
 
 
 

 

MASTER THESIS 
 
 

Master 
 

Civil and Environmental Engineering 
 
 
 
 

Title 

Shear strength of beams with loads close to supports 

 
 
 
 
 
 
 
 

 

Author 
 

Sebastian Webb 
 
 

 

Tutor 
 
 

Prof. Antonio Marí 
 

 

Speciality 
 

 
Structural Engineering 

 
 
 
 
 

Date 

 

8/5/2015  



 
 

Abstract 

In reinforced concrete beams subjected to concentrated loads, the shear resisted increases 
considerably as the loads approach to the support. There is not a consensus in the current codes of 
practice about any simple design formulation which adequately considers this phenomenon. 
 
A mechanical model has been developed at the Polytechnic University of Barcelona, which predicts 
the shear strength of beams. The model is originally applicable to slender beams (a/d >2.0-2.5), and 
is under consideration for adoption into the Eurocodes. The model deals with shear-flexure failure, 
in which flexural cracks develop inclined through the web and stabilized near the neutral axis. Failure 
is assumed to happen when this flexural crack develops inside the compression chord, subjected to 
normal and shear stresses, which takes place when the stresses reach the biaxial failure envelope of 
Kupfer.  
 
The model has been extended to cases where the loads are applied near the supports. In this case, 
the Bernoulli assumption (Plane sections remain plane) is no longer valid, and the problem must be 
faced as a typical discontinuity “D” region, because the dimensions (a/d<2) and because the vertical 
stresses introduced by the vertical loads by means of the bearing plates interact with the state of 
stresses of the compression chord. 
 
The extension of the model proposed at UPC consists on incrementing the neutral axis depth as the 
load approaches the supports and including the vertical stresses due to the applied concentrated 
loads, as confinement stresses in the concrete, thus changing the state of principal stress in the 
failure envelope from tension-compression to compression-compression, thus enhancing the shear 
capacity  
 
In this thesis, a data base of beams with loads near the supports, with and without stirrups, has been 
collected. A comparison between the predictions of the proposed model and the predictions of the 
Eurocodes has been made, using the collected data base of 121 short-span beams which failed in 
shear. 43 of the beams had stirrups, while the last 78 were not transversally reinforced, all the 
beams have a/d-ratios of less than 2.5. 
 
The results obtained in this thesis are approximate to the results achieved in other literature. The 
proposed model compares favourably to the Eurocode for beams with and without shear 
reinforcement. In addition, some of the assumptions of the new model have been investigated using 
a 2D finite element model. The results obtained with the 2D FEM confirm the assumptions used in 
the model. 
 

Keywords: Short-span beams, shear, reinforced concrete beams, concrete beams, shear strength, 

shear failure, shear enhancement. 
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Notation 

a: shear span 

b: width of concrete section 

d: effective depth to main tension 

reinforcement 

dmax: maximum aggregate size 

fcc: uniaxial concrete compressive strength 

fck: characteristic value of the cylinder 

concrete compressive strength 

fcm: mean value of the cylinder concrete 

compressive strength 

fct: uniaxial concrete tensile strength 

fctm: mean value of the concrete tensile 

strength 

fyw: yield strength of the transverse 

reinforcement 

h: overall depth of concrete section 

lsw: crack length 

lw: length along the crack where the tensile 

stresses are extended 

nb: number of longitudinal bars 

s: longitudinal coordinate from the support 

scr: location of the section where the critical 

shear crack starts 

smx: average crack spacing of inclined cracks 

along the beam axis 

smθ: average crack spacing of inclined cracks 

st: stirrups spacing 

su: location of the shear critical section vc: 

dimensionless contribution to the shear 

strength of the un-cracked concrete chord 

vl: dimensionless contribution to the shear 

strength of the longitudinal reinforcement 

vs: dimensionless contribution to the shear 

strength of the transverse reinforcement 

vu: dimensionless ultimate shear force 

vu,0: dimensionless ultimate shear force of 

beams and one-way slabs without transverse 

reinforcement 

vw: dimensionless shear force resisted along 

the crack 

w: crack width 

wmax: maximum crack width 

wx: crack opening in the horizontal direction 

wy: crack opening in the vertical direction 

x: neutral axis depth 

xw: vertical projection of lw 

y: vertical coordinate from the top fibre of the 

concrete element 

z: lever arm 

As: longitudinal reinforcement area 

Asw: area per unit length of the transverse 

reinforcement 

C: compression force in the un-cracked 

concrete chord 

Ec: modulus of elasticity of concrete 

Es: modulus of elasticity of steel 

Gc: modulus of shear deformation for the un-

cracked concrete chord 

Gf: concrete fracture energy 

Is: modulus of inertia of the longitudinal 

reinforcement bar 

Kλ: constant 

M: bending moment 

Mcr: cracking moment 

Rt: ratio between the principal tensile stress 

and the tensile strength 

S: strut force 



 
 

T: tensile force in the longitudinal 

reinforcement 

V: shear force 

Vc: contribution to the shear strength of the 

un-cracked concrete chord 

Vl: contribution to the shear strength of the 

longitudinal reinforcement 

Vpred: predicted value of the ultimate shear 

force 

Vs: contribution to the shear strength of the 

transverse reinforcement 

VSd: design shear force 

Vexp: experimental value of the ultimate shear 

force 

Vu: ultimate shear force 

Vu,0: ultimate shear force of beams and one-

way slabs without transverse reinforcement 

Vw: shear force resisted along the crack 

α: inclination angle of shear reinforcement or 

ties 

α e: modular ratio (Es/Ec) 

δw: crack opening in the vertical direction 

δv: crack sliding in the vertical direction 

φ: diameter of reinforcement bar 

εct,cr: concrete strain at the beginning of 

macro-cracking 

εct,u: ultimate tensile strain 

εs: strain at the longitudinal reinforcement 

εsx: axial strain at the longitudinal 

reinforcement 

εsw: tensile strain normal to the crack 

εx: strain in the longitudinal direction 

ζ: size effect factor 

γ: distortion 

λ: distance from the neutral axis 

θ: inclination angle of the strut 

μ: dimensionless bending moment (M/( 

fct·b·d)) 

μcr: dimensionless cracking moment (Mcr/( 

fct·b·d)) 

ξ: dimensionless neutral axis depth 

ξ w: dimensionless vertical projection of lw 

ρ: longitudinal tension reinforcement ratio 

ρ w: transverse reinforcement ratio 

σ1, σ2: principal stresses 

σst: stress in the transversal reinforcement 

σx: normal stress in the longitudinal direction 

σx,max: maximum normal stress in the 

longitudinal direction 

σy: normal stress in the transverse direction 

σw: normal stress in a horizontal fibre in the 

cracked web 

τ: shear stress 

τmax: maximum shear stress 

τλ: shear stress at y= λ·x  
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Chapter 1. Introduction and objectives 

1.1 Introduction 
Shear failure is a complex phenomenon, subject to many factors and resisted by various 

mechanisms. A large amount of research has been undertaken on the topic the past 60 years and 

have been summarized by Collins, Bentz and Sherwood (2008) and Reineck, Kuchma, Kim and Marx 

(2003). 

There have been developed theoretical shear failure models (Vecchio & Collins, 1986; Petrangeli, 
Pinto & Ciampi, 1999), but they have been too complex and time consuming to adapt into design 
codes. In response to this, simple semi empirical models have been developed and adopted 
(European Committee for Standardization (CEN), 2002; ACI Committee 318. 2008), but studies have 
shown (Sagaseta & Vollum, 2011) that EC-2 overestimates or underestimates the shear strength of 
beams, depending on aggregate type and cross section type. 
 
Because design codes need to cover all possible cases, they need to be conservative. The 
conservativeness of the design codes depend on the precision and accuracy of the prediction. More 
precise predictions have less scatter and dispersion. Adoption of models with less scatter makes 
designs more economical. In addition, it prevents the premature destruction of structures deemed 
unsafe. 
 
The Tooth model (Reineck, 1991), Simplified Compression Field Theory (Bentz, 2010; Fédération 
Internationale du Béton,2013), the critical crack theory (Muttoni, 2008; Muttoni & Ruiz, 2008), the 
splitting test analogy model (Desai, 2004; Zararis 2003; Zararis & Papadakis, 2001) and the theories 
based on the resistance of the un-cracked concrete compression chord (Choi, Park, & Wight, 2007; 
Khuntia & Stojadinovic, 2001; Kotsovos, Bobrowski, & Eibl, 1987; Park, Choi, & Wight, 2006; Park, 
Kang, & Choi, 2013; Ruddle, Rankin, & Long, 1999; Tureyen & Frosch, 2003; Tureyen, Wolf, & Frosch, 
2006; Wolf & Frosch, 2007; Zanuy, Albajar, & Gallego, 2011) are models that have attempted to 
model shear strength of beams. While these models have emphasized different shear strength 
contributors, they all have well-fitting results. Mari et al. (2014) prosed that the reason that these 
models fit well, but emphasised different shear strength contributors is that the different 
contributors act at different stages of loading. 
 
Mari et al. (2014) thus created a mechanical model which incorporates the most important aspects 
of the different shear models. The models predictions were tested against the database gathered by 
Collins et al. (2008) and yielded results with lower dispersion than the EC-2. A simplified version of 
the model is under consideration for adoption into the EC-2. 
  
The purpose of this paper is to extend his work by investigating the accuracy of the model for loads 
close to support (a/d-ratios >2.5), and compare the predictions of this new proposed model to that 
of the EC-2 and verify this against a database. 
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1.2 Thesis objective 
The objective of this thesis is to gather the relevant data for the proposed theory from 5 research 

papers (Cossio & Siess, 1960; Kani, 1969, Kani, 1967; Smith & Vantsiotis 1983; Vollum & Fang, 2014) 

in order to evaluate the accuracy of its predictions. All of the data is of cases where the load is close 

to the support, which is defined as a/d = 2.5. a is the shear span and d is the effective depth of the 

beam. The predictions of the proposed theory will be compared to the predictions of other design 

codes and to the experimental results. For simplicity, beams subject to axial loads were not 

considered. 

Secondly, the FEM software Midas-FEA will be used to investigate the assumptions made in the new 

model. In order to do this, the vertical stresses in beams subject to loads close to the support will be 

investigated. It will be a 2D model. The loads will be applied at a/d-ratios equal to 2, 1.5 and 1. 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 2. Literature review 

2.2 Shear transfer mechanism 
A beam that fails in shear will develop a diagonal crack similar to that of figure 1. Shear failure starts 

with the development of flexural cracks at the tension side of the beam. The load on the beam 

causes tension to increase on the tension side of the beam, damaging it and eventually causing 

cracks to form. Beams with adequate longitudinal reinforcement will fail in shear rather than flexure. 

 

Figure 1 (Vollum & Fang, 2014) 

As the loading increases, internal stresses in the beam start to rise, causing the flexural cracks to 

develop further. Eventually, the stresses are so high that the flexural cracks develop into shear 

cracks. Shear cracks are a result of planes being displaced relative to each other inside the beam. 

The flexural cracks are vertical at the bottom of the beam, but as they propagate, they turn towards 

the horizontal as shearing occurs diagonally. The shear crack develops until it reaches what is known 

as the critical point (Jeong et al. 2014). 

At the critical point, the mechanisms that resist the shearing is the shear strength of the remaining 

un-cracked concrete chord, the remaining shear capacity of the crack and from any reinforcement 

that is present, which can come from either the shear capacity of the transverse reinforcement or 

from the dowel action of the longitudinal reinforcement. 

