RESUMEN

En el presente proyecto se aborda la problemática actual en lo referente a la calidad del aire en el interior de los edificios y los efectos que tienen sobre la salud y el comportamiento de sus ocupantes las deficiencias de esta calidad. Se realiza un análisis de la situación y de los métodos existentes para conseguir que el nivel de contaminación se presente en unos valores aceptables, y del consumo energético que implica su aplicación. El documento está estructurado en tres bloques.

BLOQUE TEÓRICO.

En esta primera parte se explica que es y como se obtiene una buena calidad de aire interior, qué tipos de contaminantes nos podemos encontrar, su origen y las formas para controlarlos y eliminarlos. Se analiza la ventilación junto con un adecuado sistema de filtración como alternativa para conseguir la calidad del aire deseada. La filtración se aborda desde un punto de vista teórico en la primera parte del documento. También se hace referencia a los aspectos sobre calidad de aire interior que quedan recogidos en el nuevo Código Técnico de la Edificación.

BLOQUE EXPERIMENTAL.

En este bloque se analiza en profundidad desde un punto de vista experimental el efecto de la ventilación sobre la calidad del aire interior y el consumo energético que conlleva su utilización. Este estudio se lleva a cabo mediante medidas experimentales realizadas en el Laboratorio de climatización del Centro Experimental de Refrigeración y Climatización (CER&C) de la ETSEIB. También se realiza un análisis del impacto económico de utilizar el sistema de ventilación para adecuar las características del aire ambiente.

ANEXOS

Se adjuntan al final del documento los datos experimentales en los que hemos basado nuestro estudio, los métodos de cálculo utilizados y la normativa actual referente a la calidad de aire. Asimismo se presenta un plano del CERC y de su instalación de climatización, así como un plano donde se muestra la posición de las distintas sondas que hemos utilizado para la toma de los datos experimentales.
SUMARIO

BLOQUE TEÓRICO

RESUMEN... 1

1. INTRODUCCIÓN... 5
 1.1. Objetivos del proyecto .. 5
 1.2. Alcance del proyecto ... 5

2. CALIDAD DE AIRE INTERIOR.. 6

3. TIPOS DE CONTAMINANTES.. 9
 3.1. Contaminantes físicos .. 9
 3.1.1. Ruido ... 9
 3.1.2. Vibraciones .. 9
 3.1.3. Radiaciones .. 10
 3.1.4. Condiciones térmicas .. 11
 3.2. Contaminantes biológicos ... 11
 3.3. Contaminantes químicos .. 12
 3.3.1. Concentraciones permitidas .. 12

4. VENTILACIÓN.. 14

5. FILTRACIÓN... 15
 5.1. Filtración de partículas ... 15
 5.1.1. Tipos de filtros .. 15
 5.1.2. Clasificación de los filtros .. 18
 5.2. Filtración de gases y contaminantes químicos .. 21
 5.2.1. Filtros de carbón activo .. 21
 5.2.2. Biofiltros .. 22
 5.2.3. Filtros antialérgenos ... 22
 5.2.4. Ozono .. 22
 5.3. Selección del sistema de filtración .. 23
 5.3.1. Eficiencia .. 23
 5.3.2. Pérdida de carga ... 27
 5.3.3. Capacidad de retención de polvo .. 27

6. ASPECTOS DEL CÓDIGO TÉCNICO DE LA EDIFICACIÓN.. 28
BLOQUE EXPERIMENTAL

7. DESCRIPCIÓN DE LA INSTALACIÓN 30
 7.1. Unidad de tratamiento de aire ... 31
 7.2. Distribución y difusión del aire .. 34
 7.3. Elementos de medida .. 35

8. RESULTADOS EXPERIMENTALES 37
 8.1. Comparación de la Calidad del aire con sistema de ventilación y sin él 37
 8.2. Variación de la Calidad del aire en función del caudal de ventilación 39
 8.3. Consumo energético que supone la ventilación .. 41
 8.4. Coste económico de la ventilación ... 47

CONCLUSIONES 51

BIBLIOGRAFÍA 53
 Referencias bibliográficas .. 53
 Bibliografía complementaria .. 53
1. Introducción.

1.1. Objetivos del proyecto

Mediante este documento se pretende estudiar la calidad del aire interior de los edificios y su impacto energético, a partir del análisis de la ventilación.

1.2. Alcance del proyecto

El estudio es aplicable a aquellos espacios interiores con ocupación permanente durante la jornada, siendo estos edificios comerciales (oficinas, tiendas, hoteles, clubes deportivos), institucionales (bibliotecas, hospitales, asilos) o residenciales (casas, pisos, apartamentos).
2. Calidad de aire interior.

La calidad el aire interior se refiere a la concentración de contaminantes y condiciones térmicas que no provocan efectos sobre la salud, el confort y el comportamiento de los ocupantes de un edificio. Para conseguir esto es necesario actuar sobre una serie de parámetros como son las fuentes de contaminación, el calor y la humedad, la ventilación y los sistemas de aire acondicionado.

Nuestro objetivo en esta primera parte es ver como cada uno de estos parámetros afectan a la calidad del aire que respiramos y como mediante su control podemos mejorar las características del aire en el interior de los edificios.

Como es lógico, el primer factor a tener en cuenta a la hora de realizar un análisis en la calidad del aire interior es ver cuales son los contaminantes potenciales que nos podemos encontrar y cuales son sus fuentes de origen. De esta forma podremos tratar de eliminar estas fuentes de origen, como por ejemplo utilizar materiales en nuestros edificios que no contengan elementos químicos que puedan pasar a formar parte del aire como partículas en suspensión, o controlarlas, como por ejemplo haciendo que un flujo de aire se lleve los contaminantes directamente al exterior, en el caso de fuentes de contaminación internas. Si son fuentes de contaminación externas habrá que tratar de alejarlas de la toma de aire interior y de dotar a nuestros equipos de ventilación de un buen sistema de filtrado, para evitar en lo posible la entrada de contaminantes con el dicho aire. Además, será conveniente también disponer de filtros en las tomas de recirculación para evitar en lo posible la entrada en el equipo de partículas que puedan entorpecer su correcto funcionamiento.

La temperatura y la humedad, que son los parámetros que se modifican para proporcionar las condiciones térmicas de confort, en determinadas condiciones pueden provocar la aparición de determinados contaminantes. Así, las altas temperatura favorecen el paso al ambiente de algunas sustancias químicas contaminantes presentes en los materiales con los que se construyen los edificios. Por otro lado el control de la humedad relativa es primordial para limitar el crecimiento de ciertos microorganismos como el moho y las partículas de polvo. Por ello es conveniente mantener la humedad en todo momento, por debajo de 60% para evitar el crecimiento de moho y por debajo de 50% para evitar el de las partículas de polvo, incluso en las horas de no ocupación.

Los sistemas de ventilación son uno de los parámetros más importantes con los que contamos para la obtención de un aire limpio. Por un lado nos permite expulsar hacia el exterior los contaminantes emitidos por una fuente fija, y por otra diluir los emitidos por
todas las fuentes dentro de un espacio. Será este aspecto uno de los que trataremos con profundidad más adelante.

Los componentes de los sistemas de aire acondicionado juegan un papel importante a la hora de conseguir una buena calidad de aire. Lugares como las bandejas de recogida de agua de las baterías, se deben limpiar y desinfectar de forma periódica para evitar el desarrollo de microorganismos como bacterias y moho. Todos los aparatos como ventiladores, recuperadores…deben ser accesibles para poder acceder con facilidad a sus superficies interiores y limpiarlas. Las superficies de los conductos deben ser lisas para evitar la acumulación de polvo, y además deben ser resistentes a la abrasión para facilitar su limpieza. Uno de los componentes imprescindible en los sistemas de aire acondicionado como ya hemos comentado con anterioridad, en lo que a calidad de aire se refiere es la sección de filtración. En un apartado posterior se analiza la filtración y se dan pautas para la selección de filtros para los sistemas de climatización.
3. Tipos de contaminantes.

Las sustancias contaminantes pueden ser de origen físico, químico o biológico, y pueden encontrarse tanto en estado sólido, como líquido o gaseoso.

3.1. Contaminantes físicos.

Los contaminantes físicos son distintas formas de energía que pueden afectar a los trabajadores sometidos a ellas. Las principales formas de energía consideradas como contaminantes son:

3.1.1. Ruido.

Es el contaminante físico más común en los puestos de trabajo, independientemente de la actividad de que se trate, debido fundamentalmente a la mecanización de los procesos productivos. La exposición al ruido produce sobre las personas una serie de alteraciones de diferente naturaleza: efectos psicológicos (irritabilidad, agresividad), interferencia en las conversaciones (errores en ordenes) y efectos fisiológicos (aumento de la presión sanguínea, acelera ritmo cardíaco).

El aparato más utilizado para su medición es el sonómetro, que analiza el sonido de modo similar al oído humano.

Está regulado por el Real Decreto 1316/89, del 27 de octubre de 1989, donde se recogen las medidas a tomar para su medición en los ambientes laborales y según la cantidad de decibelios registrada, señala los distintos planes de actuación.

3.1.2. Vibraciones.

Se pueden definir como oscilaciones de partículas alrededor de un punto, en un medio físico equilibrado cualquiera cuando se le comunica una energía.

No existe una normativa española para ellas, por lo que se toman como referencia las normas nacionales e internacionales; UNE-EN V 25349, ISO 2631-1, UNE-EN V 28041 y UNE-EN V 28041.
3.1.3. **Radiaciones.**

Las radiaciones son formas de transmisión de energía electromagnética que se pueden producir tanto en forma de ondas, como de partículas subatómicas, y que al incidir sobre el organismo humano pueden producir daños para la salud de los trabajadores.

