series devices are available with additional warranty and calibration services. Choose from the one-year extended warranty, lifetime warranty, or lifetime warranty with one basic calibration service. For new data acquisition programmers, NI recommends the "Data Acquisition: 7 Steps to Success Tutorial Kit." This tutorial kit helps shorten development time for data acquisition applications by describing the various stages of getting started with data acquisition applications including system definition, setup, test, and application programming.
NI 622x Specifications

Specifications listed below are typical at 25 °C unless otherwise noted. Refer to the M Series User Manual for more information about NI 622x devices.

Analog Input

- **Number of channels**
 - NI 6220/6221 8 differential or 16 single ended
 - NI 6224/6229 16 differential or 32 single ended
 - NI 6225 40 differential or 80 single ended

- **ADC resolution** 16 bits
- **DNL** No missing codes guaranteed
- **INL** Refer to the AI Absolute Accuracy Table

- **Sampling rate**
 - **Maximum** 250 kS/s single channel, 250 kS/s multi-channel (aggregate)
 - **Minimum** No minimum
 - **Timing accuracy** 50 ppm of sample rate
 - **Timing resolution** 50 ns

- **Input coupling** DC
- **Input range** ±10 V, ±5 V, ±1 V, ±0.2 V
- **Maximum working voltage for analog inputs (signal + common mode)** ±11 V of AI GND

- **CMRR (DC to 60 Hz)** 92 dB

- **Input impedance**
 - **Device on**
 - AI+ to AI GND >10 GΩ in parallel with 100 pF
 - AI– to AI GND >10 GΩ in parallel with 100 pF
 - **Device off**
 - AI+ to AI GND 820 Ω
 - AI– to AI GND 820 Ω

- **Input bias current** ±100 pA

- **Crosstalk (at 100 kHz)**
 - Adjacent channels -75 dB
 - Non-adjacent channels -90 dB

- **Small signal bandwidth (-3 dB)** 700 kHz

- **Input FIFO size** 4,095 samples

- **Scan list memory** 4,095 entries

- **Data transfers**
 - PCI/PXI devices DMA (scatter-gather), interrupts, programmed I/O
 - USB devices USB Signal Stream, programmed I/O

- **Overvoltage protection (AI < 0.79 V, AI SENSE, AI SENSE 2)**
 - Device on ±25 V for up to two AI pins
 - Device off ±15 V for up to two AI pins

- **Input current during overvoltage condition** ±20 mA max/Al pin

Settling Time for Multichannel Measurements

- Accuracy, full scale step, all ranges
 - ±90 ppm of step (±6 LSB) 4 µs convert interval
 - ±30 ppm of step (±2 LSB) 5 µs convert interval
 - ±15 ppm of step (±1 LSB) 7 µs convert interval
Typical Performance Graphs

- **Settling Error Versus Time for Different Source Impedances**

- **AI <0.78> Small Signal Bandwidth**

- **AI <0.79> CMRR**

Analog Output

- **Number of channels**
 - NI 6220/6224: 0
 - NI 6221/6225: 2
 - NI 6229: 4

- **DAC resolution**: 16 bits

- **DNL**: ±1 LSB

- **Monotonicity**: 16 bit guaranteed

- **Maximum update rate**
 - 1 channel: 833 kS/s
 - 2 channels: 740 kS/s per channel
 - 3 channels: 666 kS/s per channel
 - 4 channels: 625 kS/s per channel

- **Timing accuracy**: 50 ppm of sample rate

- **Timing resolution**: 50 ns

- **Output range**: ±10 V

- **Output coupling**: DC

- **Output impedance**: 0.2 Ω

- **Output current drive**: ±5 mA

- **Overdrive protection**: ±25 V

- **Overdrive current**: 10 mA

- **Power-on state**: ±20 mV

- **Power-off glitch**: 400 mV for 200 ms

- **Output FIFO size**: 8,191 samples shared among channels used

- **Data transfers**
 - PCI/PXI devices: DMA (scatter-gather), interrupts, programmed I/O
 - USB devices: USB Signal Stream, programmed I/O

- **AO waveform modes**:
 - Non-periodic waveform
 - Periodic waveform regeneration mode from onboard FIFO
 - Periodic waveform regeneration from host buffer including dynamic update
A.3.3 Procesador de señal

Buses para amplificadores INA116

Vista frontal

BNC’s hembra

Vista posterior

DB 37 macho

Los terminales del 11 al 19 del DB37 van cortocircuitados
Desarrollo y optimización de un sistema automático de monitorización del proceso de biosorción del ion cobre (II) en raspo de uva
Especificación mangueras de conexión para PCI-1712, PCMCIA y PCI/PXI-6221

Manguera Bomba
Rojo/Blanco: Interruptor
Gris/Azul: Interruptor
Verde (GND)/Amarillo (Salida): Salida analógica
Placa PCI/PXI-6221

<table>
<thead>
<tr>
<th>Tipo I/O</th>
<th>68 pins</th>
<th>Pin conector</th>
<th>Pin DB</th>
<th>Color cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0.0</td>
<td>52</td>
<td></td>
<td>25</td>
<td>naranja/verde/tan</td>
</tr>
<tr>
<td>P0.1</td>
<td>17</td>
<td></td>
<td>8</td>
<td>tan/naranja</td>
</tr>
<tr>
<td>P0.2</td>
<td>49</td>
<td></td>
<td>29</td>
<td>marrón/tan</td>
</tr>
<tr>
<td>P0.3</td>
<td>47</td>
<td></td>
<td>4</td>
<td>naranja/rosa</td>
</tr>
<tr>
<td>P0.4</td>
<td>19</td>
<td></td>
<td>22</td>
<td>tan/azul</td>
</tr>
<tr>
<td>P0.5</td>
<td>51</td>
<td></td>
<td>7</td>
<td>naranja/tan</td>
</tr>
<tr>
<td>P0.6</td>
<td>16</td>
<td></td>
<td>10</td>
<td>tan/rosa</td>
</tr>
<tr>
<td>P0.7</td>
<td>48</td>
<td></td>
<td>3</td>
<td>amarillo/rosa</td>
</tr>
<tr>
<td>P1.0</td>
<td>11</td>
<td></td>
<td>20</td>
<td>naranja/verde</td>
</tr>
<tr>
<td>P1.1</td>
<td>10</td>
<td></td>
<td>2</td>
<td>naranja/azul</td>
</tr>
<tr>
<td>P1.2</td>
<td>43</td>
<td></td>
<td>23</td>
<td>violeta/naranja</td>
</tr>
<tr>
<td>P1.3</td>
<td>42</td>
<td></td>
<td>6</td>
<td>gris/tan</td>
</tr>
<tr>
<td>P1.4</td>
<td>41</td>
<td></td>
<td>21</td>
<td>gris/marrón</td>
</tr>
<tr>
<td>P1.5</td>
<td>6</td>
<td></td>
<td>1</td>
<td>marrón/violeta</td>
</tr>
<tr>
<td>P1.6</td>
<td>5</td>
<td></td>
<td>24</td>
<td>marrón/verde</td>
</tr>
<tr>
<td>P1.7</td>
<td>38</td>
<td></td>
<td>5</td>
<td>rosa/marrón</td>
</tr>
<tr>
<td>A10</td>
<td>68</td>
<td></td>
<td>12</td>
<td>gris/rosa</td>
</tr>
<tr>
<td>A11</td>
<td>33</td>
<td></td>
<td>13</td>
<td>rosa/violeta</td>
</tr>
<tr>
<td>A12</td>
<td>65</td>
<td></td>
<td>14</td>
<td>azul/rosa</td>
</tr>
<tr>
<td>A13</td>
<td>30</td>
<td></td>
<td>15</td>
<td>blanco/verde</td>
</tr>
<tr>
<td>A14</td>
<td>26</td>
<td></td>
<td>16</td>
<td>blanco/tan</td>
</tr>
<tr>
<td>A15</td>
<td>60</td>
<td></td>
<td>17</td>
<td>gris/blanco</td>
</tr>
<tr>
<td>A16</td>
<td>25</td>
<td></td>
<td>18</td>
<td>blanco/rosa</td>
</tr>
<tr>
<td>A17</td>
<td>57</td>
<td></td>
<td>19</td>
<td>violeta/tan</td>
</tr>
<tr>
<td>A18</td>
<td>34</td>
<td></td>
<td>37</td>
<td>rosa/gris</td>
</tr>
<tr>
<td>A19</td>
<td>65</td>
<td></td>
<td>36</td>
<td>verde/rosa</td>
</tr>
<tr>
<td>A10</td>
<td>31</td>
<td></td>
<td>35</td>
<td>rosa/azul</td>
</tr>
<tr>
<td>A11</td>
<td>63</td>
<td></td>
<td>34</td>
<td>marrón/blanco</td>
</tr>
<tr>
<td>A12</td>
<td>61</td>
<td></td>
<td>33</td>
<td>violeta/blanco</td>
</tr>
<tr>
<td>A13</td>
<td>26</td>
<td></td>
<td>32</td>
<td>blanco/gris</td>
</tr>
<tr>
<td>A14</td>
<td>58</td>
<td></td>
<td>31</td>
<td>naranja/blanco</td>
</tr>
<tr>
<td>A15</td>
<td>23</td>
<td></td>
<td>30</td>
<td>tan/violeta</td>
</tr>
<tr>
<td>AIGND</td>
<td>66</td>
<td></td>
<td>9</td>
<td>azul/blanco</td>
</tr>
<tr>
<td>DGND</td>
<td>18</td>
<td></td>
<td>26</td>
<td>tan/verde</td>
</tr>
<tr>
<td>AOGND</td>
<td>64</td>
<td></td>
<td>27</td>
<td>amarillo/tan</td>
</tr>
<tr>
<td>AO1_OUT</td>
<td>21</td>
<td></td>
<td>28</td>
<td>blanco/amarillo</td>
</tr>
</tbody>
</table>
Desarrollo y optimización de un sistema automático de monitorización del proceso de biosorción del ion cobre (II) en raspo de uva

![Image]

<table>
<thead>
<tr>
<th>PIN</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH0</td>
<td>34 68</td>
</tr>
<tr>
<td>ACH1</td>
<td>33 67</td>
</tr>
<tr>
<td>AGND</td>
<td>32 66</td>
</tr>
<tr>
<td>ACH2</td>
<td>31 65</td>
</tr>
<tr>
<td>ACH3</td>
<td>30 64</td>
</tr>
<tr>
<td>AGND</td>
<td>29 63</td>
</tr>
<tr>
<td>ACH4</td>
<td>28 62</td>
</tr>
<tr>
<td>AGND</td>
<td>27 61</td>
</tr>
<tr>
<td>ACH5</td>
<td>26 60</td>
</tr>
<tr>
<td>ACH6</td>
<td>25 59</td>
</tr>
<tr>
<td>AGND</td>
<td>24 58</td>
</tr>
<tr>
<td>ACH7</td>
<td>23 57</td>
</tr>
<tr>
<td>DAC0OUT</td>
<td>22 56</td>
</tr>
<tr>
<td>DAC1OUT</td>
<td>21 55</td>
</tr>
<tr>
<td>EXTREF</td>
<td>20 54</td>
</tr>
<tr>
<td>DIO4</td>
<td>19 53</td>
</tr>
<tr>
<td>DGND</td>
<td>18 52</td>
</tr>
<tr>
<td>DIO1</td>
<td>17 51</td>
</tr>
<tr>
<td>DIO6</td>
<td>16 50</td>
</tr>
<tr>
<td>DGND</td>
<td>15 49</td>
</tr>
<tr>
<td>+5V</td>
<td>14 48</td>
</tr>
<tr>
<td>DGND</td>
<td>13 47</td>
</tr>
<tr>
<td>DIO3</td>
<td>12 45</td>
</tr>
<tr>
<td>DIO5</td>
<td>11 43</td>
</tr>
<tr>
<td>DIO2</td>
<td>10 44</td>
</tr>
<tr>
<td>DGND</td>
<td>9 43</td>
</tr>
<tr>
<td>DGND</td>
<td>8 42</td>
</tr>
<tr>
<td>DGND</td>
<td>7 41</td>
</tr>
<tr>
<td>DIO7</td>
<td>6 40</td>
</tr>
<tr>
<td>DGND</td>
<td>5 39</td>
</tr>
<tr>
<td>DIO4</td>
<td>4 38</td>
</tr>
<tr>
<td>DIO8</td>
<td>3 37</td>
</tr>
<tr>
<td>DGND</td>
<td>2 36</td>
</tr>
<tr>
<td>FREQ_OUT</td>
<td>1 35</td>
</tr>
</tbody>
</table>

