

MASTER THESIS

TITLE: Application for monitoring mobiles batteries

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Sergio Ortega Parrado

DIRECTOR: Ángel Cuadras

DATE: May, 11th 2015

Title: Application for monitoring mobiles batteries

Author: Sergio Ortega Parrado

Director: Àngel Cuadras

Date: May, 11th 2015

Overview

The master thesis focuses on the development of a monitoring system of
mobile devices’ batteries. The main achievement of the project is the
implementation of a functional version of the monitoring system which retrieves
information of the mobile device, synchronizes it with the server, processes the
information and finally stores it on a server.

The monitoring system consists mainly of two parts, which are the mobile
application and the server. The mobile application (hereafter, app) has been
developed in Java by using the Android programming tools and SQLite
database. Its main functions are the monitoring and the storage of the changes
in the mobile device battery. The app retrieves battery’s parameters, such as,
voltage, current, temperature, battery level and status, among others. It
periodically sends this information using a web service to the server, which is
the other main component of the system. The server consists of an Apache
Web server developed with PHP. Its main functions are the management of the
information sent by the app and the storage of the processed data into MySQL
database. Additionally, the server publishes a web platform or dashboard,
where users can search for specific information that has been previously
saved. The monitoring system has been developed based on the market-
leading Android mobile platform. However, the designed architecture can easily
be adapted to other mobile platforms.

The other goal of the project is obtaining the battery’s generated entropy in real
time. This parameter is a thermodynamics function of state that describes
irreversible processes. The entropy calculation is based on the open circuit
voltage, which cannot be directly measured; hence, estimation methods are
required.

The application has been installed, tested and evaluate in more than 20
devices. Voltages, currents, temperatures and entropies have been saved for
more than two months. Although it is beyond the scope of the project,
information collected via the application along with the estimate of entropy can
lead to additional and future research.

Título: Aplicación para la monitorización de baterías en móviles

Autor: Sergio Ortega Parrado

Director: Ángel Cuadras

Fecha: 11 de Mayo del 2015

Resumen

Este proyecto de final de master presenta un sistema desarrollado para la
monitorización de baterías en dispositivos móviles.

El objetivo principal es tener una versión funcional del sistema capaz de
recuperar la información, sincronizarla, procesarla y almacenarla en un
servidor. Aunque el desarrollo del sistema se basa en la plataforma móvil
Android, líder en el mercado, se puede transportar fácilmente la arquitectura
diseñada a otras plataformas.

El sistema consta de dos partes principales. La primera de ellas consiste en
una aplicación móvil desarrollada en Java, utilizando las herramientas de
programación de Android y una base de datos SQLite. Esta aplicación
monitoriza y almacena todos los cambios producidos en la batería del móvil de
manera autónoma. Recupera parámetros proporcionados por Android como el
voltaje, la intensidad, la temperatura, el nivel de batería y su estado, entre
otros. La aplicación envía periódicamente esta información a un servidor que
proporciona un servicio web. La otra parte del sistema, está formada por un
servidor web Apache desarrollado principalmente con PHP que gestiona la
información enviada por la aplicación y la guarda en una base de datos
MySQL. Adicionalmente, este servidor publica una plataforma web de consulta
que muestra la información que el usuario seleccione y lo muestra en forma de
gráficos.

Otros de los objetivos era el procesado de dicha información para poder
obtener la generación de entropía de la batería en tiempo real. Este parámetro
es un indicador de los efectos termodinámicos irreversibles en estos
elementos. El cálculo de entropía se basa en el voltaje en circuito abierto y por
limitaciones para obtener este valor se ha debido realizar estimaciones. Esta
información conjuntamente con la recuperada podrá ser utilizada para futuras
líneas de investigación.

Durante el desarrollo del proyecto, se ha instalado la aplicación en más de 20
dispositivos, que desde hace más de 2 meses se ha estado almacenando sus
voltajes, intensidades, temperaturas y entropías.

INDEX

INTRODUCTION .. 6

CHAPTER 1. MOBILE BATTERY .. 8

1.1 Mobile Battery Technologies .. 8
1.1.1 Lithium Polymer (Li-Poly) ... 8
1.1.2 Lithium Ion Battery (Li-Ion) ... 8
1.1.3 Nickel Metal Hydride Battery (NiMH) .. 9
1.1.4 Nickel Cadmium Battery (NiCd) .. 9

1.2 Fuel Gauge and State of Charge .. 9
1.2.1 Open circuit voltage method ... 11
1.2.2 Coulomb Counter method .. 11

1.3 Battery life .. 12

1.4 Entropy ... 14

CHAPTER 2. APPLIED TECHNOLOGY ... 15

2.1 Mobile application ... 15
2.1.1 Android SDK ... 16
2.1.2 SQLite ... 18
2.1.3 Development environment .. 18

2.2 Web Server ... 20
2.2.1 PHP .. 21
2.2.2 MySQL .. 22
2.2.3 Apache .. 22
2.2.4 Dashboard .. 22
2.2.5 Development environment .. 23

CHAPTER 3. BATTERY MONITOR APPLICATION 24

3.1 Architecture .. 24

3.2 Battery Service component .. 25

3.3 Battery data .. 26
3.3.1 Battery current information ... 28

3.4 Database ... 29

3.5 Synchronization module ... 30

3.6 User Interface ... 31
3.6.1 Fast discharge option ... 33
3.6.2 User Preferences screen .. 35
3.6.3 Cycles list screen .. 35

3.7 Project structure .. 36
3.7.1 Source folder .. 38
3.7.2 Resources folder .. 39

CHAPTER 4. SERVER.. 42

4.1 Database ... 42

4.2 Entropy Calculation ... 43
4.2.1 OCV with mean estimation ... 44
4.2.2 OCV with linear regression method .. 45

4.3 Web Service ... 48
4.3.1 Battery information data workflow .. 49
4.3.2 Battery cycle data workflow .. 50
4.3.3 Cron for OCV linear regression estimation ... 51

4.4 Dashboard .. 52
4.4.1 Login page .. 52
4.4.2 Search form .. 53

4.5 Server files ... 54

CHAPTER 5. RESULTS.. 57

5.1 Set up the test environment ... 57
5.1.1 Generating the application APK file .. 57
5.1.2 Installing the battery monitor application .. 57
5.1.3 Starting the Web Server ... 58
5.1.4 Creating the Server Database .. 59
5.1.5 Creating cron job on Windows server .. 59

5.2 Collecting information .. 60

5.3 Displaying results .. 62

CHAPTER 6. CONCLUSIONS .. 66

BIBLIOGRAPHY .. 69

ANNEX 1. FUEL GAUGE SPECIFICATIONS ... 71

ANNEX 2. OCV MEAN ESTIMATION WORKSHEET 73

ANNEX 3. APP DIAGRAM CLASS ... 76

ANNEX 4. ANDROID VERSION LEVELS ... 77

ANNEX 5. MYSQL DATABASE SCRIPT .. 78

Application for monitoring mobiles batteries 6

INTRODUCTION

Batteries are part of our everyday life. In this actual age of smartphones,
tablets, wearable technology and electric vehicles, battery lifetime has become
one of the top usability concerns.

Since battery life directly impacts the extent and duration of mobility, one of the
key considerations in the design of a mobile embedded system should be to
maximize the energy delivered by the battery, and hence the battery lifetime.

While many endeavors have been devoted to improving battery lifetime, they
have fallen short in understanding how users interact with batteries. The main
aim of this master thesis is to develop a system for monitoring mobiles
batteries. Through this system, real time information about user’s mobile battery
is collected and processed. In addition, data are stored with the purpose of
analyze historical statistics and perhaps predict future behaviors.

For this reason, another objective proposed is to calculate the entropy
generation in the battery component. Entropy is a thermodynamics function of
state that describes irreversible processes and can evaluate ageing and
degradation of these components. Therefore, observing entropy generation
could give information about the battery life. Entropy calculation requires
knowledge of the open circuit voltage. To obtain this voltage, battery must be
disconnected from the device and that is not possible while the application is
running. Consequently, two alternative methods to estimate this property have
been used.

Monitoring system consists of two main parts. The first one is an Android
application developed in Java, using Android Software Development Kit (SDK)
and SQLite database. This application handles each battery’s changes and it
retrieves battery’s parameters, such as, voltage, current, temperature, battery
level and status, among others. The application runs without user interaction
and periodically synchronizes battery data with the server. As well, application
provides a visual interface to display current information and where user can
modify some settings. The other part of the system consists of an Apache Web
Server developed with PHP. It provides a web service which is used by the app
to send the data. Moreover, it processes data and it performs needed
calculations and estimations. After that, server stores information into MySQL
database. This database supports data from multiple devices.

Additionally, a web platform or dashboard has been developed, where users
can search for specific information saved on the server. Results are displayed in
visual graphs, and it is possible to export the data in a CSV file. It is important to
note that a login form exists. Therefore, users have to authenticate with valid
credentials to access to the dashboard.

The present report is divided according to these two parts of the system. It
contains six chapters in total. Firstly, mobile battery chapter introduces some
mobile batteries concepts, types of technologies, state of charge concept and

Application for monitoring mobiles batteries 7

entropy definition. In the second chapter, the technology used to develop the
system is presented. Third and fourth chapters explain in depth the
implementation of the mobile application and the server, respectively. Next
chapter displays the obtained results and presents a complete test. Finally,
conclusions are exposed in chapter six.

Application for monitoring mobiles batteries 8

CHAPTER 1.MOBILE BATTERY

1.1 Mobile Battery Technologies

Mobile phones run on a variety of different batteries depending on the phones
manufacturer, its size, shape, and features. Principally, there are four different
technologies of battery available for mobile phones. Table 1.1 presents main
characteristics of these mobile battery technologies.

Table 1.1 Characteristics of mobile battery technologies [1]

 Li-Poly Li-Ion NiMH NiCd

Cycle Life (to 80% of
initial capacity)

300-500 500-1000 300-500 1500

Cell voltage (nominal) 3.6V 3.6V 1.25V 1.25V

Memory effects No No Yes Yes

Maintenance
requirement

Not req. Not req. 60-90 days 30-60 days

Gravimetric Energy
Density (Wh/kg)

100-130 110-160 60-120 45-80

Operating
Temperature

0 to 60 ºC -20 to 60ºC -20 to 60ºC -40 to 60ºC

Self-discharge / Month ~ 10 % 10% 30% 20%

Load Current (peak) >2C >2C 5C 20C

Fast Charge Time 2-4h 2-4h 2-4h 1h

1.1.1 Lithium Polymer (Li-Poly)

This is one of the more modern types of mobile phone batteries. It is extremely
light and is very strong and resistant. The battery is also very safe as due to the
casing surrounding it there is no risk of fire or explosion even if the battery is
punctured. A lithium polymer battery has no memory effects which means it can
be recharged to full capacity regardless of how much charge is still held in the
battery. A lithium polymer battery also is able to retain its charge for a long
period of time.

1.1.2 Lithium Ion Battery (Li-Ion)

This is the current and most popular technology for mobile phone batteries. A
lithium-ion phone battery is a lightweight battery, which, because of its high
energy density is able to operate at a higher voltage than many other types of
rechargeable phone battery. A lithium-ion battery is usually 3.6 volts while some

Application for monitoring mobiles batteries 9

other rechargeable phone batteries may be as low as 1.2 volts. This means
Lithium-ion batteries will normally only be suitable to use in newer models of
mobile. In the same way that Li-Poly battery, this battery does not suffer from
the memory effect and can be charged at any time.

1.1.3 Nickel Metal Hydride Battery (NiMH)

The main advantage of using a nickel metal hydride battery is that the fact that it
is possible to recharge the battery at great speed. In some cases it may be
possible to fully recharge the battery in an hour. This is slightly outweighed by
the fact that nickel metal hydride batteries have a fairly poor power retention
rate. This means that although the battery can be quickly charged, recharging it
again may have to take place more frequently than with other types of phone
battery. NiMH and NiCd batteries are prone to the memory effect, thus, good
practice is to discharge these batteries entirely before recharging them, and to
always recharge them fully.

1.1.4 Nickel Cadmium Battery (NiCd)

This was the original type of rechargeable phone battery and it has largely been
superseded by the other types of battery, they are seldom used nowadays.
Cadmium is a toxic substance and its presence in the batteries led to general
concern over their usage and their disposal because of the potential
environmental impact. The use of nickel cadmium batteries is now restricted in
the EU and it would be very unusual to find nickel cadmium phone batteries
available to buy.

1.2 Fuel Gauge and State of Charge

Battery level estimation in mobile phones is usually performed by a “fuel gauge”
chip. The basic function of fuel gauge is to monitor the voltage,
charge/discharge current and battery temperature, and to estimate the battery’s
SoC (State of Charge) and Full Charge Capacity (FCC) of battery.

SoC is an important parameter, which reflects the battery performance, so
accurate estimation of SoC cannot only protect battery, prevent overcharge or
discharge, and improve the battery life, but also let the application make
rationally control strategies to achieve the purpose of saving energy.

