Resum

En aquest volum s’agrupa els annexos del projecte “Anàlisi i propostes de millora per reduir el nivell d’inventari en una fàbrica de detergents. En els annexos s’inclouen aquells càlculs o informacions que no s’han exposat a la memòria. Aquesta informació no és necessària per la comprensió del projecte però pot aclarir alguns dubtes.

A l’annex A hi ha la teoria sobre la gestió d’estocs separant els models per estudiar la demanda dependent i per estudiar la independent.

A l’annex B estan explicats més detalladament els models d’inventari necessaris per implementar el projecte que s’usen per calcular la quantitat òptima de producció, l’estoc de seguretat tant de producte acabat com dels materials d’envasar i les capacitats de la demanda comparada amb la demanda històrica tinguda.

A l’annex C s’introdueix el concepte de lean manufacturing i s’explica les diferències entre els sistemes de flux de materials push i pull.

A l’annex D hi ha els resultats de la simulació amb el EPQ on s’han canviat els codis produïts per cada línia.

A l’annex E s’explica l’estratègia que es pot seguir per reduir els materials d’envasar i les matèries primers.

A l’annex F hi ha escanejat un exemple del full d’instrucció que els operaris imprimeixen cada vegada que han de realitzar un canvi de format i un exemple del centerlining.
Sumari

RESUM .. 1

SUMARI ... 2

A. GESTIÓ D'ESTOCS ... 5
 A.1. Introducció ... 5
 A.2. Models d’estoc per la demanda dependent. Ús de la lògica MRP 7
 A.3. Model de quantitat fixa de comanda per la demanda independent 8

B. MODELS D'INVENTARI .. 10
 B.1. Introducció ... 10
 B.2. Model EPQ ... 11
 B.2.1. Objectiu ... 11
 B.2.2. Inputs ... 11
 B.2.3. Característiques dels grups en el procés d'envasat 14
 B.2.4. Característiques dels grups de procés ... 15
 B.2.5. Demanda en el període ... 15
 B.2.6. Factor SU .. 16
 B.2.7. Model ... 16
 B.3. Model ràtio capacitat/demanda 22
 B.3.1. Objectiu ... 22
 B.3.2. Inputs ... 22
 B.3.3 Anàlisi ... 24
 B.3.4. Estoc de seguretat teòric de la línia vs. ràtio C/D 24
 B.3.6. Variabilitat de la demanda ... 26
 B.3.7 Estudi expedicions .. 27
 B.3.8 Dies setmanals ... 27
 B.3.9 Estat actual .. 28
 B.3.9 Simulació canviant la ràtio C/D 30
 B.4. Model Presto ... 32
 B.4.1. Objectiu ... 32
 B.4.2. Inputs ... 33
 B.4.3. Resultats .. 34
 B.5. Model MIM per calcular l’estoc de seguretat 37

C. LEAN MANUFACTURING. SISTEMES DE PRODUCCIÓ AJUSTATS 40
 C.1. Introducció ... 40
C.2. Sistemes d’arrossegament o d’empenta (pull vs. push) 40

D. SIMULACIONS .. 45
 D.1. Simulacions per trobar el potencial de reducció d’inventari a les línies 45
 D.2. Simulació per canviar els formats entre línies 46

E. ESTRATÈGIA DE REDUCCIÓ DE LES MATÈRIES PRIMERES I DELS MATERIALS D’ENVASAT ... 51

F. EXEMPLE DE LES INSTRUCCIONS PER CANVIAR DE CODI A LA LÍNIA D’ENVASAT ... 52
 F.1. Instrucció per canvi de format .. 52
 F.2. Centerlining del canvi de format .. 53
A. Gestió d’estocs

A.1. Introducció

En totes les fases de planificació i control, la gestió d’estocs és clau per assolir tant objectius econòmics com de servei en la direcció d'operacions. Aquesta gestió mesura el nivell d'existències de qualsevol article o recurs fet servir per l'organització, determina quins nivells se n'han de mantenir i estableix en quin moment i en quina quantitat s'han de reaprovisionar.

Dins la gestió d’estocs hi ha certs conceptes clau que defineixen el tipus de gestió i l'estat de l'estoc:

- La dimensió del lot: aquella quantitat d’un producte que una etapa de la cadena de subministrament produeix o compra en un moment determinat.

- Els costos de manteniment, preparació d'una producció: inclou els costos de les instal·lacions d'emmagatzematge, la depreciació, les assegurances, les taxes, el temps fet servir per preparar i enviar les comandes, els administratius...

- La posició de l'estoc: unitats disponibles més unitats sol·licitades i pendents de lliurament.

- El nivell de comanda o punt de producció: aquell nivell predeterminat d'estoc en què es necessari emetre una nova comanda de reaprovisionament o de producció.

- Estoc cíclic: estoc mitjà que es forma a la cadena de subministrament perquè en una etapa es produeix o adquireix en lots més grans dels demanats pel client.

Els articles amb demanda dependent són aquells la demanda dels quals es deriva del muntatge d’un producte acabat. El seu consum es deriva del consum d'altres components de nivell superior en la BOM, el consum dels quals deriva alhora del pla de producció del producte acabat. Aquestes articles es planifiquen fent ús de l'MRP.

Es consideren articles amb demanda independent aquells la demanda dels quals es deriva de les decisions de compra que prenen els clients. Els articles amb demanda independent es planifiquen fent ús de l'MPS.
Hi ha una altra diferenciació dels sistemes de gestió d'estoc amb demanda independent, que els divideix en:

- Models de quantitat fixa de la comanda
- Models de període fix de temps

Aquesta classificació determina el punt de comanda o reaprovisionament de l’estoc, ja que en el primer cas aquest punt és definit per un esdeveniment (assolir un nivell especific d’estoc) i en el segon cas és definit per un moment en el temps predefinit.

A la figura següent s’evidencien les principals característiques de cada model de gestió d’estocs.

<table>
<thead>
<tr>
<th>Criteri</th>
<th>Model de quantitat fixa</th>
<th>Model de periodificació de temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitat de la comanda</td>
<td>Constant</td>
<td>Variable</td>
</tr>
<tr>
<td>Quan s’emet la comanda</td>
<td>Quan s’assoleix un nivell d’estoc</td>
<td>Quan arriba el període de revisió</td>
</tr>
<tr>
<td>Registre d’informació</td>
<td>Cada vegada que hi ha una entrada o sortida de mercaderia</td>
<td>Només en el període de revisió</td>
</tr>
<tr>
<td>Nivell mitjà d’estoc</td>
<td>Menor que en el model de temps fix</td>
<td>Més gran que en el model de quantitat fixa</td>
</tr>
<tr>
<td>Esforç de manteniment</td>
<td>Més gran, ja que s’ha de mantenir actualitzat en temps real el nivell d’estoc</td>
<td>Petit</td>
</tr>
</tbody>
</table>

Taula A.1. Tipus de models de gestió
Aquest dos models tenen implicacions des del punt de vista del control dels estocs. En el primer model s’han de tenir actualitzats en temps real els nivells d’estocs per detectar, sense endarreriments, el nivell en el qual s’ha de llançar la nova producció. El segon model no té tantes exigències de control d’estocs ja que només es revisen cada cert temps, que és quan es determina si s’ha d’emetre una nova producció/comanda.

En el fons, hi ha una diferenciació econòmica entre els dos models: en el model de quantitat fixa hi ha més costos de manteniment (tenir actualitzat l’estoc), mentre que en el de període fix hi ha una clara tendència a acumular un nivell d’estoc més alt en actualitzar la informació. Sota aquesta visió, els models de quantitat fixa s’apliquen als materials més costosos i/o crítics.

A l’empresa es gestiona l’estoc dels codis amb la demanda independent (producte acabats) mitjançant el model de quantitat fixa, per tal que la cadena de subministrament sigui més eficient.

A.2. Models d’estoc per la demanda dependent. Ús de la lògica MRP

Els components o materials que segueixen el model de demanda dependent habitualment formen part de semielaborats o productes finals de nivell superior o de conjunts d’articles que es venen de forma conjunta.

Com indica la descripció del mateix model, aquests components no estan subjectes a previsions, sinó que el càlcul de les seves necessitats es realitza a partir de les necessitats dels productes pare o superiors tal com hem vist amb les BOM.

El sistema d’informació que permet fer aquests càlculs és l’MRP. Aquest sistema no es fa servir només per planificar, sinó que també s’utilitza per fer el seguiment i control de l’aprovisionament i muntatge de tots aquests components.

