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Abstract

In reinforced concrete beams subjected to concentrated loads, the shear resisted increases
considerably as the loads approach to the support. There is not a consensus in the current codes of
practice about any simple design formulation which adequately considers this phenomenon.

A mechanical model has been developed at the Polytechnic University of Barcelona, which predicts
the shear strength of beams. The model is originally applicable to slender beams (a/d >2.0-2.5), and
is under consideration for adoption into the Eurocodes. The model deals with shear-flexure failure,
in which flexural cracks develop inclined through the web and stabilized near the neutral axis. Failure
is assumed to happen when this flexural crack develops inside the compression chord, subjected to
normal and shear stresses, which takes place when the stresses reach the biaxial failure envelope of
Kupfer.

The model has been extended to cases where the loads are applied near the supports. In this case,
the Bernoulli assumption (Plane sections remain plane) is no longer valid, and the problem must be
faced as a typical discontinuity “D” region, because the dimensions (a/d<2) and because the vertical
stresses introduced by the vertical loads by means of the bearing plates interact with the state of
stresses of the compression chord.

The extension of the model proposed at UPC consists on incrementing the neutral axis depth as the
load approaches the supports and including the vertical stresses due to the applied concentrated
loads, as confinement stresses in the concrete, thus changing the state of principal stress in the
failure envelope from tension-compression to compression-compression, thus enhancing the shear
capacity

In this thesis, a data base of beams with loads near the supports, with and without stirrups, has been
collected. A comparison between the predictions of the proposed model and the predictions of the
Eurocodes has been made, using the collected data base of 121 short-span beams which failed in
shear. 43 of the beams had stirrups, while the last 78 were not transversally reinforced, all the
beams have a/d-ratios of less than 2.5.

The results obtained in this thesis are approximate to the results achieved in other literature. The
proposed model compares favourably to the Eurocode for beams with and without shear
reinforcement. In addition, some of the assumptions of the new model have been investigated using
a 2D finite element model. The results obtained with the 2D FEM confirm the assumptions used in
the model.

Keywords: Short-span beams, shear, reinforced concrete beams, concrete beams, shear strength,
shear failure, shear enhancement.
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Notation
a: shear span
b: width of concrete section

d: effective depth to main tension
reinforcement

dmax: Maximum aggregate size
fe: uniaxial concrete compressive strength

f«: characteristic value of the cylinder
concrete compressive strength

fem: mean value of the cylinder concrete
compressive strength

f«t: uniaxial concrete tensile strength

fam: mean value of the concrete tensile
strength

fyw: yield strength of the transverse
reinforcement

h: overall depth of concrete section
lsw: crack length

lw: length along the crack where the tensile
stresses are extended

np: number of longitudinal bars
s: longitudinal coordinate from the support

s« location of the section where the critical
shear crack starts

Smx: average crack spacing of inclined cracks
along the beam axis

Sme: average crack spacing of inclined cracks
st. stirrups spacing

su: location of the shear critical section vc:
dimensionless contribution to the shear
strength of the un-cracked concrete chord

vi: dimensionless contribution to the shear
strength of the longitudinal reinforcement

vs: dimensionless contribution to the shear
strength of the transverse reinforcement

vu: dimensionless ultimate shear force

vy0: dimensionless ultimate shear force of
beams and one-way slabs without transverse
reinforcement

vw: dimensionless shear force resisted along
the crack

w: crack width

Wmax: Maximum crack width

wy: crack opening in the horizontal direction
wy: crack opening in the vertical direction

X: neutral axis depth

Xw: vertical projection of lw

y: vertical coordinate from the top fibre of the
concrete element

z: lever arm
As: longitudinal reinforcement area

Aqw: area per unit length of the transverse
reinforcement

C: compression force in the un-cracked
concrete chord

Ec: modulus of elasticity of concrete
Es: modulus of elasticity of steel

G¢: modulus of shear deformation for the un-
cracked concrete chord

Gr: concrete fracture energy

Is: modulus of inertia of the longitudinal
reinforcement bar

Ki: constant
M: bending moment
Mcr: cracking moment

Rt: ratio between the principal tensile stress
and the tensile strength

S: strut force



T: tensile force in the longitudinal
reinforcement

V: shear force

V.: contribution to the shear strength of the
un-cracked concrete chord

Vi: contribution to the shear strength of the
longitudinal reinforcement

Vpred: predicted value of the ultimate shear
force

V;: contribution to the shear strength of the
transverse reinforcement

Vsq: design shear force

Vexp: €xperimental value of the ultimate shear
force

V,: ultimate shear force

Vu0: ultimate shear force of beams and one-
way slabs without transverse reinforcement

Vw: shear force resisted along the crack

a: inclination angle of shear reinforcement or
ties

ol e: modular ratio (Es/Ec)

Ow: crack opening in the vertical direction
Oy: crack sliding in the vertical direction
¢: diameter of reinforcement bar

Eccrt CONCrete strain at the beginning of
macro-cracking

Ecu: Ultimate tensile strain

&;: strain at the longitudinal reinforcement

€« axial strain at the longitudinal
reinforcement

€w: tensile strain normal to the crack
& strain in the longitudinal direction
C: size effect factor

y: distortion

A: distance from the neutral axis

8: inclination angle of the strut

u: dimensionless bending moment (M/(
fct-b-d))

U dimensionless cracking moment (Mcr/(
fct-b-d))

&: dimensionless neutral axis depth

€ w: dimensionless vertical projection of lw

p: longitudinal tension reinforcement ratio

p w: transverse reinforcement ratio

01, 02: principal stresses

Ost: stress in the transversal reinforcement
ox: normal stress in the longitudinal direction

Oxmax: Maximum normal stress in the
longitudinal direction

oy: normal stress in the transverse direction

ow: normal stress in a horizontal fibre in the
cracked web

T: shear stress
Tmax. Maximum shear stress

Ty: shear stress at y= A-x



Chapter 1. Introduction and objectives

1.1  Introduction

Shear failure is a complex phenomenon, subject to many factors and resisted by various
mechanisms. A large amount of research has been undertaken on the topic the past 60 years and
have been summarized by Collins, Bentz and Sherwood (2008) and Reineck, Kuchma, Kim and Marx
(2003).

There have been developed theoretical shear failure models (Vecchio & Collins, 1986; Petrangeli,
Pinto & Ciampi, 1999), but they have been too complex and time consuming to adapt into design
codes. In response to this, simple semi empirical models have been developed and adopted
(European Committee for Standardization (CEN), 2002; ACI Committee 318. 2008), but studies have
shown (Sagaseta & Vollum, 2011) that EC-2 overestimates or underestimates the shear strength of
beams, depending on aggregate type and cross section type.

Because design codes need to cover all possible cases, they need to be conservative. The
conservativeness of the design codes depend on the precision and accuracy of the prediction. More
precise predictions have less scatter and dispersion. Adoption of models with less scatter makes
designs more economical. In addition, it prevents the premature destruction of structures deemed
unsafe.

The Tooth model (Reineck, 1991), Simplified Compression Field Theory (Bentz, 2010; Fédération
Internationale du Béton,2013), the critical crack theory (Muttoni, 2008; Muttoni & Ruiz, 2008), the
splitting test analogy model (Desai, 2004; Zararis 2003; Zararis & Papadakis, 2001) and the theories
based on the resistance of the un-cracked concrete compression chord (Choi, Park, & Wight, 2007;
Khuntia & Stojadinovic, 2001; Kotsovos, Bobrowski, & Eibl, 1987; Park, Choi, & Wight, 2006; Park,
Kang, & Choi, 2013; Ruddle, Rankin, & Long, 1999; Tureyen & Frosch, 2003; Tureyen, Wolf, & Frosch,
2006; Wolf & Frosch, 2007; Zanuy, Albajar, & Gallego, 2011) are models that have attempted to
model shear strength of beams. While these models have emphasized different shear strength
contributors, they all have well-fitting results. Mari et al. (2014) prosed that the reason that these
models fit well, but emphasised different shear strength contributors is that the different
contributors act at different stages of loading.

Mari et al. (2014) thus created a mechanical model which incorporates the most important aspects
of the different shear models. The models predictions were tested against the database gathered by
Collins et al. (2008) and yielded results with lower dispersion than the EC-2. A simplified version of
the model is under consideration for adoption into the EC-2.

The purpose of this paper is to extend his work by investigating the accuracy of the model for loads
close to support (a/d-ratios >2.5), and compare the predictions of this new proposed model to that
of the EC-2 and verify this against a database.



1.2  Thesis objective

The objective of this thesis is to gather the relevant data for the proposed theory from 5 research
papers (Cossio & Siess, 1960; Kani, 1969, Kani, 1967; Smith & Vantsiotis 1983; Vollum & Fang, 2014)
in order to evaluate the accuracy of its predictions. All of the data is of cases where the load is close
to the support, which is defined as a/d = 2.5. a is the shear span and d is the effective depth of the
beam. The predictions of the proposed theory will be compared to the predictions of other design

codes and to the experimental results. For simplicity, beams subject to axial loads were not
considered.

Secondly, the FEM software Midas-FEA will be used to investigate the assumptions made in the new
model. In order to do this, the vertical stresses in beams subject to loads close to the support will be
investigated. It will be a 2D model. The loads will be applied at a/d-ratios equal to 2, 1.5 and 1.



Chapter 2. Literature review

2.2 Shear transfer mechanism

A beam that fails in shear will develop a diagonal crack similar to that of figure 1. Shear failure starts
with the development of flexural cracks at the tension side of the beam. The load on the beam
causes tension to increase on the tension side of the beam, damaging it and eventually causing
cracks to form. Beams with adequate longitudinal reinforcement will fail in shear rather than flexure.

