Resum

Actualment a Amèrica Llatina hi ha una població (4.670.000 hab.) exposada a quotes altes d’arsènic per l’aigua de beguda (2.000% més del permès) que afecta la salut dels consumidors. Els principals efectes de l’arsènic en el cos són: alteracions amb efectes secundaris en el sistema nerviós central, irritació d’òrgans dels aparells respiratoris i gastrointestinals i càncer de pell. La població més afectada és la població dispersa ubicada en l’àrea rural que consumeix aigua sense cap tractament i que en desconeix el risc.

Les condicions geogràfiques de la zona, caracteritzada bàsicament per l’altura, escassetat de recursos hídrics i condicions climàtiques adverses han limitat el desenvolupament de grans nuclis de vida urbana.

Així es pretén aconseguir un model d’eliminació de l’arsènic a l’aigua de consum amb les característiques adequades per a la situació socioeconòmica en què viu la majoria de gent que pateix hidroarsenisme en les aigües de consum.

Per això hem elaborat una revisió crítica sobre l’estat de l’art en temes d’hidroarsenisme per facilitar la feina a possibles tècnics, administració competent i/o organismes de cooperació internacional que vulguin treballar en aquest tema. El document recull tot el treball fet i proposa solucions innovadores en el model d’eliminació d’arsènic a escala domèstica.

Aquesta revisió ha possibilitat de treballar la manera de gestionar el residu generat per l’eliminació de l’arsènic: els fangs obtinguts. Així hem creat material de referència dedicat a aquelles tecnologies que són apropiades per a l’eliminació de l’arsènic en aigües potables d’origen natural.

En una segona part, hem dissenyat un sistema complet d’eliminació d’arsènic per incidir en el tema de l’eliminació de fangs i la seva gestió i/o estabilització per tal que esdevingui un sistema sostenible i que l’arsènic no retorni al cicle de l’aigua. Això ho hem aconseguit amb la barreja del residu d’argila que conté As, greixos animals –que tenen un alt contingut en estearat– i caç, aconseguint un residu estable i inert. Finalment, paral·lelament hem elaborat els manuals necessaris per fer l’adequada transferència de coneixements a les comunitats afectades.
Sumari

Avaluació i desenvolupament d’un estabilitzant de baix cost per als residus en l’eliminació d’arsènic a nivell domiciliari en zones rurals i disperses d’Amèrica Llatina.

Resum......................................................................................................................... 1

Sumari......................................................................................................................... 3

1. Glossari.................................................................................................................. 7

2. Prefaci...................................................................................................................... 8
   2.1 Origen del projecte .......................................................................................... 8
   2.2 Motivació ........................................................................................................ 8

3. Introducció ............................................................................................................. 9
   3.1 Objectius del projecte .................................................................................... 9
   3.2 Abast del projecte .......................................................................................... 9

4. L’arsènic. Estat de l’art ....................................................................................... 11
   4.0 L’aigua ........................................................................................................... 11
   4.1 L’arsènic. Generalitats .................................................................................. 15
      4.1.1 L’estat en la natura ................................................................................... 15
      4.1.1a Química de l’arsènic .............................................................................. 15
      4.1.1b Producció .............................................................................................. 16
      4.1.1c Importació / Exportació ....................................................................... 17
      4.1.1d Ús ........................................................................................................... 17
   4.1.2 Fonts de contaminació .............................................................................. 19
4.2 Toxicologia de l’arsènic ................................................................. 20
  4.2.1 L’exposició ocupacional......................................................... 21
  4.2.2 Efectes aguts ........................................................................ 21
  4.2.3 Efectes crònics ..................................................................... 22
  4.2.4 Tractament ........................................................................... 26
4.3 Impacte ambiental ...................................................................... 27
  4.3.1 En l’aire .................................................................................. 27
  4.3.2 En l’aigua .............................................................................. 27
  4.3.3 En el sòl ................................................................................ 28
  4.3.4 Sediments ........................................................................... 29
4.4 Mètodes d’anàlisis d’arsènic .......................................................... 30
4.5 Mètodes de tractament d’eliminació................................................. 37
  4.5.1 Aigua .................................................................................... 38
  4.5.2 Sòls ...................................................................................... 49
  4.5.3 Sediments, fangs (residus)....................................................... 52
4.6 Regulació .................................................................................... 54
5. Gestió i/o estabilització dels residus. Actualització de la informació especialitzada ................................................................................................. 57
  5.0 Introducció.................................................................................... 57
  5.1 Revisió crítica de l’estabilització i disposició dels fangs .................. 57
  5.2 Tecnologies de recuperació i estabilització de residus que contenen arsenic ............................................................................................. 58
  5.3 Estudi d’alternatives .................................................................... 65
6. Avaluació de la metodologia de l’ALUFLOC: anàlisi dels seus fangs, identificació i obtenció dels residus domèstics com a possibles estabilitzants ......................... 66

6.0 El mètode ALUFLOC ............................................................................................................ 66

6.1 Obtenció de mostres d’àigua amb As ................................................................................. 67

6.2 Proves de remoció d’As ....................................................................................................... 68

6.3 Obtenció i caracterització dels fangs ............................................................................... 68

6.4 Assajos de lixiviació ............................................................................................................. 69

6.5 Identificació i obtenció dels tipus de residus òptims per fer d’estabilitzant............................................................................................................................. 76

7. Realització de les proves d’estabilització dels fangs obtinguts ............................................ 77

7.1 Proposta d’estabilització amb estearat i calç ................................................................. 77

7.2 Millora del producte d’estabilització .................................................................................. 82

8. Aplicació al camp dels resultats obtinguts al laboratori ....................................................... 82

9. Disseminació dels resultats .................................................................................................... 86

10. Comparativa de la situació a Catalunya ........................................................................... 86

11. Pressupost ............................................................................................................................ 88

12. Cronograma ........................................................................................................................ 91

13. Estudi d’impacte ambiental ................................................................................................. 96

14. Conclusions i recomanacions ............................................................................................ 97

15. Agraïments .......................................................................................................................... 100

16. Bibliografia .......................................................................................................................... 101

17. Bibliografia complementària ............................................................................................... 106
Annexos:

Annex 1: projecte de tractament i disposició final dels residus generats per la remoció d'arsènic a nivel domiciliari.


Annex 3: procediment normalitzat d’operació per a la determinació pel mètode de generació d’hidrurs.


Annex 5: manual per a l’ús de l’ALUFLOC en el tractament d’aigua amb arsènic.

Annex 6: presentació: “eliminació de l’arsènic a l’aigua per beure en zones rurals”.

Annex 7: presentació i certificat d’assistència de la conferència internacional “Evaluation and management of drinking water sources contaminated with arsenic”.

Annex 8: decret 92/999 de 6 d’abril, modificació del decret 34/1996, de 9 de gener, pel qual s’aprova el catàleg de residus de Catalunya.

Annex 9: Estudi per la millora de la qualitat de l’aigua dels pous en zones rurals a Puno. OPS/CEPIS.

Annex 10: certificat de l’estudi realitzat a CEPIS.

1. Glossari

CEPI:  Centro Panamericano de Ingenieria Sanitaria y Ambiental
PAHO:  Panamerican Health Organization
OMS/WHO:  Organització Mundial de la Salut
EPA:  Environmetal Protection Agency, EUA
As:  Arsènic
DSMA, MSMA:  Herbicides arsenicals orgànics
BDF:  Malaltia dels peus negres
AES:  Espectrometria d’emissió atòmica en plasma d’acoplament inductiu (ICP-AES)
GFAA:  Absorció atòmica amb forn de grafit
ppm:  Part per milió (mg/L)
ppb:  Part per bilió (ug/L)
TDS:  Sòlids totals dissolts
JBIC:  Japan Bank for Internacional Cooperation
FONCODES:  Fondo de Cooperación para el Desarrollo Social
DIGESA:  Dirección General de Salud
MINSA:  Ministerio de Salud
AWWA:  American Water Works Association
PNT:  Procediment normalitzat de treball
2. Prefaci

2.1 Origen del projecte

L’aigua està considerada com un dret humà bàsic, però cal –a més– que l’aigua sigui de qualitat perquè la seva ingestió no afecti la salut.

L’hidroarsenisme afecta actualment gran part de la població llatinoamericana. A més, la població més afectada és la dispersa que està ubicada en l’àrea rural, que consumeix aigua sense cap tractament i que desconeix el risc.

Tot i la intensa activitat d’investigació no es disposa de protocols de difusió i d’implantació de solucions a l’eliminació d’arsènic en aigües per beure en zones afectades per l’hidroarsenisme.

A més, tot i els intents d’implantació de tecnologia per l’eliminació d’arsènic, cal trobar solucions al tractament de residus generats en els processos de desarsenificació de l’aigua. Per tant, cal un tancament de cicle perquè els residus no esdevinguin un problema, com està passant ara, per tal d’aconseguir una metodologia sostenible.

2.2 Motivació

Per poder treballar amb facilitat i amb una certa qualitat cal tenir una bibliografia ben acurada i accessible a tothom. En temes d’hidroarsenisme no ha estat fàcil tenir a l’abast els coneixements i recursos per a una aplicació de les tecnologies adients en cada cas determinat.

Per això, en el present projecte s’ha treballat per a la generació i recomplació de material sobre els efectes, tractament i manera d’anàlisi de l’arsènic, per a tots els organismes que pretenguin treballar en la desarsenificació de l’aigua de consum i millorar l’accés i la qualitat de l’aigua.

Totes les tecnologies que coneixem per al tractament de l’aigua i l’eliminació d’arsènic no tenen en compte la gestió i/o el tractament dels residus. Això en genera una dispersió en el medi i la conseqüent reinserció de l’arsènic en el cicle de l’aigua. Per tant, necessitem una tecnologia sostenible que tingui en compte els residus i poder, d’aquesta manera, evitar que l’arsènic torni a afectar la població.

3. Introducció

1. Objectius del projecte

L’objectiu general d’aquest projecte és que totes les persones del món de les àrees amb problemes de presència d’arsènic tinguin accés a l’aigua de qualitat, un dret universal bàsic.

Compilar tota la informació generada sobre l’hidroarsenisme fins a l’actualitat en un únic document per millorar l’accés als recursos i facilitar la feina a tots els actors en la descontaminació de l’aigua a Amèrica Llatina.

Desevolupar un estabilitzant de baix cost per tancar el cicle dels residus. Veure la seva aplicació i l’acceptació entre les comunitats afectades.

Desevolupar un manual integral d’ús de l’ALUFLOC.

L’ALUFLOC és una tecnologia desenvolupada per acondicionar l’aigua de pous en comunitats rurals desprès no arriba l’aigua de xarxa -Annex 11-. L’ALUFLOC remou bactèries, arsènic i altres metalls tòxics, tot de forma simultània, que en general no es poden remoure de forma conjunta amb altres eines in situ. Aquest producte és una pols compost de col·loides (argila activada de malla 200), un material oxidant (hipoclorit sòdic amb un 70% de clor actiu) i un coagulant (sulfat d'alumini)

2. Abast del projecte

Aquest projecte vol donar a conèixer totes les tecnologies i l’ampli ventall d’alternatives per donar solució a la problemàtica de l’arsènic a l’aigua en un sol document. Vol també posar de manifest la poca interrelació que existeix entre els diferents actors que influeixen en l’eliminació d’arsènic a l’aigua, com puguin ser entre grups d’investigació, entre aquests i els que treballen en l’aplicació, els beneficiaris...

D’aquest projecte vol sortir la possibilitat de tancar el cicle de l’arsènic mitjançant l’estabilització adequada i poder desenvolupar nous criteris de gestió per a que s’utilitzin aquests mètodes en les poblacions afectades.

Per tot això, d’aquest projecte en sortiran o r’han sortit dues publicacions: la compilació de la informació d’hidroarsenisme com a document tècnic publicat pel CEPIS/OPS/OMS; i el manual integral d’ús de l’ALUFLOC.
4. L’arsènic. Estat de l’art

4.0 L’aigua

A la majoria d’estats industrialitzats la possibilitat d’accedir a aigua segura per al consum és gairebé universal i, sovint, aquest bé no s’aprecia. Aquest accés ha arribat com a resultat de despeses públiques, tot i que actualment –cada cop més– les agències de subministrament d’aigua s’estan privatitzant.

**L’aigua segura** es defineix com a aquella aigua apta per al consum humà, de bona qualitat i que no genera malalties. És aigua que ha estat sotmesa a algun tipus de procés de potabilització o purificació casolana. Tanmateix, determinar que l’aigua és segura només en funció de la seva qualitat no és suficient. La definició ha d’incloure altres factors com la quantitat, la cobertura, la continuïtat, els costos i la cultura hídrica. És la conjugació de tots aquests aspectes el que defineix l’accés a l’aigua segura. *(CEPIS-PAHO, 2003)*

Per contra, aquest accés és típicament menor en els països en vies de desenvolupament, on les economies són febles i les infrastructures no estan desenvolupades. Aquesta situació és pitjor per a la gent pobre en els països en vies de desenvolupament, ja que sovint no tenen accés a aigua canalitzada. S’ha estimat que entre un 20% i un 30% de residents urbans al món en vies de desenvolupament depèn de venedors d’aigua, que la vénen a un preu molt més alt que l’aigua canalitzada. Les famílies gasten una mitjana d’una quinta part dels seus ingressos en aigua, tot i que els segments més pobres paguen una proporció més gran *(Cairncross, 1991)*. Habitualment, en les àrees rurals, els sistemes de distribució canalitzada no són disponibles i les dones i els nens gasten moltes hores diàries per col·lecció de aigua de rius, estanys i pous. Una anàlisi va calcular que només a l’Àfrica, les dones i els nens gasten més de 40 bilions d’hores anuals a col·lecció d’aigua per als usos domèstics *(de Rooy, 1992)*.

L’impacte econòmic que suposa l’accés, convenient, a fonts d’aigua segura per beure, per així reduir el treball dur i pesat associat a la recollida d’aigua, ja és una justificació suficient per a totes aquelles iniciatives que preveuen un accés a fonts d’aigua segura. Tanmateix, la raó més important per a les intervencions en l’accés d’aigua va associada a la salut pública.

El problema més important en salut pública relacionat amb l’ingesta d’aigua no segura són les diarrees, que contribueixen a la mort anual d’aproximadament 22 milions de persones, de les quals 19 milions són nens. A més a més, aproximadament un terç de la població dels països en vies de
desenvolupament està infectat per paràsits intestinals. Les malalties transmeses per l’aigua, com la còlera, la febre tifoide, la desenteria, la poliomelitis, la meningitis i les hepatitis A i B (http://www.jhuccp.org), són produïdes per aigua contaminada per refusos humans, animals o químics. Aquestes malalties, entre d’altres, es poden reduir amb una millora de la sanitat, la higiene i el subministrament d’aigua (UNICEF, 1999a). Les iniciatives que promouen l’ús d’aigua segura, especialment les de la dècada internacional de l’accés a aigua potable i la sanitat, des del 1981 fins al 1990, s’han centrat a millorar la qualitat i la quantitat d’accessos a aigua per beure i a incrementar l’ús de sanitaris per a la deposició dels excrements.

Gràcies a aquestes intervencions, l’accés a aigua segura per beure ha incrementat molt els darrers vint anys, sobretot en les àrees rurals, com mostra la taula. Això ha contribuït, juntament amb els avanços en sanitat i amb el tractament de la diarrea, a una significat reducció de les diarrees i en general, a millorar la salut dels nens. La ràtio de mortalitat infantil en els països en vies de desenvolupament va disminuir dràsticament: d’un 137 per mil l’any 1960 a 66 per mil el 1996. Durant el mateix període de temps, la ràtio de mortalitat també va disminuir a més de la meitat, del 216 per mil a 97 per mil (UNICEF, 1998). Aquests darrers deu anys, la mortalitat infantil causada per diarrees en els països en vies de desenvolupament ha disminuït més d’un terç a causa, principalment, d’un canvi de comportament: increment de l’ús de la teràpia oral de rehidratació, millora en la sanitat i accés a aigua segura (UNICEF, 1999a).

En la taula 4.1 podem veure l’evolució dels darrers vint anys de l’accés dels països en vies de desenvolupament a l’aigua per beure i a la sanitat.

Taula 4.1 Accés dels països en vies de desenvolupament a l’aigua per beure i a la sanitat.

<table>
<thead>
<tr>
<th></th>
<th>Cobertura del servei de subministrament d’aigua (%)</th>
<th>Cobertura del servei de sanitat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urbà</td>
</tr>
<tr>
<td>1980</td>
<td>29</td>
<td>75</td>
</tr>
<tr>
<td>1990</td>
<td>63</td>
<td>93</td>
</tr>
<tr>
<td>2000</td>
<td>69</td>
<td>92</td>
</tr>
</tbody>
</table>

Font: (OMS/UNICEF, 2000)

1. Les xifres s’han de considerar aproximacions.
2. Les xifres del 1980 exclouen la gent de la república de la Xina, ja que no es disposa de les estadístiques.

3. Després del 1980, molts països adopten una definició de sanitat mésstricta i, per tant, només es pot fer una comparació a partir d’aquesta data.

Una estratègia important en el tema de l’aigua segura per beure ha estat el canvi de l’aigua superficial. L’aigua superficial pot estar fortement contaminada amb patògens fecals, especialment en àrees on no existeixen disposicions sanitaris per als excrements. Per contra, l’aigua subterrània normalment està lliure de contaminació microbiològica. Abans d’intentar desinfectar l’aigua de la superfície, acostuma a ser més econòmic treure l’aigua subterrània, la qual requereix molt poc, o cap, tractament per eliminar patògens. Tot i això, és essencial un emmagatzematge i una manipulació adequades per prevenir la contaminació de l’aigua segura per als usuaris i una caracterització inicial de l’aigua subterrània.

Reflectint l’objectiu de la reducció de les diarrees, els testos de qualitat de l’aigua s’han centrat fortament en els microbiològics. L’aigua és analitzada únicament en paràmetres inorgànics quan hi ha problemes de color o gust (e.i. ferro o clorur) en la zona. Tant l’aigua superficial com la subterrània pot contenir nivells perjudicials d’altres components perillosos, que sovint no poden ser detectats a simple vista o amb un sol test. L’OMS té una guia de valors amb 17 components inorgànics que tenen efectes adversos per a la salut; 27 constituents orgànics; 33 pesticides i 17 desinfectants (WHO, 1993). Òbviament no és viable, ni necessari, analitzar cada subministrament d’aigua de tots aquests 94 constituents, particularment de petits sistemes. Per sort, pocs d’aquests components ocorren normalment en la natura i els tests es poden limitar a components coneguts, que se sospita que hi són a causa dels humans o que existeixen naturalment en el medi local.

Des del descobriment d’aquest fet generalitzat del fluor i l’arsènic en l’aigua subterrània en diverses parts del món, i en vistes de l’increment de contaminació de l’aigua subterrània per productes químics agrícoles, les regulacions públiques i les organitzacions de vigilància han començat un monitoreig general dels paràmetres de qualitat de l’aigua per beure. És impossible testar tots els paràmetres de totes les fonts d’aigua, però els “productors” d’aigua n’han de considerar detingudament les seves fonts i han de considerar si testos de qualitat de l’aigua més detallats són justificables. Molts proveïdors d’aigua, com a mínim, haurien de comprovar inicialment els components que afecten la salut i que se sap que a vegades contaminen lesfonts d’aigua, com el fluoride, l’arsènic, el manganès, els nitrats, els nitrits i traces d’elements com els metalls pesats. Una perspectiva general comuna dels components orgànics que es troben a l’aigua subterrània i les condicions principals de la seva mobilització les dóna Edmunds i Smedley
Memòria (Edmunds, 1996). Altres components que afecten la salut, segons la llista de la WHO, incloent-hi els solvents clorats, són els hidrocarburs aromàtics, els pesticides i els desinfectants, que no es troben de forma natural a l’aigua subterrània. Els subministraments d’aigua per beure han de ser analitzats d’aquests components quan hi ha raons per sospitar que l’aplicació humana d’aquests productes químics en l’agricultura o en la indústria poden haver contaminat la font d’aigua potable.

Quan s’ha identificat una contaminació d’arsènic, la prioritat immediata ha de ser cercar fonts alternatives i segures d’aigua potable per a les comunitats afectades. Altres fonts no només poden estar lliures d’arsènic, sinó també segures microbiològicament. Seria un greu error tornar a usar com a font l’aigua no segura superficial. En alguns casos, no hi haurà cap tecnologia que pugui proveir les comunitats d’una manera contínua, econòmica i sostenible d’aigua segura. Si realment en l’actualitat no hi ha a prop cap font de subministrament d’aigua, és necessari, com a solució a curt termini, utilitzar fonts durant les estacions humides (aigua subterrània, aigua de pluja), i unes altres durant les estacions seques (e.i. remoure arsènic de l’aigua contaminada). Si no es pot establir una font d’aigua lliure, la solució a curt termini és reduir els nivells d’arsènic de l’aigua tant com sigui possible i tan ràpid com sigui possible. S’ha de recordar que els efectes de l’arsènic depenen de la dosi, i una solució parcial és millor que no solucionar-ho. Tanmateix, la solució a llarg termini passa per trobar una font disponible i convenient d’aigua segura per beure. La implementació de la solució temporal no pot ser una excusa per retardar el disseny i la implementació d’un pla a llarg termini.

### El dret a aigua potable segura

Diferents estaments internacionals han expressat el dret humà bàsic a beure aigua segura. Per exemple, la convenció dels Drets dels Nens va fixar en l’article 24.2 (c) que els “partits polítics han de perseguir la total implementació d’aquests drets i en particular han de prendre les mesures apropiades (...) per combatre les malalties i la malnutrició (...) a través de la provisió d’aliments nutritius adequats i d’aigua neta per beure i tenir en consideració els perills i riscos de la contaminació ambiental (...)

La convenció dels Drets dels Nens va adoptar i obrir a la firma, la ratificació i l’ascensió a la resolució 44/25 de l’Assemblea General (20 de novembre del 1989) i va entrar en vigència el 2 de setembre del 1990. Va ser signada per tots els estats del món, exceptuant els EUA i Somàlia.

També el Comitè de Drets Econòmics, Socials i Culturals de les Nacions Unides (article 11 i 12 del Pacte Internacional de Drets Econòmics, Socials i Culturals) va afirmar que “el dret humà a l’aigua atorga drets a tots a comptar amb aigua suficient, físicament i a un preu assequible, segura i de qualitat, acceptable per a ús personal i domèstic.”
Amb aquesta declaració, el novembre del 2002 es va marcar una fita en la història dels drets humans, ja que per primera vegada va ser reconegut de manera explícita el dret humà fonamental al consum d’aigua segura.

En el comentari general número 15 sobre el compliment dels articles 11 i 12 del Pacte Internacional de Drets Econòmics, Socials i Culturals, el Comitè va fer notar que “el dret humà a l’aigua és indispensable per a una vida humana digna” i va assenyalar que “és un prerequisit per a la realització d’altres drets humans”. Sense l’accés equitatiu a un requeriment mínim d’aigua potable, altres drets fonamentals com els civils, els polítics o el dret a un nivell de vida adequat per a la salut i el benestar, serien inassolibles.

Els 145 països que van ratificar el Pacte Internacional hauran de vetllar perquè la població sencera tingui progressivament accés a aigua potable segura i a instal·lacions de sanejament de forma equitativa i sense discriminació. A més a més, els governs d’aquests països hauran d’adoptar estratègies i plans d’acció nacionals que els permetin “aproximar-se de forma ràpida i eficaç a la realització total del dret a tenir aigua.” (http://www.wateryear2003.org)

Una altra institució internacional que hi ha fet al·lusió és la Unesco, amb la declaració ministerial de La Haya (març del 2000), que va aprovar set desafiaments com a base de l’acció futura i que posteriorment es van ampliar a 11. (UNESCO-París 2003)

4.1 L’arsènic. Generalitats

4.1.1 L’estat en la natura

4.1.1a Química de l’arsènic

L’arsènic és un element que apareix de forma natural a l’atmosfera, al sòl, a les roques, a les aigües naturals i als organismes. Juntament amb els seus compostos forma entre l’1,5% i el 2% de l’escorça terrestre. Pot presentar-se de forma combinada com a més de 200 elements diferents, dels quals aproximadament el 60% són arseniats, el 20% sulfurs i sulfosalts i el 20% restant inclou arseniürs, arsenits, òxids, silicats i arsènic elemental; essent l’arsenopiriita (FeAsS), l’enargita (Cu₃AsS₄) i la tennatita ((Cu,Fe)₉As₄S₁₃) els minerals més comuns. En la taula 4.2 podem veure els minerals més comuns amb arsènic.
Taula 4.2 Minerals més comuns amb arsènic.

