
Completion time minimization for
distributed feature extraction in a visual

sensor network testbed

JORDI SERRA TORRENS

Master’s Degree Project
Stockholm, Sweden November 2014

XR-EE-LCN 2014:010

Abstract

Real-time detection and extraction of visual features in wireless sensor
networks is a challenging task due to its computational complexity and
the limited processing power of the nodes. A promising approach is to
distribute the workload to other nodes of the network by delegating the
processing of different regions of the image to different nodes. In this
work a solution to optimally schedule the loads assigned to each node is
implemented on a real visual sensor network testbed. To minimize the
time required to process an image, the size of the subareas assigned to
the cooperators are calculated by solving a linear programming problem
taking into account the transmission and processing speed of the nodes
and the spatial distribution of the visual features. In order to minimize
the global workload, an optimal detection threshold is predicted such that
only the most significant features are extracted. The solution is imple-
mented on a visual sensor network testbed consisting of BeagleBone Black
computers capable of communicating over IEEE 802.11. The capabilities
of the testbed are also extended by adapting a reliable transmission pro-
tocol based on UDP capable of multicast transmission. The performance
of the implemented algorithms is evaluated on the testbed.

1

2

Contents
1 Introduction 5

1.1 Methodology . 5
1.2 Report structure . 6

2 Background 7
2.1 Wireless Sensor Networks . 7
2.2 Visual Sensor Networks . 7
2.3 Visual feature extraction . 8

2.3.1 SURF . 8
2.3.2 BRISK . 9

2.4 Distributed feature extraction in VSNs 10
2.4.1 Delegation of interest point detection 10
2.4.2 Delegation of processing steps 11
2.4.3 Recent work on distributed feature extraction in VSNs . . 12

2.5 Divisible Load Theory . 13
2.6 Linear programming . 14

2.6.1 Special Ordered Sets . 14
2.6.2 Approximating non-linear functions as piecewise-linear func-

tions . 14
2.7 ASN.1 . 15

2.7.1 Data types . 16
2.7.2 Basic Encoding Rules (BER) 16
2.7.3 Distinguished Encoding Rules (DER) 17
2.7.4 Packed Encoding Rules (PER) 17

2.8 System software . 17
2.8.1 lp_solve . 17
2.8.2 OpenCV . 18
2.8.3 ASN.1 compiler . 18

2.9 Testbed hardware . 18
2.9.1 BeagleBone Black . 18
2.9.2 IEEE 802.11 WiFi module 20
2.9.3 IEEE 802.15.4 TelosB module 20

3 System design 21
3.1 System description . 21
3.2 Optimal cut-point locations . 22

3.2.1 Problem formulation . 22
3.2.2 Unicast-only formulation 26
3.2.3 Interest point spatial distribution estimation 26
3.2.4 Implementation in linear programming 27

3.3 Processing nodes scheduling . 29
3.4 Detection threshold . 29

3.4.1 Threshold reconstruction 30
3.4.2 Threshold prediction . 31

3.5 Performance parameters estimation 31
3.5.1 Transmission speed estimation 32
3.5.2 Processing speed estimation 32

3

4 Previous testbed 34
4.1 Class structure . 34
4.2 Message exchanges . 35

5 System Implementation 38
5.1 DATC offloading workflow . 38
5.2 Class layout . 40

5.2.1 OffloadingManager . 40
5.2.2 LoadBalancing . 40
5.2.3 LoadBalancingConfig . 41
5.2.4 ProcessingSpeedEstimator 43
5.2.5 TxSpeedEstimator . 44

5.3 UDP-based reliable communication module 45
5.4 Slice stitching logic . 45

6 Experimental results 46
6.1 Execution time of the optimization algorithm 46
6.2 Execution time of the least-squares fit 46
6.3 Processing speed and transmission throughput 46
6.4 Completion time . 47