Su influencia sobre el cuerpo humano depende de la longitud de la onda y su frecuencia, del tiempo de exposición a la misma y de la zona del cuerpo afectada.

Las radiaciones ionizantes pueden ser de dos tipos:

- **Ionizantes:** aquellas que forman iones al interaccionar con la materia. De este tipo son las electromagnéticas (rayos X y gamma) y las corpusculares (partículas alfa, beta).

La exposición a este tipo de radiación puede provocar dos efectos distintos. El primero es la contaminación radioactiva que podemos sufrir por contacto directo con la fuente, impregnándose en la piel o entrando en el organismo vía respiración, ingestión o absorción cutánea. El segundo el que se produce por irradiación externa, estando sometido a la radiación pero sin contacto con ella.

- **No ionizantes:** la energía que emiten no actúa a nivel atómico en la materia, por lo que sus efectos son muy diferentes. Radiaciones de este tipo son las microondas, las infrarrojas y las ultravioletas.

Pueden causar irritaciones cutáneas, conjuntivitis o incluso cáncer de piel.

Las fuentes más importantes de material radioactivo, tanto por la cantidad como por los efectos que producen, son las centrales nucleares. Existen también fuentes naturales de radiación en forma de minerales, destacando entre ellos el Uranio.

Radón.

Una fuente natural de radioactividad es el gas radioactivo radón, que pertenece a la cadena de desintegración del Uranio. Se forma por desintegración de Radio 226 a Radón 222.

En todos los lugares donde existen minerales que contienen Uranio, es decir, en cualquier roca magmática, se forma Radón. El gas puede difundir a través de grietas y fracturas de las rocas al ambiente, y en lugares donde hay mala ventilación se pueden alcanzar concentraciones muy altas.

El Radón en sí no es peligroso, no es venenoso ni contiene ninguna otra propiedad tóxica. Su inhalación y exhalación no causa ningún daño a la salud. El problema está en los
productos de la desintegración radiactiva del Radón. La vida media del Radón es de 3,8 días y se desintegra emitiendo radiación a para formar isótopos también radiactivos de Polonio, Plomo y Bismuto, Telurio y Astat. Si el núcleo del gas se descompone dentro del pulmón emite una partícula a y además los productos sólidos de la desintegración no pueden ser eliminados mediante la respiración, por lo que quedan en el interior del cuerpo pudiendo desencadenar efectos biológicos nocivos en los tejidos del cuerpo, como por ejemplo, el cáncer pulmonar.

La dosis de radiación normal de este gas que percibe una persona no conlleva ningún peligro. Este surge cuando una persona está expuesta durante mucho tiempo a concentraciones elevadas de esta sustancia.

Diversos estudios indican que concentraciones a partir de 3000 Bq/m3 aire presentan riesgo de desarrollar cáncer pulmonar. En una casa normal, incluidas zonas de mala ventilación como los sótanos, estas concentraciones oscilan entre los 50 y los 1000 Bq/m3.

3.1.4. Condiciones térmicas.

Se refieren a las condiciones físicas ambientales de temperatura, humedad y ventilación. Además los seres humanos podemos ser generadores de calor e influir en estas condiciones.

Unas malas condiciones higrométricas pueden causar diferentes efectos nocivos en los seres humanos como resfriados, deshidratación, alteraciones conducta, fatiga, etc.

3.2. Contaminantes biológicos.

Son todos los agentes representados por organismos vivos. Los contaminantes biológicos son microorganismos que al penetrar en el ser humano pueden provocar cualquier tipo de infección, alergia o toxicidad. Estos contaminantes se desplazan a través del aire y son a menudo invisibles. Entre los más comunes podemos mencionar las bacterias, el musgo, los mojos, la caspa de mascotas, la saliva de los gatos, los ácaros del polvo, las cucarachas y el polen. Para favorecer su actividad deben darse dos condiciones, que son la presencia de nutrientes y la humedad. Dichas condiciones pueden darse en lugares tales como cuartos de baño, sótanos húmedos o inundados, humidificadores y acondicionadores de aire y cierto tipo de alfombras y mobiliario. El musgo, los mojos y otros contaminantes biológicos se desarrollan en los sistemas de aire acondicionado central, desde los cuales se distribuyen por todo el hogar.
3.3. Contaminantes químicos.

Como contaminante químico se considera toda sustancia orgánica o inorgánica, natural o sintética que tiene probabilidades de lesionar la salud de las personas de alguna forma o causar un efecto negativo en el medio ambiente. Representan el grupo de contaminantes más importantes debido a su variedad, cantidad y presencia en todos los campos laborales.

Podemos encontrarlos en cualquiera de los tres estados de la materia: gas, sólido o líquido. Contaminantes de este tipo son los minerales de asbestos, metales como el plomo y el mercurio, semimetales como el fósforo y el arsénico, compuestos del nitrógeno, del azufre y del carbono, formaldehídos, ozono y Compuestos orgánicos volátiles (VOC’s).

En el siguiente apartado podemos ver las concentraciones límite aconsejadas para ambientes interiores y las habituales en el aire exterior para los contaminantes químicos más significativos.

3.3.1. Concentraciones permitidas

<table>
<thead>
<tr>
<th>Contaminantes químicos</th>
<th>CONCENTRACIÓN PROMEDIO EXTERIOR</th>
<th>CONCENTRACIÓN PROMEDIO INTERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/m3 ppm tiempo</td>
<td>mg/m3 ppm tiempo</td>
</tr>
<tr>
<td>NO2</td>
<td>100 0.055 1 año</td>
<td>0.05-1</td>
</tr>
<tr>
<td>NO</td>
<td>10000 9 8 horas</td>
<td>1-1.5</td>
</tr>
<tr>
<td>CO</td>
<td>2000 700</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>80 0.03 1 año</td>
<td>0.02-1</td>
</tr>
<tr>
<td>SO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humo de tabaco</td>
<td>0,1 a 0,15 3,5</td>
<td></td>
</tr>
<tr>
<td>Amoniaco</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Tetrachloruro de carbono</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fibra de vidrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td>0,001 8 horas 0.02 **</td>
<td></td>
</tr>
<tr>
<td>Compuestos orgánicos volátiles</td>
<td>30 a 50</td>
<td></td>
</tr>
<tr>
<td>Tolueno</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Cloruro de metileno</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Benceno</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Acetona</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Estireno</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Freón 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioxano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldeído</td>
<td>15</td>
<td>0,12</td>
</tr>
<tr>
<td>Partículas</td>
<td>75</td>
<td>0,12</td>
</tr>
<tr>
<td>O3</td>
<td>235</td>
<td>0,12</td>
</tr>
<tr>
<td>Pb</td>
<td>1,5</td>
<td>0,12</td>
</tr>
<tr>
<td>Radón</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(alfombras,lubricantes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Bq/m³ ** fibras/cm³(<5µm)

Figura 3.1 Concentraciones permitidas para los contaminantes químicos según EPA [2]
4. Ventilación.

Mediante un buen diseño y mantenimiento del sistema de ventilación de un edificio podemos mantener las concentraciones de contaminantes por debajo de los límites que se consideren aceptables para el tipo de edificación, y por lo tanto, obtener una buena calidad del aire que respiramos.

En la elección de la tasa mínima de ventilación necesaria para un local, habrá que tener en cuenta la carga total de contaminación presente, considerando todos los tipos de contaminantes, ya sean físicos, químicos o biológicos, que puedan afectar a la calidad del aire y hacer un estudio de las fuentes potenciales de los mismos. Hasta ahora el diseño se realizaba considerando únicamente a los personas como única fuente de polución, por ello los sistemas de ventilación han empezado a ser ineficientes para garantizar una buena calidad del aire en algunos sectores.

En función del tipo de local y de la carga de contaminantes que presente, se han establecido valores orientativos de caudales mínimos de ventilación para garantizar una calidad de aire interior. Organizaciones como ASHRAE [1] recomienda tasas de suministro de aire exterior para una calidad de aire interior aceptable. En la mayoría de los casos la contaminación producida se supone sea producida en proporción al número de personas en el espacio, sin embargo, dependiendo del local y su actividad, este cálculo se hace en base a otros factores y la tasa de ventilación dada está basada en otros parámetros más apropiados.

Para locales de edificios institucionales o viviendas como despachos, aulas, bibliotecas o salas de estar, ASHRAE [1] recomienda un caudal de $30\text{m}^3/\text{h}$ por persona de aire exterior para diluir olores de la emanaciones corporales humanas a niveles que satisfagan al 80% de personas en el espacio.

Todos estos aspectos sobre la ventilación y su relación con la calidad de aire interior son analizados experimentalmente en el parte práctica de este proyecto, mediante las pruebas realizadas en la instalación del CERC.

Las cantidades de aire exterior recomendadas pueden reducirse utilizando aire de recirculación adecuadamente filtrado. Esto dependerá de la localización de los filtros, de la eficiencia de los mismos para los contaminantes presentes en el ambiente del local y de la fracción de recirculación. En el siguiente apartado se desarrollan los aspectos relacionados con la filtración.
5. Filtración.

El aire que respiramos contiene partículas materiales y gases generados bien por la propia naturaleza (tormentas de arena, erupciones volcánicas…) o bien generados por el hombre, principalmente en los procesos industriales.

Todas estas sustancias pueden tener efectos nocivos sobre nosotros, pudiendo ser la causa de molestias como la irritación de las membranas mucosas o desencadenar enfermedades mucho más graves al penetrar dentro de nuestro organismo, como por ejemplo, el cáncer.

