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“ [...] humanity also needs dreamers, for whom the disinterested development of an

enterprise is so captivating that it becomes impossible for them to devote their care to

their own material profit. Without doubt, these dreamers do not deserve wealth, because

they do not desire it. Even so, society should assure to such workers the e�cient means

of accomplishing their task, in a life freed from material care and freely consecrated to

research.”

Marie Sklodowska Curie



ABSTRACT

During a radiotherapy treatment, skin of the patient is always exposed to the radiation;

as a consequence late e↵ects can be appear. Therefore, dose values in this region may be

of interest for clinical evaluation and investigation of those undesirable e↵ects. However,

surface dose is not intuitive and is di�cult to measure and calculate; the parameters,

which modify it are not always the same and each one are dependent to the others.

The aim of this project is to quantify absorbed dose in the build-up region and near

to the skin approximately between 0 mm - 1 mm using two methods. One of them,

an analytical calculation using Monte Carlo simulations; and the other an experimental

approach using an extrapolation chamber.

Monte Carlo simulations are performed with the PENELOPE package of subroutines

for 6MV and 15MV photon beams. Experimental setup consists in the use of an ex-

trapolation chamber (PTW model 23392), considered the most suitable instrument to

measure absorbed dose in the build-up region, but its not commonly available in the

hospitals because its use is not practical. The chamber was adapted for its use in clinical

environments in a previous work, then for this work the measurement process is easier

and results with high level of accuracy can be obtained.

In this way, EC (extrapolation chamber) measurements served as the gold standard in

our study to validate the Monte Carlo simulations and also with results reported by

previous studies. As a result, we found that simulation outcomes are in good agreement

with experimental data.
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Chapter 1

Introduction

External beam radiotherapy or teletherapy is the most common form of radiotherapy, the

patient sits or lies on a couch and an external source of radiation is pointed at a particular

part of the body. Then, radiation always interacts with the skin. Furthermore beam

releases energy along its track and deliver an adequate dose to the tumor target is not

possible without deliver a considerable amount of absorbed dose nearby critical normal

structures, such as, basal layer on patients’s surface. The importance in these type of

treatments is to improve quality of life rather than cause distressing e↵ects to patients;

for this purpose quantification of skin dose is essential, as well as, the consideration of

this region as a sensitive structure during treatment planning in order to reduce the skin

toxicity to a tolerable level of damage without compromising tumor target coverage.

To quantify absorbed dose in the skin is di�cult and not intuitive. The skin is within the

buildup region, it is characterized by a lack of charged particle equilibrium that generates

a rapid change of dose gradient, in addition, this region has a size of few centimeters, as a

result, all dosimetric methods (dosimeters and simulations) have important limitations to

give good results and available data has been obtained with a high degree of uncertainty.

Mainly absorbed dose in the first few mm is due to electron contamination, these particles

are originated by scattering photon interactions with components of the accelerator head,

such as the secondary jaws, beam modifiers and the air around the accelerator; secondary

contributions arise from interactions inside the patient’s body.

The use of extrapolation chambers allows reliable measurements of dose in the build up

region. In other hand, MC simulation is generally considered to be an accurate tool

for dose estimation in radiotherapy since the beam’s particles are tracked individually

in the media. Therefore both methods may be employed in order to quantify the dose

absorbed by the surface but is mandatory to do a comparison between results obtained

by the two methods, taking into account their uncertainties. Finally, results should

be contrasted against di↵erent measuring methods and experimental settings from the

1



2 Ingrid Isabel Valencia Lozano

literature although available results are limited. This lack of information shows the

importance of this work and the results that will be obtained.

The main purpose of this work is to determine the percentage depth dose in the skin

(depth at z = 0.07 mm according to ICRP regulations) for 6 MV and 15 MV photon

beams from a VARIAN 2100CD medical linear accelerator. The work was focused on

MC simulations carried out with the PENELOPE code and on measurements with an

extrapolation chamber. Then, all simulated and measured data in terms of percentage

depth dose (PDD) were compared.

mailto:S.R.Gunn@ecs.soton.ac.uk


Chapter 2

Background

Linacs (Linear particle accelerators) are usually mounted isocentrically and the opera-

tional systems are distributed over five major and distinct sections of the machine:

• Gantry (also called treatment head);

• Gantry stand or support;

• Modulator cabinet;

• Patient support assembly (i.e. treatment table);

• Control console.

The linac head contains several components that influence the production, shaping, lo-

calizing and monitoring of the clinical photon and electron beams. Electrons originating

in the electron gun are accelerated in the accelerating waveguide to the desired kinetic

energy and then brought, in the form of a pencil beam, through the beam transport

system into the linac treatment head, where the clinical photon and electron beams are

produced.

In order to generate a beam that can be used for patient treatment, electron beam

must either be converted to photons or the narrow electron beam must be appropriately

scattered with di↵erent features contained in the head of the accelerator (Schematic

structure is in figure 2.1). For instance photon beam generation requires:

• The X-ray target: X-rays are generated by bremsstrahlung from a high energy

electron beam striking a high atomic number metal target. Clinical photon beams

are produced with a targetflattening-filter combination and each one has its own

target-flattening filter combinations.

3



4 Ingrid Isabel Valencia Lozano

Figure 2.1: Diagram of a head accelerator.

• The flattening filter: This filter is used because the bremsstrahlung generated

is mainly forward direct and it is necessary to compensate the lack of scatter at the

edges of the field, so the filter enables designing a profile that increases toward the

edges. The flattening filters are mounted on a rotating carousel or sliding drawer

for ease of mechanical positioning into the beam, as required.

• Collimation system: Collimators are devices to constrain the radiation beam.

They ensure that only the required part of the patient is irradiated. The primary

collimator defines a maximum circular field that is further truncated with an ad-

justable rectangular collimator consisting of two upper and two lower independent

jaws and producing rectangular and square fields with a maximum dimension of

40x40 cm

2 at the linac isocenter. Inevitably any type of those elements change

the sharpness of the edges on the beam, as more primary beam particles interact

with them more secondary particles are produced.

Conventional collimators are not enough because they are only able to constrain

the radiation to a rectangular shape. Nowadays multileaf collimators have been

introduced allowing any beam shape to be produced subject to the width of the

leaves, although at the same time, dosimetric characteristics as percentage depth

dose, output factors and penumbra are modified by their use.

• Dual transmission ionization chambers: They are used for monitoring the

photon and electron radiation beam output as well as the radial and transverse

beam flatness.
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• Field defining light and a range finder: It provides convenient visual methods

for correctly positioning the patient for treatment using reference marks. The field

light illuminates an area that coincides with the radiation treatment field on the

patients skin, while the range finder is used to place the patient at the correct

treatment distance by projecting a centimeter scale whose image on the patients

skin indicates the vertical distance from the linac isocenter.

• Beam modifiers: Beam modifiers are referring to any kind of additional filter

or bolus to modify the amount of dose that is delivered to the patients. Bolus

is used for tissue compensation and increases e↵ects of radiation scattered into

the skin instead of compensating and wedge filters that are used to to achieve a

homogenous dose distribution in the irradiated volume.

2.1 Physical aspects

Dose accumulated at the boundary between the air and the patient’s skin is known as

the surface dose. Although its value is less than the maximum absorbed dose achieved

inside the patient, dose within the first few millimeters of the body is not negligible.

Surface dose represents contributions to the dose from (Podgorsak and Kainz, 2005):

• Photons scattered from the collimators, flattening filter and air;

• Photons backscattered from the patient;

• High energy electrons produced by photon interactions in air and any shielding

structures in the vicinity of the patient.

2.1.1 Buildup region

The buildup area (Figure 2.2) is a characteristic of a photon beam profile. Dose deposi-

tion sharply increases due to the deposited secondary electrons generated in the medium

but they have finite longitudinal and lateral range (Metcalfe et al., 2007). The secondary

electrons are Compton electrons at higher energies directly in the forward direction and

release their energy further away from the point of interaction. Consequently, the num-

ber of electrons in each layer of the phantom rise until the point in which equilibrium

is reached. Therefore the deposition of energy is almost uniform along their path; the

electron equilibrium, in the case of megavoltage beam, is reached at the depth (in cm)

where 1/4 of maximum energy expressed in MeV is laid down.

The amount of energy, which is deposited in the build up region, depends on several

factors (See Figure 2.3):
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Figure 2.2: Idealised representation of buildup region (assuming no attenuation takes
place)(Mayles et al., 2007).

Figure 2.3: Contributions to patient skin dose from high-energy photon beams (Met-
calfe et al., 2007).
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• Energy and field sizes: Universally, the surface dose increases linearly with

field size and simultaneously should be smaller at higher energies (See figure 2.4).

However, it only happens for small field sizes, for field sizes above 10x10 cm

2 the

surface dose may be greater at very high energies because main electron contam-

ination is due to the flattening filter, as a result, the e↵ect is increased by large

fields and more energetic beams. In addition, as beam energy increases the depth

of d
max

( depth with maximum dose) increases.

Figure 2.4: Percentage depth dose from open megavoltage fields (6MV-18MV) as a
function of the size of the edge of the equivalent square field (Kry et al., 2012).

Dose to the entrance of the surface (on the central axis of the beam and approx-

imately SSD of 100cm) is between ⇠ 10% and ⇠ 45% of the d

max

dose (known

historically as the given dose or entrance dose).