Subsequently after dowel action, the concrete cover is subject to shearing. Due to the low shear 

capacity of unreinforced concrete, the cover cracks quickly, leading to spalling. At this point, the 

beam is close to failure. 

If the load increases or is given time to deform the beam further, the last step before failure is the 

widening of the shear crack. This widening reduces the shear capacity of the crack, increasing the 

stresses on the other mechanisms that are resisting the shear, especially the un-cracked concrete 

chord. When the stress eventually becomes too high, the un-cracked concrete chord fails in shear 

and the beam has failed completely. 

A point in a loaded beam is subject to beam action and arch action. Beam action is the moment 

acting on an area as a result of the changing stresses as one goes along the vertical axis of a beam. 

As a result of beam action, cracks at the extreme tension side of the beam are vertical. 
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Figure 2 

Consider the two fibres at either end of extreme tension and compression side, see figure 3. At the 

extreme tension side, the fibre is going to crack vertically (Figure 3a), while at the extreme 

compression side, it is going to split horizontally (Figure 3b). The crack first forms vertically, in 

flexure and as it propagates up the beam its starts to tilt towards to horizontal. 

 

Figure 3 

Arch action is due to difference in height of 2 section faces in combination with the sum of forces 

remaining constant through the section, see figure 4. This is why the shear taken by the un-cracked 

concrete chord increases as the crack propagates. 

 

 

Figure 4 

 

When arching action and beam action both affects a beam, the resultant force acting on the sections 

along the failure plane can be seen in figure 5. The shear capacity of the failure plane depends on 

the biaxial state of stresses it is subject to. 
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Figure 5 

 

 

 

2.3 Kupfer’s failure envelope 
When an element is under stress from 2 directions, the element is considered to be under biaxial 

stress. When concrete is subject to this, the tensile and compressive strength of the concrete 

changes compared to when it is only under uniaxial stress. 

Kupfer et al. (1969) investigated this phenomena by placing 20 cm*20 cm*5 cm concrete specimen 

under biaxial stresses (compression-compression, compression-tension and tension-tension). The 

concrete specimen had three different strengths, and stresses and strains were measured as the 

loads were increased. 

It was discovered that stresses in one principal direction affected the strength of the concrete in the 

other different direction, see figure 6. This failure envelope is independent on the strength of the 

concrete, and regardless of strength, any concrete under compressive forces perpendicular to the 

principal plane, will be able to withstand higher stresses. This is known as Kupfer’s failure envelope, 

a detailed view can be seen in figure 7. 

 

Figure 6 Kupfer et al. (1969) 
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Figure 7 Kupfer et al. (1969) 

Loads acting on beams distribute the weight of the load at a 45 degree fan from the application area. 

If one load is close enough to an adjacent load, the shear capacity of the beam they are acting on will 

increase. This is because the vertical internal stresses induced by the load pushes Kupfer’s failure 

envelope further into the vertical compression area, increasing the concrete’s capacity for resisting 

compressive stresses. 

2.4 Kani’s Valley 
For a long time, it has been known that the shear capacity of beams is greatly increased when they 

are supporting loads near to their supports. In an effort to evaluate the effect of concrete strength, 

shear arm to depth ratio and reinforcement ratio on the shear capacity of reinforced concrete 

beams, Kani et al. (1966) discovered what is today known as Kani’s valley. 

His results showed that the strength of the beam increased as the shear arm ratio was reduced. See 

figure 8. 

 

Figure 8 Kani et al. (1966) 

Kani et al. (1966) observed that as the shear arm ratio approached 2.5, the beams started to fail in 

shear rather than flexure. Relative strength, Mu/Mfl, where Mu is the maximum bending moment at 

failure, while Mfl is the flexural strength of the beam was then plotted.  
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The experimental results showed that the relative strength is at its weakest when a/d is 

approximately 2.5, at approximately 50% strength, se figure 9 and 10. The relative strength would 

return to 100% at approximately a/d = 1 or 6.5, depending on concrete grade. When relative 

strength exceeds 100%, the flexural reinforcement will be fully utilised and the beam will fail in 

flexure rather than shear. The relative strength will then be assumed to be 100% and not the greater 

value. 

    

Figure 9 Kani et al. (1966)      Figure 10 Kani et al. (1966) 

Kani et al. (1966) concluded that the concrete strength had very little effect on the relative strength 

of the beam and that as one provided more reinforcement, the valley increased rapidly up until a 

1.88% reinforcement ratio, see figure 11. 

 

Figure 11 Kani et al. (1966) 
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2.5 Shear capacity of beams in EC-2 
In EC-2, the shear capacity of a beam, VEd, comes either from the shear reinforcement or from the 

shear capacity of the concrete section. VEd = Max (ΣAsw fyd, VRdc), where ΣAsw fyd is the shear capacity 

of the reinforcement within the 3 central quarters of the shear span. VRd,c is the shear capacity of the 

concrete without any reinforcement. 

2.5.1 Shear resistance of beams without shear reinforcement 
In Eurocode 2, the design shear capacity of a beam without shear reinforcement is governed by the 

shear capacity of the concrete VRd,c: 

 𝑉𝑅𝑑,𝑐 =  (𝐶𝑅𝑑,𝑐𝑘(100 ∗ 𝜌𝑙𝑓𝑐𝑘)
1

3 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑   Eq.2.1 

Where: 

𝐶𝑅𝑑.𝑐 =
0.18

𝛾𝑐
        Eq.2.2 

𝑘 = (1 + √
200

𝑑
) ≤ 2.0, 𝑑 𝑖𝑛 𝑚𝑚     Eq.2.3 

𝜌𝑙 =
𝐴𝑠𝑙

𝑏𝑤𝑑
≤ 0.02       Eq.2.4 

𝑘1 = 0.15        Eq.2.5 

𝜎𝑐𝑝 =
𝑁𝐸𝑑

𝐴𝑐
< 0.2 𝑓𝑐𝑑 (𝑀𝑃𝑎)      Eq.2.6 

𝑉𝑅𝑑,𝑐 ≥ (𝑉𝑚𝑖𝑛+𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑      Eq.2.7 

 

𝑣𝑚𝑖𝑛 = 0.035𝑘3/2𝑓𝑐𝑘
1/2

       Eq.2.8 

Where fck is the characteristic strength of concrete in MPa, k is a size factor, ρl is the longitudinal 
reinforcement ratio, bw is the narrowest part of the cross-section in the tensile area in mm, σcp is the 
concrete stress due to axial force, Ned is the axial force in the cross-section due to loading or 
prestressing [in N], Ac is the area of concrete cross section [mm2] and VRd,c is in N. Values for CRd,c, vmin 
and k1 can be found in national annexes, the values listed above are the recommended values. 
 

All the beams that will be investigated in this paper have constant cross sections and are not subject 

to any axial loads. Therefore, bw = b, and NEd = 0, thus making σcp=0. Therefore, the shear resistance 

of unreinforced concrete beams can be simplified into: 

𝑉𝑅𝑑,𝑐 =  
0.18

𝛾𝑐
(100 ∗ 𝜌1𝑓𝑐𝑘)

1

3(1 + √
200

𝑑
)𝑏𝑑    Eq.2.9 

2.5.2 Shear resistance of beams with shear reinforcement 
For members that require shear reinforcement, the shear capacity of the beam, VRd,s, is: 

𝑉𝑅𝑑,𝑠 = min (
𝐴𝑠𝑤

𝑠
∗ 𝑧 ∗ 𝑓𝑦𝑤𝑑 ∗ 𝑐𝑜𝑡𝜃 ,

𝛼𝑐𝑤∗𝑏𝑤∗𝑧∗𝑓𝑐𝑑∗𝑣1

𝑐𝑜𝑡𝜃+𝑡𝑎𝑛𝜃
)   Eq.2.10 

Where Asw is the cross-sectional area of the shear reinforcement, s is the stirrup spacing, fywd is 

design yield strength of the shear reinforcement, v1 is a strength reduction factor for concrete 
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cracked in shear and αcw is a coefficient that takes into account the state of stress in the compression 

chord. αcw is 1 for non-pre-stressed beams. Because all safety factors are removed, fcd = fyd. 

𝑣1 = 0.6 ∗ (1 −
𝑓𝑐𝑘

250
)       Eq.2.11 

2.5.3 Loads near supports 
When a load is applied on the upper side of the beam at a distance av and 0.5d ≤ av ≤ 2d, the shear 

force VEd is reduced by β = av/2d. This is only valid when the reinforcement is fully anchored at the 

support. A shear force calculated this way must satisfy the following condition: 

𝑉𝐸𝑑 ≤ 𝐴𝑠𝑤 ∗ 𝑓𝑦𝑤𝑑 ∗ 𝑠𝑖𝑛𝛼      Eq.2.12 

Where Asw*fywd is the central three quarters of the shear arm av, when av > 0.5, av = 0.5.  



Chapter 3. Proposed model 

3.1 Model introduction 
The new model, proposed by Mari et al. is a semi-empirical mechanically based model. It attempts to 

predict shear-flexure failure of reinforced concrete beams with and without stirrups. The model 

assumes that the beam subject to an incremental load fails in the same manner as described in 

section 2.2, Shear transfer mechanisms. The shear crack will fail as described there, but it is assumed 

that a second crack develops inside the concrete chord above the neutral axis, which subsequently 

propagates down to the critical shear crack, causing failure. 

For beams without shear reinforcement, the model is based on a strut and tie model. The concrete 

ties and struts preserve the static equilibrium. It is assumed that the concrete ties have some tensile 

capacity after cracking, provided that the crack is sufficiently narrow. This tensile capacity comes 

from shear transferred along the crack and residual tensile capacity. As cracks propagate throughout 

the beam, the concrete ties change in inclination to avoid the widest cracks, thus preserving the 

static equilibrium. 

Increasing the load causes crack widths to increase, thus concentrating tensile stresses further up in 

the beam where the crack width is smaller. The effect of this is that the angle of the ties with respect 

to the horizontal, α, increases. This increasing in angle reduces the amount of shear resisted along 

the crack, Vw and the increment of force resisted at the longitudinal reinforcement, ΔT. In order to 

preserve static equilibrium, when ΔT lessens, so does ΔC, where c is the compression force in the un-

cracked concrete chord. This causes the inclination of the strut (strut BD in figure 12a and b) to 

increase in order to compensate for the loss of shear resisted over the crack. This in turn causes 

arching acting in the un-cracked concrete chord, thus increasing the shear taken by the concrete 

chord. 

 

Figure 12 Mari et al. (2014) 

If reinforcement is present, the stirrups take on the role previously held by the concrete tie. In 

addition, stirrups restrain the widening of cracks by friction and residual stresses, they vertically 

confine the concrete, increasing its shear strength and connecting the longitudinal reinforcement, 

increasing its shear capacity.  

The beam action in the beam is caused by the difference in stresses on either side of a region, see 

figure 13 b. The arching action is caused by a difference in the height of the regions faces, x1 and x2 

which causes stresses to redistribute, thus creating stresses on the region.  
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Figure 13 Mari et al. (2014) 

 

3.2 Model assumptions and their validity 
1) During ultimate load levels, the shear and bending is resisted by the un-cracked concrete 

chord (VC), the longitudinal (Vl) and transverse (Vs) reinforcement and the aggregate 

interlocking action (Vw) along the crack. 

 

2) The distribution of stresses along the concrete chord have been assumed to be as depicted 

in figure 14. The horizontal stresses are linearly distributed, with the maximum normal stress 

at the extreme compressive fibre, located at the top of the beam. 