Por ello es de vital importancia tratar de reducir al mínimo la concentración de estas sustancias en el aire en general, pero sobre todo en el aire del interior de los edificios por ser dentro de estos donde pasamos la mayor parte del tiempo, y además por ser espacios más pequeños y generalmente herméticos, donde se producen las concentraciones más elevadas. Una de las herramientas que tenemos a nuestro alcance para tratar de resolver este problema es la filtración. A continuación explicamos las diferentes técnicas de filtración que existen y los diferentes tipos de filtros que se utilizan actualmente en los sistemas de climatización, tanto para las partículas sólidas como para aquellos contaminantes en forma de gas.

5.1. Filtración de partículas

En función de la concentración de polvo podemos distinguir entre filtros de aire, cuando las partículas no superan los 5 mg/m3, y equipos de captación de polvo o separadores de polvo, en el caso de que la concentración sea mayor.

Los filtros de aire son dispositivos que eliminan las partículas de la corriente de aire cuando ésta pasa a su través. Podemos distinguir entre varios tipos de filtros, los mecánicos, los electrostáticos y los purificadores electrónicos. Según sea el mecanismo o la técnica de filtración hablaremos de unos o de otros.

5.1.1. Tipos de filtros

A. FILTROS MECÁNICOS

Los filtros mecánicos remueven el polvo al recolectarlo en la media filtrante. Esta captura implica dos consideraciones diferentes. La primera es la probabilidad de que la partícula choque con una de las fibras que constituyen la media filtrante, y la segunda es la
probabilidad de que la partícula una vez hizo contacto con la fibra del filtro, continúe adheriéndose.

A medida que la corriente de aire pasa a través del filtro, las partículas son removidas por las fibras por los siguientes mecanismos:

- **Impacto de inercia o de impregnación viscosa.** El impacto se refiere a la forma en que las partículas son eliminadas del flujo de aire, y el término de impregnación viscosa cómo se impide que las partículas retenidas puedan volver al flujo de aire. Esta técnica se emplea con eficacia para partículas de tamaños comprendidos entre 5 y 15 micras.

Este principio se basa en interponer a la corriente una serie de obstáculos que suelen ser un conjunto de fibras de vidrio, de un diámetro medio de 35 micras, impregnadas con un determinado adhesivo. El aire sortea los obstáculos y se ve obligado a cambiar de dirección continuamente, mientras que las partículas arrastradas por este aire, debido a su masa y a la fuerza de inercia, tratan de continuar en la dirección original y chocan contra las fibras de vidrio, quedando pegadas a ellas por fuerzas de atracción molecular.

Si el tamaño de las partículas es muy grande la fuerza de atracción molecular no será suficiente, o siéndolo el choque con otra partícula puede llegar a liberar las ya retenidas. Esto se evita si aplicamos una impregnación viscosa a las fibras del filtro, aumentando así la fuerza de adhesión de las partículas.

Un filtro diseñado para trabajar bajo este principio será más eficaz:

- **Cuanto mayor sea la cantidad y tamaño de los obstáculos opuestos al paso de aire, de modo que mayor serán los cambios de dirección a que obligaremos al aire y mayor el choque de las partículas.**

- **Cuanto mayor sea la velocidad se verá favorecido el choque de las partículas debido a su inercia. La velocidad debe estar comprendida entre 1,5 y 3 m/s (para velocidades superiores a 3 disminuye el rendimiento).**

- **Este principio de filtración será más eficaz cuanto mayor sean las partículas, debido a la inercia, pero hay un límite a partir del cual el poder de retención del adhesivo no será suficiente. Por tanto, las partículas no deben ser inferiores a 5 ni superiores a 15 micras.**

- **El adhesivo se utiliza para mejorar la retención de partículas pesadas, por lo que se usará en aquellos filtros que se utilicen como prefiltro o no se requiera una eficacia de filtración muy elevada.**
-**Interceptación y difusión.** Estos mecanismos se basan en la atracción intermolecular de las partículas de polvo y las fibras de los filtros. Se emplean para partículas muy finas, comprendidas entre 0,001 y 5 micras. Las fibras suelen ser de diámetros entre 0,5 y 2 micras y las velocidades de paso de aire suelen estar comprendidas entre 0,002 y 0,2 m/s.

La interceptación contempla la filtración de aire con partículas comprendidas entre 0,3 y 5 micras, empleando velocidades del orden de 0,2m/s. A esta pequeña velocidad las partículas son interceptadas por fuerzas de atracción molecular entre ellas y las fibras de la media filtrante, quedando retenidas en ellas. La eficacia de este método aumenta con el tamaño de las partículas siempre que su masa no sea suficiente para ejercer atracción molecular con las fibras de la media de 2 micras de diámetro, momento en que quedarían atrapadas por el efecto criba, con el riesgo de colmatar el filtro que esta técnica conlleva. Esta técnica de aplica en los filtros de alta eficiencia, tanto en la conformación compacta como en los modelos de filtros de bolsas.

La otra técnica, la de difusión, se aplica en la filtración de partículas de tamaño inferior a 1 micra, con velocidades de filtración muy altas, del orden de 0,02m/s. Estas partículas de tan pequeño tamaño se encuentran sometidas a un movimiento browniano causado por las fuerzas moleculares internas. Este movimiento tiene lugar tanto en su desplazamiento por el aire como a través del medio filtrante, con lo que se facilita su captación. La eficacia de estos filtros aumenta al disminuir el tamaño de las partículas ya que el movimiento molecular tiene mayor repercusión en el de la partícula. Pero hay un límite inferior próximo al tamaño de las moléculas del aire a partir del cual la eficiencia baja rápidamente. Bajo este principio funcionan los filtros HEPA o absolutos.

B. FILTROS ELECTROSTÁTICOS.

Estos filtros se basan en el principio de filtración electrostática, que tiene naturaleza distinta a los anteriores y aprovecha fuerzas eléctricas para la retención de partículas en suspensión.

El aire sucio con una velocidad máxima de 2,5m/s pasa a través de una fuente de ionización, formada por una serie de hilos ionizadores, que por efecto corona hace que las partículas de polvo se carguen eléctricamente. A continuación existe una sección colectora de polvo, consistente en un campo eléctrico formado por una serie de placas cargadas positiva y negativamente, de forma alternativa, de manera que las partículas ionizadas son atraídas por las placas de signo contrario, quedando allí depositadas.

Este principio es efectivo en una gama de tamaño de partículas muy amplia, desde tamaños inferiores a 0,1 micras hasta tamaños superiores a 25 micras.
Estos filtros son usados de dos formas diferentes. La primera la podemos llamar unidad seca, donde las partículas ionizadas se recogen en placas de signo opuesto y se van aglomerando unas a otras, formando partículas de mayor tamaño, hasta que este es tal que son arrastradas por la corriente de aire, pero con una tamaño mayor y óptimo para ser retenidas en una segunda etapa de filtración situada detrás y que funciona según uno de los principios ya comentados anteriormente. La segunda forma la podemos llamar de impregnación y consiste en aplicar a las placas colectoras un adhesivo que mejora la aglomeración y retención de las partículas, lo que obliga a limpiar las placas periódicamente y aplicarles de nuevo el adhesivo.

C. PURIFICADORES ELECTRONICOS

Los purificadores electrónicos remueven las partículas de la corriente de aire por medio de una carga electrónica. Un prefiltro atrapa las partículas grandes, después una sección ionizante carga positivamente a las partículas aerotransportadas. Estas partículas son atrapadas y recolectadas por placas cargadas negativamente. Estos filtros pueden traer además un filtro de carbón activado para remover olores.

5.1.2. Clasificación de los filtros

Los filtros mecánicos pueden ser agrupados en filtros tipo panel y en filtros de superficie extendida.

1. Filtros tipo panel.

Pueden ser de diferentes materiales como metal, fibra de vidrio o fibras naturales. Algunos son desechables y otros son lavables para poderse seguir utilizando. El principal mecanismo de captura de este tipo de filtros es el impacto por inercia, se caracterizan por una velocidad media del aire al atravesar la media filtrante y por una baja caída de presión.

A. Filtros de fibra de vidrio.

La media filtrante esta construida de una base de filamento de fibra de vidrio continuo unido por una resina térmica cuya densidad es más concentrada hacia la salida del aire. Esta fibra generalmente está impregnada con adhesivos para incrementar su retención. Estos filtros pueden tener marcos de cartón o un portamarco metálico. Estos filtros son desechables.

Beneficios.

· Baja resistencia al aire, económicos e impregnados con adhesivos
Usos y aplicaciones.

- Casetas de pintura, tiendas, fábricas y como prefiltros.

B. Filtros metálicos.

La media filtrante está compuesta de varias mallas onduladas de aluminio tipo mosquitero y una de poliéster o poroflex. Las mallas al ser onduladas proveen una mayor superficie de filtración. El propósito en conseguir una saturación completa del filtro al capturar las partículas más grandes por la entrada del flujo de aire y una retención progresiva de las partículas más pequeñas, mientras el aire recorre las distintas capas del filtro. El marco y las mallas protectoras son metálicas de lamina galvanizada o de aluminio.

Beneficios.

- Lavables, alta velocidad y baja resistencia, permanentes

Usos y aplicaciones.

- Sistemas de aire acondicionado, cocinas, campanas de extracción, prefiltro y lavadoras de aire

C. Fibras sintéticas o poroflex.

Existen diferentes fibras sintéticas utilizadas en los filtros tipo panel. El material más común es el poliéster, sin embargo otras fibras como el polipropileno o el nylon también se utilizan. Generalmente están diseñados para ser desechables. El poroflex está compuesto de poliuretano es un material que se mide por el tamaño de su poro por pulgada (con un rango de 10 a 100 poros por pulgada). Cuanto mayor sea el número de poros por pulgada mayor será su eficiencia y su caída de presión. El poroflex puede ser lavado y vuelto a usar.