• Beam-modifying devices: There are two sources of contamination by secondary

electrons and low energy photons. One is the treatment head linac and the other is

the use of additional beam modifiers such as wedges, bolus or masks. The amount

of these contaminant electrons and low-energy photons will a↵ect the surface and

the buildup region dose. For megavoltage beams, the surface dose increases with

the presence of an acrylic or polycarbonate block tray particularly for large and

open fields. This e↵ect was dominant for large field sizes at lower SSD because

them not always are fixed to the accelerator head, in those cases, the skin dose de-

creases significantly as the distance between block tray and the patient is reduced

(Kry et al., 2012).

Wedge filters, as their name implies, were originally metal wedges designed to

produce the desired dose distributions. Beams modified by wedge filters are often

described as wedged beams besides there are several variants of the wedge filter.
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The filter (Figure 2.5) alters the beam quality by preferentially attenuation of

the lower-energy photons (beam hardening) and, to a lesser extent, by Compton

scattering, which results in energy degradation (beam softening). Those blocks

are used because their material is transparent but electrons striking with them

originate contamination. Collimating treatment field with blocks has only a small

impact on surface dose besides to the impact of the block tray, it is because the pro-

duction of secondary electrons from the acrylic block tray is more than eliminated

by the tray, therefore, skin doses are increased.

Figure 2.5: Wedge filter used in radiotherapy treatments.

Beam modifiers change the dose delivered to the surface. The increment in this

value may cause early radiation e↵ects such as erythema or late radiation-induced

e↵ects such as hypoxia and relangiecresia.

Additionally, immobilization devices or trays, such as thermoplastic masks (Figure

2.6) also increase the skin dose. Some measurements have shown that the mask

had a bolus e↵ect on the skin surface and it ’generates’ an extra layer of skin.

For instance, figure 2.7 shows the e↵ect on dose distribution in the buildup region

when a Lucite shadow tray is placed in the beam at various distances from the

phantom surface, plot shows not only does the relative surface dose increases with

decreasing tray to surface distance, but also the point of maximum dose buildup

moves near to the surface.

• SSD (Source-Surface distance) and setup: SSD is a significant factor of the

change of dose rate with depth. By increasing the distance between the tray and

the surface, the electron fluence incident on the skin is reduced because of diver-

gence, absorption and scattering of electrons in the air. On the other hand, the

surface dose increases gradually while this distance decreases although the real

e↵ect is relatively small (Kry et al., 2012).
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Figure 2.6: Thermoplastic mask designed for radiation oncology patient stabilization.

Figure 2.7: E↵ect of Lucite shadow tray on dose buildup for 10MV photons (Mayles
et al., 2007).
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• Obliquity: Beam obliquity as well as beam modifiers changes the dose delivered

to the surface region due to changes in the scattering geometry, scattered photon

and secondary electron production. It also changes the energy spectrum of the

beam. Oblique beams incidences increase the surface dose, the behavior for small

angles (< 40�) is almost imperceptible instead of large angles in which surface doses

increase steeply. Some studies have shown that the percentage buildup dose has

a much stronger dependence upon the angle of incidence than upon the e↵ective

wedge angle. For distances approaching the treatment head, the universal wedge

mounted within the head treatment (used in some linear accelerators) generates

secondary electrons that elevate the surface dose but this contribution decreases

with distance.

• O↵-axis position: O↵-axis skin dose decreased as distance increased from central

axis for fields with Perspex block trays. Surface dose is relatively uniform across

field within the field size treatment field, however, it decreases slightly at the edge

of the field. This decrease is typically less than a 10% relative decrease, but can

approach a 30% relative decrease at the edge of the treatment field in the presence

of beam modifiers (Kry et al., 2012).

• Exit dose: Approximately 50� 70% of applied dose was delivered to the skin on

the exiting side of the beam for the greater part of patients . Exit dose delivered to

skin consists of dose from forwardly scattered electrons. Dose to the exit surface

is less than the predicted by the percentage depth dose PPD, that is when full

scatter conditions are not achieved. The relative di↵erence for most of megavoltage

energies is about 15%.

• Outside the treatment field: Although great amount of data are not available

for distances out field of the treatment, in many cases surface dose varies minimally

with depth except near the surface where it reaches higher values (See figure 2.8).

Actually, these values are 2 to 7 times greater that the dose a few centimeters

below the surface. The ratio of surface dose to dose depth is larger for greater

distances from the field edge and larger field sizes (Kry et al., 2012).

As the sum of factors listed, value of skin dose is not negligible but is not intuitive and

di�cult to measure.

2.2 Medical aspects

Skin dose is a value that may be of interest for clinical evaluation principally because the

risk of acute and late e↵ects in the patients (See Figure 2.9). Despite of the widespread
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Figure 2.8: Percentage depth dose 2 cm from the field edge for a Co-60 beam and
6MV beam.

use of a linear accelerators and technologic advances in IMRT (Intense Modulated Radi-

ation Therapy), the increase use of concomitant chemotherapy and high-dose treatments

has remained skin reactions as a significant problem for patients.

In general, radiation reactions in this area can be divided into early or acute changes

and delayed or chronic change. The epithelial reactions, should be characterized by

the following 4 stages: erythema, dry desquamation, wet desquamation and necrosis;

severity of the skin reactions depends on the dose given as well as the volume of the

tissue irradiated (Lee et al., 2002), radiation skin reaction occurs at doses around 20-25

Gy or approximately 10 days into radical treatment. Previous studies (Buston et al.,

2006) have concluded a marked increment in skin reactions: doses of 35 Gy increases

erythema reactions, for desquamation an increase in incidence started at approximately

at 37 Gy and finally telangectasia started at approximately 45 Gy and some patients

presented permanent telangectasia after 51 Gy.

Skin dose can be plotted as the percentage of tumor dose as seen in figure 2.10. This

figure highlights the field size dependence of skin dose with an increasing trend in ab-

sorbed dose with field size. Likewise, figure 2.11 shows the total absorbed dose delivered

to the patient’s basal cell and dermal layers for the entire treatment: doses ranges are

from 2 Gy up to 45 Gy.

Although to estimate the true incidence of skin reactions is di�cult and statistically

available data predict a low occurrence of skin reactions, toxicity on it induced by

radiation treatment a↵ects most of the patients with breast, neck and head cancer.

During last years interest in skin dose has been growing, the studies involve development

of appropriate methods to prevent and to improve the quality of life of the patients rather

than generate distressing side e↵ects.
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Figure 2.9: Conceptual framework of predictors of radiation skin reactions (UOQ,
Upper outer quadrant; UIQ, upper inner quadrant; LIQ, lower inner quadrant; LOQ,

lower outer quadrant; IMF, intrammary fold) (Wells and Macbride, 2003).

Figure 2.10: Dose delivered to the basal cell layer as a percentage of tumor dose
(Buston et al., 2006).
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Figure 2.11: Total dose (Gy) delivered to the basal cell layer for 26 patients under
going radiotherapy treatments (Buston et al., 2006).

2.3 Dosimetric techniques to quantify skin dose

2.3.1 Radiochromic films

Radiochromic films have been used to measure the absorbed dose (105-108 rads) due to

the linear increase of its optic density as a function of deposited energy independently

of dose rate.

These films are easy to manage and their design allows measurements over the phantom’s

surface rising accuracy and sensibility of the results. Use of radiochromic film in clinical

environments is very common due to its small size, cost, and portability.

In order to determine skin dose, the process involves placing dosimeters on phantom’s

surface and they are irradiated with a similar amount of energy than the real treatment.

Then, radiochromic films are analyzed making a comparison with the calibration curve

and their values of optical density to determine absorbed dose. Additional materials

around films are forbidden because they contribute to scattering interactions, it results

in an over-response in the measurements.

2.3.2 Thermoluminescence Dosimeters TLD

TLD is the most common personal dosimetric method. Thermoluminescence materials

have the property of storing energy and releasing in form of photons only where they

are heated; the released energy is proportional to the stored energy. TLDs can measure

only integrated dose since they must be allowed to absorb and store energy.
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Those type of dosimeters show many advantages if they are used to quantify skin dose.

Dose response is linear above of 10 Gy and measurement’s time is very short (only

few minutes), besides its material is tissue equivalent, as a result, data obtained are a

good estimation of radiation dose in a given position and in a given radiation field on

the patient. Extrapolation of the dose to an infinitesimal thin layer of LiF as well as

interpolation between the di↵erent e↵ective measurement depths is possible using TLD

chips of three di↵erent thicknesses (See figure 2.12) (Kron et al., 1993).

Figure 2.12: Schematic drawing of the TLD holder used in the study, all distances
are in millimeters (Kron et al., 1993).

2.3.3 Ionization chambers

A ionization chamber (figure 2.13) consists of a gas-filled chamber with two electrodes

(parallel planes or coaxial cylinders ), a voltage potential is applied between the elec-

trodes to create an electric field in the fill gas. When ionizing radiation interacts with

the gas, pairs of charges are created and the resultant positive ions and dissociated elec-

trons move to the electrodes of the opposite polarity under the influence of the electric

field. This movement generates a current, which is measured by an electrometer.