Different phone models use different chips. And each chip provides different
information about battery. For instance, some Samsung models uses Maxim
MAX17043 chip (Fig. 1.1), which, according to its datasheet [2], it has only a
battery voltage sensor. As said by the manufacturer's description, this chip uses
a sophisticated Li+ battery-modeling scheme, called ModelGauge to track the

Application for monitoring mobiles batteries 10

battery’s relative state-of-charge (SoC) continuously over a widely varying
charge/discharge profile.

Fig. 1.1 Simplified operating circuit for MAX17043 and MAX17044

Other fuel gauge chips like MAX17047 [3] provides precision measurements of
current, voltage, and temperature. This chip incorporates the Maxim
ModelGauge m3 algorithm (Fig. 1.2) that combines the Open Circuit Voltage
state estimation with the coulomb counter, along with temperature
compensation to provide best accuracy. Please refer to annex 1 for additional
fuel gauge examples.

Fig. 1.2 MAX14047 fuel gauge chip

Application for monitoring mobiles batteries 11

There are two classic methods to do the SOC estimation, OCV and Coulomb
Counter.

1.2.1 Open circuit voltage method

It has been shown that there is a linear relationship between the state of charge
of the battery and it is open circuit voltage given by [4]

𝑉𝑜𝑐(𝑡) = 𝑎100𝑆𝑂𝐶(𝑡) + 𝑎0 (1.1)

Where 𝑆𝑂𝐶(𝑡) is the SOC of the battery at t, 𝑎0 is the battery terminal voltage
when SOC is 0%, and 𝑎100 is obtained from knowing the value of 𝑎0 and
𝑉𝑜𝑐(𝑡) at 100% of SOC. The OCV method based on the OCV of batteries is
proportional to the SoC when they are disconnected from the loads for a period
longer than two hours. However, such a long disconnection time may be too
long to be implemented for battery.

In addition, this method can be inaccurate. Cell types have dissimilar chemical
compositions that deliver varied voltage profiles. Temperature also plays a role.
Higher temperature raises the open-circuit voltage, a lower temperature lowers
it.

1.2.2 Coulomb Counter method

This method calculates the state of charge by periodically measuring the current
flowing into the battery through a sense resistor and integrating it in time.
Accumulation of these current samples gives the total charges that have flown
through the battery.

𝑆𝑜𝐶 = 100
𝑄𝑎

𝑄𝑚𝑎𝑥
=

∫ 𝐼𝑏(𝑡)𝑑𝑡
𝑡

𝑡0

𝑄𝑚𝑎𝑥
 (1.2)

Where 𝑄𝑎 represents the available charge of the battery (expressed in
coulomb), 𝑄𝑚𝑎𝑥 represents the maximum charge of the battery and 𝐼𝑏 the
battery charging current.

Coulomb counters suffers from long-term drift (small ADC offset errors that
accumulate indefinitely) and lack of a reference point. To correct these offset
accumulation drifts, a large and expensive sense resistor is needed.

Application for monitoring mobiles batteries 12

1.3 Battery life

The battery life is defined as the number of complete charge and discharge
cycles a battery can perform before its nominal capacity falls below 80% of its
initial rated capacity. Lithium- and nickel-based batteries deliver between 300
and 500 full discharge/charge cycles before the capacity drops below 80%.
Cycling is not the only cause of capacity loss; keeping a battery at elevated
temperature also induces stress.

However, counting cycles is not conclusive because a discharge may vary in
depth and there are no clearly defined standards of what constitutes a cycle.
Rather than establish a discharge cycle as a 100 percent depth of discharge
(the DoD is the complement of SoC), manufacturers prefer rating the batteries
at 80 percent DoD, meaning that only 80 percent of the available energy is
being delivered and 20 percent remains in reserve. A less-than-full discharge
increases the battery life, and manufacturers argue that this is closer to a field
representation because batteries are seldom fully discharged before recharge
[5].

As previously said, there are no standard definitions to define what constitutes a
discharge cycle. A smart battery keeping track of cycle count may require a
depth of discharge of 70 percent to qualify for a discharge cycle. A battery in a
satellite has a typical DoD of 30 or 40 percent before the batteries are
recharged during the satellite day.

Notwithstanding, Apple establishes that one charge cycle is when use has used
(discharged) an amount that equals 100 per cent of his battery’s capacity but
not necessarily all from one charge [6]. For instance, user might uses 75 per
cent of his battery’s capacity one day, then recharge it fully overnight. If he uses
25 per cent the next day, he will have discharged a total of 100 per cent, and
the two days will add up to one charge cycle, it is shown in Fig. 1.3 .It could take
several days to complete a cycle.

Fig. 1.3 Apple's definition for one complete discharge cycle

Consequently, the depth of discharge (DoD) determine the cycle count. In Fig.
1.4, it can be observe the shorter the discharge (low DoD), the longer the
battery will last. If at all possible, avoid full discharges and charge the battery
more often between uses. Mobile phone users typically recharge their batteries
when the DoD is only about 25 to 30 percent. At this low DoD a lithium-ion
battery can be expected to achieve between 5 and 6 times the specified cycle
life of the battery which assumes complete discharge every cycle.

Application for monitoring mobiles batteries 13

Fig. 1.4 Depth of Discharge vs Cycle Life [7]

Batteries are electrochemical devices which convert chemical energy into
electrical energy or vice versa by means of controlled chemical reactions
between a set of active chemicals. Unfortunately the desired chemical reactions
on which the battery depends are usually accompanied by unwanted, parasitic
chemical reactions which consume some of the active chemicals or impede
their reactions. Even if the cell's active chemicals remain unaffected over time,
cells can fail because unwanted chemical or physical changes to the seals
keeping the electrolyte in place.

Chemical reactions internal to the battery are driven either by voltage or
temperature. The hotter the battery, the faster chemical reactions will occur.
High temperatures can thus provide increased performance, but at the same
time the rate of the unwanted chemical reactions will increase resulting in a
corresponding loss of battery life.

Most Li-ions are charged to 4.20V/cell and every reduction of 0.10V/cell is said
to double cycle life [8]. For instance, if charged a lithium-ion cell to only
4.10V/cell, the life can be prolonged to 600 or 1000 cycles. On the contrary, if
cut off voltage is increased, capacity will be reduced as it is noted in the Fig.
1.5.

Application for monitoring mobiles batteries 14

Fig. 1.5 Effects on cycle life at elevated charge voltages.

1.4 Entropy

The word entropy was first used by Rudolf Clausius. It is taken from the Greek
word "tropee” which means transformation. Entropy (usual symbol S) is a
measure of the number of specific ways in which a thermodynamic system may
be arranged, commonly understood as a measure of disorder.

The second law of thermodynamics asserts that dissipative processes of the
systems must generate entropy. This entropy is a thermodynamics function of
state that describes irreversible processes and can clarify ageing and
degradation of electric systems.

The change in entropy (ΔS) of a system was originally defined for a
thermodynamically reversible process as

∆𝑆 = ∫
𝛿𝑄

𝑇
 (1.3)

Where T is the absolute temperature of the system, dividing an incremental
reversible transfer of heat into that system 𝛿𝑄.

Application for monitoring mobiles batteries 15

CHAPTER 2.APPLIED TECHNOLOGY

2.1 Mobile application

An Android mobile application is developed in order to fulfill the main objective
of the master thesis. Android is a mobile operating system (OS) based on the
Linux kernel and currently developed by Google. Android is the leading mobile
platform worldwide, as can be observe from Fig. 2.1. In addition,

Table 2.1 presents the evolution of the market share and unit shipments for the
last two years.

Fig. 2.1 Mobile platform market share in 2014

Table 2.1 Top Four Smartphone Operating Systems, Unit Shipments, Market
Share, and Year-Over-Year Growth (Units in Millions) [9]

Operating
System

2014 Unit
Volumes

2014
Market
Share

2013 Unit
Volumes

2013
Market
Share

Year-
Over-Year
Change

Android 1,059.3 81.5% 802.2 78.7% 32.0%

iOS 192.7 14.8% 153.4 15.1% 25.6%

Windows
Phone

34.9 2.7% 33.5 3.3% 4.2%

BlackBerry 5.8 0.4% 19.2 1.9% -69.8%

2014 Mobile OS Market Share

Android

iOS

Windows Phone

BlackBerry

Others

Application for monitoring mobiles batteries 16

Others 7.7 0.6% 2.3 0.2% 234.8%

Total 1,300.4 100.0% 1,018.7 100.0% 27.7%

The application is developed using Java, and is built with the latest available
Android SDK version. Additionally, it takes advantage of SQLite database
already installed on Android operating system.

2.1.1 Android SDK

Android applications are developed using the Java language programming and
Android provides a software development kit (SDK), which is a set of tools and
APIs (Application Programming Interface) for developers [10].

The Android SDK separates tools, platforms, and other components into
packages that can be downloaded using the SDK Manager [11]. It can be
observed in the Fig. 2.2 that the latest API version (API 21) is used to develop
this android application.

Fig. 2.2 Android SDK Manager

Application for monitoring mobiles batteries 17

Android application is built using blocks or in other words, application
components. There are four different types of app components: activities,
services, broadcast receivers and content providers. The first three components
are activated by an asynchronous messages called intent. Intents bind
individual components to each other at runtime and facilitate communication
between them.

2.1.1.1 Activities

An activity represents a single screen with which users can interact in order to
do something.

For example, an email app might have one activity that shows a list of new
emails, another activity to compose an email, and another activity for reading
emails. Although the activities work together to form a cohesive user experience
in the email app, each one is independent of the others.

2.1.1.2 Services

A service is a component that runs in the background to perform long-running
operations or to perform work for remote processes. A service does not provide
a user interface.

Another component, such as an activity, can start the service and let it run or
bind to it in order to interact with it.

For example, a service might fetch data over the network without blocking user
interaction with an activity.

2.1.1.3 Content providers

A content provider manages a shared set of app data. Data can be stored in the
file system, in SQLite database, on the web, or any other persistent storage
location that the app can access. Through the content provider, other apps can
query or even modify the data.

Content providers are also useful for reading and writing data that is private to
the app and not shared.

For example, the Android system provides a content provider that manages the
user's contact information.

Application for monitoring mobiles batteries 18

2.1.1.4 Broadcast receivers

A broadcast receiver is a component that responds to system-wide broadcast
announcements. Many broadcasts originate from the system, for instance, a
broadcast announcing that the screen has turned off, the battery is low, or a
picture was captured.

Apps can also initiate broadcasts, for example, to let other apps know that some
data has been downloaded to the device and is available for them to use.

2.1.2 SQLite

Android provides several options to save persistent application data. It has been
decided to use SQLite databases to store structured private data.

SQLite is an Open Source database. It supports standard relational database
features like SQL syntax, transactions and prepared statements. The database
requires limited memory at runtime which makes it a good candidate from being
embedded into small devices. Android OS comes with SQLite Database already
built-in.

2.1.3 Development environment

Eclipse is an IDE (integrated development environment) for Java and other
programming languages like C, C++, PHP, and Ruby etc. Development
environment provided by Eclipse includes the Eclipse Java development tools
(JDT) for Java, Eclipse CDT for C/C++, and Eclipse PDT for PHP, among
others. Eclipse is free and open source software. The Eclipse IDE can be
extended with additional software components called plug-ins.

Android offers a customized plugin for the Eclipse IDE, called Android
Development Tools (ADT). This plugin provides a powerful, integrated
environment in which to develop Android applications. It extends the capabilities
of Eclipse to let quickly set up new Android projects, build an application User
Interface, debug the application, and export signed (or unsigned) application
packages (APKs) for distribution.[12]

Eclipse installation must meet the following requirements to be compatible with
the latest version of ADT:

 Eclipse 3.7.2 (Indigo) or greater

 Eclipse JDT plugin (included in most Eclipse IDE packages)

 JDK 6 (JRE alone is not sufficient).

Eclipse Luna version 4.4.1 is the IDE selected to develop the application.
Following screenshot Fig. 2.3 shows the user interface of the IDE.

Application for monitoring mobiles batteries 19

Fig. 2.3 Eclipse Luna with ADT plugin

Moreover, the developed source code is integrated into version control system
in order to track and provide control over changes.

2.1.3.1 Version control system.

At the simplest level, developers could simply retain multiple copies of the
different versions of the program, and label them appropriately. This simple
approach has been used on many large software projects. While this method
can work, it is inefficient as many near-identical copies of the program have to
be maintained. This requires a lot of self-discipline on the part of developers,
and often leads to mistakes. Consequently, systems that automate some or all
of the revision control process have been created. There are different software
tools for version control, one of the most famous is Git.

Git is a free and open source distributed version control system (DVCS)
designed to handle everything from small to very large projects with speed and
efficiency. Git has become the most widely adopted version control system for
software development. [13]

Development process of the application has been integrated with Git and using
Bitbucket as a source code repository web-server. Bitbucket is a hosting site for
the distributed version control systems, such as Git, and it provides free plans to
private repositories.