<table>
<thead>
<tr>
<th>Sulfurs</th>
<th>Realgar</th>
<th>AsS (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oropiment</td>
<td>As$_2$S$_3$ (s)</td>
</tr>
<tr>
<td></td>
<td>Arsenopirita</td>
<td>FeAsS (s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sulfosals</th>
<th>Tennantita</th>
<th>(Cu,Fe)$<em>{12}$As$</em>{13}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enargita</td>
<td>Cu$_3$AsS$_4$ (s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arseniats</th>
<th>Escorodita</th>
<th>FeAsO$_4$$\cdot$2H$_2$O (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mimetita</td>
<td>Pb$_5$ (AsO$_4$)$\cdot$3Cl (s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arsenits</th>
<th>Trippkeita</th>
<th>CuAs$_2$O$_4$ (s)</th>
</tr>
</thead>
</table>

Aquest metal·loide, moltes vegades mal anomenat metall, té 4 estats d’oxidació (-3, 0, +3, +5), tot i que poques vegades es presenta en l’estat fonamental. El seu estat majoritari són els compostos inorgànics i orgànics amb els dos estats d’oxidació (*EPA, 2000; EHDHC, 1992*).

4.1.1b Producció

L’arsènic s’obté principalment com a subproducte de la depuració de coure, plom, cobalt i or. El triòxid d’arsènic és volatilitzat durant la fusió i s’acumula a la pols de la xemeneia, que pot contenir fins a un 30% d’As$_2$O$_3$ (s). A més, la pols de xemeneia es refina i es mescla amb petites quantitats de galena o pirita per prevenir la formació d’arsenits i tornats per produir triòxid d’arsènic d’una pureza del 90% al 95%. A través de les diferents sublimacions es pot obtenir una purificació del 99%. El metall d’As es pot preparar a través de la reducció de l’òxid d’arsènic amb carbó vegetal. La demanda d’arsènic metàl·lic és limitada i per això el 95% de l’arsènic es comercialitza i es consumeix de forma combinada, principalment com a triòxid d’As i convertit a àcid arsènic.


Abans d’aquesta cessió, la producció d’EUA d’As$_2$O$_3$ havia estat de 7.300 tones mètriques el
1983, 6.800Tm l’any 1984 i 2200Tm el 1985. L’As és cobert de mineral no fèrric o concentrat en almenys 18 països. L’any 1998 el màxim productor d’As$_2$O$_3$ va ser Xina, seguit de Xile, Ghana, Mèxic i França. Xina compta, aproximadament, amb tota la producció d’As metàl·lic en grau de purificació comercial. Els EUA, amb una clara demanda de més de 30.000Tm, va ser el major consumidor d’As del món el 1998.

4.1c Importació / Exportació

Des que la producció d’EUA va cessar l’any 1985, tot l’As consumit als EUA és importat. La importació d’As s’ha incrementat substancialment des de la meitat dels anys 80. L’any 1998, per exemple, van entrar 30.300Tm, de les quals 29.300Tm eren com a As$_2$O$_3$, i 997Tm com a metall. El major país exportador és Xina, amb un 54% (del consumit als EUA), seguit de Xile i Hong Kong, amb un 27% i un 8,6% de les importacions nord-americanes.

4.1d Ús

La producció de conservants de fusta, principalment arseniat-crom-coure (CCA) CrO$_3$·CuO·As$_2$O$_5$, representa més del 90% del consum domèstic del trióxid d’arsènic. El CCA és el conservant de fusta més utilitzat al món. Els principals productors són: HICKSON CORP., SMYRNA, GEORGIA, CHEMICAL SPECIALTIES INC., HARRISBURG, NORTH CAROLINA, OSMOSE WOOD PRESERVING, INC., BUFFALO, NEW YORK.

El tractament de fusta amb CCA s’anomena tractament de pressió de la fusta. L’any 1997, als EUA es van tractar amb CCA 20,6 milions de metres cúbics de fusta, aproximadament. El CCA és un producte en base aigua que protegeix diferents espècies de fusta, disponibles comercialment, de la descomposició i de l’atac d’insectes. És àmpliament utilitzat en el tractament de pals elèctrics, en la construcció de mobles, en cases amb estructures de fusta... El CCA es presenta de 3 maneres diferents: A, B i C, que contenen diferents proporcions de crom, coure i òxid d’arsènic. El de tipus C és el més popular i conté CrO$_3$, CuO i As$_2$O$_5$ en les proporcions de 47,5%, 18,5% i 34,0%.

L’As metàl·lic s’utilitza en la producció d’aleacions no fèrriques, principalment aleacions de plom usades en les bateries d’àcid-plom. L’As també pot ser afegit a les aleacions per utilitzar com a coixinets antifracció, municions de plom i per soldar automòbils. També s’afegeix per millorar la resistència a la corrosió. En el passat, l’ús predominant de l’As era l’agricultura. Els arsenicals orgànics, anomenats àcids cacodílics, DSMA, MSMA i l’àcid arsenic encara són utilitzats com a herbicides –tot i que estan prohibits–. L’àcid cacodílic també és utilitzat com a silvicide i com a exfoliant de cotó. El pesticida usat l’any 1997 indica que 6,0; 1,3 i 0,14 milions de pounds de MSMA, DSMA i àcid cacodílic es van aplicar a
la collita d’EUA. Aproximadament, un 99,5% d’aquests productes químics van ser aplicats al cotó i la resta, als cítrics i a la soja.

Fins el 1940 amb la introducció dels pesticides orgànics, els components d’arsènic inorgànic eren els pesticides disponibles per als grangers i recol·lectors de fruita. L’arseniat de calci va ser usat per al control de cucs i cotó, i com a herbicida. L’arseniat de plom es va utilitzar per a la poma i altres fruites de cultiu, així com també en els camps de patates. L’arsenit de sodi s’utilitzava per controlar les males herbes en els rails de tren, en camps de patates i en zones industrials. L’arseniat de sodi tenia aplicacions en trampes de formigues. Ara bé, a partir del 1960, la utilització de components d’arsènic inorgànic en l’agricultura va desaparèixer. Els usos en el menjar van ser cancel·lats el 1993, de la mateixa manera que ho va ser l’àcid arsènic com a defoliant de plantes de cotó. L’arsènic inorgànic encara està permès com a “ham” per a formigues i per conservar fusta. La majoria d’usos de l’As en l’agricultura es van prohibir perquè posaven en risc la salut humana durant la producció i l’aplicació de les dosis, en algun punt d’ús. A principis de 1975 l’ús d’As com a conservant de fusta va començar a creixir i després de 1980 la conservació va ser més important que l’aplicació agrícola. El 1990, el 70% de l’As consumit als EUA era destinat a la conservació de la fusta i el 20%, a l’agricultura.

En la taula 4.3 podem veure els principals usos dels compostos que contenen arsènic

Taula 4.3 Compostos d’arsènic i els seus principals usos.

<table>
<thead>
<tr>
<th>Compost</th>
<th>Ús</th>
<th>Compost</th>
<th>Ús</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃AsO₄</td>
<td>Fabricació de vidre</td>
<td>As₂S₃</td>
<td>Semiconductors</td>
</tr>
<tr>
<td></td>
<td>Tractament de fusta</td>
<td></td>
<td>Adoberia</td>
</tr>
<tr>
<td></td>
<td>Deshidratació de cotó</td>
<td></td>
<td>Manufactura de linòleum</td>
</tr>
<tr>
<td>Na₂HasO₄</td>
<td>Antipalúdic</td>
<td>Ca(H₂AsO₃)₂</td>
<td>Insecticida</td>
</tr>
<tr>
<td></td>
<td>Dermatològic</td>
<td></td>
<td>Retardant de maduració de fruites</td>
</tr>
<tr>
<td></td>
<td>Alternativa per reumatisme i asma</td>
<td></td>
<td>Manufactura de preservants</td>
</tr>
</tbody>
</table>
AsBr₃ | Anàlisis químiques en medicina | K₃AsO₃ | Manufactura de miralls
---|---|---|---

4.1.2. Fonts de contaminació

Les fonts de contaminació poden ser naturals, artificials o alimentàries, ja que l’arsènic es troba tant a l’aire com a l’aigua o als aliments.

**Fonts naturals:** Dins aquest bloc hi ha les àrees geotermals, les regions volcàniques, els nivells d’argila intercalats en aqüífers dentritics que contenen minerals amb arsènic i els aqüífers que contenen òxid de ferro i manganès, que té molta afinitat amb l’arsènic. L’arsènic inorgànic és introduït a l’aigua mitjançant la dissolució de minerals. Les concentracions en aigües subterrànies en algunes àrees poden ser elevades com a resultat de l’erosió de la roca local. Finalment, les emissions naturals d’arsènic estan associades a incendis forestals i d’arbustos. Però de totes aquestes fonts naturals, l’activitat volcànica és la principal emissora d’arsènic al medi ambient. *(EPA, 2000; EHDHC, 1992).*

**Fonts artificials:** La major part de l’arsènic que existeix a l’aigua i en el medi ambient és producte de l’activitat humana, que genera arsènic metàl·lic, pentaòxid i triòxid d’arsènic, arseniats de calci i plom o compostos arsenicals orgànics, entre d’altres. Els processos que poden emetre arsènic a l’ambient són: la combustió de residus, la reforja de combustibles fòssils (especialment del carboni), la mineria, la fundició de metall, la producció de plaguicides, herbicides i fungicides, manufactura del vidre i manufactura del ciment. També són fonts de contaminació: l’ús d’arsenicals com a conservants de fusta com el coure-crom-arsènic (àmpliament usats als EUA), l’ús de plaguicides per a l’agricultura, la manufactura de semiconductors per a la indústria electrònica (arseniürs de gal·li i indi) o l’ús de compostos arsenicals en l’adoberia i l’elaboració de pintures. Altres fonts d’intoxicació d’aquest metal·loide resulten de l’acció dels àcids sobre diferents metals amb impureses arsenicals, que genera una combinació gasosa: l’arsenamina o hidrogen arseniat, productor d’intoxicacions per inhalació. *(EPA, 2000; EHDHC, 1992).*

**Fonts dietàries:** La presència d’arsènic en fonts naturals fa que la població sencera hi estigui exposada, encara que sigui a nivells baixos, a través del menjar, l’aigua, l’aire o el contacte amb el sòl. Degut a l’alt contingut d’arsènic a l’aigua de consum de diverses zones del món com els Andes, l’Índia, Taiwan, Àfrica del Nord..., trobem arsenicisme endèmic d’origen hídric. *(EPA, 2000; EHDHC, 1992, Informe de Medicina Laboral, 2002).*
El menjar és una font significant d’arsènic. Per exemple, el cranc, la llagosta i el bacallà contenen entre 10mg As/kg i 40mg As/kg. En canvi, el bagre, el salmó i altres peixos d’aigua dolça, juntament amb la carn de porc i de bestiar, contenen < 1mg As/kg. Estudis fets a Canadà indiquen que l’arsènic present al menjar és principalment inorgànic (65%-75%). Tanmateix, el peix, la fruita i els vegetals contenen principalment arsènic orgànic (menys del 10% es troba en forma inorgànica). Les formes orgàniques d’arsènic en marisc són majoritàriament trimetilades. (Frederick, 1994).

Una altra font que s’ha de tenir en compte és d’origen medicamentosa, aquella produïda pels compostos pentavalents de l’arsènic (arsenobenzols), que s’utilitza en el tractament de parasitosis com la tripanomiasis gambiese o la rhodesiense. (Informe de Medicina Laboral, 2002).

4.2 Toxicologia de l’arsènic

L’arsènic és un component no essencial per al cos humà, tot i que hi ha estudis que indiquen la seva essencialitat per a diferents espècies animals (rates, cabres, pollets) (EPA, 2000). L’escala de toxicitat de l’arsènic disminueix en el següent ordre: arsina> As(III) inorgànic>As(III)orgànic> As(V) inorgànic> As(V) orgànics>compostos arsenicals i arsènic elemental. La toxicitat de l’As(III) és aproximadament deu vegades més que l’As(V). Una dosi única de només 125 grams (1-4 mgAs/Kg) és suficient per causar la mort a una persona. També és sumament perillós si s’ingereix a través de l’aigua per beure, o el seu contingut en l’aigua per cuinar també està per sobre del límit màxim permès de 0,001 mg/L (OMS) durant un període prolongat. La intoxicació per arsènic tarda entre 2 i 14 anys a desenvolupar-se. (EPA, 2000).

S’ha calculat que amb el nivell de 0,05mg/L d’arsènic permès, establert en diferents països, el risc a morir de càncer de fetge, pulmó, ronyó o bufeta després de beure un litre diari d’aigua durant tota la vida podria ser de 13 de cada 1.000 persones exposades.

En un estudi de WITAF (Water Industry Technical Action Fund) i publicat per l’AWWA (American Water Works Association) defensa que el nivell màxim d’arsènic per prevenir el càncer hauria de ser de 0,00025 mg/L. Un aspecte important a destacar és que la tecnologia analítica en ús permet mesurar el contingut d’arsènic a l’aigua a nivells de 0,002mg/L o superiors.

El metabolisme de l’arsènic ocorre principalment al fetge.

L’As(III) i (V) tenen diferents mecanismes d’acció. L’As(V) es comporta molt semblant al
fosfat. Una diferència entre l’arsènic i el fòsfor és l’estabilitat a la hidròlisi dels èsters de l’àcid fòsfor, que permet l’existència del DNA i l’adenosina 5-trifosfat (ATP). Per contra, l’As(III) té molta afinitat amb els grups tiols en les proteïnes i causa la inactivació d’una varietat d’enzims. (The National Academy of Sciences, 1999; Frederick, 1994).

En contrast amb l’arsènic inorgànic, ni l’MMA (monometilarsènic) ni el DMA (dimetilarsènic) s’enllacen fortament a les molècules biològiques dels humans. Per tant, la seva toxicitat aguda és menor que les formes d’arsènic inorgànic.

Després de la ingestió, l’arsènic inorgànic no és immediatament excretat. És absorbit pels teixits i després és progressivament desintoxicat a través del procés de metilació. L’excreció de l’arsènic ocorre a través dels ronyons, en l’orina. Quan la ingestió és més alta que l’excreció, l’arsènic tendeix a acumular-se als cabells i a les unges. Els nivells normals d’arsènic a l’orina, els cabells i les unges són de 5-40 µg/Kg i 430-1080 µg/Kg, respectivament. (Chowdhury, U. 2000)

4.2.1 L’exposició ocupacional

L’exposició ocupacional és significativa ja que hi ha exposició en diferents indústries, en concret en les fundicions no fèrriques, electròniques, de preservants de fusta, botigues de fusta i fusteries, producció d’arsènic, manufactura del vidre i producció i aplicació de pesticides arsenicals. L’exposició és inicialment a través de la inhalació de partícules que contenen arsènic. De la mateixa manera, la ingestió i l’exposició dèrmica també són significants en determinades situacions. És estrany que els treballadors s’exposin únicament a l’arsènic, ja que normalment s’exposen a l’arsènic juntament amb altres substàncies. Actualment, un cert nombre de països han establert regulacions de l’arsènic, les quals limiten la concentració permesa d’arsènic inorgànic en els llocs de feina. Aquest límit està dins el rang de 0,01mg/m³ a 0,1mg/m³.

4.2.2 Efectes aguts

L’enverinament agut és el resultat de la ingestió d’una gran quantitat d’arsènic en poc temps. El triòxid d’arsènic, triclorur d’arsènic i els gasos arsenicals són els causants coneguts de danys importats en el sistema respiratori per inhalació.

Els símptomes inflamatoris inclouen tossina, disnea i mal de pit. L’enverinament agut per l’exposició a la pols transportada per l’aire és freqüentment acompanyat per irritació de l’epiteli exposat.

Incidents d’enverinaments a gran escala han estat descrits a Japó, on hi ingressió de llet en pols contaminada va provocar en les persones: febre, insomni, anorèxia, inflamació del fetge, melanosi i
alteracions cardíiques, i la ingestió de salsa de soja contaminada va provocar edema facial, anorèxia, lesions de pell i del tracte respiratori, signes neuròtics i inflamació del fetge.

La dosi fatal de triòxid d’arsènic ingerit per als humans ha estat referida en el rang de 70mg a 180mg.

4.2.3  Efectes crònics

L’enverinament crònic es dóna quan s’ingereixen petites quantitats d’arsènic durant un llarg període de temps. A Bangladesh es van reconèixer cadascuna de les quatre etapes d’arsenicosis o enverinament crònic amb arsènic. (BCAS, 1997)

Preclínic: El pacient no mostra símptomes, però l’arsènic pot ser detectat mitjançant mostres de teixit i orina.

-  Clínic: En aquesta etapa es poden veure diversos efectes sobre la pell. L’enfosquiment general de la pell (melanosi) és el símptoma més comú –frequentment observat al palmell de la mà o per taques fosques al pit, l’espatlla, braços o les genives–. Un símptoma més seriós és la queratosi o enduriment de la pell en forma de nòduls al palmell de la mà o a la planta del peu. L’OMS estima que aquesta etapa requereix una exposició a l’arsènic d’entre 5 a 10 anys.

-  Complicacions: Els símptomes clínics arriben a ser més pronunciats i els òrgans interns són afectats. S’ha narrat dilatació del fetge, dels ronyons i de la melsa. Alguns estudis indiquen que la conjuntivitis, la bronquitis i la diabetis poden ser vinculades a l’arsènic, en aquesta etapa.

-  Malignitat: Es desenvolupen tumors o càncers que afecten la pell o altres òrgans. En aquesta etapa, la persona afectada pot desenvolupar gangrena o càncer de pell, pulmó o bufeta.

  Tot i que existeixen moltes evidències que vinculen l’arsènic amb el càncer, encara es desconeix la dosi exacta que el causa. En les dues primeres etapes o arsénicosi, si el pacient canvia de font d’aigua de beguda a una lliure d’arsènic, la recuperació és quasi completa. La tercera etapa pot ser reversible, la quarta no ho és.

Lesions de pell

Les lesions de pell occasionades per l’arsènic es manifesten amb canvis de pigmentació que inclouen hiperpigmentació (pot ocórrer en qualsevol part del cos i frequentment mostra pigmentació del tipus gotes d’aigua o taques rodones difuses de color marró fosc). La hiperpigmentació es dóna,
principalment, en les parts no exposades del cos. La hipopigmentació segueix la mateixa distribució i pot presentar-se tot i l’absència d’hiperpigmentació. La queratosi es manifesta als costats dels palmells i dels dits de la mà, i sobre les plantes, talons i dits del peu. Aquesta lesió de la pell, particularment la queratosi, pot relacionar-se amb el càncer de pell. Un estudi realitzat a Bangladesh va indicar clarament una relació dosi-resposta entre la concentració d’arsènic a l’aigua de consum i les lesions a la pell per les diferents formes d’exposició. *(Tondel, 1999)*.

El període de latència de les lesions de pell provocades per l’arsènic (és a dir, el temps transcorregut des de la primera exposició fins a la manifestació de la malaltia), en particular de la queratosi, és generalment d’uns 10 anys, encara que s’han trobat pacients que han manifestat la malaltia abans d’aquest període. *(Smith, 2000)*

**Desordres del sistema nerviós**

En pacients subjectes a una exposició crònica s’ha observat polineuropatia sense paràlisi motora i electromiogrames. En nens exposats s’ha observat pèrdua d’audició i efectes neurològics com debilitat, pèrdua de reflexes o canell flàccid. Un estudi fet a Tailàndia va demostrar que l’arsènic pot tenir certa tendència a influir negativament en la intel·ligència dels nens.

**Diabetis mellitus**

La diabetis mellitus també ha estat vinculada a l’exposició d’arsènic en aigua que es beu. Això està confirmat pels estudis realitzats a Taiwan, que observen una alta prevalença de BDF en la regió endèmica. La població de Bangladesh també s’ha vist afectada per aquesta malaltia, que es desenvolupa després d’ingerir altes dosis d’arsènic.

**Anèmia**

S’ha enregistrat anèmia, leucopènia i altres alteracions del sistema hematopoiètic. Alguns mecanismes en la biosíntesi de l’hemoglobina són afectats per l’arsènic.

**Alteracions del fetge**

S’ha observat disminució de la funció hepàtica i càncer primari del fetge i hepatobiliàr. També s’ha manifestat cirrosi.

**Malalties vasculars**
L’exposició a l’arsènic també ha estat vinculada a diverses malalties vasculars (malalties vasculars perifèriques, BDF, cardiovasculars i cervell vasculars) (Abernathy, 2001). La malaltia del peu negre (BDF) és endèmica en la regió sud-oest de Taiwan. Aquesta malaltia es caracteritza pel refredament i l’adormiment del peu, seguit per ulceració, ennegiment i posteriorment gangrena de les parts afectades. Els estudis realitzats per Chen han trobat relacions dosi-resposta entre les concentracions d’arsènic en els pous artesans i el BDF. De la mateixa manera, el risc de mortaldat s’incrementa amb el període de residència en la zona endèmica.

La forma extrema i l’alta prevalença de BDF que s’ha trobat a Taiwan no ha estat observada en altres regions. Per tant, és probable que altres factors com la mala nutrició o l’exposició contínua juguin un rol pato-fisiològic en la malaltia. També s’ha escrit sobre altres tipus de malalties vasculars perifèriques en altres països com Suècia, on l’exposició a arsènic en una fundició de coure va provocar una alta manifestació de “dits blancs” o malaltia de Raynaud.

Altres estudis han vinculat l’arsènic amb les malalties cardiovasculars que van sorgir després de nivells baixos d’exposició. Als EUA es van manifestar afeccions d’aquest tipus en les artèries i també anomalies en el sistema circulatori.

S’ha trobat que el consum d’aigua contaminada amb arsènic provoca el risc a sofrir hipertensió cardíaca, segons els estudis fets a Bangladesh i Taiwan. (Tondel, 1999).

**Efectes en la salut reproductiva humana**

Aquest aspecte no s’ha estudiat molt, però hi ha fets que suggereixen efectes adversos en la salut reproductiva a causa de l’exposició a arsènic. A Suècia s’han publicat casos que indiquen impactes en la reproducció: per exemple, els fills d’unes empleades residents en una zona propera a una fundició de coure, l’exposició a l’arsènic de les quals va ser bastant alta. Aquesta afecció seria més alta si les dones fossin les persones ocupacionalment exposades, ja que s’incrementarien les taxes d’avortaments i malformacions congènites, sobretot si la mare està exposada durant el període d’embaràs. Els estudis fets en poblacions exposades a aigua contaminada d’arsènic, d’Hongria i l’Argentina, van confirmar l’increment de les taxes d’avortaments espontanis i nadons morts. (Hopenhayn-Rich, 1996, 1998, 2000).

Als Estats Units, tres estudis van narrar efectes adversos en la salut reproductiva, incloent increments en la mortalitat a causa d’anomalies cardiovasculars congènites i avortaments espontanis. Però anàlisis fetes als grups exposats d’aquests estudis van revelar nivells baixos d’arsènic, afectant, així, la certesa de la interpretació dels resultats.
Recentment a Xile s’ha avaluat l’associació de l’exposició a l’arsènic amb la mortaldad infantil. Els resultats trobats suggereixen clarament aquesta associació, però no es pot concloure definitivament una relació causal deguda a l’arsènic.

**Efectes carcinogènics**

Els estudis epidemiològics han indicat una relació causal entre el càncer de pell i l’exposició a l’arsènic inorgànic via administració oral (medicació, aigua de pou contaminada) o ocupacionalment. El càncer de pell com a resultat de l’enverinament amb arsènic és caracteritzat per lesions múltiples. El període de latència del càncer de pell i altres interns és de 20 anys a partir del moment de l’exposició. S’han descrit carcinomes de menor grau malignes en cèl·lules fonamentals acompanyades per dermatitis precancerosa crònica.

Els estudis realitzats en diferents països indiquen que la població que ha estat exposada durant molt de temps a aigües freàtiques contaminades amb arsènic indiquen que una de cada deu persones que beu aigua amb 500 µg/L d’arsènic poden acabar morint de càncers causats per l’arsènic; en particular de càncers de pulmó, bufeta i pell (Smith, 2000). Estudis efectuats a l’Argentina han demostrat una clara relació entre l’arsènic i la mortalitat a causa de càncer de bufeta, pulmó i ronyó (Hopenhayn-Rich, 1996). Existeix més risc de càncer de pulmó en treballadors exposats al triòxid d’arsènic en fundicions i fàbriques d’insecticides.

S’han fet pocs estudis per determinar la relació entre l’exposició a l’arsènic i el càncer d’ossos. Estudis fets a Taiwan van revelar taxes altes de mortalitat per càncer d’os i limfomes en homes i dones. Un estudi fet en animals va demostrar l’acumulació d’arsènic en l’os medul·lar. De totes maneres, la forma com ocorre aquest mecanisme no és clara i es necessitarien més estudis per confirmar-lo. (Abernathy, 2001).

**Efectes genotòxics**

Els estudis respecte a aquest tema són pocs i els seus resultats contradictoris. De totes maneres, s’han incrementat les freqüències d’aberracions cromosòmiques i intercanvis de la cromàtide germana en individus exposats al metall per raons mèdiques o ocupacionals. Encara que també s’han trobat resultats negatius al respecte. (Finkelman, 1993).