These chambers have many advantages and are commonly available at hospitals but

are not commonly adequate to use for the surface dose measurements in clinical sit-

uations. Their accuracy in the buildup region remains in doubt since there exists a

cavity perturbation from the chamber volume that causes excess ionizations. To obtain

a good result of absorbed doses in the buildup region, the readings need to be corrected

taking into account perturbation conditions, furthermore correction factors have been

proposed derived from aluminium-walled extrapolation chamber measurements. How-

ever, Nilsson and Montelius (Nilsson and Sorcini, 1989) showed that the application of
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those correction factors to di↵erent chamber structures led to a significant error in the

derived surface dose value.

Figure 2.13: Waterproof ionization chambers for dose measurements in radiotherapy.

2.3.4 Extrapolation chambers

An extrapolation chamber (figure 2.14) is a type of parallel plane ionization chamber,

capable to measure the di↵erential specific charge by varying air mass in the cavity

by the control of electrode separation. These chambers are designed for fields that

have a uniform intensity across the area of the parallel plates, but vary sharply in

the perpendicular direction and their response in the non-equilibrium region has good

results. Therefore, the surface dose can be estimated by measuring the ionization per

unit of volume as a function of electrode separation, and then extrapolating the data to

a zero separation (Jayaraman, 2004).

Measurements of the charge collected per unit time per unit volume are obtained reduc-

ing gradually the distance between plates in a controlled way by a micrometer screw. A

linear regression of electrode separation and collected charge values allows to relate the

measurements with the absorbed dose in the region of interest. Unfortunately, the use

of extrapolation chambers is limited since they are not available in most hospitals and

institutes, additionally the measuring procedure is time-consuming.

2.3.5 Computational tools

Monte Carlo MC technique (See chart in figure 2.15) for the simulation of photons

through media consists in use of the knowledge of the probability distributions gov-

erning the individual interactions of those photons in materials to simulate its random

trajectories. One keeps track of physical quantities of interest for a large number of

histories to provide the required information about the requested average quantities.
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Figure 2.14: Extrapolation chamber PTW model 23392.

Simulation allows scoring datas as: average distance to interaction, number of primary

and secondary particles of each type, energy deposited by them or more complex and

useful quantities.

Nowadays several Monte Carlo codes have been developed for radiotherapy treatment

planning, in general these type of simulations are considered a very accurate tool to

estimate values of absorbed dose in di↵erent regions of interest. Studies related with

surface dose have demonstrated the coherence between the results from MC simulations

and the measurements obtained using an extrapolation chamber, then computational

tools are considered an alternative and excellent method when surface or skin dose must

be computed.
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Figure 2.15: Important aspects of Monte Carlo simulation.
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Chapter 3

Methods

3.1 Monte Carlo (MC) Simulations

MC methods are used in a great amount of applications where the user needs to provide

a numerical solution to a problem, which can be described in terms of temporal evolution

of objects interacting with other objects based on relations defined by a cross section

values (For instance (Panettieri et al., 2009)). For this reason, the use of them in

Medical Physics always has looked like a reasonable choice (Figure 3.1), because nature of

radiotherapy treatments (accelerators, quantum particles, microscopic and macroscopic

scale involve, etc) requires powerful simulation tools in order to obtain better dose

predictions and dosimetry plans.

Figure 3.1: The number of papers published per year. Data acquire from Web of
Knowledge (’All’) and MedLine (’Medicine’) (Bielajew and Carlo, 1991).
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The MC method is generally considered to be an accurate tool for dose estimation in

radiotherapy since beam’s particles are tracked individually in the media according to a

reliable interaction database (Apipunyasopon et al., 2013), now probably is an excellent

option in the surface dose quantification. Results are suitable as in terms of accuracy as

reproducibility and they are a source of reliable data.

In this work, all simulations were carried out with PENELOPE code system. It has been

developed in the University of Barcelona and INTE (Institut de Tècniques Energètiques)

of the UPC.

3.1.1 PENELOPE

Penelope is a package of subroutines, based upon Fortran, to simulate electron-photon

transport within a wide range of materials between energies from a few hundred of eV

to GeV. Photon transport is simulated by means of the standard, detailed simulation

scheme. Electron and positron histories are generated combining a detailed simulation

of hard events with a condensed simulation of soft interactions (Salvat et al., 2011).

Respect to geometry the subroutine PENGEOM allows, through quadric surfaces, build

homogenous bodies and modules, in which, the program generates cascades of photons

interactions. After simulation running, available PENELOPE’s results include: dose

deposition, energy deposition, particle track structure and others more.

3.1.2 Main Program: PENEASY

A main program is required by PENELOPE, it must manage the geometry and evolution

of radiation transport, keep track of relevant data and perform required averages at

the end of the simulation. Some examples of main programs are supplied with the

distribution package, but in this work penEasy have been used, it is a general-purpose

main program for PENELOPE that has been successfully used in previous works (inte.

upc.edu/downloads). It provides users with a set of source models, tallies and variance

reduction techniques that are invoked from a structured code. PenEasy provides a

modular code that facilitates the adaptation of routines to user needs without change

the main program and users need only to input the required information through a

configuration file. A scheme of the structure of Peneasy.f can be found in Appendix A.

General characteristics and implementation of each one of the modules used in this work

are explained below:
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3.1.2.1 Configuration section

The simulations were performed with ⇡ 1010 histories and random seeds were left to its

default value in the first trials, when the uncertainty of the simulation was higher, an

external program calculated initialization values to produce independent results between

simulations. SeedsMLCG program generates these pseudo-random values meanwhile

other relevant parameters were preserved assuring independence of simulated events.

This action is necessary because generated seeds are not really random, if a number

is used as a seed more than once, machine would generate the same random numbers

every time, that is the simulation would be the same. An example of the list of seeds

generated with a program based on RANECU is presented in 3.1.

Aspect of this module inside penEasy.f subroutine is shown in Appendix A.

RANECU seed 1
670356969
420792192
1566905700
1765101456
1233408633

Table 3.1: Seeds generated from an arbitrary seed elected by the user.

3.1.2.2 Source section -PSF-

PSF (Phase-space file), as its name says, is a file, which contains the information of each

beam’s particle: position, direction, charge energy and weight; besides it reproduces the

radiation field produced by a linear accelerator before entering into the patient. In this

work, two sources had been used: 6 MV and 15 MV with a field size equal to 10x10 cm

2

and corresponding to a parameters fixed by a Varian Clinic 2100 C/D accelerator. Those

PSFs were developed by previous projects and their validation process was successful

completed. Aspect of this module inside penEasy.f subroutine is shown in Appendix A.

3.1.2.3 Geometry section -PENGEOM-

For current MC simulations, two phantoms were modeled. First, for the beam validation

process, an homogenous 50x50x50 cm

2 water cube was build and simulated. Second one

was a 30x30x20 cm

2 parallelepiped phantom of TMPlastic water to quantify skin dose.

To speed up the simulation and allow the simultaneous computation of the dose in

di↵erent regions, TMPlastic water cube (figure 3.2) was modeled as four di↵erent paral-

lelepipeds:
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• Region 1: Between z = 0 mm and z = 1 mm.

• Region 2: Between z = 1 mm and z = 4 cm.

• Region 3: Between z = 4 cm and z = 10 cm.

• Region 4: Between z = 10 cm and z = 20 cm.

Figure 3.2: Cubes set up into phantom in order to compute skin dose.

Both geometry files with quadric surfaces are described with detail in Appendix A.

3.1.2.4 Penelope section

This module includes the identification of data files with the materials that are used in

the di↵erent phantoms and elements of the simulation. Previously, the material must be

generated by running of the program MATERIAL (included in Penelope package). A

water predefined material was employed for beam validation, while in main simulations

a material called TMPlastic water (composition is explained in table 3.1) was defined. In

addition, air material is defined ensuring that the space between accelerator head and

phantom is filled by it.

Element Atomic Number (Z) % Weight
C 6 0.5988
O 8 0.2354
H 1 0.0780
N 7 0.0176
Ca 20 0.0675
Cl 17 0.0022

Table 3.2: TMPlastic water composition
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The transport algorithm for electrons and positrons in each material is controlled by the

following parameters and they also a↵ect the accuracy and speed of the simulation (See

Table 3.3):

• EABS Local absorption energies for each one of the particles in the process (pho-

tons, electron and positrons). This feature can be used to reduce the simulation

work in the regions of less interest.

• C1(M) Average angular deflection, produced by multiple elastic scattering along a

path length equal to the mean free path between consecutive hard elastic events.

• C2(M) Maximum average fractional energy loss, between consecutive hard elastic

events.

• WCC(M) Cuto↵ energy loss in eV, for hard inelastic collisions.

• DSMAX Parameter defines the maximum allowed step length for electrons/positrons;

for photons, it has no e↵ect.

To improve the speed of the simulation based on the same TMPlastic water material,

di↵erent simulation parameters were set in the top region defined in the 30x30x20 cm

2

phantom, as defined in the previous section.

Material EABS � (eV) EABS e

� (eV) EABS e

+ (eV) C1 C2 WCC (eV) DSMAX
TMplasticwater1 10x103 100x103 100x103 0.1 0.1 100x103 0.002
TMplasticwater2 10x103 100x103 100x103 0.1 0.1 100x103 0.01
TMplasticwater3 10x104 500x103 500x103 0.2 0.2 100x103 0.01

air 10x103 100x103 100x103 0.1 0.1 100x103 10x103

Table 3.3: Transport parameters used in the simulation

3.1.2.5 Tally sections

PenEasy provides di↵erent result tallies but in this work we have used the tally ’Spatial

Dose Distribution’.