6.4.1 Unicast offloading . 48
6.4.2 Multicast offloading . 49

6.5 Number of interest points detected 52

7 Conclusion and future work 55
7.1 Conclusion . 55
7.2 Future work . 55

Appendices 59

A ASN.1 definitions of the messages 59

4

1 Introduction
Computer vision has many applications such as object tracking, object recog-
nition and classification, automatic surveillance, robot navigation and many
more. With the recent advances on image sensors and the emergence of low-
cost cameras, visual sensor networks have started to gain attention. Visual
sensor networks consist of low-powered nodes that incorporate low-cost cam-
eras. The sensors are typically autonomous, powered by a battery or energy
harvesting, and include a wireless communication module. They are able to
establish network topologies such as mesh networks and collaborate to route
packets to their destination. The nodes can run unattended for long periods of
time in areas where physical access is difficult. They are capable of capturing
images and forwarding them to other nodes or to a central location for analy-
sis and typically present little processing power. This has encouraged a lot of
research in the area and has opened a wide range of applications. For instance,
large number of nodes can be deployed in remote locations to perform surveil-
lance of large areas. Then, alerts can be generated automatically on certain
events, greatly reducing the amount of human resources that would otherwise
be needed to monitor large areas. If the information from multiple cameras is
combined, moving objects can be automatically tracked along their path. If an
object is seen from multiple angles, a 3D reconstruction of the scene can be
done.

Due to the nature of visual information, visual sensor networks present higher
bandwidth and processing requirements than other types of sensor networks. Be-
cause of this, combined with the limited computational power of the nodes, the
processing has to be done either in a central location with large processing power
or inside the sensor network by the nodes following a collaborative scheme. The
distributed processing approach can decrease the processing delay and lowers
the bandwidth requirements, as the image does not need to be transmitted to
a central location, which could be located multiple network hops away. In this
thesis, the approach is to distribute the processing tasks by splitting the images
in multiple regions and assigning their processing to different nodes. However,
the task of distributing the workload in an optimal way is challenging. The size
of each one of the regions, the scheduling of the nodes and other parameters
need to be determined in real time.

The main focus of this thesis is to develop and implement a load balancing
strategy on a visual sensor testbed. The objective is to achieve real-time analysis
of captured video by optimally distributing the workload among multiple nodes
of the sensor network.

1.1 Methodology
The first stage of this work was to study multiple areas relevant to our problem
and the testbed. It includes the basics of visual sensor networks, visual feature
extraction and the specific detectors implemented on our testbed (SURF and
BRISK). Regarding the distribution of processing loads, topics such as divisible
load theory, linear programming, predictors and regression models were studied.
Other topics were the ASN.1 syntax and PER encoding, multi-threading and
ad-hoc wireless networks. The recent literature on distributed visual feature
extraction was reviewed, which includes the motivation for the solution imple-

5

mented in this thesis. A linear programming solver software was chosen and the
solution implemented on it. Following that the testbed that serves as a basis for
this work was studied. In order to support multicast communication between
the nodes, which is required by the offloading mechanism, the original TCP-
based communication module of the testbed had to be replaced by adapting a
reliable communication module developed for a previous version of the testbed.
At this point the main work of this thesis was ready to be implemented on the
testbed. Following that came the evaluation of its performance on the testbed.

1.2 Report structure
The rest of the report is organized as follows. Section 2 presents a background
on multiple topics underlying this thesis. It describes concepts of visual sen-
sor networks, computer vision, distributed computing and linear programming.
Section 3 states the workload balancing problem and describes its solution. Sec-
tion 4 includes a description of the base testbed on which the work of this thesis
is implemented. In Section 5 the implementation of the solution and the inter-
action with the rest of the testbed are detailed. In Section 6 the performance
of proposed solution is evaluated on the testbed.

6

2 Background

2.1 Wireless Sensor Networks
A Wireless Sensor Network (WSN) is a network consisting of multiple au-
tonomous spatially-distributed nodes, which gather information from their sen-
sors and cooperatively relay this information to a central location. The nodes
are typically battery operated, low-cost and low-powered devices consisting of
a sensor, a microprocessor, a small amount of memory and a wireless commu-
nication interface. In some systems the nodes can be powered by solar panels.

Wireless Sensor Networks are typically deployed in remote locations where
physical access is difficult, to monitor environmental parameters such as tem-
perature, atmospheric pressure or humidity. The measured data can be used
for scientific purposes, as well as, for example, generate alerts when a forest fire
or a flood is detected. Another type of sensor could be motion sensors, which
can be used to detect intrusions in the monitored area.