Application for monitoring mobiles batteries 20

There are different ways to connect to this private repository, via web
(https://bitbucket.org/srg-io/batterypfm), using desktop application called
SourceTree (Fig. 2.4) or using an Eclipse Git plug-in.

Fig. 2.4 SourceTree desktop application to connect with online repository

2.2 Web Server

The application transfers information collected in the device to a web service
provided by a server. Server implementation is built using XAMPP. XAMPP is a
free, cross-platform web server, consisting mainly of the Apache, MySQL, PHP
and Perl programming languages. X in XAMPP denotes that it can be run on
different operating system like Windows, Linux, Mac OS X, etc.

Officially, XAMPP intended it for use only as a development tool, to allow
website designers and programmers to test their work on their own computers
without any access to the Internet. Fig. 2.5 shows local web for XAMPP control
panel. In practice, however, XAMPP is sometimes used to actually serve web
pages on Internet. XAMPP also provides support for creating and manipulating
databases in MySQL.

Application for monitoring mobiles batteries 21

Fig. 2.5 XAMPP status web for Windows

2.2.1 PHP

Application connects to server through web service developed with PHP. The
main reason for using this language is because server have installed XAMPP, is
the most common server-side programming language used (Fig. 2.6) and is the
cheapest option on hosting providers.

Fig. 2.6 Percentages of various server-side programming languages used
actually by websites.

Application for monitoring mobiles batteries 22

PHP is a general-purpose scripting language that is especially suited to server-
side web development, in which case PHP generally runs on a web server. Any
PHP code in a requested file is executed by the PHP runtime, usually to create
dynamic web page content or dynamic images used on websites. PHP can be
deployed on most web servers, many operating systems and platforms, and can
be used with many relational database management systems. Most web
hosting providers support PHP for use by their clients. It is available free of
charge, and the PHP Group provides the complete source code for users to
build, customize and extend it to their own use.

2.2.2 MySQL

MySQL is the world’s most popular open source database, enabling the cost-
effective delivery of reliable, high-performance and scalable Web-based and
embedded database applications.

XAMPP installation also includes phpMyAdmin tool. PhpMyAdmin is a tool
written in PHP intended to handle the administration of MySQL servers over the
Web. Currently it can create and drop databases, tables and views, fields,
execute any SQL statement, manage keys on fields, manage privileges,
manage triggers and stored procedures and export data into various formats.

2.2.3 Apache

The Apache HTTP Server, colloquially called Apache. This server is an open-
source HTTP server for modern operating systems including UNIX, Microsoft
Windows, Mac OS/X and Netware. The goal is to provide a secure, efficient and
extensible server that provides HTTP services observing the current HTTP
standards. Apache has been the most popular web server on the Internet since
April 1996.

2.2.4 Dashboard

Web dashboard is based on HTML5 with JQuery 1.10.2 as a JavaScript
framework and Bootstrap 3.3.4 as a CSS framework. In addition, uses
GoogleChart, a library from Google to create and embed charts on websites.

jQuery is the most popular JavaScript library in use today. jQuery is free, open-
source software licensed under the MIT License. Bootstrap is a free and open-
source collection of tools for creating websites and web applications. It contains
HTML and CSS design templates for typography, forms, buttons, navigation
and other interface components. It is one of the most popular frameworks used
today.

Application for monitoring mobiles batteries 23

2.2.5 Development environment

These web program languages do not need a specific IDE. The code can be
written only using a text editor application. However, advanced text editor or
source editor software is highly recommended.

In this case, Notepad++ editor and Eclipse IDE are used to write PHP, HTML,
JavaScript and CSS code. The administration of the MySQL database is
performed by PhpMyAdmin tool. Moreover, source code is integrated with the
same version control system explained in the section 2.1.3.1.

Application for monitoring mobiles batteries 24

CHAPTER 3. BATTERY MONITOR APPLICATION

The aim of this chapter is to describe the implementation of the android
application to monitor battery evolution using the technology already explained
in the previous section. Therefore, architecture is firstly presented. Afterwards,
the way in which the application gets battery’s information and how it keeps
these data is detailed. The following section is about synchronization requests
and responses. Finally, user interface and the project structure are explained.

3.1 Architecture

Battery monitor application includes different components based on primary
building blocks of Android applications (see 2.1.1) that interact with each other
as can be seen in Fig. 3.1.

Fig. 3.1 Architecture application based on Android components

Battery monitor Android is composed by three activities (screens): Main, user
settings and cycles’ list. The main component of the application is the battery
service, which is connected to the broadcast receivers to obtain battery
changes and to detect when device is started. Additionally, there is a broadcast
receiver that is connected to the synchronization module to send data to the
server every fifteen minutes.

Application for monitoring mobiles batteries 25

Application is built to maintain compatibility with older Android versions,
minimum compatible version is 2.3.3, that means, application can be run on
99,6% of android devices according to Fig. 3.2.

Fig. 3.2 Android device distribution by version system.

3.2 Battery Service component

Battery Service is the core application. This service component is created when
device starts, since it is active listening and waiting for “BOOT_COMPLETED”
system event. In case that the service was not previously created, it is
generated when user interface of the application starts, because the main
activity needs to bind to the service to obtain data.

“ACTION_BATTERY_CHANGED” broadcast receiver provides battery changes
information. Battery service registers this information and saves it in a table
called “battery” on SQLite database.

Additionally, service manages charge and discharge cycles. It compares every
battery changed received with previous information, so it detects complete
cycles. It keeps cycle data on a different table in the database. By default, the
minimum and maximum cycle’s thresholds are 5% and 95% battery level,
respectively. However, user can customize these cycle’s thresholds. Service
sends cycle data to server after the cycle is completed.

Moreover, service sets an alarm, which perform time-based operations outside
the lifetime of the application. In this case, alarm sends data from battery table
every 15 minutes to synchronize information with server database. This
synchronizing process will be explained in next section. Now, information
obtained from battery will be detailed.

Application for monitoring mobiles batteries 26

3.3 Battery data

Android SDK broadcasts the following battery’s data and it is accessible by
using Android’s BatteryManager class [14]:

 EXTRA_STATUS: integer containing the current status constant.

Table 3.1 Extra_status Android battery values

Constant name Constant value

BATTERY_STATUS_UNKNOWN 1

BATTERY_STATUS_CHARGING 2

BATTERY_STATUS_DISCHARGING 3

BATTERY_STATUS_NOT_CHARGING 4

BATTERY_STATUS_FULL 5

 EXTRA_HEALTH: integer containing the current health constant. It
should be note that Android only provides causes of failure. This
parameter is not related with battery degradation or state of health (SoH).

Table 3.2 Extra_health Android battery values.

Constant name Constant value

BATTERY_HEALTH_UNKNOWN 1

BATTERY_HEALTH_GOOD 2

BATTERY_HEALTH_OVERHEAT 3

BATTERY_HEALTH_DEAD 4

BATTERY_HEALTH_OVER_VOLTAGE 5

BATTERY_HEALTH_UNESPECIFIED_FAILURE 6

BATTERY_HEALTH_COLD 7

 EXTRA_PLUGGED: integer indicating whether the device is plugged in
to a power source; 0 means it is on battery, other constants are different
types of power sources.

Table 3.3 Extra_plugged Android battery values

Constant name Constant value

BATTERY_PLUGGED_AC 1

BATTERY_PLUGGED_USB 2

BATTERY_PLUGGED_WIRELESS 4

 EXTRA_PRESENT: boolean indicating whether a battery is present.

Application for monitoring mobiles batteries 27

 EXTRA_LEVEL: integer field containing the current battery level, from 0
to EXTRA_SCALE.

 EXTRA_SCALE: integer containing the maximum battery level.

 EXTRA_VOLTAGE: integer containing the current battery voltage level.

 EXTRA_TEMPERATURE: integer containing the current battery
temperature.

 EXTRA_TECNHOLOGY: String describing the technology of the current
battery.

If application runs on android system version 5.0 (lollipop) or later, following
data are accessible:

 BATTERY_PROPERTY_CAPACITY: Remaining battery capacity as an
integer percentage of total capacity (with no fractional part).

 BATTERY_PROPERTY_CHARGE_COUNTER: Battery capacity in
microampere-hours, as an integer.

 BATTERY_PROPERTY_CURRENT_AVERAGE: Average battery
current in microamperes, as an integer. Positive values indicate net
current entering the battery from a charge source, negative values
indicate net current discharging from the battery. The time period over
which the average is computed may depend on the fuel gauge hardware
and its configuration.

 BATTERY_PROPERTY_CURRENT_NOW: Instantaneous battery
current in microamperes, as an integer. Positive values indicate net
current entering the battery from a charge source, negative values
indicate net current discharging from the battery.

 BATTERY_PROPERTY_ENERGY_COUNTER: Battery remaining
energy in nanowatt-hours, as a long integer.

However, these last properties can return empty values in Android 5.0 or later,
because the information is provided from the fuel gauge chip (section 1.2), and
depending on the model chip these information are exposed or not.

Next section will explain how to access to the current information in Android
versions prior to 5.0, subject to fuel gauge provides it.

Application for monitoring mobiles batteries 28

3.3.1 Battery current information

Although fuel gauge chip used in a particular phone can measure the current as
explained in previous chapter, accessing that information from Android might be
impossible for several reasons.

One reason could be that the chip only uses the current measurement internally
and does not expose it to the outside. This is not the case of MAX17047
described above, which has registers holding current measurement values, and
these values can be read over the I2C bus. Inter-Integrated Circuit bus allows
easy communication between components which reside on the same circuit
board.

Another reason could be that kernel driver for the fuel gauge chip does not have
code to expose the current measurement information to user applications. That
means, Android does not have a standard API to access to this information.
This is the main problem in Android versions prior to 5.0. However, alternative
technique exists to access to the information.

Android uses Linux core, thus, kernel driver can make the current measurement
information available through some sysfs files. Sysfs is a virtual file system
provided by the Linux kernel. By using virtual files, sysfs exports information
about various kernel subsystems, hardware devices and associated device
drivers from the kernel's device model to user space that refers to all code
which runs outside the operating system's kernel.

Battery information is located under path:

/sys/class/power_supply

Current information is differently exposed according each kernel manufacturer.
For instance, that information could be found in the following file for a LG Nexus
device:

/sys/class/power_supply/battery/current_now

Where the current value is on the first line. However, in other devices, the
information is located on a different path and the current value is a key-value
property. For that reason, a large list with possible locations for current values
has been created.

It is hardly difficult to create a complete list of locations since there are near to
ten thousand different android devices. So, there will be cases for which current
value will not be found.

Application for monitoring mobiles batteries 29

3.4 Database

Fig. 3.3 shows the entity relationship diagram of SQLite database. It is a simple
database and contains three tables. One table called “battery” where data
collected from battery are inserted and two relational tables for the data of the
cycles captured.

Fig. 3.3 ERD of SQLite mobile database

There is a datasource class that provides the connection to database and
contains the needed queries for the application. Main CRUD (Create, Read,
Update and Delete) operations are described below:

 Create: insert with correct format new battery registers or cycles.

 Read: obtain unsynchronized data to send to server. Moreover, convert
information to JSON format. Data recovered from battery table are
limited to 1,000 registers to avoid server’s saturation. Data from cycles
are aggregated to obtain average temperature, voltage, current values
for each SoC level. So, cycles are composed by 100 registers.

 Update: synchronization module receives status information from server
and updates updateStatus field for synchronized registers.

 Delete: by default, remove data successfully synchronized.

Application for monitoring mobiles batteries 30

3.5 Synchronization module

Synchronization module is responsible to communicate with server and send
information stored on device database. It manages http requests and responses
and it decides the actions to be made in each situation.

This process is performed by asynchronous post request to following PHP class
in the web server which represents a Web Service. That means, web server
provides functions that can be accessed by other programs over the web. The
communication between app and web service is performed using the JSON
standard format.

http://host/batteryinfosync/insertdata.php

The following Table 3.4 shows the parameters sent by the module:

Table 3.4 Parameters sent to server.

Parameter name Parameter value

datatype Data battery type:
-1: Data send periodically from Battery
table.
0: data for charging cycle
1: data for discharging cycle

batteryJSON All the battery data explained in the
previous section.

deviceInfo Manufacturer and model device

deviceId A hardware serial number

cycle_id Cycle identifier stored in cycle table (only
for Cycle datatype)

timestamp Timestamp when cycle was complete
(only for Cycle datatype)

This is an example request for a periodically data:

datatype=-1&deviceId=047f6af3c998ed60&deviceInfo=LGE Nexus
4&batteryJSON=[{technology":"Li-ion","timestamp":"2015-03-31
10:25:46","_id":7,"instantCurrent":450,"remainingEnergy":0,"averageCurrent
":0,"capacity":0,"capacityLevel":40,"health":2,"level":40,"plugged":2,"pre
sent":false,"scale":100,"status":2,"temperature":256,"updateStatus":0,"vol
tage":3730},
{"technology":"Li-ion","timestamp":"2015-03-31
10:26:56","_id":8,"instantCurrent":369,"remainingEnergy":0,"averageCurrent
":0,"capacity":0,"capacityLevel":40,"health":2,"level":40,"plugged":2,"pre
sent":false,"scale":100,"status":2,"temperature":260,"updateStatus":0,"vol
tage":3746},
{..},]

Application for monitoring mobiles batteries 31

Response from server contains the registers identifier related to data sent with
the status information about synchronization, 1 success and 0 fail.