Figure 1 (Vollum & Fang, 2014)

As the loading increases, internal stresses in the beam start to rise, causing the flexural cracks to
develop further. Eventually, the stresses are so high that the flexural cracks develop into shear
cracks. Shear cracks are a result of planes being displaced relative to each other inside the beam.
The flexural cracks are vertical at the bottom of the beam, but as they propagate, they turn towards
the horizontal as shearing occurs diagonally. The shear crack develops until it reaches what is known
as the critical point (Jeong et al. 2014).

At the critical point, the mechanisms that resist the shearing is the shear strength of the remaining
un-cracked concrete chord, the remaining shear capacity of the crack and from any reinforcement
that is present, which can come from either the shear capacity of the transverse reinforcement or

from the dowel action of the longitudinal reinforcement.

Subsequently after dowel action, the concrete cover is subject to shearing. Due to the low shear
capacity of unreinforced concrete, the cover cracks quickly, leading to spalling. At this point, the
beam is close to failure.

If the load increases or is given time to deform the beam further, the last step before failure is the
widening of the shear crack. This widening reduces the shear capacity of the crack, increasing the
stresses on the other mechanisms that are resisting the shear, especially the un-cracked concrete
chord. When the stress eventually becomes too high, the un-cracked concrete chord fails in shear
and the beam has failed completely.

A point in a loaded beam is subject to beam action and arch action. Beam action is the moment
acting on an area as a result of the changing stresses as one goes along the vertical axis of a beam.
As a result of beam action, cracks at the extreme tension side of the beam are vertical.



Compression

Figure 2

Consider the two fibres at either end of extreme tension and compression side, see figure 3. At the
extreme tension side, the fibre is going to crack vertically (Figure 3a), while at the extreme
compression side, it is going to split horizontally (Figure 3b). The crack first forms vertically, in
flexure and as it propagates up the beam its starts to tilt towards to horizontal.

- =

Figure 3

Arch action is due to difference in height of 2 section faces in combination with the sum of forces
remaining constant through the section, see figure 4. This is why the shear taken by the un-cracked
concrete chord increases as the crack propagates.

w/

Figure 4

When arching action and beam action both affects a beam, the resultant force acting on the sections
along the failure plane can be seen in figure 5. The shear capacity of the failure plane depends on
the biaxial state of stresses it is subject to.
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Figure 5

2.3 Kupfer’s failure envelope

When an element is under stress from 2 directions, the element is considered to be under biaxial
stress. When concrete is subject to this, the tensile and compressive strength of the concrete
changes compared to when it is only under uniaxial stress.

Kupfer et al. (1969) investigated this phenomena by placing 20 cm*20 cm*5 cm concrete specimen
under biaxial stresses (compression-compression, compression-tension and tension-tension). The
concrete specimen had three different strengths, and stresses and strains were measured as the
loads were increased.

It was discovered that stresses in one principal direction affected the strength of the concrete in the
other different direction, see figure 6. This failure envelope is independent on the strength of the
concrete, and regardless of strength, any concrete under compressive forces perpendicular to the
principal plane, will be able to withstand higher stresses. This is known as Kupfer’s failure envelope,
a detailed view can be seen in figure 7.

*———x B, =380 kp/cm? (2700psi)
o Pp=-315 kplem? (4450psi)
e« Pp=-590kp/cm? (8350psi)
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Figure 6 Kupfer et al. (1969)
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Figure 7 Kupfer et al. (1969)

Loads acting on beams distribute the weight of the load at a 45 degree fan from the application area.
If one load is close enough to an adjacent load, the shear capacity of the beam they are acting on will
increase. This is because the vertical internal stresses induced by the load pushes Kupfer’s failure
envelope further into the vertical compression area, increasing the concrete’s capacity for resisting
compressive stresses.

2.4  Kani's Valley

For a long time, it has been known that the shear capacity of beams is greatly increased when they
are supporting loads near to their supports. In an effort to evaluate the effect of concrete strength,
shear arm to depth ratio and reinforcement ratio on the shear capacity of reinforced concrete
beams, Kani et al. (1966) discovered what is today known as Kani’s valley.

His results showed that the strength of the beam increased as the shear arm ratio was reduced. See
figure 8.
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Figure 8 Kani et al. (1966)

Kani et al. (1966) observed that as the shear arm ratio approached 2.5, the beams started to fail in
shear rather than flexure. Relative strength, My/Ms, where M, is the maximum bending moment at
failure, while My is the flexural strength of the beam was then plotted.



The experimental results showed that the relative strength is at its weakest when a/d is
approximately 2.5, at approximately 50% strength, se figure 9 and 10. The relative strength would
return to 100% at approximately a/d = 1 or 6.5, depending on concrete grade. When relative
strength exceeds 100%, the flexural reinforcement will be fully utilised and the beam will fail in
flexure rather than shear. The relative strength will then be assumed to be 100% and not the greater
value.

My My
100% 100 %
D, (i
80 ) 80 i -~
60 J\w , 60 il
40 - 40 .
f.= 3800 psi f.= 5000 psi
20 20
0 -3 0 -
O 2 345 6 74 01 2 345 6 74

Figure 9 Kani et al. (1966) Figure 10 Kani et al. (1966)

Kani et al. (1966) concluded that the concrete strength had very little effect on the relative strength
of the beam and that as one provided more reinforcement, the valley increased rapidly up until a
1.88% reinforcement ratio, see figure 11.
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Figure 11 Kani et al. (1966)



2.5  Shear capacity of beams in EC-2

In EC-2, the shear capacity of a beam, Veq, comes either from the shear reinforcement or from the
shear capacity of the concrete section. Veq = Max (ZAsw fyd, Vrac), Where ZAsy fyq is the shear capacity
of the reinforcement within the 3 central quarters of the shear span. Vg4, is the shear capacity of the
concrete without any reinforcement.

2.5.1 Shear resistance of beams without shear reinforcement
In Eurocode 2, the design shear capacity of a beam without shear reinforcement is governed by the
shear capacity of the concrete Vgqc:

1
Vrae = (CRd,ck(loo * P fer)? + klo-cp)bwd Eq.2.1
Where:

Crae = = Eq.2.2

Ye

[200 .

k=1+ T) < 2.0,dinmm Eq.2.3

— Ast <
pr=1720<002 Eq.2.4
ky = 0.15 Eq.2.5
Ocp =24 < 0.2 foq (MPa) Eq.2.6
Veae 2 (Vimin+k10cp)byd Eq.2.7
Umin = 0.035k3/2f 1/ Eq.2.8

Where f is the characteristic strength of concrete in MPa, k is a size factor, pi is the longitudinal
reinforcement ratio, by is the narrowest part of the cross-section in the tensile area in mm, o is the
concrete stress due to axial force, Neg is the axial force in the cross-section due to loading or
prestressing [in N], A is the area of concrete cross section [mm?] and Vgg,is in N. Values for Cra,c, Vmin
and ki can be found in national annexes, the values listed above are the recommended values.

All the beams that will be investigated in this paper have constant cross sections and are not subject
to any axial loads. Therefore, by = b, and Negqg = 0, thus making o.,=0. Therefore, the shear resistance
of unreinforced concrete beams can be simplified into:

1
Vrae = 2 (100 % py fu)3(1 + [“P)bd £q.2.9

2.5.2 Shear resistance of beams with shear reinforcement
For members that require shear reinforcement, the shear capacity of the beam, Vgg, is:

acw*bw*z*fcd*vl) Eq210

ASW
* Z % * cotl
nyd " cotO+tand

N

Vka,s = min(

Where Ay is the cross-sectional area of the shear reinforcement, s is the stirrup spacing, fywa is
design yield strength of the shear reinforcement, v; is a strength reduction factor for concrete



cracked in shear and a.y, is a coefficient that takes into account the state of stress in the compression
chord. acw is 1 for non-pre-stressed beams. Because all safety factors are removed, fcq = fya.

fe
v, =0.6%(1— 2—5’5) Eq.2.11

2.5.3 Loads near supports

When a load is applied on the upper side of the beam at a distance a, and 0.5d < a, < 2d, the shear
force Viq is reduced by B = a,/2d. This is only valid when the reinforcement is fully anchored at the
support. A shear force calculated this way must satisfy the following condition:

Vea < Agw * fywa * Sina Eq.2.12

Where Asw*fywa is the central three quarters of the shear arm a,, when a, > 0.5, a, = 0.5.



Chapter 3. Proposed model

3.1  Model introduction

The new model, proposed by Mari et al. is a semi-empirical mechanically based model. It attempts to
predict shear-flexure failure of reinforced concrete beams with and without stirrups. The model
assumes that the beam subject to an incremental load fails in the same manner as described in
section 2.2, Shear transfer mechanisms. The shear crack will fail as described there, but it is assumed
that a second crack develops inside the concrete chord above the neutral axis, which subsequently
propagates down to the critical shear crack, causing failure.

For beams without shear reinforcement, the model is based on a strut and tie model. The concrete
ties and struts preserve the static equilibrium. It is assumed that the concrete ties have some tensile
capacity after cracking, provided that the crack is sufficiently narrow. This tensile capacity comes
from shear transferred along the crack and residual tensile capacity. As cracks propagate throughout
the beam, the concrete ties change in inclination to avoid the widest cracks, thus preserving the
static equilibrium.