 

The vertical stresses are assumed to be bilinear, 0 at the top fibre and maximum in the 

middle of the un-cracked concrete chord, at 0.5 x. After this it is assumed to be constant. 

 

The shear stress distribution is assumed to be parabolic and 0 at the top fibre and at the 

neutral axis. Maximum shear is assumed to be at y = x/2. Theoretically, the shear is 0 at the 

bottom fibre at the beam and more than 0 at the neutral axis. However, the simplified shear 

distribution is similar to the theoretical distribution and therefore used. 

 

Figure 14 Mari et al. (2014) 

3) The depth of the un-cracked zone is equal to the neutral axis in bending. 

4) The beam is subject to biaxial stresses, and anytime the un-cracked concrete experiences 

stresses that exceed Kupfer’s failure envelope, it fails. 
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5) The horizontal projection of the shear crack is considered to be 0.85d, see figure 15.

 

Figure 15 Mari et al. (2014) 

6) At the ultimate limit state, all existing stirrups have yielded. 

7) All longitudinal reinforcement is considered to be anchored, making all reinforcement 

effective at the critical shear section. 

3.3 Location of the critical point 
The point in the concrete chord where failure will initiate is known as the critical point. Failure will 

initiate at the point of maximum damage as defined by equation 3.17. Studies (Mari et al.,2014, 

Swamy & Quereshi, 1974) have shown that this can be found at approximately y = 0.425x from the 

neutral axis if linear or parabolic stress distributions are assumed. This is valid for s/d = M/((V*d) < 

3.0. Values for the relative distance to the neutral axis, y/x have been plotted in figure 16 below, 

where relative damage is the ratio between the damage of a fibre at a distance from the neutral axis 

and the damage at the top compressed fibre. 

 

Figure 16 Mari et al. (2014) 

The weakest section of a beam subject to shear-bending failure is found at the tip of the first 

diagonal shear crack, at C, see figure 17. It forms at this location as any point closer to 0 bending 

moment will have more of the un-cracked concrete chord to resist shear, while any point closer to 

the load will experience higher normal stresses which increases the shear transfer capacity of the 

point. 

The initiation of the flexural cracking is assumed to start when Scr= Mcr/Vu, where Scr is distance from 

the support that the flexural crack initiates, Mcr is the cracking moment and Vu is the ultimate shear 

load. According to the 5th assumption of the model, the crack propagates 0.85d, where the critical 

section is found. This position for the critical section was found by Park et al. (2006). 
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Figure 17 Mari et al. (2014) 

3.4 Shear-flexural strength of beams subject to point loads 
The shear strength of the beam is calculated at the critical section. Here, the equilibrium between 

the internal forces (V, M), the stresses at the un-cracked concrete chord (Vc, C), along the crack (Vw), 

the stirrups (Vs), and the longitudinal reinforcement (Vl, T) is taken about point A. See figure 15. 

 

𝐶 = 𝑇 + 𝑉𝑤 ∗ 𝑡𝑎𝑛𝜃      Eq. 3.1 

𝑉 = 𝑉𝑐 + 𝑉𝑤 + 𝑉𝑙 + 𝑉𝑠      Eq. 3.2 

𝑀 = 𝐶 ∗ 𝑧 = 𝑀 + 𝑉𝑐 ∗ 0.85 ∗ 𝑑 +
𝑉𝑤∗(0.85∗𝑑−0.5∗𝑥𝑤∗𝑐𝑜𝑡𝜃)

𝑐𝑜𝑠2𝜃
+ 0.5𝑉𝑠 ∗ 0.85 ∗ 𝑑  Eq. 3.3 

The non-dimensional shear carried by the un-cracked concrete chord, vc, can be found by 

substituting equation 3.38, 3.40 and 3.41 into equation 3.14, this gives: 

 

𝑣𝑐 =
𝑉𝑐

𝑓𝑐𝑡∗𝑏∗𝑑
= 𝑅𝑡 ∗ 𝑘𝜆 ∗ 𝜉 ∗ √1 −

𝜆∗(0.4+1.7∗𝑣𝑐+2∗𝑣𝑤∗
0.85−𝜉𝑤∗𝑐𝑜𝑡𝜃

𝑐𝑜𝑡2𝜃
+𝑣𝑠∗0.85

𝜉∗(1−
𝜉

3
)∗𝑅𝑡

(
𝑣𝑠

0.85∗𝑅𝑡
− 1) −

𝑣𝑠

0.85∗𝑅𝑡
   Eq. 3.4 

Here, Rt is the ratio between principal tensile stress, σ1 , and the tensile strength of the concrete at 

failure. According the equation 3.17 this equals: 

𝑅𝑡 =
σ1

𝑓𝑐𝑡
= (1 − 0.8 ∗

σ2

𝑓𝑐𝑐
)     Eq. 3.5 

Rt depends on the principal stress, which depends on the shear force, Vc, so equation 3.4 must be 

solved iteratively by assuming Rt=1 and the solving and resolving equation 3.4 until convergence. 

Figure 18 shows the solution for different values of vs and neutral axis depth. The solutions follow a 

clearly linear trend, but a size factor must be introduced to take into account due to the brittle 

nature of the failure. The linear relationship between neutral axis depth and dimensionless shear 

force to predict the amount of shear transferred through the concrete reinforcement was previously 

been observed in other studies (Tureyen & Frosch, 2003, Zararis & Papadakis, 2001). 
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Figure 18 Mari et al. (2014) 

The size factor, ζ, is the one used Zararis & Papadakis and depends on the shear span, a: 

𝜁 = 1.2 − 0.2 ∗ 𝑎 = 1.2 − 0.2 ∗
𝑎

𝑑
∗ 𝑑 ≥ 0.65    Eq. 3.6 

 

Adding this size effect to the dimensionless shear force, the linear relationship of the dimensionless 

shear force to neutral axis depth can be approximated into: 

𝑣𝑐 = 𝜁((0.88 + 0.70 ∗ 𝑣𝑠) ∗
𝑥

𝑑
+ 0.02)     Eq. 3.7 

 

3.5 Fracture Energy 
Fracture energy, Gf. is an important parameter for the proposed model. It is used to determine the 
shear capacity of the shear reinforcement. The Model Code (Fédération Internationale du Béton, 
2013) states that fracture energy can be expressed as a function of mean concrete compressive 
strength, while Wittman (2002) proposed that it can be expressed as a function of maximum 
aggregate size. Mari et al. (2014) decided to draw from both and derived a new expression for the 
fracture energy, which results are identical to that of the Model Code 2010 for dmax = 20 mm and 
close to Wittman’s results. 
 

 𝐺𝑓 = 0.028 ∗ 𝑓𝑐𝑚
0.18 ∗ 𝑑𝑚𝑎𝑥

0.32      Eq. 3.8 

It should be noted that Sagaseta et al. (2010) did not find that difference in aggragte types affect the 

strength or crack patterns of beams. It was concluded that the orientation and position of the shear 

crack, which is random had a large effect on shear strength.

 

Figure 19 fib Task Group 8.2 (2008) 
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3.6 Shear transfer mechanisms 

3.6.1 Shear capacity of the un-cracked concrete chord, Vc 
The principal tensile and compressive stresses produced by normal stress (σx and σy) and shear stress 

(τ) at any point is according to Mohr’s circle defined as: 

𝜎1,2 =
𝜎𝑥+𝜎𝑦

2
± √(

𝜎𝑥−𝜎𝑦

2
)2 + 𝜏2         Eq. 3.9 

𝜏 = 𝜎1√1 −
𝜎𝑥+𝜎𝑦

𝜎1
+

𝜎𝑥∗𝜎𝑦

𝜎1
2       Eq. 3.10 

 

If a point, at a known distance λ*x, from the neutral axis of the concrete chord where, x is the 

distance from the neutral axis and the shear stress τλ is known, the shear stress distribution (τ(y)) 

along the un-cracked concrete can be obtained. They can be found by imposing the following 

boundary conditions, τ(0)=0, τ(x)=0 and τ(λ*x)= τλ. This gives: 

𝜏(𝑦) =
𝜏𝜆

𝜆∗(1−𝜆)
(

𝑦

𝑥
−

𝑦2

𝑥2)      Eq. 3.11 

 

The shear force along the concrete chord Vc is obtained by assuming a constant width along the 

chord and integrating the shear stress along the un-cracked concrete chord. 

𝑉𝑐 = ∫ 𝜏(𝑦) ∗ 𝑏 ∗ 𝑑𝑦
𝑥

0
=

𝜏𝜆∗𝑏∗𝑥

6∗𝜆∗(1−𝜆)
    Eq. 3.12 

Substituting τ (y) from equation 3.11 yields the final expression for the shear strength of the un-

cracked concrete chord. 

𝑉𝑐 = ∫
𝜏𝜆

𝜆∗(1−𝜆)
(

𝑦

𝑥
−

𝑦2

𝑥2) ∗ 𝑏 ∗ 𝑑𝑦
𝑥

0
=

𝜏𝜆∗𝑏∗𝑥

6∗𝜆∗(1−𝜆)
   Eq. 3.13 

𝑉𝑐 = 𝐾𝜆 ∗ 𝑏 ∗ 𝑥 ∗ 𝜏 = 𝜎1√1 −
𝜎𝑥+𝜎𝑦

𝜎1
+

𝜎𝑥∗𝜎𝑦

𝜎1
2    Eq. 3.14 

Where: 

𝐾𝜆 =
1

6∗𝜆∗(1−𝜆)
       Eq. 3.15 

The neutral axis depth can be obtained through standard analysis of cracked reinforced concrete 

sections under flexure only. If the section does not have any compressive reinforcement, the neutral 

axis depth is given by: 

𝜉 =
𝑥

𝑑
= 𝛼𝑒 ∗ 𝜌 ∗ (−1 + √1 +

2

𝛼𝑒∗𝜌
)    Eq. 3.16 

αe = Es/Ec, which is the modular ratio between steel and concrete. Ρ = As/(b*d), which is the 

longitudinal reinforcement ratio. 

Failure occurs when the principal stresses reach Kupfer’s failure envelope in the compression-

tension branch. In the branch, the failure envelope is considered to be straight until the uniaxial 

compressive concrete strength, fcc reaches 0.8, or 80% of max compressive capacity. 
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𝜎1

𝑓𝑐𝑡
+ 0.8 ∗

𝜎2

𝑓𝑐𝑐
= 1           Eq. 3.17 

3.6.2 Shear capacity of the crack, Vw 
Shear transferred across the crack is done so either through residual tensile stresses acting across 

the crack or through frictional stresses acting along the crack as the rough crack surfaces slide 

against each other. Both factors are caused by the irregularities in the crack. The residual tensile 

stress is the crack’s capacity to hold tensile forces. This capacity falls as the crack width increases and 

is generally considered to be small. 

When vertical loads are applied near the shear crack, the crack faces get pushed together, thus 

constricting sliding. Sliding between to internal planes is the cause of shear, so vertical loads increase 

the shear capacity of the concrete. Tests done by Vollum & Fang (2014) confirmed this, and their 

results can be seen in figure 20. This increase in concrete shear strength is not included in the 

general model, but is applied for spesial cases where beams are subject to multiple point loads, see 

section 3.8. 

 

Figure 20 Vollum & Fang (2014) 

 

In order to evaluate the stresses transferred across the crack, the following procedure was adopted 

by Mari et al. (2014). 

1) Compatibility of strains normal to the crack is assumed. 

  

Figure 21 Mari et al. (2014) 
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2) The tensile stress-strain relationship is assumed to peak at εct,cr, when the stress reaches fct, 

before linearly falling to 0, at εct,u. εct,u  depends on the fracture energy of the concrete.  