**Efectes sobre la intel·ligència**

Ja es coneixia que l’ingest d’arsènic tenia efectes neurològics sobre els adults. Ara, un estudi fet a 201 nens de 10 anys de la zona d’Araihazar, Bangladesh, demostra que consumir aigua amb As redueix la
intel·ligència funcional dels nens. Per fer-lo, van mesurar el pes, l’alçada i la circumferència cranial. Es relaciona amb la presència d’arsènic a l’aigua de consum, a l’orina i a la sang. (Gali, 2004).

4.2.4 Tractament

El tractament bàsic és proporcionar al pacient aigua per beure lliure d’arsènic, ja que no existeixen evidències de tractaments efectius. La següent prioritat seria monitorejar els pacients per assegurar-se que romanen fora de l’exposició de l’arsènic. (Smith, 2000).

Quelació. S’han donat teràpies de quelació a pacients de Bengala i Bangladesh. L’objectiu de la teràpia de quelació és subministrar al pacient un compost, el qual s’enllaça fortament amb l’arsènic i posteriorment s’expulsa a través de l’orina. Així es remou una gran quantitat d’arsènic en poques hores. No s’ha demostrat l’effectivitat del mètode ja que els resultats que es tenen s’obtenen quan es deixa de beure aigua contaminada, i es desconeix si la quelació pot remoure l’arsènic que està unit a la pell. Un altre desavantatge és que no es pot assegurar que la quelació sigui efectiva si el pacient segueix consumint aigua contaminada després del tractament. Això pot donar la falsa impressió que els efectes es poden tractar tot i continuar l’exposició.

Nutrició. Les evidències trobades a Taiwan suggereixen que els factors nutricionals poden modificar els riscos de càncer associats a l’arsènic. S’ha proposat que el subministrament de vitamines i la millora de la nutrició beneficia els pacients. En concret, la vitamina A és recomanable en la diferenciació de diversos teixits, sobretot de la pell. Per això és recomanable que s’administri suplements multivitamítics als pacients amb lesions de pell i que s’estableixin projectes d’investigació per verificar si aquest tractament és també efectiu per als pacients amb arsenicosi.

4.3 Impacte ambiental

4.3.1 En l’aire

L’arsènic ingressa al medi ambient a través de refinació de combustible fòssil, erupcions volcàniques i altres processos naturals. L’arsènic i els seus compostos són mòbils en l’ambient. Els sulfurs d’arsènic es converteixen en triòxid d’arsènic i entren al cicle com a pols o per dissolució en pluja, rius i aigua subterrània. Les formes volàtils d’arsènic són l’arsina (AsH₃) i la trimetilarsina ((CH₃)₃As). (Frederick, 1994).

Les concentracions d’arsènic total en l’aire de zones llunyanes i rurals oscil·len entre 0.02ng/m³ i
4 ng/m³. Les concentracions mitjanes d’arsènic total en les zones urbanes oscil·len entre 3 ng/m³ i 200 ng/m³. S’han mesurat concentracions molt més altes (>1 000 ng/m³) en les proximitats de fonts industrials, encara que en algunes zones està disminuint gràcies a les mesures de reducció de la contaminació (OMS, “Environmental Health Criteria, No. 224: Arsenic”). En l’aire existeix predominantment material absorbit i particulat, i està usualment present com a mescla d’arseni i arseniat. La presència d’espècies orgàniques, excepte en àrees on s’usen pesticides o hi ha activitat biòtica, és despreciable.

Un estudi realitzat a Europa ha indicat una disminució de la concentració d’arsènic a l’aire, en comparació amb dècades passades. Això, probablement, es deu a la introducció progressiva d’equips d’abatiment de la pols en les indústries. Els nivells típics d’arsènic a Europa estan entre: 0,2 ng/m³ i 1,5 ng/m³ en àrees rurals; 0,5 ng/m³ i 3 ng/m³ en àrees urbanes i no més de 50 ng/m³ en àrees industrials. (Abernathy, 2001).

En àrees no contaminades s’ha detectat arsènic en la pluja. El rang mitjà de les concentracions està entre 0,013 i 0,5 µg/L, mentre que a prop d’una plataforma de gas, les concentracions mitjanes d’arsènic sobrepassen el 45 µg/L.

4.3.2 En l’aigua

L’arsènic s’introduceix a l’aigua de forma natural a través de la dissolució de minerals dels dipòsits geològics, de les descarregues industrials i de l’aplicació de pesticides. L’impacte ambiental corresponent als nivells d’arsènic en l’aigua depèn del nivell de l’activitat humana, la distància de les fonts de contaminació i la dispersió i destí dels arsenicals que són alliberats. (EPA, 2000; EHDFC 1994; BCAS, 1997).

**Aigua superficial**

L’arsènic està àmpliament distribuït en l’aigua superficial. Les concentracions d’arsènic en aquesta aigua són molt baixes, encara que es poden presentar altes concentracions si es troben a prop de dipòsits naturals de minerals o fonts antropogèniques. Els estudis indiquen que la majoria dels valors són menors de 10 µg/L, tot i que algunes mostres poden excedir 1 mg/L. A prop d’una planta de pesticides s’ha trobat una concentració d’arsènic de 2 mg/L. Un estudi fet a Japó manifesta altes concentracions d’arsènic en aigües termals: 570 µg/L, amb un nivell màxim de 25,7 mg/L.

Els nivells d’arsènic en aigua de mar es troben entre 1 i 2 µg/L. Les formes disolutes d’arsènic en l’aigua de mar inclouen arseniat, arsenit, MMA i DMA amb adsorció dins de material particulat, essent el
procés físic el més probable per limitar les concentracions d’arsènic dissolt. Tot i això, l’As tòpic dominant és l’As(V), encara que l’As(III) és sempre present i pot arribar a incrementar en aigües anòxiques. Les ràtios d’As(V)/As(III) estan normalment en rang 10-100, en aigües obertes. En el rang de pH de l’aigua de mar (8,2), les formes existents són HAsO$_4^{2-}$ i H$_2$AsO$_4^-$. Les concentracions que s’han trobat en estuaris són relativament més altes i s’incrementen amb la salinitat. (Abernathy, 2001).

**Aigua subterrània**

Els nivells típics d’arsènic estan al voltant d’1 a 2 µg/L. Tanmateix, en àrees amb roques volcàniques i dipòsits de mineral sulfur, els nivells arriben fins a 3.000µg/L. Tot i això, la ràtio d’As(III) i As(V) pot variar molt com a resultat de la gran variació de les condicions redox de l’aqüífer. En aqüífers fortement reductors (Fe(II) i sulforeductors) l’As(III) domina. Les àrees amb altes concentracions d’arsènic poden ser originades naturalment o degut a l’activitat humana. En els pouls del sud de Finlàndia s’han trobat alts nivells d’arsènic originats a les roques riques en aquest mineral, amb un rang de 17-980 µg/L. La contaminació amb arsènic daigua subterrània a partir de sediments rics en arsènic ha estat descrita a l’Índia i a Bangladesh.

Les concentracions de formes orgàniques són generalment baixes o negligibles en aigües subterrànies.

**4.3.3 En el sòl**

L’arsènic pot acumular-se en el sòl com a resultat de l’ús de pesticides i l’aplicació de fertilitzants. La concentració d’arsènic en els sòls és variable, essent el rang acceptat d’1ppm a 40ppm, encara que altres autors suggereixen de 0,2ppm a 40ppm (Campos, 2002). Pels voltants de les fundicions de coure s’han trobat nivells d’entre 100-2.500 µg/g. Estudis fets a Xile sobre mostres del sòl indiquen que el transport eòlic d’emissions antropogèniques d’As (de les fundicions) no sembla tenir molta importància per a l’enriquiment de l’As en els sòls. La manera principal de transport per sòl de l’As sembla fluvial. (Gidhagen, 2000).

L’absorció d’arsènic a través de la pell no ha estat ben caracteritzada, però es creu que és insignificant. No s’han trobat diferències si aquesta absorció es dóna a través del sòl o de l’aigua. Rentar-se amb sabó i aigua pot remoure fàcilment l’arsènic de la pell. La ingestió d’arsènic contingut als sòls i a la pols de casa són possibles rutes d’exposició. Els infants poden ingerir entre 100mg/dia i 800mg/dia de pols a casa, i una mica d’arsènic associat a la pols ingerida contribueix a l’exposició d’arsènic total. (Frederick, 1994).
L’arsènic en els sòls pot ser dissolt i adsorbit per les argiles o la matèria orgànica. Molts d’aquests processos són mediats per la matèria orgànica, que pot produir transformacions del tipus:

• Canvis redox que indueixen a la transformació arsenit-arseniat.

• Reducció i metilació de l’arsènic.

• Biosíntesis de compostos d’arsènic. (Oyarzun, 2002)

La seva mobilitat depèn de diversos factors, com el potencial d’oxidació-reducció, la mineralogia del sòl, el pH i la presència d’altres anions com el fosfat, que competeixen amb l’arsènic en els mecanismes de retenció existents en els components mineralògics del sòl. En sòls argilosos es disminueix l’absorció d’arseniat davant la presència de fosfat i possibilita, així, la migració dels arséniats al freàtic. (Campos, 2002).

4.3.4 Sediments

Els sediments en sistemes aquàtics freqüentment tenen nivells més alts que el sistema d’aigua en què es troben. Les concentracions mitjanes d’arsènic en els sediments oscil·len entre 5mg/kg i 3.000mg/kg. Els nivells més alts corresponen a zones contaminades, com les zones afectades per l’activitat minera (OMS, “Environmental Health Criteria, No. 224: Arsenic”). S’han trobat concentracions d’arsènic més superiors a 10.000mg/kg en sediments superficials propers a una fundició de coure.

4.4 Mètodes d’anàlisi d’arsènic

S’han descrit nombrosos mètodes per a l’anàlisi d’arsènic total, ja sigui en aigua o en diferents matrius. Molts d’aquests mètodes utilitzen el mateix principi, però diferents reactius o concentracions. Actualment, se sap que la determinació total de l’arsènic no és suficient, ja que la toxicitat, persistència, mobilitat i biodisponibilitat d’aquest element està directament relacionat amb les diferents espècies d’As presents al medi ambient, als éssers vius i als aliments. (Valiente, 2000).

Les tècniques més usades són:

• Espectrometria d’absorció atòmica

  1. Usant un sistema de generació d’hidrurs
2. Usant un forn de grafit per a l’atomització

- Plasma acoblat inductivament

1. Amb espectrometria d’emissió atòmica

2. Amb espectrometria de masses

- Espectrometria de fluorescència atòmica

- Voltametria de redissolució anòdica

- Espectrofotometria

Existeixen altres tècniques alternatives per a l’anàlisi de mostres d’aigües i sòls, com són l’espectrometria de fluorescència de raigs X (Simmons, 1990) i l’anàlisi per activació neutrònica. (Campos, 2002).

**Espectrometria d’absorció atòmica amb generació d’hui drurs (HGAAS)**

La generació d’hui drurs (HG) permet realitzar estudis d’especiació d’arsènic en forma relativament senzilla. Generalment s’usen dos mètodes: l’arsina es porta a una flama d’hidrogen per arrossegament d’argó o es trasllada a un tub de quars en una flama d’aire acetilè. L’arsènic forma un hidrur volàtil (arsina, AsH₃) quan es reduceix amb borohidrur de sodi en un medi àcid. La determinació total d’As requereix una prereducció de l’As(V) a As(III), que es pot dur a terme mitjançant àcid clorhídric, iodur de potassi i àcid ascòrbic.

Un aspecte important de la reacció de generació d’hui drurs, amb finalitat d’especiació, és la seva dependència del pH. Tots els compostos d’As(III) produeixen arsines a pH 6. A pH 1, tots els arsenicals són reduïts a arsines. Usant aquesta diferència de reactivitat es pot trobar el contingut d’As(V) (The National Academy of Sciences, 1999). També s’ha trobat que la determinació d’As(III) ha resultat eficient utilitzant com a mitjà de la reacció àcid acètic, mentre que per a la determinació de tots dos tipus d’As, (III i V), l’àcid triglicòlic va donar resultats. (Valiente, 2000).

Els límits de detecció trobats mitjançant aquesta tècnica poden ser tan baixos com 0,05 µg/L, per mostres en absència de digestió. Però si les mostres han sofert una digestió prèvia s’espera que els límits s’incrementin entre 1,4 i 80 µg/L, encara que s’han registrat valors de 0,9 µg/L per mostres d’aigües. (García, 1993).
Avaluació i desenvolupament d’un estabilitzant de baix cost per als residus en l’eliminació d’arsènic a nivell domiciliar i en zones rurals i disperses

**Espectrometria d’absorció atòmica en forn de grafit**

El mètode consisteix a injectar un volum (1-2 ml) de mostra dins d’un tub de grafit, el qual és escalfat a sequedat, remoure la part principal de la matriu i finalment atomitzar l’arsènic. Per a una major eficiència del mètode (per remoure altres compostos sense la pèrdua d’arsènic) s’ha d’anar en compte i es recomana utilitzar una matriu modificada per permetre la piròlisi a alta temperatura. La més usada és una mescla de paladi-nitrat de magnesi i addicionalment gas hidrogen per mantenir el paladi en estat reduït *(Edwards, 1998)*. El límit de detecció està entre 1 i 5 µg/L, i les mesures es poden realitzar utilitzant una corba de calibració o addició estàndard *(Rasmussen-OMS)*. Tanmateix, s’han descrit límits més baixos, 0,5 µg/L. *(Edwards, 1998)*.

Aquest mètode, en combinació amb la cromatografia líquida d’alta pressió, és convenient per a la determinació de diverses espècies d’arsènic per a propòsits d’investigació, amb un límit de detecció de 0,01 ng. *(EHDC, 1992)*.

**Espectrometria de plasma acoblat inductivament amb detector de masses (ICPMS)**

L’ICPMS en la posició d’alta resolució permet obtenir límits de detecció i de quantificació de 0,2 i 0,7 µg/L, respectivament. La mostra líquida és simplement acidificada i nebulitzada dins d’un plasma d’argó. L’alta temperatura del plasma atomitza i ionitza totes les formes d’arsènic, de forma que la resposta no varia, cosa que sí ocorria en els mètodes tradicionals d’AES i GFAA, en els quals es requereix una digestió prèvia abans de l’anàlisi. Aquesta tècnica és usual per a la determinació multielemental. En el cas de mostres sòlides i mostres que contenen precipitats han de ser digerides prèviament per a l’anàlisi. *(RasmusseN-OMS)*.

Un problema de l’ICPMS que usa nebulització directa és que els nivells alts de clor poden interferir en l’anàlisi degut a la formació de clor d’argó (ArCl) en el plasma, el qual té la mateixa massa que l’arsènic (PM 75). Encara que els valors siguin corregits usant isòtops de clor, aquests poden ser inexactes en el nivell de µg/L. Una alternativa seria usar àcid nítric en la preparació de la mostra. Tanmateix, hem de tenir en compte que el clor està present en la majoria de les aigües naturals a concentracions variables. Segons estudis realitzats, la forma més efectiva per eliminar aquesta interferència és usant la membrana de desolvatació en la posició d’alta resolució i la generació d’hidrurs (GH) a baixa resolució. Amb la GH s’incrementa la sensibilitat. El límit de detecció i de quantificació és de 0,3 i 0,5 ng/L, i presenta bons resultats per concentracions entre 0,01 i 1 µg/L. Aquesta tècnica minimitza la interferència del clor ja que l’hidrur entra amb l’argó i el clor dissolt no arriba al plasma. La mostra requereix pretractament per convertir tot l’arsènic (III i V) a As(III). Les espècies de MMA i DMA
també responen usant aquest mètode, per tant per especiació. Aquesta tècnica no hauria de ser usada quan aquestes espècies estan presents. \((ICPMS, 2002; Klaue, 1999)\).

Es recomana no utilitzar mostres acidificades amb àcid nítric, ja que interfereixen en el mètode. En tot cas es podria addicionar urea per minimitzar-lo. \((Edwards, 1998)\).

La cromatografia iònica (IC) es pot usar per separar les espècies d’As (As(III), As(V), DMA, MMA). Acoblant la columna de cromatografia iònica directament a l’ICPMS, els límits de detecció s’atansen a 0,5 µg/L en aigua. De totes maneres, sota aquestes condicions l’arsenobetaina (AsB) no se separa de IAs(III). Per tant, aquest mètode no s’hauria d’utilitzar quan s’analitza marisc o orina. La interferència de l’AsB pot ser eliminada usant IC-HG-ICPMS. \((ICPMS, 2002)\).

Mètodes colorimètrics

**Mètode espectrofotomètric amb dietilditiocarbamat de plata**

Aquest mètode és el més utilitzat degut a la simplicitat de la instrumentació. Com en els mètodes anteriors, es fonamenta en la reducció de l’arsènic present a arsenamina en presència de zinc o borohidrur de sodi i HCl. També existeix un altre mètode en què l’arsènic orgànic s’oxida per escalfament amb permanganat de potassi i peroxidisulfat de potassi. L’As(V) és reduït després per iodur de potassi i clorur d’estany (II) i la reducció de l’As(III) a arsina es provoca per la de l’hidrogen produït pel medi àcid. Després, l’arsina ha de passar per una llana de vidre impregnada amb acetat de plom, per eliminar el sulfur d’hidrogen interferent abans de ser absorbit en la solució de (AgDDTC). L’arsenamina produïda d’aquesta manera reacciona amb la solució de dietilditiocarbamat de plata (AgDDTC) en efedrina/cloroform o piridina i forma un complex colorat de color vermell vi, la intensitat del qual és proporcional a la concentració d’arsènic. Llavors es llegeix al espectrofotòmetre a 520nm. L’As (III) es pot mesurar sense el tractament amb àcid clorhídric. Aquest mètode es limita a mostres d’aigües, ja que l’As orgànic no pot ser determinat. El límit de detecció està entre 1 i 10 µg/L. El crom, cobalt, coure, mercuri, molibdè, níquel, platí, plata i seleni interfereixen a altes concentracions. \((Rasmussen-OMS)\).

En un estudi realitzat als Estats Units d’Amèrica s’utilitzà el mètode de Johnson per a la determinació d’As(III). El mètode va consistir a addicionar per cada 45ml de mostra 45ml del reactiu colorimètric. L’As(V) reacciona amb el molibdè del reactiu per formar un complex de color blau, el qual pot ser quantificat en l’espectrofotòmetre. El mètode no detecta As(III), excepte si s’ha oxidat a As(V), addicionant 1ml d’HCl 1M i una gota de solució de iodur de potassi. Després de quatre hores de reacció per permetre el desenvolupament, es mesura l’absorbència a 865nm usant una cella de 10cm. El límit de
detecció és 1,5 µg/L. (Edwards 1998).

**Mesures de camp d’arsènic en aigua**

Encara que els mètodes de camp juguen un rol important en la química analítica ambiental, existeixen pocs documents que tractin sobre aquest tema i només es tenen simples protocols al respecte. L’avantatge més important de les mesures de camp és que es poden obtenir els resultats en el lloc on s’ha pres la mostra. (Rasmussen, 1998).

La col·lecta de mostres al camp per dur-les al laboratori és generalment un procés poc fiable per a l’anàlisi d’As(III) i As(V) a causa de l’oxidació contínua de la mostra. Existeixen pocs mètodes analítics per a la determinació d’arsènic en les analisi de camp. Generalment, els mètodes fotomètrics o colorimètrics són els més usats per al treball de camp. L’equip de camp més ampliament usat està basat en la prova de Gutzeit, que tracta la mostra d’aigua amb HCl i pols de zinc. L’hidrogen resultant redueix tot l’arsènic aarsina. Després passa a través d’un cotó humit amb acetat de plom per remoure l’H₂S. Finalment, el gas alliberat passa a través del filtre impregnat amb HgBr₂ i la reacció provoca el canvi de color de groc clar a cafè obscurs, segons el contingut d’arsènic en la mostra. Els valors que poden ser llegits amb aquest mètode són 0,1; 0,5; 1,0; 1,7 i 3,0 mg/L. (Rivera, 2000; Huang, 1999; Rasmussen-OMS).

Les anàlisi per redissolució anòdica poden ser una bona tècnica de camp per determinar la concentració d’arsènic inorgànic dissolt. Per això s’ha dissenyat un instrument portàtil de voltagem de redissolució amb un procediment simple per a l’anàlisi d’As(III) i As(V) al camp. L’As(III) és determinat a un potencial de deposició de –0,2V; llavors tot l’arsènic és oxidat a As(V) i l’arsènic total es determina a un potencial de deposició de –1,6V. La concentració original d’As(V) es calcularia per diferència. La tècnica empra un electrode d’or. El límit de detecció obtingut per a l’As(III) i l’As(V) és de 0,5 µg/L. Les principals espècies interferents poden ser coure, mercuri, zinc i bismut. (Huang, 1999).

**Mostreig i preservació de les mostres d’aigües**

La col·lecta de mostres pot semblar una feina senzilla però, tanmateix, és important obtenir mostres d’aigües representatives i preservar la seva integritat fins que les mostres siguin analitzades. Les mostres han de ser col·lectades en recipients de polietilè prèviament rentats. Els recipients de vidre no són recomanables ja que aquests contenen arsènic. El rentat s’ha de fer amb una solució al 10% d’HNO₃ i aigua del laboratori. Els blancs de mostra també haurien de ser preparats en els mateixos recipients de la mostra per assegurar l’absència de contaminació.
Quan l’anàlisi és d’arsènic dissolt, s’ha de fer passar la mostra a través d’un fíltre de 0,45 µm, immediatament després del mostreig, així es reté l’arsènic particulat (3% a 40% de l’arsènic total). L’arsènic col·loïdal pot ser retingut fent passar la mostra per un fíltre de 0,02 µm. D’aquesta forma es tenen les espècies solubles d’arsènic inorgànic (III i V) a la solució. Aquests procediments són importants per a l’anàlisi d’espècies d’arsènic. (Edwards, 1998).

S’ha proposat una tècnica alternativa per a l’especiació de les mostres al camp, que consisteix en una columna d’intercanvi aniònic per identificar l’As(III) i l’As(V). És fàcil d’utilitzar, és econòmica i no requereix preservació. Per evitar falsos resultats per l’arsènic particulat o col·loïdal abans s’ha de realitzar el procediment de filtració. (Edwards, 1998).

La mostra ha de ser preservada a pH <2. L’àcid que s’usarà depèn de la tècnica d’anàlisi. Per a ICPMS, GFAES i ASV es recomana HNO$_3$, i per a HGAAS, HGAFS, HG-ICPMS i SDDC s’aconsella HCl. (Rasmussen-OMS).

L’àcid sulfúric representa una excel·lent alternativa per a totes les tècniques (Edwards, 1998). Per a la conservació de la mostra s’utilitza HCl 0,005 M i àcid ascòrbic, i es recomana que es guardi en un lloc fosc a 4ºC. Tot i que es prenen aquestes precaucions, l’oxidació/reducció d’As(III)/As(V) ocorre en menor proporció. (Rasmussen-OMS).

Si les mostres presenten sòlids suspesos se suggereix un procediment de digestió previ. La digestió àcida és el mètode més usat. L’àcid escollit no ha d’interferir en l’anàlisi de la mostra i s’ha de triar en relació amb la tècnica d’anàlisi. Es recomana HNO$_3$ per a l’anàlisi per ICP o GFAAS, mentre que l’aigua règia (una mescla formada per tres volums d’HCl i per una d’HNO$_3$), per a HGAES o AFS. (Rasmussen-OMS).

**Aigües subterrànies**

D’acord amb la literatura, la majoria d’aigües subterrànies contenen en major proporció d’espècies d’arsenit que d’arseniat, ja que la majoria estan constituïdes per ambients reductors. Per a l’anàlisi de les espècies d’arsènic presents, Abderson i Bruland van suggerir captar l’arsina generada per l’As(III) al camp i emmagatzemar la mostra en nitrogen líquid, per poder-les analitzar més tard al laboratori. Tot i que posteriorment es va trobar que l’especiació entre As(III) i As(V) es manté en mostres emmagatzemades a -15ºC o sota gel sec, però gairebé sempre hi ha pèrdua inicial d’arsenit (aprox. 0,02 ppm). L’ús de l’excés de Fe(II) a pH menor que 2 evita l’oxidació de l’As(III). Tot i això, mostres de diferents cossos d’aigua tenen diferents potencials redox i, per tant, requereixen diferents quantitats de Fe(II).
Yalcin i Lee van dissenyar un mètode en el qual les espècies d’arsènic es poden separar per columnes d’intercanvi iònic de base forta, una de resina i l’altra de sílica. La columna d’intercanvi catiònic va retenir el DMA i va permetre que altres espècies d’arsènic s’aturessin a través seu. La columna d’intercanvi aniònic va retenir l’MMA i l’As(V), mentre que l’As(III) va restar a la solució.