The nodes can form wireless communication networks of different complexity,
ranging from simple star topologies to multi-hop mesh networks, which can
route information from the remote nodes to a central location. The nodes have
typically low computational power, which can be used to process the information
within the network.

WSNs can be classified as homogeneous if all the nodes consist of the same
hardware and characteristics, or heterogeneous if there are different types of
nodes. An example of a heterogeneous WSN could be a network where some
nodes include sensors and some other nodes don’t include any sensor and are
only used to relay information from the sensor nodes.

2.2 Visual Sensor Networks
Visual Sensor Networks (VSN) are a type of Wireless Sensor Network where the
sensor nodes include cameras which are capable of acquiring visual information.
VSNs can perform a wide range of computer vision tasks, such as object recog-
nition, target tracking, 3D reconstruction and area surveillance. Examples of
the application of these techniques could be traffic monitoring and remote area
surveillance.

Because visual sensors produce larger amounts of information than other
types of sensors, visual sensor networks typically present higher processing power
and larger transmission bandwidth compared to other wireless sensor networks.
As a result, nodes in VSN are more expensive and have higher energy consump-
tion, which presents a series of challenges.

VSNs can be classified in two groups. A VSN can consist of cheap camera
nodes that simply capture images and forward them to a more powerful central
node, where image analysis is performed. This approach requires significant
transmission bandwidth. A VSN can also consist of more expensive nodes ca-
pable of performing image analysis locally and communicating the results to a
central node. This reduces the bandwidth requirements. Moreover, nodes in
the VSN can cooperate in order to perform distributed image analysis, which
further reduces the bandwidth requirements and processing delay. This consti-
tutes a promising solution that could allow real-time visual analysis of video
sequences.

7

In [1], an exhaustive review of the unique characteristics and challenges of
VSNs is presented.

2.3 Visual feature extraction
Visual feature extraction is a computer vision technique consisting of detecting
important regions of an image and extracting relevant information to describe
them. This information can be used for multiple purposes, such as object recog-
nition and matching, target tracking or 3D scene reconstruction.

The process can be divided in three different steps: keypoint detection,
descriptor extraction and descriptor matching.

The first step, keypoint detection, consists in analyzing the pixel data of an
image and selecting salient points based on changes of the brightness of their
surrounding pixels.

In the second step, descriptor extraction, each one of the previously obtained
keypoints is analyzed and its descriptor is obtained. A feature descriptor is a
vector that summarizes the relevant information of a keypoint, which allows us
to identify and compare keypoints.

Finally, descriptor matching is performed, which consists in comparing the
obtained descriptors against the ones obtained from another image or against a
database. By finding matching descriptors and their locations, one can track an
object over a sequence of images. By matching the detected descriptors against
a database, one can identify and classify the objects in view.

Desirable properties of local descriptors are invariance to rotation, scale,
illumination, translation, as well as robustness to noise. Descriptors need to
be distinctive for different keypoints and repeatable in order to detect multiple
occurrences of keypoints or objects. Limited processing complexity can also be
a desirable property. In some applications real-time performance is required.

There exist many different algorithms to detect keypoints and extract their
feature descriptors such as Scale-Invariant Feature Transform (SIFT) [2], Speeded
Up Robust Features (SURF) [3], Features from Accelerated Segment Test (FAST)
[4], Binary Robust Independent Elementary Features (BRIEF) [5] or Binary Ro-
bust Invariant Scalable Keypoints (BRISK) [6]. In [7] and [8] different algorithms
are evaluated both in terms of visual analysis accuracy and computational per-
formance. The experimental results show that detectors based on binary de-
scriptors, such as BRISK and BRIEF, present a significant speed-up respect to
SURF and SIFT, while maintaining a comparable precision/recall. It is shown
that binary descriptors constitute a very good technique for time-constrained
applications.

The algorithm implemented on our testbed is BRISK. The SURF algorithm
was used in a previous version of the testbed. In the following sections an
overview of the two detectors is provided.

2.3.1 SURF

Speeded Up Robust Features (SURF) [3] is a scale and rotation-invariant detector
and descriptor. The interest point detection is based on a blob detector, which
uses a simple Hessian-matrix approximation to detect intensity changes in the
image. This can be computed very efficiently using integral images.