Com que el resultat del sistema MRP és un conjunt seqüencial d’ordres, es pot connectar amb sistemes d’informació que permetin emetre les ordres corresponents als proveïdors (per exemple, missatgeria electrònica o EDI).

A la vegada, aquest conjunt ordenat d’ordres d’aprovisionament i producció proporciona informació molt útil per conèixer l’acabament de les ordres i la disponibilitat dels productes per poder ser expedits als clients finals. És a dir, proporciona informació per realitzar la verificació de disponibilitat des de l’àrea comercial de l’empresa.
En tot cas, el resultat de l'MRP no deixa de ser una previsió de comportament ideal de la producció ja que es basa en uns temps estimats i prefixats d’aprovisionament i de producció.

La realitat és molt més complexa ja que s’han d’afrontar diverses incidències (endarreriments als lliuraments, parades a la línia de producció) que s’han de solucionar i que obliguen a noves replanificacions MRP. A més, exigeix una alta disciplina en el manteniment de tota la informació necessària per al seu funcionament (inventaris, lliuraments).

En aquest aspecte, una de les àrees que té una importància clau en aquesta gestió és la de visibilitat del funcionament de la cadena de subministrament: informació de control de producció, de seguiment de lliuraments, expedicions, detecció d’incidències...

Per aquesta raó, la incorporació de tecnologies com els codis de barres, la identificació per radio freqüència (RFID), les etiquetes intel·ligents, els dispositius de seguiment de les condicions de transport i fins i tot l’extensió de l’adquisició automàtica de dades a la planta industrial (sistemes SCADA i MES) és crítica per a l’assoliment dels objectius corporatius.

A la fàbrica es va implementar un projecte de radio freqüència (RFID) el maig del 2006 per tal de millorar la gestió dels estoc.

A.3. Model de quantitat fixa de comanda per la demanda independent

Aquests models volen determinar l’esdeveniment que donarà el tret de sortida d’una producció o d’una comanda i la dimensió d’aquesta.

Cada vegada que s’emet una comanda existeixen un conjunt de costos associats (creació i recepció de la comanda, transport...) que s’han de tenir en compte per trobar la solució òptima de dimensió. Si s’està parllant de producció, existeixen uns costos associat als canvis de format i/o de marca de passar d’una producció a un altre.

Aquests costos tenen diferents comportaments en funció de la mida del lot: el cost de manteniment augmenta proporcionalment a la mida del lot, el cost de producció disminueix amb l’increment de la mida, el cost de material pot ser constant o pot disminuir amb la mida del lot...
Per calcular una mida eficient de lot un dels factors que s’ha d’entendre millor és el cost del transport. D’altra banda, la gamma de productes que una companyia pot vendre habitualment està dividida en famílies o grups. Si en una comanda es combinen diferents referències es poden obtenir noves economies d’escala en el transport, comanda, recepció... Un altre cas més complex seria combinar diferents lliuraments que provenen de diferents proveïdors. També és important intentar disminuir els costos de recepció i càrrega.

Els models de quantitat fixa de comanda es basen a obtenir i calcular de la forma més acurada possible els diferents costos que afecten la gestió d’estocs. Entre els costos de manteniment de l’estoc es troben el cost del capital necessari per finançar l’estoc, el cost d’obsolescència, que calcula el preu al qual es deprecien els articles en el temps, el cost de recepció i emmagatzematge i altres costos relacionats amb la seguretat, assegurances, malifetes... El cost de petició o comanda inclou els costos de crear la petició (temps i sistemes necessaris), el cost de transport, el cost de producció... Tota aquesta informació suposa un esforç necessari per poder gestionar de forma correcta els estocs.
B. MODELS D’INVENTARI

B.1. Introducció

En aquest capítol s’expliquen detalladament els models citats en la memòria. Per cada model s’expliquen les variables d’entrada, els càlculs del model i finalment els resultats de cada un.

A continuació es dissenya un esquema per visualitzar les interrelacions entre els models.

SourceOne és la base de dades europea on es pot extreure tota classe d’informació i PDATS extreu les dades necessàries per fer un estudi de les expedicions històriques per ajustar els paràmetres de l’inventari dels codis. PDATS envia la informació als models ràtio capacitat/demanda i Presto, explicats a continuació.

El model ràtio capacitat/demanda et calcula l’estoc de seguretat teòric per línia per tal de cobrir la demanda diària de tots els dies estudiats en el període i el model presto separa l’estoc de seguretat teòric de la línia en l’estoc de seguretat real dels codis de la línia estudiada tenint en compte la quantitat óptima de producció calculat amb un altre model.

Taula B.1. Esquema de les interrelacions entre els models
B.2. Model EPQ

B.2.1. Objectius

L'objectiu del model és calcular la quantitat òptima per produir cada codi tenint en compte les restriccions corresponents i els costos associats.

El model és una eina molt important per realitzar simulacions per saber les reduccions d'inventari al plantejar un projecte a les línies. Per exemple, a partir d'una inversió tecnològica en les màquines per reduir els temps de canvi, es podria saber quina reducció d'inventari portaria. A més, també es valoraria la pèrdua de PR associada, per si és assumible o no.

Es realitza l'EPQ per el departament de fabricació de detergent on calcula l'EPQ de cada producte acabat tenint en compte les restriccions i característiques de les fórmules del detergent. Bàsicament el model té en compte el lot mínim de producció de cada fórmula per tal d'agrupar els codis que tenen la mateixa fórmula.

També es realitza l'EPQ per cada línia de producció, ja que cada línia de producció té unes ràtios de producció i unes restriccions diferents a tenir en compte. En aquest model es tenen en compte els EPQ calculats tenint en compte les restriccions del departament de fabricació i les noves restriccions i característiques de cada línia (temps canvi de format, mínima duració de la producció, agrupació).

En el model aplicat al departament de fabricació s'agrupen els productes acabats per les seves fórmules i en canvi, en el model aplicat a cada línia d’envasar, s’agrupen per els formats de les caixes de detergents.

Per explicar el model s’explicarà l'exemple d'una línia de producció, ja que és més interessant estudiar l'etapa final del procés productiu.

B.2.2. Inputs

Informació general:

El número de codis considerats.
Información del calendario:

Primeramente, el calendario describió la capacidad disponible del sistema productivo en el período estudiado. El período de estudio es de 16 semanas y se tienen en cuenta los festivos y los días en los que se realiza mantenimiento en las líneas. En resumen, se tiene en cuenta:

- Número de semanas en el período estudiado
- Días por semana que hay producciones. Se consideran 5 días a la semana, ya que hay pocos días festivos que la fábrica trabaja.
- Número de turnos por día
- Número de horas por turno
- Días sin producción en el período, tanto sea para mantenimiento o por días festivos.

Información de la inventario:

Esta sección describió el costo de posesión de inventarios usados en la fórmula para calcular el EPQ.

- El porcentaje de interés anual
- Costo de posesión del inventario
- Valor de una unidad de MSU (Euros / MSU). Para pasar el estoc que se tiene de MSU a euros se multiplica por este valor
- Media del tiempo de transito
- El número de días que un producto está en cuarentena o en el control de calidad antes de ser enviado al cliente
- Planificación fija es el período en el cual la planta generalmente no modifica su producción
- Nivel de servicio al cliente que se quiere
- Período en el que la fábrica trabaja y envía
Costos de canvis de marca i de format:

Els costos per realitzar un canvi de format o fórmula al produir són probablement l'input més crític per el model EPQ ja que la fórmula sempre intenta trobar la quantitat óptima de producció per minimitzar el costos.

En aquest cas només s’usa els canvis de marca. Els elements a tenir en compte són:

- Número de persones per línia
- El sou per hora dels treballadors (euros / hora)
- Altres costos fixes com poden ser els cartrons fixes que es perden cada vegada que es realitza una nova producció.

El cost dels treballadors no t’afectarà en el cost de canvi de format o marca, ja que aquest cost serà el mateix independentment si s’efectua un canvi o no. En canvi, sí que existeix un cost per cada nova producció perquè sempre hi ha uns paquets que no són aprofitables i que s’han de reciclar, implicant un cost afegit.

Secció per l’ús del model:

- Hores per dia
- Dies en el període
- Hores disponibles per dia en el període
- Temps de trànsit
- Temps de reacció de la planta que són els dies laborables que passen entre la identificació d’una necessitat de producció i l’esmentada producció.
B.2.3. Característiques dels grups en el procés d’envasat

Taula B.2. Exemple de les característiques dels grups de codis a una línia d’envasat

Els codis de la línia s’agrupen per el tipus de format que té cada codi, per exemple el grup 1 és per el format SO300 i el grup 2 per el format WB200. Dintre el mateix grup hi ha diversos codis que tenen diferents marques.