Moreover, this is an example request for charging cycle:

In this case, response only contains the identifier related to the cycle.

By default, data synchronized successfully are deleted on SQLite database, in
order to free device memory space. Moreover, a study about data usage in
these networks messages has been performed. Each register of battery
information is approximately 280 bytes. The frequency of the batteries’ changes
updates depends on the fuel gauge chip. However, on average there are three
updates in one minute. Therefore, 12600 bytes are sent every 15 minutes
approximately. That implies a data usage equal to 1.15 Mb in one day.

3.6 User Interface

User can see and manage the information recovered by Battery Service using a
visual interface. When user presses application icon from their Android
smartphone, main activity starts.

[{"type":"-1","id":7,"status":"1"},
{"type":"-1","id":8,"status":"1"},
{"type":"-1","id":9,"status":"1"},
,..,
{"type":"-1","id":47,"status":"1"}]

datatype=0&deviceId=047f6af3c998ed60&deviceInfo=LGE Nexus
4&cycle_id=32×tamp:2015-03-31 11:43:00&batteryJSON=[{technology":"Li-
ion","timestamp":"2015-03-31
10:25:46","_id":7,"instantCurrent":450,"remainingEnergy":0,"averageCurrent
":0,"capacity":0,"capacityLevel":40,"health":2,"level":40,"plugged":2,"pre
sent":false,"scale":100,"status":2,"temperature":256,"updateStatus":0,"vol
tage":3730},
{"technology":"Li-ion","timestamp":"2015-03-31
10:26:56","_id":8,"instantCurrent":369,"remainingEnergy":0,"averageCurrent
":0,"capacity":0,"capacityLevel":41,"health":2,"level":41,"plugged":2,"pre
sent":false,"scale":100,"status":2,"temperature":260,"updateStatus":0,"vol
tage":3746},
{..},]

[{"type":"0","id":32,"status":"1"}]

Application for monitoring mobiles batteries 32

Main activity class binds to Battery Service each time is started to obtain battery
information in real time (Fig. 3.4). Activity requests new information each five
seconds using a handler when it is in foreground. Handlers are implemented in
the main thread of an application and are primarily used to make updates to the
user interface in response to messages sent by another thread running within
the application’s process.

Fig. 3.4 Starting application main activity

This main screen contains the most important information for user about their
device battery. Following screenshots, Fig. 3.5, show the activity with loaded
information in the latest Android version and for Android version 2.3.7.
Furthermore, they show the application layout in different screen sizes.

Fig. 3.5 Information in main screen

Application for monitoring mobiles batteries 33

A. Android action bar contains icon, name and two action buttons.
1. Sync button: User can synchronize current data from table Battery

without waiting 15 minutes.
2. Preferences button: Navigate to user settings activity.

B. Custom progress bar. Specific design for identify current level of battery
with colour gradient and with percentage number.

C. Status Battery section. The icon image is generated dynamically

depending on status and level battery. This section displays information
about status, plugged type, health and technology.

D. Device section. It shows manufacturer, model, serial and android version
related to device.

E. Battery stats section. Voltage, current, temperature, energy remaining,
capacity and capacity level are displayed in this section.

F. Indicates to user when last data synchronization with server has been
performed.

G. “Show cycles list” button navigates to list activity screen and it displays
cycles information. “Drain battery” button is a toggle button for activate
fast discharge, that is described below.

3.6.1 Fast discharge option

Application not only shows information about battery but also includes an option
to perform a constant fast battery discharge.

It has been developed to perform tests more quickly. This button enables the
user to drain the battery.

It is well-known that the most draining battery components are:

 CPU

 Brightness screen

 Vibration

 WIFI

 GPS

 Bluetooth

Applications uses full wake lock, which is a mechanism to indicate that it needs
to have the device stay CPU on and screen on. It turns GPS on with zero time
polling intervals. Also it turns Bluetooth on and it continuously scan for new
devices (Fig. 3.6). The remaining two components have been discarded, since
vibration may disturb the user and WIFI can interfere with synchronization
process.

Application for monitoring mobiles batteries 34

Fig. 3.6 Fast discharge option activated

The following graphs in Fig. 3.7 show how devices are discharged in
approximately 4 hours in a constant way, when this option is active.

Fig. 3.7 Discharge graph when fast discharge is active

Application for monitoring mobiles batteries 35

3.6.2 User Preferences screen

User preference activity is based on Android settings screen. It contains few
configurations that can be modified by user.

As it is shown in Fig. 3.8, it is divided in three categories:

 Cycles Settings: it is possible to modify maximum and minimum level’s
threshold in order to detect complete cycles.

 Drain Settings: user can deactivate components used when fast
discharge option is turned on.

 Database Settings: By default, synchronized data with server are
deleted. However, user can change this rule with the purpose of keeping
data on mobile database.

Fig. 3.8 User preferences screen

3.6.3 Cycles list screen

By pressing “show cycles list” button on main screen, user accesses to the
historical list of complete charge and discharge cycles.

Application for monitoring mobiles batteries 36

Data from cycles are removed when they are synchronized. Nonetheless,
cycle’s table keeps registers to inform user about complete cycles (number,
type and time). It is observed in Fig. 3.9.

Fig. 3.9 Cycles' List screen

3.7 Project structure

The Eclipse plug-in Android Developer Tools (section 2.1.3) defines a basic
project structure for Android applications (Fig. 3.10).

Fig. 3.10 Project structure for Android applications

Application for monitoring mobiles batteries 37

 src folder: It contains the Java source files.

 gen folder: This folder contains java files generated by ADT. These files
have references to various resources placed in the application.

 bin folder: It is the area used by the compiler to prepare the files to be
finally packaged to the application’s APK file.

 res folder: It contains all the resources required like images, layouts and
values.

 Libs folder: It contains precompiled third-party libraries (JAR archives).
Battery monitor application uses two external libraries:

o android-async-http-1.4.6: it is useful to perform asynchronous

requests to the web server.

o gson-2.2.4: it is a Java library that can be used to convert Java

Objects into their JSON representation. It can also be used to
convert a JSON string to an equivalent Java object.

Furthermore, basic structure includes important files for the Android projects:

 AndroidManifest.xml: It is the Android definition file. It contains
information about the Android application such as minimum Android
version, permission to access Android device capabilities, definition of
the application components (activities, services, receivers, etc). Battery
monitor application requires permission to Internet, GPS, Bluetooth, boot
complete and wake lock capabilities.

<uses-sdk
 android:minSdkVersion="10"
 android:targetSdkVersion="21" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission android:name="android.permission.WAKE_LOCK" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.BLUETOOTH" />
 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />

 Project.properties: It is the main project’s properties file that contains
information such as the build platform target (API 21) and the library
dependencies.

Application for monitoring mobiles batteries 38

3.7.1 Source folder

Developed java classes are divided in different packages depending on their
function. Annex 3 contains the app diagram class. Fig. 3.11 shows the source
folder structure.

Fig. 3.11 Application java files

com.sergi.battery package contains classes related to the main activity, user
settings activity, constants and additional classes to obtain the current. Further
information is provided below.

 MainActivity.java: It is the entry point when user press application icon. It
manages the information and options presented on the main screen (see
section 3.6).

 UserSettingActivity.java: It controls user preferences view (see 3.6.2).

 RangeBarPreference.java: It handles the specific component created to
select minimum and maximum values for the cycle’s thresholds. This
component is displayed on Fig. 3.8.

 CurrentWrapper.java: Android devices with version prior to 5.0 use this
class to look up the file location where current information is placed. It
contains specific locations for each device model.

Application for monitoring mobiles batteries 39

 BatteryUtil.java: It groups support functions, such as, access to files to
read current information.

 IConstants.java: Constants values are placed on this class. For instance,
it has web server address and the period time for each synchronization.

There are two classes into the cycles’ package. CyclesListActivity.java obtains
the data for the cycles list screen. CyclesAdapter.java manages these data and
defines the format for each row of the list.

com.sergi.battery.data package has two classes (BatteryInfo.java and
Cycles.java), which contains the battery and cycle properties’ definition.
Moreover, classes to manage SQLite database are located here:

 MySQLiteHelper.java: This class provides the connection to the Android
SQLite database and it is extended to add the script for creating the
tables.

 BatteryDataSource.java: It contains the queries to interact with the
database (see 3.4).

Finally, services’ package encloses java files for battery service, broadcast
receivers and synchronization module.

 BatteryService.java: It is the main component of the application. It is
described in section 3.2.

 BootReceiver.java: This class is the broadcast receiver for the boot
event. It starts battery service when device is turned on.

 SyncDataReceiver.java: Every fifteen minutes, an event is captured by
this class in order to activate the synchronization module.

 SyncData.java: It contains Java code for the synchronization module
explained in section 3.5.

3.7.2 Resources folder

In order to maintain resources independently, it is necessary to externalize them
from the code. Externalizing application resources allows to provide alternative
resources that support specific device configurations such as different
languages, screen size or system version. As it can be seen in the Fig. 3.12,

WS_HOST = "http://192.168.1.132";
URL_insertdata = WS_HOST + "/batteryinfosync/insertdata.php";
SYNC_TIME = 15;

Application for monitoring mobiles batteries 40

the res directory contains all the resources that groups them in sub-directories
by type and configuration.

Fig. 3.12 Resource's folder

 Drawable folder: A drawable resource is a general concept for a graphic
that can be drawn to the screen, in this case contains and XML file that
defines a geometric shape, colors and gradients of the custom progress
bar displayed in the main screen (Fig. 3.5).

 Drawable-*dpi folders: This folders contain icons and images used in the
user interface. They are divided into sub-directories depending on screen
density [15]. Fig. 3.13 shows the relation between screen size and
screen density.

o ldpi: Low-density screens; approximately 120dpi.
o mdpi: Medium-density (on traditional HVGA) screens;

approximately 160dpi.
o hdpi: High-density screens; approximately 240dpi.
o xhdpi: Extra-high-density screens; approximately 320dpi.
o xxhdpi: Extra-extra-high-density screens; approximately 480dpi

Application for monitoring mobiles batteries 41

Fig. 3.13 Map of actual screen sizes and densities.

 Layout folder: Layout resource defines the architecture for the user
interface in the activities or components.

 Menu folder: XML file that define application menu placed on the top bar,
which contains the application icon and name, and the options buttons.

 Value folder: It defines values of the application for the text strings, style
and dimensions. This XML files are divided depending on the platform
version, for instance –V11 for API level 11 (devices with Android 1.6 or
higher). Please refer to annex 4 for further information about these
values. Furthermore, it can contain sub-directories depending on the
screen width, for devices with 820dpi exists a specific dimension file.

 Xml folder: It contains XML configuration files, such as, preference
screen configurations. Preference.xml defines categories and properties
that user can modify in the preference activity.

Application for monitoring mobiles batteries 42

CHAPTER 4.SERVER

Server provides a web service where the application connects to, in order to
send the information using its synchronization module (section 3.5). Server
classifies received data, processes entropy results and stores all into a
database. Finally, server makes available this information in a website. As it is
shown in Fig. 4.1, server is composed for three modules: web service,
database and dashboard.

Fig. 4.1 Server’s modules

In this chapter, server implementation is defined. Firstly, MySQL database is
presented. After that, the entropy calculation and the techniques to obtain the
open circuit voltage of the battery are explained. These calculation and methods
are applied on the web service workflows subsequently detailed. Furthermore,
website where user can obtain data captured by the mobile application, is
described on dashboard’s section.

4.1 Database

Server’s database supports data from multiple devices. All devices registered
are on devices’ table, which primary key is _id. The other tables relate to this
one through the device_id.

Furthermore, the server’s database includes extra fields and tables for
calculated data, such as open voltage circuit or entropy.

The following Fig. 4.2 shows the entity relationship diagram of MySQL
database:

Application for monitoring mobiles batteries 43

Fig. 4.2 ERD of MySQL server database

In addition, there is another table unrelated to battery data. The user’s table
contains the username and password of the users who can access to
dashboard web.