Un estudi realitzat l’any 1995 en diversos pous de sis districtes de l’Índia va percebre que la concentració d’As(III) és aproximadament del 50% del total d’arsènic (l’As(III) va ser separat de l’As(V) per extracció amb dietilditiocarbamat de plata). No es van trobar espècies d’MMA i DMA. Les concentracions d’arsènic total estaven en el rang de 0,01-1,09 mg/L. A Taiwan, exactament en les àrees afectades per la malaltia del peu negre, s’utilitzà la generació d’hidrurs per a l’especiació d’arsènic. La concentració obtinguda per l’arsenit fou de 0,67 ± 0,15 mg/L, i la proporció d’As(III) i As(V) fou de 2,6:1, i no es van trobar espècies metilarserenicals. (The National Academy of Sciences, 1999)

Aigües superficials

Les mostres d’aigües del riu Ottawa, a Canadà, foren usades per preparar un material de referència estàndard d’aigua de riu. L’anàlisi de les espècies d’arsènic presents en la mostra en micrograms per litre van ser les següents: As(III): 0,16; As(V): 0,18; MMA: <0,02; DMA: 0,05; Arsenocolines i trimetilarserines: <0,01, espècies inactives que no generen hidrurs: 0,12; espècies enllaçades a orgànics: <0,01; i arsènic total 0,52 ± 0,03. (The National Academy of Sciences, 1999).

Un estudi fet als llacs i estuaris de Califòrnia mitjançant el mètode de generació d’hidrurs va trobar concentracions de metilarserenicals (1%-59% d’arsènic total). Només en dos llacs altament alcalins (Mono i Pyramid) s’hi trobaren concentracions del 24% d’arsènic total per les espècies metilades (Andreson, 1991). Es va trobar com a espècie principal el DMA, al llac Davis Creek Res, durant la tardor. L’estudi va indicar que el DMA pot ser desmetilat posteriorment en un cicle d’un any. La concentració d’arsènic va variar amb l’estació i l’arseniat fou generalment l’espècie inorgànica predominant, encara que es van detectar quantitats appreciables d’arsenit. No es van detectar espècies organoarsenicals ja que aquestes no es reduceixen amb el borohidrur de sodi.

Al llac Biwa, al Japó, s’utilitzà l’equip més sofisticat de generació d’hidrurs i es va trobar la presència d’espècies de metilarserènic (III) (MeAs(OH)_2 i Me_2AsOH) en baixes concentracions. També es va trobar en aigües costaneres, que la concentració de les espècies metilarserenicals (III) i (V) van variar amb l’estació. (The National Academy of Sciences, 1999).

Estuaris
Per a l’especiació de les aigües costaneres del sud d’Anglaterra s’utilitzà el mètode de generació d’hidrurs. La concentració d’arsènic s’incrementà quan es van irradiar les mostres amb llum UV, indicant que els arsenicals no detectables per generació d’hidrurs es van arribar a detectar després de la irradiació. Probablement aquestes espècies amagades foren arsenosucre i la seva concentració fou màxima quan hi va haver alta activitat biològica. A l’estuari Targus, a Portugal, es va veure que les espècies amagades d’arsènic eren del 19% al 25% de l’arsènic total.

A l’estuari Itchen, a Anglaterra, es va trobar que l’única espècie detectable va ser la d’As(V). En aigües salines la concentració d’arsènic va ser d’entre 0,7-1,0 µg/L i en les zones d’aigua dolça de 0,2 µg/L. Quan les temperatures van pujar dels 12µC, el 30% d’arsènic total va estar constituït per espècies metilades. A baixes temperatures, l’absència d’espècies metilades pot deure’s a la pobra renovació d’arsènic, a la baixa capacitat dels organismes per produir metilarsenicals o a la producció d’arsenicals no detectables per la generació d’hidrurs. *(The National Academy of Sciences, 1999)*

**Filtració de les mostres d’aigua.**

Les mostres d’aigua ambiental poden contenir quantitats significants de matèria suspesa. L’arsènic que contenen les fases sòlides pot ser apreciable i la decisió del tipus de filtre que cal posar pot comprometre els resultats.

### 4.5 Mètodes de tractament d’eliminació

Tots els mètodes de remoció d’arsènic es basen en processos químics i fisicoquímics que poden ser resumits com:

- **Oxidació / Reducció:** Reaccions que redueixen o oxiden compostos químics alterant la seva forma química. Aquestes reaccions no remouen l’arsènic de la solució, però són frequentment usades per optimitzar altres processos, especialment per oxidar l’arsenit en arseniat. La reacció química pot ser la següent:

\[
\text{AsO}_4^{3-} + 2\text{H}^+ + 2e^- \rightarrow \text{AsO}_3^{3-} + \text{H}_2\text{O}
\]

Com que aquesta reacció és molt lenta per mitjà de l’oxigen de l’aire, és recomanable utilitzar clor, diòxid de clor, permanganat de potassi o ozó per a l’oxidació química. Igualment s’han realitzat estudis que permeten l’oxidació sense necessitat d’un reactiu químic. Aquests estudis mostren l’eficiència doxidació catalítica en la presència d’òxid de coure, carbó activat i radiació UV. Un dels

- **Precipitació:** L’arsènic dissolt és transformat en un sòlid mineral de baixa solubilitat, e.i. arseniat de calci. Després, aquest sòlid pot ser remogut per sedimentació i filtració. Quan els coagulants són addicionats i formen flòculs, altres compostos dissolts com l’arsènic poden fer-se insolubles i formar sòlids. Això és conegut com a coprecipitació. Els sòlids formats poden romandre suspesos i requereixen la remoció a través dels processos de separació sòlid/líquid, típicament la coagulació i la filtració.

- **Adsorció i intercanvi iònic:** Diversos materials sòlids inclosos flòculs d’hidròxid de ferro i alumini tenen una forta afinitat per dissoldre arsènic. L’arsènic és fortament atret als llocs de sorció sobre les superfícies d’aquests sòlids i és, efectivament, eliminat de la solució. L’intercanvi iònic involucra el desplaçament reversible d’un ió adsorbit dins d’una superfície sòlida per un ió dissolt.

- **Separació sòlid/líquid:** La precipitació, coprecipitació, adsorció i intercanvi iònic transfereixen el contaminant de la fase dissolta a la fase sòlida. En alguns casos el sòlid és gran i fix (e.i. grans de resina d’intercanvi iònic), i la separació sòlid-líquid no és requerida. Si els sòlids són formats in situ, a través de precipitació o coagulació, han de ser separats de l’aigua. La filtració és més efectiva.

- **Exclusió física:** Algunes membranes sintètiques són permeables a certs compostos dissolts, però n’exclouen altres. Aquestes membranes poden actuar com a filtre molecular per remoure l’arsènic dissolt, juntament amb altres compostos particulats dissolts.

- **Processos de remoció biològica:** L’activitat bacterial pot jugar un paper catalitzador important en diversos dels processos ja descrits. Se sap relativament poc sobre el potencial per la remoció biològica d’arsènic en aigua. (Johnston, 2001).

### 4.5.1 Aigua

Actualment existeixen unes 14 tecnologies per remoure arsènic de l’aigua amb eficiències provades que van des d’un 70% fins a un 99%. De totes elles, cinc es poden aplicar en petits sistemes (intercanvi iònic, alúmina activada, osmosi inversa, nanofiltració i electrodialisi inversa); set tecnologies alternatives són categoritzades com a emergents (arena recoberta amb òxids de ferro, hidròxid ferric granular, empaquetaments de ferro, ferro modificat amb sofre, filtració amb zeolita, addició de ferro amb
filtració directa i remoció convencional de ferro i manganès). Les dues tecnologies restants (coagulació, floculació i ablaniment amb ca٪) són usades en sistemes grans i no s’espera que siguin instal·lades exclusivament per remoure arsènic. (Sandoval, 2000).

L’eficiència del procés elegit depèn bàsicament de l’estat d’oxidació de l’arsènic (III o V), el pH i la concentració inicial.

**Coagulació / Filtració**

Aquest és el mètode de tractament més documentat per a la remoció d’arsènic i involucra la coagulació i filtració usant compostos metàl·lics. Aquest tractament pot remoure eficientment diversos constituents dissolts i suspesos de laigua com l’arsènic però, a més a més, la terbolesa, el ferro, el manganès, el fosfat i el fluor. També es poden obtenir reduccions significatives quant a l’olor, el color i el potencial per la formació de trihalometans. Tanmateix, les condicions òptimes per a la remoció dels diferents constituents i de l’arsènic no són sempre les mateixes. A causa de la gran dificultat a remoure As(III) mitjançant la coagulació, és recomanable fer abans una preoxidació per obtenir As(V). En rangers de pH als o baixos, l’eficiència d’aquesta tècnica és significativament reduïda (Johnston, 2001). Finalment, es dóna la filtració, un tram important per assegurar la remoció eficient de l’arsènic. Es poden utilitzar filtres de sorra. (Cheng, 1994).

El sulfat d’alumini és el més usat en el tractament de laigua ja que el seu cost és baix i és relativament senzill de manjar (Avilés, 2000), tot i que també s’utilitzen altres reactius com el sulfat ferros i fèrric, el clorosulfat fèrric, el clorur fèrric (Madiec, 2000) l’alum i el carbonat de magnesi. Aquestes salts es dissolen en laigua i formen hidròxids de ferro i alumini, els quals formen flòculs gelatinosos que s’uneixen a altres establint-se fora de la solució i depurant materials dissolts i particulats del procés.

Edwards va fer estudis sobre l’eficiència de coagulació d’arsènic amb sals de ferro i alumini en dos sistemes sobre la formació dels sòlids in situ o addició d’hidròxids preformats al sistema d’aigua que
Avaluació i desenvolupament d’un estabilitzant de baix cost per als residus en l’eliminació d’arsènic a nivell domiciliari en zones rurals i disperses

conté arsènic. Els resultats de l’estudi van concloure que la remoció d’As(V) en el sistema in situ és cinc vegades més eficient que la que s’observà en el sistema amb els hidròxids preformats. Això suggereix que un sòlid amb una àrea específica major es forma en el sistema in situ, o que la coprecipitació és el mecanisme de remoció. La coagulació usant les sals de ferro i alumíni són igualment efectives (a igual concentració molar) en la remoció d’As(V) a un pH <7,5. De totes maneres el ferro és més efectiu que l’alum en la remoció d’As(III), en la remoció d’As(V) a pH>7,5 i a prevenir la formació de residus del coagulant a un pH per sobre de 8. Un factor limitant en la remoció d’As(V) són les baixes dosis de coagulant.

Estudis realitzats sobre sistemes d’aigua dolça evaluanen els efectes dels paràmetres de variació (com l’estat d’oxidació i concentració inicial de l’arsènic, concentració de l’adsorbent o dosi del coagulant, pH i la presència de soluts inorgànics) sobre la remoció d’arsènic durant la coagulació amb clorur fèrric i l’adsorció dins d’òxid fèrric aquós (Hering, 1996). Per condicions similars s’observà millor remoció per l’As(V) que per l’As(III) en els experiments de coagulació i adsorció. Per ambdues espècies d’arsènic la remoció, com en els casos anteriors, fou dependent de la dosi del coagulant i de la concentració de l’adsorbent. S’observà remoció completa d’As(V) a una dosi de coagulant FeCl₃ major de 5 mg/L. La coagulació resultà ser independent de les concentracions inicials d’arsènic i s’observà més adsorció d’As(III) a baixa concentració inicial. A valors de pH menors que 7 la remoció-adsorció de l’As(III) fou bastant reduïda en presència d’ions sulfat, mentre que per a l’As(V) resultà ser insignificant. A pH alt s’incrementà la remoció d’As(V) en presència de calci.

Els mateixos autors, en un estudi posterior demostraren que la remoció d’As(V) per FeCl₃, a pH 8-9 disminuí degut a la presència de matèria orgànica. La remoció d’As(III) fou menys eficient i més fortament influenciada per la composició de l’aigua. La presència de sulfat (a pH 4-5) i matèria orgànica natural (a pH 4-9) afecten l’eficiència de la remoció per FeCl₃ (Hering, 1996). Es conclou confirmant la importància dels procés d’adsorció en la remoció durant la coagulació i altres processos com la formació de precipitats d’hidròxid fèrric amorf sobre la coagulació i l’oxidació de les espècies d’As(III) a As(V).

Un estudi realitzat a Mèxic presentà resultats de la remoció d’arsènic usant com a coagulant Al₂(SO₄)₃, i materials sòlids que afavoreixen la formació dels flòculs (Avilés, 2000). També pot ser millorada usant polímers (Johnston, 2001). Els materials sòlids que s’utilitzen foren sis: argila verda natural, dues argiles activades, zeolita natural, zeolita activada i carbó d’ossos. Les proves es van realitzar en mostres d’aigua sintètica, la concentració d’arsènic de la qual fou d’1mg/L, en una proporció de 30:70 d’As(III) : As(V). Usant el mètode de gerres es va trobar la major dosí del coagulant, entre els valors de 70 i 80 mg/L. S’obtingueren millors resultats amb 500mg/L de l’argila verda natural aconseguint la menor concentració d’arsènic residual (0,049mg/L). Es van realitzar proves usant aigua natural de Zimapan; es
va trobar que la millor dosi fou 80 mg/L de sulfat d'alumini, 100mg/L d’argila verda i 0,5mg/L d’hipoclorit de calci (oxidant).

En les plantes de tractament per la remoció d’arsènic a Xile s’obtingueren resultats molt similars als del treball de Cheng En aquest cas es va utilitzar sulfat d’alumini i triclorur fèrric, i la remoció d’arsènic fou millor usant FeCl₃, tenint menor dependència del pH. Els factors en la remoció d’arsènic segons aquest estudi són: el pH de l’aigua a ser tractada, la dosi del coagulant i el procés de separació dels flòculs que es formen. Els processos de remoció d’arsènic poden ser millorats optimitzant el pH en l’aigua crua i els agents químics, i la separació dels flòculs, essent incrementada la remoció d’arsènic a 92,5-95%. Per tal d’adquirir valors d’arsènic residual menors de 0,020 mg/L en l’afluuent, es recomana usar tècniques de tractament més avançades, com el post-tractament amb osmosi inversa (Sanchez, 2000). Un estudi posterior avaluà els efectes del pH i la font d’aigua, i va trobar remocions més eficients a pH 6,5 i a dosis de coagulant de 10-11 mg/L de FeCl₃, en què l’adsorció de l’arsènic, així com la remoció del flòcul, foren molt bones (Karcher, 1999). També es va trobar una fórmula empírica per predir l’arsènic residual sota diferents condicions d’operació, que fou confirmada per les dades obtingudes en la planta de tractament.

A Alemanya, es desenvoluparen estudis sobre l’efectivitat de les sals de sulfat de Fe(II) i clorur de Fe(III), essent més avantatjós l’ús de les sals de Fe(II). Aquests avantatges radiquen en la formació dels flòculs d'hidròxid de ferro i les seves propietats en la filtració. L’absència de la ruptura dels flòculs ajuda a millorar la filtració, i el filtrat no necessita rentats freqüents. La floculació amb Fe(II) és més fàcil d’usar i controlar que la de Fe(III), que requereix menys manteniment i més confiabilitat operacional i que, a més a més, és més econòmica. (Jekel, 2000).

S’ha dissenyat un hidrogel d’hidròxid d’alumini que agregat directament a l’aigua pot aconseguir la remoció total de l’arsènic. Aquest hidrogel s’ha fet en base a sulfat d’alumini hidratat, hipoclorit de calci en pols, hidròxid d’amoní i aigua destil·lada. Les proves es van realitzar usant mostres d’aigües sintètiques i naturals i els resultats foren <0,01 mg/L. (Luján, 2001).

També s’han fet altres estudis a escala de laboratori usant sals de lantà III com a coagulant per a la remoció d’arsènic i els resultats s’han comparat amb els dels estudis realitzats amb coagulants convencioanls de Fe, Al i PAC (clorur de polialumini). La remoció d’As(V) amb LaCl₃ és dependent del pH i la dosi del coagulant, i les condicions òptimes es troben en un rang de pH 5-10 i una dosi de coagulant tres vegades superior o igual que la concentració d’As(V). Així, s’obté una concentració residual inferior a la suggerida per l’estàndard de 10 µg/L. Per una remoció dels ions d’As(V) superior al 83% el rang de pH va ser de 6,54-10,6 en un temps de reacció de cinc minuts. La remoció de l’As(III) es desenvolupà en un rang petit de pH, amb una eficiència inferior al 60%. Els avantatges que ofereix l’ús de sals de lantà com
a coagulant són: l’abundància, el baix cost, l’ampli rang de pH, les petites dosis de coagulant, la baixa concentració residual a dosi òptima i el temps ràpid de reacció. (Tokunaga, 1999).

**Intercanvi iònic**


S’han fet estudis a escala pilot per a la remoció combinada d’As(V) i nitrat d’aigua de beguda a McFarland i Hanford, Califòrnia, i a Alburquerque, Nou Mèxic. L’estudi utilitzà concentracions inicials d’arsènic de 10-15 µg/L per adquirir concentracions residuals menors de 2 µg/L i nivells baixos de nitrat. S’obtingueren bons resultats usant les resines selectives de sulfat. (Churye, 1999).

**Alúmina activada**

La tècnica és efectiva per al tractament d’aigua amb un alt contingut de sòlids dissorts (TDS). Tanmateix, si hi ha seleni, fluor, clor i sulfat a nivells alts poden competir pels llocs d’adsorció amb l’arsènic. L’alúmina activada és altament selectiva per a l’As(V). Aquesta forta atracció al medi és un problema per a la regeneració ja que suposa una pèrdua d’entre el 5% i el 10% de la capacitat d’adsorció de l’alúmina per cicle. L’eficiència de remoció de l’arsènic és excel·lent (>95%). La remoció d’arseniat és baixa en condicions moderadament àcides (pH 5,5-6), en què les superfícies d’alúmina estan protonades. L’ús de la tècnica per a la remoció completa d’arsenit és inefficient degut al seu caràcter no iònic per a aquell rang de pH. Les aigües riques en ferro i manganès requereixen abans un pretractament per evitar l’obstrucció del medi (Vance, 2002; Johnston, 2001; EPA, 1997). Per regla general, aquest mètode és recomanat per al tractament d’aigües subterrànies, ja que les aigües superficials tenen una alta càrrega de sòlids. En aquesta aigua, entre un 20% i un 50% de l’arsènic està en forma d’arsenit. Per a l’anàlisi es requereix abans un procés d’oxidació que es pot fer fàcilment amb hipoclorit de sodi. Això també provoca
l’oxidació del ferro i propicia la formació de compostos insolubles de ferro associats amb arsènic que poden separat-se de l’aigua mitjançant la filtració per sorra. La resta d’arsènic soluble és adsorbit per l’alúmina activada. *(Rivera, 2000).*

**Ablaniment amb calç**

Ablaniment amb calç és un procés similar a la coagulació amb sals metàl·liques. La calç *(Ca(OH)\textsubscript{2})* s’hidrolitza i es combina amb àcid carbònic per formar carbonat de calci, el qual actua com a agent sorbent per la remoció d’arsènic. Aquest procés és típicament usat només en aigües molt dures i el pH de l’aigua tractada és notablement més alt en el rang de 10 a 12 *(Johnston, 2001).* Aquesta tècnica no és apropiada per sistemes petits degut a l’alt cost. Els operadors han d’estar ben entrenats i existeix variació durant l’execució del procés. A més a més genera grans volums de residus. *(EPA, 1997).*

Logsdon i Simons van estudiar la remoció d’arsènic de l’aigua usant proves de gerres *(Johnston, 2001; Viraraghavan, 1994,).* Les mostres d’aigües de rius, pous i corrents que s’analitzaren van tenir una concentració des de 0,1 a 20 mg/L i s’aconseguiren remocions d’As(V) d’entre el 40% i 70% per un rang de pH 9-10. També s’incrementà l’eficiència de la remoció quan l’ablaniment amb calç va ser seguit per un procediment de coagulació amb ferro. L’excés d’ablaniment amb calç va mostrar remocions d’As(V) més altes a un rang de pH de 10,6-11,4 i es van obtenir remocions de fins al 95% per una concentració inicial de 12 mg/L d’arsènic.

Un estudi efectuat per Edwards va avaluat la remoció de l’arsènic en detall durant l’ablaniment i va trobar que el mecanisme de remoció principal és la sorció de l’arsènic dins de l’hidròxid de magnesi que es forma durant l’ablaniment. També es va reportar que la remoció de l’arseniat és excel·lent a pH >11, i més pobre a pH 10. La remoció d’arsènic es pot millorar addicionant ferro, però quan el carbonat estigui present aquest efecte és menys pronunciat. Es va veure que la remoció d’arsènic disminueix en presència de quantitats traça d’ortofosfat especialment a pH <12. L’estudi afirmà que la remoció de l’As(III) és pobra, amb densitats de sorció de l’arsenit en un ordre de magnitud menor que de l’arseniat. *(McNeill, 1997).*

**Osmosi inversa i nanofiltració**

Proporciona eficiències de remoció de fins al 95% quan la pressió d’operació està en un psi ideal (75 a 250 psi). La remoció de l’arsènic és independent del pH i la presència d’altres soluts. La membrana requereix que l’aigua a tractar sigui d’alta qualitat, ja que es pot fer malbé pel material col·loïdal de l’aigua.

Huxstep estudià la remoció de contaminants inorgànics incloent l’arsènic de l’aigua usant sistemes d’osmosi inversa d’alta (400 psi) i baixa pressió (200 psi), tenint una capacitat d’1,82 L/s d’aigua tractada. Els sistemes d’alta pressió van donar millors resultats (91-98%) per la remoció d’As(V) que els de baixa pressió (77-87%). Per a l’As(III), l’eficiència de la remoció en els sistemes d’alta pressió fou de 63-70%, i en els de baixa pressió de 12-35%. (Viraraghavan, 1994).

Clifford han descrit la remoció d’As(III) i As(V) usant diversos tipus de membrana que variaren àmpliament amb exclusions del 46% al 75% per concentracions inicials d’As(III) de 0,04-1,3 mg/L. Es va observar més eficiència (98-99%) per l’As(V), amb el mateix tipus de membrana, a concentracions de 0,11-1,9 mg/L. (Viraraghavan, 1994).

Waypa realitzaren estudis experimentals a escales determinades per avaluar l’efectivitat de les membranes de nanofiltració (NF) i osmosi inversa (OI). Es va reportar que ambdues membranes en un rang d’operació de 40-400 psi van remoure As(III) i As(V) de mostres d’aigües sintètiques i naturals (96-99%). Aquesta exclusió s’atribueix a l’alt pes molecular de l’arseniat i de l’arsenit, en lloc de la repulsió de càrrega. Per tant, aquestes membranes serien ideals per a aigües subterrànies on predomina l’As(III) i, a més a més, no requeriria cap procediment previ d’oxidació. Les variacions en el pH de la solució (4-8) no afectaren la remoció de les espècies d’arsènic, encara que quan es va treballar amb la membrana acetat-cel·lulosa, el rang de pH va ser 5-6,5 per evitar deteriorar la membrana degut a la hidròlisi del polímer. La remoció d’arsènic també resultà ser independent de la presència d’altres soluts i es van obtenir millors resultats a baixes temperatures. Finalment, les membranes de NF a pressions d’operació de 40-120 psi van resultar igualment eficients que les d’OI a pressions de 200-400 psi. (Waypa, 1997).

Els principals desavantatges són: les baixes taxes de recuperació d’aigua (10-20%), la necessitat d’oparar a pressions bastant altes, els costos d’operació alts i l’aigua tractada té nivells molt baixos de sòlids dissolts. Aquesta deficiència de minerals pot fer que l’aigua sigui corrossiva donada la importància d’aquests micronutrients per als éssers humans. (Johnston, 2001).

**Electrodiàlisi inversa**

Per a aquesta tècnica l’eficiència de remoció és de fins a un 80%. Un estudi demostrà que la remoció d’arsènic a 3 µg/L és d’una concentració afluent de 21 µg/L. El percentatge de recuperació de l’aigua tractada és de 20% a 25% respecte a l’afluent. Això seria un problema per regions que tenen escassetat d’aigua. Llavors aquesta tècnica no és competitiva respecte als processos d’osmosi inversa i
nanofiltració pel que fa a costos i eficiència del procés. (*EPA, 1997*).

**Remoció convencional de ferro i manganès**

La geoquímica de l’arsènic revela que altes concentracions d’arsènic estan associades a altes concentracions de Fe(II) i Mn(II). Les fonts d’aigua que contenen ferro i/o manganès i arsènic es poden tractar amb procediments convencionals per la remoció de Fe/Mn. Aquests processos poden reduir significativament l’arsènic remuenent el ferro i el manganès de la font d’aigua i basant-se en els mateixos mecanismes que ocorren amb els mètodes d’addició de ferro. L’addició de ferro pot ser necessària si la concentració natural de Fe/Mn no és suficient per a adquirir el nivell de remoció d’arsènic requerit. (*EPA, 1997*).