Increasing the load causes crack widths to increase, thus concentrating tensile stresses further up in
the beam where the crack width is smaller. The effect of this is that the angle of the ties with respect
to the horizontal, a, increases. This increasing in angle reduces the amount of shear resisted along
the crack, Vw and the increment of force resisted at the longitudinal reinforcement, AT. In order to
preserve static equilibrium, when AT lessens, so does AC, where c is the compression force in the un-
cracked concrete chord. This causes the inclination of the strut (strut BD in figure 12a and b) to
increase in order to compensate for the loss of shear resisted over the crack. This in turn causes
arching acting in the un-cracked concrete chord, thus increasing the shear taken by the concrete

chord.
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Figure 12 Mari et al. (2014)

If reinforcement is present, the stirrups take on the role previously held by the concrete tie. In
addition, stirrups restrain the widening of cracks by friction and residual stresses, they vertically
confine the concrete, increasing its shear strength and connecting the longitudinal reinforcement,
increasing its shear capacity.

The beam action in the beam is caused by the difference in stresses on either side of a region, see
figure 13 b. The arching action is caused by a difference in the height of the regions faces, x1 and x;
which causes stresses to redistribute, thus creating stresses on the region.
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Figure 13 Mari et al. (2014)

3.2

Model assumptions and their validity

During ultimate load levels, the shear and bending is resisted by the un-cracked concrete
chord (Vc¢), the longitudinal (V|) and transverse (V) reinforcement and the aggregate
interlocking action (V) along the crack.

The distribution of stresses along the concrete chord have been assumed to be as depicted
in figure 14. The horizontal stresses are linearly distributed, with the maximum normal stress
at the extreme compressive fibre, located at the top of the beam.

The vertical stresses are assumed to be bilinear, 0 at the top fibre and maximum in the
middle of the un-cracked concrete chord, at 0.5 x. After this it is assumed to be constant.

The shear stress distribution is assumed to be parabolic and 0 at the top fibre and at the
neutral axis. Maximum shear is assumed to be at y = x/2. Theoretically, the shear is 0 at the
bottom fibre at the beam and more than 0 at the neutral axis. However, the simplified shear
distribution is similar to the theoretical distribution and therefore used.
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X

|,._b_.| Theoretical

Figure 14 Mari et al. (2014)
3) The depth of the un-cracked zone is equal to the neutral axis in bending.

4) The beam is subject to biaxial stresses, and anytime the un-cracked concrete experiences
stresses that exceed Kupfer’s failure envelope, it fails.
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5) The horizontal projection of the shear crack is considered to be 0.85d, see figure 15.
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Figure 15 Mari et al. (2014)
6) At the ultimate limit state, all existing stirrups have yielded.

7) Alllongitudinal reinforcement is considered to be anchored, making all reinforcement
effective at the critical shear section.

3.3  Location of the critical point

The point in the concrete chord where failure will initiate is known as the critical point. Failure will
initiate at the point of maximum damage as defined by equation 3.17. Studies (Mari et al.,2014,
Swamy & Quereshi, 1974) have shown that this can be found at approximately y = 0.425x from the
neutral axis if linear or parabolic stress distributions are assumed. This is valid for s/d = M/((V*d) <
3.0. Values for the relative distance to the neutral axis, y/x have been plotted in figure 16 below,
where relative damage is the ratio between the damage of a fibre at a distance from the neutral axis
and the damage at the top compressed fibre.
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Figure 16 Mari et al. (2014)

The weakest section of a beam subject to shear-bending failure is found at the tip of the first
diagonal shear crack, at C, see figure 17. It forms at this location as any point closer to 0 bending
moment will have more of the un-cracked concrete chord to resist shear, while any point closer to
the load will experience higher normal stresses which increases the shear transfer capacity of the
point.

The initiation of the flexural cracking is assumed to start when Si= M¢/V,, where S, is distance from
the support that the flexural crack initiates, M. is the cracking moment and V, is the ultimate shear
load. According to the 5™ assumption of the model, the crack propagates 0.85d, where the critical
section is found. This position for the critical section was found by Park et al. (2006).
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3.4  Shear-flexural strength of beams subject to point loads

The shear strength of the beam is calculated at the critical section. Here, the equilibrium between
the internal forces (V, M), the stresses at the un-cracked concrete chord (V. C), along the crack (Vu),
the stirrups (Vs), and the longitudinal reinforcement (V,, T) is taken about point A. See figure 15.

C=T+V,xtand Eqg.3.1

V=V4+V, +V,+V, Eq. 3.2

Viw*(0.85xd—0.5%x,,*cotf)
cos26

M=Cxz=M+V,x085xd+

+ 0.5V % 0.85* d Eqg.3.3

The non-dimensional shear carried by the un-cracked concrete chord, v, can be found by
substituting equation 3.38, 3.40 and 3.41 into equation 3.14, this gives:

0.85—§y*cotd
0

v, A%(0.4+ 1,750+ 250y s +v5%0.85 v, v
Ve=——=R,xkyx&x |1— Footl ( . —1)— . Eq.3.4
feerbrd f*(l—g)*Rt 0.85+R; 0.85%R;

Here, Rt is the ratio between principal tensile stress, o1, and the tensile strength of the concrete at
failure. According the equation 3.17 this equals:

Rt=%=(1—0.8*% Eq. 3.5
Rt depends on the principal stress, which depends on the shear force, V., so equation 3.4 must be
solved iteratively by assuming Ri=1 and the solving and resolving equation 3.4 until convergence.
Figure 18 shows the solution for different values of vs and neutral axis depth. The solutions follow a
clearly linear trend, but a size factor must be introduced to take into account due to the brittle
nature of the failure. The linear relationship between neutral axis depth and dimensionless shear
force to predict the amount of shear transferred through the concrete reinforcement was previously
been observed in other studies (Tureyen & Frosch, 2003, Zararis & Papadakis, 2001).

13
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The size factor, {, is the one used Zararis & Papadakis and depends on the shear span, a:
(=1.2—0.2*a=1.2—0.2*§*d20.65 Eq. 3.6

Adding this size effect to the dimensionless shear force, the linear relationship of the dimensionless
shear force to neutral axis depth can be approximated into:

v, = {((0.88 4 0.70 * v) * g +0.02) Eq. 3.7

3.5  Fracture Energy

Fracture energy, Gs. is an important parameter for the proposed model. It is used to determine the
shear capacity of the shear reinforcement. The Model Code (Fédération Internationale du Béton,
2013) states that fracture energy can be expressed as a function of mean concrete compressive
strength, while Wittman (2002) proposed that it can be expressed as a function of maximum
aggregate size. Mari et al. (2014) decided to draw from both and derived a new expression for the
fracture energy, which results are identical to that of the Model Code 2010 for dmax = 20 mm and
close to Wittman’s results.

Gr = 0.028 * f9:18 » dp.35 Eqg. 3.8

It should be noted that Sagaseta et al. (2010) did not find that difference in aggragte types affect the
strength or crack patterns of beams. It was concluded that the orientation and position of the shear
crack, which is random had a large effect on shear strength.
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3.6  Shear transfer mechanisms

3.6.1 Shear capacity of the un-cracked concrete chord, V.
The principal tensile and compressive stresses produced by normal stress (ox and oy) and shear stress
(t) at any point is according to Mohr’s circle defined as:

01 = T2 4 [(ZT2 4 g2 Eq. 3.9

r:al\/l—m+m Eq. 3.10

01 of

If a point, at a known distance A*x, from the neutral axis of the concrete chord where, x is the
distance from the neutral axis and the shear stress 1y is known, the shear stress distribution (t(y))
along the un-cracked concrete can be obtained. They can be found by imposing the following
boundary conditions, t(0)=0, t(x)=0 and t(A*x)= T This gives:

—_u_y_r
T(y)_A*u—A)(x e Eqg.3.11

The shear force along the concrete chord V. is obtained by assuming a constant width along the
chord and integrating the shear stress along the un-cracked concrete chord.

Ta*b*x

Ve=Jfy ) s bxdy = 2 Eq. 3.12

Substituting t (y) from equation 3.11 yields the final expression for the shear strength of the un-
cracked concrete chord.

— (™ y ¥ _ Taxbxx
Ve = fO Ax(1-2) (x x2) * b * dy - 6*1*(1—1_) Eq. 3.13
I/C=Kl*b*x*‘[:o-1\/1_m+”x*2‘7y Eq.3.14
o o?
Where:
1
K Eq. 3.15

= erar(1-2)
The neutral axis depth can be obtained through standard analysis of cracked reinforced concrete
sections under flexure only. If the section does not have any compressive reinforcement, the neutral
axis depth is given by:

X 2
f:zzae*p*(—1+ 1+@) Eq.3.16

0, = Es/E¢, which is the modular ratio between steel and concrete. P = A;/(b*d), which is the
longitudinal reinforcement ratio.

Failure occurs when the principal stresses reach Kupfer’s failure envelope in the compression-
tension branch. In the branch, the failure envelope is considered to be straight until the uniaxial
compressive concrete strength, f.c reaches 0.8, or 80% of max compressive capacity.
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Elt+0.8*cm:1 Eq.3.17
3.6.2 Shear capacity of the crack, Vw
Shear transferred across the crack is done so either through residual tensile stresses acting across
the crack or through frictional stresses acting along the crack as the rough crack surfaces slide
against each other. Both factors are caused by the irregularities in the crack. The residual tensile
stress is the crack’s capacity to hold tensile forces. This capacity falls as the crack width increases and
is generally considered to be small.

When vertical loads are applied near the shear crack, the crack faces get pushed together, thus
constricting sliding. Sliding between to internal planes is the cause of shear, so vertical loads increase
the shear capacity of the concrete. Tests done by Vollum & Fang (2014) confirmed this, and their
results can be seen in figure 20. This increase in concrete shear strength is not included in the
general model, but is applied for spesial cases where beams are subject to multiple point loads, see
section 3.8.
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Figure 20 Vollum & Fang (2014)

In order to evaluate the stresses transferred across the crack, the following procedure was adopted
by Mari et al. (2014).