 

Figure 22 Mari et al. (2014) 

3) It is assumed that the larger the crack width, the lower the residual tensile stress. This 

relationship was considered to be linear, allowing the fracture energy to be found more 

easily. 

  

Figure 23 Mari et al. (2014) 

4) The crack opening width is obtained by multiplying the tensile strain of concrete (fct) by the 

mean length between inclined cracks (smθ). The mean length between inclined cracks vary at 

different locations of the cracks and is affected by the presense of transverse and longitudinal 

reinforcement. Not all the flexural cracks develop into shear cracks, the distance between 

shear cracks is greater. It is therefore assumed that the average crack spacing is equal to the 

effective depth of the element. 

 

Figure 24 Mari et al. (2014) 

 

The shear force (Vw) resisted along the crack is the integral of the normal stresses, σw, the crack 

width, b and the crack angle, θ, across the length of the crack, lw, where the tensile stresses are 

active. 

𝑉𝑐 = ∫ 𝜎𝑤 ∗ 𝑏 ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑑𝑙 ≈
𝑥𝑤

𝑠𝑖𝑛𝜃
∗ 𝜎𝑤 ∗ 𝑏 ∗ 𝑐𝑜𝑠𝜃

𝑙𝑤

0
=  𝑥𝑤 ∗ 𝜎𝑤 ∗ 𝑏 ∗ 𝑐𝑜𝑡𝜃  Eq. 3.18 



 

18 
 

σw is defined as the normal stress in a horizontal fibre in the cracked web. σw = fct/2 along the length 

of the crack with residual stress. This makes it energetically equivalent to the triangular stress 

distribution obtained with assumption 3. 

The length the tensile zone is obtained by using the crack strain and geometrical relationships, see 

figure 25. 

𝑥𝑤 = (𝑑 − 𝑥) ∗
𝜀𝑐𝑡,𝑢

𝜀𝑠
∗ 𝑠𝑖𝑛2𝜃     Eq. 3.19 

 

 

 

 

 

 

 

 

 

 

 

By substituting equation 3.19 into equation 3.20 and taking equation 3.25 into account, the shear 

force becomes: 

𝑉𝑤 = 0.425 ∗ 𝑓𝑐𝑡 ∗ 𝑏 ∗ 𝑑 ∗
𝜀𝑐𝑡,𝑢

𝜀𝑠
∗ 𝑠𝑖𝑛2𝜃     Eq. 3.20 

The fracture energy of the concrete is the area of the triangle found in figure 23. 

𝐺𝑓 = ∫ 𝜎(𝑤) ∗ 𝑑𝑤 ≈ 0.5 ∗ 𝑓𝑐𝑡 ∗ 𝑤𝑚𝑎𝑥
𝑤

0
= 0.5 ∗ 𝑓𝑐𝑡 ∗ (𝜀𝑐𝑡,𝑢 − 𝜀𝑐𝑡,𝑐𝑟) ∗ 𝑠𝑚𝜃  Eq. 3.21 

The largest crack opening, wmax is assumed to be: 

𝑤𝑚𝑎𝑥 = 0.5 ∗ 𝑓𝑐𝑡 ∗ (𝜀𝑐𝑡,𝑢 − 𝜀𝑐𝑡,𝑐𝑟) ∗ 𝑠𝑚𝜃    Eq. 3.22 

Equation 3.21 can then be expressed as: 

 

𝜀𝑐𝑡,𝑢 = 𝜀𝑐𝑡,𝑐𝑟 +
2∗𝐺𝑓

𝑓𝑐𝑡∗𝑠𝑚𝜃
=

𝑓𝑐𝑡

𝐸𝑐
+

2∗𝐺𝑓

𝑓𝑐𝑡∗𝑠𝑚𝜃
=

𝑓𝑐𝑡

𝐸𝑐
∗ (1 +

2∗𝐺𝑓∗𝐸𝑐

𝑓𝑐𝑡
2 ∗𝑠𝑚𝜃

)  Eq. 3.23 

Finally, the shear transferred along the crack can be expressed in non-dimensional terms as: 

 

𝑣𝑤 =
𝑉𝑊

𝑓𝑐𝑡∗𝑏∗𝑑
=

0.425∗𝑠𝑖𝑛2𝜃∗𝑓𝑐𝑡

𝐸𝐶∗𝜀𝑠
(1 +

2∗𝐺𝑓∗𝐸𝑐

𝑓𝑐𝑡
2 ∗𝑠𝑚𝜃

)    Eq. 3.24 

 

Figure 25 Mari et al. (2014) 
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𝑐𝑜𝑡𝜃 =
0.85∗𝑑

(𝑑−𝑥)
=

0.85

(1−𝜉)
      Eq. 3.25 

Where: 

𝜉 =
𝑥

𝑑
        Eq. 3.26 

𝑣𝑤 =
𝑉𝑤

𝑓𝑐𝑡∗𝑏∗𝑑
= 167 ∗

𝑓𝑐𝑡

𝐸𝑐
∗ (1 +

2∗𝐸𝑐∗𝐺𝑓

𝑓𝑐𝑡
2 ∗𝑑

)    Eq. 3.27 

 

 

3.6.3 Shear capacity of the longitudinal reinforcement, Vl 

When an element is loaded, the longitudinal reinforcement is subject to a vertical displacement, 

causing crack sliding and propagation. The longitudinal reinforcement has a small (Kotsovos et al., 

1987; Zararis & Papdakis,2001) shear capacity by its own, but if stirrups are present this capacity is 

greatly increased. This is due to the vertical constraint the stirrups provide on the longitudinal 

reinforcement. 

 

Consider the relative vertical displacement between the 2 edges of a crack opening. This 

displacement is the sum of the crack opening (δm) and the crack sliding (δv). 

 

Figure 26 Mari et al. (2014) 

Then the crack opening can be expressed as: 

𝛿𝑚 = 𝑤𝑥 ∗ 𝑐𝑜𝑡𝜃 = 𝜀𝑠𝑥 ∗ 𝑠𝑚𝑥 ∗ 𝑐𝑜𝑡𝜃 ≈ 0.72 ∗ 𝑑 ∗
𝜀𝑠𝑥

1−𝜉
   Eq. 3.28 

Crack sliding is due to the distortion of the un-cracked concrete part of the element and the vertical 

displacement due to this is: 

𝛿𝑣 = 𝛾 ∗ 0.85 ∗ 𝑑       Eq. 3.29 

Combining these 2 expressions and considering the ratio between the shear stress and the axial 

tensile strain to be γ/εsx, the following expression is obtained: 
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𝛾

𝜀𝑠𝑥
=

6∗𝑉𝑐
5∗𝑏∗𝑥∗𝐺𝑐

𝑀

𝐸𝑠∗𝐴𝑠∗(𝑑−
𝑥
3

)

≈ 2.64 ∗
𝑉𝑐∗𝑑

𝑀
∗

𝛼𝑒∗𝜌∗(1−
𝜉

3
)

1−𝜉
    Eq. 3.30 

Equation 3.28, 3.29 and 3.30 can then be rearranged to: 

𝛿 = 𝛿𝑚+𝛿𝑣 = 0.72 ∗ 𝑑 ∗
𝜀𝑠𝑥

1−𝜉
(1 + 3.1 ∗

𝑉𝑐

𝑀
∗ 𝛼𝑒 ∗ 𝜌 ∗ (1 −

𝜉

3
))  Eq. 3.31 

Which can be simplified into: 
 

𝛿 = 0.8 ∗ 𝑑 ∗
𝜀𝑠𝑥

1−𝜉
       Eq. 3.32 

This imposed displacement produces a shear force, Vl approximately equal to: 

𝑉𝑙 =
12∗𝐸𝑠∗𝑛𝑏∗𝐼𝑠∗𝛿

𝑠𝑡
3 =

12∗𝐸𝑠∗𝑛𝑏∗𝜋∗𝜙4∗𝛿

𝑠𝑡
3∗64

≈ 0.64 ∗
𝐸𝑠

𝑓𝑐𝑡
∗ 𝜌 ∗

𝜙2∗𝑑

𝑠𝑡
3 ∗

𝜀𝑠𝑥

1−𝜉
  Eq. 3.33 

By assuming that φ/st  = 0.15, d/st=2, εsx = 0.0009 and Ec/fct = 10000, this expression can be simplified 
into a non-dimensional term: 
 

𝑣𝑙 =
𝑉𝑙

𝑓𝑐𝑡∗𝑏∗𝑑
≈ 0.23 ∗

𝛼𝜀∗𝜌

1−𝜉
≈ 0.25 ∗ 𝜉 − 0.05    Eq. 3.34 

3.6.4 Shear capacity of the transverse reinforcement, Vs 

In the proposed model, it is assumed that any stirrups present have yielded at failure, thus 

𝑉𝑠 = 0.85 ∗ 𝑑 ∗ 𝐴𝑠𝑤∗𝑓𝑦𝑤      Eq. 3.35 

This can be expressed in non-dimensional terms as vs. 

𝑣𝑠 =
𝑉𝑠

𝑓𝑐𝑡∗𝑏∗𝑑
=

0.85∗𝑑∗𝐴𝑠𝑤∗𝑓𝑦𝑤

𝑓𝑐𝑡∗𝑏∗𝑑
= 0.85 ∗ 𝜌𝑤 ∗

𝑓𝑦𝑤

𝑓𝑐𝑡
    Eq. 3.36 

3.6.5 Stresses at the critical point 
By using classical flexural analysis, the normal stresses (σx) in the concrete compression chord can be 

expressed as: 

𝜎𝑥 =
2∗𝜆∗𝑀

𝑏∗𝑥∗(𝑑−
𝑥

3
)

=
2∗𝜆∗(𝑀+𝑉𝑐∗0.85∗𝑑+

𝑉𝑤∗(0.85∗𝑑−0.5∗𝑥𝑤∗𝑐𝑜𝑡𝜃)

𝑐𝑜𝑠2𝜃
+0.425∗𝑉𝑠∗𝑑

𝑏∗𝑥∗(𝑑−
𝑥

3
)

  Eq. 3.37 

 

Dividing by fct*b*d2, a non-dimensional expression is found: 

𝜎𝑥

𝑓𝑐𝑡
=

𝜆∗(2∗𝜇+1.7∗𝑣𝑐+2∗𝑣𝑤∗
0.85−𝜉𝑤∗𝑐𝑜𝑡𝜃

𝑐𝑜𝑡2𝜃
+𝑣𝑠∗0.85

𝜉∗(1−
𝜉

3
)

    Eq. 3.38 

The cracking moment to be considered is the cracking moment, Mcr, which in non-dimensional terms 

is expressed as: 

𝜇𝑐𝑟 =
𝐴𝑠𝑤∗𝑓𝑦𝑤

𝑓𝑐𝑡∗𝑏∗𝑑2 =
𝑏∗ℎ2∗𝑓𝑐𝑡

6∗𝑓𝑐𝑡∗𝑏∗𝑑2 =
1

6
∗ (

ℎ

𝑑
)2≃0.2    Eq. 3.39 
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Consider the horizontal cut shown in figure 15, where the equilibrium is balanced by tensile forces in 

the stirrups and the vertical concrete stress (σy). 