L’oxidació per remoure Fe(II) i Mn(II) condueix a la formació d’hidròxids, que remouen l’arsènic soluble per reaccions de coprecipitació i adsorció. La producció d’espècies oxidades de Fe-Mn i la precipitació seguida dels hidròxids són anàlogues a la coagulació in situ. No es dona la remoció d’arsènic per part del Fe(II) o Mn(II). Cada remoció d’1 mg/L de Fe(II) és capaç d’adsorbir el 83% d’un afluent de 22 µg/L d’As(V) i produir un afluent la concentració d’arsènic del qual sigui 3,5 µg/L. La precipitació de 3 mg/L de Mn(II) produiria una concentració d’arsènic residual de 3,75 µg/L, essent la concentració de l’eflucent de 12 µg/L. (*Edwards, 1994*).

**Hidròxid fèrric granular**

L’hidròxid fèrric granular (GFH) és un a-FeOOH lleugerament cristal·lí que s’ha produït condicionant una suspensió d’hidròxid de ferro. És de forma irregular i els seus grans aconsegueixen un tamany de fins a 2mm. Les superfícies de les partícules de GFH adsorbeixen, específicament, As(V) en processos que són dependents del pH i disminueixen la capacitat d’adsorció amb l’increment d’aquest, encara que s’han obtingut bons resultats a pH 8. En comparació amb l’alúmina activada, aquesta tècnica és molt més eficient, ja que la càrrega és deu vegades més alta. No només adsorbeix arsènic, també és ideal per a carbonat, silicat, fluorur i fosfat. Encara que l’arsènic competeix amb aquest últim, la major afinitat s’obté amb l’arseniat. La mitjana de càrrega del GFH és aproximadament de 2g As/Kg de pes sec.

Segons l’estudi desenvolupat a Alemanya, en què es va comparar aquesta tècnica amb els mètodes de floculació amb sals d’arsènic, aquesta tècnica ofereix alta confiabilitat operacional, mínim d’energia i baixos nivells d’inversió en la planta. El desavantatge és que els nivells de producció són relativament cars. (*Jekel, 2000*).
Es realitzà un estudi sobre l’estabilitat de l’As(III) en les estructures de la goetita (a-FeOOH), mitjançant tècniques d’espectroscòpia d’absorció de raigs X. La reactivitat de l’As(III) amb la goetita és independent del pH i s’observa una forta complexació sobre la seva superfície. Així, es formen complexos d’As(III) bidentats, similars a altres oxianions, que també poden ser adsorbits. Els resultats obtinguts de l’espectroscòpia destructura fina d’absorció de raigs X (EXAFS) van mostrar que l’arsènic forma un complex binuclear bidentat sobre la superfície de la goetita amb una distància As(III)–Fe de 3,38 Å. Aquests resultats són importants per al modelatge de transport d’oxianions contaminants, ja que serà possible forçar la calibració dels models químics per descriure la formació dels complexos de superfície coneguda. (Manning, 1998).

**Addició de ferro amb filtració directa**

Aquesta tècnica ha estat avaluada a nivell pilot a la Universitat de Houston. L’addició de ferro (coagulació) seguida per filtració directa (sistema de microfiltració) ha remogut consistentment l’arsènic fins a 2 µg/L. Els paràmetres crítics són la dosi del ferro, la potència del mesclat, el temps de retenció i el pH. (EPA, 1997)

Un estudi realitzat per Stamer va observar que tant l’As(III) com l’As(V) són remoguts per l’oxihidròxid de ferro en la forma de grànuls densos amb contingut d’arsènic de 50g As/Kg o més (Stamer, 2000). Per a l’aigua subterrània amb alt contingut de ferro dissolt, el tractament tradicional d’aireació i filtració amb sorra frequentment ofereix la reducció d’arsènic al nivell suggerit per les normes existents. L’estudi es portà a terme en un reactor, addicionant un oxidant (oxigen, peròxid d’hidrogen, permanganat de potassi) a l’aigua contaminada amb sulfat ferrós. Tots els processos d’addició de reactius, mescla, precipitació i separació sòlid/ líquid es van realitzar dins del reactor que contenia un carrier inert de grans de sorra de quars. La remoció del ferro s’acompanya d’altres metalls i metal·loides com l’arsènic. Així doncs, s’obtingueren concentracions d’arsènic residual per sota de 0,5 µg/L. Aquesta remoció d’arsènic és millorada amb la disminució del pH. Addició simultània de sulfat ferrós i peròxid d’hidrogen a valors menors de pH 7 són les condicions de tractament òptimes. L’avantatge d’aquest mètode és que no genera residus, només grànuls lliures d’aigua amb una densitat d’aproximadament 3 Kg/L.

Un altre procés alternatiu per la remoció d’arsènic és mitjançant processos biològics. Els estudis es realitzaren a escala pilot sota condicions òptimes de pH, temperatura i oxigen, que van permetre la filtració biològica i l’eliminació simultània d’As(III) i ferro. S’observà que el paràmetre crític és la concentració inicial de ferro. A major concentració, l’eficiència de la remoció de l’arsènic és >90% i, a menor concentració, l’eficiència és del 40±10%. Per sistemes d’aigua amb baixes concentracions de ferro, és recomanable addicionar sulfat ferrós per completar la remoció de l’arsènic. La fixació de l’As(III) en
els òxids de ferro produïts per l’activitat bacterial és el mecanisme principal. La filtració biològica per al tractament d’arsènic pot ser aplicada a qualsevol sistema d’aigua subterrània amb les mateixes característiques que per a l’oxidació bacteriològica del ferro. *(Lehimas, 1992)*.

**Remoció in situ d’arsènic**

L’arsènic present en aigües subterrànies és mòbil sota condicions reductores i és possible la seva immobilització creant condicions oxidants en la superfície de l’aquífer. Per tant, l’aquífer subterrani és usat com a reactor bioquímic natural. L’avantatge d’això és que hi ha absència de residus i fangs contaminats. La tècnica és ideal, tant per l’arsènic com per altres elements com el ferro, el manganès, l’amoní i altres substàncies orgàniques. Segons Ahmed i Rahman, sota condicions reductores i en presència de sulfur, l’arsènic pot precipitar formant sulfurs d’arsènic insolubles. Per aquesta raó es poden injectar substàncies reductores i/o sulfur per promoure la precipitació de l’arsènic. *(Rott, U. Johnston, 2001)*.

A Alemanya, en un aquífer que contenia un alt contingut d’arsènic, ferro (II) i pH baix, es van injectar 29 tones de permanganat de potassi en 17 pous contaminats, provocant així l’oxidació de l’arsenit, el qual precipità amb els òxids fèrrics formats. Les concentracions d’arsènic foren reduïdes: de 13.600 a 60 µg/L. *(Johnston, 2001)*.

Un altre experiment, també realitzat a Alemanya, sobre aquífers que contenien alts nivells d’arsènic, ferro i manganès s’obtingueren, en les dues plantes de tractament assajades, nivells baixos d’arsènic (5 µg/L), de ferro i de manganès. El procés consistia en què part de l’aigua subterrània subministrada es tornava a reciclar a l’aquífer amb un agent oxidant, generalment oxigen atmosfèric. *(Rott, U.,)*.

**Adsorció**

En les proves de laboratori s’han identificat diversos materials amb alts continguts en ferro i superfícies de càrrega positiva com adsorbents alternatius d’arsènic. Un estudi realitzat a Mèxic avaluà la capacitat d’adsorció de diversos materials per una mostra d’aigua sintètica d’1 ppm, essent el ferro-manganès, l’hematita, l’òxid de manganès i el carbó activat amb sulfat de coure els que mostraren eficiències de remoció d’arsènic de fins a un 100%. Els estudis en el laboratori s’avaluaren usant hematita com a adsorbent. S’observà una eficiència del 100% quan es treballà en un rang de pH de 6-7, per així evitar la solubilització del ferro i promoure l’adsorció de l’arsènic. A Zimpan es va dissenyar una planta pilot amb un sistema d’operació de dos filtres, hematita i zeolita. L’afluent obtingut va tenir una concentració <0,05 mg/L, essent la inicial de 0,62 a 0,875 mg/L. *(Simeonova, V.,)*.
A Mèxic es va desenvolupar un estudi de remoció d’arsènic dissolt en l’aigua per adsorció dels seus ions en precipitats metàl·lics, quan s’aplica electrotractament. La tècnica utilitza un sistema amb electrodes de ferro, ja que en els procediments de coagulació s’obtenen millors resultats. Es van tractar mostres d’aigua sintètica en concentracions de 0,5 a 2 ppm, i es va permetre el pas d’un corrent a un voltatge entre 13,5–14 V. La relació Fe/As a què es va operar i va permetre les eficiències de remoció superiors al 90% van ser de l’ordre de 225 a 700. El pH en el qual es desenvolupà el mètode va ser 6-8 i no varià bruscament en finalitzar l’experiment. La qualitat de l’aigua després de l’experiment és molt bona. (Alvarez, 1999).

Mètodes de tractament de l’aigua en zones rurals

A nivell rural, la solució als problemes d’arsènic encara segueix pendent en països com l’Argentina, Xile i Perú.

Per mitigar aquest problema es planteja una metodologia simple i de baix cost que permet remoure, a nivell domiciliari, l’arsènic natural present en les aigües subterrànies que són usades com a aigua de beguda per la població rural. Es van aconseguir nivells de remoció de fins a un 98%, usant FeCl₃ com a coagulant, per concentracions iniciais d’arsènic d’1 mg/L. Encara que per concentracions menors d’1 mg/L es recomana usar l’Al₂(SO₄)₃. Les millors mesclles d’argila, coagulant i oxidant van ser: 1) argila activada Tonsil Premiere (500 mg/L), sulfat d’alumini (50 mg/L) i clor (5 mg/L); 2) argila activada Tonsil Super A (1000 mg/L), clorur fèrric (60 mg/L) i clor (50mg/L). Es van provar tres tipus de reactors per la remoció i els millors mescladors que van sortir foren la galleda d’eix vertical i una ampolla amb paleta de 20L, en comptes del reactor amb maneta. Finalment, l’estudi recomana usar la mescla 1 per a la remoció casolana degut a la seva fàcil manipulació. (Esparza, 1998).

Una altra proposta és l’eliminació de l’arsènic en aigua per destil·lació a escala domèstica. L’article proposa un mètode per a la desarsenització d’aigua en zones d’alt risc a la província de Tucumán, Argentina. Es va dissenyar un dispositiu econòmic i fàcil d’operar que ofereix una solució immediata i accessible a les possibilitats i consums de la població. Es construeix un destil·lador senzill i de baix cost compost per una olla a pressió i una serpentina compacta tubular refrigerada per convecció d’aire per portar a terme la destil·lació i desarsenització de les aigües naturals contaminades amb arsènic, altres substàncies tòxiques i bacteris. El destil·lador va ser sotmès a proves de rendiment per conèixer la seva capacitat de depuració de l’aigua mitjançant aigua sintètica, realitzant-se les determinacions analítiques de l’aigua destil·lada. El prototipus assajat permet obtenir aigua suficient per a la beguda diària d’una família tipus i el seu cost s’estima en 50$. (Luján, 2001).
La utilització de sabons de ferro (sals grasses) com a únic reactiu per a la remoció d’arsènic és una altra proposta. Les sals grasses amb cations trivalents són altament insolubles i aprofiten fenòmens de coprecipitació i efectes de superfície de molt difícil explicació rigorosa, però elevada efectivitat. El tractament és senzill i fàcil d’aplicar i els resultats garanteixen una remoció del 70% d’arsènic, com a mínim. Un dels màxims inconvenients és el gust que queda a l’aigua. (Mariño 1995).

La irradiació solar i de llum ultravioleta remou fins a un 95% de l’arsènic després de 4 hores a 7,5 mW/cm² de mostres de 200 a 500 ppb, i amb una relació molar de Fe(II)/citrat de 1,8. La rapidesa de la descontaminació de l’arsènic depèn de la relació molar Fe(II)/citrat i és proporcional a la intensitat de la llum. Això és a causa de les reaccions de foto-fenton.

Selecció de la tecnologia apropiada.

Amb tantes opcions possibles de fonts de substitució i amb tantes tecnologies diferents per eliminar l’arsènic no sempre és evident quina alternativa és millor per a la font d’aigua un cop donats els paràmetres. En tots els casos, la tecnologia ha de tenir diversos criteris tecnològics bàsics. Les opcions de subministrament aigua, primer de tot han de ser capaces de produir aigua amb requeriments de qualitat, tant químics com biològics. Els sistemes han de ser capaços també de donar un subministrament d’aigua en quantitat. Les tecnologies han de ser fiables i robustes, amb unes petites oportunitats per errors que poden ocurringer per les debilitats del sistema o per un error d’ús. Com que els sistemes en comunitats hauran de ser operats per membres no tècnics de les comunitats, és important que la seguretat operacional estigui assegurada. Finalment, la tecnologia no ha de tenir excessius efectes adversos en l’ambient.

Les tecnologies que trobin aquests criteris tècnics s’han d’avaluar sota diferents criteris socioeconòmics. Primer de tot, els sistemes han de ser viables econòmicament per als membres de les comunitats afectades. Es pot esperar que els usuaris contribueixin amb els costos, però la majoria de sistemes de subministrament d’aigua nova requeriran algun tipus de subsidi. La introducció a noves tecnologies requereix capacitat institucional per a aspectes com la producció i el repartiment de materials, la formació, el control de qualitat i el monitoreig.

Els impactes de gènere també s’han de tenir en compte, per tal que la feina de dones i nenes no es vegi incrementada. Són convenientes noves opcions, ja que si no, la gent no ho utilitzarà. Les noves tecnologies requereixen un canvi de conducta per part dels usuaris per una utilització òptima i un impacte en la higiene i la salut. Per tant, la comunicació s’ha de tenir en compte. Finalment, les tecnologies han de tenir una acceptació social per part dels membres de les comunitats per tal de tenir èxit com a opció de subministrament d’aigua segura a llarg termini.
Idealment, després de considerar els criteris tècnics i socioeconòmics descrits a sobre, una sola
tecnologia hauria de figurar clarament per sobre les altres. En realitat, això no és així, ja que cada opció té
vantatges i desvantatges. En alguns casos, una opció sola no és suficient i és necessari la combinació
dels sistemes.

La clau per seleccionar la tecnologia o tecnologies apropriades és involucrar els membres de la
comunitat en totes les fases del procés, des de la selecció de la tecnologia fins a l’operació i el
manteniment. En aquest sentit, es pot generar un sentiment de propietat. Per permetre als usuaris de
l’aigua de poder fer la seva elecció, cal que estiguin informats de les possibles opcions. Fins que els
usuaris no entenguin el problema de la contaminació d’arsènic i el seu impacte en la salut i tinguin
informació rellevant sobre alternatives segures, no seran capaços de generar una elecció per canviar els
seus model d’ús d’aigua. (Johnston, 2001).

4.5.2 Sòls

Fitorremediació

La fitorremediació, en els últims anys s’ha constituït com una tècnica novedosa, eficient i a la
vegada econòmica per a la recuperació de sòls contaminats.

El tipus de contaminació per no metalls, en aquest cas l’arsènic, que es presenta en els sòls és
molt difícil d’eliminar i es concentra durant llargues dècades al llarg de la cadena trófica, produint
intoxicacions i malformacions en els animals superiors. En els últims anys s’està desenvolupant una
novedosa tecnologia per eliminar els contaminants dels sòls afectats. Una tecnologia neta, barata i
sorprenentment eficaç. Es tracta de la tècnica anomenada fitorremediació, que consisteix a plantar en les
zones contaminades determinades espècies de vegetals, de reconeguda capacitat per absorbir i concentrar
les substàncies tòxiques. Aquestes espècies són conegudes com hiperacumuladors. Les plantes poden
ajudar a netejar diversos tipus de contaminació, incloent-hi metalls, no metalls pesticides, explosius i oli.
Les plantes també ajuden a prevenir el vent, la pluja i laigua subterrània a portar contaminació dels
ambients perjudicats a altres àrees. La fitorremediació treballa millor en sòls poc o mig contaminats. Les
plantes remouen els contaminants del terreny quan les seves arrels prenen l’aigua i els nutrients del sòl
contaminat i de l’aigua subterrània. Les plantes poden netejar millor els contaminants del terreny quan les
seves arrels aconsegueixin més profunditat. Una vegada dins de la planta, els contaminants poden estar:

- Emmagatzemats en les arrel, la tija i les fulles.
• Convertits en contaminants menys nocius dins de la planta.

• Convertits en gasos que són alliberats a l’aire quan la planta transpira.

El temps que tardarà a netejar el terreny dependrà de diversos factors:

1. Tipus i nombre de plantes que seran usades.

2. Tipus i quantitats de contaminants presents.

3. Tamany i profunditat de l’àrea contaminada.

4. Tipus de sòl i condicions presents.

Aquests factors varien d’acord amb els diferents llocs. Les plantes poden arribar a ser reemplaçades si són destruïdes pel clima o els animals. Llavors trigarà més temps a netejar aquest terreny. Normalment, netejar un terreny amb fitorremediació tarda diversos anys.

L’EPA utilitza la fitorremediació pels avantatges que ofereix, ja que requereix menys equips i treball que altres mètodes perquè les plantes fan la majoria del treball. El lloc pot ser netejaat sense necessitat de remoure el terreny o bombejar l’aigua subterrània contaminada. Això permet evitar el contacte dels contaminants amb els treballadors. La fitorremediació ha estat satisfactòriament provada en vàries localitats i s’ha arribat a usar en llocs contaminats. *(UFNEWS, 2001)*

*Una falguera per netejar arsènic*

Un equip de la Universitat de Florida, va descobrir una falguera que absorbeix arsènic del sòl contaminat. Aquesta és la primera planta que s’ha trobat que hiperacumula arsènic. És a dir, el pot usar com a part de la seva alimentació.

La falguera es cultiva fàcilment i prefereix els climes assolellats i el sòl alcalí, fet que afavoreix l’absorció del metal-loide, ja que l’arsènic pot ser extret més fàcilment en condicions alcalines.

La falguera no només absorbeix arsènic sinó que ho fa amb gran eficiència. En les proves
realitzades es trobaren nivells de fins a 200 vegades superiors que les concentracions mesurades en els sòls contaminats on cresqué la falguera. Per mencionar un cas, en un lloc contaminat per fusta tractada amb solució de crom, coure i arsènic, el sòl presentà una concentració de 38,9 ppm d’arsènic, mentre que la falguera presentà 7526 ppm d’arsènic. En proves realitzades utilitzant sòl artificial contaminat amb arsènic, les concentracions del metal-loide en les fulles de la falguera arribaren a 22.630 ppm. Això significa que el 2,3% de la planta estava formada per arsènic.

Un fet sorprenent és que la falguera fins i tot acumula arsènic en sòls que contenen nivells normals de referència d’arsènic de menys d’1 ppm. Per exemple, en les fulles d’una falguera que crescè en un terreny que només contenia 0,47 ppm d’arsènic, hi havia 136 ppm. Segons les observacions fetes, la planta creix i es desenvolupa millor en sòls que contenen arsènic, tot i que encara no podem concloure que la planta necessiti arsènic per viure.

Aquestes troballes suggereixen que la falguera podria convertir-se en la nova estrella de la indústria de la fitorrremiació. Aproximadament 400 plantes són coneugues per acumular toxines. L’utilització d’aquestes plantes està creixent molt i el mercat de la fitorrremiació ha estimat que s’incrementarà: de 16,5 a 29,5 milions de dòlars el 1998, a un rang de 214 a 370 milions de dòlars el 2005, d’acord amb els articles publicats.

Com que la falguera acumula el 90% de l’arsènic a les fulles i a la tija, l’estratègia seria fer crèixer la planta en llocs contaminats, llavors collir les fulles i tiges i transferir-les a una instal·lació autoritzada per residus perillosos. Encara, però, cal resoldre perquè la falguera acumula arsènic. Les investigacions futures s’enfocaran a com la planta agafa, distribueix i destoxifica l’arsènic. (Wangensteen, 2002; ICPMS, 2002)

Com s’ha dit, es coneixen aproximadament 400 espècies de plantes amb capacitat per hipерacumular selectivament alguna substància. Entre elles hi ha: el girasol (Helianthus annuus), que és capaç d’absorir en grans quantitats l’urani dipositat en el sòl; els pollancres (gènere populus), que absorbeixen selectivament níquel, cadmi i zinc; també la coneuguda Arabidopsis thaliana és capaç d’hiperacumular coure i zinc. Una herba anomenada Amaranthus retroflexus ha resultat ser bastant efectiva en l’absorció de cesi-137 radioactiu. Per una altra banda la falguera, Pteris vittata, ha demostrat recentment ser capaç d’absorir l’arsènic. També s’ha tingut èxit en assajos fets amb altres possibles espècies fitorrremediadores com l’alfal, la mostassa, la tomàtica, la carabassa, l’espart, el salze i el bambú. Fins i tot existeixen espècies vegetals per eliminar l’alta salinitat del sòl, gràcies a la seva capacitat per acumular clorur de sodi. (Garcia, 1994).
4.5.3 Sediments, fangs i residus

Les tecnologies de tractament per remoure arsènic, així com també les activitats industrials, generen residus amb alt contingut d’arsènic. Aquest fet comporta la recerca de solucions per recuperar i estabilitzar l’arsènic o minimitzar l’alt risc de contaminació que aquest representa. Existeixen diverses tecnologies per això: la precipitació d’hidròxids és efectiva i econòmica per remoure metalls pesats i separa els precipitats per sedimentació i/o filtració, per això s’usa generalment calç i sosa càustica. El desavantatge és la quantitat de residus generats i la disposició d’aquests. Una altra opció seria la precipitació amb sulfurs, que aconsegueix una alta eficiència en la remoció i uns compostos insolubles. Perquè la remoció de l’arsènic sigui més eficient, el procés es realitzarà a pH <7. Tanmateix, el seu ús s’ha limitat degut a la toxicitat i l’olor que genera l’H\textsubscript{2}S. La fixació química i la solidificació ofereixen molts avantatges, com millorar les característiques de maneig, que produeix un material sòlid suficientment fort per a la seva disposició. Aquesta tecnologia s’usa per destoxicificar, immobilitzar, insolublitzar o en altres paraules, fer el residu menys perillós per a l’ambient. (Sandoval, 2000).

Les aigües residuàries amb alt contingut d’arsènic poden ser tractades efectivament usant la precipitació química. S’han fet estudis a escales determinades usant diversos tipus de coagulants com clorur fèrric, calç hidratada, sulfur de sodi i alum. La combinació més efectiva ha estat la de calç hidratada i clorur fèrric amb remocions del 99% de la concertació original d’arsènic. L’estudi a gran escala es va desenvolupar usant aproximadament 605 000 L d’aigua amb 48 mg/L d’arsènic i després d’una combinació de mètodes de tractament, precipitació química, filtració i absorció en carboni es van obtenir nivells menors d’1 mg/L. (Harper, 1992).

A Mèxic s’ha fet un estudi que proposa obtenir un compost d’arsènic insoluble i que també es pugui utilitzar com a matèria primera en la formulació d’altres compostos o sigui solidificat i utilitzat en la construcció o disposat com un rebliment sanitari. (Sandoval, 2000).

Disposició dels fangs rics en arsènic que provenen de nivell domèstic.

Només un petit percentatge de l’aigua col·lectada, potser entre un 10% i un 30%, s’utilitza per beure i cuinar. La resta s’usa normalment per rentar-se i quotidianitats casolanes. A més a més, el consum d’aigua domèstica és típicament només una petita fracció de l’aigua que usem els humans. L’aigua per regar és, amb diferència, el destí més alt del recurs. Tot i que idealment s’hauria d’utilitzar aigua no contaminada amb arsènic per regar, en lloc on l’arsènic és endèmic, la primera prioritat ha de ser proveir d’aigua segura per beure i cuinar. L’ús d’aigua contaminada per altres propòsits, mentre no sigui a llarg termini, no posa la salut humana en el mateix perill que si usessin l’aigua contaminada per beure.
A Bangladesh, una família de sis bevent aigua altament contaminada (és a dir, 500 µg/L d’arsènic) necessitarà aproximadament trenta litres per dia per beure i cuinar. Si s’usen els sistemes domèstics de remoció d’arsènic, s’obtindran, aproximadament, 15mg d’arsènic cada dia. Això són més de cinc grams per any, assumint que la família no té altra font d’aigua per beure ni cuinar.

Evidentment aquesta quantitat no és sana d’ingerir ni dia rere dia ni en una sola dosi. Aquesta quantitat d’arsènic pot ser fatal –la dosi mortal de triòxid d’arsènic en els humans és del rang de 70mg a 180mg (WHO, 1980a, p.88). Tanmateix, la toxicitat de l’arsènic varia considerablement depenent de la solubilitat de la forma ingestada i de la quantitat d’arsènic en fangs, o d’altres desperdicis sòlids que són molt més insolubles que el triòxid d’arsènic.