D. Filtros para grasa.

Estos filtros son instalados en las campanas de cocina para prevenir el acumulamiento de grasa en los conductos de extracción y reducir así riesgos de incendio. Todos los filtros utilizados para este servicio están construidos de metal y no son efectivos para el humo.
2. Filtros de superficie extendida.

Tienen la característica de que el área de su media filtrante es mayor que el área del filtro. El método más común para incrementar el área de la media es plegándola y extendiéndola en la profundidad del pliegue.

A. Filtros de bolsa.

Son filtros de superficie extendida de alta eficiencia. Su media filtrante puede ser de fibra de vidrio ultra fina o de fibra sintética. La media filtrante viene en varios colores según su eficiencia. El filtro está compuesto por bolsas individuales cuyo número varía según sus especificaciones. Cada una de estas bolsas de subdivide a su vez en secciones tubulares. La subdivisión está formada por costuras internas que deben ser selladas con una resina termoplástico para evitar el bypass del aire y alargar su vida útil.

Usos y aplicaciones.

- Sistemas de aire acondicionado, hospitales, salas de ordenadores, equipo electrónico, industria alimenticia e industria automotriz

B. Filtros de pliegues.

Estos filtros de eficiencia mediana están fabricados con un laminado de fibra sintética de algodón y poliéster en una configuración de pliegues radiales con soporte de malla anticorrosivo. La gran cantidad de media filtrante y superficie de filtración permite una excelente capacidad de retención de polvos, además de asegurar un buen flujo de aire, manteniendo baja resistencia al mismo. Además tienen una mayor vida útil que otros filtros planos.

Usos y aplicaciones.

- Unidades de aire acondicionado, equipos de computadores, embotelladoras, fábricas, casetas de pintura, hospitales, centrales telefónicas y prefiltros para filtros secundarios.

C. Filtros absolutos HEPA, ULPA Y SULPA.

Los filtros absolutos HEPA son filtros de superficie extendida desechables con un marco rígido, de eficiencia mínima del 99,97% para partículas de 0,3 micras. El filtro está construido con fibra de vidrio ultra fina, plegada y separada entre sí por separadores que generalmente son de aluminio. Fueron desarrollados para aplicaciones militares y son también utilizados en quirófanos y laboratorios.
Posteriormente estos filtros han sido mejorados, obteniéndose una eficiencia de DOP de 99,999% en los filtros denominados ULPA y de 99,9999% en los SULPA. Estos filtros se utilizan en aplicaciones militares y en la manufactura de microelectrónicas.

Como **filtros electrostáticos** nos encontramos con filtros tipo panel, llamados filtros pasivos autocargables.

Filtros electrostáticos pasivos autocargables.

En los filtros electrostáticos, una carga electrostática es generada por el aire que pasa a través de los laberintos de fibras estáticas. Las partículas transportadas por el aire son atrayidas y retenidas por cargas estáticas hasta que estas partículas son soltadas al lavar los filtros. La media filtrante está compuesta de aluminio, fibra electrostática de polipropileno y espuma autocargable de poliuretano o de poliéster.

Beneficios.

- Lavables, baja resistencia al aire y reducción de partículas aerotransportadas.

Usos y aplicaciones.

- Sistemas de aire acondicionado, oficinas, restaurantes, hoteles, hospitales, tiendas y fábricas.

5.2. **Filtración de gases y contaminantes químicos.**

5.2.1. **Filtros de carbón activo**

Este tipo de filtros son los encargados de eliminar del medio ambiente, los gases y contaminantes químicos responsables de la generación de olores y de una serie de daños en los seres humanos y en los materiales por ataque químico.

Los productos a retener aquí no son partículas sino moléculas. El carbón activo funciona mediante la absorción de gases, transferencia de moléculas desde una fase gaseosa a otra sólida mediante fuerzas de atracción superficial. Los tipos de carbón utilizados son el coke, la turba o la cáscara de coco, por ser estos los que mayor capacidad de absorción tienen, se les Tritura, tuesta y activa mediante oxidación. El resultado es un material tremendamente poroso y gran superficie de contacto.
Es conveniente que este tipo de filtros no sean alcanzados por partículas sólidas que podrían ocupar los poros impidiendo al filtro realizar su función, por lo que se recomienda una o dos etapas previas de filtración.

Estos filtros eliminan algunos, aunque no todos, de los gases contaminantes del aire. Existen otros tipos de filtros que eliminan mayor diversidad de gases como los de carbón activado, permanganato de potasio y Zeolita(CPZ). Estos filtros deben tener la cantidad suficiente de CPZ para ser eficaces, dependiendo del volumen de aire que sea capaz de mover el sistema.

5.2.2. Biofiltros.

Se ha desarrollado un nuevo tipo de filtro para los climatizadores de uso doméstico que va recubierto de una capa de biofilter que purifica el aire de una forma mucho más eficaz que los filtros convencionales. El biofilter es un elemento natural que se extrae de las hojas de té, que atrapa e inactiva virus y bacterias, y que actúa contra todas las especies de acáridos, humos de tabaco y otras partículas, además de evitar la propagación de enfermedades contagiosas.

5.2.3. Filtros antialérgenos

Los nuevos filtros antialérgenos funcionan mediante un generador de ultrasonidos que crea zonas de aire más densas y de ese modo atrae a las partículas del polvo y las aglutina. Estos filtros están hechos de materiales que inactivan las bacterias, los virus y los mohos, por lo que combinan tres funciones: protección antialérgica, antivirus y antibacterias.

El filtro de alérgenos consiste en un polímero fenólico ligeramente acíclico que contiene un grupo hidrófilo que inactiva los alérgenos contaminantes del aire, como el polen, los ácaros del polvo y sus residuos. El alérgeno queda atrapado en el filtro, el hidrófilo fenólico se adhiere al alérgeno quedando este último cubierto y por lo tanto desactivado. De este modo, aunque penetrase en el cuerpo ya no actuaría como alérgeno provocando síntomas de alergia que tienen su origen en una reacción antígeno-anticuerpo cuando el cuerpo intenta combatirlos.

5.2.4. Ozono.

El ozono en cantidades adecuadas puede purificar el aire debido a su alto poder oxidante. Elimina todos los riesgos de contagio por bacterias, virus, hongos y esporas, suprime los malos olores, enriquece el oxígeno del aire en circulación, destruye el monóxido de carbono, los alquitranes y nicotinas procedentes del humo de los cigarrillos.
5.3. Selección del sistema de filtración.

A la hora de diseñar una instalación y seleccionar los filtros adecuados, tenemos que considerar los tres parámetros fundamentales de un filtro:

- Su eficiencia
- Su pérdida de carga
- Su capacidad de retención de polvo.

5.3.1. Eficiencia.

La efectividad o eficiencia de los filtros se mide de acuerdo con unos procedimientos de prueba, realizados según unas normas internacionales. Las más comunes son:

- La Ashrae, americana
- La Eurovent, europea
- La British Estándar, inglesa
- La Din, alemana.

Para los filtros de baja eficiencia, prefiltros donde son retenidas partículas gruesas, se utilizan métodos de prueba que nos proporcionan la eficiencia gravimétrica, la cual está basada en el porcentaje en peso de las partículas de polvo retenidas.

Para filtros de media y alta eficiencia, utilizados en la retención de ligeras y pequeñas partículas, la eficiencia del filtro es medida por el método de la mancha de polvo o colorimétrico, donde se compara con un filtro limpio, la mancha de polvo atmosférico retenido por otro filtro similar. La comparación de colores se hace mediante fotómetro. Para filtros denominados como absolutos, se suelen utilizar los métodos de llama de sodio o DOP.

Para los filtros de gases aun no se ha normalizado cual es el gas a tomar como referencia en la determinación de su eficiencia, debido a la gran cantidad y tipos de gases a filtrar. Se suelen utilizar el ozono, que simula la estructura de los contaminantes del exterior en áreas metropolitanas y el tolueno, que representa la habilidad de los filtros para remover bioefluentes y VOC’s (compuestos orgánicos volátiles) como los formaldehídos, plastificantes, etc.
Normas CEN EN 779.

Se basan en la anterior Eurovent 4/5 y la Ashrae 52.76 [3] en las que se determinan por métodos de reconocida eficacia. La clasificación por CEN está basada en la antigua propuesta Eurovent que dividía los filtros en nueve clases diferentes, EU-1 a EU-9, basándose en sus rendimientos medios opacimétricos y gravimétricos. Las normas CEN designan los filtros mediante letras y números.

<table>
<thead>
<tr>
<th>Clasificación Eficacia filtro</th>
<th>Eficacia gravimétrica(arrestancia) Am(%)</th>
<th>Eficiencia mancha polvo atmosférico Em(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1</td>
<td>Am<65</td>
<td>-</td>
</tr>
<tr>
<td>G-2</td>
<td>65=Am<80</td>
<td>-</td>
</tr>
<tr>
<td>G-3</td>
<td>80=Am<90</td>
<td>-</td>
</tr>
<tr>
<td>G-4</td>
<td>90=Am</td>
<td>-</td>
</tr>
<tr>
<td>F-5</td>
<td>-</td>
<td>40=Em<60</td>
</tr>
<tr>
<td>F-6</td>
<td>-</td>
<td>60=Em<80</td>
</tr>
<tr>
<td>F-7</td>
<td>-</td>
<td>80=Em<90</td>
</tr>
<tr>
<td>F-8</td>
<td>-</td>
<td>90=Em<95</td>
</tr>
<tr>
<td>F-9</td>
<td>-</td>
<td>95=Em</td>
</tr>
</tbody>
</table>

G-1, G-2, G-3, G-4: para polvo grueso
F-5, F-6, F-7, F-8, F-9: para polvo fino

Tabla 5.3.1 Clasificación de los filtros según Norma CE EN 779
Normas CEN EN 1822.

