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APPENDIX A 
 

The advective mass transport occurs due to the groundwater movement and its real 
velocity is calculated from Darcy velocity and effective porosity as 
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where Vi is the real velocity, ui is the Darcy velocity and ne is the effective porosity.  
 
 The advective mass transport in a small cube is considered (Figure A.1). If the change 
of volumetric concentration advC∆  occurs in the small cube during an increment of time t∆ , 
the stored mass inside of the small cube during the increment of time t∆  is expressed as 
( ) zyxC ∆∆∆∆ advρθ , 
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where ρ is the fluid density, θ is the volume water content and c is the volumetric 
concentration. 

 
Dividing both side of Eq. (A.1) by zyx ∆∆∆  and considering t∆ →0 and 

zyx ∆∆∆ ,, →0, the following equation is obtained. 
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The dispersive mass transport in the small cubic volume is also considered in the same 

way (Figure A.2). 
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where D is the dispersivity tensor. 
 

If the change of volumetric concentration disC∆  occurs in the small cube during the 
increment of time t∆ , the stored mass inside of the small cube during the time t∆  is 
expressed as ( ) zyxC ∆∆∆∆ disρθ . 
 

Dividing both side of Eq. (A.4) by zyx ∆∆∆  and considering t∆ →0 and 
zyx ∆∆∆ ,, →0, the following equation is obtained. 
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Figure A.1. The mass balance in a small cube due to advective mass transport. 
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Combining Eqs. (A.3) and (A.5), the general form of the advection-dispersion 

equation can be obtained as follows, 
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where θ  is volume water content, ρ  is fluid density, Dij is dispersivity tensor, c is 
volumetric concentration, Vi is real velocity and Qc is source/sink term. 
 

Here the left hand side of Eq. (A.6) is 
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and the second term of right hand side of Eq. (A.6) becomes 
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Figure A.2. The mass valance in a small cube due to dispersive mass transport. 
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Substituting Eqs. (A.7) and (A.8) into Eq. (A.6), the following equation is obtained 
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On the other hand, the continuity equation is expressed as 
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Introducing Eq. (A.10) in Eq. (A.9), the latter becomes 
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If retardation effect and decay are considered, Eq. (A.11) becomes as follows using 

retardation coefficient R and decay rate λ , 
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Introducing the following Lagrangian description in Eq. (A.12), 
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it becomes,  
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Since the second terms in both sides are the same, Eq. (A.14) becomes 
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Now it is assumed that the volumetric concentration c can be divided into two parts 
related to advection c  and dispersion c~  as follows. 
 
 ( ) ( ) ( )txctxctxc iii ,~,, +=  (A.16) 
 

Substituting Eq. (A.16) into Eq. (A.17), the following equation is obtained, 
 

 ( ) ( ) c
i

ij
i

QccR
x
cD

xdt
ccdR ++−








∂
∂

∂
∂

=
+ ~~

ρθλρθρθ  (A.17) 

or 

 c
i

ij
i

QcRcR
x
cD

xdt
cdR

dt
cdR +−−








∂
∂

∂
∂

=+ ~~
ρθλρθλρθρθρθ  (A.18) 

 
If the advective transport is focused on, the following governing equation can be 

obtained, 
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On the other hand, the governing equation for dispersive transport can be obtained by 

subtracting advection part from Eq. (A.18) 
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Eqs. (A.19) and (A.20) are two independent problems that can be solved separately. 