Els conreus de regadiu requereixen des de 0,5m$^3$/any fins a 2m$^3$/any d’aigua anualment, depenent del tipus de conreu, de sòl i precipitacions. Per produir conreus de secà es requereixen 1,2m$^3$/any (Chang, 1995). La FAO recomana un límit de 100 µg/L d’arsènic per a l’aigua de regadiu. (Ayers, 1976). Els EUA i el Canadà també tenen els estàndards de 100 µg/L per l’aigua de regadiu (Chang, 1995). A aquesta concentració es poden estar llençant 1,2 kg d’arsènic anuals per hectàrea.

### 4.6 Regulació

En aquest quadre es pretén reflectir les diferents normes referent al límit recomanat d’arsènic a l’aigua per beure.

Veiem que la norma tendeix a ser o 50µg/L o 10µg/L. Això és pel referent de la OMS: Fins fa dos anys, el límit era 50µg/L i ara l’han rebaixat a 10µg/L.

Els valor guia porten tota una discussió al darrera i és si val la pena posar un valor límit massa baix com perquè la tecnologia no arribi a poder aportar una aigua d’aquesta qualitat. Un país que ha treballat el seu valor guia amb consonància a la tecnologia disponible i a les quantitats d’As a l’aigua que tenen en el seu territori ha estat Xile.

<table>
<thead>
<tr>
<th>País</th>
<th>Límit Recomanat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>País</td>
<td>Concentración (µg/L)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Cuba</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>México</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Canadá</td>
<td>25 µg/L</td>
</tr>
<tr>
<td>EUA</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Francia</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Alemania</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Índia</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Xina</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Taiyuan</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Bangladés</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Chile</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Nepal</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Japón</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Austrália</td>
<td>7 µg/L</td>
</tr>
<tr>
<td>Jordan</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Laos</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Mongolia</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Namibia</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Siria</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>Bolivía</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>País</td>
<td>Nivel de arsénico (µg/L)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Egipte</td>
<td>50</td>
</tr>
<tr>
<td>Indonésia</td>
<td>50</td>
</tr>
<tr>
<td>Oman</td>
<td>50</td>
</tr>
<tr>
<td>Filipines</td>
<td>50</td>
</tr>
<tr>
<td>Aràbia Saudita</td>
<td>50</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>50</td>
</tr>
<tr>
<td>Perú</td>
<td>100</td>
</tr>
<tr>
<td>Vietnam</td>
<td>50</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>50</td>
</tr>
<tr>
<td>Comunitat Econòmica Europea</td>
<td>10</td>
</tr>
<tr>
<td>Organització Mundial de la Salut</td>
<td>10</td>
</tr>
</tbody>
</table>
5. Gestió i/o estabilització dels residus. Actualització de la informació especialitzada

5.0 Introducció

Aquest segon bloc del projecte consisteix a realitzar un estudi del tractament i disposició final dels residus generats en la remoció d’arsènic a nivell domiciliari, mitjançant la metodologia Alufloc, en els pobles de la serra de Perú i a comparar-lo amb Catalunya en cas que s’hi portés a terme.

La població tipus de l’estudi són nuclis d’entre cinc i deu famílies, d’uns sis o set membres per família, que viuen a una alçada d’entre dos mil i tres mil metres per sobre el nivell del mar. Generalment tenen poca relació amb les comunitats veïnes, que poden estar a una distància de dues o tres hores caminant, l’únic mitjà de transport que tenen. Estan a una mitjana de nou hores per arribar a on circulen els cotxes. La seva economia és d'autosubsistència. De totes maneres sempre han tingut relació per l’intercanvi de productes bàsics per a l’alimentació i per tenyir els seus vestits amb la gent dels pobles més propers. Hem ubicat la població a Perú ja que en coneixíem molt més la realitat i per poder establir uns límits legals de concentracions.

Per realitzar aquest estudi es va presentar un projecte de treball que podem veure a l’annex 1, al CEPIS (Centro de Ingeniería Sanitaria y Ambiental), oficina de cooperació tècnica que l’OMS té ubicada a Lima, Perú i que comptava amb el finançament de la Universitat Politècnica de Catalunya mitjançant el CCD, el departament de química i del CEPIS.

L’objectiu d’aquest projecte era desenvolupar una tecnologia apropiada per al tractament i disposició adequada dels fangs generats en la remoció d’arsènic a nivell domiciliari i cercar l’estabilitzador més convenient per aconseguir la inactivitat de l’arsènic amb els mínims costos.

5.1 Revisió crítica de l’estabilització i disposició dels fangs

Les tecnologies de tractament per remoure l’arsènic, així com també les activitats industrials, generen residus amb un alt contingut en arsènic. Aquest fet conduceix a la recerca de solucions per recuperar i estabilitzar l’arsènic o minimitzar l’alt risc de contaminació que aquest representa.

Tot i que existeixen diferents alternatives per al tractament dels residus generats en l’eliminació de l’arsènic de l’aigua, la realitat ens diu que no es fa pràcticament res de totes les alternatives.
Fent un repàs de les plantes d’eliminació d’As en l’aigua per beure, veiem que cap de les consultades: Brasil, Xile, Argentina, Mèxic (la majoria a Llatinoamèrica perquè és el lloc on hi ha més problemes d’hidroarsenisme) fan algun tractament amb el residu.

Un bon exemple és la planta més gran que existeix d’eliminació d’As, a Antofagasta, Xile: el residu és llençat indiscriminadament en terrenys adjacents. Com que conté molta humitat hi creixen plantes i s’hi creuen animals, accions gens adequades segons les conseqüències vistes en la primera part sobre l’ésser humà i com a esglaó que és per entrar en la cadena tròfica.

Ara tenen un projecte de disposició de residus: afegiran un assecador i construiran un abocador sanitari de 25x25x5m³. És la primera acció que es du a terme en la planta pionera en l’eliminació d’arsènic de l’aigua per beure.

Si ens fixem en l’As com a residu industrial, només poques zones de la mineria andina tracten els seus residus –tant sòlids com líquids–. Normalment els residus sòlids es llençen on hi ha lloc o on han fet l’excavació, i els líquids se’n van directament a les aigües superficiais o subterrànies agreujant el problema d’hidroarsenisme natural.

Això ens demostra la poca importància que ha tingut en els dissenys de projectes la sostenibilitat al llarg dels anys i també ens ajuda a veure la poca aplicació de la legalitat i de la força del capital estranger en els països en vies de desenvolupament.

Hem de pensar que en molts casos, a part de per raons mediambientals i de salut pública, seria molt recomanable el tractament/separació dels residus, tant per la recuperació del coagulant com per després el residu, que ja no es consideraria perillós i seria més fàcil de disposar.

Si parlem en termes de gestió, en zones urbanes no hauria de ser cap problema ja que existeixen abocadors industrials, però quan parlem de zones rurals i disperses la logística és del tot inviable.

Actualment, l’arsènic és un producte prohibit en la majoria d’activitats. Per tant no és possible la valorització de residus que el continguin.

5.2 **Tecnologies de recuperació i estabilització de residus que contenen arsènic.**

Els residus que es generen amb els diferents tractaments d’eliminació d’arsènic que hem explicat en els apartats anteriors es poden diferenciar en dos grans grups: Els que generen un residu sòlid i els que generen un residu líquid.
Dels tractaments per eliminar l’arsènic de l’aigua, tal com podem veure en la figura 5.1, els que generen un efluènt líquid són els que provenen de l’intercanvi iònic, l’alúmina activada, l’osmosi inversa, la nanofiltració i l’electrodiàlisi inversa.

Els tractaments que el seu residu és sòlid són els que es basen amb la coagulació/floculació i l’ablanament, quedant uns fangs amb alt contingut d’hidróxids de ferro, d’alumini i de calci.

Figura 5.1 Esquema de processos de tractament del residu de la remoció de l’arsènic

**Precipitació**

Tots els processos de precipitació operen sota un mateix principi químic i utilitzen els mateixos equips i configuracions similars. A més a més poden requereix un pretractament.

El mecanisme de precipitació involucra l’alteració de l’equilibri iònic del compost metàl·lic per produir un precipitat insoluble. Generalment s’utilitza un agent alcalí per reduir la solubilitat dels compostos metàl·lics. En alguns casos, és necessari realitzar una reducció química per canviar les característiques químiques dels ions metàl·lics (per exemple, el seu estat de valència) i aconseguir-ne la precipitació. En general, les reaccions de precipitació formen una sal i un complex metàl·lic insoluble. *(Noyes, 1991;*...
Neutralització

L’utilitzarem quan el residu provingui de corrents bàsiques o àcides. Consisteix en un ajustament àcid o alcalí del residu en un rang de pH entre 6 i 9, o en els límits establerts segons la legislació vigent, perquè aquest pugui ser abocat. Tot i això, si es vol realitzar una precipitació d’ions metàl·lics o clarificar la descàrrega, és necessari elevar encara més el pH.

La selecció de l’agent químic apropiat depèn de les següents consideracions: característiques del residu, cost del reactiu i disponibilitat, velocitat de reacció, qualitats d’amortització, solubilitat dels productes, costos associats amb la manipulació del reactiu químic i la quantitat del residu final i les seves característiques.

Amb tot això s’estableix una relació reactiu/producte i es calculen els costos del procés, els quals inclouen costos de compra, costos de manteniment del sistema i costos associats amb el maneig del residu. (Noyes, 1991).

Precipitació d’hidròxids

Aquesta tecnologia és efectiva i econòmica per remoure metalls pesats, ja que converteix els ions solubles en compostos hidròxids insolubles. Així, els metalls poden separat-se del líquid per sedimentació i/o filtració. Els agents químics més usats són la caç i la sosa càustica.

Alguna de les indústries que utilitzen aquest procés són: el processament de metalls no ferrosos, l’extracció de metalls, la generació d’energia, el cromat de metalls i la manufactura de bateries.

El tractament és capaç de remoure certs metalls que es troben en un residu àcid entre els quals, a més d’arsènic, hi ha cadmi, coure, crom trivalent, ferro, manganès, níquel, plom i zinc. Les causes que afecten l’efectivitat de la precipitació són la força iònica, la coprecipitació i l’adsorció.

Actualment aquesta tecnologia s’utilitza àmpliament en la indústria per reduir la concentració de metalls en la descàrrega ja que el procés es realitza a temperatura i pressió ambiental. Tanmateix, existeix la generació d’un gran volum de fangs, els quals representen un perill per al medi ambient.

L’alt cost de la disposició dels fangs ha demostrat ser el principal desavantatge de la precipitació d’hidròxids, que genera una gran quantitat de residus perillosos, perdent l’avantatge en costos de reactiu en relació amb les tecnologies de recuperació més cares.
Precipitació amb sulfur

Els principis bàsics són similars als de la precipitació d’hidròxids, per la qual cosa els ions metàl·lics solubles són precipitats com a compostos de sofre. Els avantatges d’aquest procés inclouen més eficiències de remoció. Els compostos formats són extremadament poc solubles i es realitzen sense ajust de pH. Tanmateix, el seu ús s’ha limitat a poques aplicacions a causa de la toxicitat i l’olor que genera l’àcid sulfhídric. La utilització de sulfur ferrós reduceix o elimina, virtualment, el problema del sulfur d’hidrogen. Tot i això, degut a que la demanda del reactiu és més alta que la requerida estequiomètricament, es genera més volum de fangs.

Aquest tractament s’ha utilitzat per remoure plom, coure, plata, cadmi, zinc, mercuri, níquel, tali, arsènic antimoní i vanadi en aigües residuàries. Tipicament, les reaccions es realitzen a un pH de 7 a 9, amb l’excepció de l’arsènic i l’antimoní, que requereixen que el pH sigui menor que 7 per obtenir una bona precipitació.

El procés consisteix bàsicament en la preparació d’una solució de sulfur de sodi que s’addiciona en excés a un tanc de reacció amb el residu durant trenta minuts, i després passa per un clarificador o espessidor. Com que el sobrenedant conté un excés d’ions sulfurs, aquests s’han d’eliminar mitjançant la seva oxidació amb l’aire o amb l’addició de peròxid d’hidrogen.

El procés s’ha de controlar mitjançant la utilització d’un potenciòmetre i l’addició del reactiu corresponent per mantenir el pH.

Els costos de disposició dels fangs són equivalents als dels hidròxids. A més a més, actualment els rebliments sanitaris estan sol·licitant que els fangs siguin pretractats, estabilitzats o encapsulats abans del seu confinament. (Noyes, 1991).

També és possible amb sulfur de ferro. Per això es requereix que l’arsènic estigui en forma dissolta en el residu. Per tant, si el residu és un fang s’haurà de realitzar una extracció amb àcid sulfúric per obtenir-lo dissolt. Al líquid obtingut se li agrega FeS (agent reductor) en solució per formar As₂S₃ o FeAsS. La seva aplicació directa a la solució no és factible, i és necessari que sigui preparat amb anterioritat amb sulfat ferrós i hidrosulfur de sodi. (Noyes 1991, EPA 2001).

Una reacció química que possiblement ocorre és:

\[2HAsO_4^{2-} + 4FeS(s) \rightarrow As_2S_3(s) + 4Fe^{+3} + H_2S(g) + 4O_2\]
En aquesta reacció l’arsènic és reduït i el ferro oxidat:

\[
\text{As}^{(V)} + \text{FeS}_{(s)} \rightarrow \text{FeAsS}_{(s)}
\]

Precipitació amb carbonats

Els compostos que es poden utilitzar són carbonat de calci o de sodi. A més a més, es pot utilitzar diòxid de carboni per generar hidròxids. La solubilitat dels compostos carbonats està entre les obtingudes pels hidròxids i sulfurs. Tanmateix, aquests són fàcilment filtrables.

El principal avantatge d’aquest tractament és la gran capacitat que té d’amortitzar els canvis de pH, superior a la seva capacitat de maneig i àmplia disponibilitat. A més, els carbonats no són corrosius i els fangs generats són menors en volum, comparats a les tecnologies que utilitzen calci. El principal desavantatge és que es necessita un temps de contacte de 45 minuts com a mínim i que la solubilitat dels reactius és molt pobra (20% en pes).

Oxidació-Reducció química

L’esquema típic del procés inclou un tanc per ajustar el pH i la reducció, mesurador de potencial òxid-reducció i pH, agitador mecànic i tans de precipitació i sedimentació. A més a més, cal que l’equip estigui localitzat en una àrea amb bona ventilació. Els temps de retenció poden arribar fins a quatre vegades més de l’establert teòricament. Els reactius més utilitzats en aquest tipus de processos són, com agents oxidants: ozó, hipoclorit, peròxid d’hidrogen, clor, diòxid de clor, permanganat de potassi, tetraòxid de ruteni; com agent reductor s’utilitza: sulfat ferrós, sulfat de sodi, diòxid de sofre, ferro (II), alumini, zinc, borhidrur de sodi.

El borhidrur de sodi ha estat utilitzat en processos cloroalcalins i acabat de metalls i té un gran potencial per al tractament d’aigües residuals. A més a més, la producció de fangs és molt menor comparada amb altres tecnologies, i la remoció de metalls és suficient per complir amb les normes de descàrrega. Els principals desavantatges de la utilització d’aquest reactiu són l’alt cost, el contingut de bor en l’afluent i la generació de gas hidrogen durant la reacció.

Per assegurar una completa reacció és necessari que (Noyes, 1991):

• Existeixi un adequat contacte entre els contaminants i el reactiu químic. Per la qual cosa es suggereix una mescla ràpida. S’ha de tenir precaució en el maneig del rebiug o reactius químics sòlids.

• Els oxidants forts no distingeixen la matèria orgànica i el contaminant. Per tant, alguns cops és
necessari addicionar reactiu en excés.

- És necessari mantenir un rang de pH molt estret, per la qual cosa és important un bon control del procés.

**Fixació química i solidificació**

Els sistemes de fixació química per a residus va començar a desenvolupar-se cap als anys 70 i es va utilitzar en el farciment de sistemes estructurals i constructius (carreteres, façanes...). Actualment les seves aplicacions són més reduïdes ja que la legislació obliga a superar uns criteris del test de lixiviació molt més estrictes.

La utilització de la fixació química ofereix diversos avantatges, com millorar les característiques de maneig per produir un material sòlid suficientment fort per la seva disposició. Idealment, la modificació de l’estructura del residu permet reduir els lixiviats de contaminants tòxics i, si les concentracions són menor a les estipulades per la normativitat, llavors els residus poden considerar-se no perillosos. *(Noyes, 1991)*.

Aquesta tecnologia s’utilitza per destoxificar, immobilitzar, insolubilitzar o, en altres paraules, fer el residu menys perillós per a l’ambient.

La solidificació consisteix a produir una massa sòlida amb una estructura íntegra i característiques físiques més convenient per al seu transport, emmagatzematge, disposició i reutilització. Això és convenient ja que disminueix significativament la permeabilitat dels contaminants cap a l’ambient. La solidificació pot ocurrir dins la fixació química.

Quasi tots els processos de fixació química involucren reaccions entre el residu i additius que promouen la precipitació dels metalls com hidròxids. Aquests additius poden augmentar la reacció de solidificació i disminuir l’espai entre el residu i els agents solidificants. Així, les característiques del producte sòlid obtingut dependrà de: les característiques del residu, els tipus d’additius i reactius de solidificació utilitzats, les condicions d’assecat i el temps de reacció.

Els objectius principals d’una fixació de residus perillosos són:

- Proveir manejabilitat al residu.
- Reduir l’àrea de contaminació amb l’ambient.
- Limitar la solubilitat del contaminant.
No totes les tècniques de fixació poden aconseguir els objectius assenyalats. A continuació es presenten les diferents tècniques de fixació:

- Base ciment
- Base ciment putzolànic
- Termoplàstica (inclou parafina i polietilè)
- Polímer reactiu
- Encapsulament
- Vitrificació

Els dos primers processos són els més utilitzats i els més barats.

**Solidificació en base ciment**

Aquest mètode mescla el residu amb ciment Portland, que és un material comú de construcció. La majoria de vegades s’utilitza Portland tipus I, però el II i el V es poden utilitzar per a residus de sulfurs. El producte final és un sòlid monolític i consistent, la qual cosa depèn de la quantitat de ciment utilitzat.

La majoria dels ions metàl·lics són convertits a hidròxids o carbonats, que són insolubles en un cert rang de pH. Tanmateix poden estar sotmesos a una solubilització, per exemple si s’exposen a una pluja àcida, per la qual cosa els contaminants poden ser lixiviats.

Encara que el ciment pot incorporar la majoria de residus, alguns no lliguen amb aquest i, amb el temps, poden ser lixiviats. Aquest procés ha demostrat ser efectiu per a residus d’arsènic, plom, zinc, coure, cadmi i níquel. Alguns dels residus incompatibles són: salts d’arseniat de sodi, borat, fosfat, iodat i sulfur, salts de manganès, estany, coure i plom, material orgànic, alguns fangs i argiles, i hulles o lingnites.

Els desavantatges d’aquest tipus de solidificació són: s’incrementa el pes i el volum del residu per disposar i augmenten els costos de transport i disposició. A més a més, alguns residus han de ser pretractats abans de la seva solidificació. *(Noyes, 1991)*.

**Biotransformació**
En el cicle biològic de l’arsènic existeix el procés de metilació, que és molt important perquè els productes que produeix són extremadament perillosos. Molts organismes que es troben en el sòl i a l’aigua són capaços de metilar l’arsènic. Aquest procés transfereix arsènic dels sediments als cossos d’aigua i n’incrementa la mobilitat en l’ambient. El material inicial pot ser arseniat, arsenit, àcid metilarsènic o àcid dimetilarsènic.

La biotransformació de l’arsènic pot produir compostos altament volàtils i verinosos com l’arsina (AsH₃), la dimetilarsina (HAs(CH₃)₂) i la trimetilarsina (As(CH₃)₃).

En el medi ambient, els processos d’ocurrència del cicle de l’arsènic són regits per les condicions ambientals del sistema (oxidació o reducció, pH, presència de microorganismes, etc.). (Walton, 1988).

5.3 Estudi d’alternatives

Considerem que cap de les metodologies trobades és adequada per a les poblacions característiques del nostre estudi, tant per la poca quantitat de residus que es genera com pels reactius i materials necessaris per fer aquestes reaccions.

Establir un sistema de gestió per portar-ho a la capital és impossible per qüestions de distàncies i perquè un cop a la capital tampoc no hi ha la infraestructura necessària per al seu tractament, ja que tot i les opcions esmentades abans, no n’hi ha cap d’implementada al país.

Existeix un projecte de l’Institut mexicà de tecnologia de l’aigua que proposa l’elaboració de maons per a la construcció amb els fangs generats en el procés de remoció. Afirma que foren sotmesos a pluja de pH 5,1 i a pluja àcida de pH 3,6 i a proves de compressió per determinar si el fang i la pluja debiliten l’estructura del maó. Una de les opcions estudiades no va lixviar arsènic i la resistència a la compressió va ser 113 kg/cm², un valor dins la norma per a aquests tipus de materials (40 a 120 kg/cm²) (Sandoval, 2000). Així seria una solució idònia per a la revaloració del residu.

Tot i l’afirmació de que no lixivia, existeixen estudis que posen de manifest que la lixiviació no és l’única manera que l’arsènic entri al cos. Afirmen que l’arsènic s’impregna a les mans dels nens i en aquest cas es molt fàcil la ingestió d’arsènic i l’efecte a la pell pel contacte directe. Rentar-se les mans després de jugar disminueix els riscos, tot i això, el risc per ingestió en nens és molt elevat (Kwon, 2004.). Per tant, tot i que la fabricació de maons no lixivia, desestimem aquesta opció pel risc de contaminació pel contacte directe.

Així, basant-nos en un estudi de Mariño (Mariño, 1995), que podem veure a l’annex 2, podem dir
Pàg. 66

Memòria

que en fer servir sals grasses associades a alumini provoca una acció de coprecipitació d’elevada efectivitat ja que contenen cations trivalents altament insolubles. Sabem que disposat com a material filtrant, l’estearat pot retenir anions àcids d’acord a efectes de tamisatge molecular, intercanvi iònic ( poc probable per la baixa solubilitat o fenòmens de superfície. Així doncs, intentarem comprovar que si hi afegim un greix i donem les característiques bàsiques, com que el nostre fang té alumini es creaurà un sabó metàl·lic que estabilitzarà l’arsènic i evitarà que torni a entrar en el cicle de l’aigua. Hi afegirem calç ja que a més de neutralitzar els greixos evitant la formació de microorganismes, també té un efecte complementari en qüestió d’estabilització de l’arsènic. (Ponce de Léon, 1999).

6. Avaluació de la metodologia de l’ALUFLOC, anàlisi dels seus fangs i identificació i obtenció dels residus domèstics com a possibles estabilitzants

6.0 El mètode ALUFLOC.

L’ALUFLOC és un producte en pols desenvolupat per acondicionar l’aigua de pous en comunitats rurals disperses on no arriba l’aigua “potable”.

L’ALUFLOC remou bactèries, arsènic i altres metalls tòxics, tot de forma simultània, que en general no es poden remoure de forma conjunta amb altres mètodes in situ.

Aquest producte és una pols compost de col·loides (argila activada de malla 200), un material oxidant (hipoclorit sòdic amb un 70% de clor actiu) i un coagulant (sulfat d'alumini). Aquesta mescla en una proporció de 500/60/5 mg/L. La bossa està dividida en dos compartiments; per una part 5/1.2g d’argila i sulfat d'alumini i per l’altra 0.1g d’hipoclorit. Serveix per tractar 20 litres d’aigua, que és la quantitat d’aigua per beure que requereix una família de 5-6 persones.

L’aplicació es fa amb un dispositiu senzill -figura 6.1- que pot reproduir el procés de coagulació i sedimentació dels col·loides agregats i els flòculs formats que tenen l’arsènic aprapat i altres contaminants de l’aigua. Aquest dispositiu està compost, com veiem a la fotografia, per una galleda de 20 litres amb una tapa on s’hi ha adaptat una manovella amb una sèrie de paletes plàstiques. Fou l’opció que donà més bons resultats de remoció dels diferents estudis.

Per utilitzat aquesta tecnologia es recomana i agitem durant 1 minut de manera ràpida (100 voltes
Avaluació i desenvolupament d'un estabilitzant de baix cost per als residus en l’eliminació d’arsènic a nivell domiciliari en zones rurals i disperses

per minut), i durant 20 minuts de manera lenta (40 voltes per minut). Ho deixem reposar durant mitja hora com a mínim i tota la nit si és possible i separem el sobrenedant, intentant no remoure l’aigua, en un recipient destinat a emmagatzemar l'aigua.

Així quedaran uns sediments de composició bàsica d’argila i arsènic.

Podem veure més informació en l’annex 11

6.1 Obtenció de mostres d’aigua amb As

Per simular una situació real, plantegem que l’aigua tingui les característiques d’As al límit superior d’aplicació de l’ALUFLOC, això és 600ppb, aproximadament.

Es decideix utilitzar aigua mixta (natural enriquida) ja que la intenció és que sigui natural, però no trobem amb facilitat aigua amb les característiques desitjades.