1) Compatibility of strains normal to the crack is assumed.
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Figure 21 Mari et al. (2014)
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2) The tensile stress-strain relationship is assumed to peak at ., when the stress reaches f,
before linearly falling to 0, at €. €,y depends on the fracture energy of the concrete.

Figure 22 Mari et al. (2014)

3) Itis assumed that the larger the crack width, the lower the residual tensile stress. This

relationship was considered to be linear, allowing the fracture energy to be found more
easily.

fet

Figure 23 Mari et al. (2014)

4) The crack opening width is obtained by multiplying the tensile strain of concrete (f«) by the
mean length between inclined cracks (sme). The mean length between inclined cracks vary at
different locations of the cracks and is affected by the presense of transverse and longitudinal
reinforcement. Not all the flexural cracks develop into shear cracks, the distance between
shear cracks is greater. It is therefore assumed that the average crack spacing is equal to the

effective depth of the element.

Figure 24 Mari et al. (2014)

The shear force (V) resisted along the crack is the integral of the normal stresses, ow, the crack

width, b and the crack angle, 6, across the length of the crack, I, where the tensile stresses are
active.

VC=folwaw*b*c059*dlzsfr"l"g*aw*b*cow= Xy * 0y, * b * cotd Eg. 3.18
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ow is defined as the normal stress in a horizontal fibre in the cracked web. oy = ft/2 along the length
of the crack with residual stress. This makes it energetically equivalent to the triangular stress
distribution obtained with assumption 3.

The length the tensile zone is obtained by using the crack strain and geometrical relationships, see
figure 25.

X,y = (d —x) * Sif’“ * sin’0 Eq.3.19
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Figure 25 Mari et al. (2014)

By substituting equation 3.19 into equation 3.20 and taking equation 3.25 into account, the shear
force becomes:

V, = 0.425 * f.o % b * d % 2% & 5in20 Eq. 3.20

Es

The fracture energy of the concrete is the area of the triangle found in figure 23.

Gf = fOWU(W) *dw = 0.5 * for * Wpgy = 0.5 % fop * (Sct,u - Sct,cr) *Sme Eq.3.21

The largest crack opening, wmax is assumed to be:

Winax = 0.5 % fir * (gct,u - Sct,cr) *Sme Eq. 3.22

Equation 3.21 can then be expressed as:

2+Gr fet 2+Gr fet 2xGprEc
e e 26 fe ZGr _ fe, q 4 206t Eq. 3.23
ctu cter fet*Sme E¢ fet*Sme E¢ ( fczt*s‘me) a

Finally, the shear transferred along the crack can be expressed in non-dimensional terms as:

- Vw _0.425*sin29*fct(1 2%G p*E¢
w fetxbxd Ecxées fczt*sme

) Eq.3.24
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0.85+d _ 0.85

to = = Eq. 3.25
T am T o a
Where:
&= g Eq. 3.26
W & 2+EcxGr
Vw = T pa = 167 * g " 1+ e Eq. 3.27

3.6.3 Shear capacity of the longitudinal reinforcement, V,

When an element is loaded, the longitudinal reinforcement is subject to a vertical displacement,
causing crack sliding and propagation. The longitudinal reinforcement has a small (Kotsovos et al.,
1987; Zararis & Papdakis,2001) shear capacity by its own, but if stirrups are present this capacity is
greatly increased. This is due to the vertical constraint the stirrups provide on the longitudinal
reinforcement.

Consider the relative vertical displacement between the 2 edges of a crack opening. This
displacement is the sum of the crack opening (6m) and the crack sliding (&.).

(©) )
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X |
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-

Crack opening Crack sliding
Figure 26 Mari et al. (2014)
Then the crack opening can be expressed as:

O = Wy * COtO = €gy * Sy * COtO = 0.72 x d * %"E Eqg. 3.28

Crack sliding is due to the distortion of the un-cracked concrete part of the element and the vertical
displacement due to this is:

6, =y*085x*d Eqg. 3.29

Combining these 2 expressions and considering the ratio between the shear stress and the axial
tensile strain to be y/es, the following expression is obtained:
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6xV ¢ &
e _ _5#bxxxGe ~ 2.64 * Vexd N a’e*p*(l—g)
Esx

. < — Eq. 3.30
EsxAsx(d~3)

Equation 3.28, 3.29 and 3.30 can then be rearranged to:
Esx Ve &
6 =6,+6,=0.72 *d*rf(l +3.1 Ko KU xpx (1 —5)) Eqg.3.31

Which can be simplified into:

6=0.8*d*%‘§ Eq. 3.32

This imposed displacement produces a shear force, V| approximately equal to:

12*Eg¥np*Ig*8 12+Ec*np*mxp* 8 E
v, = S3b5 = s Mp*rp z0,64-*f—s*p*
ct

3
St S; *64

¢2xd % Esx

s8 1€

Eq. 3.33

By assuming that ¢/s: = 0.15, d/si=2, €= 0.0009 and E./f.: = 10000, this expression can be simplified
into a non-dimensional term:

v, = 2
L™ foebed

~ 0.23 * %} ~ 0.25 * & — 0.05 Eq. 3.34

3.6.4 Shear capacity of the transverse reinforcement, Vs
In the proposed model, it is assumed that any stirrups present have yielded at failure, thus

Vs = 0.85*d * Agyu fyw Eg. 3.35

This can be expressed in non-dimensional terms as v..

v = Vs _0.85*d*Asw*ny
$ forbxd feexbxd

= 0.85 * p,, * ’;f—w Eq. 3.36
ct

3.6.5 Stresses at the critical point
By using classical flexural analysis, the normal stresses (ox) in the concrete compression chord can be
expressed as:

Vw*(0.85xd—0.5+xy*coth) | 0.425+V.%d
T0U. s

— cos2%6
Ox = b*x*(d—g) - b*x*(d—;—c) Eq. 3.37

25 x M 2%Ax(M+V*0.85+d +

Dividing by f.*b*d?, a non-dimensional expression is found:

0'85_€W*wt9+vs*0.85

Ox Ax(2xu+1.750c4 2%y, % “ot20 Eq.3.38

fet f*(l—g)

The cracking moment to be considered is the cracking moment, M., which in non-dimensional terms
is expressed as:
_ Asw*fyw brh2xfyy

= _ 1 h2~02
Her = 7 beaZ ~ orfupebed? 6 @ Eqg. 3.39
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Consider the horizontal cut shown in figure 15, where the equilibrium is balanced by tensile forces in
the stirrups and the vertical concrete stress (oy).

Oy _ Asw*fyw Vs Vs
foo = furb  085+furbsd _ 085 Eq. 3.40
At the critical point of the un-cracked concrete chord, the shear stress, T is:
64V, 1.47%V,
T, =—Sx(1—A2) = # Eq.3.41

3.7 Total beam strength

In summation the beam gets its shear strength (V) from the following; the shear capacity of the un-
cracked concrete chord (V.), the shear force resisted along the crack, (Vu), the shear capacity of the
longitudinal reinforcement (Vi) and the shear strength of the transverse reinforcement (V).

V=V+V,+Vi+Vi=fi*bxdx* . +v,+v,+v5) Eq. 3.42
ve=€ * ((0.88 + 0.70vs) *§+o.02) Eq.3.7
V - % fct* 2x EC*Gf
Vw = Fbed =167 (1+ 7 ) Eqg. 3.27
_ W ~ ae*P _
Vi= o~ 023 S50~ 0258 — 0.05 Eq.3.34
ve==—2_=0.85p, + 2% Eq. 3.36
= ferbed Pw* g- 3

By taking vs and v; as 0, the shear strength of beams and one way slabs without shear reinforcement
is obtained: Taking into account all the factors contributing to the shear strength of the beam, Vo is
obtained:

Vo = feexbxd = (v, + v, + v, + v5) Eqg. 3.43

3.8  Adaptation for beams close to supports

The general expression for shear force obtained in equation 3.42, is only valid for beams where a/d >
2.5, and there are no interaction between multiple loads. Mari et al. (2014) have made special
provision for this case where the ultimate shear strength, V,, of the beam with a load close to the
support can be expressed as:

V, = Vi + Vi Eq. 3.44
Where:
x fal v
==K, 0.30;—" + =+ 0| bd Eq. 3.45
V,, =2 wa(d — x) sina (cotf + cota) Eq.3.46

N

Where kp =1, s is the stirrup spacing, o. is the increase in shear strength capacity of the concrete due
to nearby loads, and is only valid when the distance between the loads is less than 0.5(so+ay/dx1)

0.85+Qq _ 0.85+Qq
Ap*xX - X
b(so+=77 ) b(sot+ays)

Ocy = Eq. 3.47

21



a, 0.85+d
coTo = % < T2 Eq. 3.48
ﬂ:£+(1_£)*(1_04*@)2 Eq. 3.49
d _d d T d o

2= xp(-1+ /1 + a;m) Eq. 3.50

Where Qq is the load applied, 6 is the angle between the vertical and the inclination of the direct strut, x1 is the
neutral axis in the d-region and x. is the neutral axis in the b-region. If multiple loads are applied on at each
half of the beam, multiple shear failure planes exist, so the most critical shear plane must be determined and
used as the failure plane.