• Spatial Dose Distribution: Absorbed dose per simulated history can be calcu-

lated by this module in the main program, the dose is estimated using the collision

estimator (scoring the energy deposited on the spot in each interaction) (Salvat

et al., 2011). 3D distribution is obtained by the corresponding intervals and bins

in each axis (x,y,z), spherical, cylindrical and as in our case parallelepiped bins

can be used. The standard penEasy only allows the user to compute this tally

with a defined bin spacing. To provide a simultaneous simulation at four regions

of interest in the phantom, the code has been modified; tally was replicated four
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times (See tally structure in Appendix A) each one of them is able to calculate, in

an independent way, absorbed dose in the region where is defined.

This type of modification allows to have smaller regions over the phantom (in

reference with beam’s entrance) besides more bins are specified in order to obtain

a better dose distribution in the first mm of tissue. Simulation has been performed

with a variable size of bin in z axis but constant in x and y axes. Dimensions of x

and y bins try to reproduce the window of the extrapolation chamber.

3.1.2.6 Variance-reduction techniques

In general, variance-reduction techniques are used to reduce statistical uncertainty of

an interest quantity without increasing the computer simulation time. These methods

are highly recommended in problems, such as skin dose determination, since only a

particular region of the geometry defined is of interest in the simulation performance.

• Interaction forcing: Interaction forcing method artificially increases the inter-

action probability of process specified by the user, as a result, force interactions

occur more frequently than for the real process. Interaction forcing can e↵ectively

reduce the statistical uncertainties of some simulation results (Salvat et al., 2011).

To apply interaction forcing in this work, parameters associated with interaction

probabilities must be changed, it will be applied to photon interactions (Table 3.3)

and inside the material defined in the first millimeter of TMPlastic water phantom,

reminding that for this work the skin region is at 0.07 mm depth. Additionally,

forcing factor was the same for all types of interactions and its value was equal to

two.

Rayleigh scattering
Compton interaction

Photoelectric interaction
Electron-positron pair production

Delta interaction
Auxiliary fictitious friction

Table 3.4: Available Photon interactions to apply interaction forcing.

• Particle splitting: This technique promotes flux of radiation towards the region

of interest. As interaction forcing, splitting is useful in situations where only a

partial description of the transport process is required. PENELOPE has three

di↵erent modes of splitting. In agreement with the problem, simple mode was

chosen; this mode creates copies inside splitting material that are identical to the

original particle. The second variance reduction alternative that can be employed

is Particle Splitting. This method creates a number of copies of the original particle
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with a reduced statistical weight, in addition, technique is only applied a specified

material, in our caseMaterial 1 placed in the ROI (Region of interest). Parameters

in the module of main program appear in Table 3.4.

Parameters Value
Splitting Material TMPlastic water 1.0 (first mm)

W

in

0.001
Splitting factor 5.0

Table 3.5: Parameters applying splitting section.

3.2 Extrapolation chamber

An extrapolation chamber is a parallel-plate ionization chamber, with a small sensitive

volume, which can be varied. Measurements with extrapolation chambers are considered

’the gold standard’ (most accurate test in medical terms) in surface dose estimations;

although its use is unusual and impractical within clinical environments.

A perspex EC PTW Model 23392 is used (See general structure in figure 3.3). The spec-

ifications are given by: Chamber entrance window-0.0035 mm polyethylene terephtalate

(PEDT, Hostaphan) mylar foil. The area of the entrance window is 0.66 mg/cm

2. The

measuring volume can be varied between 0.353 to 7.422 cm

3 by moving the electrode

using a piston operated by a micrometer screw. The distance between the electrodes is

variable from 0.25 mm to 10.5 mm with the accuracy of parallelism being +1 µm, taken

from (GmbH, 2012). Diameters of the entrance window and the rear electrode are 60.5

mm each; the rear electrode is made up of perspex and methyl methacrylate (PMMA),

with a graphite coated surface.

There is a guard electrode with a width of 14.8 mm and an insulating ring with a

thickness of 0.2 mm and a width of 0.2 mm. The design of the chamber is such that the

leakage current is < 1012A. For e↵ective plate separation of 0.5 mm the saturation e↵ect

occurs at a voltage of > 50V (99.5 %) for dose rates as high as 335 Gy/s. In addition

the chamber was connected to an electrometer PTW UNIDOS with dual polarity, the

leakage of the ionization measurement is as low as 1 pC.

Upon the basis of a previous project where a chamber with those characteristics was

adapted and calibrated to perform experiments with a Varian Clinic 2100CD accelerator

(in the Santa Creu i Sant Pau Hospital), in this work the skin dose and the PDD along

the central axis of the TMPlastic water cube were measured.
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Figure 3.3: Schematic diagram of the extrapolation chamber (EC): G-ground, E-Bias
voltage to collecting electrode, SS-Stainlees steel body, P-Perspex body, Pis-Piston,

S-Micrometer screw.

3.2.1 Details of dose calculation

The Spencer-Attix air cavity relationship for the dose D
med

in a phantom is (Zankowski

and Podgorsak, 1997) :

D

med

=
Q

m

W

air

L

med

air

(3.1)

where Q is the charge collected under saturation conditions in the chamber sensitive air

mass m, W
air

is the mean energy required to produce an ion pair in air, and L

med

air

is

the ratio of restricted collisional mass stopping powers of the medium and air for the

electron spectrum at the position of the cavity.

In the case of the volume in the cavity of the extrapolation chamber, it is very small then

the ratio Q/M as a function of m is constant, allowing that this term will be replaced

by one easier to.measure: derivate dQ/dm. As a result, the modified Spencer-Attix

relationship for the dose to the medium can be written as:

D

med

=
dQ

dm

W

air

L

med

air

(3.2)

or for parallel-plate ionization chambers (an extrapolation chambers also):
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D

med

= (
1

⇢A

)
dQ

dz

W

air

L

med

air

(3.3)

where ⇢ is the density of air in the cavity, A is the e↵ective area of the measuring

electrode and z is the separation between the polarizing and measuring electrodes.

Although Equation 3.3 looks like a simple equation since majority of the terms are con-

stant, computation of associated values carries many correction factors and the process

raises level of uncertainty over absorbed dose value (See in detail (Hernández, 2012)).

3.2.2 Technical aspects

Percentage depth doses along the beam central axis for 6 MV and 15 MV photon beams

should be acquired experimentally with the extrapolation chamber in a reproducible

way. It has to be in horizontal position beneath head accelerator; for both energies

square field size, geometry and SSD (source-surface distance) are the same. It means,

distance between head’s LINAC and the surface of the phantom must be 100 cm. All

parameters are in agreement with the conditions of MC simulations. Figure 3.4 is the

view of the EC and the LINAC arrangement.

Figure 3.4: Experimental arrangement at the hospital: Extrapolation chamber and
LINAC.

3.2.3 Geometry of the measurements

Extrapolation chamber with its support are laid in horizontal position under head ac-

celerator. To evaluate absorbed dose in deep, measurements are performed at various
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depths from 1 mm until 15 mm or 30 mm depending on beam energy by keeping the
TMPlastic water slabs on the surface of the entrance window of the EC, ensuring always

a SSD (Source-Surface distance) of 100 cm (See figure 3.5 and figure 3.6).

Figure 3.5: Geometry of measurements in deep of the absorbed dose with extrapola-
tion chamber view 1.

Figure 3.6: Geometry of measurements in deep of the absorbed dose with extrapola-
tion chamber view 2.

A reference field of 10x10 cm

2 is used at the isocenter for both photon beams, in this

manner MC parameters and empirical method are developed under similar conditions.

Measurements were taken only at three di↵erent distances for chamber plate separation:

2.0 mm, 1.5 mm, and 0.5 mm according to the optimization in measurement protocol

proposed by (Hernández, 2012). The ionization charge is collected for 10 MU (monitor
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units) exposures. For each depth, ionization charge was measured at the positive and

negative bias voltage finally the average was taken for each setting.

3.2.4 Optimization measurement’s protocol

As has been pointed out in a previous work, the results with the highest accuracy

were obtained when the measurements are taken for ten di↵erent plate separation, thus

measurements obtained by extrapolation chambers in general are time consuming (up to

2 hours to measure only for the surface dose) and unpractical in clinical environments.

The idea proposing a protocol is to ensure uncertainties below 2% with a lower quantity

of registered measurements.

This work used a set of three measurements for each separation distance of the plates in

both cases: negative and positive polarization of the chamber. This can be done taking

into account that the important value to be measured is the slope of the linear regression

between collected charge and chamber electrodes distance separation. Previous project,

demonstrated values of reached uncertainty did not exceed 2% with this method in

almost any probable combination of distances capable to be chosen by the user.
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Chapter 4

Results

4.1 Monte Carlo simulations

4.1.1 Beam Validation

First step in the process was the validation of PDD (Percentage Depth Dose) curves.

Results obtained with MC simulations by comparison against experimental PDD values

for a 50x50x50 cm

3 cubic water phantom in both cases of energies are shown in Figures

4.1 and 4.2.