Cada grup tindrà associat una demanda mesurada amb MSU i les hores necessàries per les produccions es calcularan dividint la demanda del grup per la ràtio de producció de la línia estudiada.

El temps de canvi de format s’obté multiplicant el número de canvis de format per la duració de cada canvi.

La pèrdua de PR del canvi de format s’obté dividint en cada grup el temps total de tots els canvis de format del període per les hores totals de producció. En aquest cas la pèrdua de PR serà el tant per cent de les hores perdudes per canvis de format.

El temps de canvi de marca s’obté multiplicant la duració dels canvis de marca per el número de canvis de marca totals (la resta entre el número total de produccions i el número de canvis de format).

La pèrdua de PR del canvi de marca s’obté també dividint el temps total de canvi de marca per cada format per les hores totals disponibles. En aquest cas la pèrdua de PR serà el tant per cent de les hores perdudes per canvis de marca.

La pèrdua de PR total és la divisió de la suma del temps que es perd per canvis de marca i de format, dividit per les hores totals disponibles per produir.
És important remarcar que en el model només utilitza un determinat temps de canvi per cada grup, per tant, es col·locarà la mitjana entre la duració del canvi de format i de marca ponderats per el nombre de produccions.

El lot econòmic de producció per cada codi estarà restringit per procés o per envasat, depenent d'on estigui el coll d'ampolla del grup. En aquesta fulla es podrà observar per cada grup on té la restricció més important, si al procés de fabricació o al d'envasat ja que el càlcul final d’EPQ és el màxim entre l’EPQ tenint en compte les restriccions del procés de fabricació i de les d’envasat.

B.2.4. Característiques dels grups de procés

Com s’ha comentat en el punt anterior per calcular el lot econòmic de producció es tenen en compte també les restriccions del procés de fabricació ja que és el primer esglaó de la cadena productiva.

Per cada codi es té:

- El seu EPQ (lot econòmic de producció) tenint en compte només les restriccions del procés de fabricació
- El grup que forma part depenen de la seva fórmula
- La seva mínima producció en el procés de fabricació (MSU/hora) depenen del grup de fórmula que pertany
- Cost del canvi de fórmula
- Ràtio de producció a la torre (MSU / hora)

B.2.5. Demanda en el període

En aquesta fulla està detallada la demanda de cada codi en el període estudiat. S’estudia la demanda, les previsions de la demanda durant 16 setmanes.
B.2.6. Factor SU

Cada codi té un factor per passar de caixes a unitats estadísticas (SU) depenent de la mida i del pes del paquet. En el departament de producció sempre es treballa amb la mesura estadística SU o MSU (miler de SU).

B.2.7. Model

En aquest full és on es calculen tots els paràmetres del model a partir dels inputs esmentats anteriorment. A continuació s’esmenten els paràmetres més importants del model calculats per cada codi.

- La fórmula de l’EPQ es calcula a partir de:
 - Cost de possessió que és el valor de cada MSU multiplicat pel tant per cent d’interessos i altres costos de possessió d’inventari en el període estudiat.
 - Demanda del codi en el període estudiat
 - Cost de canvi de format del codi (serà igual que el de tots els codis del mateix grup)
 - Cost de canvi de marca (serà igual que el de tots els codis del mateix grup)
 - Número de dies del període estudiat que es realitza producció
 - Cicle mínim de cada grup on es té en compte el lot mínim que s’ha de produir en el procés de fabricació i la demanda del grup.
 - Demanda màxima en cada grup
 - Variabilitat de la demanda dels productes. Depenen de la categoria dels productes la variabilitat és diversa, però al tractar-se de productes amb unes ventes altes la variació de la demanda serà del 20%. Si fossin productes promocionals, és a dir, que tinguessin una demanda molt variable, la \(\sigma_{diària} \) seria aproximadament del 120%.
Però després d’obtenir el resultat s’han d’aplicar les restriccions del departament de fabricació. Es calcularan dos EPQ’s, un que serà el baix (poc restrictiu) i l’alt (molt restrictiu).

- L’EPQ baix serà el màxim entre l’EPQ calculat matemàticament optimitzant els costos en el procés d’envasat i l’EPQ calculat matemàticament optimitzant els costos del procés de fabricació. Aquest EPQ serà introduït a OMP perquè OMP funciona ja com un EPQ, és a dir, a partir de les restriccions introduïdes al sistema farà augmentar l’EPQ. Per això s’ha introduir el valor baix, ja que si s’introduís el valor més elevat, s’haurien aplicat dos cops les restriccions.

- L’EPQ alt serà el màxim entre l’EPQ baix i la mínima producció de la fórmula del codi estudiat (obtingut en el model de procés). En aquest cas l’EPQ està molt més restringit que en el cas anterior. Aquest valor serà introduït a APO, ja que APO no restringeix el valor, per tant, no té sentit col·locar l’EPQ baix.

Les màquines elevadores “toros” van subministrant els cartrons a la línia i quan s’ha finalitzat la producció, l’operari retorna els cartrons sobrants de la paleta al seu lloc d’emmagatzematge, implicant un temps i un cost associat. El què s’ha pensat per minimitzar els viatges que fa el l’operari a l’àrea d’emmagatzematge és arrodonir a l’alça l’EPQ (quantitat òptima de producció), de manera que cada vegada que es realitza una producció el número de cartrons que es necessitin siguin paletes senceres.

Aquest valor serà el que s’introduirà a OMP. Aquest arrodoniment però, només serà útil si la demanda és menor que el lot mínim, ja que si la demanda són n unitats, i el lot és n - 1 , el programa programarà n unitats.

A continuació s’esmenten els paràmetres calculats en el model:

- Ràtio de producció (MSU/hora):

\[
Ràtio _Produczió(MSU/ hr) = \frac{Ràtio _Produczió(MSU/ dia) \times n\text{ú}m\text{hores}/\text{Torn}}{Núm\text{torns}/\text{dia}} \quad (\text{Eq. B.1})
\]

- Número de produccions:

\[
Número _Produczió = \frac{Demanda _periodo}{EPQ} \quad (\text{Eq. B.2})
\]
• Temps de cicle (dies):

\[\text{Temps _ Cicle} = \frac{\text{Dies _ periode}}{\text{Número _ Runs}} \]
\hspace{2cm} (Eq. B.3)

• Duració de la producció (dies):

\[\text{Duració _ producció(dies)} = \frac{\text{EPQ(msu)}}{\text{Ràdio _ Producció(MSU / dia)}} \]
\hspace{2cm} (Eq. B.4)

Cada grup de codis té una ràtio de producció, ja que cada format té una velocitat determinada.

Cost de l’inventari:

\[\text{Cost _ Inventari} = \frac{\text{valor (€ / msu) * Interès _ Anual * Cost _ Possessio”*Núm.Setmanes _ periode}}{52 \text{setmanes}} \]
\hspace{2cm} (Eq. B.5)

• Cicle estoc (dies):

\[\text{Cicle _ Estoc} = 0.5 * (\text{Temps _ Cicle} – \text{Duració _ Run}) = 0.5 * (\text{DBNR}) \]
\hspace{2cm} (Eq. B.6)

Fig. B.1. Esquema del cicle de producció d’un codi
La sigla DR vol dir duració de la producció (run) i DBNR són els dies que passen entre l’inici de la producció d’un codi i la seva següent producció. Finalment, la suma dels dos paràmetres és el temps de cicle.

El cicle estoc és una mitjana, ja que quan es comença a produir el cicle estoc és zero i en canvi, quan ha finalitzat la producció l’estoc de cicle és màxim. Així doncs, es realitza la mitja d’aquests dos valors.

- **Cicle estoc (MSU):**

\[
Cicle _Estoc\text{ (msu)} = Cicle _Estoc\text{ (dies)} \times \text{ Demanda _Diària (msu / dia)} \quad \text{(Eq. B.7)}
\]

- **Estoc de seguretat (dies):**

\[
Estoc _Seguretat \text{ (dies)} = SFDE \times K _Factor \times RT \quad \text{(Eq. B.8)}
\]

Per passar el SS de dies a unitats de MSU, es multiplica per la demanda diària.

L’estoc de seguretat en dies es calcula a partir dels paràmetres següents:

- El SFDE és la desviació que provoquen una demanda imprevisible o imprevistos a la cadena de subministrament, encara que també pot incloure una percepció dels inventaris inexactes.

\[
SFDE = \frac{\text{ Coeficient _Variació _Demanda}}{\sqrt{RT \times \text{ període _usat _càlcul _STDev}}} \quad \text{(Eq. B.9)}
\]

S’agafa una variació de la demanda del 20%, un temps de reacció de la planta d’un dies i un període de 5 dies usat per el càlcul de la desviació.