8

To detect the interest points, for each point x = (x, y) in the image I, the
Hessian matrix H(x, σ) is calculated with different filter sizes.

H(x, σ) =
[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
,

where Lxx(x, σ) is the convolution of the Gaussian second-order derivative ∂2

∂x2 g(σ)
with image I at point x. Lxy(x, σ), Lyx(x, σ) and Lyy(x, σ) are defined simi-
larly. The Gaussian second-order derivatives are approximated as box filters,
which can only take the discrete values −1 and 1 and can be calculated very
efficiently when using integral images. The box filter approximation of Lxx(x, σ)
is denoted as Dxx(x, σ), and Dxy(x, σ), Dyx(x, σ) and Dyy(x, σ) can be defined
similarly.

The response score is then calculated as the determinant of the approximated
Hessian matrix:

det(Happrox) = DxxDyy − (wDxy)
2

A region is considered to be an interest point if its score is higher than a
particular detection threshold value. The process is repeated for different σ
values, which define different filter sizes according to an octave structure. To
select the interest points and their scale, the responses are interpolated between
neighboring octave layers.

To find the orientation of each interest point, the Haar wavelet responses
within a circular neighborhood are calculated in the x and y direction and then
weighted by a Gaussian centered at the interest point. Finally, for each interest
point a descriptor is calculated. Descriptors describe the intensity distribution
of the neighboring pixels around the interest point. To calculate them, a squared
region centered around the interest point and oriented according to the previ-
ously calculated orientation is constructed. This region is divided into smaller
4x4 sub-regions. For each subregion, the Haar wavelet response is calculated
at 5x5 regularly spaced sample points, weighted by a Gaussian centered at the
interest point. We denote dx as the Haar wavelet response in the horizontal
direction, according to the orientation, and dy for the vertical direction. Then,
for each subregion we obtain a four-dimensional vector of floating point values
v = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|). We compute this vector for each one of the 16

subregions, obtaining a 64 element long descriptor.

2.3.2 BRISK

Binary Robust Invariant Scalable Keypoints (BRISK) [6] is a method for fast
feature detection, description and matching. It achieves image analysis perfor-
mance comparable to SURF while presenting much lower computational com-
plexity.

Unlike SURF, which uses floating point descriptors, BRISK uses binary de-
scriptors. Binary descriptors are very fast to compute and have low memory
requirements. This makes BRISK a very good candidate for time constrained
applications such as real-time systems, or systems with energy constraints.

Interest point detection is done by the FAST 9-16 detector [4], which is a
corner detector. This detector identifies an interest point if at least 9 consecutive
pixels in a 16-pixel circle are sufficiently brighter of darker than the central pixel.
This process is applied for each one of the octaves and intra-octaves. To find

9

the scale of a feature, its score at the layer of the interest point is compared to
the score at the layers above and below. A quadratic function is fitted in the
scale axis and its maximum is found, thus obtaining the final scale and score.

Scale invariance is achieved by selecting the scale where the score of a key-
point is highest. The scale-space consists of n octaves, denoted ci, and n intra-
octaves, denoted di, for i ∈ {0, 1, . . . n−1}. Typically n = 4. The original image
is denoted c0, and the next octaves are formed by repeatedly halfsampling the
original image. The intra-octaves are located between successive octaves ci and
ci+1. The first intra-octave is formed by downsampling the original image by
a factor of 1.5 and the following ones are formed by halfsampling the previous
one.

The BRISK descriptor is a binary string resulting from simple brightness
comparisons around the feature following a sampling pattern, with orientation
normalization to provide rotation invariance. The resulting bit string has a
length of 512 bits, with each bit corresponding to the result of a brightness
comparison. Descriptor matching can be performed very efficiently as a simple
Hamming distance, which is a measure of the similarity between two keypoints.

In [9] an optimized version of BRISK tailored to low-power ARM architec-
tures is proposed, allowing energy savings close to 30% respect to the original
implementation.