Since this work is focused on the build-up region, materials and geometry for MC simu-

lations were changed. Subsequently, validation process was performed with a 30x30x20

cm

3 complex TMPlastic water phantom.

4.1.2 PDD within first mm -without modifications-

MC simulation was performed without substantial changes. Tally Spatial Dose Distribu-

tion was replicated four times, then attention could be focused within first mm in depth

along the central axis within the phantom (See Figures 4.3 and 4.4). Main program code

is the same for a 6 MV and 15 MV photon beams with their PSFs (Phase Space Files)

respectively.

To give the surface or skin dose value means to analyze percentage doses at specific

depths inside the phantom. Certainly, relevant depth of a measurement depends on

which biological e↵ect is of interest, although the layer recommend for practical dose

assessments is situated at 0.07 mm depth according to ICRP (Nilsson and Sorcini, 1989).

In this work for all cases, PDDs values at surface, at 0.07mm and at 0.5mm are observed

in order to make comparisons with published results in previous studies.
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Figure 4.1: MC validation for 6 MV beam, water phantom, 10x10 cm

2 field size at
SSD=100cm.

Figure 4.2: MC validation for 15 MV beam, water phantom, 10x10 cm

2 field size at
SSD=100cm.
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Figure 4.3: Absorbed dose for 6 MV. Uncertainty=10%.

Figure 4.4: Absorbed dose for 15 MV. Uncertainty=10%.
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First simulation reaches an average uncertainty of 10% and spends 4 days running in

the Argos cluster. Results are shown in Table 4.1.

Depth (mm) Energy (MV) PDD (%)

0
6 18.02
15 9.80

0.07
6 18.52
15 12.78

0.5
6 33.51
15 21.85

Table 4.1: Calculated doses in the plastic water phantom (Average reached uncer-
tainty=10%).

4.1.3 PDD within first mm -(VR Variance Reduction Techniques-)

Uncertainty in the simulations above was too high and plots of the results have many

fluctuations if they were compared with total absorbed dose curve. To obtain better

results than the trials performed until now, variance reduction techniques may be em-

ployed. These techniques ensure a decay in the statistical uncertainty without increasing

the computer simulation time. PENELOPE has available three types of VR methods

but in this work only two have been tested.

• Interaction forcing:

First available method in the main program PenEasy is interaction forcing, it con-

sists to increase interaction probability of the di↵erent process, in which one type

of particles are involved. Applying interaction forcing upon all photon interactions

within material one (first mm of the phantom are filled with it), 5% of average un-

certainty is reached. The depth dose curve comparison for the simulation without

forcing and the simulation with forcing is shown for 6 MV in Figure 4.5 and for

15 MV in Figure 4.6. Table 4.2 summarizes calculated PDD values, their uncer-

tainties and the di↵erence in reference with previous MC simulations at specific

depths of interest.

Depth (mm) E (MV) Not VR (%) u

PDDnot

(%) Forcing(%) u

PDDfor

(%) Di↵

0
6 18.02 18 17.13 8 -0.89
15 9.80 14 10.42 6 +0.62

0.07
6 18.52 13 17.73 6 -0.79
15 12.78 14 11.52 6 -1.26

0.5
6 33.51 10 32.92 5 -0.59
15 21.85 10 20.51 5 -1.34

Table 4.2: Comparison percentage dose values obtained with/without interaction
forcing methods.
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Figure 4.5: Comparison between MC simulations with/without interaction forcing
method 6MV.

Figure 4.6: Comparison between MC simulations with/without interaction forcing
method 15MV.
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As the results show, implementation of forcing allows to achieve a better statistics

in the same time of simulation (about three days running in ARGOS cluster of the

INTE). However, the idea is obtaining results from MC simulations with the lowest

possible uncertainty, they can be compared more precisely with the measurements

using extrapolation chamber.

• Particle Splitting: Particle splitting and interaction forcing were applied, the

number of copies or splitting factor was set as five. Depth dose curve comparison

for the MC simulation using interaction forcing and MC simulation using both:

forcing and splitting is shown in Figure 4.7, for 6 MV and in Figure 4.8 for 15 MV.

Figure 4.7: Comparison between MC simulations: interaction forcing and forcing plus
splitting 6MV.

The first simulation combining forcing and splitting methods, the uncertainty

reached values of 4% for 6 MV beam and 2% for 15 MV beam. Plot shows trend-

lines alike in the region between 0 - 0.3 mm. From there, data corresponding to

both VR methods are a little bit higher. Table 4.3 summarizes simulation results.

If attention is paid at depth of 0.07 mm, di↵erence would be the highest in the set of

analyzed distances along beam central axis. In advance of trying another techniques in

order to improve statistics of the simulation in the case of 6 MV’s beam (with worse

reached uncertainty); forcing and splitting was applied once more setting the relative

uncertainty of tally Spatial Dose Distribution to a lower value.
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Figure 4.8: Comparison between MC simulations: interaction forcing and forcing plus
splitting 15MV.

Depth (mm) E (MV) Forcing (%) u

PDDfor

(%) For+Split(%) u

PDD2(%) Di↵

0
6 17.13 8 16.98 10 -0.15
15 10.42 6 10.80 2 +0.38

0.07
6 17.73 6 18.52 6 +0.79
15 11.52 6 12.08 2 +0.56

0.5
6 32.92 5 33.51 5 +0.59
15 20.51 5 20.21 2 -0.3

Table 4.3: Comparison percentage dose values obtained with two combinations of
variance reduction techniques.

Figure 4.9 shows the results for splitting and forcing methods with two di↵erent uncer-

tainties reached. Respect to numerical values, these are very similar despite time ma-

chine that can be double for 3% of requested uncertainty. At this point, other method

is needed to improve accuracy of simulations.

4.1.4 PDD within first mm -Parallel Monte Carlo simulations-

Another e↵ective method to improve errors of the results is performing independent

Monte Carlo simulations with the control of the seeds. It ensures independence of

parallel trials, those seeds are generated by an external program and they allow Monte
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Figure 4.9: Comparison between results applying forcing and splitting methods for 6
MV.

Carlo simulations strictly reproducible. Results are shown in Figure 4.10 for 6 MV and

in Figure 4.12 for 15 MV.

Absorbed dose at di↵erent depths (results per single run and mean value with its sample

standard deviation) are summarized in Table 4.4. As one can conclude, final result has

a lower uncertainty, which is given by Eq. 4.1.

s

PDD

=
�

PDDp
N

) (4.1)

Depth (mm) Energy (MV) PDD(%) each seed PDD(%) s

PDD

0
6 17.84 17.79 17.51 17.80 17.74 17.74 0.13
15 10.94 10.52 11.03 10.67 10.70 10.77 0.21

0.07
6 18.30 18.12 18.44 18.53 18.32 18.35 0.15
15 12.09 12.40 12.30 12.21 12.28 12.26 0.12

0.5
6 32.96 33.24 32.87 32.88 33.22 32.83 0.37
15 20.26 19.88 19.85 20.30 19.84 20.07 0.30

Table 4.4: Summary the results of parallel simulations and definite absorbed dose
value took into account in order to compare with extrapolation chamber measurements.
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Figure 4.10: Percentage depth dose curves for di↵erent trials in parallel simulations
for 6MV.

4.2 Extrapolation chamber measurements

Tables 4.5 and 4.6 show the summary of results in terms of collected ionization charge

in pC for three di↵erent plate separations: 0.5 mm, 1.5 mm and 2 mm; obtained us-

ing micrometer screw adjustments. Data were taken under similar ambient conditions

(Temperature: 297.5 K and Pressure: 100.95 kPa) and polarization voltage varies with

plate separation. Moreover the readings from each measured position at the positive

and negative bias voltage were averaged; the mean value and uncertainty of each mea-

surement also can be found in this table. This uncertainty should be determined from

standard deviation of the charge measured by:

u

Q

=

q
s

2
Q+

+ s

2
Q�

2
(4.2)

where s

Q+ and s

Q� are the sample standard deviations of Q+ and Q� mean values,

respectively.
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Figure 4.11: Percentage depth dose curves for di↵erent trials in parallel simulations
for 15MV.

E(MV) Depth(mm) d(mm) V Q(+) (pC) Q(-) (pC) Q (pC) u (pC)

6
0.0

2.0 20

1118 711

911.33 41103 711.0

1114 711.0

1.5 15

903.0 482.5

691.38 2902.0 481.0

899.3 481.0

0.5 5

545.5 69.00

306.25 2542.0 70.00

541.0 70.0

6 1.0

2.0 20

2854 2339

2639.0 412841 2481

2838 2481

1.5 15

2321 1949

2129.0 42313 1942

2306 1943

0.5 5

1236 892.00

306.25 21240 886.50

1237 885.00

mailto:S.R.Gunn@ecs.soton.ac.uk


Ingrid Isabel Valencia Lozano 41

E(MV) Depth(mm) d(mm) V Q(+) (pC) Q(-) (pC) Q (pC) u (pC)

6 2.0

2.0 20

3727 3451

3585.3 43711 3453

3717 3453

1.5 15

3035 2743

2881.8 63018 2744

3035 2743

0.5 5

1576 1320

1445.3 31578 1375

1570 1313

6 4.0

2.0 20

4664 4530

4612.3 264754 4480

4732 4514

1.5 15

3840 3613

3704.5 293822 3615

3823 3514

0.5 5

1995 1763

1872.0 51986 1755

1979 1755

6 5.0

2.0 20

5133 4860

4976.0 145094 4829

5093 4850

1.5 15

4116 3895

3988.5 114096 3869

4089 3866

0.5 5

2135 1890

2010.0 32139 1882

2131 1883

6 7.0

2.0 20

5500 5233

5345.3 215482 5230

5457 5170

1.5 15

4464 4193

4320.3 84433 4202

4443 4197

0.5 5

2317 2153

2209.3 282308 2137

2217 2124

6 10.0

2.0 20

5761 5446

5595.2 525773 5501

5594 5496

1.5 15

4683 4448

4541.5 27
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E(MV) Depth(mm) d(mm) V Q(+) (pC) Q(-) (pC) Q (pC) u (pC)

4671 4433

4584 4430

0.5 5

2420 2200

2312.8 132412 2190

2415 2240

6 15.0

2.0 20

5880 5624

5740.7 95855 5616

5846 5623

1.5 15

4740 4534

4624.2 104730 4520

4711 4510

0.5 5

2478 2237

2349.0 62470 2222

2459 2228

Table 4.5: Summary the results of extrapolation chamber

measurements for 6MV beam.