4.2 Entropy Calculation

Calculation of battery entropy is based on patent [16]. Entropy equation is
described by:

∆𝑆 = ∫ 𝑆𝑟𝑎𝑡𝑒 𝑑𝑡 = ∫
𝑃

𝑇
𝑑𝑡 (4.1)

Where 𝑆𝑟𝑎𝑡𝑒 is rate of entropy generation in the system, 𝑇 is measured
temperature and 𝑃 is power consumption that under adiabatic or isometric
conditions can be approximated by:

𝑃 = (𝑉𝑜𝑐 − 𝑉𝑏𝑎𝑡)𝐼 (4.2)

Where 𝑉𝑜𝑐 is the open circuit voltage (OCV), 𝑉𝑏𝑎𝑡 battery voltage and 𝐼 is

charging or discharging battery current. However, in order to measure the
open circuit voltage 𝑉𝑜𝑐, the battery must be disconnected from the device.

Application for monitoring mobiles batteries 44

Since this is not possible while the application is running, estimation
methods for this property are required.

Altogether, 𝑆𝑟𝑎𝑡𝑒 is calculated with information provided from battery monitor
application and OCV estimations. Finally, trapezoidal rule is used to integrate
the rate of entropy generation. The trapezoidal rule is a technique for
approximating the definite integral. It approximates the region under the graph
of the function to a trapezoid (Fig. 4.3) and it calculates the area. The
trapezoidal rule follows the equation (4.3):

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 ≈ (𝑏 − 𝑎)

𝑓(𝑎)+𝑓(𝑏)

2
 (4.3)

Fig. 4.3 Graph divided in trapezoids

Applying this technique to entropy equation (4.1):

∆𝑆 = ∫ 𝑆𝑟𝑎𝑡𝑒(𝑡)
𝑡2

𝑡1

𝑑𝑡 ≈ (𝑡2 − 𝑡1)
𝑆𝑟𝑎𝑡𝑒(𝑡1) + 𝑆𝑟𝑎𝑡𝑒(𝑡2)

2
=

(𝑡2 − 𝑡1)

(𝑉𝑜𝑐|𝑡1
−𝑉𝑏𝑎𝑡|𝑡1

)𝐼𝑡1
𝑇𝑡1

+
(𝑉𝑜𝑐|𝑡2

−𝑉𝑏𝑎𝑡|𝑡2
)𝐼𝑡2

𝑇𝑡2

2
 (4.4)

Two different approaches regarding OCV estimation are used for the entropy
calculation. Both of them are described below.

4.2.1 OCV with mean estimation

The open-circuit voltage of the battery cannot be directly measured because the
battery needs to be disconnected for three hours minimum. However, according
to [17] , the OCV can be found in the area between charging line and

Application for monitoring mobiles batteries 45

discharging line (Fig. 4.4). Therefore, OCV is calculated from mean voltage
values of each SoC level.

Fig. 4.4 OCV region limited by charge and discharge battery voltage (data in
annex 2)

4.2.2 OCV with linear regression method

This OCV estimation can be performed using a simple battery model, as shown

in Fig. 4.5. It consists of an ideal battery with open-circuit voltage 𝑉𝑜𝑐, a constant
equivalent internal resistance 𝑅𝑖𝑛𝑡 and the battery voltage represented by 𝑉𝑏.[4]

Fig. 4.5 Simple battery model

𝐼𝑏 is obtained from:

𝐼𝑏 =
𝑣𝑜𝑐−𝑣𝑏

𝑅𝑖𝑛𝑡
 (4.5)

3,20

3,40

3,60

3,80

4,00

4,20

4,40

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

V
b

at
(V

)

SoC(%)

OCV mean estimation

Voltage Voltage OCV

Application for monitoring mobiles batteries 46

Hence, it is possible to transform it to straight line equation where y-intercept is

𝑣𝑜𝑐

𝑦 = 𝑎𝑥 + 𝑏 (4.6)

𝑣𝑏 = − 𝑅𝑖𝑛𝑡𝐼𝑏 + 𝑣𝑜𝑐 (4.7)

Current 𝐼𝑏and battery voltage are collected from battery monitor application.
Therefore, a regression line can be estimated with some points of each SoC.
Only last five points are entered into regression because aging is an important
factor on battery values and it could introduce a bias. Fig. 4.6 shows linear
regression for 30% of SoC and when battery was in charging stage. It has been
found that the internal resistance is different under discharge and charge
conditions, consequently, it is necessary to create different regression lines
according to battery status and SoC.

Fig. 4.6 Linear regression for 30% SoC in charging status. Please, note that in
equation slope be negative. Indicate, if so, that charging current is negative and

thus, slope is positive.

Mathematically, ordinary least squares (OLS) approach is used to fit the
regression line. This method calculates the best-fitting line for the observed data

by minimizing the sum of the squares (𝑄) of the vertical deviations from each
data point to the line.

𝑄 = ∑ (𝑦𝑖 − 𝑦)2 = ∑ (𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2𝑛
𝑖=1

𝑛
𝑖=1 (4.8)

y = 0,084x + 3938,5
R² = 0,9056

4008

4009

4010

4011

4012

4013

4014

4015

830 840 850 860 870 880 890 900 910

V
o

lt
ag

e
b

at
te

ry
 (

m
V

)

Current battery (mA)

OCV Linear Regression

Application for monitoring mobiles batteries 47

Then, 𝑄 will be minimized at the values of a and b for which
𝜕𝑄

𝜕𝑏
= 0 and

𝜕𝑄

𝜕𝑎
= 0.

The first of these conditions is,

𝜕𝑄

𝜕𝑏
= ∑ −2(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏) = 2(𝑛𝑏 + 𝑎 ∑ 𝑥𝑖

𝑛
𝑖=1 −𝑛

𝑖=1 ∑ 𝑦𝑖
𝑛
𝑖=1) = 0 (4.9)

Which, solving 𝑏,

𝑏 = 𝑌̅ − 𝑎𝑋̅ (4.10)

The second condition for minimizing Q is,

𝜕𝑄

𝜕𝑎
= ∑ −2𝑥𝑖(𝑦𝑖 − 𝑏 − 𝑎𝑥𝑖) = ∑ −2(𝑥𝑖𝑦𝑖 − 𝑏𝑥𝑖 − 𝑎𝑥𝑖

2) = 0𝑛
𝑖=1 𝑛

𝑖=1 (4.11)

Now, the expression for 𝑏 from (4.10) could be used in (4.11),

∑ (𝑛

𝑖=1 𝑥𝑖𝑦𝑖 − 𝑥𝑖𝑌̅ + 𝑎𝑥𝑖𝑋̅ − 𝑎𝑥𝑖
2) = ∑ (𝑛

𝑖=1 𝑥𝑖𝑦𝑖 − 𝑥𝑖𝑌̅) − 𝑎 ∑ (𝑥𝑖
2 −𝑛

𝑖=1 𝑥𝑖𝑋̅) = 0 (4.12)

Finally, solving 𝑎,

𝑎 =
∑ (𝑛

𝑖=1 𝑥𝑖𝑦𝑖−𝑥𝑖𝑌̅)

∑ (𝑥𝑖
2−𝑛

𝑖=1 𝑥𝑖𝑋̅)
=

𝑛 ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 −∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1)

𝑛 ∑ 𝑥𝑖
2−𝑛

𝑖=1 ∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

𝑛
𝑖=1

 (4.13)

In conclusion, it is possible to calculate the slope (𝑎), which is equal to internal
resistance (4.7), by using values measured by the monitor application.

Afterwards, the intercept (𝑏) is obtained (4.10). Finally, it should be borne in
mind that intercept is equal to open circuit voltage (OCV) in the simple battery
model previously defined. Fig. 4.7 shows an example of estimated OCV values
using linear regression.

Application for monitoring mobiles batteries 48

Fig. 4.7 OCV values using linear regression estimation

There is a process implemented on SQL that takes last five points for each SoC
level and calculates parameters of regression line based on what was described
above:

4.3 Web Service

As explained above, server is implemented with PHP programming language
and MySQL and there are different workflows depending on data type sent by
the mobile application using the server’s web service
(http://host/batteryinfosync/insertdata.php). Furthermore, there is a specific web
service method to perform OCV linear regression estimation.

3200

3400

3600

3800

4000

4200

4400

0 20 40 60 80 100

O
C

V
 (

m
V

)

SoC (%)

OCV linear regression estimation

SELECT device_id ,level,status,
cast((N * Sum_XY - Sum_X * Sum_Y)/(N * Sum_X2 - Sum_X * Sum_X)as decimal(10,10)) AS Slope,
(Mean_Y - (N * Sum_XY - Sum_X * Sum_Y)/(N * Sum_X2 - Sum_X * Sum_X) * Mean_X) AS intercept,
(N * Sum_XY - Sum_X * Sum_Y)/SQRT((N*Sum_X2 - Sum_X*Sum_X) * (N*Sum_Y2 - Sum_Y*Sum_Y)) AS
correlation
FROM (
SELECT level,device_id, status,
COUNT(*) AS N,
AVG(instantCurrent) AS Mean_X,
SUM(instantCurrent) AS Sum_X,
SUM(instantCurrent * instantCurrent) AS Sum_X2,
AVG(voltage) AS Mean_Y,
SUM(voltage) AS Sum_Y,
SUM(voltage*voltage) AS Sum_Y2,
SUM(instantCurrent*voltage) AS Sum_XY
FROM (
SELECT *
FROM battery
WHERE device_id = $device_id
and level = $i
and status = $status
order by timestamp desc limit 5) A
GROUP BY level) B

Application for monitoring mobiles batteries 49

4.3.1 Battery information data workflow

Fig. 4.8 shows the sequence diagram when monitor application sends
information every 15 minutes from battery table to server (or is manually
synchronized by user). The request format is presented in section 3.5.

First, device identifier key is recovered from database. If the device does not
exist on server, a new register is created into device’s table. Next, the server
calculates two slightly different entropy values for each register inserted on
database, according to each OCV estimation method. Server always has a
reference of the last information inserted in this workflow, with the purpose of
calculating the integral.

Fig. 4.8 Sequence diagram for battery data

Application for monitoring mobiles batteries 50

4.3.2 Battery cycle data workflow

Application sends cycle information to server using synchronization module
when each cycle is completed. Server performs following workflow for this type
of data (Fig. 4.9). The request format is presented in section 3.5.

As described above, first, it searches the key of device and if it does not exist, a
new register is created. Next, it inserts a new register into cycle table, including
the type of cycle (charging or discharging) and timestamp.

Afterwards, server inserts data information for each battery level of the cycle
into cycles_data table. This process is transactionally performed to ensure that
all records are inserted correctly. If not, the cycle register saved before is
deleted.

Fig. 4.9 Sequence diagram for cycle data

Application for monitoring mobiles batteries 51

At the end, OCV with mean estimation is calculated using last charge and
discharge cycles as explained above.

4.3.3 Cron for OCV linear regression estimation

In order to calculate OCV with linear regression estimation (see section 4.2.2), a
workflow is created to access it by task scheduler or job and it is observed in
Fig. 4.10). The task uses this server’s web service:

http://host/batteryinfosync/cron.php

This task gets a list with all the devices in the database and calculates the linear
regression for each SoC level and charging or discharging status, using the
algorithm explained above.

Fig. 4.10 Sequence diagram for perform OCV linear regression estimation

Application for monitoring mobiles batteries 52

4.4 Dashboard

4.4.1 Login page

Users can get battery information in a dashboard web located in the main page:

http://host/index.php

Dashboard is secured and thus a properly authenticated access is required.
Although it only contains information about user’s battery, these data can be
used in order to identify user’s routines thanks to predictive analytics
techniques. In other words, through information about battery so many users’
actions could be identified. For instance, when user wakes up, goes to bed or
even when is driving.

Authenticated access is performed by login form (Fig. 4.11), where users have
to introduce valid credentials (username and password) to access the data.

Fig. 4.11 Login page

Login form checks user’s credentials on users’ table in the database. If the user
signed in successfully, login page establishes a session and puts username into
this server’s session. Finally, user is redirected to main page.

Fig. 4.12 Page top bar

Application for monitoring mobiles batteries 53

Main page includes a bar on top with information about the user signed (Fig.
4.12) and contains a sign out link to finalize the session and be redirected to the
login page.

4.4.2 Search form

Dashboard contains a search form, it can be observe in the next Fig. 4.13.

Fig. 4.13 Search Form

A. When page is loaded is connected to PHP server with method
getdevices and load all devices registered in the database (from devices’
table), and put information into this select such as options.

B. User can select a range of dates (date and time). By default, start date is
one month before from today, and end date is the current time.

C. If this checkbox is selected, data is recovered from cycles’ table instead

of battery’s table.

When user submits form, it appears new panel for filter results and also shows
charts displaying the data selected. It can be observed in Fig. 4.14.

Application for monitoring mobiles batteries 54

Fig. 4.14 Results displayed in the dashboard

A. Display information about criteria selected on search form.

B. All avalaible charts. User can select the charts that wants to be shown.

C. Download a CSV with all selected data. User can import to excel or
another application to work with these data.

D. Clean results and restart dashboard to perform a new search.

4.5 Server files

XAMPP server defines a system folder where files have to be placed. By
default, in Windows OS is :

C:\xampp\htdocs

Fig. 4.15 shows structured files for web server. Batteryinfosync folder contains
PHP files, each one has a specific role.