3.9  Previous data and results

Mari et al. (2014) compared the accuracy of their proposal against the predictions of Eurocode 2,
ACI318-08 and Model Code 2010, using the large data base, based on the publication of Collins et al
(2008), Cladera & Mari (2007) and Yu & Bazant (2011). The first publication was used for concrete
beams without stirrups while the latter were used for concrete beams with stirrups. A total of 892
beams without stirrups and 239 beams with stirrups were evaluated. All of the beams failed in shear
and all the beams without shear reinforcement had an a/d-ratio greater or equal to 2.5. Any safety
factors used in the models were removed (taken as 1) when the models were evaluated against each
other and the data. The range of variables can be seen in table 1 below.

892 beams
without 239 beams
stirrups with stirrups

Min Max Min Max

b (mm) 21 3000 76 457
d (mm) 41 2000 95 1890
e (MPa) 6 127 13 125
p (%) 0.1 6.6 0.5 7.0
Py = Ag-fin/b (MPa) - - 0.1 8.1
a/d 2.5 8.5 2.4 3.1
Viest (KN) 2 1295 14 2239
Table 1

The results obtained by Mari et al can be seen in table 2 and 3. The proposed model generally had
the lowest coefficients of variation. The predictions of the results were compared in a large database
of experiments published by Collins et al. (2008).

892 beams without stirrups 239 beams with stirrups
Viest!Vored EC-2 ACI 318-08 MCI10 LevIl  Proposal EC-2 ACI 318-08 ~ MCI0 Lev Il Proposal
Average 1.07 1.28 1.20 1.04 1.72 1.25 1.21 1.02
Median 1.03 1.27 1.16 1.01 1.61 1.24 1.20 1.01
Standard deviation 0.226 0.346 0.223 0.179 0.638 0.262 0.225 0.169
COV (%) 21.12 27.11 18.61 17.28 37.13 21.04 18.58 16.60
Minimum 0.66 038 0.74 0.68 0.62 0.65 0.75 0.68
(Viest'Vpred) s 0.79 0.71 0.91 0.80 0.97 0.85 0.92 0.80
Maximum 2.26 240 228 1.84 5.53 2.34 2.20 1.73
(Vies'Vpred)ose 1.53 1.90 1.62 1.38 277 1.65 1.60 1.28

Table 2 Mari et al. (2014)
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892 beams without stirrups 239 beams with stirmps

EC-2 ACI318-08 MC10 Lev 1T Proposal EC-2 ACI318-08 MC10 Lev II Proposal
Criterion # Mean COV  Mean COV Mean COV  Mean COV # Mean COV  Mean COV  Mean COV  Mean COV
All 892 .07 2112 128 2711 120 1861 1.04 1728 239 172 3713 125 2104 121 18.58 102 1660
d (mm) <300 663 .10 2108 138 2211 1.23 1857 103 1807 117 1.89 3963 138 1760 133 1679 105 1766
300-600 155 103 1505 109 1876 1.14 1421 106 1339 93 155 3096 118 1663 113 1450 098 1520
=600 72 086 1830 071 2641 102 1579 106 1736 29 158 2551 094 1774 100 1185 103 1263
S (MPa) <40 626 106  18.94 129 2531 118 1641 104 1568 111 173 4451 123 1886 1.20 1699 101 1493
40-70 183 L10  23.47 124 2911 117 1979 099 1954 65 165 2499 124 1808 119 1519 100 1379
=70 83 109 2831 129 3486 140 2123 110 2099 63 L78 3245 129 2620 1.27 2292 107 2048
p (%) =1 139 094 1605 088 2650 116 1321 099 1429 7 13 1665 104 2613 124 2180 112 924
1-3 627 106 1950 132 2344 120 1771 103 1680 175 173 3629  1.21 2091 L19 1862 102 1644

=3 126 124 2200 150 1895 130 2166 105 1759 57 172 40015 138 1746 127 17.61 102 1777
pe MPa) <070 - - - - - - - - 130 195 3449 117 2031 LI8 1723 099 1503
0.70-150 - - - - - - - - 91 1.54 2884 134 2061 128 1958 106 1826
=150 - - - - - - - - 18 097 2812 128 1446 114 1538 104 1311

Table 3 Mari et al. (2014)

As the effective depth of elements increase, the accuracy (Viest/Vpred) of the models (EC2, ACI,
MC2010 and the proposed mode) do too. This could be due to the factor that all the models
emphasise the the strength of the concrete more accuratley than the other elements in their
respective model.

The accuracy of all the models were sensitive to the effective depth, d, of the beam. As the effective
depth increases, the models tend to become less conservative. The EC-2 and the ACI 318-08 tends to
overestimates the shear strength of beams with effective depths of more than 500 mm, which is
unsafe. The EC-2 tends to be overly conservative for beams without stirrups and effective depths
less than 500 mm, making for overcostly design. The accuracy of the proposed model’s predictions is
much less sensitive to variations in effective depth.
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70 = With stirrups 1.0 = With stirrups
T 25 B
Z 20 =
I Z
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10 o : ' .
0.5 : . = -
0.0 0.0
0 500 1000 1500 2000 0 500 1000 1500 2000
d (mm) d (mm)
MC-2010 Froposal
(c) 40 (d) 4.0 T
35 - Without stimups H 15 - Without stirmups
= With sti = With sti
2.0 ith stirrups I 20 ith stirups
3 S 25
5 5
% =
i)
F-} a -
> >
i g O
: .
0.0 T T T 1 0.0
0 500 1000 1500 2000 o 500 1000 1500 2000
d (mm) d (mm)

Figure 27 Mari et al. (2014)

The accuracy of the predictions of the models were sensitive to the amount of transverse
reinforcement. The EC-2 was overly conservative, while the proposed model predictions fit well with
the experimental resulsts and was largley unaffected by changes in the amount of transverse
reinforcement. See figure 29.
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Chapter 4. Results and discussion

4.1 Data analysis

Using the procedures outlined in section 3.6 and 2.5, the predicted shear strengths of the 2 models
were obtained and compared to the experimental results. All safety factors were removed from the
design codes during calculations. The predicted shear strengths were plotted against the
experimental shear forces. The results have been plotted in figure 30 and 31.Statistical analysis of
the results are given in table 4, 5 and 6.

A database, compromised of a total of 121 beams, 43 beams with stirrups and 78 without stirrups
were used to determine the accuracy of the 2 models. The accuracy of the test were predicted by
plotting the experimental results against the predicted results.
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4.1.1 Beams without Stirrups

Standard Deviation 0.33 0.23

Mean 1.23 1.11

cov 0.26 0.20

Sample Size 78 78

Max 2.15 1.96

Min 0.62 0.67
Table 4

Both models tend to underestimate the shear strength of unreinforced beams, but the model
proposed by Mari et al. (2014) underestimates the shear strength to a lesser degree.

The dispersion of the models are relatively low, but Mari’s model performs better with a dispersion
of 20% versus the 26% of the EC-2. This is in accord with the findings of Mari et al. (2014) and
Sagaseta & Vollum (2010), who found the dispersion to be 21.2% and 21% for the EC-2 and 17.28%
for the proposed model (Mari et al, 2014).

The COV both the models are good, but Mari’s model is better. A certain amount of dispersion is to
be expected, as random factors like the inclination of the shear crack affect the shear strength of the
beam (Sagasete & Vollum, 2010).

4.1.2 Beams with Stirrups

Standard Deviation 0.40 0.09

Mean 1.10 0.80

cov 0.36 0.12

Sample Size 43 43

Max 1.85 1.00

Min 0.56 0.58
Table 5

The models give very different predictions of the shear strength of beams with stirrups. The EC-2 is
overly conservative and underestimates the shear strength, which is consistent with the findings of
Sagasete & Vollum (2010). Because the EC-2 only considers the stirrups in the central % of the shear
span, this might explain why it overestimates shear strength of beams.

On the other hand, the proposed model overestimates the shear strength of beams. An explanation
for this is that as the load approaches the support, the diagonal shear crack angles itself more
towards the vertical, causing fewer stirrups to cross the crack.

The proposed model has a remarkably low COV of 11.6%, compared to the findings of Mari et al.
(2014) of 16.60%. The dispersion of the EC-2 was found to be 36%. This is in accord with the results
obtained by Mari et al. (2014) and Sagasete & Vollum (2010), who both calculated the dispersion to
be 37%, using data bases of 239 and 47 beams respectively.
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Beams with Stirrups
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Figure 31
4.1.3 All beams
All tests EC-2 Mari
Standard Deviation 0.36 0.24
Mean 1.19 1.00
cov 0.30 0.24
Sample Size 121 121
Max 2.15 1.96
Min 0.56 0.58

Table 6

The mean prediction of the proposed model fit perfectly to the experimental models, but this is a
reflection of the fact that it overestimates the shear strength of beams with stirrups, while
underestimating the shear strength of beams without. This is reflected in the larger dispersion.

The EC-2 tends to underestimate the shear strength for all beams, and becomes more conservative
as the magnitude of the total load increases, as seen from figure 33.

The EC-2 does not consider the shear strength enhancing effects of loads close to the shear crack,
but the proposed model does. In addition, the EC-2 assumes plane section stresses, but Mari’s
model does not. These are major differences and likely contributors to the difference in results.
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4.2  Parametric studies

The a/d-ratio, depth, longitudinal and transverse reinforcement ratios and the shear span were
plotted against the accuracy of the models in order to investigate the influence of those parameters
on the models.