1) No connect on the DAQcard-AI-16E-4, DAQCard-AI-16XE-50, NI PCI-6023E, NI PCI-6032E, NI PCI-6033E, and NI PCI-6034E

2) No connect on the DAQCard-AI-16E-4 and DAQCard-AI-16XE-50

Figure 1-4. SCB-68 E Series I/O Connector Pinout (Full)

SCB-68 Shielded Connector Block User Manual

ni.com
B FICHA INTERNACIONAL DE SEGURIDAD QUÍMICA

A continuación se muestran la Fichas Internacionales de Seguridad química de los materiales utilizados en el laboratorio

B.1 Ficha del Cobre

<table>
<thead>
<tr>
<th>TIPOS DE PELIGRO/EXPOSICION</th>
<th>PELIGROS/SINTOMAS AGUDOS</th>
<th>PREVENCION</th>
<th>LUCHA CONTRA INCENDIOS/PRIMEROS AUXILIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIO</td>
<td>Combustible.</td>
<td>Evitar las llamas.</td>
<td>Agentes especiales, arena seca, NO utilizar otros agentes.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPOSICION</td>
<td></td>
<td>¡EVITAR LA DISPERSION DEL POLVO!</td>
<td></td>
</tr>
<tr>
<td>• Inhalación</td>
<td>Tos, dolor de cabeza, jadeo, dolor de garganta.</td>
<td>Extracción localizada o protección respiratoria.</td>
<td>Aire limpio, reposo y proporcionar asistencia médica.</td>
</tr>
<tr>
<td>• Piel</td>
<td>Enrojecimiento.</td>
<td>Guantes protectores.</td>
<td>Quitar las ropas contaminadas, aclarar y lavar la piel con agua y jabón.</td>
</tr>
<tr>
<td>• Ojos</td>
<td>Enrojecimiento, dolor.</td>
<td>Gafas ajustadas de seguridad.</td>
<td>Enjuagar con agua abundante durante varios minutos (quitar las lentes de contacto, si puede hacerse con facilidad) y proporcionar asistencia médica.</td>
</tr>
<tr>
<td>• Ingestión</td>
<td>Dolor abdominal, náuseas, vómitos.</td>
<td>No comer, ni beber, ni fumar durante el trabajo.</td>
<td>Enjuagar la boca y proporcionar asistencia médica.</td>
</tr>
</tbody>
</table>
DERRAMES Y FUGAS

Barrer la sustancia derramada e introducirla en un recipiente, recoger cuidadosamente el residuo y trasladarlo a continuación a un lugar seguro. (Protección personal adicional: respirador de filtro P2 contra partículas nocivas).

ALMACENAMIENTO

Separado de (véanse Peligros Químicos).

ENVASADO Y ETIQUETADO

NOTAS

Los síntomas de la fiebre de los humos metálicos no se ponen de manifiesto hasta pasadas algunas horas.
B.2 Nitrato de Sodio

<table>
<thead>
<tr>
<th>TIPOS DE PELIGRO/EXPOSICION</th>
<th>PELIGROS/SINTOMAS AGUDOS</th>
<th>PREVENCION</th>
<th>PRIMEROS AUXILIOS/LUCHA CONTRA INCENDIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIO</td>
<td>No combustible pero facilita la combustión de otras sustancias. Desprende humos (o gases) tóxicos o irritantes en caso de incendio.</td>
<td>NO poner en contacto con combustibles o agentes reductores.</td>
<td>En caso de incendio en el entorno: están permitidos todos los agentes extintores.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Riesgo de incendio y explosión en contacto con agentes reductores.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPOSICION</th>
<th></th>
<th>¡EVITAR LA DISPERSION DEL POLVO!</th>
</tr>
</thead>
<tbody>
<tr>
<td>INHALACION</td>
<td>Tos, dificultad respiratoria (véase Ingestión).</td>
<td>Extracción localizada o protección respiratoria.</td>
</tr>
<tr>
<td>PIEL</td>
<td>Enrojecimiento.</td>
<td>Guantes protectores.</td>
</tr>
<tr>
<td>OJOS</td>
<td>Enrojecimiento, dolor.</td>
<td>Gafas de protección de seguridad.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enjuagar con agua abundante durante varios minutos (quitar las lentes de contacto si puede hacerse con facilidad) y proporcionar asistencia médica.</td>
</tr>
</tbody>
</table>
INGESTION

- Dolor abdominal, labios o uñas azuladas, piel azulada, convulsiones, diarrea, vértigo, dolor de cabeza, dificultad respiratoria.
- No comer, ni beber ni fumar durante el trabajo. Lavarse las manos antes de comer.
- Enjuagar la boca y proporcionar asistencia médica.

<table>
<thead>
<tr>
<th>DERRAMAS Y FUGAS</th>
<th>ALMACENAMIENTO</th>
<th>ENVASADO Y ETIQUETADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrer la sustancia derramada e introducirla en un recipiente plástico vidrio, eliminar el residuo con agua abundante.</td>
<td>Separado de sustancias combustibles y reductoras. Mantener en lugar seco.</td>
<td>Clasificación de Peligros NU: 5.1 Grupo de Envasado NU: III</td>
</tr>
</tbody>
</table>

ESTADO FISICO; ASPECTO

- inodoro
- Cristales inodoros, incoloros e higroscópicos.

PELOGROS FISICOS

- **PELIGROS QUIMICOS**
 - La sustancia se descompone al calentarla intensamente o al arder produciendo oxígeno y óxidos de nitrógeno, que aumenta el peligro de incendio. La sustancia es un oxidante fuerte y reacciona con materiales combustibles y reductores, originando peligro de incendio y explosión.

LIMITES DE EXPOSICION

- TLV no establecido.

VIAS DE EXPOSICION

- La sustancia se puede absorber por inhalación del aerosol y por ingestión.

RIESGO DE INHALACION

- La evaporación a 20°C es despreciable; sin embargo, se puede alcanzar rápidamente una concentración nociva de partículas en el aire cuando se dispersa.

EFECTOS DE EXPOSICION DE CORTA DURACION

- La sustancia irrita los ojos, la piel y el tracto respiratorio. La sustancia puede causar efectos en la sangre, dando lugar a la producción de metahemoglobina. Los efectos pueden aparecer de forma no inmediata. Se recomienda vigilancia médica.

EFECTOS DE EXPOSICION PROLONGADA O REPETIDA

- Punto de ebullición (se descompone): 380°C
- Punto de fusión: 308°C
- Densidad relativa (agua = 1): 2.3
- Solubilidad en agua, g/100 ml a 25°C: 92.1

PROPIEDADES FISICAS

DATOS AMBIENTALES

NOTAS

Enjuagar la ropa contaminada con agua abundante (peligro de incendio).
B.3 Nitrato de cobre trihidratado

Ficha de Datos de Seguridad conforme a la Directiva 91/155/CEE de la Comisión Fecha de emisión: 19.06.2004 Reemplaza la emisión del 07.07.2003

1. IDENTIFICACIÓN DE LA SUSTANCIA O DEL PREPARADO Y DE LA SOCIEDAD O EMPRESA

Identificación de la sustancia o del preparado:
• Artículo número: 102753
• Denominación: Cobre (II) nitrato trihidrato p.a.

Utilización de la sustancia/preparación:
• Análisis químico
• Producción química

Denominación de la empresa:
Empresa: Merck KGaA, 64271 Darmstadt, Alemania Tel: +49 6151 72-2440 Teléfono de urgencias: Instituto Nacional de Toxicología, Madrid Tel: 91 562 04 20

2. COMPOSICIÓN E INFORMACIÓN SOBRE LOS COMPONENTES

Nr.-CAS: 10031-43-3
PM: 241.60 g/mol Número CE: 221-838-5
Fórmula molecular: CuN$_2$O, 3 H$_2$O
Fórmula química: Cu(NO$_3$)$_2$ 3 H$_2$O

3. IDENTIFICACIÓN DE PELIGROS

Nocivo por ingestión. Irrita los ojos y la piel. Muy tóxico para los organismos acuáticos, puede provocar a largo plazo efectos negativos en el medio ambiente acuático.

4. PRIMEROS AUXILIOS

• Tras inhalación: Aire fresco.
• Tras contacto con la piel: aclarar con abundante agua. Eliminar la ropa contaminada.
• Tras contacto con los ojos: aclarar con abundante agua y párpados abiertos. En caso de persistir los dolores, llamar al oftalmólogo.
• Tras ingestión: Beber abundante agua y llamar al médico.

5. MEDIDAS DE LUCHA CONTRA INCENDIOS

- Medios de extinción adecuados.
 Adaptar a los materiales en el contorno.

- Riesgos especiales:
 Incombustible. Posibilidad de formación de vapores peligrosos por incendio en el entorno. En caso de incendio pueden producirse: gases nitrosos.

- Equipo de protección especial para el personal de lucha contra incendios:
 Permanencia en el área de riesgo sólo con sistemas de respiración artificiales e independientes del ambiente. Protección de la piel mediante observación de una distancia de seguridad y uso de ropa protectora adecuada.

- Referencias adicionales:
 Precipitar los vapores emergentes con agua. Evitar la penetración del agua de extinción en acuíferos superficiales o subterráneos.

6. MEDIDAS A TOMAR EN CASO DE VERTIDO ACCIDENTAL

 Evitar el contacto con la sustancia. Evitar la formación de polvo; no inhalar el polvo. Proceder a ventilación en lugares cerrados. No lanzar por el sumidero. Recoger en seco y proceder a la eliminación de los residuos. Aclarar después.

7. MANIPULACIÓN Y ALMACENAMIENTO

- Manipulación: Sin otras exigencias.
8. CONTROLES DE EXPOSICIÓN Y PROTECCIÓN PERSONAL

Los tipos de auxiliares para protección del cuerpo deben elegirse específicamente según el puesto de trabajo en función de la concentración y cantidad de la sustancia peligrosa. Debería aclararse con el suministrador la estabilidad de los medios protectores frente a los productos químicos.

- **Protección respiratoria:** necesaria en presencia de polvo.
- **Protección de los ojos:** precisa
- **Protección de las manos:** Para contacto guantes de caucho nitrilo

9. PROPIEDADES FÍSICAS Y QUÍMICAS

- Estado físico: sólido
- Color, azul
- Olor a nítrico
- Valor pH a 50 g/l H2O (20 °C) ~ 3-4
- Punto de fusión ~ 114-0
- Punto de ebullición no disponible
- Temperatura de ignición no aplicable
- Punto de inflamación no inflamable
- Límite de explosión bajo no aplicable alto no aplicable
- Densidad (20 °C): 2.05 g/cm3
- Densidad de amontonamiento ~ 1050 kg/m3
- Solubilidad en Agua (20 °C): 2670 g/l
- Descomposición térmica > 170 °C

10. ESTABILIDAD Y REACTIVIDAD

Condiciones a evitar.

Golpes y fricción
Calentamiento fuerte. (Puede formarse: oxígeno).
Materias a evitar
Reacción exotérmica con: anhídrido acético.
Riesgo de explosión con: amoníaco / amidas, complejos cianurados, compuestos orgánicos, metales pulverulento, compuestos oxidables.

Productos de descomposición peligrosos
Sensible a la humedad; eliminación de agua de cristalización por calefacción oxidante enérgico.

11. INFORMACIÓN TOXICOLÓGICA

Toxicidad aguda:
LD50 (oral, rata): 940 mg/kg.

Informaciones adicionales sobre toxicidad:
Tras inhalación de polvo: Irritación leve de: vías respiratorias.
Tras contacto con la piel: Irritaciones.
Tras contacto con los ojos: Fuertes irritaciones. Riesgo de turbidez en la córnea.
Tras ingestión: vómito.
Otras indicaciones: Para nitritos/nitratos en general: methemoglobinemia tras absorción de grandes cantidades.

Información complementaria:
No pueden excluirse otras características peligrosas.
El producto debe manejarse con las precauciones apropiadas para los productos químicos.

12. INFORMACIONES ECOLÓGICAS

Biodegradabilidad:
Los métodos para determinación de la biodegradabilidad no son aplicables para sustancias inorgánicas.
Efectos biológicos:

Muy tóxico para organismos acuáticos. Puede provocar a largo plazo efectos negativos en el medio ambiente acuático. Peligroso para el agua potable.

