List of figures

1. 4 Evolution of the steel price compared to other goods and services, Stevens (2000) after Valls (2002) .. 14
1. 6 Electric installation in the wall panels, Consul Steel (2003) after Valls (2002) ... 15
3. 1 Accelerogram registered during the Ardal earthquake (6/4/1977), Internet-Site for European Strong-Motion Data (2001) .. 31
3. 2 Example of a set of response spectrum curves in a trilogarithmic graphic, Clough (1975) ... 34
3. 3 Comparison of ρ_{nm} for two different types of excitations, Der Kiureghian (1980) .. 38
4. 1 Orientation of the cantilever .. 40
4. 2 Deformed shape of the: 2nd eigenmode (flexion around the weak axis $f = 8.1195$ Hz), 5th eigenmode (flexion around the strong axis $f = 20.749$ Hz) and 19th eigenmode (flexion around the weak axis $f = 129.41$ Hz) 41
4. 3 Evolution of the eigenfrequencies due to the variation of steel density 43
4. 4 Comparison of the numerical and analytical results of the lowest eigenfrequency ... 44
4. 5 Evolution of the eigenfrequencies due to the variation of stiffness 45
List of figures

4. 6 Flexural eigenfrequencies evolution due to stiffness variation 46
4. 7 Torsional eigenfrequencies evolution due to stiffness variation 46
4. 8 Displacement – stiffness relationship applying the triangular
 accelerogram ... 47
4. 9 Displacement – stiffness relationship applying the triangular
 accelerogram ... 48
4.10 Zoom on the displacement – stiffness relationship 49
4.11 Maximum acceleration – stiffness relationship for the triangular
 accelerogram ... 49
4.12 Horizontal reaction – stiffness relationship applying the triangular
 accelerogram ... 50
4.13 Moment reaction – stiffness relationship applying the triangular
 accelerogram ... 50
4.14 Linear behaviour of the analysis .. 52
5. 1 Four methods for the horizontal stabilization of the frame. 1.- Clamped
 columns, hinged threshold. 2.- Hinged columns, fixed threshold. 3.- Fixed
 columns and threshold. 4.- Hinged columns, threshold and the bracing
 diagonal ... 54
5. 2 First eigenmode of vibration of the frame with fixed columns and hinged
 joints, \(f = 13.514 \text{ Hz} \) .. 56
5. 3 First eigenmode of vibration of the frame with hinged columns and fixed
 joints, \(f = 9.9869 \text{ Hz} \) .. 56
5. 4 First eigenmode of vibration of the frame with fixed columns and joints,
 \(f = 22.089 \text{ Hz} \) ... 57
5. 5 Second eigenmode of vibration of the frame with a bracing diagonal,
 \(f = 45.034 \text{ Hz} \) ... 57
5. 6 First vibration mode of the frame with a bracing diagonal, \(f = 16.927 \text{ Hz} \) 58
5. 7 Deformed shape of the frame with one diagonal when the Eurocode
 load is applied. The scale factor for the displacements is 1000 58
5. 8 Evolution of the horizontal displacement due to the variation of the modal
 damping ratios, the Eurocode seismic load is applied 60
5. 9 Scheme of the roof to calculate the mass beared by each frame 62
5.10 First eigenmode of the x-braced frame considering the roof weight,
 \(f = 6.5359 \text{ Hz} \) ... 63
List of figures

5.11 Deformed shape of the x-braced frame considering the roof weight when the Eurocode load is applied. The scale factor for the displacements is 100 .. 64

5.12 Configuration of the different bracing units being analysed. 1.- 1 diagonal, hinged columns. 2.- 1 diagonal, clamped columns. 3.- 2 joined diagonals, hinged columns. 4.- 1 diagonal joined to the centre column, hinged columns 5.- 2 diagonals joined to the centre column, hinged columns. 6.- 2 diagonals not joined, hinged columns .. 65