- Per calcular el k-factor es té en compte el nivell de servei que es vol, el temps de reacció de la planta i el temps del cicle.

- L’estoc de trànsit (FS) depèn dels codis de la línia, que per passar-ho a MSU s’hauria de multiplicar per la demanda diària de cada un.
• L’estoc total es calcula sumant l’estoc de cicle, l’estoc de seguretat i l’estoc de trànsit. Per passar-ho a MSU es multiplica per la demanda diària.

\[Estoc_{Total} (dies) = CS + SS + FS \]

(Eq. B.10)

• El màxim estoc per cada codi en dies és:

\[Estoc_{Màxim} (dies) = 2 \times CS + SS + FS \]

(Eq. B.11)

L’estoc màxim es calcula sumant l’estoc total amb el cicle estoc. L’estoc de cicle és zero al començar la producció i és màxim al finalitzar-la. El seu càlcul es realitza fent una mitjana entre els dos valors, és a dir, si es vol trobar l’estoc màxim s’ha de treballar amb l’estoc de cicle al acabar la producció.

• L’estoc màxim en unitats MSU és:

\[Estoc_{Màxim} (MSU) = EPQ (MSU) + SS (MSU) \]

(Eq. B.12)

Tots aquests paràmetres són calculats per cada codi produït a la línia, però també es resumeixen els més importants per tota la línia.

Es calcula la duració mitjana de les produccions a la línia estudiada. La duració mitjana de les produccions és la divisió de les mitjanes de l’EPQ i de la ràtio de producció ponderats per la demanda del període.

\[Duració_{Mitjana} = \frac{\sum EPQ(\text{MSU}) \times \text{Demanda(\text{MSU})}}{\sum \text{Ràtio _ Producció(\text{MSU/ hr})} \times \text{Demanda(\text{MSU})}} \]

(Eq. B.13)
El DBNR per la línia és:

\[DBNR = \frac{\sum DBNR \times Demanda}{\sum Demanda} \]

(Eq. B.14)

L’estoc màxim a la línia és:

\[Estoc_{ \text{Màxim}} (€) = \sum Estoc_{ \text{Màxim}} \times \text{valor (€ / MSU)} \]

(Eq. B.15)

L’estoc mitjà per la línia és:

\[Estoc_{ \text{Mitjà}} (€) = \frac{Estoc_{ \text{Màxim}} (€) - SS (€)}{2} + SS (€) \]

(Eq. B.16)

L’estoc de seguretat en euros és:

\[Estoc_{ \text{Seguretat}} (€) = (\sum Estoc_{ \text{Seguretat}}) \times \text{valor (€ / MSU)} \]

(Eq. B.17)

El model inclou també tres gràfiques per treure més conclusions del model.

La primera gràfica representa la relació de la duració de la producció de cada codi depenent de la demanda del codi en el període estudiat. Es pot observar en la gràfica inferior que quasi tots els codis tenen aproximadament la mateixa demanda. Com més alta sigui la demanda més alta és la duració de la producció. Tot i que a partir d’un punt la duració de la producció varia molt poc.

Gràfic B.1. Relació entre la duració de la producció (run) amb la demanda en el període
B.3. Model ràtio capacitat/demanda

B.3.1. Objectiu

El model té com a objectiu el càlcul de l’estoc de seguretat teòrica d’una línia d’envasat per tal de després poder usar aquest valor per calcular l’estoc de seguretat i màxim de cada codi tenint en compte la quantitat òptima de producció i la rotació del codi estudiat.

Aquest model però, té moltes altres funcions com verificar la viabilitat tècnica i econòmica del projecte per tenir un sistema productiu més flexible (reduint els lots de producció, minimitzar els canvis de formats...).

A més a més, determina la ràtio capacitat / demanda (C/D) de cada línia en un període històric estudiat. També evalua les diferents opcions d’inversió per millorar la ràtio C/D en les diferents operacions. La ràtio capacitat/demanda està estretament lligat amb l’inventari necessari per línia i per tant és lògic veure per diferents ràtio (C/D) quin inventari seria necessari.

Utilitza les capacitats de les línies, les dades històriques de les expedicions diàries i les dades financeres per obtenir els resultats.

B.3.2. Inputs

Inputs generals:

- Sistema de producció: és la línia que es vol estudiar
- Unitat de mesura: poden ser capses, SU o MSU
- % mínim de nivell de servei que es vol

Dades financeres:

Aquestes dades són usades per avaluar les diferents opcions d’inversió vers el cost operacional de les diferents alternatives (inventari, personal).

- Cost possessió d’inventari: és el cost total que tens per tenir inventari. Inclou també el cost mitjà dels magatzems externs.
• Cost total de fabricació (€/MSU): s’usa per aproximar el valor de l’estoc del producte final.

Inputs de la demanda:

Es té en compte la variabilitat de les dades històriques que s’assumeix.

Capacitat:

• Capacitat del sistema (throughput): seria la capacitat de producció (SU/hora) d’una màquina per un PR teòric del 100%. La PR (process reliability) és el tant per cent del temps que la màquina ha estat funcionant, és a dir, restant-li els temps per canvis de format/marca i les parades per problemes.
• Pèrdua de PR: és el tant per cent del temps sobre el temps disponible que la màquina està parada
• Número de setmanes a l’any on la fàbrica té capacitat per produir.
• Número de persones per línia: número de persones que poden canviar amb la ràtio C/D. No es comptarien els supervisors, ni el personal fix (administratiu) si el nombre d’aquests no canvien amb l’augment de la capacitat.
• Màxim hores per un torn: el model té en compte les hores pagades per cada torn. Es té en consideració les primes que obtenen els treballadors per treballar el cap de setmana, per treball en el torn de nit, etc.
• Opcions C/D: el model permet cinc alternatives per augmentar la ràtio C/D. Es pot invertir en capital, en personal, o en la combinació de les dues. Per cada opció s’ha d’especificar el personal o el capital addicional requerit i quin augment de la capacitat aportaria.

Inputs magatzems:

• Mitjana d’unitats (SU) per paleta: s’usa per convertir l’estoc de seguretat teòric de la línia en paletes.
• Capacitat magatzem intern: capacitat del magatzem en paletes.
• Cost magatzems externs: euros / paleta any.
• Lead time del procés de reposició: mitjana de dies entre la producció d’un producte i l’arribada al centre de distribució.
Detalls dels torns:
- Les hores per dia que els treballadors estan treballant de dilluns a divendres.
 Les hores dels dissabtes que es treballin es col·locaran en un del cinc dies de la setmana.

B.3.3 Anàlisi

Aquest full conté les expedicions històriques diàries on dóna dades estadístiques de la demanda i de la producció. De fet, en aquesta secció es on es fan la majoria dels càlculs necessaris per als altres fulls de càlcul.

Cal esmentar que és important tenir en compte quin és el període d'estudi per estudiar l'històric de la demanda i de fet, per ser representatiu són requerits almenys 6 mesos d'històric. A més a més, en sectors on la demanda fluctua molt, és important separar els mesos on la demanda varia més, per després comparar els dos models resultants.

En aquest full hi ha tres taules dinàmiques, que canviant els corresponents inputs varien tots els resultats. Una serveix per avaluar les 5 opcions diferents d'inversió (opció 1, 2, 3, 4 ó 5), l'altre per canviar la ràtio Capacitat/Demanda (C/D) i l’última per avaluar l’impacte que té assumir una variabilitat en la demanda històrica estudiada.

A més, també es calculen els resultats com la mitjana de la demanda diària, les expedicions diàries i l’estoc de seguretat teòric. D’aquesta manera es poden comparar els resultats simulats amb la situació actual.

Els fulls Excel anomenats *Estoc de seguretat teòric vs. C/D i variabilitat* són calculades a partir de les dades d’aquestes taules dinàmiques on són comparades les diverses opcions.

B.3.4. Estoc de seguretat teòric de la línia vs. ràtio C/D

És un gràfic que assumeix una variabilitat determinada en la demanda històrica estudiada i dóna quin nivell d’inventari és l’òptim variant la ràtio capacit/demanda (C/D).