Toxicidad para los peces: peces LC50: 0.29 mg/l /96 h.

Para compuestos de cobre: efectos biológicos: tóxico para organismos acuáticos. Los iones Cu son tóxicos para peces, algas, protozoos y bacterias <1 mg/l. Para peces C. auratus, letal a 0,01 mg/l; para bivalvos, tóxico a 0,55 mg/l en 12 horas. Para ostras, tóxico a 0,1 mg/l. Para nitratos en general: pueden favorecer la eutrofia de acuíferos. Peligrosos para el agua potable. LC50 en peces: >500 mg/l.

13. CONSIDERACIONES RELATIVAS A LA ELIMINACIÓN

Producto:

Los productos químicos han de eliminarse siguiendo las normativas nacionales.

Embalaje:

Los envases de productos Merck han de eliminarse siguiendo las normativas nacionales.
C EFECTOS NOCIVOS DEL COBRE

C.1 Efectos del cobre sobre la salud

Debido a que la producción de cobre se ha incrementado en las últimas décadas, la cantidad de cobre en el ambiente se ha expandido considerablemente. Este metal puede ser encontrado en muchas clases de alimentos, en el agua potable y en el aire. Las absorción del cobre es necesaria, porque el cobre es un elemento traza que es esencial para la salud de los humanos. Aunque las personas pueden manejar concentraciones de cobre proporcionalmente altas, grandes cantidades puede también causar problemas de salud, como por ejemplo anemia, irritación del estómago e intestino y daño renal y hepático.

Exposiciones de largo periodo al cobre pueden irritar la nariz, la boca y los ojos y causar dolor de cabeza, de estómago, mareos, vómitos y diarreas, por lo que se recomienda, para evitar la exposición laboral, el uso de guantes y gafas. Una toma grande de cobre puede causar daño al hígado y los riñones e incluso la muerte. No ha sido determinado aún que el cobre sea cancerígeno. Los pacientes con la enfermedad de Wilson pueden tener mayores riesgos en caso de sobreexposición a este metal, por lo que tienen que tener un cuidado especial.

También existen artículos científicos que indican la unión entre exposiciones de largo término a elevadas concentraciones de cobre y una disminución de la inteligencia en adolescentes.

La mayoría de los compuestos del cobre se depositan y se enlanzan tanto a los sedimentos del agua como a las partículas del suelo. Estos compuestos solubles del cobre que son liberados normalmente a través de las aplicaciones en la agricultura, forman la mayor amenaza para la salud humana, ya que una cantidad de 30 g de sulfato de cobre es potencialmente letal para el hombre.
C.2 Efectos ambientales del cobre

En el agua superficial el cobre puede viajar largas distancias, tanto suspendido sobre las partículas de lodos como en iones libres. Estos ríos acaban depositando en sus orillas lodos que están contaminados con cobre, debido muchas veces a vertidos de aguas residuales contaminadas con dicho metal.

Por otra parte, el cobre entra en el aire, principalmente a través de la liberación durante la combustión de fuel, allí permanece durante un periodo de tiempo eminente, antes de depositarse de nuevo cuando empieza a llover. Así pues, acaba siempre en los suelos, donde es fuertemente ligado a la materia orgánica y minerales.

Este metal también puede ser liberado en el medioambiente por procesos naturales. Un ejemplo de fuentes naturales son las tormentas de polvo, descomposición de la vegetación, incendios forestales y aerosoles marinos. Pero principalmente provienen de actividades realizadas por el hombre como son la minería y las producciones de metal, de madera y de fertilizantes fosfatados. Por lo que es encontrado a menudo en asentamientos industriales, vertederos y lugares de residuos.

El cobre no se rompe en el ambiente y por eso se puede acumular en plantas y animales cuando éste es encontrado en suelos. Hay que destacar que en los suelos ricos en cobre sólo un número pequeño de plantas pueden vivir.
D ASPECTOS GENERALES DE LA BIOSORCIÓN

D.1 Biosorbentes

Se pueden distinguir, según su origen, dos tipos de biosorbentes:

- **Biomasa microbial**: engloba algas, bacterias, hongos y levaduras. Fácilmente disponibles y en grandes cantidades en la naturaleza. La inmovilización de la biomasa en estructuras sólidas crea un material con el tamaño, resistencia mecánica, rigidez y porosidad necesarios para su uso en columnas.

- **Residuos vegetales**: procedentes de procesos industriales o agrícolas. Deberían obtenerse gratuitamente o a muy bajo coste. Dentro de este grupo se encuentra el raspo de uva, que es un residuo de la industria vinícola.

D.2 Modelos de sorción

Debido a la compleja estructura de estos materiales se cree que probablemente varios mecanismos actúan simultáneamente en el proceso de sorción. Los principales mecanismos de sorción son:

- **Intercambio iónico**

 Gran parte de los sorbentes contienen sales de Na\(^+\), K\(^+\), Ca\(^{2+}\) y Mg\(^{2+}\) en sus estructuras; estos cationes pueden ser intercambiados con los iones metálicos y quedar unidos al material. Se cree que este mecanismo de sorción está presente en la mayoría de sorbentes de origen vegetal.

- **Adsorción física**

 La unión entre la superficie del sorbente y el metal se produce por fuerzas de atracción electrostática o de Van der Waals. Este mecanismo está presente en la sorción de diversos metales con biomasa microbiana.
Complejación

La unión entre el sorbente y el metal se produce a través de formaciones complejas en la superficie del material, ésta contiene ligandos unidentados o polidentados (quelación), según si pueden coordinar uno o más electrones con el metal.

Otros mecanismos

Otros mecanismos de sorción menos frecuentes son la quimiosorción y la precipitación. En la quimiosorción, la unión entre el sorbente y el metal se produce por enlaces químicos mediante el intercambio de electrones. La precipitación se asocia a un mecanismo de defensa de algunos microorganismos, los cuales pueden producir sustancias que precipitan los elementos tóxicos acumulados en su interior o en el medio que los rodea.

Según diversos experimentos realizados anteriormente para determinar la capacidad de adsorción de metales pesados en raspo de uva, la fijación de los cationes metálicos al raspo no parece estar totalmente gobernada por los mecanismos de intercambio iónico, sino que los cationes podrían estar en la superficie debido a procesos de adsorción física, asociados a la presencia de fuerzas de Van der Waals. Asimismo, la cantidad de cationes Ca$^{2+}$, Mg$^{2+}$ y K$^+$ que el raspo intercambia debido a la porción de cationes metálicos, indica que existen fenómenos de complejación que también actúan en la extracción del metal.

D.3 Modelo teórico de adsorción

Los procesos de adsorción dependen de la naturaleza de la sustancia que se va a recuperar del medio (adsorbato) y de la estructura o las características del sólido adsorbente. Si se considera que el adsorbato es un metal, el proceso de adsorción depende de las condiciones experimentales como el pH, la concentración de metal y adsorbente, competencia con otros iones y del tamaño de la partícula.

Existen dos modelos teóricos que más se ajustan a la explicación del proceso: las isotermas de Langmuir (1915) y de Freundlich (1939). Ambos modelos se utilizan para describir el comportamiento de sistemas en equilibrio.
El **Modelo de la isoterma de Langmuir** se desarrolló originariamente para representar la adsorción gas-sólido con carbón activo. En este modelo la atracción entre los iones de metal y la superficie del sorbente se basa principalmente en fuerzas físicas y no tiene en cuenta las agrupaciones moleculares ni las variaciones de energía de la interacción con el material. La principal hipótesis del modelo es que la superficie de adsorción es uniforme.

La ecuación matemática que rige el modelo es la siguiente:

$$ q_e = q_{\text{max}} \frac{C_e b}{1 + C_e b} \quad \text{(Ec. D1)} $$

donde
- q_e es la cantidad de adsorbato por unidad de adsorbente [mmol metal/g biosorbente];
- q_{max}, la capacidad máxima de retención del adsorbente [mmol metal/g biosorbente];
- b, término relacionado con la afinidad entre el sorbente y el sorbato (constante de Langmuir);
- C_e, la concentración de equilibrio de adsorbato en disolución [mmol/dm3].

El cálculo de la cantidad de metal retenida por el biosorbente q_e se calcula a partir de la ecuación:

$$ q_e = V \frac{C_i - C_e}{w} \quad \text{(Ec. D.2)} $$

donde
- V es el volumen de la disolución;
- C_i y C_e, las concentraciones inicial y de equilibrio;
- w, el peso del sorbente.

El **modelo de Freundlich** tiene un origen empírico y, al igual que la isoterma de Langmuir, la sorción es función de la concentración de equilibrio, sin tener en cuenta la presencia de otros iones en disolución o las variaciones del pH. En este caso, la superficie se supone heterogénea.
La expresión empírica de la isoterma de Freundlich es la siguiente:

\[q_e = K \cdot C_e^{1/n} \] \hspace{1cm} (Ec.D.3)

De forma linealizada,

\[\log q_e = \log K + (1/n) \log C_e \] \hspace{1cm} (Ec.D.4)

donde
- \(q_e \) es el valor de extracción de metal [mmol metal/g biosorbente];
- \(C_e \), la concentración de equilibrio del metal en disolución;
- \(K \), una constante de equilibrio;
- \(n \), una constante referida a la energía de adsorción entre adsorbente y adsorbato.
E DEFINICIÓN Y FUNCIONAMIENTO DE LOS SENSORES QUÍMICOS

De modo general, un sensor químico es un dispositivo que transforma información química en una señal útil desde un punto de vista analítico. Dicha información puede originarse como consecuencia de una reacción química del analito o debido a las propiedades físicas del sistema investigado.

El sensor químico es un componente esencial de lo que se conoce como analizador. Junto con el sensor, el analizador debe contener dispositivos que lleven a cabo las siguientes funciones de muestreo, transporte de la muestra, procesamientos de señales y de datos y, al mismo tiempo, éste puede constituir una parte esencial de un sistema automático. Es por ello por lo que el uso de sensores químicos resulta interesante en relación con el objetivo que persigue este proyecto.

En cuanto a su funcionamiento, los sensores químicos contienen dos unidades funcionales básicas: una parte receptora y una parte transductora. Ambas partes pueden estar físicamente separadas (por ejemplo, por una membrana) o integradas en el propio transductor.

![Figura E.1 - Esquema general del funcionamiento de un sensor químico: (R) receptor, (T) transductor, (A) amplificador de la señal, (P) procesador de la misma.](image)

En la parte receptora del sensor tiene lugar una reacción química selectiva por la que la información química (la cantidad de analito presente en la muestra) es transformada en una señal primaria, ya sea de tipo óptico, eléctrico, másico o térmico, que puede ser interpretada y medida por el transductor.
El **transductor**, por su parte, es un dispositivo capaz de transformar la señal primaria en una señal secundaria, esto es, en una señal útil desde un punto de vista analítico. Esta señal es normalmente de tipo eléctrico.

La IUPAC clasifica los distintos tipos de sensores químicos según el principio de operación del transductor. Se definen los dispositivos ópticos (que transforman los cambios de fenómenos ópticos como la absorbancia o el índice de refracción, entre otros); los electroquímicos (entre los que se encuentran los sensores potenciométricos); los eléctricos, los sensibles a la masa, los magnéticos, los termométricos y otros.
F ESQUEMA TEÓRICO DEL CIRCUITO GENERAL DE FLUJO

En este apartado se pretende ilustrar el circuito de flujo teórico proporcionado por el Departamento al inicio del proyecto. Está integrado por dos partes, el circuito de calibración y el circuito de biosorción. La siguiente figura muestra un modelo teórico del funcionamiento del circuito general.

![Diagrama del circuito general de flujo](image)

Figura F.1

Donde:

1. Columnas
2. Válvulas solenoides para columnas
3. Válvulas solenoides para patrones
4. Bombas peristálticas
5. Disolución portadora (muestra de carga)
6. Disolución de alimentación (patrones de calibración)
7. Disoluciones estándar (patrones de calibración)
8. Sensores
9. Electrodo de referencia
10. Salida a colector fracciones
11. Desecho
12. Válvula de solenoide para selección dirección de flujo
El funcionamiento del sistema de monitorización online es el siguiente:

FUNCION CARGA DE LAS COLUMNAS Y ACONDICIONAMIENTO DE LOS SENSORES

1. La bomba 4a impulsa las disoluciones de alimentación a través de las columnas y las válvulas 2 hacia 10.
2. La bomba 4b impulsa la disolución portadora a través de las válvulas 2 o 3 hacia los sensores 8 y 9 y desecho 11. La válvula 12 escogería el flujo a través de las válvulas 2 o 3.