2.4 Distributed feature extraction in VSNs
If the nodes of a VSN have significant processing capabilities, the task of visual
feature extraction can be distributed among them. This constitutes a low cost
solution for performing visual analysis with lower processing delay and it allows
to balance the power consumption of the nodes. As the processing is performed
inside the VSN, the bandwidth requirements are lower because now only the
descriptors will be transmitted to the server, instead of the pixel data.

The camera node captures an image and distributes the workload among
other nodes of the VSN, referred as processing nodes or cooperators. When the
computations are completed, the processing nodes transfer the descriptors to
the server. The distributed computation is completed once all the nodes have
finished their part. Typically, the optimal distribution is that where all the
processing nodes finish their share of the task at the same time [10]. Therefore,
in order to minimize the completion time, the distribution of the task must be
done in an optimal way, which is a challenging task.

In the following sections different ways to delegate the detection and extrac-
tion of interest points are described.

2.4.1 Delegation of interest point detection

The detection of interest points can be delegated to the processing nodes in
three different ways, as proposed in [11]:

• Area-split:

Each node detects the interest points of an area of the image. In order to
detect the interest points near the border of a region, some pixels of the
neighboring region need to be known. This defines an overlapping area
that needs to be transmitted to both nodes. If we consider unicast links,

10

the overlapping area will have to be transmitted more than once. If mul-
ticast transmission is possible, it can be used to transmit the overlapping
areas, while the non-overlapping areas are transmitted by unicast.

The width of the overlap is defined by the size of the largest interest area,
which depends on the largest expected scale. In SURF the overlap width
is
√
2 · 10 times the largest expected scale [11]. In BRISK, the FAST

detector looks at a circle with a radius of 3 pixels plus the central pixel.
The original image is downsampled 24 times to obtain the largest scale,
therefore the width of the overlapping region is 168 pixels.

• Scale-split:

Each node detects all the interest points at one of the octave layers. The
complete image needs to be transmitted to all the nodes.

• Hybrid-split:

The distribution is done both in terms of area and scale.

The workload for each node will depend on the spatial distribution of the interest
points, in the case of area-split; on the distribution across the octaves, in the
case of scale-split; or on both, in the case of hybrid-split. In [11], the statistical
characteristics of the distribution of the interest points are studied. It is shown
that the distribution of the location and the scale of the interest points vary
significantly between images and in order to allocate the processing in a balanced
way, a-priori information on the image characteristics is required.

2.4.2 Delegation of processing steps

As proposed in [11], the delegation of the workload from the camera node to the
processing nodes can be classified by the degree of involvement of the camera
node.

• No Detection / No Extraction (ND/NE)

The camera node does not perform any processing. The entire image
is sent to the processing nodes, where detection and extraction are per-
formed. The task can be divided by area-split, scale-split or hybrid-split.

• Partial Detection / Partial Extraction (PD/PE)

The camera node detects and extracts some of the interest points. The
rest are detected and extracted by the processing nodes. The distribution
can be done by area, scale or both.

• Complete Detection / No Extraction (CD/NE)

All the interest points are detected by the camera node but their de-
scriptors are extracted by the processing nodes. Orientation can also be
calculated by the camera node, which can reduce the number of pixels
that need to be transmitted to the cooperators. Because the camera node
knows the location and the scale of the interest points, only the pixel data
relevant to their extraction needs to be transmitted. The load distribution
among the nodes can be easily done.

11

• Complete Detection / Partial Extraction (CD/PE)

All the interest points are detected at the camera node and some of their
descriptors are extracted. The rest of the descriptors are extracted by the
processing nodes.

2.4.3 Recent work on distributed feature extraction in VSNs

The challenges of distributed processing of image content in VSNs have been
addressed from multiple sides in the recent literature. The main issues we are
faced with are the constraints on transmission bandwidth, processing power and
power consumption.