Para los filtros HEPA y ULPA, la clasificación se basaba en la norma Eurovent 4/4 que definía cinco clases de filtros: EU-10, EU-11, EU-12, EU-13, EU-14. Con el objeto de hacer frente a las exigencias de la alta tecnología, existe una necesidad de nuevos métodos de ensayo y una nueva clasificación para filtros absolutos.

En Alemania DIN lanzó un proyecto de norma DIN 24183 para el ensayo de estos tipos de filtros basado en la medición de partículas. CEN aceptó como principio básico de ensayo y sistema de clasificación: EN 1822. La norma europea EN 1822 reemplaza varias normas nacionales como la DIN 24184, BS 3928 y AFNOR 44013.

<table>
<thead>
<tr>
<th>Eficacia integral para MPPS</th>
<th>Clase según</th>
<th>EN 1822</th>
<th>DIN 24183</th>
<th>DIN 24184</th>
<th>BS 3928</th>
<th>Mil Std.292</th>
</tr>
</thead>
<tbody>
<tr>
<td>=85%</td>
<td>H-10</td>
<td>EU-10</td>
<td>Q</td>
<td>EU-10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>=95%</td>
<td>H-11</td>
<td>EU-11</td>
<td>R</td>
<td>EU-11</td>
<td>=95%</td>
<td></td>
</tr>
<tr>
<td>=99,5%</td>
<td>H-12</td>
<td>EU-12</td>
<td>-</td>
<td>EU-12</td>
<td>=99,97%</td>
<td></td>
</tr>
<tr>
<td>=99,95%</td>
<td>H-13</td>
<td>EU-13</td>
<td>S</td>
<td>EU-13</td>
<td>=99,99%</td>
<td></td>
</tr>
<tr>
<td>=99,995%</td>
<td>H-14</td>
<td>EU-14</td>
<td>-</td>
<td>EU-14</td>
<td>=99,999%</td>
<td></td>
</tr>
<tr>
<td>=99,9995%</td>
<td>U-15</td>
<td>EU-15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>=99,99995%</td>
<td>U-16</td>
<td>EU-16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>=99,999995%</td>
<td>U-17</td>
<td>EU-17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figura 5.3.2 Clasificación filtros según norma CE EN 1822
En la primera fase de esta norma EN 1822 se evaluará el rendimiento fraccionario para las medias de filtración lisas a la misma velocidad que en el filtro. El propósito es determinar el tamaño de partículas a la cual la media ofrece la eficacia de retención más baja que se denomina:

Tamaño de Partícula de mayor Penetración (MPPS)

El tamaño de la partícula normalmente está entre 0,15 y 0,25µm. La siguiente fase consiste en determinar el rendimiento de captación del filtro para ese MPPS. Dependiendo del rendimiento, fugas, porosidad… se clasifican en dos grupos:

Filtros HEPA (High Efficiency Particulare Air): H-10, H-11, H-13 y H-14

Filtros ULPA (Ulpa Low Penetration Air): U-15, U-16 y U-17

<table>
<thead>
<tr>
<th>Norma CEN EN 1822</th>
<th>Valor Integral MPPS</th>
<th>Valor local MPPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo de filtro</td>
<td>Clase de filtro</td>
<td>Eficacia (%)</td>
</tr>
<tr>
<td>HEPA (H)</td>
<td>H-10</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>H-11</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>H-12</td>
<td>99,5</td>
</tr>
<tr>
<td></td>
<td>H-13</td>
<td>99,95</td>
</tr>
<tr>
<td></td>
<td>H-14</td>
<td>99,995</td>
</tr>
<tr>
<td>ULPA (U)</td>
<td>U-15</td>
<td>99,9995</td>
</tr>
<tr>
<td></td>
<td>U-16</td>
<td>99,99995</td>
</tr>
<tr>
<td></td>
<td>U-17</td>
<td>99,999995</td>
</tr>
</tbody>
</table>

Figura 5.3.3 Clasificación filtros de alta eficiencia
5.3.2. Pérdida de carga.

Los filtros son obstáculos a la libre circulación del aire por lo que oponen una resistencia al mismo, luego existirá una pérdida de carga que aumentará a medida que el filtro se vaya colmatando.

Si hacemos una representación gráfica de la pérdida de carga en función de la cantidad de polvo retenida, veremos que la vida de un filtro es lineal hasta que llega un punto en que la pérdida de carga es tal que el filtro deja de ser operativo.

A efectos de diseño de una instalación habrá que tener en cuenta no sólo la pérdida de carga inicial sino también la pérdida de carga final recomendada, a la cual el filtro debe reponerse por uno limpio. Si la pérdida de carga es excesiva para la eficiencia requerida se puede ampliar la superficie filtrante o colocar mayor número de módulos filtrantes.

5.3.3. Capacidad de retención de polvo.

La capacidad de retención de polvo de un filtro se refiere a la cantidad de contaminante que es capaz de retener dicho filtro al llegar al final de su vida útil. Cuanto mayor sea esta capacidad de retención, mayor será la duración del filtro y por tanto menor será el coste asociado al mismo.

Habrá que llegar a un compromiso entre los tres factores: eficacia, pérdida de carga y capacidad de retención para obtener un sistema de filtración de alta calidad.
6. Aspectos del código Técnico de la Edificación.

El “Código Técnico de la Edificación” (CTE) es el marco normativo que establece las exigencias que deben cubrir los edificios en relación con los requisitos básicos de seguridad y habitabilidad establecido en la Ley de Ordenación de la Edificación.

Los procedimientos a seguir para el cumplimiento del CTE vienen recogidos en los denominados Documentos básicos. El Documento básico que recoge los aspectos sobre calidad de aire interior, recibe el nombre de “Salubridad”. Su correcta aplicación supone el cumplimiento del requisito básico “Higiene, salud y protección del medio Ambiente”.

Con este último se pretende reducir a límites aceptables el riesgo de padecer molestias o enfermedades, por parte de los usuarios dentro de los edificios y en condiciones normales, debido a las características de diseño, construcción y mantenimiento del edificio, y el riesgo de estos a deteriorarse y deteriorar el medio ambiente que los rodea.

Para el cumplimiento del documento básico “Salubridad” se deben satisfacer 5 exigencias básicas:

1. Protección frente a la humedad
2. Eliminación de residuos
3. Calidad de aire interior
4. Suministro de agua
5. Evacuación de aguas residuales

La exigencia sobre calidad de aire establece que los edificios deberán disponer de medios para que sus recintos se puedan ventilar adecuadamente, eliminando los contaminantes que se produzcan de forma habitual durante el uso normal de los edificios, de forma que se aporte un caudal suficiente de aire exterior y se garantice la extracción y expulsión del aire viciado por los contaminantes, sin transmisión a otros recintos.

En función del tipo de local se indica cual es el tipo de ventilación adecuada y los medios para llevarlo a cabo. Se establece cual es la ubicación adecuada de los elementos constructivos; aberturas y bocas de ventilación, conductos de admisión y extracción, ventiladores, extractores, aspiradores, ventanas y puertas exteriores, así como los materiales a utilizar en los mismos para garantizar la calidad del aire en el interior del local habitable.
Durante la recepción de los productos de construcción debe comprobarse que corresponden a los especificados en el pliego de condiciones particulares, que cumplen las propiedades exigidas y que se les han realizado los ensayos pertinentes especificados en dicho pliego.

También se indican las operaciones de mantenimiento a realizar y su periodicidad para garantizar el buen estado de cada elemento, así como las correcciones a realizar en el caso de que se detectasen defectos.
7. **Descripción de la instalación.**

El laboratorio de climatización en el que hemos realizado todas las medidas pertenece al Centro Experimental de Refrigeración y Climatización (CERC), situado en la Escuela Técnica Superior de Ingeniería Industrial de Barcelona. El laboratorio consta de una instalación centralizada del tipo todo aire con volumen de aire variable (VAV). Las unidades productoras de energía, calor o frío según necesidades, son una bomba de calor de tipo aire-agua reversible y una caldera de baja temperatura alimentada con gas natural. Estas unidades son las que proporcionan al agua de las baterías del climatizador el nivel térmico adecuado para el tratamiento de aire. Para transportar el agua desde las unidades productoras hasta la unidad de tratamiento de aire o climatizador se dispone de unos circuitos hidráulicos.

El climatizador es el encargado de acondicionar el aire para adecuarlo a los requerimientos de confort del local a climatizar. Para ello recupera un cierto caudal de aire del espacio ocupado (caudal de retorno) y lo mezcla con el aire tomado del exterior (aire de renovación) en las proporciones adecuadas. Esta mezcla se realiza en el módulo del free-cooling, tras el cual dicha mezcla es filtrada, tratada en la sección de baterías y posteriormente impulsada hacia el local.

La instalación es de volumen variable, por lo que el caudal impulsado por el climatizador varía en función de las condiciones de cada momento. Los ventiladores aumentan o disminuyen el caudal de aire impulsado, según la abertura de las cajas de regulación de caudal de los difusores. La variación del caudal impulsado por los ventiladores se consigue cambiando su frecuencia de giro mediante unos variadores de frecuencia electrónicos.