D’un monitoreig realitzat durant la setmana anterior a l’inici dels experiments, podem afirmar que a Lima hi ha pous de l’aqüífer de la conca del riu Rimac que conté arsènic. Així, recollim 200 litres d’aquest pou i, a més, afegim 23,6ml d’As sintètic de concentració 1.000mg/l As.

6.2 Proves de remoció d’As
Tal com hem vist, apliquem la metodologia ALUFLOC: Per això, repartim l’aigua en els recipients dissenyats per remoure l’arsènic amb l’ALUFLOC (poal de 20l amb una maneta amb 4 paletes) i apliquem la bosseta que conté l’ALUFLOC; agitem durant 1 minut de manera ràpida (100 voltes per minut), i durant 20 minuts de manera lenta (40 voltes per minut). Ho deixem reposar durant tota la nit i separem el sobrenedant, intentant no remoure l’aigua.

Com volem suficients sediments per als assajos ho fem 10 cops amb ells 200l d’aigua obtinguda.

6.3 Obtenció i caracterització dels fangs

Ajuntem els fangs obtinguts i els portem a assecar una temperatura de 30 ºC per no degradar la matèria.

D’aquests 200 litres, hem obtingut 120g de fangs. La caracterització d’aquests és:

- Sòlids volàtils: 110.800mg/kg
- Sulfats: 1.559,8 mg/kg
- Sílice: 4.200,0 mg/kg

Els límits de detecció de cadascun d’ells és: 5; 1,0; 0,1, respectivament. Analitzat segons L’Sandard methods fort the examination of water and wastewater APHA/AWWA/WEF 20th, Ed. 1998.

- Alumini: 37.281,8 ug/g
- Arsènic: 516.165 ug/g
- Calci: 8.952,6 ug/g

Els límits de detecció de cadascun d’ells és: 1,5; 0,001; 0,10, respectivament. Analitzat segons L’Environment Canada volume 2, 1994.

6.4 Assajos de lixiviats

Per saber la quantitat d’arsènic que es redissol, primer fem una prova en Batch. Agafem 2. 0g de
residu i ho portem a una dissolució de 100ml en un erlenmeyer amb les aigües de diferents pH -assagem a diferents pH (3, 7,10)-. Ho fem estar en contacte, un durant 2 hores i l’altra durant 24hores.

**Obtenció de l’aigua a diferents pH**

Per a l’obtenció de l’aigua de diferent pH es preparen 2 litres d’aigua destil·lada (25,1°C; 2,0uS/cm, o ppm de clor residual, pH: 6,21). Mitjançant el goteig de NaOH 6N obtenim la solució bàsica a pH 10,55. Gotejant HCl 6N tindrem l’àcida a pH:3,27. Podem veure els recipients a la figura 6.2

Portem els lixiviats filtrats a analitzar la quantitat d’alumini i la d’arsènic que contenen.

La codificació i els resultats els veiem representats en la taula 6.1

<table>
<thead>
<tr>
<th>Codi</th>
<th>Tipus d’aigua</th>
<th>Temps</th>
<th>Resultats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Àcida  Neutra Bàsica</td>
<td>2h</td>
<td>24h</td>
</tr>
<tr>
<td>B1</td>
<td>x</td>
<td>X</td>
<td>&lt;0.15</td>
</tr>
<tr>
<td>B2</td>
<td>X</td>
<td>X</td>
<td>&lt;0.15</td>
</tr>
<tr>
<td>B3</td>
<td>x</td>
<td>X</td>
<td>&lt;0.15</td>
</tr>
<tr>
<td>B4</td>
<td>x</td>
<td>X</td>
<td>&lt;0.15</td>
</tr>
<tr>
<td>B5</td>
<td>X</td>
<td>X</td>
<td>&lt;0.15</td>
</tr>
<tr>
<td>B6</td>
<td>x</td>
<td>X</td>
<td>&lt;0.15</td>
</tr>
</tbody>
</table>
figura 6.3 Representació dels resultats dels anàlisis de redissolució dels residus amb arsènic en Batch

**Batch segons temps residència**

El PNT de l’anàlisi de l’arsènic la podem trobar a l’annex 3.

En la figura 6.3 veiem com en les aigües neutres és on més arsènic es redissol.

Per fer les proves de lixiviats en continu hem dissenyat un test que consisteix a fer passar una quantitat determinada d’aigua a través d’un tub obert. Aquests tubs són de creació pròpia i es construeixen foradant la part de baix d’uns tubs d’assaig. A la punta de baix s’hi afgeix fibra de vidre i seguidament el material. Figura 6.4 i 6.5.
Proves amb suport de terres

Amb aquesta prova volem controlar la quantitat d’arsènic que es redissol sobre una proporció de terra. Assagem amb tres terres diferents: terra orgànica, arena, i argila (Bentonita). En un tub obert posem la fibra de vidre, el suport de la terra i 1.0000g de residu. Com que les densitats de les diferents terres és diferent, hem posat 10,00g de sorra, 5,00 g d’argila i 6,00g de sòl orgànic.

Fem circular 100ml d’aigua a diferents pH. Aquesta aigua la controlarem mitjançant uns embuts: 7cm de tub de plàstic i un dosificador –com mostra la figura 6.6.

Figura 6.5 Detall del tub utilitzat en les proves. S’hi pot distingir la capa de terra de suport i la capa de residu

Figura 6.6 Estructura del disseny per fer les proves de lixiviat
A l’hora de calcular l’obertura del dosificador, és a dir, la velocitat de l’aigua, procurem que el fang sempre estigui saturat, això és, que fins que no s’acabi, el tub sempre estigui ple d’aigua.

L’efluent generat el recollirem en un vas de precipitats i ho portarem a analitzar mitjançant la codificació següent. Els resultats s’expressen segons la taula 6.2.

Taula 6.2 on s’expressa la codificació i els resultats dels anàlisis de l’àfluent un cop a passat pel tub amb residu i terra.

<table>
<thead>
<tr>
<th></th>
<th>2h</th>
<th>24h</th>
<th>A</th>
<th>N</th>
<th>B</th>
<th>Arena</th>
<th>Argila</th>
<th>Orgànica</th>
<th>[As] ug/L</th>
<th>[Al] mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>125,3</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>195,1</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>153</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>179,2</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>93,39</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>144,5</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>134,9</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>145,3</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>151,2</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>189,6</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>83,52</td>
<td>&lt;0.15</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>202,5</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>200,7</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>194,1</td>
<td>0,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>188,1</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>169,1</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>151,7</td>
<td>0,34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figura 6.7 Representació gràfica dels resultats dels anàlisis de l’aigua un cop a passat pel tu on hi ha residu i terra

En la figura 6.7 es descobreix els resultats del text de lixiviats executat amb diferents terres de suport i diferents pH de les aigües.

Veiem com el cas de la terra orgànica no ens és favorable ja que la concentració d’As en el lixiviat és molt més alt que amb les altres dues terres. Això pot ser perquè la matèria orgànica acostuma a estar carregada negativament, així té més tendència a intereccionar amb un catió que no amb un anió com pugui ser les diferents formes de l’As (V). (H₃AsO₄⁻₄, H₂AsO₄⁻)

La sorra sembla la més favorable, però no en tots els casos. Depèn del pH de l’aigua. Quan l’aigua és bàsica, el lixiviat de sorra és menor que el d’argila; i quan l’aigua és neutra o àcida, l’argila és millor que la sorra. L’argila té una gran capacitat d’absorció ja que la seva àrea superficial específica, així té una gran capacitat d’absorció S-H.

En la taula 6.3 hem comparat el percentatge de retenció segons les diferents acideses de l’aigua i els diferents tipus de sòls; veiem que la variació no és significativa.
Taula 6.3 Comparació del percentatge de retenció de l’arsènic segons l’acidesa i el tipus de sòl.

<table>
<thead>
<tr>
<th></th>
<th>Àcida</th>
<th>Neutra</th>
<th>Bàsica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorra</td>
<td>97,2%</td>
<td>96,5%</td>
<td>96,2%</td>
</tr>
<tr>
<td>Argila</td>
<td>97,7%</td>
<td>96,3%</td>
<td>97,1%</td>
</tr>
<tr>
<td>Orgànica</td>
<td>97,0%</td>
<td>96,3%</td>
<td>96,1%</td>
</tr>
</tbody>
</table>

Quant al temps de residència, veiem en la figura 6.8 que excepte les terres orgàniques, a dues hores el lixiviat sempre és menor que a 24 hores. Així, a partir d’ara, com que ja sabem que la terra orgànica no ens serveix, farem servir sempre 24 hores per ubicar-nos en la situació més desfavorable.

Figura 6.8 Representació gràfica de la concentració dels lixiviats segons els temps de residència
6.5 Identificació i obtenció dels tipus de residus òptims per fer d’estabilitzant

Ja hem vist que segons en el treball de la Dra. Mariño -annex 2-, l’estearat interacciona amb l’arsènic, (Mariño, 1995) provocant una acció de coprecipitació d’elevada efectivitat ja que contenen cations trivals altament insolubles. Així considerem que els residus familiars greixosos generats en un habitatge tipus de l’estudi són un bon punt de partida. La composició dels greixos la veiem a la taula 6.4.

A més hi afegirem calç ja que a part de neutralitzar els greixos evitant la formació de microorganismes, també té un efecte complementari en qüestió d’estabilització de l’arsènic, també per efectes superficials. (Ponce de Léon, 1999). La calç (Ca(OH)$_2$) s’hidrolitza i es combina amb àcid carbònic per formar carbonat de calc, el qual actua com a agent sorbent.

Taula 6.4 Descripció de la composició del greixos d’origen animal

<table>
<thead>
<tr>
<th>GREIXOS D’ORIGEN ANIMAL (1)</th>
<th>SÈU</th>
<th>LLARD</th>
<th>GRASSA MESCLA</th>
<th>POLLASTRE</th>
<th>MANTEGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil Ac. Grassos (% Grassa vertadera)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C&lt;14</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
<td>12.5</td>
</tr>
<tr>
<td>Mirísic</td>
<td>C14:0</td>
<td>3.2</td>
<td>1,6</td>
<td>2,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Palmitíic</td>
<td>C16:0</td>
<td>24.8</td>
<td>23,4</td>
<td>23.5</td>
<td>21,0</td>
</tr>
<tr>
<td>Palmitoleïc</td>
<td>C16:1</td>
<td>3,2</td>
<td>3,1</td>
<td>3,6</td>
<td>5,4</td>
</tr>
<tr>
<td>Esteàric</td>
<td>C18:0</td>
<td>21,3</td>
<td>13,3</td>
<td>15,0</td>
<td>7,1</td>
</tr>
<tr>
<td>Oleic</td>
<td>C18:1</td>
<td>38,3</td>
<td>42,4</td>
<td>42,5</td>
<td>41,0</td>
</tr>
<tr>
<td>Linoleic</td>
<td>C18:2</td>
<td>2,0</td>
<td>10,5</td>
<td>&gt;7,5</td>
<td>20,5</td>
</tr>
<tr>
<td>Linolènic</td>
<td>C18:3</td>
<td>tr.</td>
<td>1,0</td>
<td>1,0</td>
<td>1,6</td>
</tr>
<tr>
<td>C&gt;=20</td>
<td></td>
<td>tr.</td>
<td>1,6</td>
<td>&lt;2,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Característiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índex Iode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Títol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. Saponificació</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturad./Insaturad.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la taula 6.4 observem que quin té més percentatge de composició d'àcid esteàric, que crearà una sal grassa associada a l’alumini, és el greix de porc i coincideix amb la base alimentària de les comunitats estudiades. Per tant, decidim que sigui el greix de porc. L’altra opció hauria estat el que tenia menys percentatge, el pollastre, per simular la situació crítica però, com que no és un animal freqüent a les altures que ens referim vam preferir experimentar amb el greix de porc.

7. Realització de les proves d’estabilització dels fangs obtinguts.

Les activitats proposades en el projecte presentat es redueixen a la proposta d’estabilització amb estearat i calç, i les seves millores.

7.1 Proposta d’estabilització amb estearat i calç

Per tal de dur a terme les proves d’estabilització, mesclem 30.0000g del fang (argila que conté As); 30,00g de grassa de porc; 25,15g de calç i 30,00g d’aigua. D’això en surt una pasta granulada, tal i com veiem a la figura 7.1.

Per decidir aquestes proporcions ens basem en l’article de Cantanhere-annex 4- que va estudiar la utilització dels residus d’argiles mesclades amb greixos i olis de la indústria pesquera com a membrana impermeable en rebliments sanitaris, com a reutilització d’aquest suposat residu i en alternativa a materials sintètics. Van fer servir els residus d’una indústria de manufacturació del peix: argila activada amb restes de greixos i olis de peix, que es convertien en un residu de difícil tractament, mesclats amb diferents proporcions de calç i d’aigua per estudiar la lixiviació i l’estabilització química i física del material. Van comprovar que la utilització d’aquest residu és una bona alternativa com a barrera de seguretat en
rebliments sanitaris.

La calç a més de ser un gran inertitzador, té afectes sobre la retenció de l’arsènic ja que s’hidrolitza i es combina amb àcid carbònic per formar carbonat de calci, el qual actua com a agent sorbent.

Figura 7.1 Mescla de fang, greix, calç i aigua

Per poder comparar amb els altres anàlisis fets, calculem que per a cada gram de fang posat són 4.0 grams de la mescla resultant. Per tant, fem el mateix procediment que amb les proves amb diferents terres. Ara el fang serà la mescla estabilitzada.

Les mostres i les condicions d’anàlisi es recullen en la taula 7.1

Taula 7.1 Taula resum dels resultats de les concentracions dels lixiviats del residu estabilitzat

<table>
<thead>
<tr>
<th>Codi</th>
<th>Tipus d’aigua</th>
<th>Temps de residència</th>
<th>Tipus de sòl</th>
<th>Resultats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Àcida</td>
<td>Neutre</td>
<td>Bàsica</td>
<td>2h</td>
</tr>
<tr>
<td>B1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B4</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Avaluació i desenvolupament d’un estabilitzant de baix cost per als residus en l’eliminació d’arsènic a nivell domiciliari en zones rurals i disperses

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>0,39</td>
<td></td>
<td>0,36</td>
</tr>
<tr>
<td>B6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>0,21</td>
<td></td>
<td>0,32</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>1,21</td>
<td></td>
<td>0,92</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>1,15</td>
<td></td>
<td>1,02</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>&lt;0,10</td>
<td></td>
<td>1,18</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>&lt;0,10</td>
<td></td>
<td>&lt;0,15</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>0,45</td>
<td></td>
<td>0,32</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>0,29</td>
<td></td>
<td>&lt;0,15</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>20,04</td>
<td></td>
<td>0,48</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>15,68</td>
<td></td>
<td>0,52</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>23,76</td>
<td></td>
<td>0,54</td>
</tr>
</tbody>
</table>
Figura 7.2 Representació gràfica de la concentració d’As en els lixiviats dels residus estabilitzats

En la figura 7.2 veiem com amb el suport orgànic, i com ja havíem intuït en la primera prova, no és un suport vàlid. En temes de l’acidesa de l’aigua no tenim cap diferència significativa.

Quan ha passat un mes, es repeteix la prova amb la mateixa mescla feta abans. Es comprova que la mostra manté l’aspecte igual a nivell sensorial (olor i vista) i es torna a passar 100ml d’aigua.

La codificació i els resultats es recullen a la taula 7.2.

<table>
<thead>
<tr>
<th>Codi</th>
<th>Tipus d’aigua</th>
<th>Tipus de sòl</th>
<th>[As] ug/L</th>
<th>[Al] mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>X</td>
<td>X</td>
<td>0,76</td>
<td>1,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2N</td>
<td>X</td>
<td>X</td>
<td>5,2</td>
<td>1,48</td>
</tr>
<tr>
<td>3B</td>
<td>X</td>
<td>X</td>
<td>5,11</td>
<td>1,08</td>
</tr>
<tr>
<td>4A</td>
<td>X</td>
<td>X</td>
<td>2,54</td>
<td>&lt;0,15</td>
</tr>
<tr>
<td>5N</td>
<td>X</td>
<td>X</td>
<td>1,23</td>
<td>0,4</td>
</tr>
<tr>
<td>6B</td>
<td>X</td>
<td>X</td>
<td>0,84</td>
<td>0,22</td>
</tr>
<tr>
<td>7A</td>
<td>X</td>
<td>X</td>
<td>58,37</td>
<td>0,36</td>
</tr>
<tr>
<td>8N</td>
<td>X</td>
<td>X</td>
<td>62,86</td>
<td>2,28</td>
</tr>
<tr>
<td>9B</td>
<td>X</td>
<td>X</td>
<td>37,58</td>
<td>0,34</td>
</tr>
</tbody>
</table>
Figura 7.3 Representació gràfica de la concentració dels lixiviats dels residus estabilitzats un cop a passat un mes.

Passat un mes, com veiem en la figura 7.3, el suport que respon millor a les nostres necessitats és l’argila, tot i que amb aigua àcida la sorra té menys lixiviats, però en conjunt l’argila és la idònia.

7.2 Millora del producte d’estabilització

Perquè la massa quedi compacta i per simplificar als usuaris els càlculs per fer la massa del producte estabilitzat proposem posar igual part d’aigua i de fang, més la meitat de calç, amb greix animal fins que absorbeixi. No hi ha diferències significatives en els resultats.

8. Aplicació al camp dels resultats obtinguts al laboratori

L’aplicació al camp es va portar a terme a la comunitat de Pelipeline, al districte d’Achaya,
província d’Azángaro, al departament de Puno, a uns 37Km al nord-est de la ciutat de Juliaca. La comunitat té 91 famílies amb una població aproximada de 420 persones, la majoria es dedica a l’agricultura i la ramaderia.

Aquesta acció fou una petició del *Japan Bank for International Cooperation (JBIC)*, en recolzament amb el Fondo de Cooperación para el Desarrollo Social (FONCODES), que va sol·licitar al CEPIS que realitzés una avaluació al camp de la qualitat de laigua de cinquanta pous ubicats a la comunitat camperola de Pelipeline i estudiar alguna mesura de fàcil ús i baix cost per millorar la qualitat de l’aigua en aquesta zona rural de baixos ingressos.

En aquest estudi de tractament de l’aigua amb arsènic sol·licitat pel JBIC es va utilitzar el producte ALUFLOC, tot i reconèixer que existeixen altres alternatives que podrien ser avaluades i comparades amb els resultats del present estudi. Els objectius eren:

**Principal**

Determinar el nivell de contaminació de cada pou en la comunitat de Pelipeline i recomanar solucions sòlides i provades per a la remoció dels contaminants identificats.

**Específics**

1. Determinar les característiques de l’aigua de cinquanta pous predeterminats per FONCODES, realitzar la presa de mostres, medicions de camp i laboratori.

2. Identificar i conduir anàlisis d’aigua de fonts alternes, com manantials i del riu Azángaro.

3. Provar l’eficàcia del producte ALUFLOC en el tractament de remoció d’arsènic a nivell domiciliari.
4. Realitzar una enquesta sobre el nivell de satisfacció de la població per tenir pous, les malalties de major incidència relacionades amb l’aigua i el desig de pagar que té la comunitat per millorar la qualitat d’aigua dels seus pous.

5. Avaluar el cost/efectivitat de l’ALUFLOC. Estudiar la forma d’adquisició del coagulant per als usuaris. Recomanar les activitats de seguiment relacionades amb l’ús del coagulant.

6. Preparar i aplicar un manual per a l’ús de l’ALUFLOC. Figura 8.1

Un dels objectius principals del projecte era poder oferir a la comunitat una tecnologia completa i sostenible. Perquè això sigui possible hi ha d’haver un bon traspàs de la informació i dels coneixements.

Una de les estratègies que es fan servir actualment són els tallers in situ, per al bon apoderament de la comunitat amb la tecnologia. Així es va dissenyar un manual, “cartilla”, que ells n’anomenen. En aquest manual s’ha intentat de la manera més senzilla i entenedora explicar, pas a pas i amb fotografies properes, el procediment que cal seguir per fer un bon ús i obtenir la màxima utilitat de l’ALUFLOC. Aquest manual el podeu veure a l’annex 5.

El dia que vam fer les proves amb l’ALUFLOC, se’ls va repartir el manual i vam fer pas a pas tot el que s’hi explicava. Figura 8.2
El manual està fet amb fotografies que ds siguin properes i explicacions senzilles i fàcils de repetir.

Podeu veure l’informe d’aquest estudi a l’annex 9.

Així la recomanació per la disposició dels fangs consisteix en crear un forat de 1m$^3$ amb un drenatge perimetral.

A les parets i al fons posar-hi una primera capa distribuïda uniformement de greix i calç sense residu per crear el primer aïllant. El terra és argilós, per tant ens ajudarà a crear aquesta capa.

Després del tractament amb ALUFLOC, els residus generats-amb la mínima quantitat d’aigua possible- s’aniran buidant en un petit dipòsit on es mesclarà amb el greix i la calç i on s’espera que es vaporitzí la màxima quantitat d’aigua.

Mesclarem el residu amb greix i calç. Per cada part de residu aigualit, mitja part de calç i mitja de greix animal; es mescla tot fins que quedi una massa compacta.

Ara ja podem anar dipositant la mescla del residu amb el greix i la calç dins el forat i aquest es tapa per seguretat.

Aquest procediment es pot fer un cop per setmana i es recomana que sempre sigui la mateixa persona encarregada de la disposició dels fangs a la cèlala.

S’estima una vida útil de la cèl·la de quatre anys. Un cop el forat estigui ple, es posa una capa
d’argila i una capa de terra per a replantar.

9. Disseminació dels resultats

Per donar a conèixer els resultats i els procediments per a la correcta disposició dels fangs de l’eliminació de l’arsènic, s’ha assistit i/o organitzat diferents actes per a la disseminació dels resultats:

- Durant l’estada a Perú vam participar en el “III curso nacional de entrenamiento en control de calidad del agua”, (Trujillo, del 12 al 31 d’octubre del 2003). Aquest curs va ser organitzat per SUNASS, la “Superintendencia Nacional de Servicios de Saneamiento”, organisme regulador dels serveis de sanejament. La nostra ponència fou sobre l’arsènic, les alternatives d’eliminació i la correcta disposició i gestió dels fangs provocats.

- Xerrada dins l’Associació Catalana d’Enginyeria Sense Fronteres sobre els processos d’eliminació d’arsènic en zones rurals i disperses i la seva correcta disposició i gestió dels fangs generats.


- Aquest estudi està a la base de dades del MIT sobre tecnologies de mitigació de la presència d’arsènic a l’aigua per beure.

10. Comparativa de la situació a Catalunya

Si la mateixa problemàtica, la de l’hidroarsenisme, es donés a Catalunya, la situació seria molt diferent ja que la realitat socioeconòmica dista molt de la viscuda a la serralada peruana. La distribució poblacional de Catalunya és molt més concentrada, i la majoria de gent té aigua corrent a casa. Tenint en compte l’excepció que alguna població dels Pirineus tingüés hidroarsenisme, la relació amb la resta de la població és tant freqüent que amb un emmagatzematge del residu, cada dos o tres mesos, ja n’hi hauria
prou per portar-lo a gestionar. Tot i això, el procés seria:

Catalogació del residu:

<table>
<thead>
<tr>
<th>PARÀMETRES</th>
<th>PER RESIDUS SÒLIDS</th>
<th>PER RESIDUS LÍQUIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20190</td>
<td>Llots de tractament d’efluents (pretractaments, depuradores…)</td>
<td>Tractament d’efluents finals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Segons el Decret 92/999 de 6 d’abril, modificació del Decret 34/1996, de 9 de gener, pel qual s’aprova el Catàleg de residus de Catalunya (annex 8), el residu generat per l’ALUFLOC (o sistemes semblants amb argila i sulfat d’alumini en plantes potabilitzadores) seria “no especial”. Les vies de valorització podríen ser la utilització en profit de l’agricultura o el compostatge; el tractament i la disposició de rebufig seria: abocament de residus no especials, tractament per evaporació i estabilització.

**Vies de valoració**

Les vies de valoració, com a profit de l’agricultura, no són la millor alternativa en el nostre cas, ja que tenen un paràmetre característic, l’arsènic, que faria contaminar el sòl. Evitarem així, fets com els que actualment estan passant amb els adobs, productes de la valorització dels residus de la indústria química, que a més de nitrats i fosfats, necessaris com a adobs, també hi ha metalls pesats que contaminaen els aliments que s’hi conreien. El mateix passaria amb el compostatge. Per tant, despreciem aquestes alternatives.

**Tractament i disposició del rebufig**
Dins les alternatives per al tractament i disposició del rebiug, existeix l’evaporació i l’estabilització que, com en l’apartat d’abans, no tenen en compte les traces d’arsènic que conté el nostre rebiug. Així doncs, la millor alternativa per a disposició del rebiug serà l’abocament com a residu no especial.