FUNCION MUESTREO

3. El ordenador hace girar la válvula 12 con el flujo hacia las válvulas 2.
4. De las válvulas 2, el ordenador manda girar la válvula de la derecha durante un tiempo preestablecido y luego la cierra (vuelve a la posición inicial). Abre y cierra la segunda válvula. La tercera... y así sucesivamente. Las muestras de cada columna son impulsadas por la bomba 4b hacia los sensores 8 y 9 y desecho 11.

FUNCION COMPARACIÓN

5. El ordenador hace girar la válvula 12 con el flujo hacia las válvulas 3.
6. De las válvulas 3, el ordenador manda girar la válvula de la derecha durante un tiempo preestablecido, tomando la muestra de la primera disolución de alimentación 6 y luego la cierra (vuelve a la posición inicial). Abre y cierra la segunda válvula. La tercera... y así sucesivamente. Las muestras de cada disolución de alimentación son impulsadas por la bomba 4b hacia los sensores 8 y 9 y desecho 11.

Otra posible forma de trabajar en Función Comparación a tener en cuenta sería:

5. El ordenador hace girar la válvula 12 alternativamente con el flujo hacia las válvulas 2 y luego las válvulas 3.
6. De las válvulas 2, el ordenador manda girar la válvula de la derecha durante un tiempo preestablecido, tomando la muestra de la primera columna y luego hace lo mismo con la válvula 3, tomando la primera disolución de alimentación 6. Luego abre la segunda válvula de 2 y luego la segunda de 3, y así sucesivamente. Las muestras las columnas y de cada disolución de alimentación son impulsadas alternativamente por la bomba 4b hacia los
sensores 8 y 9 y desecho 11.

FUNCIÓN CALIBRACIÓN
7. El ordenador hace girar la válvula 12 con el flujo hacia las válvulas 3.
8. De las válvulas 3, el ordenador manda girar la válvula de la derecha durante un tiempo preestablecido, tomando la muestra de la primera disolución estándar 7 y luego la cierra (vuelve a la posición inicial). Lo hace por triplicado. Luego abre y cierra la segunda válvula. La tercera, y así sucesivamente. Las muestras de cada disolución estándar son impulsadas por la bomba 4b hacia los sensores 8 y 9 y desecho 11.
Partiendo del circuito general teórico ilustrado en la Figura F.1, se ha creado un circuito simplificado Figura F.2, donde se distinguen tres partes diferenciadas, la primera corresponde al circuito de biosorción, la segunda es la parte de calibración, que ha sido el principal objeto de estudio del presente proyecto, y la última parte correspondería al circuito de comprobación y verificación de las disoluciones patrón. Esta última parte ha sido omitida en el proyecto debido a su extensión; no obstante, se sugiere como propuesta de continuidad para la realización de posteriores estudios.

Figura F.2

- (1) Columnas
- (2) Válvulas columnas
- (3) Válvulas patrones
- (4) Bombas peristálticas
- (5) Disolución portadora
- (6) Disolución de alimentación
- (7) Patrones
- (8) Sensores
- (9) Electrodo de referencia
- (10) Salida colector de fracciones
- (11) Desecho
- (12) Válvula de solenoide para selección dirección de flujo

Partiendo de este circuito teórico, y centrándonos en la parte de calibración se han realizado los experimentos mostrados en la memoria, en el capítulo 8.
G DESCRIPCIÓN DEL SOFTWARE UTILIZADO

G.1 Programa de Control y Adquisición Semiautomático

Como indica su propio nombre, este programa tiene dos funciones: permite controlar el sistema de flujo y ejecutar la orden ADQUIRIR, de la cual se habla en el apartado 7.4 de la memoria. Dispone, por lo tanto, de dos pantallas o interfaces distintas: la de control y la de adquisición.

En la Figura G.1 se muestra la pantalla de control. Se distinguen tres bloques (en vertical) relacionados con los tres subsistemas del sistema de flujo que pueden controlarse: las válvulas solenoides (sistema de inyección), los electrodos (sistema de detección) y la bomba peristáltica (unidad propulsora).

![Figura G.1 Pantalla de control del Programa de Control y Adquisición Semiautomático](image)

El control de la apertura/cierre de las válvulas se hace clicando con el ratón encima de los círculos que se ven en (1), que pasarán de rojo a verde en función de si la válvula correspondiente está en posición NC o NO, respectivamente.
En función de cuántos electrodos se estén utilizando y, en consecuencia, de cuántos y qué canales del procesador de señal estén ocupados, en (2) se fijan los canales cuya señal debe ser registrada y monitorizada en caso de ejecutar la orden ADQUIRIR. Además, en (3) se debe indicar el tiempo en segundos durante el cual se ejecutará la orden.

Finalmente, para controlar la velocidad de la bomba, debe fijarse primero en el su propio panel de control la velocidad máxima de rotación (en rpm) y, a continuación, escribir en (4) un número entre 0,00 y 5,00, de manera que 0,00 equivale a la bomba parada y 5,00 a la bomba girando a la máxima velocidad fijada. Si se escribe un número entre estos dos valores, la bomba girará a una velocidad proporcional a dicho valor.

Por su parte, la Figura G.2 muestra la pantalla de adquisición. Esta pantalla se activa automáticamente cuando se ordena ADQUIRIR. En ella se muestra en tiempo real la señal registrada en los canales seleccionados durante el tiempo de adquisición fijado.

Figura G.2 Pantallas de adquisición del *Programa de Control y Adquisición Semiautomático*: (1) Gráficos *amplitud [mV] - tiempo [s] \(\mathcal{E}-t \)* de la señal registrada en los canales de adquisición seleccionados separados para los canales del 0 al 7 y del 8 al 15; (2) valor en tiempo real del potencial registrado en los canales seleccionados; (3) leyenda de colores para cada canal.
G.2 Programa de Control y Adquisición

Este programa tiene exactamente las mismas funciones que el anterior, pero en este caso las órdenes las ejecuta de forma automática siguiendo un determinado protocolo que debe programarse previamente. El único parámetro que se fija ajeno al protocolo de funcionamiento es la selección de los canales a muestrear.

Antes de utilizarlo, debe crearse un documento “.txt” que contendrá una orden por línea de texto. Las órdenes son las mismas que en el programa Semiautomático y se escriben según indica en la Tabla G.1:

<table>
<thead>
<tr>
<th>Para...</th>
<th>Debe escribirse...</th>
<th>Seguido de “ESPACIO” y...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrir una válvula</td>
<td>v</td>
<td>El número de la válvula (número entero entre 0 y 15)</td>
</tr>
<tr>
<td>Cerrar una válvula</td>
<td>-v</td>
<td></td>
</tr>
<tr>
<td>Adquirir</td>
<td>adq</td>
<td>El tiempo en segundos durante el cual el programa ejecutará la orden</td>
</tr>
<tr>
<td>Demora¹</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Modificar la velocidad de la bomba</td>
<td>b</td>
<td>Un número entre 0,00 y 5,00 siguiente el criterio explicado para el programa Semiautomático</td>
</tr>
</tbody>
</table>

¹ La orden “DEMORA” implica que el sistema siga funcionando en las condiciones en las que se encuentra inmediatamente antes de dicha orden sin realizar acción alguna durante el tiempo de duración de la orden.
Para entender mejor lo que acaba de exponerse, obsérvese primero en la Figura G.3 la forma que tiene la pantalla de control de este programa.

![Figura G.3 Pantalla de control del Programa de Control y Adquisición](image)

ASÍ PUES, PRIMERO SE FIJAN EN (1) LOS CANALES QUE SE DESA MUESTREAR. A CONTINUACIÓN, SE DEBERÁ CARGAR EL ARCHIVO “.txt” DONDE SE HA ESCRITO EL PROTOCOLO DE ANÁLISIS, QUE APARECERÁ EN (2) SEPARADO POR LÍNEAS DE COMANDO Y EL PROGRAMA COMENZARÁ A EJECUTARSE. POR SU PARTE, EN (3) SE MUESTRA EL ESTADO ACTUAL DE LAS VÁLVULAS Y EN (4) SE INDICA LA VELOCIDAD ACTUAL DE LA BOMBA, EL COMANDO QUE SE ESTÁ EJECUTANDO Y LA LÍNEA DE PROTOCOLO EN QUE SE ENCUENTRA Dicho COMANDO.

SIGUIENDO EL EJEMPLO MOSTRADO EN LA FIGURA G.3, EN EL INMNSTANTE DE TIEMPO “ACTUAL” SE TIENE QUE ESTÁN ABIERTAS LAS VÁLVULAS 3 Y 6, QUE LA BOMBA GIRA A LA MÁXIMA VELOCIDAD PREFIJADA EN SU PANEL DE CONTROL (SE LEE 5,00 EN LA CASILLA CORRESPONDIENTE) Y QUE EL PROGRAMA ESTÁ EJECUTANDO UNA ORDEN DE DEMORA QUE DURARÁ 450 S. AL ACABAR ESTE TIEMPO, EL SISTEMA PASARÁ A ADQUIRIR DURANTE 50 S (2). ACTO SEGUIDO, SE CERRARÁN LAS VÁLVULAS 3 Y 6, ETC.
G.3 Programa de Calibración

Este es el único programa de los tres que no permite controlar el sistema, sino que está diseñado para adquirir y monitorear los datos relativos al proceso de calibración de los electrodos. De las posibilidades que ofrece, sólo una de sus características ha sido aprovechada en este proyecto y será la única que se explique.

El programa, una vez que recibe la orden ADQUIRIR, la ejecuta de forma indefinida hasta que no recibe la orden de detenerse (STOP). De este modo, se puede interactuar sobre el sistema de flujo manualmente o utilizando el programa Semiautomático, mientras el de Calibración registra y monitoriza en tiempo real los cambios que se producen en la respuesta del detector. Este hecho permite empezar a conocer el sistema cuando no se tiene aún idea de la dinámica de la respuesta, ya que posibilita modificar el estado del sistema sin dejar de adquirir (y por lo tanto de monitorear lo que está sucediendo).

De las interfaces que componen el programa de Calibración, la que está relacionada con lo que acaba de explicarse es la de adquisición, prácticamente igual a la de los otros dos programas por lo que no va a mostrarse ninguna imagen adicional.
H PREPARACIÓN DE LOS ELEMENTOS DEL SISTEMA PARA LA REALIZACIÓN DE LOS EXPERIMENTOS

A continuación se describen los procedimientos preliminares que deben llevarse a cabo en el sistema para el correcto funcionamiento de éste durante la realización de los experimentos.

H.1 Preparación de los electrodos indicadores

Cuando se observe una disminución notable en la sensibilidad de los electrodos o una acusada deriva en su respuesta, debe procederse al pulido de la superficie sensora, ya que ésta tiende a pasivarse con el tiempo debido a las reacciones que tienen lugar en su seno a lo largo del proceso de análisis.

El pulido se realiza con papel ORION 948201. La última fase del pulido debe realizarse añadiendo una gota de agua Milli-Q sobre la superficie a pulir. A continuación, es necesario lavar los electrodos con agua Milli-Q y acondicionar las superficies haciendo circular a través de ellas una disolución conteniendo ion cobre (II) en bajas concentraciones (entre 10^{-6} M y 10^{-5} M) durante al menos 5 min.

H.2 Preparación del electrodo de referencia

Las disoluciones contenidas en las cámaras interna y externa del electrodo de referencia deben renovarse periódicamente. El nivel de la disolución de la de la cámara interna debe controlarse cada día rellenándolo cuando sea necesario (aproximadamente una vez por semana), mientras que la disolución de la cámara externa debe renovarse cada día.

H.3 Control de caudal del trabajo y mantenimiento de los tubos de bomba

El caudal proporcionado por la bomba peristáltica debe ser constante durante el desarrollo de los distintos experimentos. Este hecho es importante cuando se trabaja con sistemas de adsorción (en este caso, biosorción) para poder registrar una curva de saturación.
de la que se puedan obtener unos datos cinéticos lo más reproducibles posible.

Cuando se trabaja con este tipo de sistemas de propulsión, el valor del caudal bombeado puede ir disminuyendo debido a un estrangulamiento de los tubos de bomba por un uso excesivo de los mismos. Por este motivo, deben hacerse mediciones periódicas del caudal y ajustarlo en caso que sea necesario. Esto puede hacerse mediante la rosca reguladora del cierre del canal o variando la velocidad de giro de la bomba.