El aire les impulsado a los habitáculos mediante los difusores. Estos pueden ser de diferentes tipos según su forma, y cada uno de ellos impulsa el aire con una velocidad y dirección diferente. El CERC consta de dos difusores de ranura, tres cuadrados, uno de tovera y uno de desplazamiento.

Por otro lado, se disponen a lo largo de toda la instalación de diferentes sondas, que nos miden la calidad de aire, la humedad, la temperatura y la concentración de dióxido de carbono.
7.1. Unidad de tratamiento de aire.

Es el sistema donde el aire de recirculación y/o de renovación recibe todos los tratamientos necesarios para ser distribuido posteriormente a los difusores. En nuestra instalación todos los elementos de la UTA están reunidos en un solo bloque, constituido por varios módulos:

- Sección de ventilador de retorno
- Sección de free-cooling
- Sección de filtro
- Sección de baterías
- Sección de ventilador de impulsión

Figura 7.1 Esquema de la Unidad de tratamiento de aire

El módulo de retorno aspira el aire del local al interior del climatizador y el de impulsión lo vehicula hacia el conducto de distribución principal. El aire de renovación del exterior entra una de las compuertas del free-cooling debido a la depresión que genera el ventilador de
impulsión. Este aire se mezcla con el aire impulsado por el ventilador de retorno. Parte de este aire es expulsado al exterior por otra de las compuertas del free-cooling.

Las compuertas del free-cooling son las encargadas de regular los diferentes caudales de aire que entran en el módulo. Existen tres compuertas:

- Compuerta de recirculación, que regula la cantidad de aire de retorno que se recircula en cada momento.
- Compuerta de expulsión, que según su abertura permite que se expulse más o menos aire de retorno al exterior.
- Compuerta de renovación, que regula la cantidad de aire que se toma del exterior.

Las compuertas de expulsión y de renovación se abren o cierran en la misma proporción, de manera que la cantidad de aire viciado que expulsamos al exterior sea semejante a la cantidad de aire limpio que tomamos del exterior.

Figura 7.2 Esquema de las compuertas del free-cooling

Las compuertas están formadas por una serie de hojas que pueden estar colocadas en paralelo o en oposición. En nuestro caso, las compuertas están colocadas en oposición porque de esta manera la relación entre el caudal y el ángulo de rotación de las hojas se
aproxima a la linealidad para una perdida de carga de un 10% de la perdida de carga total del circuito de aire. De esta manera se consigue una regulación muy buena.

La instalación consta de tres baterías para el intercambio térmico, que se realiza a través del agua que circula por el interior de dichas baterías y el aire a tratar que se hace circular por su exterior. Estas se encuentran colocadas en serie, siendo su colocación desde el retorno a la expulsión como se muestra a continuación.

![Esquema de las baterías del intercambiador](image)

Figura 7.3 Esquema de las baterías del intercambiador

Cada una de las baterías está formada por una serie de circuitos por donde circula el agua. Los circuitos trabajan en paralelo y tienen la misma longitud y el mismo número de tubos, de manera que el repartimiento de caudal de agua se realiza de manear uniforme entre circuitos. El aire circula entre las aletas en sentido contrario al agua dentro de los tubos.

Debido a que en la batería de refrigeración pueden tener lugar condensaciones, se coloca una bandeja debajo de la batería para la recogida del agua, cuya pendiente es del 2,5% y que va provista de un aislamiento térmico en la parte inferior.
La instalación consta de un filtro que es una manta se fibra sintética de 15 mm de espesor y eficacia gravimétrica del 75% según la EU-2. La pérdida de carga con el filtro limpio de estima en 2 mm.c.a. La instalación consta de dos sensores de presión, uno antes y otro después de la sección de filtración, que nos miden la caída de presión a su través y que comparándola con un valor de consigna nos indica cuando el filtro esta sucio y hay que reemplazarlo por uno nuevo.

7.2. Distribución y difusión del aire.

Una vez se ha tratado el aire en el climatizador, se distribuye hacia todos los espacios mediante un conjunto de elementos que forman el sistema de distribución de aire. Los conductos de distribución del aire llevan el aire desde la impulsión hasta cada uno de los difusores repartidos por todos los locales del laboratorio. La distribución de estos conductos se puede ver en la figura.

Figura 7.4 Posición de los distintos difusores en el laboratorio de climatización

Los difusores son los elementos de enlace entre la instalación de climatización y el espacio a climatizar. En el laboratorio se tienen diferentes tipos de difusores, todos ellos con su correspondiente regulador de caudal de aire, que permite una regulación independientemente de la temperatura a la que se encuentre el local.
Para realizar la regulación de temperatura de las salas, disponemos de una caja de volumen variable (VAV) justo antes de cada difusor, además de un servomotor y una sonda de temperatura ambiente.

La caja de volumen variable consiste en una carcasa cilíndrica que se ajusta al conducto del aire y que tiene una compuerta de regulación circular en su interior. La compuerta va montada en un eje que atraviesa diametralmente el cilindro, de manera que cuando el eje gira hasta poner la compuerta en la dirección del aire el caudal impulsado por el difusor es máximo. Si la compuerta de orienta de manera que ocupe todo el conducto, el caudal que circula es prácticamente nulo. El servomotor es el elemento encargado de hacer girar el eje de la compuerta, y su funcionamiento está gobernado por un regulador que se programa de tal manera que cuando la diferencia entre la temperatura ambiente y la temperatura de consigna es desfavorable, se abre la compuerta de regulación y si la diferencia es favorable la compuerta se cierra.

7.3. Elementos de medida.

Debido al carácter experimental de la instalación, consta de diversas sondas distribuidas por las diferentes salas, que nos permiten medir los parámetros más significativos relativos a la climatización. La temperatura, la humedad relativa, la entalpía, la presión, la calidad del aire y la concentración de dióxido de carbono son los parámetros a los que nos referimos. La ubicación de todas las sondas empleadas en los diferentes ensayos realizados en la instalación puede verse en el plano número 3 del Anexo D.

Las sondas de temperatura nos permiten medir esta magnitud tanto en el aire ambiente como en el que circula por los diferentes conductos de la instalación, así como la temperatura del agua que circula por el sistema hidráulico. Se basan en el principio físico de que la resistencia de un determinado elemento varía en función de la temperatura a la que se encuentre.

Las sondas de humedad relativa se basan en un sensor capacitativo, formado por un condensador cuya capacidad variará a medida que el dieléctrico que tiene entre sus armaduras absorba el agua presente en el aire y esta variación será las que nos permite detectar el cambio en la humedad relativa del aire.

Las sondas de entalpía están formadas por una sonda de temperatura y una de humedad relativa. La combinación de sus valores nos permite obtener el valor de la entalpía del aire.

La instalación consta de dos sondas de presión, una que mide la presión diferencial en el filtro y otra que mide la presión relativa en el conducto de impulsión. Ambas funcionan
según el mismo principio físico que se basa en medir el desplazamiento de un elemento elástico, como una membrana o un muelle, y transformarlo en una señal eléctrica mediante un potenciómetro.

La sonda de calidad de aire detecta las partículas en suspensión como son los olores, los gases y aerosoles de los procesos metabólicos, compuestos orgánicos, disolventes y humos de tabaco. No mide ninguna cantidad definida sino que utiliza una escala de 1 a 100, donde 0 es buena calidad de aire, 50 es media y 100 mala. Está instalada en el laboratorio de climatización.

Las sonda de dióxido de carbono mide la concentración de esta sustancia presente en el ambiente en partes por millón (ppm). El CERC consta de dos de estas sondas una situada en el exterior y otra en el laboratorio de climatización.
8. Resultados experimentales.

8.1. Comparación de la Calidad del aire con sistema de ventilación y sin él.

Para ver con claridad el efecto de la ventilación sobre la calidad del aire que respiramos realizamos la medida de la concentración de CO2 que se recogía en el laboratorio para dos días consecutivos. El primer día anulamos la ventilación completamente cerrando las compuertas del free-cooling correspondientes a la renovación y la expulsión, de manera que el aire impulsado a la sala procedía en su totalidad de la recirculación. El segundo día realizamos la operación contraria, abrimos el 100% dichas compuertas del free cooling, quedando cerrada por tanto la compuerta de recirculación, de manera que todo el aire recirculado se expulsa al exterior y el aire que se impulsa al laboratorio procede completamente del exterior.

El resultado se muestra a continuación a modo de gráfica, donde se puede observar como la concentración de dióxido de carbono es sustancialmente menor en el día en que disponíamos de aire de ventilación exterior.

![Gráfica de CO2 con ventilación y sin ella](image.png)

Figura 8.1 Comparación concentración de CO2 con ventilación y sin ella.
La concentración de CO2 es menor con el 100% de aire exterior en un valor medio de 20ppm, llegando incluso a apreciarse diferencias de hasta 75ppm en horas cercanas al mediodía.

Observando la gráfica podemos deducir también cuales son las hora de ocupación del laboratorio, viendo como la concentración de contaminante crece para ambos días a partir de las 8 de la mañana que es la hora a la que comienzan a llegar las personas y como vuelve a disminuir al final de la jornada. Durante la noche, en la que el laboratorio se encuentra vacío la concentración de CO2 permanece prácticamente constante en torno a los 350ppm.