E(MV) Depth(mm) d(mm) V Q(+) (pC) Q(-) (pC) Q (pC) u (pC)

15 0.0

2.0 20

982.5 544.0

761.16 2975.0 546.0

825.0 416.5

1.5 15

825.0 416.5

618.25 2819.5 416.5

818.0 414.0

0.5 5

517.0 145.0

330.58 1517.0 145.0

514.0 145.0

15 1.0

2.0 20

2000 1521

1755.8 41988 1517

1988 1521

1.5 15

1631 1174

1399.2 21625 1169

1626 1170

0.5 5

930 470.5

700.33 1929.0 469.0

933.0 470.5

15 2.0

2.0 20

2648 2261

2445.66 10
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E(MV) Depth(mm) d(mm) V Q(+) (pC) Q(-) (pC) Q (pC) u (pC)

2642 2227

2637 2259

1.5 15

2148 1786

1957.3 132142 1780

2102 1786

0.5 5

1170 517.5

838.66 51168 512.0

1164 500.5

15 4,0

2.0 20

3598 3266

3416.2 183589 3201

3582 3261

1.5 15

2944 2602

2763.2 72926 2595

2925 2587

0.5 5

1562 1223

1381.7 141561 1215

1557 1172

15 5.0

2.0 20

3972 3620

3797.5 83962 3640

3979 3612

1.5 15

3236 2862

3045.3 43227 2853

3228 2866

0.5 5

1726 1359

1539 21718 1359

1718 1359

15 7.0

2.0 20

4504 4167

4332.5 34504 4156

4503 4161

1.5 15

3673 3345

3503.6 73679 3333

3675 3316

0.5 5

1966 1639

1796.3 51963 1628

1963 1629

15 10.0

2.0 20

5096 4740

4612.3 765094 4471

5068 4726

1.5 15

4126 3810

3934.3 484121 3637
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E(MV) Depth(mm) d(mm) V Q(+) (pC) Q(-) (pC) Q (pC) u (pC)

4120 3792

0.5 5

2157 1840

2007.0 92183 1830

2182 1850

15 15.0

2.0 20

5553 5264

5408.3 45560 5265

5544 5264

1.5 15

4520 4162

4356.3 144527 4209

4510 4210

0.5 5

2375 2072

2222.7 32381 2066

2376 2066

15 30.0

2.0 20

5785 5173

5511.8 245811 5234

5802 5266

1.5 15

4794 4524

4645.8 124781 4520

4767 4489

0.5 5

2496 2233

2359.5 52496 2226

2492 2214

Table 4.6: Summary the results of extrapolation chamber

measurements for 15MV beam.

4.2.1 Temperature and Pressure correction factor

The charge measured by the chamber depends on the air temperature, pressure and

humidity. Further, chamber signal should be corrected to normal conditions (T
n

=

20�C and P

n

= 101.325kPa) then the factor may be applied for the particular ambient

conditions is:

�(P
k

, Tk) =
101.325kPa(273.15 + T

k

)

P

k

(273.15 + 20�C)
(4.3)

Correction factor allows convert the measured signal to the reference (normal condi-

tions) used for the extrapolation chamber calibration at the standard laboratory. Value

obtained in this case of temperature and pressure is �(P
k

, Tk) = 1.02.
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Since now, measurements from extrapolation chamber will be shown here include the

multiplication by this correction factor.

4.2.2 Values of dQ

dz

in deeper

From equation 3.3, derivate of chamber capaciting charge respect to chamber depth is

related with absorbed dose. In this work, PDD profile will be determined directly from

EC measurements saving the use of correction factors, for this purpose a linear regression

was used to fit each set of data corresponding to di↵erent depths or thickness of the

slabs over the chamber (Details obtaining and using linear regressions and extrapolation

slopes are in Appendix B). Resultant slopes, it means absorbed dose equivalent values,

are shown in Table 4.7.

Energy (MV) Depth (mm) dQ

dz

(pC/mm)

6

0.0 408.77
1.0 1089.9
2.0 1454.8
4.0 1864.1
5.0 2017.4
7.0 2121.5
10 2252.5
15 2308.4

15

0.0 313.48
1.0 720.12
2.0 1000.0
4.0 1382.9
5.0 1531.6
7.0 1732.1
10 1981.0
15 2162.6
30 2165.0

Table 4.7: dQ
dz obtained from EC measurements for each photon beam energy at each

depth.

Depths in which absorbed dose is a maximum were reached at: z = 15 mm and z = 30

mm for each case of photon beam energy respectively.

4.2.3 Comparison with previous measurements in surface under simi-

lar experimental conditions

Preliminary results of PDD at the surface were determined by (Hernández, 2012). A

comparison between both measurements is convenient in order to determine accuracy

and similarity of results, reminding the main purpose of both projects is toward to the
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same objective: Quantification of skin dose in a radiotherapy treatment. A summary of

the values and the di↵erences in terms of percentage found are presented in Table 4.8.

Energy (MV)
PDD %

Di↵erence
Hernandez, 2012 Valencia, 2013

6 16.2 17.7 +1.5
15 14.3 13.5 -0.8

Table 4.8: Summary the results in order to compare EC measurements under same
experimental conditions.

For both energies, good agreement between both experiment trials is found. Although

photon beam di↵erence is higher in 6 MV, their values are compatible within uncertain-

ties of each one of the measurements.

4.2.4 PDD curves obtained from experimental data

Percentage depth doses along the beam central axis for 6 MV and 15 MV photons were

acquired experimentally with extrapolation chamber (Figure 4.12). The readings in

terms of collected charge for di↵erent plate distances were fitted using a linear regression

as was explained before. Consequently, PDD profiles can be build normalizing value of

charge/mm at each depth respect to values obtained for the points, in which the dose

is a maximum.

4.3 Comparison PDDs from MC simulations and empirical

measurements

Now with experimental measurements obtained and MC simulations performed, is time

to make a comparison between the results focusing on the near surface region. Both

resultant percentage depth dose curves are plotted in order to correlate available data

(Figures 4.13 and 4.14).

At first sight, in the case of 6 MV photon beam almost all possible depths from both

methods are in good agreement. For 15 MV gradual changes are observed, probably

the most significant disagreement corresponds to value at z = 15 mm, percentage di↵er-

ence between the extrapolation chamber reading and MC simulation is around 6� 7%.

Although, further along beam path (near to d

max

) values are alike.

Results in the first 2 - 3 mm should be highlighted because curves are in excellent

agreement for both energies, PDD values nearby to surface seem match closer.

Table 4.9 summarizes calculated and measured doses at depth of 0.07 mm and 1.0

mm in the TMPlastic water phantom for 6 MV and 15 MV photons, respectively. The
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Figure 4.12: Percentage depth dose curves obtained using Extrapolation chamber.

Figure 4.13: Percentage depth dose in the buildup region measured by extrapolation
chamber compared with MC simulation results for 6MV.
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Figure 4.14: Percentage depth dose in the buildup region measured by extrapolation
chamber compared with MC simulation results for 15 MV.

di↵erence column is calculated to be the percent di↵erence between the EC reading and

MC simulation results for each pair of data.

Energy (MV) Depth (mm) EC (%) MC (%) Di↵erence (%)

6
0.07 17.7 18.4 +0.6
1.0 46.5 52.0 +6.0

15
0.07 13.5 12.3 -1.2
1.0 33.0 33.6 +0.6

Table 4.9: Summary of calculated and measured PDDs for 6MV and 15MV photon
beams.

For 6 MV the maximum deviation is within 5�6% at 1 mm of depth inside the phantom,

decreasing to below 1% nearby to the position of d
max

. In the other hand, results for

15 MV photons are a little bit di↵erent.

Absorbed dose in the surface region decreases with energy of the beam as was expected.

It happens because depth dose maximum z

max

is proportional to the beam energy and

this value depends on the highest amount of energy and range reached by secondary

particles: electrons and positrons. This particular behavior is known in medical physics

as skin-sparing e↵ect (maximum energy is delivered in the sub epidermal region) and it

is directly proportional to energy of the photons.
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4.4 Comparison between results and reports in previous

works

We can compare PDD at the skin to those available from previous studies performed

under the same characteristics. Commonly is easier to find the PDD values for 6 MV

beam because measurements for 15 MV have not been performed in the most of the

cases. Table 4.10 summarizes these data and the di↵erence column is calculated to be

the percent di↵erence corresponding report and our result, the results are comparable

to all values found in the literature within uncertainties reached.