In order to minimize the amount of bits required to send an image to another
node, [12] proposes a JPEG quantization table optimized for feature extraction.
Their results show an improvement over the default JPEG table in terms of
image analysis performance. In [13] the authors analyze different video com-
pression techniques for VSNs from the energy efficiency viewpoint. They study
both inter- and intra-frame encoding schemes. Their results show that while
inter-frame encoding achieves higher compression rates, it does so at the ex-
pense of increased energy consumption, which is not suitable for low-powered
nodes. In order to minimize the size of the descriptors that need to be transmit-
ted, [14] proposes a lossless entropy coding scheme. The authors also propose a
strategy to select only the most discriminative pairwise comparisons for build-
ing the binary descriptors and evaluate their discriminative performance as a
function of the number of bits needed for each descriptor. [15] proposes a rate-
accuracy model to maximize the network lifetime subject to a target accuracy,
based on the number of selected features, the number of bits used for their
quantization and the selection of only a subset of the features. In [16] the au-
thors consider the compression of the descriptors for video sequences by means
of inter-frame and intra-frame coding. Their results also show that processing
the visual information locally outperforms transmitting it to a central node for
processing. In [17] the aim is to minimize the amount of information that needs
to be exchanged between the nodes for matching objects seen by different cam-
eras at different times. A hierarchical distribution of the feature knowledge is
proposed, and queries are routed accordingly to the nodes that have the full in-
formation stored locally. In [18] the authors aim to extend the network lifetime
by deploying a Gaussian distributed relay network in addition to an already
deployed VSN.

In [11] the statistical characteristics of SURF and BRISK interest points are
studied, with the aim of evaluating the possibility of distributing their extraction
in a distributed system. The results show that in order to properly balance the
workload among the nodes, a-priori information of the image characteristics
needs to be obtained. Following these results, in [19] a prediction scheme is
proposed for obtaining a detection threshold that results in the extraction of
a target number of interest points in a VSN. In addition to this, in [20] the
authors present a linear programming model for obtaining the optimal workload
distribution in an area-split scheme.

12

2.5 Divisible Load Theory
In distributed systems, we can exploit data parallelism to process large com-
putational loads by partitioning the data and assigning each part to a different
processor. Divisible load theory aims to obtain the optimal scheduling that
results in minimal completion time [10], [21].

Loads can be classified depending on whether they can be divided in smaller
loads or not. This is referred as divisibility property. Loads are indivisible when
they can’t be further divided in smaller tasks and therefore they have to be
processed by a single processor. Loads are modularly divisible when they can be
divided in smaller modules based on some characteristic. Loads are arbitrarily
divisible when they can be divided in any number of parts requiring the same
type of processing.

There may exist precedence relations between load fractions. In the case
where no such dependencies exist, loads are said to be independent.

We are interested in independent arbitrarily divisible loads, which is the case
for visual feature extraction. Images can be split in a number of regions and
each one of them is analyzed by a different processor.

The processing of a task is completed when all of its fractions have been
processed. To minimize the completion time, the goal is to obtain the optimal
size of each partition of the load and the scheduling order. Completion time
is minimized when all the processors finish their share of the job at the same
instant. Intuitively, we can see that if one of the processors completes its task
before the others, another task distribution can be found where this node will
take some of the work assigned to the other processors, resulting in a faster
completion time.

When we consider a network computing environment, instead of a parallel
processing environment with shared memory, we have to take into account the
communication delays. The solution also depends on the network topology and
whether the nodes are equipped with a front-end or not. When equipped with
a front-end, nodes can process their part of the load while simultaneously trans-
mitting data to another node. Without a front-end, a node will first transmit
the corresponding data to the other nodes before starting to process its own
load. The transmission of the loads is typically done in a sequential way, where
a processor only receives its share of the load after the previous processor has
received its share. In some systems, the originator node simply transmits the
data to the processors but does not perform any processing. In many applica-
tions, the transmission time of the results from the processors to the originator
node is not considered, as it can be considered negligible.

In [22] the authors propose a uniform multi-round scheduling algorithm,
which aims to decrease the latency when transmitting the data to the processors
by transmitting smaller chunks of work in multiple rounds, so that reception
and processing can overlap in the processing nodes.

In [23] the authors propose an stochastic analysis for time-varying systems
where the processing and bandwidth capabilities vary due to external load in
the system. [24] addresses divisible loads in real-time systems. In [25] a linear
programming based approach for optimizing the finish time for real-time loads
is evaluated.

13

2.6 Linear programming
A Linear Programming (LP) problem consists of maximizing or minimizing a
linear function subject to a number of linear constraints. The function we want
to maximize or minimize is called objective function. The constraints may be
equalities or inequalities.