Otro dato a tener en cuenta y que se puede extraer de la gráfica de la figura 8.1 es el valor máximo de CO2 que se alcanza con la ventilación, siendo este inferior a 415ppm, mientras que sin ella está por encima de los 440ppm. Si bien hay que decir que ninguna de las dos concentraciones son elevadas y se encuentran por debajo de los 700ppm que es el valor límite recomendado por ASHRAE en su Estándar 62-2001[1]

Figura 8.2 Variación Calidad de aire y concentración de CO2 sin ventilación para una ocupación de 25 personas
Los ensayos anteriores se han realizado en días de funcionamiento normal del laboratorio en los que la ocupación varía entre 3 y 8 personas. Puesto que los bioefluentes humanos son considerados como la fuente principal de dióxido de carbono en el recinto, no se llegan a concentraciones muy altas. Para obtener valores más significativos, se realizó una medición de la concentración de CO2 y de calidad de aire para una ocupación de 25 personas en ausencia de ventilación durante un periodo de una hora y treinta minutos. Los resultados se muestran en la gráfica de la figura 8.2.

Los valores de CO2 se encuentran prácticamente durante todo el periodo por encima de los 500ppm, llegándose a alcanzar picos de concentración de hasta 1080 ppm. También observamos como la lectura de la sonda de calidad de aire evoluciona de manera paralela a la de CO2, aumentando su valor progresivamente hasta llegar a un índice de 45.

8.2. Variación de la Calidad del aire en función del caudal de ventilación.

Los anteriores ensayos mostraban como variaba la calidad del aire en el caso de que hubiera o no ventilación. En este apartado realizaremos todos los ensayos con aire de ventilación pero variando su caudal, y trataremos de ver si existen diferencias significativa en la concentración de contaminantes presentes en el aire interior.

En primer lugar realizamos medidas de CO2 variando la abertura de las compuertas de renovación y expulsión del free-cooling desde 0 hasta 100%, de 20 en 20 y en intervalos de 20 minutos. Los resultados se muestran en la figura 8.3.

Podemos apreciar como la concentración de dióxido de carbono va disminuyendo progresivamente a medida que aumentamos el grado de abertura de la compuerta de renovación y paulatinamente vamos cerrando el de la compuerta de recirculación, de manera que cada vez en la mezcla impulsada hacia el local existe mayor cantidad de aire exterior. Al introducir cada vez más y más aire exterior de mejor calidad que el interior recirculado, la calidad del aire que respiramos en el interior del laboratorio va creciendo, bajando la concentración de CO2 desde un valor de 403ppm hasta 374ppm, pasando por un máximo en los primeros minutos de 413ppm.
Figura 8.3 Evolución concentración de CO2 a medida que aumentamos el caudal de ventilación.

Resultados similares pueden apreciarse en la figura 8.4 donde se muestra la evolución de la concentración de dióxido de carbono y de la lectura de la sonda de calidad de aire, para un experimento similar al anterior donde se fue incrementando el caudal de ventilación progresivamente.

Figura 8.4 Variación Calidad de aire y concentración de CO2 para un aumento progresivo del caudal de ventilación.
8.3. Consumo energético que supone la ventilación.

Hasta ahora hemos realizado ensayos utilizando aire de renovación del exterior y hemos visto la mejora que se produce en la calidad del aire interior con ello, pero no hemos hablado del consumo energético que esto conlleva. El introducir aire del exterior supone un incremento en la potencia térmica necesaria para adecuar el volumen de aire de la mezcla a las condiciones requeridas para el confort térmico del recinto.

Cuando nos encontramos en estaciones en las que necesitamos calefactar el recinto que ocupamos, lo ideal desde el punto de vista energético es utilizar completamente el aire de retorno haciéndolo pasar por la sección de filtración antes de llegar a la sección de las baterías del intercambiador, porque este aire se encuentra ya en las condiciones térmicas requeridas en el ambiente interior. Sin embargo, se hace necesario utilizar aire de renovación para conseguir una calidad de aire aceptable. Este aire exterior se encuentra a temperaturas más bajas por lo que será necesario proporcionarle mayor potencia térmica en las baterías del intercambiador con el consumo energético que esto supone.

En este apartado tratamos de medir experimentalmente este consumo energético adicional que supone el aire de ventilación. Debido la gran diferencia entre las condiciones climatológicas y a que las unidades productoras de potencia son diferentes, hemos considerado conveniente realizar un análisis para la temporada invernal y otro para la estival.

Invierno.

Durante esta temporada la unidad productora en servicio es la caldera puesto que lo que se requiere es calefactar el espacio interior. Inicialmente realizamos medidas de la potencia térmica absorbida por el aire en el caso de utilizar totalmente aire de retorno y las comparamos con las obtenidas para el caso de utilizar totalmente aire de renovación.

La energía térmica consumida depende de salto entálpico a vencer y de la masa de aire que tenga que tratar. Como ya hemos comentado el hecho de utilizar aire del exterior, significa tener que adecuarlo a las condiciones higrométricas solicitadas en el espacio a climatizar. Si observamos los saltos térmicos, vemos como utilizando aire de retorno la diferencia entre la temperatura requerida y la que tenemos en nuestra mezcla de aire antes de realizarse el intercambio en las baterías es de unos 3,5ºK, mientras que en el caso de utilizar aire del exterior es de casi 7ºK. La evolución de las diferentes temperaturas implicadas en el proceso se refleja en la gráfica de la figura 8.3.1.
Figura 8.3.1 Evolución de las temperaturas durante el ensayo.

Del mismo modo podemos ver la diferencia de energías térmicas puestas en juego en uno y otro caso, debido a esta diferencia de temperaturas, en la gráfica de la figura 8.3.2.

Figura 8.3.2 Consumo energético de utilizar únicamente aire exterior.
Los resultados globales podemos observarlos en la tabla 8.3.1.

<table>
<thead>
<tr>
<th></th>
<th>0%free-cooling</th>
<th>100%free-cooling</th>
<th>DIFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía media absorbida</td>
<td>189,83 kJ</td>
<td>387,13 kJ</td>
<td>197,29 kJ</td>
</tr>
<tr>
<td>aire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía total absorbida</td>
<td>79919,64 kJ</td>
<td>162981,54 kJ</td>
<td>83061,90 kJ</td>
</tr>
<tr>
<td>aire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudal aire total medio</td>
<td>2115,23 m3/h</td>
<td>2316,56 m3/h</td>
<td>201,33 m3/h</td>
</tr>
<tr>
<td>?T medio</td>
<td>3,45 °K</td>
<td>6,55 °K</td>
<td>3,10 °K</td>
</tr>
</tbody>
</table>

Tabla 8.3.1 Consumo energético de utilizar únicamente aire exterior.

La diferencia de consumos energéticos es muy grande, de más de 69.000KJ, teniendo en cuenta que nos movemos en caudales similares.

Verano.

En esta época del año lo que necesitamos es refrigerar el aire ambiente, y la unidad productora de energía que nos realiza este servicio es la bomba de calor trabajando como máquina frigorífica. Como en el caso de invierno, analizamos inicialmente la diferencia entre utilizar completamente aire de retorno o completamente aire del exterior. Las diferencias entre las temperaturas en este caso las podemos ver en la gráfica de la figura 8.3.3.

Figura 8.3.3 Evolución temperaturas durante el intervalo de medida.
La evolución de las energías absorbidas por el aire en cada uno de los casos se recoge en la gráfica de la figura 8.3.4.

Figura 8.3.4 Consumo energético de utilizar únicamente aire exterior durante el intervalo de medida.

Los resultados de todas las medidas en conjunto para este ensayo se recogen en la tabla 8.4.2. Podemos observar la gran diferencia de saltos térmicos a vencer en uno y en otro caso para caudales que difieren únicamente en unos 100m3/h. Un dato que deja ver claramente la diferencia de comportamientos del sistema es el valor de la energía media consumida en cada caso por minuto, siendo en el primero de los casos de tan solo 58 kJ mientras que en el segundo el valor asciende hasta los 240kJ.

<table>
<thead>
<tr>
<th></th>
<th>0%free-cooling</th>
<th>100%free-cooling</th>
<th>DIFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía media absorbida aire</td>
<td>58,65 KJ</td>
<td>244,82 KJ</td>
<td>186,164 KJ</td>
</tr>
<tr>
<td>Energía total absorbida aire</td>
<td>14136,25 KJ</td>
<td>59001,90 KJ</td>
<td>44865,65 KJ</td>
</tr>
<tr>
<td>Caudal aire total medio</td>
<td>1621,04 m3/h</td>
<td>1724,34 m3/h</td>
<td>103,31 m3/h</td>
</tr>
<tr>
<td>°T medio</td>
<td>1,42 °K</td>
<td>5,59 °K</td>
<td>4,17 °K</td>
</tr>
</tbody>
</table>

Tabla 8.3.2 Consumo energético de utilizar únicamente aire exterior.
Las mediciones anteriores las hemos llevado a cabo en condiciones extremas, es decir, o utilizando totalmente aire recirculado o totalmente aire del exterior. En la realidad, las condiciones de calidad de aire no nos demandan un 100% de abertura del free-cooling, sino que para el caso del laboratorio, con una abertura en torno al 20% es suficiente para la ocupación normal del mismo. Así que, nuestro siguiente objetivo será ver cual es el consumo en estas condiciones. Para ello, realizamos medidas de la potencia térmica absorbida por el aire en el caso de utilizar totalmente aire de retorno y con un 20% de abertura de la compuerta de renovación del free-cooling.

Los datos sobre las temperaturas durante la medición se recogen el la gráfica de la figura. Podemos apreciar como en este caso las temperaturas exteriores son superiores a las requeridas en el ambiente exterior, y por supuesto, mayores que las de retorno. La temperatura de la mezcla antes de iniciar su paso a la sección de baterías para el intercambio en el caso de tener el free-cooling abierto un 20%, son mayores que en el caso de tener la compuerta de renovación del free-cooling cerrada totalmente. También podemos ver como la temperatura del ambiente interior del laboratorio permanece prácticamente constante, sea cual sea la variación del resto de las temperaturas. Esto se consigue mediante el consumo energético correspondiente. La evolución de las energías se muestra en la figura 8.4.6.
Figura. 8.3.6 Evolución consumo energético durante el intervalo de medida.