Application for monitoring mobiles batteries 55

Fig. 4.15 Server files

 config.php: Variables to connect to MySQL database are defined here.

 db_connect.php: It establishes connection to database.

 db_functions.php: It contains SQL queries to insert and get data and
functions to calculate the entropy.

 Insertdata.php: It is the PHP class which mobile application connects to
send battery data. It reads received data and uses db_funcions.php class
to insert the data in the database. Finally, it creates a response
according to the insert results.

 Getdevices.php: Dashboard web loads available devices in its selector
component using this class.

 Getdata.php: User submits the search form to this class which obtains
the information using db_functions.php. It returns data with specific
format in order to supply the charts data.

 Cron.php: It is the file used by a daily process to perform the linear
regression calculation, in order to estimate the OCV.

 Check_user.php: This PHP class is called from login page to validate
user credentials.

Application for monitoring mobiles batteries 56

Css, js and img folders contain the resources used by dashboard, such as
images, style or JavaScript functions. Sql folder has the initial database script.

Finally, index.php defines the search form and search results website described
in section 4.4.2. Login.php has the code for login page and logout.php
invalidates the session established by the user.

Application for monitoring mobiles batteries 57

CHAPTER 5.RESULTS

5.1 Set up the test environment

5.1.1 Generating the application APK file

Android application package (APK) is a compressed file and it is used to install
and distribute Android applications. Eclipse ADT plugin can export the Battery
Monitor application to generate APK file. Android online documentation has a
high level of detail regarding this topic. [18]

This procedure should only be performed once, since APK file can be
distributed to unlimited android devices.

5.1.2 Installing the battery monitor application

Firstly, APK file must be on the mobile device. It can be passed via through
USB connection or as an attachment to an email. It should be borne in mind
that to assure the proper functioning of the application, the device has to comply
with the following minimum requirements:

 Android version is 2.3.3 or later

 Device connected to the Internet through 3G/4G or WIFI.

Google Play is the official Android application market. Normally, users download
and install Android applications from this location. In order to install apps from
sources other than Google Play Store, it is necessary to turn on the "Unknown
sources" feature on the device’s settings, as it is shown in Fig. 5.1.

Fig. 5.1 Android security settings

Application for monitoring mobiles batteries 58

After checking these requirements, the application can be installed opening the
APK file in the device. Then platform prompts you to accept the terms (Fig. 5.2)
in order to start the installation. It is important to emphasize that the size of the
application is only 1.06 Mb.

Fig. 5.2 Installation process

5.1.3 Starting the Web Server

The XAMPP Control Panel (Fig. 5.3) allows starting and stopping the Apache
Web server and MySQL database. This control panel is located on the windows
start menu, all programs, XAMPP, XAMPP Control Panel.

Fig. 5.3 XAMPP Control Panel

Application for monitoring mobiles batteries 59

5.1.4 Creating the Server Database

It is possible to access to MySQL database through phpMyAdmin tool included
in the XAMPP installation. phpMyAdmin is accessible by entering the following
address in the web browser:

http://host/phpmyadmin/

This tool requires authenticated access. By default, credentials are username
“root” without password. Once inside, it should be pasted and submitted the
script generation (provided in the annex 5) into the SQL tab, as it is show on
Fig. 5.4.

Fig. 5.4 Submitting script in order to generate MySQL database

5.1.5 Creating cron job on Windows server

Estimating OCV with linear regression approach requires a hard processing.
For that reason, this work should be performed out of the system routine, in
order to avoid delays on the system.

It is possible to program jobs in Windows using the Task Scheduler feature
included in the operating system.

Creating a basic task (Fig. 5.5) consists on the setting the following parameters:

 Trigger time: Daily. It is recommended to fix the running time at night.

 Action: Execute cron.php file. It should be placed the following line:

C:\xampp\php\php.exe -f c:/xampp/htdocs/batteryinfosync/cron.php

Application for monitoring mobiles batteries 60

Fig. 5.5 Task properties

5.2 Collecting information

After the mobile application has been installed, the user has to start it in order to
activate Battery Service. Once the Battery Service is activated, data from the
battery is collected from now on. After that, Battery Service will always run in
background, and if device reboots, it starts itself. Fig. 5.6 shows the battery
service running in the execution applications menu.

Fig. 5.6 Battery service is running on the smartphone

Application for monitoring mobiles batteries 61

The application runs without user interaction and periodically synchronizes
battery data with the server using the specific web service. Through user
interface it is possible to check the current data and the last synchronization
performed. As it is shown in Fig. 5.7, application monitors the discharge of the
battery by using the drain option, and it sends the data every fifteen minutes.

Fig. 5.7 The app is monitoring the battery

Moreover, the application manages the collected data in order to determine a
complete cycle. Following the same case presented in the figure above, if the
device is continuously discharged from a level of 95% to 5%, the application
assimilates it to a complete discharging cycle and it sends the average
measurements of the each cycle’s level to the server. Finally, a new register
referring to this new cycle on the cycles’ list screen is added (Fig. 5.8).

Fig. 5.8 Adding the new completed cycle

Application for monitoring mobiles batteries 62

5.3 Displaying results

The ultimate aim is that users can check the information sent to the server via
battery monitor app. Once users have inserted valid credentials on login page,
they access to dashboard page and they can seek data from a particular device
in a certain period of time.

For instance, according to the collected information presented in the previous
section, one user fills the search form in order to obtain data from LGE Nexus 4
on May 5th from 10 am to 10:30 pm. The search criteria is shown in the
following Fig. 5.9.

Fig. 5.9 Filled with searching criteria

After few seconds, dashboard displays a set of graphs with the data requested.
Fig. 5.10 displays the results in voltage, current, temperature and level graphs.
It can be observed that user performed a complete charging cycle and
discharging cycle during this time range.

Moreover, it is stated that the charging cycle took less than three hours to be
finalized, which is a typical average time in Li-ion batteries. It can be seen that
the discharge cycle began with a common use of the smartphone, then about
85% of battery level, the option of fast discharge was activated in order to
accelerate the process. It should be appreciated that at level 52% (at time
6:47pm) there was a peak load which caused an increase of temperature and
current.

Application for monitoring mobiles batteries 63

Fig. 5.10 Voltage, current, temperature and level results displayed

In the search form, user has the option to obtain only the complete cycles
through the searching criteria. In that case, dashboard obtains the data from
cycles’ table instead of battery’s table. Fig. 5.11 displays the result for the same
search performed above but taking into account this option. It should be noted
that only the charging and discharging cycles appear and that the graph
contains fewer points than before, since the cycles’ table only contains the
average values for each battery level.

Application for monitoring mobiles batteries 64

Fig. 5.11 Showing cycles in results

Finally, the calculated entropy and rate of entropy generation (𝑆𝑟𝑎𝑡𝑒) parameters
can be observed. Both are displayed in the Fig. 5.12 and Fig. 5.13, respectively.
There are two graphs for each parameter according to the OCV estimations and
both are slightly different. However, the peak load detected at time 6:47 pm is
exhibited in both graphs. Entropy’s graphs have an especial component to
control and select the time range, with the purpose of focusing on these specific
data.

Application for monitoring mobiles batteries 65

Fig. 5.12 Entropy graphs

Fig. 5.13 Rate of entropy generation graphs

Application for monitoring mobiles batteries 66

CHAPTER 6. CONCLUSIONS

A functional system to monitor batteries in mobile phones and transfer
information to a server has been created and deployed. The system is
developed using the most popular, powerful, free and open source tools and
frameworks. For that reason, system is reliable and stable without costs.
Actually, this system is monitoring around twenty batteries of different users’
smartphones and tablets. It is collecting all the data available and processing
this information. Moreover, users have a clear and user-friendly web platform to
search for desired information.

The key milestones of the project are detailed below:

 A mobile phone application has been developed using Android SDK and
SQLite database. Battery Monitor app is compatible with the 99.6% of
Android devices and the last year (2014), Android was the leading mobile
platform with 81.5% of the market share. Consequently, the app is
available for the 81.17% of the mobile devices. The app has been tested
in more than 20 devices, such as, different models of Samsung, LG,
HTC, Sony, BQ and Motorola which implies different screen sizes and
Android versions. The app takes current, voltage, temperature, status,
level, technology, capacity and energy values from batteries. The
processes of collecting information and send it by the app are
transparent to the user, who does not care about anything. Processes
run always on the background and start themselves when device is
booted. The Battery Monitor app is able to withstand a server failure
since the app keeps unsynchronized data into its database and it retries
to send it again in the future.

 Another fundamental part of the system is the Web Service, which
enables the app to send the information to the server. The Web Service
is capable of handling the information in real time, process it and store it
in a structured database. It has been developed using PHP and MySQL
and is hosted by XAMPP web server.

 One of the main objectives of the data processing is the entropy
calculation. Entropy parameter requires battery voltage, temperature,
current and open circuit voltage values in every measure of the battery.
Some problems have been encountered with current and OCV values
throughout the development stage. The problems together with their
solutions are summarized below.

o First of all, some of the fuel gauge chips do not provide the current

property. In addition, Android SDK only exposes this property in its
last version 5.0 (API 21), which is a major problem since the latest
Android version is only distributed to the 5% of the Android
devices. Therefore, a workaround has been implemented to solve
this circumstance, which consists in accessing directly to files of
the Android operating system. However, the information is placed

Application for monitoring mobiles batteries 67

on different paths and in different format depending on each
manufacturer. For that reason, a large list with possible locations
for current values has been created.

o The other troublesome is OCV, which cannot be measured while
the application is running because the battery must be
disconnected from the device. Hence, two different methods to
estimate this property have been used, in order to compare the
results and discover similar behaviors.

 The dashboard web is the last but not least important part of the system.
Thanks to it, users can manage the information by searching for specific
battery stored data and also they can filter different parameters in the
displayed results. Additionally, the dashboard has the functionality of
exporting the resulting data into a CSV file. It is developed using JQuery,
Boostrap and GoogleChart libraries.

Further steps and future work:

 As it is mentioned in the introduction chapter, this system is a useful tool
to perform studies about rechargeable batteries. The information
collected via the application along with the estimate of entropy can lead
to additional and future research about battery degradation and lifetime.

 In order to create value from the large amount of collected data, big data
techniques and predictive analytics or other certain advanced methods
shall be employed in the future. For instance, Data Mining is one analytic
process that is designed to explore data in search of consistent patterns
and systematic relationships between variables, and then to validate the
findings by applying the detected patterns to new subsets of data. The
goal of these processes is prediction. Finally, it should be considered that
prediction is not only related with battery lifetime, but also with the
identification of user’s routines and habits.

 This system has a scalable and modular design. Server is composed of
different modules: web service, database and dashboard. These
modules can be placed on different networked computers and can be
replicated in order to build a system that can scale up to meet increased
workloads. Fig. 6.1 displays a system where web service is located in
three different servers. These servers connect to different database
servers which replicate database changes between them. Dashboard
has a dedicated web server in order to improve the searches
performance. Finally, apps send the data to load balancer, this element
distributes the workload of incoming requests onto multiple computers.

Application for monitoring mobiles batteries 68

Fig. 6.1 Distributed system

 The system is running for an Android app, nevertheless, system could be
adapted in the future to work with another platforms. In that sense,
specific apps for other platforms should be created, such as iOS, which
will send the data using the same server’s web service.

Application for monitoring mobiles batteries 69

BIBLIOGRAPHY

[1]. What’s the Best Battery?. Retrieved from:
http://batteryuniversity.com/learn/article/whats_the_best_battery

[2]. MAX17043 datasheet. Retrieved from:

http://datasheets.maximintegrated.com/en/ds/MAX17043-MAX17044.pdf

[3]. MAX17047 datasheet. Retrieved from:
http://datasheets.maximintegrated.com/en/ds/MAX17047-MAX17050.pdf

[4]. John Chiasson; Baskar Vairamohan. “Estimating the State of Charge of a

Battery”. Electrical and Computer Engineering Department. The
Universitiy of Tennessee, Knoxville.

[5]. Basics About Discharging. Retrieved from:

http://batteryuniversity.com/learn/article/discharge_methods

[6]. Why lithium-ion?. Retrieved from: https://www.apple.com/batteries/why-
lithium-ion/

[7]. Battery Life (and Death). Retrieved from:

http://www.mpoweruk.com/life.htm#dod

[8]. How to Prolong Lithium-based Batteries. Retrieved from:
http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_
batteries

[9]. Smartphone OS Market Share. Retrieved from:

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[10].Android SDK. Retrieved from:
https://developer.android.com/sdk/index.html

[11].Android SDK Manager. Retrieved from:

https://developer.android.com/tools/help/sdk-manager.html

[12].ADT. Retrieved from: https://developer.android.com/tools/help/adt.html

[13].GIT. Retrieved from: http://git-scm.com/

[14].BatteryManager. Retrieved from:
http://developer.android.com/reference/android/os/BatteryManager.html

[15].Supporting Multiple Screens. Retrieved from:

http://developer.android.com/guide/practices/screens_support.html

[16].Cuadras Tomàs, Àngel; Ovejas Benedicto, Victòria Júlia; Quílez
Figuerola, Marcos. “Método para determiner la degradación de sistemas

Application for monitoring mobiles batteries 70

con efecto Joule a partir del increment de entropía”. Universitat
Politècnica de Catalunya.