E(MV) Type of work Accelerator PDD (%) Di↵ (%)

6
Extrapolation chamber (Valencia,2013) Varian 2100CD 17.7 0

TLD Extrapolation(Kron et al., 1993) Varian 2100C 16.3 -1.4
Black TLDs (Thomas and Palmer, 1989) Varian 2100C 19.3 +1.6
Markus chamber(Rawlinson et al., 1992) Varian 2100C 14.7 -3.0

Extrapolation chamber(Rikner and Grusell, 1987) Varian 2100C 14.9 -2.8
Extrapolation chamber(Apipunyasopon et al., 2013) Varian 23EX 16.0 -1.7
Extrapolation chamber (Ishmael Parsai et al., 2008) Varian 1800 16.4 -1.3

15
Extrapolation chamber (Valencia,2013) Varian 2100CD 13.5 0

Markus chamber(Yadav et al., 2010) Elekta Precise 11.7 -1.8
Ultra thin TLDs(Lin et al., 2001) Siemens Primus 10.6 -2.9

Table 4.10: Percent depth dose (PDD %) of skin of di↵erent measured methods and
accelerators from the literature.
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Chapter 5

Conclusions

Quantification of absorbed dose in regions near to the patient skin is di�cult and few

data is available considering the importance of this quantity in the planning of radiother-

apy treatments and the wide range of accelerators and beam energies used. Moreover

buildup region, as is known the region within the first mm along beam releases its energy

inside a phantom, has a particular characteristic of non electronic equilibrium. The use

of an extrapolation chamber is always suggested to give an accurate value of dose in this

region but results are also limited, experimental setup is troublesome to perform and this

chamber is not typically available in most of the institutes and clinical environments.

The idea in this project was to evaluate MC simulations derived calculations beneath of

first mm along path of the photon beam to demonstrate a possible coherence between

the results and the measurements obtained using an extrapolation chamber. PenEasy,

main program to manage the di↵erent simulations through PENELOPE, needed mod-

ifications in order to obtain an accurate value of PDD within the first mm of a paral-

lelepiped TMPlastic Water phantom. First at all, four replications of tally Spatial Dose

Distribution were made. Secondly, variance reduction techniques, in this case, interac-

tion forcing and splitting factor, were used to enhance e�ciency, time of running and

accuracy of the simulation. Finally, looking for better statistics, Parallel MC simulations

were performed ensuring independence of each single running; in this form the average

reached uncertainty was around ⇠ 4%.

On the other hand, measurements with an extrapolation chamber were carried out aver

a Varian2100CD LINAC. The importance of the experimental method in this work

unlike previous reports was to determine the percentage depth dose along beam’s central

axis until d
max

(depth at which dose is a maximum) because additional equations or

correction factors were not required.

Final objective consisted to compare calculated and measured PDD at surface, specially

at depth of z = 0.07 mm (recommended layer for practical skin dose assessments accord-

ing to ICRP) in the TMPlastic Water phantom for 6 MV and 15 MV photons respectively.
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Results are: 17.7% measured, 18.4% calculated for 6MV and 13.5% measured , 12.3%

calculated for 15MV. The maximum percent di↵erence is ⇠ 1% corresponding to the

highest energy of the beam.

PDD results show good agreement between data from EC measurements and MC simu-

lations. Percentage di↵erence does not exceed 7% but is important consider that future

studies could include a new set of measurements with the extrapolation chamber con-

firming PDD profiles quantified here. Other plans, also may include MC simulations of

beam modifiers, oblique beams and electron beams.
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Appendix A

PENELOPE-PenEasy code

A complete description of the simulation package PENELOPE can be found in Salvat

et al. (2011), besides about PenEasy main program was explained and is accessible

to download in the web page of INTE (Institut de Tècniques Energètiques) http://

inte.upc.edu/downloads. This passage of the work pretends to show structure and

documentation corresponding to main routines and subroutines used in the simulations.

If user requires extensible information, read documentation is recommended.

A.1 Subroutine PenEasy

PenEasy is a free and open software. It is written in FORTRAN77 and its structure is

shown in Figure A.1.

General description is as follows: Each cycle of the loop history performs the simulation

of one primary particle and all its descendants (electromagnetic shower), each cycle of

particle simulates a single photon, electron or positron and each cycle interact reproduces

a single interaction, or the crossing of an interface if the distance to the intersection is

shorten than the distance to the next interaction. The simulation of a particle ends she

it leaves the material system or when its kinetic energy falls bellow some user-defined

absorption energy which may depend on the material and particle type Badal (2008).

Source configuration allows the generation of initial particles and their posterior changes.

Tallies modules are the most important part to the user because with them, quantities

of interest can be scored. Each one is presented below.

A.1.1 Source model

In this project PSF source model was employed, it reads the initial state of the particles

to simulate from an external file (one for 6MV and other 15 MV). PSF is a plain text
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Figure A.1: Basic structure of the Fortran version of PenEasy. Tallies and auxiliary
subroutines are missing Badal (2008).

file that contains information about beam energy, field size, angle of beam incidence and

SSD. Module Source Phase Space File is shown in Figure A.2.

Figure A.2: Code Source Phase Space File

A.1.2 PENGEOM+PENVEOX section

User defines geometry used in the simulation with this module. It can be: quadrics,

voxels or a mixture between both. Our phantom is a cube build from quadric surfaces

using PENGEOM (geometry package of PENELOPE), the code is alike below:

SURFACE ( 10) Plane Z=+100.0

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+100.0000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 11) Plane Z=+100.1

INDICES=( 0, 0, 0, 1, 0)
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Z-SHIFT=(+100.1000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 12) Plane Z=+104.0

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+104.0000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 13) Plane Z=+110.0

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+110.0000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 14) Plane Z=+120.0

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+120.0000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 15) Plane Z=+99.9

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+99.90000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 16) Plane Z=+120.1

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+120.1000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 17) Plane X=-15.0

INDICES=( 0, 0, 0, 0, 0)

AX=(+1.000000000000000E+00, 0)

A0=(+15.00000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 18) Plane X=+15.0

INDICES=( 0, 0, 0, 0, 0)

AX=(+1.000000000000000E+00, 0)

A0=(-15.00000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 19) Plane Y=-15.0

INDICES=( 0, 0, 0, 0, 0)

AY=(+1.000000000000000E+00, 0)

A0=(+15.00000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 20) Plane Y=+15.0

INDICES=( 0, 0, 0, 0, 0)

AY=(+1.000000000000000E+00, 0)

A0=(-15.00000000000000E+00, 0)
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0000000000000000000000000000000000000000000000000000000000000000

BODY ( 1) Box1

MATERIAL( 1)

SURFACE ( 10), SIDE POINTER=(+1)

SURFACE ( 11), SIDE POINTER=(-1)

SURFACE ( 17), SIDE POINTER=(+1)

SURFACE ( 18), SIDE POINTER=(-1)

SURFACE ( 19), SIDE POINTER=(+1)

SURFACE ( 20), SIDE POINTER=(-1)

0000000000000000000000000000000000000000000000000000000000000000

BODY ( 2) Box2

MATERIAL( 2)

SURFACE ( 11), SIDE POINTER=(+1)

SURFACE ( 12), SIDE POINTER=(-1)

SURFACE ( 17), SIDE POINTER=(+1)

SURFACE ( 18), SIDE POINTER=(-1)

SURFACE ( 19), SIDE POINTER=(+1)

SURFACE ( 20), SIDE POINTER=(-1)

0000000000000000000000000000000000000000000000000000000000000000

BODY ( 3) Box3

MATERIAL( 3)

SURFACE ( 12), SIDE POINTER=(+1)

SURFACE ( 13), SIDE POINTER=(-1)

SURFACE ( 17), SIDE POINTER=(+1)

SURFACE ( 18), SIDE POINTER=(-1)

SURFACE ( 19), SIDE POINTER=(+1)

SURFACE ( 20), SIDE POINTER=(-1)

0000000000000000000000000000000000000000000000000000000000000000

BODY ( 4) Box4

MATERIAL( 3)

SURFACE ( 13), SIDE POINTER=(+1)

SURFACE ( 14), SIDE POINTER=(-1)

SURFACE ( 17), SIDE POINTER=(+1)

SURFACE ( 18), SIDE POINTER=(-1)

SURFACE ( 19), SIDE POINTER=(+1)

SURFACE ( 20), SIDE POINTER=(-1)

0000000000000000000000000000000000000000000000000000000000000000

BODY ( 5) Box5

MATERIAL( 3)

SURFACE ( 15), SIDE POINTER=(+1)

SURFACE ( 16), SIDE POINTER=(-1)
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SURFACE ( 17), SIDE POINTER=(+1)

SURFACE ( 18), SIDE POINTER=(-1)

SURFACE ( 19), SIDE POINTER=(+1)

SURFACE ( 20), SIDE POINTER=(-1)

BODY ( 1)

BODY ( 2)

BODY ( 3)

BODY ( 4)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 21) Plane Z=0.00

INDICES=( 0, 0, 0, 1, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 22) Plane Z=+300.0

INDICES=( 0, 0, 0, 1, 0)

Z-SHIFT=(+300.0000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

SURFACE ( 23) Cone

INDICES=( 1, 1,-1, 0, 0)

X-SCALE=(+1.000000000000000E+00, 0)

Y-SCALE=(+1.000000000000000E+00, 0)

Z-SCALE=(+1.000000000000000E+00, 0)

0000000000000000000000000000000000000000000000000000000000000000

MODULE ( 6) Volume inside the pair of planes and the cone

MATERIAL( 4)

SURFACE ( 21), SIDE POINTER=(+1)

SURFACE ( 22), SIDE POINTER=(-1)

SURFACE ( 23), SIDE POINTER=(-1)

BODY ( 5)

A.1.3 PENELOPE section

Material’s files should be placed in this module (See Figure A.3). For a certain material,

transport parameters could be set although if the user left those spaces in blank, program

has a default values.