4.2.1 Shear strength and a/d-ratio

From figure 35, it can be seen that as the a/d ratio decreases, the shear capacity of the beams
increase. The reason for this is that as the shear arm decreases, the vertical crack increases in angle
with respect to the horizontal. While this mean that the shear resistance of the reinforcement
decreases due to less stirrups being active, it increases the shear strength of the concrete by vertical
compression. Additionally, a direct strut that angles more to the horizontal is more capable to utilise
it’s the compressive strength of the concrete.
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a/d vs ultimate shear
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Figure 34

4.2.2 Accuracy and a/d-ratio

The accuracy of the predictions of the models are not affected by the a/d-ratio. The coefficients of
determination are too low on both trend lines to conclude any correlation. This result for the EC-2 is
in accord with results obtained by Sagaseta & Vollum (2010).
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4.2.3 Accuracy and effective depth
As the trend lines in figure 37 have very low statistical validity, no correlation between depth and
accuracy can be established with adequate certainty for either models.

Effective depth and accuracy
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Figure 36

4.2.4 Accuracy and longitudinal reinforcement ratio

No correlation could be established between the longitudinal reinforcement ratio and the accuracy
of the proposed model, see figure 38. A correlation was found for the EC-2, but the statistical validity
is too flimsy to make any claim, see figure 39. Therefore it is concluded that the longitudinal
reinforcement ratio has no effect on the accuracy of the predictions for either model.
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EC-2
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Figure 38

4.2.5 Accuracy and transverse reinforcement ratio

No statistical valid evidence was found to claim any correlation between the transverse
reinforcement ratio and the accuracy of the models, see figure 40. The polynomial trend line shows
that the first initial increases in transverse reinforcement from 0 increases the accuracy of the
proposed model. While the correlation is low, this may indicate that Mari’s model captures the
effect of concrete confinement due to reinforcement.
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4.2.6 Accuracy and shear span
The shear span, a, does not have an effect on the accuracy of the proposed model’s predictions or of
the predictions of the EC-2, see figure 41.
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4.2.7 Parametric variation

There is a large range in the various parameters used to predict the shear strength of the beams. If a
parameter range includes extreme values, a model might have difficulties capturing the effects of
the extreme values accurately. The only extreme data found in the data base were very low
longitudinal shear reinforcement ratios. While the accuracy of both models are unaffected by any
single parameter listed in table 7, the proposed model as managed to account for the total effect of
all the parameters.

Vexp d a/d a Pw [o]] fck
(kN)  (mm) (mm) (%) (%) (MPa)
Max 634.3 483.0 2.50 11689 0.76 4.93 45.7

Min 325 238.0 0.77 2349 0.18 0.48 123
Table 7

When investigating the effect of a single parameter, ideally, all the other parameters should remain
constant. This is not the case for the data used in this paper. This further makes it harder to make
any claim with certainty. The coefficients of variation might not have successfully account for this,
and the correlations establish may be different from what they state.

4.3  Finite element model

The second assumption of the proposed model is that vertical stresses are bilinear, distributed as
seen in figure 14. In order to test the assumption that that the vertical stresses in the beam are
distributed in that manner, a finite element model was generated to investigate.
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The generated 2D model was based on beam S1-1 from “Shear reinforcement in RC beams with
multiple point loads” published by Vollum & Fang (2014), using the material properties,
reinforcement detail and dimension of beam specified therein.

Whether intentional or not, the concrete covers surrounding the reinforcement is not constant. The
concrete cover at the bottom and sides of the beam is only 17 mm, as the H8 reinforcement curves
on the outside of the bottom longitudinal reinforcement. Thus less than the minimum nominal cover
required in the EC-2. The concrete cover at the top of the beam is 27.5 mm.

@ 100100100100 312 . _200_,_200_,_200_ _188_ 188 __200_ _200__200_, 312 _100100100100, +
B2
T T T T T T T
505
H8
450 200 | 325 ‘IDO| 275 |lﬂulll]l)lluq 275 I]UDI 375 m 500 Y. 35795 1 I P 4H25
3000
25
Figure 41 Vollum & Fang (2014) Figure 42 Vollum & Fang (2014)

4.3.1 Geometry and meshing

The main concrete body was meshed into elements 25mm wide and 25.5 mm high. The loading and
support plates of the beam were 50 mm high, and while the loading plate was 150 mm long, the
support plates where 200 and 100 mm long (left and right respectively). The plates were meshed
into elements 25 by 25 mm long. The reinforcement was drawn as 1D lines and assigned the correct
properties.

0.000 267679 535.358 803.037 1070.715
'

L  E— i

Figure 43

4.3.2 Materials and properties

In Vollum’s research, the bearing and loading plates were bedded on to the beam with a thin layer of
mortar. The loading plates were therefor assigned the same properties as the concrete. Three
different material properties were used for the 3 types of reinforcement, matching what was used in
Vollum’s experiments. The material properties are listed in table 8, below. The width of the bearing
plates, loading plates and the concrete was set to 165 mm.
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Material E (MPa) Weight (N/mm3) | Poisson’s Ratio, v | Model Type
Concrete 35600 0.000025 0.2 Elastic

H8 200000 0.000075 0.3 Elastic
Reinforcement

H16 200000 0.000075 0.3 Elastic
Reinforcement

H25 200000 0.000075 0.3 Elastic
Reinforcement

Loading and 35600 0.000025 0.2 Elastic
bearing plates

Table 8

4.3.3 Loading

The effect of a single load was modelled, where the centre of the load was placed at a distance a/d =
1, 1.5, and 2 from the centre of the support. In order to make the model work properly, this
distances was fudged in order for the nodes to align. So the exact a/d-ratios are 1.018, 1.527, 1.980
This gave a, = 275, 500, 700 and a = 440, 675 and 875 respectively.

The load was applied as a pressure acting on the loading plate. The total pressure applied was 25000
N, but it was distributed across the entire loading plate, acting as an edge pressure of 166.7 N/mm?.
This equals the load applied at failure in the experiment.

Figure 44

4.3.4 Constraints

All the bottom nodes of the supports were constrained against displacement in the y and z
directions. Additionally, the central node at the left support is also constrained in the x-direction.

Figure 45
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4.3.5 Model validity
The model functions well, and compressive stresses can be seen accumulating under the loading

plate and at the supports, see figure 47. The reactions at the support are tensile and compressive,
with the compressive stresses closest to the load. Analysis of the reactions at the loads show that

the beam is in static equilibrium, indicating that the model is correctly computed.
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4.3.6 Finite element model results
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Figure 48, 49 and 50 show the vertical stresses distributed throughout the beam. For clarity, only

compressive stresses between up to 2 N/mm? have been shown.
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4.3.7 Distribution of vertical load
A horizontal cut was made at the neutral axis of the b-zone, showing the vertical stresses along the
neutral axis. As expected, the largest concentrations of vertical stresses were found directly under

the load. This stress decreases almost linearly as one moves along the cut, away from the edge of
the load plate.

Figure 50

Sectional analysis of vertical stresses close to the support confirms the assumption made by Mari et
al. (2014). Where the load is 0 at the top fibre, the vertical stresses increase linearly until it reaches
the y-section. However, this relationship breaks down when the section is placed too close to the
support, where the maximum shear stress tends to peak before the y-section. In the area very close
to the support, the model shows vertical stresses in the top fibres. This is unexpected and can
indicate a minor problem with the model. But as this only extends for a short distance from the load,
the model is considered fully functional.
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Section 1

Figure 51

Section 2

Figure 52

Section 3

Figure 53
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The ratio of vertical stresses between the y-section and the neutral axis, ox-ratio vary with the
distance from the load. The ox,-ratio is equal to the vertical stress at the y-section over the vertical

stress at the neutral axis. Figure 55 below show the y-section and the neutral axis, in light and dark

blue, respectively.

Figure 54

The oy,-ratio was plotted in figure 56. From that figure, it can be seen that the oy,-ratio varies
between 1.67 and 0.29. Mari et al (2014) assumed that the oy-ratio is constantly 1, which is only
valid for a small section of the beam. It is close to 1 in a part of the beam, but this area is limited.

This discrepancy can be explained by the fact that Mari et al. (2014) assumes that the area between

the y-axis and the neutral axis is a d-region, where plan section stress cannot be assumed. The
solution of the model is based on a linear analysis, where plane section stresses are assumed.
Therefore, the models prediction of the o,-ratio can be considered invalid for the purpose of

disproving the assumption. A non-linear analysis of the 2D beam would be required to validate that

assumption.
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Conclusions

The predictions of the EC-2 and the model proposed by Mari et al. (2014) have been compared,
using a database of 121 beams to determine which model is the best predictor of shear strength in
beams. 43 of the beams were reinforced by stirrups of different dimensions and 78 of the beams
were without any reinforcement. Additional, a finite element model has been generated in order to
investigate some of the assumptions made in the proposed model. The results allow the following
conclusions to be made.

1)

As the a/d-ratio becomes less than 2.5, the shear strength of beams tend to increase. This is
because lowering this ratio enhances the shear strength of the concrete.

The causes for the increases in shear strength, according to the proposed model, come from
two factors:

3.1-1. Asthe a/d ratio is decreased below 2.5, the load gets closer to the critical section.
This allows the local vertical stresses due to the load to act closer to the critical
shear crack. These vertical stresses compress the crack, increasing aggregate friction
and thus increasing the shear capacity of the crack in the concrete chord.

3.1-2. As a/d becomes less than 2, failure occurs in the d-region where plane section
stresses cannot be assumed. Compressive strength of the concrete chord can
therefore be considered to be much higher than if the failure occurred in the b-
region, where plane section stresses would be assumed instead.

The shear crack that develops is diagonal and occurs between the inner edges of the bearing
and loading plates. As the load approaches the support, the diagonal crack angles itself more
vertically, causing less reinforcement to cross the crack. Because of this, the shear capacity
of the steel is reduced.

The proposed model assumes that failure occurs in the D-region. However, this can be
adapted for cases where failure occurs within B-regions by increasing the depth of the
neutral axis, which is a function of a/d and the vertical compressive stress induced by the
load(s).

