INDEX

ABSTRACT I

ACKNOWLEDGES III

1. INTRODUCTION & OBJECTIVES 1
 1.1 Introduction 2
 2.2 Objectives 3

2. URBAN PUBLIC TRANSPORTATION 4
 2.1 Urban Transportation 5
 2.1.1 Congestion and Environmental Pollution Issues 5
 2.1.2 Other Issues 7
 2.2 Public Transport in Modern Cities 7
 2.2.1 Public Transport Modes Classification 8
 2.3 Tramways and Light Rail Transit 10
 2.3.1 Tramways 10
 2.3.2 Light Rails 11
 2.4 Metro Systems 12
 2.5 Urban Rails vs. Other Rails: Differences 13

3. URBAN TRANSPORT PROJECTS FINANCING 15
 3.1 Financing of Urban Public Transportation 16
 3.2 European Investment Bank 17
 3.2.1 EIB Loan Recipients 18
 3.2.2 EIB Activity in the Transport sector 19
 3.2.3 The analysis of Projects for its financing with the EIB 20
 3.3 Urban Public Transport Projects 21

4. METHODOLOGY 24
 4.1 Criteria for Apprising Urban Transport Projects 25
 4.2 Parameters for the Analysis 25
 4.3 Urban Transport Projects’ Data Base 30
 4.4 Analysis of the Basic Parameters 30
 4.4.1 Analysis of the Singles Variables 30
 4.4.2 Outranges 34
 4.4.3 Analysis of Combined Variables 34
 4.5 Decision Support System 36
 4.5.1 Data Entry 36
 4.5.2 Ranges of Values of Parameters 37
 4.5.3 Project Performance 39
 4.5.4 Algorithm Flux Gram 39
 4.5.5 DSS Example 41

5. APPLICATION & ANALYSIS OF RESULTS 44
 5.1 Tramways and LRT Analysis Results 45
 5.1.1 Single Variables Analysis 45
 5.1.2 Combined Variables Analysis 67
5.2 Metro Analysis Results

5.2.1 Single Variables Analysis

5.2.2 Combined Variables Analysis

5.3 Environmental Impact Analysis Results

6. Conclusions and Recommendations for Further Research

7. References

8. Annexes

I – Table 1: European Countries Population
II – Inflation Indicators per Country
III – LRT and Tramways Database examples
IV – Metro Database examples
V – LRT & Tramways and Metro DSS Tools
TABLES INDEX

CHAPTER 3: URBAN TRANSPORT PROJECTS FINANCING
3.2.2 Table 1: Urban Public Transport Projects Financed Since 1997 in the European Union 19
3.3 1) Tramways and LRT Projects 22
3.3 2) Metro Projects 23

CHAPTER 5: APPLICATION & ANALYSIS OF RESULTS
5.1.1 Tramways and LRT Single Variable Analysis Tables
 Demand per Year 46
 Capacity per Train 48
 Peak Hour Capacity 49
 Project Unitary Cost 51
 GDP per capita 52
 Projects Unitary Cost with GDP Factor 52
 Rolling Stock Unitary Cost 54
 Rolling Stock Occupation cost 55
 O&M Costs 57
 O&M Cost with GDP Factor 57
 Cover Ratio 59
 Average Revenue per Passenger 61
 Average Revenue per Passenger with GDP Factor 62
 Economic Rate of Return 63
 Time Gain vs. Bus 65
 Time Gain vs. Car 66

5.1.2 Tramways and LRT Combined Variable Analysis Tables
 Demand - Capacity 68
 Benefits - Demand 69
 Benefits - Investments 70
 Population - Network 72
 Demand - Investment 73
 Ru/O&M Costs 75
 Passenger’s Profits 77

5.2.1 Metro Single Variable Analysis Tables
 Demand per Year 79
 Capacity per Car 80
 Peak Hour Capacity 81
 Project Unitary Cost 82
 GDP per capita 83
 Projects Unitary Cost with GDP Factor 83
 Rolling Stock Unitary Cost 84
 Rolling Stock Occupation cost 85
 O&M Costs 86
 Cover Ratio 88
 Average Revenue per Passenger 89
 Average Revenue per Passenger with GDP Factor 89
 Economic Rate of Return 90
 Time Gain vs. Bus 92
 Time Gain vs. Car 92
5.2.2 Metro Combined Variable Analysis Tables

- Demand - Capacity
- Benefits - Demand
- Investment - Benefits
- Population - Network
- Demand - Investment
- Ru/O&M Costs
- Passenger’s Profits

5.3 Environmental Impact Results Tables

1) Tramways and LRT Projects
2) Metro Projects

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

- Table of Range of Values
- Table of Conclusion of Variables
Figures Index

Chapter 2: Urban Public Transportation

2.2 Trend of Modes of Transport during the 90’s 8
2.2.1 Capacity – Distance by Transports Systems 9

Chapter 4: Methodology

4.4.1 Single Variable Analysis Flux Gram 33
4.4.3a Combined Variable Regression Line 35
4.4.3b Combined Variable Clouds of Points 36
4.5.2 DSS Project Location 39
4.5.4 Decision Support system Flux Gram 40

Chapter 5: Application & Analysis of Results

5.1.1 Tramways and LRT Single Variable Analysis Figures
 Demand per Year (a) 45
 Demand per Year (b) 46
 Capacity per Train 47
 Peak Hour Capacity 50
 Project Unitary Cost 50
 Rolling Stock Unitary Cost 54
 Rolling Stock Occupation cost 56
 O&M Costs 56
 Cover Ratio 59
 Average Revenue per Passenger 60
 Economic Rate of Return 64
 Time Gain vs. Bus 65
 Time Gain vs. Car 66

5.1.2 Tramways and LRT Combined Variable Analysis Figures
 Demand - Capacity 67
 Benefits - Demand 69
 Benefits - Investments 71
 Population - Network 71
 Demand - Investment 74
 Ru/O&M Costs 76
 Avg. Revenue – Rp 76
 Passenger’s Profits 78

5.2.1 Metro Single Variable Analysis Figures
 Demand per Year 79
 Capacity per Car 80
 Peak Hour Capacity 81
 Project Unitary Cost 82
 Rolling Stock Unitary Cost 85
 Rolling Stock Occupation cost 86
 O&M Costs 87
 Cover Ratio 88
 Economic Rate of Return 91
 Time Gain vs. Bus 91
 Time Gain vs. Car 93
5.2.2 Metro Combined Variable Analysis Figures

Demand - Capacity 94
Benefits - Demand 95
Investment - Benefits 96
Population - Network 97
Demand - Investment 98
Ru/O&M Costs 99
Passenger’s Profits 100

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

a) Tramways and LRT ratio Results
Demand - Capacity 106
Investment - Benefits 106
Demand - Investment 106
Ru/O&M Costs 106
Passenger’s Profits 106

b) Metro ratio Results
Demand - Capacity 107
Investment - Benefits 107
Demand - Investment 107
Ru/O&M Costs 107
Passenger’s Profits 107