5.13 First eigenmode for configuration 1 and a width of 100 mm.,
\[f = 7.5137 \text{ Hz} \] .. 66

5.14 First eigenmode for configuration 2 and a width of 65 mm.,
\[f = 6.6521 \text{ Hz} \] .. 67

5.15 First eigenmode for configuration 4 and a width of 65 mm.,
\[f = 6.5894 \text{ Hz} \] .. 68

5.16 First eigenmode for configuration 3 and a width of 65 mm.,
\[f = 9.2617 \text{ Hz} \] .. 69

5.17 Scheme of the variables calculated in the structural analysis 70

6.1 Five configurations of the façade to be analysed. 1.- Clamped columns, no diagonal. 2.- Clamped columns, diagonal at the extreme frame. 3.- Hinged columns, diagonal at the extreme frame. 4.- Hinged columns, diagonal at the centre frame. 5.- Clamped columns, diagonal at the centre frame 74

6.2 First eigenmode of vibration for the façade with hinged joints and columns, configuration 4, \[f = 3.0249 \text{ Hz} \] .. 74

6.3 Deformed shape of the frame corresponding to configuration 4 when applying the Eurocode response spectrum. The scale factor for the displacements is 10 ... 76

6.4 Evolution of the axial force along the threshold for a façade with hinged columns, configuration 3 .. 77

6.5 Evolution of the axial force along the threshold for a façade with fixed columns, configuration 2 .. 78

6.6 Schematic comparison of the axial force along the threshold 78

6.7 Variation of the axial force along the threshold due to the position of the diagonal strap, it corresponds to configurations 3 and 4 79

6.8 Configuration of the façades with openings .. 80
List of figures

7. 1 Drawing of the 3D structure consisting in four façades 83
7. 2 First eigenmode for the 3D structure consisting in four façades,
 \(f = 5.48333 \times 10^{-2} \text{ Hz} \) ... 84
7. 3 Second eigenmode for the 3D structure consisting in four façades,
 \(f = 0.21908 \text{ Hz} \) .. 84
7. 4 Drawing of the 3D structure consisting in four façades and roof trusses 85
7. 5 First eigenmode for the 3D structure with stiffeners, \(f = 0.35569 \text{ Hz} \) 86
7. 6 Second eigenmode for the 3D structure with stiffeners, \(f = 0.39136 \text{ Hz} \) 86
7. 7 Drawing of the 3D structure including the roof 87
7. 8 First eigenmode for the 3D structure with the roof and diagonals of
 150 mm width, \(f = 1.3878 \text{ Hz} \) ... 88
7. 9 Second eigenmode for the 3D structure with the roof and diagonals of
 150 mm width, \(f = 1.3881 \text{ Hz} \) ... 89
7.10 Fourth eigenmode for the 3D structure with the roof and diagonals of
 150 mm width, \(f = 2.4040 \text{ Hz} \) ... 89
7.11 Tributary areas for the uniform wind load .. 90
7.12 Punctual wind loads acting on the structure .. 91
7.13 Horizontal eigenmode of vibration for the structure with two braced frames
 per façade, \(f = 2.4934 \text{ Hz} \) ... 93
7.14 Drawing of the 3D structure with 4 diagonals per façade 94
7.15 Scheme of the joint of two diagonals to the column 95
7.16 Direction of the forces acting on the roof .. 96
7.17 Evolution of the acceleration applied on the roof 96
7.18 Evolution of the horizontal displacements: \(u_x \) and \(u_y \) 97
7.19 Sketch of the trajectory in the x-y plane of a point in the roof 98
7.20 Maximum displacement of the roof in the x-direction. The scale factor for
 the displacements is 10 .. 98
7.21 Maximum displacement of the roof in the y-direction. The scale factor for
 the displacements is 10 .. 99
A. 1 Triangular accelerogram ... I
A. 2 Response spectrum evaluated from 1 to 50 Hz and damping ratios 2, 5, 10,
 15 and 20% .. II
A. 3 Horizontal peak ground acceleration in Europe, 10% probability of
 exceedance in 50 years, GSHAP (1999) .. III
List of figures

A. 4 Design response spectrum for 2, 5, 10 and 20% damping ratiosIV
A. 5 Accelerogram registered during the Ardal earthquake (6/4/1977),
 Internet-Site for European Strong-Motion Data (2001)V
A. 6 Response spectrum for the Ardal earthquake and 2, 5, 10 and 20%
 damping ratios ..V