En l'exemple situat a baix es pot observar com a mesura que augmenta la ràtio capacitat / demanda va variant l'estoc de seguretat teòric de la línia, el percentatge de dies que la capacitat és superior a la demanda i el percentatge de volum sobre el total produït que és expedit.
Anàlisi i propostes de millora per reduir el nivell d’inventari en una fàbrica de detergents

Gràfic B.2. Interrelació estoc seguretat teòric de la línia amb la ràtio

La línia blava és l’estoc de seguretat teòric de la línia pels diferents ràtios C/D, que és l’estoc seria necessari per cobrir la demanda diària de tots els dies del període donada una ràtio C/D determinada.

Altres dades estadístiques són:

- % volum expedit de la producció (línia verda): és el tant per cent de la producció que s’ha expedit el mateix dia que s’ha realitzat la producció
- Nivell de servei que es manté constant
- % dies que la capacitat excedeix la demanda
B.3.6. Variabilitat de la demanda

Calcula l'impacte que té la variabilitat de la demanda històrica sobre la ràtio C/D i l'estoc de seguretat teòric de la línia d'envasat.

Gràfic B.3. En el gràfic s’observa com varien unes variables, reduint la variabilitat de la demanda del 100% (situació inicial) fins a un 20%.

Les variables que s’estudien són l’estoc de seguretat teòric de la línia, l’inventari mitjà, el % de la producció enviada, % volum del servei i el % dels dies amb capacitat superior a la demanda.

Encara que també es pot assumir que la demanda històrica és fiable (variabilitat 100 %) i no es té en compte cap tipus de variabilitat perquè com més variabilitat més inventari es necessita per cobrir els possibles pics de la demanda.
B.3.7 Estudi expedicions

La gràfica et mostra les expedicions diàries, setmanals i mensuals, juntament amb la línia de tendència.

Aquesta gràfica és útil per visualitzar si la demanda fluctua molt, ja que si la variabilitat de la demanda és molt alta no es pot començar el projecte de reducció d’inventari.

B.3.8 Dies setmanals

En el gràfic es pot observar els dies de la setmana, cada dia té el seu percentatge del total d’expedicions fetes. És una manera d’observar els dies de pic de la setmana i els dies més baixos.

Aquest estudi és útil perquè es poden utilitzar els dies baixos per fer manteniment o un altre treball no productiu.
B.3.9 Estat actual

L'objectiu és verificar si la capacitat actual és suficient per començar el projecte de reducció d'inventari.

Utilitzant les dades de les expedicions i capacitats productives de la línia calcula la seva ràtio capacitat/demanda, el tant per cent d'expedicions diàries produïdes al mateix dia i els dies que la capacitat és superior a la demanda.

També calcula la mínima ràtio C/D per cobrir el 100% de la demanda i el tant per cent d'expedicions diàries sobre la producció realitzada donada aquesta ràtio C/D. A més a més, calcula la ràtio requerida per cobrir la demanda de 85 % dels dies.

L'estoc de seguretat teòric de cada línia és el màxim de l'inventari diari d’un període estudiat, ja que fixant aquest inventari està coberta la demanda diària de tots els dies del període, consumint l'estoc de seguretat teòric només quan la demanda diària és superior a la capacitat.
L'inventari de cada dia es calcula:

\[\text{Inventari (dia } i \text{)} = \text{Expedicions diàries} - \text{Producció diària} + \text{inventari (dia } i - 1\text{)} \quad (\text{Eq. B.18}) \]

Aquesta fórmula és suposant que el lead time de reposició és 0.

On la producció diària és:

\[\text{Producció (dia } i \text{)} = \min [\text{acumulat expedicions (dia } i \text{)} - \text{acumulat producció (dia } i - 1\text{)} + \text{capacitat dia } i] \quad (\text{Eq. B.19}) \]

Depenent del dia de la setmana la línia té una capacitat o un altre, ja que el número de torns disponibles seran diferents.

També calcula el volum de caixes que són expedides usant les caixes d'inventari i es calcula sempre i quan el resultat sigui positiu ja que si no és resultat és zero:

\[\text{Volum expedit / inventari} = \frac{\text{expedicions diàries (SU)} - \text{producció}}{\text{(Eq. B.20)}} \]

D'aquesta manera s'obté el tant per cent del volum que és produït que s'expedeix el mateix dia ja s'usa la suma de les expedicions diàries menys la suma del volum expedit/inventari i es divideix entre la suma de les expedicions diàries.

En el gràfic inferior s'obté un exemple de l'evolució de l'inventari calculant l'estoc de seguretat teòric de la línia.
En el gráfico B.4 se observa el estoc de seguridad teórico de la línea es de 6.287 SU y que el estoc de seguridad teórico permanece constante casi siempre ya que se tiene un 87,3 % de los días en que la capacidad es superior a la demanda. De hecho, la relación capacidad / demanda ha donado casi 2, es decir, la línea tiene la capacidad suficiente para abastecer la demanda.

B.3.9 Simulación cambiando la ración C/D

En este folio hay el mismo gráfico que el superior pero se simula la evolución del estoc de seguridad teórico cambiando la ración capacidad de la línea.

A continuación se demostrará cómo afecta el estoc de seguridad la relación capacidad/demanda.

A la primera situación se tiene una ración C/D = 1,1
Anàlisi i propostes de millora per reduir el nivell d’inventari en una fàbrica de detergents

Evolució inventari vs. Producció (capacitat)

Gràfic B.5. Evolució de l’estoc de seguretat teòric en funció d’una ràtio C/D de 1.1

Al gràfic B.5 s’observa que es consumeix molt sovint l’estoc de seguretat teòric (línia negre) ja que només hi ha un 57 % dels dies que la capacitat és superior a la demanda i que per tant, els altres 43 % dels dies es necessita consumir l’estoc de seguretat teòric que és de 57.800 SU.

En el següent gràfic B.6. següent es simula una ràtio C/D de 1.4.

Gràfic B.6. Evolució de l’estoc de seguretat teòric en funció d’una ràtio C/D de 1.4
En el gràfic B.6. es pot veure que l’estoc roman més constant que l’exemple anterior, ja que ara hi ha un 76 % dels dies que la capacitat és superior a la demanda, i per tant, només hi ha un 24 % dels dies que la demanda excedeix la capacitat i s’ha de consumir l’estoc de seguretat teòric que és de 39.000 SU.

Per últim s’avaluarà el cas on la ràtio sigui de 2 en el gràfic

Gràfic B.7. Evolució de l’estoc de seguretat teòric en funció d’una ràtio C/D de 2

En el gràfic B.7. es pot veure que l’inventari es manté molt més constant que en els exemples anteriors, ja que en aquest cas hi ha un 93 % dels dies que la capacitat és superior a la demanda, i per tant, només hi ha un 7 % dels dies que la demanda excedeix la capacitat i s’ha de consumir l’estoc de seguretat de la línia que és de 13.800 SU.

B.4. Model Presto

B.4.1. Objectiu

El model té com objectiu definir els paràmetres de l’inventari com són l’estoc de seguretat (SS) i l’estoc màxim de cada codi d’una línia, tant en la planta com en el centre de distribució corresponent. El càlcul depèn si el codi té una rotació alta, mitjana o alta i de l’estratègia push-pull del codi.
Les dades que utilitza són extretes d’una base de dades anomenada PDATS, on estan les expedicions diàries de l’any anterior. A més, s’ha usat l’estoc de seguretat teòric de la línia obtingut amb el model ràtio capacitat/demanda.

B.4.2. Inputs

Les variables que s’han d’introduir en el model són:

- Unitat de mesura (MSU o caixes).
- Valor mitjà dels codis produïts a la línia (euros/MSU).
- La planta de fabricació estudiada.
- Factor conversió de SU a caixes per cada codi.
- El valor de l’EPQ per cada codi.
- El temps de reacció de la planta (PRT) en dies que és el temps que passa entre la entrada de la comanda fins la producció del codi.
- L’estratègia push o pull de cada codi, tenint en compte el centre de distribució on va. A la fàbrica s’utilitza estratègia push.
- Lead time de reacció de cada codi que és el temps necessari per transportar el codi des de la fàbrica fins el centre de distribució corresponent.
- L’estoc de seguretat (SS) actual per planta i per el centre de distribució corresponent.

Les variables que provenen de la base de dades PDATS són:

- El número d’expedicions diàries (MSU/dia) de cada línia
- Els codis de cada línia amb el centre de distribució corresponent
- L’estoc de seguretat teòric per la línia estudiada. A partir de la mitjana de la demanda diària de cada codi i de les expedicions diàries de la línia, es reparteix l’estoc de seguretat teòric de la línia per cada codi de la línia d’envasat.

\[
SS_teòric\left(codi\right) = \frac{SS_teòric\left(línia\right) \times \text{Demanda_Mitjana_Diària_(codi)}}{\text{Expedicions_Diàries_(línia)}} \quad (\text{Eq. B.21})
\]
B.4.3. Resultats

Els primers resultats obtinguts necessaris per els posteriors càlculs són:

- La mitjana de la demanda diària per codi, és a dir, la mitjana d’expedicions en el període estudiat.