A.1.4 Tally Spatial Dose Distribution

Absorbed dose per simulated history is scored by this tally (See Figure A.4). Intervals

and bins defined for x, y, and z axis were employed to quantify dose, definition allows
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Figure A.3: Section PENELOPE inside the Main program

the scoring of a 3D spatial dose distribution in homogeneous regions. The relative

uncertainty requested also is defined by this tally, user must take into account this value

because it is used as a criterion to decide when to stop the simulation.

Figure A.4: Tally Spatial Dose Distribution to quantify absorbed dose within the first
mm.

Tally Spatial Dose Distribution may be replicated by the user. This tally was used four

times in the main program of this work Figure A.5, each one corresponds to one region

of interest in our phantom.

A.1.5 Interaction forcing section

This module manages the variance reduction technique of interaction forcing. Module

definition can be di↵erent according to the particles and interaction mechanisms for

which forcing will be applied. See Figure A.6.

A.1.6 Particle splitting section

This module manages the variance reduction technique of particle splitting. User may

specify: splitting mode, splitting factor and minimum value of statistical weight above

method is applied. See Figure A.7.
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Figure A.5: Replicated tallies Spatial Dose Distribution to quantify absorbed dose.

Figure A.6: Interaction forcing section apply to photons.

Figure A.7: Particle splitting, mode: Simple, Splitting factor: 6.0.
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Appendix B

Regression models for the

determination of the absorbed

dose with extrapolation chamber

Empirical part of this project involves measurements with an extrapolation chamber.

It has two flat parallel electrodes of variable separation; the input electrode is fixed in

relation to the collector electrode of constant area. Determination of absorbed dose

needs to estimate the extrapolation curve slope using a linear regression model on plots

corresponding to separation distance against collected charge.

The analysis , in which absorbed dose should be determined is the same for each depth;

taking into account three di↵erent distances for plate separation and their related mean

charge value from measurements in both positive and negative bias voltage. Numerical

results and linear models are presented above.

B.1 Results 6MV photon beam

B.1.1 Depth z = 0.0 mm

Table B.1 indicates the measurements used to generate linear regression curve. Figure

B.1 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 306.25
1,5 691.38
2.0 911.33

Table B.1: Results for 6MV photons z = 0.0 mm.
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Figure B.1: Linear regression curve for 6MV photons, z = 0.0 mm.

B.1.2 Depth z = 1.0 mm

Table B.2 indicates the measurements used to generate linear regression curve. Figure

B.2 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1062.8
1.5 2129.0
2.0 2639.0

Table B.2: Results for 6MV photons z = 1.0 mm.

B.1.3 Depth z = 2.0 mm

Table B.3 indicates the measurements used to generate linear regression curve. Figure

B.3 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1445.3
1.5 2881.8
2.0 3585.3

Table B.3: Results for 6MV photons z = 2.0 mm.
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Figure B.2: Linear regression curve for 6MV photons, z = 1.0 mm.

Figure B.3: Linear regression curve for 6MV photons, z = 2.0 mm.
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B.1.4 Depth z = 4.0 mm

Table B.4 indicates the measurements used to generate linear regression curve. Figure

B.4 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1872.2
1.5 3704.5
2.0 4612.3

Table B.4: Results for 6MV photons z = 4.0 mm.

Figure B.4: Linear regression curve for 6MV photons, z = 4.0 mm.

B.1.5 Depth z = 5.0 mm

Table B.5 indicates the measurements used to generate linear regression curve. Figure

B.5 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1872.0
1.5 3074.5
2.0 4612.3

Table B.5: Results for 6MV photons z = 5.0 mm.
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Figure B.5: Linear regression curve for 6MV photons, z = 5.0 mm.

B.1.6 Depth z = 7.0 mm

Table B.6 indicates the measurements used to generate linear regression curve. Figure

B.6 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 2209.0
1.5 4320.3
2.0 5345.3

Table B.6: Results for 6MV photons z = 2.0 mm.

B.1.7 Depth z = 10 mm

Table B.7 indicates the measurements used to generate linear regression curve. Figure

B.7 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 2312.8
1.5 4541.5
2.0 5595.2

Table B.7: Results for 6MV photons z = 10 mm.
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Figure B.6: Linear regression curve for 6MV photons, z = 7.0 mm.

Figure B.7: Linear regression curve for 6MV photons, z = 10 mm.
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B.1.8 Depth z = 15 mm

Table B.8 indicates the measurements used to generate linear regression curve. Figure

B.8 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 2312.8
1.5 4541.5
2.0 5595.2

Table B.8: Results for 6MV photons z = 15 mm.

Figure B.8: Linear regression curve for 6MV photons, z = 15 mm.

B.2 Results 15MV photon beam

B.2.1 Depth z = 0.0 mm

Table B.9 indicates the measurements used to generate linear regression curve. Figure

B.9 is the plot of this data and equation of the straight line can be read.

B.2.2 Depth z = 1.0 mm

Table B.10 indicates the measurements used to generate linear regression curve. Figure

B.10 is the plot of this data and equation of the straight line can be read.
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Figure B.9: Linear regression curve for 15MV photons, z = 0.0 mm.

Figure B.10: Linear regression curve for 15MV photons, z = 1.0 mm.
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distance (mm) Q (pC)
0.5 330.6
1.5 618.3
2.0 761.2

Table B.9: Results for 15MV photons z = 0.0 mm.

distance (mm) Q (pC)
0.5 700.3
1.5 1399.2
2.0 1755.8

Table B.10: Results for 15MV photons z = 1.0 mm.

B.2.3 Depth z = 2.0 mm

Table B.11 indicates the measurements used to generate linear regression curve. Figure

B.11 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 836.7
1.5 1957.3
2.0 2445.7

Table B.11: Results for 15MV photons z = 2.0 mm.

Figure B.11: Linear regression curve for 15MV photons, z = 2.0 mm.
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B.2.4 Depth z = 4.0 mm

Table B.12 indicates the measurements used to generate linear regression curve. Figure

B.12 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1381.7
1.5 2763.2
2.0 3416.2

Table B.12: Results for 15MV photons z = 4.0 mm.

Figure B.12: Linear regression curve for 15MV photons, z = 4.0 mm.

B.2.5 Depth z = 5.0 mm

Table B.13 indicates the measurements used to generate linear regression curve. Figure

B.13 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1539.8
1.5 3045.3
2.0 3797.5

Table B.13: Results for 15MV photons z = 5.0 mm.
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Figure B.13: Linear regression curve for 15MV photons, z = 5.0 mm.

B.2.6 Depth z = 7.0 mm

Table B.14 indicates the measurements used to generate linear regression curve. Figure

B.14 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 1796.3
1.5 3503.6
2.0 4332.5

Table B.14: Results for 15MV photons z = 7.0 mm.

B.2.7 Depth z = 10 mm

Table B.15 indicates the measurements used to generate linear regression curve. Figure

B.15 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 2007.0
1.5 3934.3
2.0 4865.9

Table B.15: Results for 15MV photons z = 10 mm.
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Figure B.14: Linear regression curve for 15MV photons, z = 7.0 mm.

Figure B.15: Linear regression curve for 15MV photons, z = 10 mm.
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B.2.8 Depth z = 15 mm

Table B.16 indicates the measurements used to generate linear regression curve. Figure

B.16 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 2222.7
1.5 4356.3
2.0 5408.3

Table B.16: Results for 15MV photons z = 15 mm.

Figure B.16: Linear regression curve for 15MV photons, z = 15 mm.

B.2.9 Depth z = 30 mm

Table B.17 indicates the measurements used to generate linear regression curve. Figure

B.17 is the plot of this data and equation of the straight line can be read.

distance (mm) Q (pC)
0.5 2359.5
1.5 4645.8
2.0 5511.8

Table B.17: Results for 15MV photons z = 30 mm.
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Figure B.17: Linear regression curve for 15MV photons, z = 30 mm.

Measuring these chosen points for all cases, error under 2% has been assured in each

linear regression, respect to the reported real zero for the extrapolation chamber was used

in this work. Finally extrapolation curve slopes was calculated from the data presented

in the appendix then PDD can be calculated and related with direct measurements

obtained at the experiment.
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Diana, mi mamá en Barcelona, miles y miles de gracias porque fuiste mi apoyo, mi

familia, mi amiga, mi confidente en esta aventura, esta Ingrid dos años después no seŕıa
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