A working finite element model has be generated in order to investigate to of the
assumptions made in the model. The first assumption, that the vertical stresses are 0 at the
top fibre and increase linearly to the middle of the concrete chord at y=0.5 x is found to be
true.

The model did not confirm the assumption that vertical stresses remain constant between
the y-axis and the neutral axis. Results showed differences in vertical stresses as one moved
along the beam. However, these results are obtained using linear analysis of the section,
which can be considered to be inapplicable, as the key area are considered to be within the
d-region.



6) The EC-2 and the model proposed by Mari et al. (2014) has been compared to each other,
using a database of 121 beams. The proposed model’s mean predictions are 0.80 and 1.11
for beams with and without stirrups. The respective dispersions on the predictions are
11.6% and 20.4%. The EC-2’s mean predictions were 1.10 and 1.23 for beams with and
without stirrups, with respective dispersions of 36% and 26.4%.

The proposed model compared favourably against the EC-2 for beams with and without
stirrups. However, it has a tendency to overestimate the shear strength of reinforced beams,
which is dangerous.

7) The parametric studies undertaken show that neither the effective depth, a/d-ratio, shear
span, longitudinal reinforcement ratio nor the transverse reinforcement ratio had any effect
on the accuracy of the predictions of either model. This implies that both models have
captured the effect of these values well.

5.2 Future research

The EC-2 allows the use of a strut and tie model for design of short-span beams. Results obtained by
Sagaseta & Vollum (2010) found that the mean prediction of this model (Vexp/Vpred) was 0.90 and
0.79 for beams with and without stirrups. The associated COV were 0.11 and 0.26, which are better
results than that of the predicted model. For future analysis, a comparison between these two
models, would elucidate which is the more preferable model.

A 2D non-linear analysis would take into account the cracking and non-linear stresses and strains
assumed in the model. With such a model, the assumptions in the proposed model can be examined
with more certainty.

The proposed model overestimates the shear strength of beams with stirrups. A detailed into the
contribution of the stirrups can lead to results which can remedy this problem.
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Annex

Annex A

The worked examples presented here are based on beam 3C1-20, found in Smith, K.N. & Vantsiotis,

a S., 1983. Shear strength of Deep Beams. ACl Journal, (79), pp.201-213.

Worked example, model proposed by Mari et al. (2014).
0e=Es/Ec=6.77

p1=0.019

a:* p=0.129

Neutral axis in B-region:

X 2
E—as*pl(—1+ /1+m)—0.40

Neutral axis in D-region:

=24 (1-2)+ (1 - 0.4+ 2)2=0527
X1=160.87 mm

Size effect factor:

7=1.2-(0.2a) = 1.2 — (0.2*4087) = 1.12  ain meters

Shear enhancement due to vertical loads:

_085%xQ;  085%Q; 0.85 * 140786 N
Oev = b(s + a,,;xl) " b(so + ay * %) 102 mm * (101.6mm + 408.7mm * 0.527)
o = 3.70

Angle of crack:

COTO = a, < 0.85xd
T d T d-x
COTO = 408.7mm =134 < 0.85x305mm = 1.804
305 mm 305 mm-161.3mm

Shear strength of steel:
ASW .
Veu=—f,4(d = x) sina (cotf + cota)
s v

64.4 mm?

Vo, = ———*437.5 MPa * (305 mm — 160.87 mm) = 1.34 = 47607.6 N
114.3mm
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Shear strength of concrete:

2

3
X f k su
Veu ==K, [030=% + —~ 4 5| bd
d y. ' b-d
2
V,, =112+ 0.527 x1|0.30 « 2222 #7070 | 370 MPg| x 102 mm * 305 mm
1 102 mmx*305 mm

V. = 1378941 N

Total shear strength:

V, = V., + V= 47564 N +137894 N =140.79 kN
Accuracy of prediction:

Vexp=140.79

Vexp /Vpred=0.757

Worked example, EC-2.

Shear capacity of concrete:

Vaae = (Crack(100 = pifuc)s + kyoey)byyd

Size factor:

200 200
k=(1+ /T) =(1+ /SOSmm)-l.Sl

1
Vege = 0.18 % 1.81 * (100 * 0.019 * 21MPa)3 + 0) * 102 mm * 305 mm

Vege = 348 kN

Shear strength of steel:

Z=0.9*d=0.9 *305=274.5mm

fywa = 437.5
cotd =& = 301mm _q g
h 356 mm
1<cotB< 2.5
cotf=1
v, (ASW t@) 644 mm? 274.5 4375 MPa*1|=67.7kN
= * * ES = —_— % * ES =
Rd,s S Z * fywa * CO 1143 mm Smm . a .



— ( Few*bw*Z*f ca*vy
VRd,s,max - ( cot@+tand )
v =0.6%(1— %’;) =0.6*(1— 2121‘545“) =0.55

Tan 6 =1.009

1102 mm=274.5%x0.85%21 MPax0.55
1+1.009

VRd,s,max = ( ) =137.5

Total shear strength:

VRd = Max (VRd,C' VRd,S)= 137.5

Accuracy of prediction:

Vexp =140.5 kN

V., 140.5
P _ " 105
Vorea  137.5
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Annex B

Beam data base.

. Vex Vpred Vpred Vexp/Vpred Vexp/Vpred d a w | fck
Specimen Id (kNI; EC; (kN) Mafi (kN) pécp pM/ar? s 2 ?%) (;,) (MPa)
Cossio & Siess, 1960
L-1 116.1 64.5 83.6 1.80 1.39 252.0 2.01 506.5 0.00 3.36 21.0
A-1 73.4 56.6 74.7 1.30 0.98 254.0 2.00 508.0 0.00 0.98 28.1
A-11 103.4 71.9 119.3 1.44 0.87 254.0 2.00 508.0 0.00 3.30 28.3
D-14 90.3 51.6 46.0 1.75 1.96 252.0 2.21 5569 0.00 1.01 321
D-5 122.8 94.5 75.1 1.30 1.63 276.0 152 4195 0.00 135 2538
D-4 117.0 66.4 66.8 1.76 1.75 252.0 2.21 5569 0.00 2.21 346
Kani,1966, 1967
23 163.8 108.5 119.5 1.51 1.37 271.0 150 406.5 0.00 1.87 26.9
24 182.0 109.9 127.3 1.66 1.43 271.0 150 406.5 0.00 1.87 279
25 104.1 68.7 76.9 1.52 1.35 271.0 2.00 542.0 0.00 1.87 24.6
26 78.1 71.0 72.2 1.10 1.08 271.0 2.00 5420 0.00 1.87 27.1
27 514 54.4 60.8 0.94 0.84 271.0 250 6775 0.00 1.88 29.8
28 54.3 54.0 60.9 1.00 0.89 271.0 250 6775 0.00 1.88 29.2
85 233.6 208.9 205.1 1.12 1.14 2740 099 271.3 0.00 2.69 255
87 239.6 210.5 206.6 1.14 1.16 269.0 1.01 271.7 0.00 2.72 27.2
88 359.8 217.5 272.4 1.65 1.32 266.0 1.02 271.3 0.00 2.81 314
94 110.6 72.1 88.9 1.53 1.24 273.0 199 543.3 0.00 2.77 253
95 72.8 54.2 70.5 1.34 1.03 275.0 247 679.3 0.00 2.75 253
98 76.3 54.8 71.8 1.39 1.06 275.0 2.47 679.3 0.00 2.68 26.2
99 77.2 53.7 71.8 1.44 1.07 2746 250 686.5 0.00 2.73 26.2
100 111.9 72.0 89.9 1.55 1.25 270.0 2.02 5454 0.00 2.75 27.2