Aquesta classificació es confirma pel Decret que classifica el producte de rebiug segons els valors específics d’alguns paràmetres i segons l’eluat de DIN 38414-S4.

Pel que fa a la presència d’arsènic als residus, el decret 1/1997, de 7 de gener de 1997, sobre la disposició del rebiug en dipòsits controlats, considera que el residu acceptable per a un dipòsit controlat de classe I, per a residus inerts, pot ser de fins a 250mg/kg de s.m.s. Si la concentració d’arsènic és inferior a 2.000mg/kg, s’haurà de deposar en un dipòsit controlat de classe II, per a residus no especials.

També, per als criteris d’acceptació segons l’eluat, manifesta que si aquest no arriba a 0,1mg/l s’haurà de deposar en un dipòsit controlat de classe I. Si està entre 0,1mg/l i 0,5mg/l, el dipòsit controlat serà de classe II, i fins a 1mg/l anirà en un de classe III.

Per tot això, tot i que hi hagi arsènic en el nostre residu, es pot deposar en un dipòsit controlat de classe II, ja que la presència d’arsènic en el sòlid és de 516,2ug/g i el lixiviat màxim –que tot i no haver estat fet segons el sistema DIN 38414-S4 té uns resultats molt semblants– és de 202,5ug/L, és a dir 0,025mg/L, que és el límit per deposar-se en abocadors de classe II.

Tots els altres paràmetres característics del nostre residu no tenen cap limitació per poder ser disposats en els abocadors.

11. Pressupost

Aquest projecte ha tingut un cost de 23.788€. Els finançadors han estat el Centre de Cooperació per al Desenvolupament de la Universitat Politècnica de Catalunya, la contrapart i les comunitats involucrades i el departament d’Enginyeria Química de la Universitat Politècnica de Catalunya. L’estudiant està inclosa dins aquest últim grup.

En la partida viatge i estada hi està inclòs el viatge i l’assegurança, a preu de mercat segons l’agència de viatges. En les dietes de l’estudiant s’ha ponderat al cost de vida de Perú i surt a 10 €/dia.
L’allotjament recomanat per la contrapart tenia un cost de 18€/nit; les despeses diàries es contemplen com a 3€/dia. Els desplaçaments a les diferents comunitats on s’hi va fer part de l’estudi varen tenir un cost unitari aproximat de 30€ i se’n feren quatre.

En la partida de Serveis hi ha les comunicacions entre Lima i Barcelona, entre Lima i comunitats, tant per mitjà escrit com telefònic; això ha fet un total de 300€. Pel que fa a la bibliografia, és el cost de consulta i reproducció a la biblioteca del CEPIS.

En la secció personal s’hi inclou l’assessorament per part de la UPC i per part del CEPIS segons taula salarial del CEPIS. També s’hi inclou el sou d’un enginyer junior segons taula salarial d’ONG de cooperació tècnica.

En quant a anàlisis està reproduït el pressupost presentat pel CEPIS. Hi ha una partida de reactius, 500€; 50 anàlisis d’As a 15€ cadascuna; 150 anàlisis a altres metalls a 15€ cada anàlisi i d’altres anàlisis a 100€.

En l’apartat de difusió i sensibilització hi ha el congrés a Xile, que fa un total de 7358,00€ i el material de difusió que puja a 300€.

Finalment ens queda el suport administratiu, dins la partida de coordinació que fa un total de 96€.

El pressupost detallat es recull a la taula 11.1
### Taula 11.1 Pressupost detallat

**Avaluació i desenvolupament d’un estabilitzant de baix cost per als residus generat en l’eliminació d’arsènic a nivell domiciliar i zones rurals i disperses d’Amèrica Latina**

<table>
<thead>
<tr>
<th>Temps a Perú (semanes)</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durada total (semanes)</td>
<td>16</td>
</tr>
<tr>
<td>Numero de participants</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSUPOST</th>
<th>Unitats</th>
<th>Preus unitaris (€)</th>
<th>Total</th>
<th>CCD</th>
<th>UPC/EQ</th>
<th>CEPIS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Viatge i estada</td>
<td>1</td>
<td>700,00</td>
<td>2.690,40</td>
<td>102,00</td>
<td>991,60</td>
<td>3.784,00</td>
<td></td>
</tr>
<tr>
<td>Viatge pais (uds)</td>
<td>12</td>
<td>30,00</td>
<td>360,00</td>
<td>360,00</td>
<td>360,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assegurança viatge (semana)</td>
<td>12</td>
<td>10,00</td>
<td>840,00</td>
<td>450,00</td>
<td>390,00</td>
<td>840,00</td>
<td></td>
</tr>
<tr>
<td>Allotjament (dia)</td>
<td>84</td>
<td>18,00</td>
<td>1.512,00</td>
<td>1.058,40</td>
<td>453,60</td>
<td>1.512,00</td>
<td></td>
</tr>
<tr>
<td>Despeses diàries (dia)</td>
<td>84</td>
<td>3,00</td>
<td>252,00</td>
<td>50,00</td>
<td>102,00</td>
<td>252,00</td>
<td></td>
</tr>
<tr>
<td>desplaçaments comunitat (uds)</td>
<td>4</td>
<td>30,00</td>
<td>120,00</td>
<td>72,00</td>
<td>48,00</td>
<td>120,00</td>
<td></td>
</tr>
<tr>
<td>2 Serveis</td>
<td></td>
<td>900,00</td>
<td>0,00</td>
<td>150,00</td>
<td>750,00</td>
<td>900,00</td>
<td></td>
</tr>
<tr>
<td>Comunicacions (mes)</td>
<td>6</td>
<td>50,00</td>
<td>300,00</td>
<td>0,00</td>
<td>150,00</td>
<td>150,00</td>
<td></td>
</tr>
<tr>
<td>Biobibliografia</td>
<td>1</td>
<td>600,00</td>
<td>600,00</td>
<td>600,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Personal</td>
<td></td>
<td>8.800,00</td>
<td>0,00</td>
<td>7.200,00</td>
<td>1.600,00</td>
<td>8.800,00</td>
<td></td>
</tr>
<tr>
<td>Assessor-UPC</td>
<td>16</td>
<td>100,00</td>
<td>1.600,00</td>
<td>1.600,00</td>
<td>1.600,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assessor-CEPIS</td>
<td>16</td>
<td>100,00</td>
<td>1.600,00</td>
<td>1.600,00</td>
<td>1.600,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enginyera junior</td>
<td>4</td>
<td>1.400,00</td>
<td>5.600,00</td>
<td>5.600,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Anàlisis</td>
<td></td>
<td>2.850,00</td>
<td>0,00</td>
<td>100,00</td>
<td>2.750,00</td>
<td>2.850,00</td>
<td></td>
</tr>
<tr>
<td>Reactius</td>
<td>1</td>
<td>500,00</td>
<td>500,00</td>
<td>500,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anàlisis As</td>
<td>50</td>
<td>15,00</td>
<td>750,00</td>
<td>750,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anàlisis altres metalls</td>
<td>150</td>
<td>10,00</td>
<td>1.500,00</td>
<td>1.500,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altres anàlisis</td>
<td>1</td>
<td>100,00</td>
<td>100,00</td>
<td>100,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Difusió i sensibilització</td>
<td></td>
<td>7.358,00</td>
<td>3.600,00</td>
<td>1.148,00</td>
<td>2.610,00</td>
<td>7.358,00</td>
<td></td>
</tr>
<tr>
<td>Congrés a Xile</td>
<td>1</td>
<td>7.058,00</td>
<td>3.600,00</td>
<td>998,00</td>
<td>2.460,00</td>
<td>7.058,00</td>
<td></td>
</tr>
<tr>
<td>Material de difusió</td>
<td>1</td>
<td>300,00</td>
<td>150,00</td>
<td>150,00</td>
<td>300,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Coordinació</td>
<td></td>
<td>96,00</td>
<td>0,00</td>
<td>96,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suport administratiu</td>
<td>16</td>
<td>6,00</td>
<td>96,00</td>
<td>96,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td></td>
<td>23.788,00</td>
<td>6.290,40</td>
<td>8.796,00</td>
<td>8.701,60</td>
<td>23.788,00</td>
<td></td>
</tr>
</tbody>
</table>

L’única partida que era a concurs va ser la del CCD, que ens en va concedir un percentatge lleugerament inferior. Així doncs, vam fer una reformulació en què la partida de comunicació es repartia a parts iguals entre el CEPIS i el departament d’Enginyeria Química i vam poder negociar una rebaixa de l’estada amb l’allotjament.

A més a més, en l’apartat de difusió hi ha l’anada a la conferència internacional “Evaluation and
management of drinking water sources contaminated with arsenic” i això també representa: viatge, estada, serveis i coordinació. Per tant, si redistribuïm les partides ens queda el resum recollit en la taula 11.2.

Taula 11.2 Taula-resum de la distribució de costos del projecte segons partides i finançadors

<table>
<thead>
<tr>
<th>PRESSUPOST</th>
<th>CCD</th>
<th>UPC/EQ/estudiant</th>
<th>contraparts i comunitats</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Viatge i estades</td>
<td>5.640,40 €</td>
<td>152,00 €</td>
<td>3.201,60 €</td>
<td>8.994,00 €</td>
</tr>
<tr>
<td>2 Serveis</td>
<td>550,00 €</td>
<td>500,00 €</td>
<td>1.000,00 €</td>
<td>2.050,00 €</td>
</tr>
<tr>
<td>3 Personal</td>
<td>0,00 €</td>
<td>7.200,00 €</td>
<td>1.600,00 €</td>
<td>8.800,00 €</td>
</tr>
<tr>
<td>4 Anàlisis</td>
<td>0,00 €</td>
<td>100,00 €</td>
<td>2.750,00 €</td>
<td>2.850,00 €</td>
</tr>
<tr>
<td>5 Difusió</td>
<td>100,00 €</td>
<td>250,00 €</td>
<td>150,00 €</td>
<td>500,00 €</td>
</tr>
<tr>
<td>6 Coordinació</td>
<td>0,00 €</td>
<td>594,00 €</td>
<td>0,00 €</td>
<td>594,00 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.290,40 €</td>
<td>8.796,00 €</td>
<td>8.701,60 €</td>
<td>23.788,00 €</td>
</tr>
</tbody>
</table>
En la figura 11.1 veiem la distribució del pressupost segons l’organisme finançador. Així el CCD ha finançat el 26%, les contraparts i comunitats el 37% i la universitat mitjançant el departament d’enginyeria química i l’estudiant l’altre 37%.
En la figura 11.2 veiem la distribució del finançament segons les partides pressupostades. Les partides i els volums serien: Viatge i estades 37,81%; personal 36,99%; anàlisis 11,98%; serveis 8,62%; coordinació 2,50% i difusió 2,10%.

12. Cronograma

En la taula 12.1 es passa a descriure el cronograma d’execució del projecte. Inicialment estava distribuït en 4 mesos, però a causa primer d’unes reunions internacionals i el suport en la organització d’aquestes i després per unes inundacions que varen retrasar l’execució al camp es va ampliar dos mesos.
### Taula 12.1 Cronograma de l’estada a Perú

Cronograma de les activitats previstes en el projecte:

Correcta gestió i disposició dels fangs obtinguts de l’aplicació de l’ALUFLOC per a remoció d’As

<table>
<thead>
<tr>
<th>Activitat</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerca bibliogràfica</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Coneixement de la infraestructura pròpia</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Coordinació de l’estadia</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Contacte amb fabricació a baix cost d’ALUFLOC</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Contacte amb profe postgrau Jorge Villena</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Coordinació amb Jorge Villena</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Disseny i anàlisis de procediments i mecanismes d’estabilització</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Preparació de l’ALUFLOC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Reconeixement de la zona pròxima</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprovació i determinació</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de l’existència d’As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------------------------------</td>
<td>--------------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtenció de diferents mostres amb As per a laboratori</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proves de remoció de l’As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obtenció de fangs de remoció d’As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anàlisi de continguts dels fangs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reunió amb Rosalina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proves d’estabilització dels fangs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elecció i revisió del mètode escollit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identificació de millores en l’estabilitzant escollit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proves al camp (Ilo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anàlisi de les proves de camp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redacció i conclusió del projecte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
setmanes ocupades en reunions o l’organització d’aquestes vacances
modificació del cronograma inicial

Queden indicades les modificacions definitives ja que el previst inicialment va quedar fora d’ús per les reunions internacionals que vam haver d’atendre: “Reunión regional de supervisores de laboratorios en CEPIS, Lima-Perú 28-30 d’octubre del 2003”, dins del projecte “Promoció y mejoramiento de la capacidad y calidad analítica de los laboratorios de Salud y Ambiente de América Latina y El Caribe”, finançat pel Center for Disease Control and Prevention (CDC); “Taller de cooperación técnica en países prioritarios”, on durant quatre dies es van reunir els representats de l’OPS de cadascun dels cinc països considerats prioritaris per l’OMS (Bolivia, Guyana, Haití, Honduras i Nicaragua) amb el CEPIS (oficina de cooperació tècnica de l’OPS/OMS) i amb representats de diferents organitzacions amb la capacitat de generar cooperació tècnica, capacitació, sinergies... per recolzar els processos en aquests països.

13. **Estudi d’impacte ambiental**

L’alteració, la modificació o el canvi que es produeixi en l’ambient o en algun dels seus components quan es porta a terme un projecte o activitat és anomenat impacte ambiental (IA).


Aquesta llei classifica les activitats en tres grans grups, en funció de la incidència ambiental que puguin tenir, segons sigui elevada, moderada o baixa, de tal manera que la intervenció administrativa també varia i és més o menys intensa o pot arribar a no haver-n’hi en les activitats d’incidència ambiental baixa.

Al mateix temps s’intenta dur a terme un enfocament integrat en el procediment de valoració dels diferents tipus d’emissions a l’aigua, a l’aire i al sòl, evitant que es produeixi una transferència de contaminació d’un medi a un altre.

Aquesta llei exigeix a tota empresa la presentació d’un estudi d’impacte ambiental a
l’administració.

Així el nostre projecte estaria classificat en l’annex II.2: 10.8 Instal·lacions per a l’emmagatzematge de residus no perillosos, tal com es defineixen a la llista europea de residus (t)\leq 20.

Durant l’elaboració de l’estudi, les anàlisis i les proves no s’ha produït cap impacte en l’atmosfera, ni en sorolls, ni vibracions. L’aigua que s’utilitzava es buidava en recipients -figura 13.1- de vidre prèviament etiquetats i classificats. En l’etiqueta hi constava el codi d’identificació del residu, la data d’envasament i la naturalesa dels riscos que presenta el residu. En el cas d’aquest projecte era únicament l’arsènic.

![Figura 13.1 Detall del recipient on s’hi dipositava els residus amb arsènic](image)

14. **Conclusions i recomanacions**

En la remoció de l’arsènic en aigües de consum existeixen molts sistemes i tecnologies, tots efectius i aptes. Una gran part d’aquests mètodes només són aplicables en països on les xarxes de subministrament d’aigua potable arriben a tota la població. Així, no són aplicable a països en via de desenvolupament.

Tanmateix aquesta darrera dècada s’han desenvolupat processos d’eliminació d’arsènic de l’aigua...
per beure en zones rurals i disperses que han demostrat ser viables. Entre elles podem destacar l’eliminació mitjançant processos de coagulació (mètode ALUFLOC) i mitjançant filtres de ferro (KANCHAN FILTER)

Ambdós processos permeten reduir la concentració d’arsènic per sota dels límits marcats per la OMS. En la bibliografia es recullen exemples iniciaus d’implantació a escala local a Amèrica del Sud i Nepal.

La implantació d’aquests sistemes de tractament genera un problema de gestió dels residus d’arsènic generats en les unitats de tractament.

La revisió crítica de la tecnologia d’estabilització de residus d’arsènic ha demostrat que la tècnica més viable des del punt de vista econòmic i tecnològic és l’estabilització mitjançant àcids grassos.

La immobilització dels fangs d’arsènic generats en el procés de coagulació es realitza en base a una mescla de grasses d’origen animal i cal. El fonament d’aquest procés d’estabilització està basat en fer servir sals grasses associades a alumini per així una reacció superficial d’elevada efectivitat ja que contenen cations trivalents altament insolubles. Sabem que disposat com a material filtrant, l’estearat pot retenir anions àcids d’acord a efectes de tamisatge molecular, intercanvi iònic ( poc probable per la baixa solubilitat o fenòmens de superfície. La calç contribueix a neutralitzar els greixos evitant la formació de microorganismes, a més de tenir un efecte complementari en qüestió d’estabilització de l’arsènic.

Els assaigs d’estabilització realitzats en el pressent estudi han consistit en la preparació de mostres de residus d’arsènic estabilitzats amb una mescla d’àcids grassos i calç i l’evolució de les tasses d’alliberació d’arsènic per processos de lixiviació.

En els assaigs de lixiviació s’han simulat que els fangs estabilitzats eren sotmesos a diferents escenaris on aigües subterrànies i/o superficials (medi àcid o medi bàsic) penetraven en les cel·les o dipòsits de disposició d’aquests residus.

Els resultats obtinguts indiquen que les tasses d’extracció d’arsènic dels fangs estabilitzats eren d’entre 1,2- 0,2 ug/L per sòls argilosos i arenosos; i de fins a 28ug/L en sòls orgànics. Aquests valors són menors que els obtinguts de la lixiviació dels residus d’arsènic sense estabilitzar on els resultats obtinguts eren de fins a 202 ug/L pel sòl orgànic i d’una mitjana de 140 ug/L pels sòls de sorra i argilà.

Si be s’ha fet una proposta inicial d’estabilització en base a àcids grassos i calç és necessari
realitzar estudis complementaris per:

a) estudiar els possibles efectes de la degradació biològica

b) estudiar els possibles efectes del potencial redox en el sistema As(III) As(V)

c) estudiar la cinètica del procés
15. Agraïments

Aquest projecte s’ha pogut tirar endavant gràcies a l’ajuda constant i generosa de Maria Luisa Castro de Esparza, assessora en assegurament de la qualitat i serveis analítics del CEPIS-PAHO i a tot l’equip humà que feren que la meva estada al CEPIS i a Lima hagi estat una experiència tant acadèmica com personal irrepeticible.

Aquesta experiència igualment no hagués estat possible sense el suport entusiasta de José Luis Cortina i el suport explícit del Centre de Cooperació per al desenvolupament. Gràcies per les oportunitats que brindeu als estudiants de conèixer nous països, noves realitats, ...

També mil gràcies a tots aquells que d’alguna manera o d’una altra han participat en el procés i/o en l’elaboració d’aquest projecte: Aina P., Àlex R., Carme V., José Luís B., Maria M., Miquel R.....

Però davant tots aquests agraïments no puc deixar d’anomenar a aquelles persones, associacions i col·lectius que fan de l’escola un nucli social i cultural, enriquir per a la gent que hi treballa i de ben segur per la gent que ens envolta: Delegació d’Estudiants, Enginyeria Sense Fronteres, Cineclub Enginyers.....Mil gràcies per fer dels que els anys que he passat a l’escola siguin inigualables.

I a voltros tres -Margalida, Llorenç i Nicolau-; que sense voltros res no és possible.

*Ovidi Montllor*
16. Bibliografía


AYERS, R.S. and Westcot, D.W. 1976 Water quality for agriculture. Irrigation and drainage paper


CAMPOS, V., Hypollito, R., Texeira, D., “Un Estudio sobre Contaminación de Acuíferos Asociadas a las Actividades Agrícolas – Cuenca del Alto Tieté, Estado de Sao Paulo, Brasil” (Internet 2002)

CEPIS-PAHO, Agua, no la tenemos tan segura. Dia interamericano del Agua. 4 octubre 2003

CHANG, A.C., Page, A.L. and Asano, T. 1995 Developing human health-related chemical


CWT, Wastewater Treatment Technologies, USA, 2001


EHDC, Environmental Health Directorate of Health Canada, “Arsenic”, Guidelines for Canadian Drinking


EPA, Region 10 Mining source book, Appendix E-Waster water management, USA, 2001


HOPENHAYN-RICH, C., Browning, S., Hertz-Picciotto, I., Ferreccio, C., Peralta, C., Gibb, G., “Chronic

http://2the4.net/arsenicart.htm

http://phys4.harvard.edu/%7Ewilson/nepal.html

http://phys4.harvard.edu/%7Ewilson/Nepal/Nepal1.htm

http://phys4.harvard.edu/~wilson/arsenic_project_thailand.html


http://www.eng-consult.com/arsen.htm


http://www.ucm.es/info/crismine/Geologia_Minera/Mineria_toxicidad.htm


http://www.wcaslab.com/tech/arsenic.htm


ICPMS, “Arsenic Analysis and Speciation”, California, ICPMS; (Internet 2002)

INFORME de Medicina Laboral, Arsénico. Internet. 2002


KWON, E, Hongquan Zhang, Zhongwen Wang, Gian S. Jhangri, Xiufen Lu, Nelson Fok, Stephan Gabos, Xing-Fang Li, and X. Chris Le. Arsenic on the Hands of Children after Playing in Playgrounds; Canada 2004


MARIÑO Beatriz Susana; Eliminación de Arsénico en aguas para consumo. ISA, Nº20 pag 51-52


OMS, “Environmental Health Criteria, No. 224: Arsenic”


RASMUSSEN, L., Jebjerg, K., “Arsenic in Drinking Water”, Cap. 2: Environmental Health and Human Exposure Assessment”, OMS.

RIVERA, M., Cortés, J., Soberanis, M., Martín, A., “Remoción de Hierro y Arsenico de Agua de Consumo Humano Mediante Precipitación y Adsorción en Zimapán, Hidalgo, Mexico”, AIDIS, Anales del XXVII Congreso Interamericano de Ingeniería Sanitaria y Ambiental : Las Américas y la Acción por el Medio Ambiente en el Mundo, Río de Janeiro, ABES, 2000, p.1-8 [t. IV]


SANDOVAL, L., Jauregui Mandujano, L.M. Tratamiento de residuos de arsénico provenientes del tratamiento del agua primera parte. Instituto Mexicano de Tecnología del Agua.


http://books.nap.edu/books/0309063337/html/1.html


TONDEL, M., Rahman, M., Chowdhury, I., Faruquee, M., Ahmad, A., Axelson, O., “Hypertension and Arsenic Exposure in Bangladesh”, Hypertension, 33: 74-78, En. 1999


UNESCO. Agua para Todos, agua para la Vida. Informe de las Naciones Unidas sobre el desenvolupament de recursos hídrics en el mon. Paris: Mundi-Premsa,2003-10-15


VANCE, D., “Arsenic Chemical Behavior and Treatment”, (Internet 2002)


WAYPA, J., Elimelech, M., Hering, J., “Arsenic Removal by RO and NF Membranes”,

WHO 1993 Guidelines for drinking-water quality: Volume 1, Recommendations, 2nd edition,


17. bibliografia complementària.

ANDERSON, L., Bruland, K., “Biogeochemistry of Arsenic in Natural Waters: The Importance of

ARAGONéS Sanz, N., Palacios Diez, M., Avello de Miguel, A., Gómez Rodríguez, P., Martínez Cortés,
M., Rodríguez Berabeu, M., “Nivell de Arsènico en Abastecimientos de Agua de Consumo de

Arsenic Website Project, “Chronic arsenic Poisoning: History, Study and Remediation” Tailandia

BENITEZ, M., Osicka, R., Gimenez, M., Garro, O., “Arsénico Total en Aguas Subterráneas en el
Centro-Oeste de la Provincia de Chaco”, Comunicaciones Cientificas y Tecnológicas 2000, Dic.
2000.

BLANCO Hernández, Angel, Alonso Gutiérrez, D., Jiménez de Blas, O., Santiago Guervós, M., De
Miguel Manzano, B., “Estudio de los Niveles de Plomo, Cadmio, Zinc y Arsénico, en Aguas de la

CALERON, R., Hudgens, E., Le, C., Schreinemachers, D., Thomas, D., “Excretion of Arsenic in Urine
as a Function of Exposure to Arsenic in Drinking Water”, Environ. Health. Perspect., 107(8),


CONCHA, G., Nermeli, B., Vathter, M., “Metabolism of Inorganic Arsenic in Children with Chronic
High Arsenic Exposure in Northern Argentina”, Environ. Health. Perspect., 106(6), 355-359,


FLORES, Y., “Análisis Químico Toxicológico y Determinación del Arsénico en Aguas de Consumo Directo en la Provincia de Huaytará, Departamento de Huancavelica”, Tesis (Lic.), UNMSM. Facultad de Farmacia y Bioquímica. Título de Químico Farmacéutico. Lima, 1999


KUROKAWA, M., Ogato, K., Idemori, M., Tsumori, S., “Investigation of Skin Manifestations of Arsenicism due to Intake of Arsenic-contaminated Groundwater in Residents of Samta, Jessore,
Bangladesh”, Archives of Dermatology, 137(1), 1-3, En. 2001.


Avaluació i desenvolupament d’un estabilitzant de baix cost per als residus en l’eliminació d’arsènic a nivell domiciliari en zones rurals i disperses