- El número total d’expedicions en el període de cada codi (MSU/periode).

- La desviació estàndard (%) de la demanda (expedicions) de cada codi durant un període de 9 mesos.

- Rotació de cada codi que pot ser baixa, mitjana o alta depenent del seu estoc de seguretat teòric i del seu EPQ. El tipus de rotació es calcula:

 Rotació baixa: \(EPQ \geq \text{Estoc de seguretat teòric} \)

 Rotació mitjana: \(\text{Estoc de seguretat teòric} \times 0,5 < EPQ < \text{Estoc de seguretat teòric} \)

 Rotació alta: \(EPQ < 0,5 \times \text{Estoc de seguretat teòric} \)

A les gràfiques següents s’esquematitza la diferència entre els càlculs de l’estoc de seguretat i estoc màxim depenent del tipus de rotació del codi estudiat.

![Diagrama](image.png)

Fig. B.2. Paràmetres de l’inventari amb codis amb rotació
Fig. B.3. Paràmetres de l’inventari amb codis amb rotació alta

Fig. B.4. Paràmetres de l’inventari amb codis amb rotació mitjana
A partir d’aquests resultats es calcula per cada codi el seu estoc de seguretat a la planta i en el centre de distribució corresponent, tenint en compte la rotació del codi i la estratègia push o pull.

La fàbrica segueix una estratègia push, és a dir, no hi ha estoc de seguretat del producte acabat a la planta i en canvi, sí que n’hi ha als centres de distribució corresponents. Encara que la planta fa la funció de pulmó entre la producció i les expedicions, per tant, sempre té productes que esperen per ser expedit.

En canvi si es seguís una estratègia pull sí que hi ha estoc de seguretat de producte acabat tant a la planta com en els centres de distribució corresponents. Encara que l’estoc de seguretat al centre de distribució és calcula diferent que si es segueix una estratègia pull, s’utilitza un altre model.

Com s’ha comentat l’estoc de seguretat dels codis de producte acabat a la fàbrica és zero ja que es segueix una estratègia push, però per calcular l’estoc de seguretat als centres de distribució es calcularà l’estoc de seguretat que s’hauria de tenir a la fàbrica i després aplicant els temps de trànsit de la fàbrica a cada centre de distribució es calcularan els estocs de seguretat.

Les sigles PRT en anglès plant reaction time, temps de reacció de la planta, és el temps que es necessita des de que es rep la demanda fins que es té la capacitat de produir el codi.

Càlcul dels estocs de seguretat dels codis si s’emmagatzemessin a la fàbrica separant-los per el tipus de rotació:

Codis amb una rotació baixa:

\[SS (\text{codi}) = \text{Demanda _ Diària _ Mitjana} * PRT \] \hspace{1cm} (Eq. B.22)

Estoc Màxim = \(SS (\text{codi}) + EPQ \) \hspace{1cm} (Eq. B.23)

Codis amb una rotació mitjana:

\[SS (\text{codi}) = \frac{SS _{teòric} (\text{codi})}{2} + \text{Demanda _ Diària _ Mitjana} * (PRT - 1) \] \hspace{1cm} (Eq. B.24)

\[\text{Estoc Màxim} = \frac{SS _{teòric}}{2} + EPQ + \text{Demanda _ Diària _ Mitjana} * (PRT - 1) \] \hspace{1cm} (Eq. B.25)
Codis amb una rotació alta:

\[SS(\text{codi}) = (SS\ _\text{teòric} - EPQ) + \text{Demanda} \ _\text{Diària} \ _\text{Mitjana} \ * (PRT - 1) \] (Eq. B.26)

\[\text{Estoc Màxim} = SS\ _\text{teòric} + \text{Demanda} \ _\text{Diària} \ _\text{Mitjana} \ * (PRT - 1) \] (Eq. B.27)

A continuació es calcula cada estoc de seguretat en el centre de distribució i per tant es té en compte el temps de trànsit entre la fàbrica i el centre de distribució

\[SS(\text{DC}) = SS(\text{codi}) + 1,2 * \sqrt{\text{Demanda} \ _\text{Diària} \ _\text{Mitjana} \ * \text{RLT}} \] (Eq. B.28)

\[\text{Estoc Màxim(DC)} = \text{Estoc Màxim(codi)} + 1,2 * \sqrt{\text{Demanda} \ _\text{Diària} \ _\text{Mitjana} \ * \text{RLT}} \] (Eq. B.29)

Les sigles RLT en anglès reaction lead time, és el temps de trànsit en la fàbrica i el centre de distribució corresponent.

B.5. Model MIM per calcular l’estoc de seguretat

El model s’usa principalment per calcular l’estoc de seguretat de les matèries primeres i dels materials d’envasar. També calcula el cicle estoc, l’estoc en trànsit, l’estoc total i el màxim estoc.

L’estoc de seguretat es calcula com:

\[SS \ (\text{dies}) = k * \sigma_{MCE} * \text{MTRT} \] (Eq. B.30)

<table>
<thead>
<tr>
<th>K</th>
<th>Factor de risc que depèn del nivell de risc acceptable de cada material</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{MCE})</td>
<td>Desviació estàndard del material que té en compte els errors en la previsió de la demanda, en les programacions dels enviaments dels proveïdors i en les dades incertes de l’inventari</td>
</tr>
</tbody>
</table>

Taula B.1. Definició dels paràmetres de la fórmula de l’estoc de seguretat
MTRT (material total response time)
Lead time entre la necessitat del material i la disponibilitat del material a la planta. Comprèn el lead time de planificació, proveïdors, trànsit i qualitat.

El factor de risc K depèn del tipus de material, del número de proveïdors i de la freqüència dels lliuraments.

<table>
<thead>
<tr>
<th>Material crític</th>
<th># proveïdors > 1</th>
<th>Lliuraments freqüents</th>
<th>Factor de risc K</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>sí</td>
<td>no</td>
<td>1.5</td>
</tr>
<tr>
<td>sí</td>
<td>sí</td>
<td>no</td>
<td>2</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
<td>2</td>
</tr>
<tr>
<td>no</td>
<td>sí</td>
<td>sí</td>
<td>2</td>
</tr>
<tr>
<td>sí</td>
<td>no</td>
<td>no</td>
<td>2.5</td>
</tr>
<tr>
<td>sí</td>
<td>sí</td>
<td>sí</td>
<td>2.5</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>sí</td>
<td>2.5</td>
</tr>
<tr>
<td>sí</td>
<td>no</td>
<td>sí</td>
<td>3</td>
</tr>
</tbody>
</table>

Taula B.2. Valor del factor de risc en funció de les variables

La σ_{MCE} és la desviació estàndard de l’error combinat del material:

$$
\sigma_{MCE} = \sqrt{\sigma_{MDE}^2 + \sigma_{MSue}^2 + \sigma_{MIE}^2}
$$

(Eq. B.31)

On les desviacions estàndards són:

- σ_{MDE} és la desviació estàndard per errors a les previsions de la demanda
- σ_{MSue} és la desviació estàndard per imprevisions amb els proveïdors
- σ_{MIE} és la desviació estàndard per errors a les dades d’inventaris

El model té dos versions per diferenciar els materials dedicats dels materials genèrics. Els materials dedicats són els materials usats com a màxim per cinc codis, com poden ser les etiquetes i els cartrons. En canvi, els materials genèrics són els materials que són usats per un número rellevant de codis, com per exemple els enzims i els perfums.
Les dos versions seran idèntiques menys en el punt on es calcula la desviació estàndard per la imprevisió de la demanda del material, la σ_{MDE}. Per determinar l’estoc de seguretat dels materials usats com a màxim per cinc codis, l’error en les previsions de venda seran fiables.

En canvi, per els materials genèrics, l’error en les previsions de venda d’un codi ja no és rellevant. Es necessita cobrir les fluctuacions en la mitjana d’ús de tots els materials, no contra uns errors de previsió d’un específic material.