[17].Suleiman Abu-Sharkh; Dennis Doerffel. “Rapid test and non-linear

model characterization of solid-state lithium-ion batteries”. School of
Engineering Science, University of Southampton, Highfield,
Southampton.

[18].Signing Your Applications from Eclipse with

ADThttps://developer.android.com/tools/publishing/app-signing-
eclipse.html

Application for monitoring mobiles batteries 71

ANNEX 1. FUEL GAUGE SPECIFICATIONS

Model Nexus 5

Fuel Gauge Maxim MAX17048 fuel gauge (ModelGauge™, no coulomb
counter)

Properties BATTERY_PROPERTY_CAPACITY
Measurements The fuel gauge does not support any measurements other

than battery State Of Charge to a resolution of %/256 (1/256th
of a percent of full battery capacity).

Model Nexus 6

Fuel Gauge Maxim MAX17050 fuel gauge (a coulomb counter with Maxim
ModelGauge™ adjustments), and a 10mohm current sense
resistor.

Properties BATTERY_PROPERTY_CAPACITY
BATTERY_PROPERTY_CURRENT_NOW
BATTERY_PROPERTY_CURRENT_AVERAGE
BATTERY_PROPERTY_CHARGE_COUNTER
BATTERY_PROPERTY_ENERGY_COUNTER

Measurements CURRENT_NOW resolution 156.25uA, update period is
175.8ms.
CURRENT_AVERAGE resolution 156.25uA, update period
configurable 0.7s - 6.4h, default 11.25 secs.
CHARGE_COUNTER (accumulated current, non-extended
precision) resolution is 500uAh (raw coulomb counter read,
not adjusted by fuel gauge for coulomb counter offset, plus
inputs from the ModelGauge m3 algorithm including empty
compensation).
CHARGE_COUNTER_EXT (extended precision in kernel)
resolution 8nAh.
ENERGY_COUNTER is CHARGE_COUNTER_EXT at
nominal voltage of 3.7V.

Model Nexus 9

Fuel Gauge Maxim MAX17050 fuel gauge (a coulomb counter with Maxim
ModelGauge™ adjustments), and a 10mohm current sense
resistor.

Properties BATTERY_PROPERTY_CAPACITY
BATTERY_PROPERTY_CURRENT_NOW
BATTERY_PROPERTY_CURRENT_AVERAGE
BATTERY_PROPERTY_CHARGE_COUNTER
BATTERY_PROPERTY_ENERGY_COUNTER

Measurements CURRENT_NOW resolution 156.25uA, update period is
175.8ms.
CURRENT_AVERAGE resolution 156.25uA, update period
configurable 0.7s - 6.4h, default 11.25 secs.
CHARGE_COUNTER (accumulated current, non-extended
precision) resolution is 500uAh.

Application for monitoring mobiles batteries 72

CHARGE_COUNTER_EXT (extended precision in kernel)
resolution 8nAh.
ENERGY_COUNTER is CHARGE_COUNTER_EXT at
nominal voltage of 3.7V.
Accumulated current update period 175.8ms.
ADC sampled at 175ms quantization with a 4ms sample
period. Can adjust duty cycle.

Model Nexus 10

Fuel Gauge Dallas Semiconductor DS2784 fuel gauge (a coulomb
counter), with a 10mohm current sense resistor.

Properties BATTERY_PROPERTY_CAPACITY
BATTERY_PROPERTY_CURRENT_NOW
BATTERY_PROPERTY_CURRENT_AVERAGE
BATTERY_PROPERTY_CHARGE_COUNTER
BATTERY_PROPERTY_ENERGY_COUNTER

Measurements Current measurement (instantaneous and average) resolution
is 156.3uA.
CURRENT_NOW instantaneous current update period is 3.5
seconds.
CURRENT_AVERAGE update period is 28 seconds (not
configurable).
CHARGE_COUNTER (accumulated current, non-extended
precision) resolution is 625uAh.
CHARGE_COUNTER_EXT (extended precision in kernel)
resolution is 144nAh.
ENERGY_COUNTER is CHARGE_COUNTER_EXT at
nominal voltage of 3.7V.
Update period for all is 3.5 seconds.

Application for monitoring mobiles batteries 73

ANNEX 2. OCV MEAN ESTIMATION WORKSHEET

CHARGING DISCHARGING MEAN

Date Level Voltage Current Date Level Voltage Current OCV

21 mar. 2015 11:55:54 5 3,911 0,816 21 mar. 2015 18:46:53 5 3,553 -0,36 3,7320

21 mar. 2015 11:56:24 6 3,911 0,832 21 mar. 2015 18:44:23 6 3,565 -0,354 3,7380

21 mar. 2015 11:57:24 7 3,911 0,821 21 mar. 2015 18:41:53 7 3,567 -0,331 3,7390

21 mar. 2015 11:58:24 8 3,913 0,837 21 mar. 2015 18:39:23 8 3,572 -0,352 3,7425

21 mar. 2015 11:59:24 9 3,916 0,835 21 mar. 2015 18:37:23 9 3,584 -0,339 3,7500

21 mar. 2015 12:00:24 10 3,920 0,834 21 mar. 2015 18:34:53 10 3,584 -0,319 3,7520

21 mar. 2015 12:01:24 11 3,928 0,832 21 mar. 2015 18:31:53 11 3,597 -0,287 3,7625

21 mar. 2015 12:02:24 12 3,933 0,837 21 mar. 2015 18:29:23 12 3,599 -0,271 3,7660

21 mar. 2015 12:02:54 13 3,935 0,837 21 mar. 2015 18:26:23 13 3,608 -0,283 3,7715

21 mar. 2015 12:03:54 14 3,933 0,819 21 mar. 2015 18:23:53 14 3,619 -0,275 3,7760

21 mar. 2015 12:04:54 15 3,952 0,837 21 mar. 2015 18:21:23 15 3,629 -0,269 3,7905

21 mar. 2015 12:05:54 16 3,961 0,836 21 mar. 2015 18:18:23 16 3,628 -0,314 3,7945

21 mar. 2015 12:06:54 17 3,965 0,834 21 mar. 2015 18:15:53 17 3,636 -0,292 3,8005

21 mar. 2015 12:07:54 18 3,974 0,821 21 mar. 2015 18:12:53 18 3,653 -0,273 3,8135

21 mar. 2015 12:08:54 19 3,979 0,835 21 mar. 2015 18:10:23 19 3,656 -0,28 3,8175

21 mar. 2015 12:09:24 20 3,982 0,822 21 mar. 2015 18:07:53 20 3,662 -0,285 3,8220

21 mar. 2015 12:10:24 21 3,987 0,824 21 mar. 2015 18:04:53 21 3,662 -0,321 3,8245

21 mar. 2015 12:11:24 22 3,989 0,817 21 mar. 2015 18:02:23 22 3,678 -0,325 3,8335

21 mar. 2015 12:12:24 23 3,992 0,821 21 mar. 2015 17:59:53 23 3,675 -0,3 3,8335

21 mar. 2015 12:13:24 24 3,994 0,824 21 mar. 2015 17:56:53 24 3,670 -0,273 3,8320

21 mar. 2015 12:14:24 25 3,994 0,837 21 mar. 2015 17:54:23 25 3,668 -0,281 3,8310

21 mar. 2015 12:15:24 26 3,996 0,822 21 mar. 2015 17:51:23 26 3,685 -0,279 3,8405

21 mar. 2015 12:15:54 27 3,996 0,821 21 mar. 2015 17:48:53 27 3,687 -0,274 3,8415

21 mar. 2015 12:16:54 28 3,999 0,838 21 mar. 2015 17:45:53 28 3,692 -0,282 3,8455

21 mar. 2015 12:17:54 29 3,989 0,837 21 mar. 2015 17:43:23 29 3,678 -0,294 3,8335

21 mar. 2015 12:18:54 30 4,001 0,838 21 mar. 2015 17:40:53 30 3,687 -0,273 3,8440

21 mar. 2015 12:19:54 31 4,001 0,819 21 mar. 2015 17:37:53 31 3,695 -0,264 3,8480

21 mar. 2015 12:20:54 32 4,004 0,837 21 mar. 2015 17:35:23 32 3,700 -0,278 3,8520

21 mar. 2015 12:21:54 33 4,006 0,837 21 mar. 2015 17:32:23 33 3,683 -0,33 3,8445

21 mar. 2015 12:22:24 34 4,006 0,838 21 mar. 2015 17:29:53 34 3,705 -0,354 3,8555

21 mar. 2015 12:23:24 35 4,009 0,834 21 mar. 2015 17:26:53 35 3,703 -0,272 3,8560

21 mar. 2015 12:24:24 36 4,011 0,83 21 mar. 2015 17:24:23 36 3,707 -0,269 3,8590

21 mar. 2015 12:25:24 37 4,011 0,838 21 mar. 2015 17:21:23 37 3,707 -0,291 3,8590

21 mar. 2015 12:26:24 38 4,012 0,831 21 mar. 2015 17:18:53 38 3,705 -0,273 3,8585

21 mar. 2015 12:27:24 39 4,016 0,812 21 mar. 2015 17:15:53 39 3,710 -0,292 3,8630

21 mar. 2015 12:28:24 40 4,018 0,819 21 mar. 2015 17:13:23 40 3,714 -0,271 3,8660

21 mar. 2015 12:28:54 41 4,021 0,825 21 mar. 2015 17:10:53 41 3,712 -0,331 3,8665

21 mar. 2015 12:29:54 42 4,021 0,822 21 mar. 2015 17:07:53 42 3,714 -0,302 3,8675

21 mar. 2015 12:30:54 43 4,023 0,824 21 mar. 2015 17:05:23 43 3,719 -0,305 3,8710

21 mar. 2015 12:31:54 44 4,026 0,824 21 mar. 2015 17:02:53 44 3,719 -0,302 3,8725

Application for monitoring mobiles batteries 74

21 mar. 2015 12:32:54 45 4,021 0,822 21 mar. 2015 17:00:23 45 3,722 -0,312 3,8715

21 mar. 2015 12:33:54 46 4,028 0,834 21 mar. 2015 16:57:53 46 3,724 -0,304 3,8760

21 mar. 2015 12:34:54 47 4,036 0,832 21 mar. 2015 16:55:23 47 3,724 -0,317 3,8800

21 mar. 2015 12:35:24 48 4,026 0,812 21 mar. 2015 16:52:53 48 3,732 -0,307 3,8790

21 mar. 2015 12:36:24 49 4,041 0,827 21 mar. 2015 16:50:23 49 3,737 -0,305 3,8890

21 mar. 2015 12:37:24 50 4,044 0,827 18 mar. 2015 16:49:23 50 3,739 -0,3 3,8915

21 mar. 2015 12:38:24 51 4,047 0,835 21 mar. 2015 16:47:53 51 3,741 -0,321 3,8940

21 mar. 2015 12:39:24 52 4,050 0,827 21 mar. 2015 16:45:23 52 3,751 -0,279 3,9005

21 mar. 2015 12:40:24 53 4,055 0,832 21 mar. 2015 16:42:23 53 3,754 -0,277 3,9045

21 mar. 2015 12:41:24 54 4,058 0,838 21 mar. 2015 16:39:23 54 3,751 -0,282 3,9045

21 mar. 2015 12:42:24 55 4,060 0,838 21 mar. 2015 16:36:53 55 3,766 -0,313 3,9130

21 mar. 2015 12:42:54 56 4,061 0,826 21 mar. 2015 16:34:23 56 3,763 -0,305 3,9120

21 mar. 2015 12:43:54 57 4,063 0,835 21 mar. 2015 16:31:53 57 3,768 -0,315 3,9155

21 mar. 2015 12:44:54 58 4,070 0,825 21 mar. 2015 16:29:23 58 3,773 -0,33 3,9215

21 mar. 2015 12:45:54 59 4,075 0,827 21 mar. 2015 16:26:53 59 3,768 -0,326 3,9215

21 mar. 2015 12:46:54 60 4,077 0,838 21 mar. 2015 16:24:23 60 3,778 -0,344 3,9275

21 mar. 2015 12:47:54 61 4,082 0,834 21 mar. 2015 16:22:23 61 3,788 -0,339 3,9350

21 mar. 2015 12:48:54 62 4,087 0,838 21 mar. 2015 16:19:53 62 3,793 -0,33 3,9400

21 mar. 2015 12:49:24 63 4,090 0,838 21 mar. 2015 16:17:53 63 3,790 -0,336 3,9400

21 mar. 2015 12:50:24 64 4,095 0,838 21 mar. 2015 16:15:23 64 3,805 -0,356 3,9500