Puede observarse como la energía necesaria es menor para el caso de utilizar solo el aire de retorno, aunque la diferencia como es lógico es mucho menor que el caso anterior en el que asábamos el 100% del aire exterior, que este en el que usamos el 20%. Vamos a ver como ha evolucionado para este último caso las lecturas de las sondas de calidad de aire y de dióxido de carbono.

Figura. 8.3.7 Concentración de CO2 y lectura sonda Calidad de aire durante el intervalo
Vemos que la lectura de la sonda de calidad de aire se mantiene durante todo el intervalo por debajo de 40, que es el valor a partir del cual habría que realizar alguna actuación. La concentración de dióxido de carbono se mantiene dentro de los límites recomendados, es decir, por debajo de 700, durante todo el intervalo.

Los resultados obtenidos para este caso se muestran en la siguiente tabla resumen.

<table>
<thead>
<tr>
<th></th>
<th>0%free-cooling</th>
<th>20%free-cooling</th>
<th>DIFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía media absorbida aire</td>
<td>342,88 kJ</td>
<td>394,01 kJ</td>
<td>51,13 kJ</td>
</tr>
<tr>
<td>Energía total absorbida aire</td>
<td>82635,42 kJ</td>
<td>94958,11 kJ</td>
<td>12322,68 kJ</td>
</tr>
<tr>
<td>Caudal aire total medio</td>
<td>1854,11 m3/h</td>
<td>1680,29 m3/h</td>
<td>173,82 m3/h</td>
</tr>
<tr>
<td>°T medio</td>
<td>7,28 °K</td>
<td>9,24 °K</td>
<td>1,97 °K</td>
</tr>
</tbody>
</table>

Tabla 8.3.3 Consumo energético de utilizar un 20% de aire exterior.

Comparando estos valores con los del caso anterior podemos ver como el consumo energético ha disminuido de 44800kJ hasta unos 12300kJ, moviendo caudales prácticamente similares pero teniendo que vencer una diferencia de temperaturas de 2°K en lugar de 4°K.

8.4. Coste económico de la ventilación.

Una vez analizado el consumo energético que supone la calidad del aire interior a través del estudio de la ventilación, tendremos que calcular su coste económico. En función de la época del año en que nos encontremos, este consumo energético supondrá consumo de gas natural, en el caso de la caldera, o consumo eléctrico, en el caso de la bomba de calor en su funcionamiento como máquina frigorífica.

Realizaremos el estudio para cada una de las dos unidades productoras, desdoblando el estudio como en el apartado anterior, para el invierno y para el verano.
Invierno.

Se tratará entonces en este apartado de conocer cuanto gas natural consume la caldera para proporcionar la energía térmica calculada en el apartado anterior. En primer lugar necesitamos saber cual es el rendimiento de la caldera de la instalación. Para ello, estimamos durante varios días el rendimiento de la caldera llegando a obtener un valor del 85%. Los precios sobre la energía son los correspondientes a la tarifa 3.1, para usuarios con consumos anuales inferiores a 5000kWh.

Analizaremos entonces el coste económico que implica el aportar la energía térmica calculada en el apartado anterior. Se calculará el coste para los cuatro meses correspondientes a la estación, suponiendo que de las 10 horas diarias que funciona la instalación, la caldera funciona 3, es decir, el 30%.

<table>
<thead>
<tr>
<th>Potencia absorbida aire</th>
<th>Energía absorbida aire</th>
<th>Energía eléctrica</th>
<th>coste económico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Termino variable</td>
</tr>
<tr>
<td>0%free-cooling</td>
<td>3,16 kW</td>
<td>1137,6 kWh</td>
<td>1338,3 kWh</td>
</tr>
<tr>
<td>100%free-cooling</td>
<td>6,45 kW</td>
<td>2322,0 kWh</td>
<td>2731,7 kWh</td>
</tr>
<tr>
<td>DIFERENCIA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8.4.1 Costes con o sin ventilación.

Estos costes corresponden únicamente a la potencia consumida para adecuar el aire, es decir, al gas natural empleado en calentar el agua que circula por los conductos del intercambiador. Vemos que en una instalación de las características de la del CERC, el utilizar aire exterior para climatizar el espacio interior supone un gasto adicional de unos 15€ al mes.
Verano

Realizaremos ahora un cálculo similar para el verano, cuando la bomba de calor actúa como máquina frigorífica. Lo primero es estimar el rendimiento de la bomba, obteniéndose un valor de 130%. En este caso el consumo será eléctrico, y para el cálculo del coste nos basaremos en la tarifa 3.0.

<table>
<thead>
<tr>
<th>Potencia absorbida aire</th>
<th>Energía absorbida aire</th>
<th>Energía eléctrica</th>
<th>coste económico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Termino variable</td>
</tr>
<tr>
<td>0%free-cooling</td>
<td>0,97 kW</td>
<td>349,20 kWh</td>
<td>22,49 €</td>
</tr>
<tr>
<td>100%free-cooling</td>
<td>4,08 kW</td>
<td>1468,8 kWh</td>
<td>94,60 €</td>
</tr>
<tr>
<td>DIFERENCIA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8.4.2 Costes con o sin ventilación.

El gasto adicional en energía eléctrica requerido para enfriar el aire de ventilación por mes de verano asciende a 18€. Como ya hemos mencionado antes, esto sería en condiciones extremas, esto es, utilizando completamente aire del exterior. Como el caudal de ventilación para conseguir la calidad de aire deseada no suele ser necesario en la gran mayoría de los casos, que se tome totalmente del exterior, estimaremos también el coste económico de tomar el 20% del caudal total impulsado. Los resultados obtenidos podemos observarlos en la tabla 8.4.3.
<table>
<thead>
<tr>
<th>Potencia absorbida aire</th>
<th>Energía absorbida aire</th>
<th>Energía eléctrica</th>
<th>coste económico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Termino variable</td>
</tr>
<tr>
<td>0%free-cooling</td>
<td></td>
<td></td>
<td>5,71 kW</td>
</tr>
<tr>
<td>20%free-cooling</td>
<td></td>
<td></td>
<td>6,56 kW</td>
</tr>
<tr>
<td>DIFERENCIA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8.4.3 Costes con un 20% ventilación y sin ella.

Vemos como el gasto en este caso con una cierta cantidad de aire de exterior es mucho menor, de unos 5€ por mes de verano. Luego una ventilación del 20% supone un aumento del gasto de un 5,5% para los meses de verano y de un 14% para los de invierno en el caso del CERC.
Conclusiones

Tener una buena calidad de aire interior es un requisito imprescindible a cumplir en todos los espacios interiores donde realicemos la mayor parte de nuestra actividad diaria. Es fundamental dotar a nuestras instalaciones, ya desde diseño, de los elementos, parámetros y características adecuadas para obtener un aire interior aceptable que no provoque alteraciones en la salud o comportamiento de los ocupantes del recinto.

La inclusión de sistemas de ventilación y filtración en las instalaciones de climatización de estos recintos, puede garantizarnos la calidad de aire requerida por sus ocupantes en la gran mayoría de los casos en las condiciones para los cuales estos hayan sido diseñados. Un adecuado sistema de control de la concentración de contaminantes es vital para comprobar que nuestro sistema funciona correctamente y para detectar los posibles cambios que tengan lugar en el mismo, con el fin de tomar las medidas necesarias.

El caudal de ventilación proporcionado a un recinto está directamente relacionado con la calidad del aire en el interior del mismo. La elección de una tasa mínima de ventilación inadecuada para la ocupación llevarnos a concentraciones de dióxido de carbono por encima de los 1500ppm, cuando la concentración máxima recomendada es de 700ppm.

En la actualidad se cuenta con filtros que permiten retener la gran mayoría de los contaminantes presentes en los ambientes interiores. Desde los últimos filtros de retención de partículas de polvo hasta aquellos otros capaces de atrapar e inactivar todo tipo de contaminantes biológicos como virus, bacterias u hongos.

El sistema de ventilación supone un aumento del 20% del coste energético de nuestra instalación sin ventilación. El control de las fuentes de contaminación, la adecuada selección de los materiales de construcción, mobiliario y productos de limpieza, un adecuado sistema de filtración y un buen control y mantenimiento de la instalación pueden llevarnos a reducir este consumo energético.

En la actualidad se están realizando diversos estudios sobre la calidad de aire interior y se están elaborando nuevas normativas que recogen todos los aspectos imprescindibles para garantizar la salud de los ocupantes de los edificios, como el Código Técnico de la Edificación o la modificación del Reglamento de Instalaciones Técnicas en los Edificios.
BIBLIOGRAFÍA

Referencias bibliográficas

[2] EPA, Agencia de Protección Ambiental de los Estados Unidos de América. [www.epa.gov/iaq (1 junio 2005)]

Bibliografía complementaria

CRISTALERÍA ESPAÑOLA, *Calidad de aire interior*, colección Saint-Gobain, p. 41-59

EDICIONS VIRTUALS, *Gestió tècnica en instal·lacions de climatització centralizades. Aplicació al CER&C-ETSEIB*. Barcelona: Edicions UPC

CASIBA. [www.casiba.com] [1 junio 2005]

VENFILTER. [www.venfilter.es] [1 junio 2005]

AIR CARE. [www.air-care.com] [1 junio 2005]

ICAEN. [www.icaen.net] [1 junio 2005]