Per últim, el tercer element de la fórmula és MTRT (Material Total Response Time), és el lead time que passa entre la necessitat d’un nou material i la disponibilitat del material a planta. La descomposició del lead time total és:

- Lead time de planificació: és el temps requerit per planificar i per fer comandes als proveïdors.
- Lead time dels proveïdors: és el temps entre la recepció de la comanda per el proveïdor fins que hi ha el camió preparat per ser expedit al client.
- Lead time de trànsit: temps entre l’enviament del material per part del proveïdor fins la seva recepció.
- Lead time qualitat: temps per verificar si el material recent arribat a la planta és de qualitat per començar la producció.

Per tenir una base de dades fiable, el període d’estudi hauria de ser aproximadament d’un any. Tot i que els materials que tenen una demanda variant depenent de l’estació, és important estudiar el període restringit a l’alta o baixa estació. Apart, les dades s’han d’anar revisant cada sis mesos, o més sovint si es produeixen canvis en la cadena de subministrament.
C. LEAN MANUFACTURING. Sistemes de producció ajustats

C.1. Introducció

Com a lean manufacturing, o sistema de producció ajustada (just in time), s’entén aquell sistema de producció que fabrica exclusivament allò que demana el seu client en el moment que aquest li ho demana, en les quantitats que li demana i a un cost mínim. El procés de fabricació es dispara sempre des de la demanda: cap línia, màquina o procés inicia la producció si no té una comanda de la línia, la màquina o el procés posterior (sistema d’arrossegament pull), així es minimitza l’estoc i l’espai d’emmagatzematge.

Definim, per tant, lean manufacturing com el conjunt de tècniques que ajuden a dissenyar un sistema per produir i subministrar d’acord amb la demanda, amb el mínim cost i una alta flexibilitat. Un sistema de producció ajustat és capaç de minimitzar els estocs, els endarreriments i, en definitiva, els costos totals. Aquests elements estan íntimament relacionats, quan un varia, l’ altre ho fa en el mateix sentit. El resultat d’aquesta interacció és un cercle virtuós a on les coses van cada vegada millor, o un cercle viciós a on les coses van cada vegada pitjor.

Algunes tècniques usades seria les tècniques SMED (single minute exchange die) usades per minvar els temps de canvi de format de les línies i explicades a la memòria.

En aquest punt també s’expliquen la diferència entre els sistemes de producció push o pull, és a dir, sistemes d’arrossegament o d’empenta.

C.2. Sistemes d’arrossegament o d’empenta (pull vs. push)

La clau per entrar en aquest cercle virtuós, la reducció d’estocs simultàniament a la disminució dels endarreriments, es troba en el disseny del sistema de flux de material. Els sistemes de producció d’arrossegament (pull) són els que controlen el flux de materials reemplaçant només el que ha consumit el procés següent, i eliminin d’aquesta manera els costos d’estocs i de sobreproducció.
Des d’un punt de vista tradicional de producció en massa, la planificació dels diferents processos d’un flux de materials es fa d’una forma centralitzada. És normalment un departament de planificació de la producció el que dóna la informació a cada procés del que ha de fer en cada moment.

Aquest departament és qui rep la informació del client i s’encarrega de transmetre les comandes als proveïdors, tal com es veu a la figura C.1. inferior. El funcionament dels sistemes push (d’empenta) es basa en previsions de demanda, producció estimada, eficiències d’instal·lacions, qualitat de productes i processos, index de servei de proveïdors, etc.

![Fig. C.1. Flux de producció en massa (push)](image1)

Evidentment totes aquestes previsions no es compleixen mai al 100 % i com més gran és el temps de previsió de la demanda (Lead time gap) com es veu a la figura inferior, més error tindran les previsions.

![Fig. C.2. Lead time gap és el temps que s’ha de fer la previsió](image2)
Aquesta sistemàtica fa que l’únic que preveu i planifica les necessitats del client sigui aquest departament centralitzat de planificació. El planificador per curar-se en salut intentarà en tot moment tenir els estocs assegurats, de forma que pugui garantir el lliurament dels productes al client, fins i tot si hi ha canvis de darrera hora en les previsions. La pràctica d’aquest sistema porta normalment al cercle viciós on l’estoc tendeix a augmentar de forma incontrolada.

A més a més, sota aquest esquema els problemes de qualitat o d’avaries de les instal·lacions queden amagats, i es tendeix a solucionar-los augmentant la capacitat instal·lada, i generen encara més estocs de seguretat. Els inventaris tapen tots els problemes de la fàbrica. Les previsions setmanals congelades amb suport estadístic de tècniques de previsions de demanda i els sistemes d’informació MRP II (material resource planning) intenten posar ordre a la producció en massa amb les ordres de producció que van des dels proveïdors (a l’inici) fins als processos últims de línia de muntatge (al final).

En un entorn de producció ajustada (JIT), per contra, el flux de materials es regeix per sistemes pull, això és, cada procés estira el procés anterior i les comandes del client estiren tot el procés encadenat. El principi és que cada procés del flux fabrica exclusivament el que li demana el pas posterior i en el moment que aquest li ho demana.

![Fig. C.3. Sistema de producció ajustat (pull)](image-url)
La informació de planificació només arriba a un dels processos de la cadena. Aquest és el que marcarà les necessitats en cada moment, tant als processos anteriors com als posteriors. Aquest procés s’anomena procés marcapassos (takt) o també punt de penetració de la comanda.

Des d’aquest procés fins al client el flux serà continu, normalment un muntatge final sota comanda, respectant la doctrina FIFO (‘first in first out,’ el primer producte a arribar serà el primer a sortir’). Evidentment, per poder treballar amb un sistema continu, els processos han d’estar equilibrats i el flux de material ser suau al llarg del procés, en lots de producció petits.

Els processos anteriors al procés marcapassos es poden regular mitjançant sistemes de senyalització anomenats Kanban (targeta en japonès), que indiquen ordres d’inici de producció o de transport de materials a demanda del procés posterior, que al final arribaran també als proveïdors.

Aquests sistemes consten de petits magatzems reguladors entre els processos (sempre descentralitzats a peu de línia), i generen la informació i la visibilitat necessària perquè el procés proveïdor sàpiga el que ha de fabricar en cada moment.

La tasca de passar d’un sistema push a un de pull no consisteix exclusivament a canviar els sistemes d’informació, sinó que requereix abordar les causes que ens fan treballar amb estocs.

Les plantes industrials treballen amb estocs per diferents motius, tots relacionats amb el fet d’assegurar el subministrament al procés següent o en darrera instància al client. Les causes arrel estan relacionades amb les avaries de les instal·lacions, el temps de canvi de producte i els defectes de qualitat. Abans d’abordar un canvi en els fluxos de producció és important abordar aquestes causes.

Avui dia els sistemes pull i push estan barrejats i la major part dels sistemes de planificació de recursos (MRP) porten mòduls de Kanban per implantar als tallers, ja que l’objectiu és avançar cap a sistemes pull que estirin tots els processos des de les comandes directes del mercat.
D. Simulacions

D.1. Simulacions per troba el potencial de reducció d’inventari a les línies

A l’apartat 9.2 s’explica com s’han realitzat les simulacions amb el model aplicat a cada línia per trobar la reducció d’inventari minvant els temps de canvi de format.

A cada escenari es simulen quin impacte té disminuir els cicles de producció, augmentant la freqüència de les produccions, a l’inventari i a la pèrdua de PR.

A continuació s’ha cregut oportú esquematitzar amb un gràfic per cada escenari el número de produccions i la duració mitjana de les produccions.

Gràfic D.1. Esquema on hi ha per cada escenari el número de produccions i la duració mitjana
D.2. Simulació per canviar els formats entre línies

A continuació hi ha resumits els resultats de les quatre simulacions explicades a la memòria al capítol 9.3. Hi ha dos escenaris depenent dels codis que es produeixin a cada línia i de cada escenari s’han realitzat dos simulacions depenent si s’agafen el temps de canvi de format actuals o objectius calculats anteriorment.

El primer escenari mou els codis d’una línia a l’altre per grups de codis els quals tenen el mateix format, tant de gruix com d’altura. Per exemple tots els codis RE, és a dir, RE200, RE300 i RE400 passarien d’una línia a l’altre.

En canvi, el segon escenari mou els codis d’una línia a l’altre per grups de codis els quals tenen la mateixa altura però no perquè igual gruix, per tant es passarien per exemple només el RE200 o el RE300, però no els 3 formats RE.
A la taula següent hi ha resumida la situació actual i les simulacions 1 i 2. Com s’ha comentat de cada escenari es realitzen dos simulacions una amb els temps de canvi actuals i l’altre amb els objectius calculats anteriorment.