Al mismo tiempo, en conveniente cambiar los tubos de la bomba cada 15-20 días cuando el equipo funciona a pleno rendimiento. En períodos de inactividad deben despinzarse los tubos para no someterlos a un esfuerzo elástico innecesario.

H.4 Refresco del sistema de flujo

Antes del inicio de cada uno de los experimentos se debe proceder al llenado de los tubos y demás elementos que configuran el sistema de distribución de fluidos. Para ello, se utilizará el programa de *Control y Adquisición Semiautomático* descrito en el Anexo G.

Así pues, estando las bombas peristálticas en funcionamiento, se alternará la apertura/cierre de las válvulas que configuran tanto el circuito de biosorción como el circuito de calibración hasta comprobar que todas las disoluciones muestra o patrón han llegado hasta su respectivo conector de 8 canales.

Es importante realizar esta operación sin haber conectado ninguno de los dos circuitos al sistema de detección, para evitar la llegada desordenada de disoluciones con distintas concentraciones de analito a los sensores. En este sentido, es conveniente que la última disolución en recargar hasta el conector en 8 sea la DP, observando su salida por el conector para proceder entonces a conectar los circuitos al sistema de detección y empezar a acondicionar los sensores estableciendo la LB de potencial.
I PARTE EXPERIMENTAL: Gráficos y datos

En este apartado se presentan las rectas de calibración y otros gráficos complementarios obtenidos en la realización de los estudios.

I.1 Estudio 1

Calibraciones:

<table>
<thead>
<tr>
<th>Patrones</th>
<th>canal 2 sensor 1</th>
<th>canal 4 sensor 2</th>
<th>log(C)</th>
<th>C [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00E-05</td>
<td>110,8</td>
<td>106,2</td>
<td>-5,00</td>
<td>0,64</td>
</tr>
<tr>
<td>1,00E-04</td>
<td>138,7</td>
<td>138,7</td>
<td>-4,00</td>
<td>6,35</td>
</tr>
<tr>
<td>1,00E-03</td>
<td>167,0</td>
<td>169,7</td>
<td>-3,00</td>
<td>63,55</td>
</tr>
<tr>
<td>1,00E-02</td>
<td>194,1</td>
<td>201,2</td>
<td>-2,00</td>
<td>635,46</td>
</tr>
<tr>
<td>1,00E-01</td>
<td>221,9</td>
<td>234,9</td>
<td>-1,00</td>
<td>6354,60</td>
</tr>
</tbody>
</table>

I.2 Estudio 2

Calibraciones:

<table>
<thead>
<tr>
<th>Patrones</th>
<th>canal 2 sensor 1</th>
<th>canal 4 sensor 2</th>
<th>log(C)</th>
<th>C [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00E-05</td>
<td>150,6</td>
<td>139,4</td>
<td>-4,00</td>
<td>6,35</td>
</tr>
<tr>
<td>1,00E-04</td>
<td>171,6</td>
<td>165,8</td>
<td>-3,00</td>
<td>63,55</td>
</tr>
<tr>
<td>1,00E-03</td>
<td>197,3</td>
<td>198,0</td>
<td>-2,00</td>
<td>635,46</td>
</tr>
<tr>
<td>1,00E-02</td>
<td>204,1</td>
<td>221,2</td>
<td>-1,00</td>
<td>6354,60</td>
</tr>
</tbody>
</table>
I.3 Estudio 3

Calibraciones:

<table>
<thead>
<tr>
<th>log C</th>
<th>E [mV]</th>
<th>s2</th>
<th>s4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>111,3</td>
<td>109,6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>149,4</td>
<td>148,7</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>167,2</td>
<td>166,3</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>197,8</td>
<td>199,0</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>230,7</td>
<td>233,4</td>
<td></td>
</tr>
</tbody>
</table>

I.4 Estudio 4

Protocolo:

- b 5
- adq 3600
- d 3600
- adq 50
- d 3600
- v 6
- v 0

- d 900
- adq 50
- -v 3
- v 4
- d 900
- -v 4
- v 3
- d 3600
- adq 50
- -v 2
- v 5
- adq 50
Calibraciones:

Figura 1:
- **Sensor 1:**
 - $y = 30,09x + 281,85$
 - $R^2 = 0,9994$

- **Sensor 2:**
 - $y = 28,95x + 275,95$
 - $R^2 = 0,9991$

Figura 2:
- **Sensor 3:**
 - $y = 30,25x + 280,2$
 - $R^2 = 0,9993$

- **Sensor 4:**
 - $y = 30,42x + 279,4$
 - $R^2 = 0,9998$
I.5 Estudio 5

Protocolo:

\[\begin{array}{cccc}
\text{b 5} & -\text{v 5} & \text{v 3} & \text{adq 1200} \\
\text{v 6} & \text{v 3} & \text{adq 1200} & -\text{v 3} \\
\text{v 3} & -\text{v 3} & \text{v 4} & \text{adq 7200} \\
\text{adq 1200} & \text{v 2} & \text{adq 7200} & -\text{v 4} \\
-\text{v 3} & \text{adq 7200} & \text{v 3} & \\
\text{v 5} & -\text{v 2} & \\
\text{adq 7200} & \\
\end{array} \]

Resultados:

![Graph](image)

I.6 Estudio 6

EXPERIMENTO 1

Protocolo:

\[\begin{array}{cccc}
\text{b 5} & \text{v 3} & -\text{v 3} & \text{adq 600} \\
\text{v 6 (DP)} & \text{adq 10} & -\text{v 6} & \text{v 6} \\
\text{v 3 (10-)} & -\text{v 3} & \text{adq 600} & \text{v 3} \\
\text{adq 1000} & -\text{v 6} & \text{v 6} & \text{adq 100} \\
-\text{v 3} & \text{adq 600} & \text{v 3} & -\text{v 3} \\
\text{adq 1800} & \text{v 3} & -\text{v 3} & \text{adq 600} \\
\text{v 6} & \text{adq 20} & -\text{v 6} & \text{v 6} \\
\text{v 3} & -\text{v 3} & \text{adq 600} & \text{v 3} \\
\text{adq 6} & -\text{v 6} & \text{v 6} & \text{adq 120} \\
-\text{v 3} & \text{adq 600} & \text{v 3} & -\text{v 3} \\
-\text{v 6} & \text{v 6} & \text{adq 80} & -\text{v 6} \\
\text{adq 600} & \text{v 3} & -\text{v 3} & \text{adq 600} \\
\text{v 6} & \text{adq 40} & -\text{v 6} & \\
\end{array} \]
Resultados

EXPERIMENTO 2

Protocolo:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b 5</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq</td>
</tr>
<tr>
<td>v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 100</td>
<td>1000</td>
</tr>
<tr>
<td>v 4</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 600</td>
<td>-v 4</td>
<td>-v 3</td>
</tr>
<tr>
<td>adq</td>
<td>v 4</td>
<td>adq 40</td>
<td>-v 4</td>
<td>-v 6</td>
<td>-v 6</td>
</tr>
<tr>
<td>1000</td>
<td>adq 10</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>adq</td>
</tr>
<tr>
<td>-v 4</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
</tr>
<tr>
<td>-v 6</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 100</td>
</tr>
<tr>
<td>adq</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 600</td>
<td>v 6</td>
</tr>
<tr>
<td>1800</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 80</td>
<td>-v 4</td>
<td>adq 6</td>
</tr>
<tr>
<td>v 6</td>
<td>v 4</td>
<td>adq 40</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
</tr>
<tr>
<td>v 4</td>
<td>adq 10</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>adq 600</td>
</tr>
<tr>
<td>adq 6</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
</tr>
<tr>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 120</td>
</tr>
<tr>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 80</td>
<td>-v 4</td>
<td>adq 6</td>
</tr>
<tr>
<td>v 6</td>
<td>v 4</td>
<td>adq 40</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
</tr>
<tr>
<td>v 4</td>
<td>adq 20</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>adq 600</td>
</tr>
<tr>
<td>adq 6</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>adq 600</td>
</tr>
<tr>
<td>-v 6</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>-v 6</td>
<td>adq 120</td>
</tr>
<tr>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 80</td>
<td>-v 4</td>
<td>adq 6</td>
</tr>
<tr>
<td>v 6</td>
<td>v 4</td>
<td>adq 60</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
</tr>
<tr>
<td>v 4</td>
<td>adq 20</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>adq 600</td>
</tr>
<tr>
<td>adq 6</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
</tr>
<tr>
<td>-v 6</td>
<td>adq 600</td>
<td>v 4</td>
<td>adq 100</td>
<td>-v 4</td>
<td>adq 10</td>
</tr>
<tr>
<td>adq 600</td>
<td>v 6</td>
<td>v 4</td>
<td>adq 600</td>
<td>-v 4</td>
<td>-v 6</td>
</tr>
<tr>
<td>v 6</td>
<td>v 4</td>
<td>adq 60</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
</tr>
<tr>
<td>v 4</td>
<td>adq 20</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>adq 600</td>
</tr>
<tr>
<td>adq 10</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 600</td>
<td>v 6</td>
<td>v 3</td>
</tr>
</tbody>
</table>
Resultados

Tan solo se adjuntan los gráficos obtenidos por los sensores 3 y 4.

Disolución 10^{-4} M
Disolución 10^{-3}M

I.7 Estudio 7

Protocolo:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b 5</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 250</td>
<td>v 3</td>
<td>-v 3</td>
</tr>
<tr>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
</tr>
<tr>
<td>v 3</td>
<td>-v 3</td>
<td>adq 60</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 60</td>
</tr>
<tr>
<td>adq 1000</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
</tr>
<tr>
<td>-v 3</td>
<td>adq 30</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 450</td>
<td>adq 60</td>
</tr>
<tr>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>-v 3</td>
</tr>
<tr>
<td>v 3</td>
<td>-v 3</td>
<td>adq 180</td>
<td>v 3</td>
<td>-v 3</td>
<td>v 3</td>
</tr>
<tr>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 3</td>
</tr>
<tr>
<td>-v 3</td>
<td>adq 30</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 450</td>
<td>adq 60</td>
</tr>
<tr>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>-v 3</td>
</tr>
<tr>
<td>adq 10</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 300</td>
<td>v 3</td>
<td>-v 6</td>
</tr>
<tr>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>adq 750</td>
</tr>
<tr>
<td>v 3</td>
<td>-v 3</td>
<td>adq 180</td>
<td>v 3</td>
<td>-v 3</td>
<td>v 6</td>
</tr>
<tr>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 3</td>
</tr>
<tr>
<td>-v 3</td>
<td>adq 60</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 600</td>
<td>adq 60</td>
</tr>
<tr>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>-v 3</td>
</tr>
<tr>
<td>adq 10</td>
<td>v 3</td>
<td>-v 3</td>
<td>adq 300</td>
<td>v 3</td>
<td>-v 3</td>
</tr>
<tr>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td></td>
</tr>
</tbody>
</table>
1.8 Estudio 8

Protocolo:

```
b 5  adq 250  -v 6  -v 2  adq 60  v 2  v 6
adq 3600  v 6  adq 250  -v 6  -v 4  adq 60  v 5
v 6  v 5  v 6  adq 3600  -v 6  -v 2  adq 60  v 5
v 5  adq 60  v 3  v 6  adq 180  -v 6  -v 5
adq 500  -v 5  adq 60  v 5  v 6  adq 180  -v 6
-v 5  -v 6  -v 3  adq 60  v 4  v 6  adq 60  v 4
v 4  adq 250  -v 6  -v 5  adq 60  v 2  v 6  adq 60  v 4
adq 500  v 6  adq 250  -v 6  -v 4  adq 60  v 2
-v 4  v 4  v 6  adq 180  -v 6  -v 2  adq 60  v 4
v 3  adq 60  v 3  v 6  adq 180  -v 6  -v 4
adq 500  -v 4  adq 60  v 5  v 6  adq 180  -v 6
-v 3  -v 6  -v 3  adq 60  v 3  v 6  adq 180  v 4
v 2  adq 250  -v 6  -v 5  adq 60  v 2  v 6  adq 150  v 4
adq 500  v 6  adq 250  -v 6  -v 3  adq 60  v 4
-v 2  v 4  v 6  adq 180  -v 6  -v 2  adq 60  v 4
-v 6  adq 60  v 2  v 6  adq 180  -v 6  -v 4
adq 3600  -v 4  adq 60  v 5  v 6  adq 180  v 6  adq 3600  v 6
v 6  -v 6  -v 2  adq 60  v 3  v 6  adq 150  v 6
v 5  adq 250  -v 6  -v 5  adq 60  v 5  v 6  adq 150  v 6
adq 60  v 6  adq 250  -v 6  -v 3  adq 60  v 4
-v 5  v 4  v 6  adq 180  -v 6  -v 5  adq 60  v 4
-v 6  adq 60  v 2  v 6  adq 180  -v 6  -v 4
adq 250  -v 4  adq 60  v 4  v 6  adq 150  -v 6
v 6  -v 6  -v 2  adq 60  v 3  v 6  adq 150  v 6
v 5  adq 250  -v 6  -v 4  adq 60  v 5  v 6  adq 150  v 6
adq 60  v 6  adq 250  -v 6  -v 3  adq 60  v 3
-v 5  v 3  v 6  adq 180  -v 6  -v 5  adq 60  v 3
-v 6  adq 60  v 2  v 6  adq 180  -v 6  -v 3
-v 3  adq 60  v 4  v 6  adq 150  -v 6
```
Desarrollo y optimización de un sistema automático de monitorización del proceso de biosorción del ion cobre (II) en raspo de uva