. Vex Vpred Vpred Vexp/Vpred Vexp/Vpred d a w | fck
Speapsne (kNI; EC;(kN) e (kN) pécp pM/ar? ) 2 gy ?%) (;,) (MPa)
Kani 1966, 1967
102 488 509 46.7 0.96 105 2600 2.02 5434 000 076 253
105 415 363 37.1 1.14 112 2718 250 6795 000 077 21.2
108 147.1 148.2 134.0 0.99 1.10 269.0 1.01 271.7 0.00 0.76 25.0
109 719 790 69.9 0.91 103 2710 150 4065 0.00 076 250
111 43.3 39.7 41.5 1.09 1.04 272.0 2.49 677.3 0.00 0.76 27.0
112 394 398 40.7 0.99 097 2730 248 677.0 000 076 27.0
113 87.2 80.3 76.4 1.09 1.14 274.0 1.49 408.3 0.00 0.77 25.5
115 614 388 443 1.58 139 2715 250 6788 000 077 26.2
127 201.4 170.5 159.2 1.18 1.27 271.0 1.00 271.0 0.00 1.81 15.7
129 1433 968 101.4 1.48 141 2750 148 4070 000 178 17.6
131 49.6 46.3 48.8 1.07 1.02 2740 2.48 679.5 0.00 1.85 18.1
134 599  62.0 56.8 0.97 105 2730 199 5433 000 181 17.4
135 76.8 61.0 61.1 1.26 1.26 2740 198 5425 0.00 1.86 17.4
141 487 472 42.7 1.03 114 2700 201 5427 000 081 19.3
142 583 498 46.9 117 124 2760 1.97 5437 000 077 19.3
145 825 641 61.1 1.29 135 2730 155 4232 000 073 16.2
146 127.7 127.6 111.3 1.00 1.15 272.0 1.00 272.0 0.00 0.73 16.2
147 423 358 34.8 118 121 2870 236 6773 000 070 168
148 799 746 68.0 1.07 117 2740 1.49 4083 000 079 19.9
149 437 345 353 1.27 124 2715 250 6788 0.00 078 18.0
150 462 349 35.9 1.32 129 2730 248 6770 0.00 077 18.0
151 356 359 35.1 0.99 101 2730 249 6798 000 078 19.3
162 500 580 56.8 1.02 104 2720 199 5413 000 077 343
163 405 441 46.6 0.92 0.87 2730 249 679.8 000 076 354
167 1284 1704 146.1 0.75 0.88 2740 099 2713 000 076 36.4
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. Vex Vpred Vpred Vexp/Vpred Vexp/Vpred d a w | fck
Specimen Id (kNI; e (kN) e (kN) pécp pM/ar? ) 2 ?%) (;,) (MPa)
169 128.4 168.2 145.0 0.76 0.89 274.0 099 2713 0.00 0.76 364
178 67.2 76.6 71.0 0.88 0.95 269.0 1.51 406.2 0.00 0.52 345
181 65.2 76.5 75.3 0.85 0.87 272.0 2.00 5440 0.00 1.79 339
183 260.3 221.9 220.9 1.17 1.18 269.0 1.01 271.7 0.00 180 354
184 163.3 118.6 129.1 1.38 1.26 271.0 150 406.5 0.00 1.80 35.1
188 92.6 77.6 83.5 1.19 1.11 277.0 196 5429 0.00 1.76 33.1
193 56.7 59.3 67.3 0.96 0.84 278.0 2.44 6783 0.00 1.80 34.6
197 534 57.7 66.1 0.92 0.81 2740 248 6795 0.00 184 36.0
199 76.8 78.2 80.6 0.98 0.95 273.0 199 543.3 0.00 1.83 36.0
201 253.7 234.1 233.2 1.08 1.09 2740 099 2713 0.00 2.65 35.2
203 357.6 224.9 278.5 1.59 1.28 268.0 1.01 270.7 0.00 2.75 34.8
204 147.1 81.0 110.3 1.82 1.33 275.0 197 541.8 0.00 2.69 34.8
205 125.5 81.3 104.2 1.54 1.20 275.0 198 5445 0.00 2.66 35.2
210 79.0 59.8 81.8 1.32 0.96 271.8 250 679.5 0.00 2.73 35.2
249 83.6 134.7 108.0 0.62 0.77 276.0 098 270.5 0.00 0.49 28.0
250 54.7 71.8 62.5 0.76 0.88 274.0 149 408.3 0.00 0.50 28.0
251 41.9 46.5 414 0.90 1.01 276.0 197 543.7 0.00 0.48 26.2
265 53.0 61.7 51.0 0.86 1.04 269.0 151 406.2 0.00 0.52 18.1
266 32.5 30.2 28.2 1.08 1.15 272.0 248 674.6 0.00 050 18.1
269 89.0 116.6 93.5 0.76 0.95 2740 099 271.3 0.00 0.49 18.1
270 41.4 41.8 36.5 0.99 1.14 273.0 199 543.3 0.00 050 20.1
162' 62.1 56.1 55.8 1.11 1.11 267.0 2.03 5419 0.00 0.76 34.3
163' 38.0 43.6 459 0.87 0.83 271.8 250 679.5 0.00 0.78 354
Smith & Vantsiotis, 1983

0A0-44 139.5 138.1 164.3 1.01 0.85 305.0 0.77 2349 0.00 1.94 20.5
0A0-48 136.1 139.1 162.3 0.98 0.84 305.0 0.77 2349 0.00 194 209
1A1-10 161.2 135.3 194.4 1.19 0.83 305.0 0.77 2349 0.28 194 18.7
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. Vex Vpred Vpred Vexp/Vpred Vexp/Vpred d a w | fck
Specimen Id (kNI; e (kN) e (kN) pécp pM/ar? ) 2 ?%) (;,) (MPa)
Smith & Vantsiotis, 1983

1A3-11 148.3 135.3 183.2 1.10 0.81 305.0 0.77 2349 0.28 194 18.0
1A4-12 141.2 135.3 174.1 1.04 0.81 305.0 0.77 2349 0.28 194 16.1
1A4-51 170.9 138.2 205.2 1.24 0.83 305.0 0.77 2349 0.28 194 20.5
1A6-37 184.1 1394 216.3 1.32 0.85 305.0 0.77 2349 0.28 194 211
0B0-49 149.0 104.0 143.2 1.43 1.04 305.0 1.01 308.1 0.00 194 21.7
1B1-01 147.5 104.6 164.2 1.41 0.90 305.0 1.01 308.1 0.24 194 221
1B3-29 143.6 101.4 159.0 1.42 0.90 305.0 1.01 308.1 0.24 194 20.1
1B4-30 140.3 102.6 158.0 1.37 0.89 305.0 1.01 308.1 0.24 194 20.8
1B6-31 153.4 100.4 164.2 1.53 0.93 305.0 1.01 308.1 0.24 194 195
2B1-05 129.0 149.9 164.5 0.86 0.78 305.0 1.01 308.1 0.41 194 19.2
2B3-06 131.2 149.9 165.6 0.88 0.79 3050 1.01 308.1 0.41 194 19.0
2B4-07 126.1 149.9 160.0 0.84 0.79 305.0 1.01 308.1 0.41 194 175
2B4-52 149.9 149.9 181.5 1.00 0.83 305.0 1.01 308.1 0.41 194 21.8
2B6-32 145.2 149.9 175.5 0.97 0.83 305.0 1.01 308.1 0.41 194 19.8
3B1-08 130.8 224.9 179.4 0.58 0.73 305.0 1.01 308.1 0.62 194 16.2
3B1-36 159.0 276.8 216.7 0.57 0.73 305.0 1.01 308.1 0.76 194 204
3B3-33 158.4 276.8 214.1 0.57 0.74 305.0 1.01 308.1 0.76 1.94 19.0
3B4-34 155.0 276.8 212.4 0.56 0.73 305.0 1.01 308.1 0.76 1.94 19.2
3B6-35 166.1 276.8 221.6 0.60 0.75 305.0 1.01 308.1 0.76 1.94 20.6
0C0-50 115.7 68.8 97.3 1.68 1.19 305.0 1.34 408.7 0.00 1.94 20.7
1C1-14 119.0 67.2 121.5 1.77 0.98 305.0 1.34 408.7 0.18 194 19.2
1C3-02 123.4 70.1 126.8 1.76 0.97 305.0 1.34 408.7 0.18 194 219
1C4-15 131.0 70.9 131.4 1.85 1.00 305.0 1.34 408.7 0.18 1.94 22.7
1C6-16 122.3 70.0 126.1 1.75 0.97 305.0 1.34 408.7 0.18 194 21.8
2C1-17 124.1 75.6 142.9 1.64 0.87 305.0 1.34 408.7 0.31 194 199
2C3-03 103.6 75.6 132.2 1.37 0.78 305.0 1.34 408.7 0.31 194 19.2
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. Vex Vpred Vpred Vexp/Vpred Vexp/Vpred d a w | fck

Specimen Id (kNI; e (kN) e (kN) pécp pM/ar? ) 2 ?%) (;,) (MPa)
Smith & Vantsiotis, 1983
2C3-27 115.3 75.6 137.9 1.53 0.84 305.0 1.34 408.7 0.31 194 193
2C4-18 124.6 75.6 143.8 1.65 0.87 305.0 1.34 408.7 031 194 204
2C6-19 124.1 75.6 144.0 1.64 0.86 305.0 1.34 408.7 0.31 194 20.8
3C1-20 140.8 134.4 185.5 1.05 0.76 305.0 1.34 408.7 0.55 194 21.0
3C3-21 125.0 134.4 171.7 0.93 0.73 305.0 1.34 408.7 0.55 194 16.5
3C4-22 127.7 134.4 175.4 0.95 0.73 305.0 1.34 408.7 0.55 194 183
3C6-23 137.2 134.4 181.1 1.02 0.76 305.0 1.34 408.7 0.55 194 19.0
4C1-24 146.6 186.1 215.4 0.79 0.68 305.0 1.34 408.7 0.76 194 19.6
4C3-04 128.6 151.2 185.7 0.85 0.69 305.0 1.34 408.7 0.62 194 185
4C3-28 152.4 186.1 217.7 0.82 0.70 305.0 1.34 408.7 0.76 194 19.2
4C4-25 152.6 186.1 216.7 0.82 0.70 305.0 1.34 408.7 0.76 194 185
4C6-26 159.5 186.1 223.9 0.86 0.71 305.0 1.34 408.7 0.76 194 21.2
0DO0-47 73.4 40.5 55.0 1.81 1.34 305.0 2.01 613.1 0.00 194 195
4D1-13 87.4 86.9 150.7 1.01 0.58 305.0 2.01 613.1 0.41 194 16.1
Vollum & Fang, 2014

B1-25 184.0 105.5 275.3 1.74 0.67 462.5 1.84 850.0 0.00 2.69 45.7
B1-50 176.0 104.7 250.7 1.68 0.70 4375 194 850.0 0.00 2.69 45.7
B2-25 488.5 227.3 529.4 2.15 0.92 462.5 1.03 475.0 0.00 2.69 45.7
B2-50 464.5 247.7 478.7 1.88 0.97 4375 1.09 475.0 0.00 2.69 45.7
A-2 174.5 123.8 176.7 1.41 0.99 442 192 850.0 0.00 2.69 35.6
S$1-2 300.5 260.7 419.8 1.15 0.72 442 192 850.0 0.30 2.69 35.6
S2-2 410.0 260.7 437.9 1.57 0.94 442 192 850.0 0.42 269 35.6
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