21 mar. 2015 12:51:24 65 4,099 0,822 21 mar. 2015 16:13:23 65 3,805 -0,321 3,9520

21 mar. 2015 12:52:24 66 4,104 0,821 21 mar. 2015 16:10:53 66 3,815 -0,333 3,9595

21 mar. 2015 12:53:24 67 4,109 0,825 21 mar. 2015 16:08:23 67 3,827 -0,339 3,9680

21 mar. 2015 12:54:24 68 4,114 0,829 21 mar. 2015 16:06:23 68 3,830 -0,32 3,9720

21 mar. 2015 12:55:24 69 4,121 0,838 21 mar. 2015 16:03:53 69 3,835 -0,333 3,9780

21 mar. 2015 12:55:54 70 4,124 0,832 21 mar. 2015 16:01:23 70 3,844 -0,338 3,9840

21 mar. 2015 12:56:54 71 4,131 0,829 21 mar. 2015 15:59:23 71 3,844 -0,33 3,9875

21 mar. 2015 12:57:54 72 4,136 0,829 21 mar. 2015 15:56:53 72 3,849 -0,33 3,9925

21 mar. 2015 12:58:54 73 4,144 0,827 21 mar. 2015 15:54:53 73 3,852 -0,33 3,9980

21 mar. 2015 12:59:54 74 4,151 0,837 21 mar. 2015 15:52:23 74 3,866 -0,32 4,0085

21 mar. 2015 13:00:54 75 4,158 0,845 21 mar. 2015 15:49:53 75 3,870 -0,325 4,0140

21 mar. 2015 13:01:54 76 4,156 0,83 21 mar. 2015 15:47:53 76 3,881 -0,334 4,0185

21 mar. 2015 13:02:24 77 4,168 0,83 21 mar. 2015 15:45:23 77 3,891 -0,32 4,0295

21 mar. 2015 13:03:24 78 4,175 0,822 21 mar. 2015 15:42:53 78 3,891 -0,346 4,0330

21 mar. 2015 13:04:24 79 4,185 0,842 21 mar. 2015 15:40:53 79 3,898 -0,331 4,0415

21 mar. 2015 13:05:24 80 4,180 0,783 21 mar. 2015 15:38:23 80 3,908 -0,317 4,0440

21 mar. 2015 13:06:24 81 4,200 0,822 21 mar. 2015 15:35:53 81 3,909 -0,346 4,0545

21 mar. 2015 13:07:24 82 4,200 0,781 21 mar. 2015 15:33:53 82 3,917 -0,356 4,0585

21 mar. 2015 13:08:24 83 4,200 0,736 21 mar. 2015 15:31:23 83 3,927 -0,328 4,0635

21 mar. 2015 13:09:24 84 4,200 0,71 21 mar. 2015 15:28:53 84 3,935 -0,323 4,0675

21 mar. 2015 13:10:24 85 4,200 0,676 21 mar. 2015 15:26:53 85 3,938 -0,33 4,0690

21 mar. 2015 13:11:24 86 4,200 0,626 21 mar. 2015 15:24:23 86 3,950 -0,341 4,0750

21 mar. 2015 13:12:54 87 4,200 0,596 21 mar. 2015 15:21:53 87 3,957 -0,323 4,0785

21 mar. 2015 13:13:54 88 4,202 0,567 21 mar. 2015 15:19:53 88 3,968 -0,329 4,0850

21 mar. 2015 13:15:24 89 4,200 0,512 21 mar. 2015 15:17:23 89 3,977 -0,315 4,0885

Application for monitoring mobiles batteries 75

21 mar. 2015 13:16:54 90 4,200 0,486 21 mar. 2015 15:14:53 90 3,982 -0,328 4,0910

21 mar. 2015 13:18:54 91 4,200 0,438 21 mar. 2015 15:12:23 91 3,999 -0,347 4,0995

21 mar. 2015 13:20:24 92 4,200 0,404 21 mar. 2015 15:10:24 92 3,999 -0,321 4,0995

21 mar. 2015 13:22:24 93 4,200 0,364 21 mar. 2015 15:07:53 93 4,006 -0,312 4,1030

21 mar. 2015 13:24:54 94 4,200 0,321 21 mar. 2015 15:05:23 94 4,016 -0,314 4,1080

21 mar. 2015 13:27:24 95 4,200 0,279 21 mar. 2015 15:02:53 95 4,023 -0,313 4,1115

Application for monitoring mobiles batteries 76

ANNEX 3. APP DIAGRAM CLASS

Application for monitoring mobiles batteries 77

ANNEX 4. ANDROID VERSION LEVELS

Platform Version API Level VERSION_CODE

Android 5.0 21 LOLLIPOP

Android 4.4W 20 KITKAT_WATCH

Android 4.4 19 KITKAT

Android 4.3 18 JELLY_BEAN_MR2

Android 4.2, 4.2.2 17 JELLY_BEAN_MR1

Android 4.1, 4.1.1 16 JELLY_BEAN

Android 4.0.3, 4.0.4 15 ICE_CREAM_SANDWICH_MR1

Android 4.0, 4.0.1, 4.0.2 14 ICE_CREAM_SANDWICH

Android 3.2 13 HONEYCOMB_MR2

Android 3.1.x 12 HONEYCOMB_MR1

Android 3.0.x 11 HONEYCOMB

Android 2.3.4
Android 2.3.3

10 GINGERBREAD_MR1

Android 2.3.2
Android 2.3.1
Android 2.3

9 GINGERBREAD

Android 2.2.x 8 FROYO

Android 2.1.x 7 ECLAIR_MR1

Android 2.0.1 6 ECLAIR_0_1

Android 2.0 5 ECLAIR

Android 1.6 4 DONUT

Android 1.5 3 CUPCAKE

Android 1.1 2 BASE_1_1

Android 1.0 1 BASE

http://developer.android.com/about/versions/android-5.0.html
http://developer.android.com/sdk/api_diff/21/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#LOLLIPOP
http://developer.android.com/sdk/api_diff/20/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#KITKAT_WATCH
http://developer.android.com/about/versions/android-4.4.html
http://developer.android.com/sdk/api_diff/19/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#KITKAT
http://developer.android.com/about/versions/android-4.3.html
http://developer.android.com/sdk/api_diff/18/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#JELLY_BEAN_MR2
http://developer.android.com/about/versions/android-4.2.html
http://developer.android.com/sdk/api_diff/17/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#JELLY_BEAN_MR1
http://developer.android.com/about/versions/android-4.1.html
http://developer.android.com/sdk/api_diff/16/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#JELLY_BEAN
http://developer.android.com/about/versions/android-4.0.3.html
http://developer.android.com/sdk/api_diff/15/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#ICE_CREAM_SANDWICH_MR1
http://developer.android.com/about/versions/android-4.0.html
http://developer.android.com/sdk/api_diff/14/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#ICE_CREAM_SANDWICH
http://developer.android.com/about/versions/android-3.2.html
http://developer.android.com/sdk/api_diff/13/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#HONEYCOMB_MR2
http://developer.android.com/about/versions/android-3.1.html
http://developer.android.com/sdk/api_diff/12/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#HONEYCOMB_MR1
http://developer.android.com/about/versions/android-3.0.html
http://developer.android.com/sdk/api_diff/11/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#HONEYCOMB
http://developer.android.com/about/versions/android-2.3.3.html
http://developer.android.com/about/versions/android-2.3.3.html
http://developer.android.com/sdk/api_diff/10/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#GINGERBREAD_MR1
http://developer.android.com/about/versions/android-2.3.html
http://developer.android.com/about/versions/android-2.3.html
http://developer.android.com/about/versions/android-2.3.html
http://developer.android.com/sdk/api_diff/9/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#GINGERBREAD
http://developer.android.com/about/versions/android-2.2.html
http://developer.android.com/sdk/api_diff/8/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#FROYO
http://developer.android.com/about/versions/android-2.1.html
http://developer.android.com/sdk/api_diff/7/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#ECLAIR_MR1
http://developer.android.com/about/versions/android-2.0.1.html
http://developer.android.com/sdk/api_diff/6/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#ECLAIR_0_1
http://developer.android.com/about/versions/android-2.0.html
http://developer.android.com/sdk/api_diff/5/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#ECLAIR
http://developer.android.com/about/versions/android-1.6.html
http://developer.android.com/sdk/api_diff/4/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#DONUT
http://developer.android.com/about/versions/android-1.5.html
http://developer.android.com/sdk/api_diff/3/changes.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#CUPCAKE
http://developer.android.com/about/versions/android-1.1.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#BASE_1_1
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html#BASE

Application for monitoring mobiles batteries 78

ANNEX 5. MYSQL DATABASE SCRIPT

-- phpMyAdmin SQL Dump

-- version 4.2.11

-- http://www.phpmyadmin.net

--

-- Servidor: 127.0.0.1

-- Tiempo de generaciÃ³n: 15-01-2015 a las 08:39:37

-- VersiÃ³n del servidor: 5.6.21

-- VersiÃ³n de PHP: 5.6.3

SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";

SET time_zone = "+00:00";

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

--

-- Base de datos: `battery_db`

--

CREATE DATABASE IF NOT EXISTS `battery_db` DEFAULT CHARACTER SET

latin1 COLLATE latin1_swedish_ci;

USE `battery_db`;

-- --

--

-- Table structure for table `battery`

--

CREATE TABLE IF NOT EXISTS `battery` (

 `_id` int(11) NOT NULL,

 `device_id` int(11) NOT NULL,

 `voltage` int(11) NOT NULL,

 `temperature` int(11) NOT NULL,

 `level` int(11) NOT NULL,

 `scale` int(11) NOT NULL,

 `status` int(11) NOT NULL,

 `health` int(11) NOT NULL,

 `plugged` int(11) NOT NULL,

 `technology` varchar(255) NOT NULL,

 `capacityLevel` int(11) NOT NULL,

 `capacity` int(11) NOT NULL,

 `averageCurrent` int(11) NOT NULL,

 `instantCurrent` int(11) NOT NULL,

 `remainingEnergy` int(11) NOT NULL,

 `entropy` decimal(15,15) NOT NULL,

 `entropy2` decimal(15,15) NOT NULL,

 `integralEntropy` decimal(15,15) NOT NULL,

 `integralEntropy2` decimal(15,15) NOT NULL,

 `timestamp` datetime NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --

--

-- Table structure for table `cycles`

Application for monitoring mobiles batteries 79

--

CREATE TABLE IF NOT EXISTS `cycles` (

 `_id` int(11) NOT NULL AUTO_INCREMENT,

 `device_id` int(11) NOT NULL,

 `type` int(11) NOT NULL,

 `timestamp` datetime NOT NULL,

 PRIMARY KEY (`_id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

-- --

--

-- Table structure for table `cycles_data`

--

CREATE TABLE IF NOT EXISTS `cycles_data` (

 `_id` int(11) NOT NULL,

 `cycle_id` int(11) NOT NULL,

 `voltage` int(11) NOT NULL,

 `temperature` int(11) NOT NULL,

 `level` int(11) NOT NULL,

 `scale` int(11) NOT NULL,

 `status` int(11) NOT NULL,

 `health` int(11) NOT NULL,

 `plugged` int(11) NOT NULL,

 `technology` varchar(255) COLLATE latin1_general_ci NOT NULL,

 `capacityLevel` int(11) NOT NULL,

 `capacity` int(11) NOT NULL,

 `averageCurrent` int(11) NOT NULL,

 `instantCurrent` int(11) NOT NULL,

 `remainingEnergy` int(11) NOT NULL,

 `timestamp` datetime NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

-- --

--

-- Table structure for table `devices`

--

CREATE TABLE IF NOT EXISTS `devices` (

 `_id` int(11) NOT NULL AUTO_INCREMENT,

 `deviceInfo` varchar(255) DEFAULT NULL,

 `deviceId` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`_id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

-- --

--

-- Table structure for table `voc`

--

CREATE TABLE IF NOT EXISTS `voc` (

 `_id` int(11) NOT NULL AUTO_INCREMENT,

 `device_id` int(11) NOT NULL,

 `level` int(11) NOT NULL,

 `voltage` int(11) NOT NULL,

 PRIMARY KEY (`_id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

Application for monitoring mobiles batteries 80

-- --

--

-- Table structure for table `voc_regression`

--

CREATE TABLE IF NOT EXISTS `voc_regression` (

 `_id` int(11) NOT NULL AUTO_INCREMENT,

 `device_id` int(11) NOT NULL,

 `level` int(11) NOT NULL,

 `status` int(11) NOT NULL,

 `slope` decimal(10,10) NOT NULL,

 `intercept` float NOT NULL,

 `correlation` decimal(10,10) NOT NULL,

 PRIMARY KEY (`_id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

-- --

--

-- Table structure for table `users`

--

CREATE TABLE IF NOT EXISTS `users` (

`_id` int(11) NOT NULL AUTO_INCREMENT,

`username` varchar(20) NOT NULL,

`password` varchar(20) NOT NULL,

PRIMARY KEY (`_id`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