Calibraciones: solo se adjuntan los correspondientes al sensor 3

<table>
<thead>
<tr>
<th>adq 150</th>
<th>adq 60</th>
<th>adq 3600</th>
<th>adq 60</th>
<th>adq 120</th>
<th>adq 60</th>
<th>adq 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>v 6</td>
<td>-v 2</td>
<td>v 6</td>
<td>-v 5</td>
<td>v 6</td>
<td>-v 3</td>
<td>v 6</td>
</tr>
<tr>
<td>v 3</td>
<td>-v 6</td>
<td>v 5</td>
<td>-v 6</td>
<td>v 4</td>
<td>-v 6</td>
<td>v 2</td>
</tr>
<tr>
<td>adq 60</td>
<td>adq 150</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
</tr>
<tr>
<td>-v 3</td>
<td>v 6</td>
<td>-v 5</td>
<td>v 6</td>
<td>-v 4</td>
<td>v 6</td>
<td>-v 2</td>
</tr>
<tr>
<td>-v 6</td>
<td>v 2</td>
<td>-v 6</td>
<td>v 4</td>
<td>-v 6</td>
<td>v 3</td>
<td>-v 6</td>
</tr>
<tr>
<td>adq 150</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
<td>adq 60</td>
</tr>
<tr>
<td>v 6</td>
<td>-v 2</td>
<td>v 6</td>
<td>-v 4</td>
<td>v 6</td>
<td>-v 3</td>
<td>v 6</td>
</tr>
<tr>
<td>v 3</td>
<td>-v 6</td>
<td>v 5</td>
<td>-v 6</td>
<td>v 3</td>
<td>-v 6</td>
<td>v 2</td>
</tr>
<tr>
<td>adq 60</td>
<td>adq 150</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
</tr>
<tr>
<td>-v 3</td>
<td>v 6</td>
<td>-v 5</td>
<td>v 6</td>
<td>-v 3</td>
<td>v 6</td>
<td>-v 2</td>
</tr>
<tr>
<td>-v 6</td>
<td>v 2</td>
<td>-v 6</td>
<td>v 4</td>
<td>-v 6</td>
<td>v 2</td>
<td>-v 6</td>
</tr>
<tr>
<td>adq 150</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
<td>adq 120</td>
<td>adq 60</td>
<td>adq 600</td>
</tr>
<tr>
<td>v 6</td>
<td>-v 2</td>
<td>v 6</td>
<td>-v 4</td>
<td>v 6</td>
<td>-v 2</td>
<td>b 0</td>
</tr>
<tr>
<td>v 2</td>
<td>-v 6</td>
<td>v 5</td>
<td>-v 6</td>
<td>v 3</td>
<td>-v 6</td>
<td></td>
</tr>
</tbody>
</table>

![Graph 1](image1.png)

![Graph 2](image2.png)
Rectas de calibración: s3 y s2
I.9 Estudio 9

Protocolo:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>adq 500</td>
<td>v 6</td>
<td>-v 6</td>
<td>adq 60</td>
<td>v 3</td>
</tr>
<tr>
<td>adq 3600</td>
<td>-v 3</td>
<td>v 5</td>
<td>adq 120</td>
<td>-v 2</td>
<td>v 6</td>
</tr>
<tr>
<td>v 6</td>
<td>adq 500</td>
<td>-v 5</td>
<td>v 6</td>
<td>-v 6</td>
<td>adq 60</td>
</tr>
<tr>
<td>v 5</td>
<td>adq 60</td>
<td>v 3</td>
<td>adq 120</td>
<td>v 6</td>
<td>-v 6</td>
</tr>
<tr>
<td>adq 500</td>
<td>-v 4</td>
<td>-v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td></td>
</tr>
<tr>
<td>-v 5</td>
<td>adq 120</td>
<td>-v 3</td>
<td>v 2</td>
<td>adq 120</td>
<td>-v 5</td>
</tr>
<tr>
<td>v 4</td>
<td>adq 500</td>
<td>v 6</td>
<td>adq 60</td>
<td>v 4</td>
<td>-v 6</td>
</tr>
<tr>
<td>adq 500</td>
<td>-v 6</td>
<td>v 4</td>
<td>adq 120</td>
<td>-v 2</td>
<td>v 6</td>
</tr>
<tr>
<td>-v 4</td>
<td>-v 5</td>
<td>adq 60</td>
<td>v 6</td>
<td>-v 6</td>
<td>adq 60</td>
</tr>
<tr>
<td>v 3</td>
<td>adq 1800</td>
<td>-v 4</td>
<td>v 3</td>
<td>adq 120</td>
<td>-v 4</td>
</tr>
<tr>
<td>adq 500</td>
<td>v 6</td>
<td>-v 6</td>
<td>adq 60</td>
<td>v 3</td>
<td>-v 6</td>
</tr>
<tr>
<td>-v 3</td>
<td>adq 60</td>
<td>v 6</td>
<td>adq 120</td>
<td>-v 3</td>
<td>v 6</td>
</tr>
<tr>
<td>v 2</td>
<td>adq 60</td>
<td>v 6</td>
<td>adq 60</td>
<td>v 4</td>
<td>-v 6</td>
</tr>
<tr>
<td>adq 500</td>
<td>-v 5</td>
<td>v 4</td>
<td>adq 120</td>
<td>-v 3</td>
<td>v 6</td>
</tr>
<tr>
<td>-v 2</td>
<td>-v 6</td>
<td>adq 60</td>
<td>v 6</td>
<td>-v 6</td>
<td>adq 60</td>
</tr>
<tr>
<td>v 3</td>
<td>adq 120</td>
<td>-v 4</td>
<td>v 2</td>
<td>adq 120</td>
<td>-v 4</td>
</tr>
</tbody>
</table>

Histéresis:
Calibraciones: s1 y s2
I.10 Estudio 10

Resultados:

![Diagrama de resultados](image1.png)

![Diagrama de resultados](image2.png)
I.11 Estudio 11

Protocolo (calibraciones)

Calibraciones:
Desarrollo y optimización de un sistema automático de monitorización del proceso de biosorción del ion cobre (II) en raspo de uva

\[y = 30.35x + 289.45 \]
\[R^2 = 0.9999 \]

\[y = 30.75x + 286.72 \]
\[R^2 = 1 \]

\[y = 31.25x + 289.05 \]
\[R^2 = 0.9999 \]

\[y = 30.8x + 293.23 \]
\[R^2 = 0.9998 \]

\[y = 30x + 286.07 \]
\[R^2 = 0.9999 \]

\[y = 29.8x + 279.47 \]
\[R^2 = 1 \]

\[y = 29.2x + 259.77 \]
\[R^2 = 1 \]

\[y = 27.9x + 249.3 \]
\[R^2 = 1 \]
Protocolo (muestras)

<table>
<thead>
<tr>
<th>b 5</th>
<th>-v 4</th>
<th>adq 60</th>
<th>-v 6</th>
<th>v 6</th>
<th>adq 60</th>
<th>-v 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>v 6</td>
<td>adq 600</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
</tr>
<tr>
<td>v 5</td>
<td>-v 3</td>
<td>adq 120</td>
<td>v 4</td>
<td>-v 4</td>
<td>adq 120</td>
<td>v 3</td>
</tr>
<tr>
<td>-v 5</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
</tr>
<tr>
<td>v 4</td>
<td>v 6</td>
<td>adq 60</td>
<td>-v 6</td>
<td>v 6</td>
<td>adq 60</td>
<td></td>
</tr>
<tr>
<td>adq 600</td>
<td>v 5</td>
<td>-v 5</td>
<td>adq 120</td>
<td>v 3</td>
<td>-v 3</td>
<td></td>
</tr>
</tbody>
</table>

Muestras sintéticas

![Diagrama de muestras](image-url)

I.12 Estudio 12

Protocolo: (x14veces)

<table>
<thead>
<tr>
<th>b 5</th>
<th>v 6</th>
<th>v 3</th>
<th>-v 2</th>
<th>adq 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>d 3500</td>
<td>v 2</td>
<td>adq 60</td>
<td>v 3</td>
<td>-v 5</td>
</tr>
<tr>
<td>adq 100</td>
<td>-v 2</td>
<td>adq 60</td>
<td>-v 6</td>
<td>d 450</td>
</tr>
<tr>
<td>CALIB. FIA</td>
<td>-v 6</td>
<td>adq 120</td>
<td>adq 50</td>
<td></td>
</tr>
<tr>
<td>v 6</td>
<td>v 2</td>
<td>d 2400</td>
<td>-v 6</td>
<td>v 9</td>
</tr>
<tr>
<td>v 0</td>
<td>v 2</td>
<td>adq 120</td>
<td>d 2000</td>
<td>v 6</td>
</tr>
<tr>
<td>-v 0</td>
<td>-v 2</td>
<td>adq 60</td>
<td>adq 100</td>
<td></td>
</tr>
<tr>
<td>-v 6</td>
<td>-v 6</td>
<td>CALIB. EE</td>
<td>CALIB. EE</td>
<td></td>
</tr>
<tr>
<td>adq 120</td>
<td>adq 120</td>
<td>EE (x5veces)</td>
<td>MUESTRAS</td>
<td></td>
</tr>
<tr>
<td>v 6</td>
<td>v 6</td>
<td>MUESTRAS</td>
<td>MUESTRAS</td>
<td></td>
</tr>
<tr>
<td>v 0</td>
<td>v 6</td>
<td>FIA (x5veces)</td>
<td>FIA (x5veces)</td>
<td></td>
</tr>
<tr>
<td>adq 60</td>
<td>v 6</td>
<td>-v 0</td>
<td>-v 6</td>
<td></td>
</tr>
<tr>
<td>-v 0</td>
<td>adq 60</td>
<td>-v 3</td>
<td>v 2</td>
<td></td>
</tr>
<tr>
<td>-v 6</td>
<td>adq 60</td>
<td>-v 3</td>
<td>adq 50</td>
<td></td>
</tr>
<tr>
<td>adq 120</td>
<td>v 6</td>
<td>d 450</td>
<td>d 450</td>
<td></td>
</tr>
<tr>
<td>v 6</td>
<td>adq 50</td>
<td>d 450</td>
<td>adq 120</td>
<td></td>
</tr>
</tbody>
</table>
Resultados:

Valores de concentración para la \(M_2 \) obtenidos por el sensor 4 respecto a la 1º recta de calibración:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>EE</th>
<th>FIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_2)</td>
<td>PPM</td>
</tr>
<tr>
<td>1</td>
<td>190,3</td>
<td>181,7</td>
</tr>
<tr>
<td></td>
<td>188,9</td>
<td>181,2</td>
</tr>
<tr>
<td></td>
<td>188,4</td>
<td>181,4</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,4</td>
</tr>
<tr>
<td></td>
<td>187,6</td>
<td>182,2</td>
</tr>
<tr>
<td>2</td>
<td>188,9</td>
<td>182,2</td>
</tr>
<tr>
<td></td>
<td>188,6</td>
<td>182,1</td>
</tr>
<tr>
<td></td>
<td>188,8</td>
<td>182,5</td>
</tr>
<tr>
<td></td>
<td>188,6</td>
<td>181,8</td>
</tr>
<tr>
<td></td>
<td>188,4</td>
<td>181,1</td>
</tr>
<tr>
<td>3</td>
<td>187,4</td>
<td>181,7</td>
</tr>
<tr>
<td></td>
<td>187,9</td>
<td>181,7</td>
</tr>
<tr>
<td></td>
<td>187,2</td>
<td>180,6</td>
</tr>
<tr>
<td></td>
<td>187,4</td>
<td>181,1</td>
</tr>
<tr>
<td></td>
<td>188,2</td>
<td>180,3</td>
</tr>
<tr>
<td>4</td>
<td>186,5</td>
<td>180,4</td>
</tr>
<tr>
<td></td>
<td>186,2</td>
<td>180,4</td>
</tr>
<tr>
<td></td>
<td>186,4</td>
<td>181,9</td>
</tr>
<tr>
<td></td>
<td>186,3</td>
<td>179,4</td>
</tr>
<tr>
<td></td>
<td>185,3</td>
<td>179,5</td>
</tr>
<tr>
<td></td>
<td>186,9</td>
<td>178,8</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,6</td>
</tr>
<tr>
<td></td>
<td>188,1</td>
<td>178,9</td>
</tr>
<tr>
<td></td>
<td>186</td>
<td>178,1</td>
</tr>
<tr>
<td>5</td>
<td>185,7</td>
<td>177,7</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>177,2</td>
</tr>
<tr>
<td></td>
<td>182,9</td>
<td>180,9</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>178,5</td>
</tr>
<tr>
<td></td>
<td>186,6</td>
<td>177,6</td>
</tr>
<tr>
<td></td>
<td>185,8</td>
<td>177,7</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>180,9</td>
</tr>
<tr>
<td></td>
<td>185,4</td>
<td>180,9</td>
</tr>
<tr>
<td></td>
<td>187,1</td>
<td>180,2</td>
</tr>
<tr>
<td></td>
<td>187,7</td>
<td>181,2</td>
</tr>
<tr>
<td></td>
<td>187,1</td>
<td>179,6</td>
</tr>
<tr>
<td>6</td>
<td>185,5</td>
<td>179,9</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,7</td>
</tr>
<tr>
<td>7</td>
<td>185,5</td>
<td>179,9</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,7</td>
</tr>
<tr>
<td>8</td>
<td>185,5</td>
<td>179,9</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,7</td>
</tr>
<tr>
<td>9</td>
<td>185,2</td>
<td>180,8</td>
</tr>
<tr>
<td></td>
<td>186,7</td>
<td>179,5</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>176,2</td>
</tr>
<tr>
<td></td>
<td>183,6</td>
<td>179,3</td>
</tr>
<tr>
<td></td>
<td>186,9</td>
<td>180,4</td>
</tr>
<tr>
<td></td>
<td>187,5</td>
<td>180,5</td>
</tr>
<tr>
<td></td>
<td>186,7</td>
<td>178,4</td>
</tr>
<tr>
<td>10</td>
<td>186,7</td>
<td>181,9</td>
</tr>
<tr>
<td></td>
<td>186,6</td>
<td>182,2</td>
</tr>
<tr>
<td></td>
<td>189,9</td>
<td>181,5</td>
</tr>
<tr>
<td></td>
<td>188,5</td>
<td>178,5</td>
</tr>
<tr>
<td></td>
<td>188,5</td>
<td>4,59E-04</td>
</tr>
<tr>
<td></td>
<td>188,2</td>
<td>186,9</td>
</tr>
<tr>
<td></td>
<td>186,7</td>
<td>184,7</td>
</tr>
<tr>
<td></td>
<td>187,2</td>
<td>187,6</td>
</tr>
<tr>
<td></td>
<td>186,2</td>
<td>184,8</td>
</tr>
<tr>
<td></td>
<td>187,1</td>
<td>177,3</td>
</tr>
<tr>
<td></td>
<td>184,8</td>
<td>178,4</td>
</tr>
<tr>
<td></td>
<td>185,5</td>
<td>178,5</td>
</tr>
<tr>
<td></td>
<td>186,2</td>
<td>180,4</td>
</tr>
<tr>
<td></td>
<td>186,5</td>
<td>179,4</td>
</tr>
</tbody>
</table>

Valores de M₂ para el sensor 4 respecto de su propia recta de calibración.

<table>
<thead>
<tr>
<th></th>
<th>EE</th>
<th>FIA</th>
<th>MOLAR</th>
<th>PPM</th>
<th>MOLAR</th>
<th>PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>190,3</td>
<td>181,7</td>
<td>5,25E-04</td>
<td>33,4</td>
<td>4,04E-04</td>
<td>25,7</td>
</tr>
<tr>
<td></td>
<td>188,9</td>
<td>181,2</td>
<td>4,73E-04</td>
<td>30,1</td>
<td>3,89E-04</td>
<td>24,7</td>
</tr>
<tr>
<td></td>
<td>188,4</td>
<td>181,4</td>
<td>4,56E-04</td>
<td>29,0</td>
<td>3,95E-04</td>
<td>25,1</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,4</td>
<td>3,69E-04</td>
<td>23,5</td>
<td>3,95E-04</td>
<td>25,1</td>
</tr>
<tr>
<td></td>
<td>187,5</td>
<td>182,2</td>
<td>4,29E-04</td>
<td>27,3</td>
<td>4,20E-04</td>
<td>26,7</td>
</tr>
<tr>
<td></td>
<td>188,9</td>
<td>182,2</td>
<td>5,16E-04</td>
<td>32,8</td>
<td>3,13E-04</td>
<td>19,9</td>
</tr>
<tr>
<td></td>
<td>188,6</td>
<td>182,1</td>
<td>5,05E-04</td>
<td>32,1</td>
<td>3,11E-04</td>
<td>19,8</td>
</tr>
<tr>
<td></td>
<td>188,8</td>
<td>182,5</td>
<td>5,13E-04</td>
<td>32,6</td>
<td>3,20E-04</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td>188,6</td>
<td>181,8</td>
<td>5,05E-04</td>
<td>32,1</td>
<td>3,04E-04</td>
<td>19,3</td>
</tr>
<tr>
<td></td>
<td>188,4</td>
<td>181,1</td>
<td>4,97E-04</td>
<td>31,6</td>
<td>2,89E-04</td>
<td>18,3</td>
</tr>
<tr>
<td></td>
<td>187,4</td>
<td>181,7</td>
<td>5,53E-04</td>
<td>35,1</td>
<td>3,61E-04</td>
<td>22,9</td>
</tr>
<tr>
<td></td>
<td>187,9</td>
<td>181,7</td>
<td>5,74E-04</td>
<td>36,5</td>
<td>3,61E-04</td>
<td>22,9</td>
</tr>
<tr>
<td></td>
<td>187,2</td>
<td>180,6</td>
<td>5,44E-04</td>
<td>34,6</td>
<td>3,32E-04</td>
<td>21,1</td>
</tr>
<tr>
<td></td>
<td>187,4</td>
<td>181,1</td>
<td>5,53E-04</td>
<td>35,1</td>
<td>3,45E-04</td>
<td>21,9</td>
</tr>
<tr>
<td></td>
<td>188,2</td>
<td>180,3</td>
<td>5,87E-04</td>
<td>37,3</td>
<td>3,25E-04</td>
<td>20,6</td>
</tr>
<tr>
<td></td>
<td>186,5</td>
<td>180,4</td>
<td>5,14E-04</td>
<td>32,7</td>
<td>3,25E-04</td>
<td>20,7</td>
</tr>
<tr>
<td></td>
<td>186,2</td>
<td>180,4</td>
<td>5,03E-04</td>
<td>31,9</td>
<td>3,25E-04</td>
<td>20,7</td>
</tr>
<tr>
<td></td>
<td>186,4</td>
<td>181,9</td>
<td>5,10E-04</td>
<td>32,4</td>
<td>3,64E-04</td>
<td>23,1</td>
</tr>
<tr>
<td></td>
<td>186,3</td>
<td>179,4</td>
<td>5,06E-04</td>
<td>32,2</td>
<td>3,02E-04</td>
<td>19,2</td>
</tr>
<tr>
<td></td>
<td>185,3</td>
<td>179,5</td>
<td>4,70E-04</td>
<td>29,9</td>
<td>3,04E-04</td>
<td>19,3</td>
</tr>
<tr>
<td></td>
<td>186,9</td>
<td>178,8</td>
<td>5,24E-04</td>
<td>33,3</td>
<td>2,81E-04</td>
<td>17,9</td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,6</td>
<td>4,74E-04</td>
<td>30,1</td>
<td>3,49E-04</td>
<td>22,2</td>
</tr>
<tr>
<td></td>
<td>188,1</td>
<td>178,9</td>
<td>5,74E-04</td>
<td>36,5</td>
<td>2,83E-04</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td>186</td>
<td>178,1</td>
<td>4,89E-04</td>
<td>31,1</td>
<td>2,66E-04</td>
<td>16,9</td>
</tr>
<tr>
<td></td>
<td>185,7</td>
<td>177,7</td>
<td>4,78E-04</td>
<td>30,3</td>
<td>2,58E-04</td>
<td>16,4</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>177,2</td>
<td>5,16E-04</td>
<td>32,8</td>
<td>2,91E-04</td>
<td>18,5</td>
</tr>
<tr>
<td></td>
<td>182,9</td>
<td>180,9</td>
<td>4,42E-04</td>
<td>28,1</td>
<td>3,82E-04</td>
<td>24,3</td>
</tr>
<tr>
<td></td>
<td>185.6</td>
<td>178.5</td>
<td>5.39E-04</td>
<td>34.2</td>
<td>3.20E-04</td>
<td>20.4</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>177.6</td>
<td>5.80E-04</td>
<td>36.8</td>
<td>3.00E-04</td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td>185.8</td>
<td>177.7</td>
<td>5.47E-04</td>
<td>34.7</td>
<td>3.02E-04</td>
<td>19.2</td>
</tr>
<tr>
<td>7</td>
<td>185.6</td>
<td>180.9</td>
<td>4.89E-04</td>
<td>31.1</td>
<td>3.44E-04</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>185.4</td>
<td>180.9</td>
<td>4.82E-04</td>
<td>30.6</td>
<td>3.44E-04</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>187.1</td>
<td>180.2</td>
<td>5.47E-04</td>
<td>34.8</td>
<td>3.27E-04</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>187.7</td>
<td>181.2</td>
<td>5.72E-04</td>
<td>36.4</td>
<td>3.52E-04</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>187.1</td>
<td>179.6</td>
<td>5.47E-04</td>
<td>34.8</td>
<td>3.13E-04</td>
<td>19.9</td>
</tr>
<tr>
<td>8</td>
<td>185.5</td>
<td>179.9</td>
<td>4.83E-04</td>
<td>30.7</td>
<td>3.13E-04</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td>185.6</td>
<td>181.7</td>
<td>4.86E-04</td>
<td>30.9</td>
<td>3.59E-04</td>
<td>22.8</td>
</tr>
<tr>
<td></td>
<td>185.2</td>
<td>180.8</td>
<td>4.71E-04</td>
<td>30.0</td>
<td>3.35E-04</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>186.7</td>
<td>179.5</td>
<td>5.30E-04</td>
<td>33.7</td>
<td>3.03E-04</td>
<td>19.3</td>
</tr>
<tr>
<td></td>
<td>185.6</td>
<td>176.2</td>
<td>4.86E-04</td>
<td>30.9</td>
<td>2.35E-04</td>
<td>14.9</td>
</tr>
<tr>
<td>9</td>
<td>183.6</td>
<td>179.3</td>
<td>4.51E-04</td>
<td>28.7</td>
<td>3.30E-04</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>186.9</td>
<td>180.4</td>
<td>5.74E-04</td>
<td>36.4</td>
<td>3.57E-04</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>186.7</td>
<td>178.7</td>
<td>5.65E-04</td>
<td>35.9</td>
<td>3.16E-04</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>180.4</td>
<td>5.61E-04</td>
<td>35.7</td>
<td>3.57E-04</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>187.6</td>
<td>180.5</td>
<td>6.04E-04</td>
<td>38.4</td>
<td>3.60E-04</td>
<td>22.9</td>
</tr>
<tr>
<td>10</td>
<td>186.7</td>
<td>178.4</td>
<td>5.37E-04</td>
<td>34.1</td>
<td>2.88E-04</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>181.9</td>
<td>5.33E-04</td>
<td>33.8</td>
<td>3.74E-04</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>188.6</td>
<td>182.2</td>
<td>6.19E-04</td>
<td>39.3</td>
<td>3.83E-04</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>189.9</td>
<td>181.5</td>
<td>6.82E-04</td>
<td>43.3</td>
<td>3.63E-04</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>188.5</td>
<td>178.5</td>
<td>6.14E-04</td>
<td>39.0</td>
<td>2.90E-04</td>
<td>18.4</td>
</tr>
<tr>
<td>11</td>
<td>188.5</td>
<td></td>
<td>6.03E-04</td>
<td>38.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>188.2</td>
<td>186.9</td>
<td>5.90E-04</td>
<td>37.5</td>
<td>5.36E-04</td>
<td>34.1</td>
</tr>
<tr>
<td></td>
<td>186.7</td>
<td>184.7</td>
<td>5.29E-04</td>
<td>33.6</td>
<td>4.56E-04</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>187.2</td>
<td>187.6</td>
<td>5.48E-04</td>
<td>34.8</td>
<td>5.65E-04</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>186.2</td>
<td>184.8</td>
<td>5.10E-04</td>
<td>32.4</td>
<td>4.60E-04</td>
<td>29.2</td>
</tr>
<tr>
<td>12</td>
<td>187.1</td>
<td>177.3</td>
<td>5.15E-04</td>
<td>32.7</td>
<td>2.41E-04</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>184.8</td>
<td>178.4</td>
<td>4.31E-04</td>
<td>27.4</td>
<td>2.63E-04</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>185.5</td>
<td>178.5</td>
<td>4.55E-04</td>
<td>28.9</td>
<td>2.65E-04</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>186.2</td>
<td>180.4</td>
<td>4.80E-04</td>
<td>30.5</td>
<td>3.06E-04</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>186.5</td>
<td>179.4</td>
<td>4.91E-04</td>
<td>31.2</td>
<td>2.84E-04</td>
<td>18.0</td>
</tr>
</tbody>
</table>
I.13 Estudio 13