𝜎𝑦

𝑓𝑐𝑡
=

𝐴𝑠𝑤∗𝑓𝑦𝑤

𝑓𝑐𝑡∗𝑏
=

𝑉𝑠

0.85∗𝑓𝑐𝑡∗𝑏∗𝑑
=

𝑣𝑠

0.85
    Eq. 3.40 

At the critical point of the un-cracked concrete chord, the shear stress, τλ is: 

𝜏𝜆 =
6∗𝑉𝑐

𝑏∗𝑥
∗ (𝜆 − 𝜆2) =

1.47∗𝑉𝑐

𝑏∗𝑥
     Eq. 3.41 

3.7 Total beam strength 
In summation the beam gets its shear strength (V) from the following; the shear capacity of the un-

cracked concrete chord (Vc), the shear force resisted along the crack, (Vw), the shear capacity of the 

longitudinal reinforcement (Vl) and the shear strength of the transverse reinforcement (Vs). 

𝑉 = 𝑉𝑐 + 𝑉𝑤 + 𝑉𝑙 + 𝑉𝑠 = 𝑓𝑐𝑡 ∗ 𝑏 ∗ 𝑑 ∗ (𝑣𝑐 + 𝑣𝑤 + 𝑣𝑙 + 𝑣𝑠)   Eq. 3.42 

vc = ξ  * ((0.88 + 0.70vs) * 
𝑥

𝑑
 + 0.02)       Eq. 3.7 

vw =  
𝑉𝑤

𝑓𝑐𝑡∗𝑏∗𝑑
  = 167 * 

𝑓𝑐𝑡

𝐸𝑐
* (1 +

2∗𝐸𝑐∗𝐺𝑓

𝑓𝑐𝑡
2 ∗𝑑

 )     Eq. 3.27 

vl = 
𝑉𝑙

𝑓𝑐𝑡∗𝑏∗𝑑
≈ 0.23 ∗ 

𝛼𝑒∗𝜌

1−𝜉
≈ 0.25𝜉 − 0.05     Eq. 3.34 

vs = = 
𝑉𝑠

𝑓𝑐𝑡∗𝑏∗𝑑
 = 0.85𝜌𝑤 ∗

𝑓𝑦𝑤

𝑓𝑐𝑡
       Eq. 3.36 

By taking vs and vl as 0, the shear strength of beams and one way slabs without shear reinforcement 

is obtained:  Taking into account all the factors contributing to the shear strength of the beam, Vu,0 is 

obtained:  

𝑉𝑢,0 = 𝑓𝑐𝑡 ∗ 𝑏 ∗ 𝑑 ∗ (𝑣𝑐 + 𝑣𝑤 + 𝑣𝑙 + 𝑣𝑠)    Eq. 3.43 

3.8 Adaptation for beams close to supports 
The general expression for shear force obtained in equation 3.42, is only valid for beams where a/d > 

2.5, and there are no interaction between multiple loads. Mari et al. (2014) have made special 

provision for this case where the ultimate shear strength, Vu, of the beam with a load close to the 

support can be expressed as: 

𝑉𝑢 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢      Eq. 3.44 

Where: 

𝑉𝑐𝑢 = 𝜁
𝑥

𝑑
𝐾𝑝 [0.30

𝑓𝑐𝑘
2/3

𝛾𝑐

 +
𝑉𝑠𝑢

𝑏·𝑑
+ 𝜎𝑐𝑣] 𝑏𝑑    Eq. 3.45 

𝑉𝑠𝑢 =
𝐴𝑠𝑤

𝑠
𝑓

𝑦𝑤𝑑
(𝑑 − 𝑥) 𝑠𝑖𝑛𝛼 (𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼)    Eq. 3.46 

Where kp =1, s is the stirrup spacing, σcv is the increase in shear strength capacity of the concrete due 

to nearby loads, and is only valid when the distance between the loads is less than 0.5(s0+av/d·x1) 

 

𝜎𝑐𝑣 =
0.85∗𝑄𝑑

𝑏(𝑠0+
𝑎𝑣∗𝑥1

𝑑
)

=
0.85∗𝑄𝑑

𝑏(𝑠0+𝑎𝑣∗
𝑥1
𝑑

)
              Eq. 3.47 
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𝐶𝑂𝑇𝜃 =
𝑎𝑣

𝑑
<

0.85∗𝑑

𝑑−𝑥1
      Eq. 3.48 

 

𝑥1

𝑑
=

𝑥

𝑑
+ (1 −

𝑥

𝑑
) ∗ (1 − 0.4 ∗

𝑎𝑣

𝑑
)2    Eq. 3.49 

𝑥

𝑑
= 𝛼𝑒 ∗ 𝜌𝑙(−1 + √1 +

2

𝛼𝑒∗𝜌𝑙
)     Eq. 3.50 

Where Qd is the load applied, θ is the angle between the vertical and the inclination of the direct strut, x1 is the 

neutral axis in the d-region and xo is the neutral axis in the b-region. If multiple loads are applied on at each 

half of the beam, multiple shear failure planes exist, so the most critical shear plane must be determined and 

used as the failure plane.  

3.9 Previous data and results 
Mari et al. (2014) compared the accuracy of their proposal against the predictions of Eurocode 2, 

ACI318-08 and Model Code 2010, using the large data base, based on the publication of Collins et al 

(2008), Cladera & Mari (2007) and Yu & Bazant (2011). The first publication was used for concrete 

beams without stirrups while the latter were used for concrete beams with stirrups. A total of 892 

beams without stirrups and 239 beams with stirrups were evaluated. All of the beams failed in shear 

and all the beams without shear reinforcement had an a/d-ratio greater or equal to 2.5. Any safety 

factors used in the models were removed (taken as 1) when the models were evaluated against each 

other and the data. The range of variables can be seen in table 1 below. 

 

Table 1 

The results obtained by Mari et al can be seen in table 2 and 3. The proposed model generally had 

the lowest coefficients of variation. The predictions of the results were compared in a large database 

of experiments published by Collins et al. (2008). 

 

Table 2 Mari et al. (2014) 
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Table 3 Mari et al. (2014) 

As the effective depth of elements increase, the accuracy (Vtest/Vpred) of the models (EC2, ACI, 

MC2010 and the proposed mode) do too. This could be due to the factor that all the models 

emphasise the the strength of the concrete more accuratley than the other elements in their 

respective model. 

The accuracy of all the models were sensitive to the effective depth, d, of the beam. As the effective 

depth increases, the models tend to become less conservative. The EC-2 and the ACI 318-08 tends to 

overestimates the shear strength of beams with effective depths of more than 500 mm, which is 

unsafe. The EC-2 tends to be overly conservative for beams without stirrups and effective depths 

less than 500 mm, making for overcostly design. The accuracy of the proposed model’s predictions is 

much less sensitive to variations in effective depth. 

 

Figure 27 Mari et al. (2014) 

The accuracy of the predictions of the models were sensitive to the amount of transverse 

reinforcement. The EC-2 was overly conservative, while the proposed model predictions fit well with 

the experimental resulsts and was largley unaffected by changes in the amount of transverse 

reinforcement. See figure 29. 
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Figure 28 Mari et al. (2014) 

  



Chapter 4. Results and discussion 

4.1 Data analysis 
Using the procedures outlined in section 3.6 and 2.5, the predicted shear strengths of the 2 models 

were obtained and compared to the experimental results. All safety factors were removed from the 

design codes during calculations. The predicted shear strengths were plotted against the 

experimental shear forces. The results have been plotted in figure 30 and 31.Statistical analysis of 

the results are given in table 4, 5 and 6. 

A database, compromised of a total of 121 beams, 43 beams with stirrups and 78 without stirrups 

were used to determine the accuracy of the 2 models. The accuracy of the test were predicted by 

plotting the experimental results against the predicted results. 

 

 

Figure 29 

  

Figure 30 
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4.1.1 Beams without Stirrups 

Without Stirrups EC-2 Mari 

Standard Deviation 0.33 0.23 

Mean 1.23 1.11 

COV 0.26 0.20 

Sample Size 78 78 

Max 2.15 1.96 

Min 0.62 0.67 

Table 4 

Both models tend to underestimate the shear strength of unreinforced beams, but the model 

proposed by Mari et al. (2014) underestimates the shear strength to a lesser degree. 

The dispersion of the models are relatively low, but Mari’s model performs better with a dispersion 

of 20% versus the 26% of the EC-2. This is in accord with the findings of Mari et al. (2014) and 

Sagaseta & Vollum (2010), who found the dispersion to be 21.2% and 21% for the EC-2 and 17.28% 

for the proposed model (Mari et al, 2014). 

The COV both the models are good, but Mari’s model is better. A certain amount of dispersion is to 

be expected, as random factors like the inclination of the shear crack affect the shear strength of the 

beam (Sagasete & Vollum, 2010). 

 

4.1.2 Beams with Stirrups 

   

With Stirrups EC-2 Mari 

Standard Deviation 0.40 0.09 

Mean 1.10 0.80 

COV 0.36 0.12 

Sample Size 43 43 

Max 1.85 1.00 

Min 0.56 0.58 

   
Table 5 

The models give very different predictions of the shear strength of beams with stirrups. The EC-2 is 

overly conservative and underestimates the shear strength, which is consistent with the findings of 

Sagasete & Vollum (2010). Because the EC-2 only considers the stirrups in the central ¾ of the shear 

span, this might explain why it overestimates shear strength of beams. 

On the other hand, the proposed model overestimates the shear strength of beams. An explanation 

for this is that as the load approaches the support, the diagonal shear crack angles itself more 

towards the vertical, causing fewer stirrups to cross the crack.  

The proposed model has a remarkably low COV of 11.6%, compared to the findings of Mari et al. 

(2014) of 16.60%. The dispersion of the EC-2 was found to be 36%. This is in accord with the results 

obtained by Mari et al. (2014) and Sagasete & Vollum (2010), who both calculated the dispersion to 

be 37%, using data bases of 239 and 47 beams respectively.  
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Figure 31 

 

4.1.3 All beams 
 

All tests EC-2 Mari 

Standard Deviation 0.36 0.24 

Mean 1.19 1.00 

COV 0.30 0.24 

Sample Size 121 121 

Max 2.15 1.96 

Min 0.56 0.58 

Table 6 

The mean prediction of the proposed model fit perfectly to the experimental models, but this is a 

reflection of the fact that it overestimates the shear strength of beams with stirrups, while 

underestimating the shear strength of beams without. This is reflected in the larger dispersion. 

The EC-2 tends to underestimate the shear strength for all beams, and becomes more conservative 

as the magnitude of the total load increases, as seen from figure 33. 

The EC-2 does not consider the shear strength enhancing effects of loads close to the shear crack, 

but the proposed model does. In addition, the EC-2 assumes plane section stresses, but Mari’s 

model does not. These are major differences and likely contributors to the difference in results.  

0

50

100

150

200

250

300

0 50 100 150 200 250 300

V
 e

xp

V pred

Beams with Stirrups

EC-2

Mari



 

28 
 

 

Figure 32 

  

Figure 33 

 

4.2 Parametric studies 
The a/d-ratio, depth, longitudinal and transverse reinforcement ratios and the shear span were 

plotted against the accuracy of the models in order to investigate the influence of those parameters 

on the models. 

4.2.1 Shear strength and a/d-ratio 
From figure 35, it can be seen that as the a/d ratio decreases, the shear capacity of the beams 

increase. The reason for this is that as the shear arm decreases, the vertical crack increases in angle 

with respect to the horizontal. While this mean that the shear resistance of the reinforcement 

decreases due to less stirrups being active, it increases the shear strength of the concrete by vertical 

compression. Additionally, a direct strut that angles more to the horizontal is more capable to utilise 

it’s the compressive strength of the concrete.  
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Figure 34 

4.2.2 Accuracy and a/d-ratio 
The accuracy of the predictions of the models are not affected by the a/d-ratio. The coefficients of 

determination are too low on both trend lines to conclude any correlation. This result for the EC-2 is 

in accord with results obtained by Sagaseta & Vollum (2010). 