<table>
<thead>
<tr>
<th>Formats / línia</th>
<th>Línia 2</th>
<th>Línia 3</th>
<th>Línia 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Situació actual</td>
<td>RE (3 formats)</td>
<td>PG (2 formats)</td>
<td>SO + WB (8 formats)</td>
</tr>
<tr>
<td></td>
<td>SO (4 formats)</td>
<td>PG + RE (5 formats)</td>
<td>WB (4 formats)</td>
</tr>
<tr>
<td>Simulació 1</td>
<td>RE400 +SO320/350/370 (4 formats)</td>
<td>PG+RE200/300 (4 formats)</td>
<td>SO400+WB (5 formats)</td>
</tr>
<tr>
<td>Simulació 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula D.1. Resum dels escenaris simulats a les 3 línies d’envasat

A la figura inferior s’observa la informació resumida de les 3 línies a la simulació 1 amb els temps de canvi de format actuals.

<table>
<thead>
<tr>
<th>Reforma L2-L3-L6</th>
<th>Situació actual</th>
<th>Simulació 1 (Temps canvi format actuals)</th>
<th>Δ Inv. (M€)</th>
<th>Reducció (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (M€)</td>
<td>1.455</td>
<td>1.503</td>
<td>-45</td>
<td>-3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Línia 2</th>
<th>Situació actual</th>
<th>Simulació 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formats: RE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventari mitjà (M€)</td>
<td>370</td>
<td>558</td>
</tr>
<tr>
<td>Pèrdua de PR (%)</td>
<td>5.6%</td>
<td>7.0%</td>
</tr>
<tr>
<td>DBNR</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td># torns</td>
<td>2.5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Línia 3</th>
<th>Situació actual</th>
<th>Simulació 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formats: PG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventari mitjà (M€)</td>
<td>52</td>
<td>699</td>
</tr>
<tr>
<td>Pèrdua de PR (%)</td>
<td>5.0%</td>
<td>7.0%</td>
</tr>
<tr>
<td>DBNR</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td># torns</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Línia 6</th>
<th>Situació actual</th>
<th>Simulació 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formats: SO + WB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventari mitjà (M€)</td>
<td>1.027</td>
<td>248</td>
</tr>
<tr>
<td>Pèrdua de PR (%)</td>
<td>5.6%</td>
<td>7.0%</td>
</tr>
<tr>
<td>DBNR</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td># torns</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Taula D.2. Resultats de la simulació 1 a les 3 línies d’envasat amb els temps de canvi de format actuals
A la figura inferior s’observa la informació resumida de les 3 línies a la simulació 1 amb els temps de canvi de format objectius.

Taula D.3. Resultats de la simulació 1 a les 3 línies d’envasat amb els temps de canvi de format objectius.
A la figura inferior s’observa la informació resumida de les 3 línies a la simulació 2 amb els temps de canvi de format actuals.

<table>
<thead>
<tr>
<th>Línia 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (ME)</td>
<td>Situació actual</td>
<td>Simulació 2 (Temps canvi format actuals)</td>
<td>Δ Inv. (ME)</td>
</tr>
<tr>
<td></td>
<td>1.459</td>
<td>1.349</td>
<td>-50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situació actual</th>
<th>Simulació 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (ME)</td>
<td>370</td>
</tr>
<tr>
<td>Perduda de PR (%)</td>
<td>5.6%</td>
</tr>
<tr>
<td>DBNR</td>
<td>4</td>
</tr>
<tr>
<td># torns</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Línia 3</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (ME)</td>
<td>32</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Perduda de PR (%)</td>
<td>6.0%</td>
<td>6.9%</td>
<td></td>
</tr>
<tr>
<td>DBNR</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td># torns</td>
<td>0.6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Línia 6</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (ME)</td>
<td>1.037</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Perduda de PR (%)</td>
<td>5.6%</td>
<td>7.1%</td>
<td></td>
</tr>
<tr>
<td>DBNR</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td># torns</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Taula D.4. Resultats de la simulació 2 a les 3 línies d’envasat amb els temps de canvi de format actuals
A la figura inferior s'observa la informació resumida de les 3 línies a la simulació 2 amb els temps de canvi de format objectius.

<table>
<thead>
<tr>
<th>Resum</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2-L3-L6</td>
</tr>
<tr>
<td>Inventari mitjà (M€)</td>
</tr>
</tbody>
</table>

Taula D.5. Resultats de la simulació 2 a les 3 línies d'envasat amb els temps de canvi de format objectius

Line 2

<table>
<thead>
<tr>
<th>Situació actual</th>
<th>Simulació 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (M€)</td>
<td>Formats: RE</td>
</tr>
<tr>
<td>Pèrdues de PR (%)</td>
<td>6.6%</td>
</tr>
<tr>
<td>DBNR # torns</td>
<td>4</td>
</tr>
</tbody>
</table>

Line 3

<table>
<thead>
<tr>
<th>Situació actual</th>
<th>Simulació 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (M€)</td>
<td>Formats: PG</td>
</tr>
<tr>
<td>Pèrdues de PR (%)</td>
<td>5.3%</td>
</tr>
<tr>
<td>DBNR # torns</td>
<td>6</td>
</tr>
</tbody>
</table>

Line 6

<table>
<thead>
<tr>
<th>Situació actual</th>
<th>Simulació 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventari mitjà (M€)</td>
<td>Formats: SO + WB</td>
</tr>
<tr>
<td>Pèrdues de PR (%)</td>
<td>5.5%</td>
</tr>
<tr>
<td>DBNR # torns</td>
<td>7</td>
</tr>
</tbody>
</table>
E. Estratègia de reducció de les matèries primeres i dels materials d’envasat

Per reduir l’inventari en matèries primeres i material d’envasat es realitzen contractes consignats on el material està en consigna, és a dir, el proveïdor situa béns en el local del client, en aquest cas la fàbrica, sense rebre el pagament fins al moment de la seva venda o consum.

Però a més d’estar el material en consigna hi ha molts proveïdors que realitzen subministraments VMI (‘Vendor Managed Inventory’, estoc gestionat pel proveïdor), en què els materials els subministra directament el proveïdor en funció del seu criteri i tenint en compte l’estoc que dels seus productes hi ha a casa del client i de la informació que aquest li dóna sobre el consum present i la previsió de consums futurs dels seus components.

La introducció del concepte de gestió integral de cadena de subministrament canvia totalment la forma d’operar d’una empresa ja que és el mateix proveïdor qui monitoritza les previsions de vendes i els nivells d’estoc dels seus clients i decideix el producte a enviar per assegurar un horitzó de vendes de 10-15 dies. El proveïdor accedeix a una pàgina web, que està actualitzada amb la demanda, les produccions i les necessitats futures de cada material.

Aquest model es coneix com a BTR (‘Build To Replenishment’, fabricar per reposició) i es contraposa al model BTO (‘Build To Order’, fabricar sota comanda).

El fet que els proveïdors puguin veure l’estoc a planta del seu material i els consum futurs, els ajuda a treballar més eficientment, amb economies d’escala, tant a nivell productiu com a nivell logístic.

Hi ha alguns proveïdors que no tenen la tecnologia suficient per gestionar ells mateixos l’estoc, però igualment tenen els materials en consigna.

En el futur, es vol que tots els proveïdors tinguin aquest tipus de contracte ja que si la cadena de subministrament està coordinada, es poden maximizar els beneficis de tota la cadena. En canvi, si cada etapa de la cadena de subministrament pren les seves pròpies decisions la suma total del benefici de la cadena és menor.
F. Exemple de les instruccions per canviar de codi a la línia d’envasat

F.1. Instrucció per canvi de format

A continuació hi ha un exemple dels passos que ha realitzar l’operari per un canvi de codi.

Fig. F.1. Exemple dels passos per realitzar un canvi de codi a una línia d’envasat
F.2. Centerlining del canvi de format

A continuació hi ha del centerlining que per el nou format que envasarà la línia.

<table>
<thead>
<tr>
<th>Bandes laterales</th>
<th>Valor</th>
<th>Auditoria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho de las bandas laterales</td>
<td>00107</td>
<td></td>
</tr>
<tr>
<td>Cadenas interiores Sw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura de las cadenas interiores sw</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>Tacos formador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancho de los tacos del formados</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Transportador compresión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura del transportador de compresión</td>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>

Esta auditoria se ha de realizar antes de arrancar después del cambio de formato.

Si un parámetro está fuera de centerlining, apuntaremos el valor observado en la columna auditoría, lo colocaremos en centerlining y arrancaremos. Si diera problemas, volver al valor observado y reportado en la columna auditoría.

Esta hoja se ha de adjuntar a las de cambio de formato.

Fig. F.2. Centerlining del nou format