Protocolo: el mismo que el estudio anterior

Resultados:

Valores de concentración para la M_2 obtenidos por el *sensor 4* respecto a la 1º recta de calibración:

<table>
<thead>
<tr>
<th></th>
<th>EE</th>
<th>FIA</th>
<th>MOLAR</th>
<th>PPM</th>
<th>EE</th>
<th>FIA</th>
<th>MOLAR</th>
<th>PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186.9</td>
<td>181.9</td>
<td>5.16E-04</td>
<td>32.8</td>
<td>5.63E-04</td>
<td>35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.7</td>
<td>180.5</td>
<td>5.09E-04</td>
<td>32.4</td>
<td>5.04E-04</td>
<td>32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.2</td>
<td>183.0</td>
<td>4.91E-04</td>
<td>31.2</td>
<td>6.13E-04</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>187.8</td>
<td>182.3</td>
<td>5.50E-04</td>
<td>35.0</td>
<td>5.80E-04</td>
<td>36.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>187.3</td>
<td>181.8</td>
<td>5.31E-04</td>
<td>33.8</td>
<td>5.58E-04</td>
<td>35.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187.0</td>
<td>181.3</td>
<td>5.20E-04</td>
<td>33.0</td>
<td>5.37E-04</td>
<td>34.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>187.3</td>
<td>181.4</td>
<td>5.31E-04</td>
<td>33.8</td>
<td>5.41E-04</td>
<td>34.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>187.0</td>
<td>181.5</td>
<td>5.20E-04</td>
<td>33.0</td>
<td>5.45E-04</td>
<td>34.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.0</td>
<td>180.0</td>
<td>4.84E-04</td>
<td>30.8</td>
<td>4.85E-04</td>
<td>30.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>181.4</td>
<td>5.05E-04</td>
<td>32.1</td>
<td>5.41E-04</td>
<td>34.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>187.0</td>
<td>181.9</td>
<td>5.20E-04</td>
<td>33.0</td>
<td>5.63E-04</td>
<td>35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>181.6</td>
<td>5.05E-04</td>
<td>32.1</td>
<td>5.50E-04</td>
<td>34.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>181.3</td>
<td>5.05E-04</td>
<td>32.1</td>
<td>5.37E-04</td>
<td>34.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>185.6</td>
<td>181.6</td>
<td>4.71E-04</td>
<td>29.9</td>
<td>5.50E-04</td>
<td>34.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.8</td>
<td>180.8</td>
<td>5.13E-04</td>
<td>32.6</td>
<td>5.16E-04</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>185.7</td>
<td>181.1</td>
<td>4.74E-04</td>
<td>30.1</td>
<td>5.29E-04</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.6</td>
<td>181.3</td>
<td>5.05E-04</td>
<td>32.1</td>
<td>5.37E-04</td>
<td>34.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.0</td>
<td>182.0</td>
<td>4.84E-04</td>
<td>30.8</td>
<td>5.67E-04</td>
<td>36.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.4</td>
<td>181.7</td>
<td>4.98E-04</td>
<td>31.7</td>
<td>5.54E-04</td>
<td>35.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.9</td>
<td>181.8</td>
<td>5.16E-04</td>
<td>32.8</td>
<td>5.58E-04</td>
<td>35.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>186.1</td>
<td>181.4</td>
<td>4.88E-04</td>
<td>31.0</td>
<td>5.41E-04</td>
<td>34.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>185.0</td>
<td>180.1</td>
<td>4.51E-04</td>
<td>28.7</td>
<td>4.89E-04</td>
<td>31.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.2</td>
<td>180.3</td>
<td>4.91E-04</td>
<td>31.2</td>
<td>4.97E-04</td>
<td>31.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>185.2</td>
<td>181.4</td>
<td>4.58E-04</td>
<td>29.1</td>
<td>5.41E-04</td>
<td>34.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>186.8</td>
<td>180.8</td>
<td>5.13E-04</td>
<td>32.6</td>
<td>5.16E-04</td>
<td>32.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Valores de M_2 para el sensor 4 respecto de su propia recta de calibración

<table>
<thead>
<tr>
<th>M2</th>
<th>EE</th>
<th>FIA</th>
<th>MOLAR</th>
<th>PPM</th>
<th>FIA</th>
<th>MOLAR</th>
<th>PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186,9</td>
<td>181,9</td>
<td>5,16E-04</td>
<td>32,8</td>
<td>5,63E-04</td>
<td>35,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,7</td>
<td>180,5</td>
<td>5,09E-04</td>
<td>32,4</td>
<td>5,04E-04</td>
<td>32,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,2</td>
<td>183,0</td>
<td>4,91E-04</td>
<td>31,2</td>
<td>6,13E-04</td>
<td>39,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187,8</td>
<td>182,3</td>
<td>5,50E-04</td>
<td>35,0</td>
<td>5,80E-04</td>
<td>36,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187,3</td>
<td>181,8</td>
<td>5,31E-04</td>
<td>33,8</td>
<td>5,58E-04</td>
<td>35,5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>187,0</td>
<td>181,3</td>
<td>5,06E-04</td>
<td>32,2</td>
<td>4,74E-04</td>
<td>30,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187,3</td>
<td>181,4</td>
<td>5,17E-04</td>
<td>32,9</td>
<td>4,78E-04</td>
<td>30,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>187,0</td>
<td>181,5</td>
<td>5,06E-04</td>
<td>32,2</td>
<td>4,82E-04</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,0</td>
<td>180,0</td>
<td>4,72E-04</td>
<td>30,0</td>
<td>4,28E-04</td>
<td>27,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,6</td>
<td>181,4</td>
<td>4,92E-04</td>
<td>31,3</td>
<td>4,78E-04</td>
<td>30,4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>187,0</td>
<td>181,9</td>
<td>5,17E-04</td>
<td>32,8</td>
<td>5,39E-04</td>
<td>34,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,6</td>
<td>181,6</td>
<td>5,02E-04</td>
<td>31,9</td>
<td>5,26E-04</td>
<td>33,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,6</td>
<td>181,3</td>
<td>5,02E-04</td>
<td>31,9</td>
<td>5,14E-04</td>
<td>32,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>185,6</td>
<td>181,6</td>
<td>4,67E-04</td>
<td>29,7</td>
<td>5,26E-04</td>
<td>33,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,8</td>
<td>180,8</td>
<td>5,09E-04</td>
<td>32,4</td>
<td>4,94E-04</td>
<td>31,4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>185,7</td>
<td>181,1</td>
<td>5,10E-04</td>
<td>32,4</td>
<td>4,86E-04</td>
<td>30,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,6</td>
<td>181,3</td>
<td>5,43E-04</td>
<td>34,5</td>
<td>4,94E-04</td>
<td>31,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,0</td>
<td>182,0</td>
<td>5,21E-04</td>
<td>33,1</td>
<td>5,22E-04</td>
<td>33,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,4</td>
<td>181,7</td>
<td>5,35E-04</td>
<td>34,0</td>
<td>5,10E-04</td>
<td>32,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,9</td>
<td>181,8</td>
<td>5,55E-04</td>
<td>35,2</td>
<td>5,14E-04</td>
<td>32,7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>186,1</td>
<td>181,4</td>
<td>5,42E-04</td>
<td>34,4</td>
<td>5,16E-04</td>
<td>32,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>185,0</td>
<td>180,1</td>
<td>5,00E-04</td>
<td>31,8</td>
<td>4,65E-04</td>
<td>29,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,2</td>
<td>180,3</td>
<td>5,45E-04</td>
<td>34,7</td>
<td>4,73E-04</td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>185,2</td>
<td>181,4</td>
<td>5,07E-04</td>
<td>32,2</td>
<td>5,16E-04</td>
<td>32,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>186,8</td>
<td>180,8</td>
<td>5,70E-04</td>
<td>36,2</td>
<td>4,92E-04</td>
<td>31,2</td>
<td></td>
</tr>
</tbody>
</table>
J FOTOGRAFÍAS DEL MONTAJE

Montaje del Estudio 4:

Donde:

A Procesador de señales
B Bomba peristáltica
C Válvulas solenoides
D Conector en ocho
E Disoluciones (Patrones, DP, ISA)
F Conector en T
G ESIs
H Electrodo de referencia
I Desecho
J Desburbujeador
Montaje final (refrigerador)

Donde:

A Procesador de señales
B Caja de conexiones de las válvulas
C Bomba peristáltica
D Válvulas solenoides
E Conector en T
F Conector en 8
H Tubo de mezcla
I ESIs
J Electrodo de ref.
K LEGISLACIÓN

A continuación se hace referencia a la legislación vigente sobre aguas residuales.

Debido a su gran extensión, no serán desarrollados en el proyecto, tan solo se nombrarán los decretos y directivas, para más información consultar la página web del Boletín Oficial del Estado (www.boe.es)

Legislación europea:

DECISIÓN del Consejo 84/132/CEE, del 1 de marzo de 1984, relativa a la celebración del protocolo sobre las zonas especialmente protegidas del Mediterráneo (DOCE L68 10.03.84)

DIRECTIVA del Consejo 91/271/CEE, de 21 de mayo de 1991, sobre el tratamiento de aguas residuales urbanas (DOCE L135 30.05.91)

Legislación Española:

ORDEN 12 de Noviembre de 1987, sobre normas de emisión, objetivos de calidad y métodos de medición de referencia relativos a determinadas sustancias nocivas o peligrosas contenidas en los vertidos de aguas residuales. BOE núm 280, de 23.11.87. Modificada por última vez por Orden de 25 de mayo de 1992. 129 29.5.92.

ORDEN de 11 de mayo de 1988, características básicas de calidad en corrientes de aguas superficiales destinadas a la producción de agua potable. (BOE nº 124, de 24.05.88)

- Modificada por Orden de 15 de octubre de 1990 y Orden 30 de noviembre de 1994.
- Observaciones: transpone objetivos de calidad establecidos en la Directiva del Consejo 75/440/CEE, del 16 de junio, relativa a la calidad requerida para las aguas superficiales destinadas a la producción de agua potable en los Estados Miembros.

REAL DECRETO 484/1995, DE 7 DE ABRIL, sobre medidas de regularización y control de los vertidos (BOE nº 95, de 12 de abril de 1995 (c.e.) BOE nº 114, de 13 de mayo de 1995).
REAL DECRETO 1254/1999, de 16 de julio, por el que se aprueban medidas de control de los riesgos inherentes a los accidentes graves en los que intervengan sustancias peligrosas.

Legislación catalana

DECRET 83/1996, de 5 de març, sobre mesures de regularització d´abocament d´aigües residuals (DOGC 2180, 11/03/1996).