 

Figure 35 
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4.2.3 Accuracy and effective depth 
As the trend lines in figure 37 have very low statistical validity, no correlation between depth and 

accuracy can be established with adequate certainty for either models.  

 

Figure 36 

 

 

4.2.4 Accuracy and longitudinal reinforcement ratio 
No correlation could be established between the longitudinal reinforcement ratio and the accuracy 

of the proposed model, see figure 38. A correlation was found for the EC-2, but the statistical validity 

is too flimsy to make any claim, see figure 39. Therefore it is concluded that the longitudinal 

reinforcement ratio has no effect on the accuracy of the predictions for either model. 

 

Figure 37 
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Figure 38 

4.2.5 Accuracy and transverse reinforcement ratio 
No statistical valid evidence was found to claim any correlation between the transverse 

reinforcement ratio and the accuracy of the models, see figure 40. The polynomial trend line shows 

that the first initial increases in transverse reinforcement from 0 increases the accuracy of the 

proposed model. While the correlation is low, this may indicate that Mari’s model captures the 

effect of concrete confinement due to reinforcement. 

 

Figure 39 
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4.2.6 Accuracy and shear span 
The shear span, a, does not have an effect on the accuracy of the proposed model’s predictions or of 

the predictions of the EC-2, see figure 41. 

 

 

Figure 40 

4.2.7 Parametric variation 
There is a large range in the various parameters used to predict the shear strength of the beams. If a 

parameter range includes extreme values, a model might have difficulties capturing the effects of 

the extreme values accurately. The only extreme data found in the data base were very low 

longitudinal shear reinforcement ratios. While the accuracy of both models are unaffected by any 

single parameter listed in table 7, the proposed model as managed to account for the total effect of 

all the parameters.  

  
Vexp 
(kN) 

d 
(mm) 

a/d 
a 

(mm) 
ρw 
(%) 

ρl 
(%) 

fck 
(MPa) 

Max 634.3 483.0 2.50 1168.9 0.76 4.93 45.7 

Min 32.5 238.0 0.77 234.9 0.18 0.48 12.3 
Table 7 

When investigating the effect of a single parameter, ideally, all the other parameters should remain 

constant. This is not the case for the data used in this paper. This further makes it harder to make 

any claim with certainty. The coefficients of variation might not have successfully account for this, 

and the correlations establish may be different from what they state. 

4.3 Finite element model 
The second assumption of the proposed model is that vertical stresses are bilinear, distributed as 

seen in figure 14. In order to test the assumption that that the vertical stresses in the beam are 

distributed in that manner, a finite element model was generated to investigate. 

R² = 0.0715

R² = 0.0258

0.00

0.50

1.00

1.50

2.00

2.50

0 200 400 600 800 1000 1200 1400

V
ex

p
/V

p
re

d

a (mm)

Shear span and accuracy

EC-2

Mari

Linear (EC-2)

Linear (Mari)



 

33 
 

The generated 2D model was based on beam S1-1 from “Shear reinforcement in RC beams with 

multiple point loads” published by Vollum & Fang (2014), using the material properties, 

reinforcement detail and dimension of beam specified therein. 

Whether intentional or not, the concrete covers surrounding the reinforcement is not constant. The 

concrete cover at the bottom and sides of the beam is only 17 mm, as the H8 reinforcement curves 

on the outside of the bottom longitudinal reinforcement. Thus less than the minimum nominal cover 

required in the EC-2. The concrete cover at the top of the beam is 27.5 mm. 

 

 

Figure 41 Vollum & Fang (2014)       Figure 42 Vollum & Fang (2014) 

 

4.3.1 Geometry and meshing 
The main concrete body was meshed into elements 25mm wide and 25.5 mm high. The loading and 

support plates of the beam were 50 mm high, and while the loading plate was 150 mm long, the 

support plates where 200 and 100 mm long (left and right respectively). The plates were meshed 

into elements 25 by 25 mm long. The reinforcement was drawn as 1D lines and assigned the correct 

properties.

 

Figure 43 

 

4.3.2 Materials and properties 
In Vollum’s research, the bearing and loading plates were bedded on to the beam with a thin layer of 

mortar. The loading plates were therefor assigned the same properties as the concrete. Three 

different material properties were used for the 3 types of reinforcement, matching what was used in 

Vollum’s experiments. The material properties are listed in table 8, below. The width of the bearing 

plates, loading plates and the concrete was set to 165 mm. 
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Material E (MPa) Weight (N/mm3) Poisson’s Ratio, ν Model Type 

Concrete 35600 0.000025 0.2 Elastic 

H8 
Reinforcement 

200000 0.000075 0.3 Elastic 

H16 
Reinforcement 

200000 0.000075 0.3 Elastic 

H25 
Reinforcement 

200000 0.000075 0.3 Elastic 

Loading and 
bearing plates 

35600 0.000025 0.2 Elastic 

Table 8 

 

4.3.3 Loading 
The effect of a single load was modelled, where the centre of the load was placed at a distance a/d = 

1, 1.5, and 2 from the centre of the support. In order to make the model work properly, this 

distances was fudged in order for the nodes to align. So the exact a/d-ratios are 1.018, 1.527, 1.980 

This gave av = 275, 500, 700 and a = 440, 675 and 875 respectively. 

The load was applied as a pressure acting on the loading plate. The total pressure applied was 25000 

N, but it was distributed across the entire loading plate, acting as an edge pressure of 166.7 N/mm2. 

This equals the load applied at failure in the experiment. 

 

Figure 44 

4.3.4 Constraints 
All the bottom nodes of the supports were constrained against displacement in the y and z 

directions. Additionally, the central node at the left support is also constrained in the x-direction. 

 

Figure 45 
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4.3.5 Model validity 
The model functions well, and compressive stresses can be seen accumulating under the loading 

plate and at the supports, see figure 47. The reactions at the support are tensile and compressive, 

with the compressive stresses closest to the load. Analysis of the reactions at the loads show that 

the beam is in static equilibrium, indicating that the model is correctly computed.

 

Figure 46 

4.3.6 Finite element model results 
Figure 48, 49 and 50 show the vertical stresses distributed throughout the beam. For clarity, only 

compressive stresses between up to 2 N/mm2 have been shown.  

a/d=2 

 

Figure 47 

a/d=1.5 

 

Figure 48 
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a/d=1 

 

Figure 49 

4.3.7 Distribution of vertical load 
A horizontal cut was made at the neutral axis of the b-zone, showing the vertical stresses along the 

neutral axis. As expected, the largest concentrations of vertical stresses were found directly under 

the load. This stress decreases almost linearly as one moves along the cut, away from the edge of 

the load plate. 

 

Figure 50 

Sectional analysis of vertical stresses close to the support confirms the assumption made by Mari et 

al. (2014). Where the load is 0 at the top fibre, the vertical stresses increase linearly until it reaches 

the y-section. However, this relationship breaks down when the section is placed too close to the 

support, where the maximum shear stress tends to peak before the y-section. In the area very close 

to the support, the model shows vertical stresses in the top fibres. This is unexpected and can 

indicate a minor problem with the model. But as this only extends for a short distance from the load, 

the model is considered fully functional. 
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Section 1        

 

Figure 51         

Section 2  

 

Figure 52 

Section 3 

 

Figure 53         
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The ratio of vertical stresses between the y-section and the neutral axis, σxy-ratio vary with the 

distance from the load. The σxy-ratio is equal to the vertical stress at the y-section over the vertical 

stress at the neutral axis.  Figure 55 below show the y-section and the neutral axis, in light and dark 

blue, respectively. 

 

Figure 54 

The σxy-ratio was plotted in figure 56. From that figure, it can be seen that the σxy-ratio varies 

between 1.67 and 0.29. Mari et al (2014) assumed that the σxy-ratio is constantly 1, which is only 

valid for a small section of the beam. It is close to 1 in a part of the beam, but this area is limited. 

This discrepancy can be explained by the fact that Mari et al. (2014) assumes that the area between 

the y-axis and the neutral axis is a d-region, where plan section stress cannot be assumed. The 

solution of the model is based on a linear analysis, where plane section stresses are assumed. 

Therefore, the models prediction of the σxy-ratio can be considered invalid for the purpose of 

disproving the assumption. A non-linear analysis of the 2D beam would be required to validate that 

assumption. 

 

   

Figure 55 

 

  

0

0.5

1

1.5

2

600 800 1000 1200 1400

y/x



Chapter 5. Conclusions and further research 

5.1 Conclusions 
The predictions of the EC-2 and the model proposed by Mari et al. (2014) have been compared, 

using a database of 121 beams to determine which model is the best predictor of shear strength in 

beams. 43 of the beams were reinforced by stirrups of different dimensions and 78 of the beams 

were without any reinforcement. Additional, a finite element model has been generated in order to 

investigate some of the assumptions made in the proposed model. The results allow the following 

conclusions to be made. 

1) As the a/d-ratio becomes less than 2.5, the shear strength of beams tend to increase. This is 

because lowering this ratio enhances the shear strength of the concrete. 

 

2) The causes for the increases in shear strength, according to the proposed model, come from 

two factors: 

 

3.1-1. As the a/d ratio is decreased below 2.5, the load gets closer to the critical section. 

This allows the local vertical stresses due to the load to act closer to the critical 

shear crack. These vertical stresses compress the crack, increasing aggregate friction 

and thus increasing the shear capacity of the crack in the concrete chord.  

3.1-2. As a/d becomes less than 2, failure occurs in the d-region where plane section 

stresses cannot be assumed. Compressive strength of the concrete chord can 

therefore be considered to be much higher than if the failure occurred in the b-

region, where plane section stresses would be assumed instead. 

 

3) The shear crack that develops is diagonal and occurs between the inner edges of the bearing 

and loading plates. As the load approaches the support, the diagonal crack angles itself more 

vertically, causing less reinforcement to cross the crack. Because of this, the shear capacity 

of the steel is reduced. 

 

4) The proposed model assumes that failure occurs in the D-region. However, this can be 

adapted for cases where failure occurs within B-regions by increasing the depth of the 

neutral axis, which is a function of a/d and the vertical compressive stress induced by the 

load(s).  

 

5) A working finite element model has be generated in order to investigate to of the 

assumptions made in the model. The first assumption, that the vertical stresses are 0 at the 

top fibre and increase linearly to the middle of the concrete chord at y=0.5 x is found to be 

true. 

 

The model did not confirm the assumption that vertical stresses remain constant between 

the y-axis and the neutral axis. Results showed differences in vertical stresses as one moved 

along the beam. However, these results are obtained using linear analysis of the section, 

which can be considered to be inapplicable, as the key area are considered to be within the 

d-region. 
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6) The EC-2 and the model proposed by Mari et al. (2014) has been compared to each other, 

using a database of 121 beams. The proposed model’s mean predictions are 0.80 and 1.11 

for beams with and without stirrups. The respective dispersions on the predictions are 

11.6% and 20.4%. The EC-2’s mean predictions were 1.10 and 1.23 for beams with and 

without stirrups, with respective dispersions of 36% and 26.4%.  

 

The proposed model compared favourably against the EC-2 for beams with and without 

stirrups. However, it has a tendency to overestimate the shear strength of reinforced beams, 

which is dangerous. 

 

7) The parametric studies undertaken show that neither the effective depth, a/d-ratio, shear 

span, longitudinal reinforcement ratio nor the transverse reinforcement ratio had any effect 

on the accuracy of the predictions of either model. This implies that both models have 

captured the effect of these values well. 

5.2 Future research 
The EC-2 allows the use of a strut and tie model for design of short-span beams. Results obtained by 

Sagaseta & Vollum (2010) found that the mean prediction of this model (Vexp/Vpred) was 0.90 and 

0.79 for beams with and without stirrups. The associated COV were 0.11 and 0.26, which are better 

results than that of the predicted model. For future analysis, a comparison between these two 

models, would elucidate which is the more preferable model. 

A 2D non-linear analysis would take into account the cracking and non-linear stresses and strains 

assumed in the model. With such a model, the assumptions in the proposed model can be examined 

with more certainty. 

The proposed model overestimates the shear strength of beams with stirrups. A detailed into the 

contribution of the stirrups can lead to results which can remedy this problem. 
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Annex 

Annex A 

The worked examples presented here are based on beam 3C1-20, found in Smith, K.N. & Vantsiotis, 
a S., 1983. Shear strength of Deep Beams. ACI Journal, (79), pp.201-213. 
 

Worked example, model proposed by Mari et al. (2014). 

αε=Es/Ec=6.77 

ρl =0.019 

αε* ρl=0.129 

Neutral axis in B-region: 

𝑥

𝑑
= αε ∗ ρ𝑙(−1 + √1 +

2

αε∗ρ𝑙
) = 0.40 

Neutral axis in D-region: 

𝑥1

𝑑
=

𝑥

𝑑
+ (1 −

𝑥

𝑑
) ∗ (1 − 0.4 ∗

𝑎𝑣

𝑑
)2=0.527 

X1=160.87 mm 

Size effect factor: 

ζ=1.2-(0.2a) = 1.2 – (0.2*4087) = 1.12 a in meters 

Shear enhancement due to vertical loads: 

𝜎𝑐𝑣 =
0.85 ∗ 𝑄𝑑

𝑏(𝑠0 +
𝑎𝑣 ∗ 𝑥1

𝑑
)

=
0.85 ∗ 𝑄𝑑

𝑏(𝑠0 + 𝑎𝑣 ∗
𝑥1
𝑑

)
=

0.85 ∗ 140786 𝑁

102 𝑚𝑚 ∗ (101.6𝑚𝑚 + 408.7𝑚𝑚 ∗ 0.527)
 

𝜎𝑐𝑣 = 3.70 

Angle of crack: 

𝐶𝑂𝑇𝜃 =
𝑎𝑣

𝑑
<

0.85 ∗ 𝑑

𝑑 − 𝑥1
 

𝐶𝑂𝑇𝜃 =
408.7𝑚𝑚

305 𝑚𝑚
= 1.34 <

0.85∗305𝑚𝑚

305 𝑚𝑚−161.3 𝑚𝑚
= 1.804  

Shear strength of steel: 

𝑉𝑠𝑢 =
𝐴𝑠𝑤

𝑠
𝑓

𝑦𝑤𝑑
(𝑑 − 𝑥) 𝑠𝑖𝑛𝛼 (𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼) 

𝑉𝑠𝑢 =
64.4 𝑚𝑚2

114.3 𝑚𝑚
∗ 437.5 𝑀𝑃𝑎 ∗ (305 𝑚𝑚 − 160.87 mm) ∗ 1.34 = 47607.6 N 
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Shear strength of concrete: 

𝑉𝑐𝑢 = 𝜁
𝑥

𝑑
𝐾𝑝 [0.30

𝑓
𝑐𝑘

2
3

𝛾
𝑐

 +
𝑉𝑠𝑢

𝑏 · 𝑑
+ 𝜎𝑐𝑣] 𝑏𝑑 

𝑉𝑐𝑢 = 1.12 ∗  0.527 ∗ 1 [0.30 ∗
21

2
3𝑀𝑃𝑎

1
 +

47607.6 N

102 𝑚𝑚∗305 𝑚𝑚
+ 3.70 𝑀𝑃𝑎] ∗ 102 𝑚𝑚 ∗ 305 𝑚𝑚  

  

𝑉𝑐𝑢 = 137894.1 𝑁   

Total shear strength: 

𝑉𝑢 = 𝑉𝑐𝑢 + 𝑉𝑠𝑢= 47564 N +137894 N =140.79 kN 

Accuracy of prediction: 

Vexp=140.79 

Vexp /Vpred=0.757 

Worked example, EC-2. 

Shear capacity of concrete: 

𝑉𝑅𝑑,𝑐 =  (𝐶𝑅𝑑,𝑐𝑘(100 ∗ 𝜌𝑙𝑓𝑐𝑘)
1

3 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑  

Size factor: 

𝑘 = (1 + √
200

𝑑
) = (1 + √

200

305 𝑚𝑚
)=1.81 

𝑉𝑅𝑑,𝑐 =  0.18 ∗ 1.81 ∗ (100 ∗ 0.019 ∗ 21𝑀𝑃𝑎)
1
3 + 0) ∗ 102 𝑚𝑚 ∗ 305 𝑚𝑚 

𝑉𝑅𝑑,𝑐 = 34.8 𝑘𝑁 

 

Shear strength of steel: 

Z = 0.9*d = 0.9 * 305 = 274.5 mm 

𝑓𝑦𝑤𝑑 = 437.5 

𝑐𝑜𝑡𝜃 =
𝑎𝑣

ℎ
=

307.1 𝑚𝑚

356 𝑚𝑚
 =0.86 

1 <cot θ< 2.5 

cot θ = 1 

𝑉𝑅𝑑,𝑠 = (
𝐴𝑠𝑤

𝑠
∗ 𝑧 ∗ 𝑓𝑦𝑤𝑑 ∗ 𝑐𝑜𝑡𝜃) = (

64.4 𝑚𝑚2

114.3 𝑚𝑚
∗ 274.5 𝑚𝑚 ∗ 437.5 𝑀𝑃𝑎 ∗ 1) = 67.7 𝑘𝑁 

 



 

46 
 

𝑉𝑅𝑑,𝑠,𝑚𝑎𝑥 = ( 
𝛼𝑐𝑤∗𝑏𝑤∗𝑧∗𝑓𝑐𝑑∗𝑣1

𝑐𝑜𝑡𝜃+𝑡𝑎𝑛𝜃
)   

𝑣1 = 0.6 ∗ (1 −
𝑓𝑐𝑘

250
) = 0.6 ∗ (1 −

21𝑀𝑃𝑎

250
) = 0.55 

Tan θ = 1.009 

𝑉𝑅𝑑,𝑠,𝑚𝑎𝑥 = ( 
1∗102 𝑚𝑚∗274.5∗0.85∗21 𝑀𝑃𝑎∗0.55

1+1.009
) = 137.5 

 

Total shear strength: 

𝑉𝑅𝑑 = 𝑀𝑎𝑥 (𝑉𝑅𝑑,𝑐 , 𝑉𝑅𝑑,𝑠)= 137.5 

 

Accuracy of prediction: 

Vexp =140.5 kN 

𝑉𝑒𝑥𝑝

𝑉𝑝𝑟𝑒𝑑
=

140.5

137.5
= 1.05 

 

 

 



 

Annex B 

Beam data base. 

Specimen Id 
Vexp 
(kN) 

Vpred 
EC2 (kN) 

Vpred 
Mari (kN) 

Vexp/Vpred 
EC 

Vexp/Vpred 
Mari 

d 
(mm) 

a/d 
a 

(mm) 
ρw 
(%) 

ρl 
(%) 

fck 
(MPa) 

Cossio & Siess, 1960            

L-1 116.1 64.5 83.6 1.80 1.39 252.0 2.01 506.5 0.00 3.36 21.0 

A-1 73.4 56.6 74.7 1.30 0.98 254.0 2.00 508.0 0.00 0.98 28.1 

A-11 103.4 71.9 119.3 1.44 0.87 254.0 2.00 508.0 0.00 3.30 28.3 

D-14 90.3 51.6 46.0 1.75 1.96 252.0 2.21 556.9 0.00 1.01 32.1 

D-5 122.8 94.5 75.1 1.30 1.63 276.0 1.52 419.5 0.00 1.35 25.8 

D-4 117.0 66.4 66.8 1.76 1.75 252.0 2.21 556.9 0.00 2.21 34.6 

Kani ,1966, 1967            

23 163.8 108.5 119.5 1.51 1.37 271.0 1.50 406.5 0.00 1.87 26.9 

24 182.0 109.9 127.3 1.66 1.43 271.0 1.50 406.5 0.00 1.87 27.9 

25 104.1 68.7 76.9 1.52 1.35 271.0 2.00 542.0 0.00 1.87 24.6 

26 78.1 71.0 72.2 1.10 1.08 271.0 2.00 542.0 0.00 1.87 27.1 

27 51.4 54.4 60.8 0.94 0.84 271.0 2.50 677.5 0.00 1.88 29.8 

28 54.3 54.0 60.9 1.00 0.89 271.0 2.50 677.5 0.00 1.88 29.2 

85 233.6 208.9 205.1 1.12 1.14 274.0 0.99 271.3 0.00 2.69 25.5 

87 239.6 210.5 206.6 1.14 1.16 269.0 1.01 271.7 0.00 2.72 27.2 

88 359.8 217.5 272.4 1.65 1.32 266.0 1.02 271.3 0.00 2.81 31.4 

94 110.6 72.1 88.9 1.53 1.24 273.0 1.99 543.3 0.00 2.77 25.3 

95 72.8 54.2 70.5 1.34 1.03 275.0 2.47 679.3 0.00 2.75 25.3 

98 76.3 54.8 71.8 1.39 1.06 275.0 2.47 679.3 0.00 2.68 26.2 

99 77.2 53.7 71.8 1.44 1.07 274.6 2.50 686.5 0.00 2.73 26.2 

100 111.9 72.0 89.9 1.55 1.25 270.0 2.02 545.4 0.00 2.75 27.2 
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Specimen Id 
Vexp 
(kN) 

Vpred 
EC2 (kN) 

Vpred 
Mari (kN) 

Vexp/Vpred 
EC 

Vexp/Vpred 
Mari 

d 
(mm) 

a/d 
a 

(mm) 
ρw 
(%) 

ρl 
(%) 

fck 
(MPa) 

Kani ,1966, 1967            

102 48.8 50.9 46.7 0.96 1.05 269.0 2.02 543.4 0.00 0.76 25.3 

105 41.5 36.3 37.1 1.14 1.12 271.8 2.50 679.5 0.00 0.77 21.2 

108 147.1 148.2 134.0 0.99 1.10 269.0 1.01 271.7 0.00 0.76 25.0 

109 71.9 79.0 69.9 0.91 1.03 271.0 1.50 406.5 0.00 0.76 25.0 

111 43.3 39.7 41.5 1.09 1.04 272.0 2.49 677.3 0.00 0.76 27.0 

112 39.4 39.8 40.7 0.99 0.97 273.0 2.48 677.0 0.00 0.76 27.0 

113 87.2 80.3 76.4 1.09 1.14 274.0 1.49 408.3 0.00 0.77 25.5 

115 61.4 38.8 44.3 1.58 1.39 271.5 2.50 678.8 0.00 0.77 26.2 

127 201.4 170.5 159.2 1.18 1.27 271.0 1.00 271.0 0.00 1.81 15.7 

129 143.3 96.8 101.4 1.48 1.41 275.0 1.48 407.0 0.00 1.78 17.6 

131 49.6 46.3 48.8 1.07 1.02 274.0 2.48 679.5 0.00 1.85 18.1 

134 59.9 62.0 56.8 0.97 1.05 273.0 1.99 543.3 0.00 1.81 17.4 

135 76.8 61.0 61.1 1.26 1.26 274.0 1.98 542.5 0.00 1.86 17.4 

141 48.7 47.2 42.7 1.03 1.14 270.0 2.01 542.7 0.00 0.81 19.3 

142 58.3 49.8 46.9 1.17 1.24 276.0 1.97 543.7 0.00 0.77 19.3 

145 82.5 64.1 61.1 1.29 1.35 273.0 1.55 423.2 0.00 0.73 16.2 

146 127.7 127.6 111.3 1.00 1.15 272.0 1.00 272.0 0.00 0.73 16.2 

147 42.3 35.8 34.8 1.18 1.21 287.0 2.36 677.3 0.00 0.70 16.8 

148 79.9 74.6 68.0 1.07 1.17 274.0 1.49 408.3 0.00 0.79 19.9 

149 43.7 34.5 35.3 1.27 1.24 271.5 2.50 678.8 0.00 0.78 18.0 

150 46.2 34.9 35.9 1.32 1.29 273.0 2.48 677.0 0.00 0.77 18.0 

151 35.6 35.9 35.1 0.99 1.01 273.0 2.49 679.8 0.00 0.78 19.3 

162 59.0 58.0 56.8 1.02 1.04 272.0 1.99 541.3 0.00 0.77 34.3 

163 40.5 44.1 46.6 0.92 0.87 273.0 2.49 679.8 0.00 0.76 35.4 

167 128.4 170.4 146.1 0.75 0.88 274.0 0.99 271.3 0.00 0.76 36.4 
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Specimen Id 
Vexp 
(kN) 

Vpred 
EC2 (kN) 

Vpred 
Mari (kN) 

Vexp/Vpred 
EC 

Vexp/Vpred 
Mari 

d 
(mm) 

a/d 
a 

(mm) 
ρw 
(%) 

ρl 
(%) 

fck 
(MPa) 

169 128.4 168.2 145.0 0.76 0.89 274.0 0.99 271.3 0.00 0.76 36.4 

178 67.2 76.6 71.0 0.88 0.95 269.0 1.51 406.2 0.00 0.52 34.5 

181 65.2 76.5 75.3 0.85 0.87 272.0 2.00 544.0 0.00 1.79 33.9 

183 260.3 221.9 220.9 1.17 1.18 269.0 1.01 271.7 0.00 1.80 35.4 

184 163.3 118.6 129.1 1.38 1.26 271.0 1.50 406.5 0.00 1.80 35.1 

188 92.6 77.6 83.5 1.19 1.11 277.0 1.96 542.9 0.00 1.76 33.1 

193 56.7 59.3 67.3 0.96 0.84 278.0 2.44 678.3 0.00 1.80 34.6 

197 53.4 57.7 66.1 0.92 0.81 274.0 2.48 679.5 0.00 1.84 36.0 

199 76.8 78.2 80.6 0.98 0.95 273.0 1.99 543.3 0.00 1.83 36.0 

201 253.7 234.1 233.2 1.08 1.09 274.0 0.99 271.3 0.00 2.65 35.2 

203 357.6 224.9 278.5 1.59 1.28 268.0 1.01 270.7 0.00 2.75 34.8 

204 147.1 81.0 110.3 1.82 1.33 275.0 1.97 541.8 0.00 2.69 34.8 

205 125.5 81.3 104.2 1.54 1.20 275.0 1.98 544.5 0.00 2.66 35.2 

210 79.0 59.8 81.8 1.32 0.96 271.8 2.50 679.5 0.00 2.73 35.2 

249 83.6 134.7 108.0 0.62 0.77 276.0 0.98 270.5 0.00 0.49 28.0 

250 54.7 71.8 62.5 0.76 0.88 274.0 1.49 408.3 0.00 0.50 28.0 

251 41.9 46.5 41.4 0.90 1.01 276.0 1.97 543.7 0.00 0.48 26.2 

265 53.0 61.7 51.0 0.86 1.04 269.0 1.51 406.2 0.00 0.52 18.1 

266 32.5 30.2 28.2 1.08 1.15 272.0 2.48 674.6 0.00 0.50 18.1 

269 89.0 116.6 93.5 0.76 0.95 274.0 0.99 271.3 0.00 0.49 18.1 

270 41.4 41.8 36.5 0.99 1.14 273.0 1.99 543.3 0.00 0.50 20.1 

162' 62.1 56.1 55.8 1.11 1.11 267.0 2.03 541.9 0.00 0.76 34.3 

163' 38.0 43.6 45.9 0.87 0.83 271.8 2.50 679.5 0.00 0.78 35.4 

Smith & Vantsiotis, 1983            

0A0-44 139.5 138.1 164.3 1.01 0.85 305.0 0.77 234.9 0.00 1.94 20.5 

0A0-48 136.1 139.1 162.3 0.98 0.84 305.0 0.77 234.9 0.00 1.94 20.9 

1A1-10 161.2 135.3 194.4 1.19 0.83 305.0 0.77 234.9 0.28 1.94 18.7 



 

50 
 

Specimen Id 
Vexp 
(kN) 

Vpred 
EC2 (kN) 

Vpred 
Mari (kN) 

Vexp/Vpred 
EC 

Vexp/Vpred 
Mari 

d 
(mm) 

a/d 
a 

(mm) 
ρw 
(%) 

ρl 
(%) 

fck 
(MPa) 

Smith & Vantsiotis, 1983            

1A3-11 148.3 135.3 183.2 1.10 0.81 305.0 0.77 234.9 0.28 1.94 18.0 

1A4-12 141.2 135.3 174.1 1.04 0.81 305.0 0.77 234.9 0.28 1.94 16.1 

1A4-51 170.9 138.2 205.2 1.24 0.83 305.0 0.77 234.9 0.28 1.94 20.5 

1A6-37 184.1 139.4 216.3 1.32 0.85 305.0 0.77 234.9 0.28 1.94 21.1 

0B0-49 149.0 104.0 143.2 1.43 1.04 305.0 1.01 308.1 0.00 1.94 21.7 

1B1-01 147.5 104.6 164.2 1.41 0.90 305.0 1.01 308.1 0.24 1.94 22.1 

1B3-29 143.6 101.4 159.0 1.42 0.90 305.0 1.01 308.1 0.24 1.94 20.1 

1B4-30 140.3 102.6 158.0 1.37 0.89 305.0 1.01 308.1 0.24 1.94 20.8 

1B6-31 153.4 100.4 164.2 1.53 0.93 305.0 1.01 308.1 0.24 1.94 19.5 

2B1-05 129.0 149.9 164.5 0.86 0.78 305.0 1.01 308.1 0.41 1.94 19.2 

2B3-06 131.2 149.9 165.6 0.88 0.79 305.0 1.01 308.1 0.41 1.94 19.0 

2B4-07 126.1 149.9 160.0 0.84 0.79 305.0 1.01 308.1 0.41 1.94 17.5 

2B4-52 149.9 149.9 181.5 1.00 0.83 305.0 1.01 308.1 0.41 1.94 21.8 

2B6-32 145.2 149.9 175.5 0.97 0.83 305.0 1.01 308.1 0.41 1.94 19.8 

3B1-08 130.8 224.9 179.4 0.58 0.73 305.0 1.01 308.1 0.62 1.94 16.2 

3B1-36 159.0 276.8 216.7 0.57 0.73 305.0 1.01 308.1 0.76 1.94 20.4 

3B3-33 158.4 276.8 214.1 0.57 0.74 305.0 1.01 308.1 0.76 1.94 19.0 

3B4-34 155.0 276.8 212.4 0.56 0.73 305.0 1.01 308.1 0.76 1.94 19.2 

3B6-35 166.1 276.8 221.6 0.60 0.75 305.0 1.01 308.1 0.76 1.94 20.6 

0C0-50 115.7 68.8 97.3 1.68 1.19 305.0 1.34 408.7 0.00 1.94 20.7 

1C1-14 119.0 67.2 121.5 1.77 0.98 305.0 1.34 408.7 0.18 1.94 19.2 

1C3-02 123.4 70.1 126.8 1.76 0.97 305.0 1.34 408.7 0.18 1.94 21.9 

1C4-15 131.0 70.9 131.4 1.85 1.00 305.0 1.34 408.7 0.18 1.94 22.7 

1C6-16 122.3 70.0 126.1 1.75 0.97 305.0 1.34 408.7 0.18 1.94 21.8 

2C1-17 124.1 75.6 142.9 1.64 0.87 305.0 1.34 408.7 0.31 1.94 19.9 

2C3-03 103.6 75.6 132.2 1.37 0.78 305.0 1.34 408.7 0.31 1.94 19.2 



 

51 
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Vexp 
(kN) 

Vpred 
EC2 (kN) 
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(%) 
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(MPa) 

Smith & Vantsiotis, 1983            

2C3-27 115.3 75.6 137.9 1.53 0.84 305.0 1.34 408.7 0.31 1.94 19.3 

2C4-18 124.6 75.6 143.8 1.65 0.87 305.0 1.34 408.7 0.31 1.94 20.4 

2C6-19 124.1 75.6 144.0 1.64 0.86 305.0 1.34 408.7 0.31 1.94 20.8 

3C1-20 140.8 134.4 185.5 1.05 0.76 305.0 1.34 408.7 0.55 1.94 21.0 

3C3-21 125.0 134.4 171.7 0.93 0.73 305.0 1.34 408.7 0.55 1.94 16.5 

3C4-22 127.7 134.4 175.4 0.95 0.73 305.0 1.34 408.7 0.55 1.94 18.3 

3C6-23 137.2 134.4 181.1 1.02 0.76 305.0 1.34 408.7 0.55 1.94 19.0 

4C1-24 146.6 186.1 215.4 0.79 0.68 305.0 1.34 408.7 0.76 1.94 19.6 

4C3-04 128.6 151.2 185.7 0.85 0.69 305.0 1.34 408.7 0.62 1.94 18.5 

4C3-28 152.4 186.1 217.7 0.82 0.70 305.0 1.34 408.7 0.76 1.94 19.2 

4C4-25 152.6 186.1 216.7 0.82 0.70 305.0 1.34 408.7 0.76 1.94 18.5 

4C6-26 159.5 186.1 223.9 0.86 0.71 305.0 1.34 408.7 0.76 1.94 21.2 

0D0-47 73.4 40.5 55.0 1.81 1.34 305.0 2.01 613.1 0.00 1.94 19.5 

4D1-13 87.4 86.9 150.7 1.01 0.58 305.0 2.01 613.1 0.41 1.94 16.1 

Vollum & Fang, 2014            

B1-25 184.0 105.5 275.3 1.74 0.67 462.5 1.84 850.0 0.00 2.69 45.7 

B1-50 176.0 104.7 250.7 1.68 0.70 437.5 1.94 850.0 0.00 2.69 45.7 

B2-25 488.5 227.3 529.4 2.15 0.92 462.5 1.03 475.0 0.00 2.69 45.7 

B2-50 464.5 247.7 478.7 1.88 0.97 437.5 1.09 475.0 0.00 2.69 45.7 

A-2 174.5 123.8 176.7 1.41 0.99 442 1.92 850.0 0.00 2.69 35.6 

S1-2 300.5 260.7 419.8 1.15 0.72 442 1.92 850.0 0.30 2.69 35.6 

S2-2 410.0 260.7 437.9 1.57 0.94 442 1.92 850.0 0.42 2.69 35.6 

 