LP problems can be expressed in canonical form:

maximize cTx

subject to Ax ≤ b

and x ≥ 0

where x is the variable vector (unknowns), c and b are vectors of known coeffi-
cients, and A is a matrix of known coefficients. Typically, there exist nonnega-
tivity constraints that define a lower bound of zero for all variables x.

When some or all of the variables x are restricted to be integer, we have
a Integer Linear Programming (ILP) problem. When all of the variables are
integer, it is a pure integer programming problem. When some, but not all, of
the variables are integer, it is a mixed integer programming problem.

One of the most popular algorithms for solving linear programming problems
is the revised simplex method, a more efficient implementation of the original
simplex method. For integer programming problems, a popular choice is the
branch-and-bound algorithm [26].

2.6.1 Special Ordered Sets

In the context of linear programming, a Special Ordered Set (SOS) of degree N
is an ordered set of variables where at most N variables can be non-zero. The
non-zero variables must be contiguous.

In a Special Ordered Set of type 1 (SOS1), only one of the variables can take
a non-zero value, while the rest are zero. This can be used to model a choice
from a set of mutually exclusive alternatives.

In a Special Ordered Set of type 2 (SOS2), only two variables can take
non-zero value, and those variables must be contiguous. This is typically used
to model piecewise-linear functions, or non-linear functions as piecewise-linear
functions, which can then be solved by linear programming.

Models containing SOS variables are solved using the branch-and-bound
method. When facing SOS variables, the branch-and-bound search can be per-
formed faster, as the knowledge that a variable belongs to a set enables the
solver to branch on sets or subsets (depending on the SOS order) rather than
on individual variables [27].

2.6.2 Approximating non-linear functions as piecewise-linear func-
tions

Non-linear functions can be approximated by piecewise-linear functions by join-
ing points on the original curve with linear segments. By using more points on
the curve, the approximation can be improved. Piecewise-linear functions can
be modeled by means of SOS2 variables in ILP models.

If we want to approximate the dotted function in Figure 1 with four lin-
ear segments, we need five points of the function: (R1, F1), (R2, F2), (R3, F3),

14

f

x
y

1

R
1

R
2

y
2

R
3

y
3

R
4

y
4

R
5

y
5

F
5

F
1

F
2

F
3

F
4

Figure 1: Piecewise-linear approximation of a non-linear function.

(R4, F4) and (R5, F5). Each point i is associated with a weight variable yi
belonging to a SOS2 set.

Then, we can model its piecewise-linear approximation, in this case with
K = 5, as:

x =

K∑
i=1

Ri · yi (Reference row)

K∑
i=1

yi = 1, yi ≥ 0 (Convexity row)

f =

K∑
i=1

Fi · yi (Function row)

Plus the SOS2 condition that states that only two variables yi can take a
non-zero value and they must be contiguous.

2.7 ASN.1
Abstract Syntax Notation One (ASN.1) is a standard for defining data structures
and their encoding. It allows to transmit data structures over telecommunica-
tion protocols independently of their machine-specific representation. ASN.1
defines multiple encoding and decoding rules that can be used to transmit the
defined data types [28], [29].

In our testbed, ASN.1 is used to define the data structures for the inter-node
communications. In the following, an overview of the data types and different
encoding techniques defined in ASN.1 is presented.

15

2.7.1 Data types

ASN.1 data types can be classified as basic types or constructed types:

• Basic types

It includes types such as INTEGER (signed integer values), REAL (real num-
bers), BOOLEAN (two-state values), BIT STRING (binary data of indefinite
length) and OCTET STRING (binary data of indefinite length multiple of
eight).

• Constructed types

Composition of basic types or other constructed types. An example of a
constructed type is the following:

Measurement ::= SEQUENCE{
time Time,
date Date,
temperature REAL

}

Time ::= SEQUENCE{
second INTEGER,
minute INTEGER,
hour INTEGER

}

Date ::= SEQUENCE{
day INTEGER,
month INTEGER,
year INTEGER

}

2.7.2 Basic Encoding Rules (BER)

Data elements are encoded as a type identifier, a length description and a value.
This method is referred as type-length-value (TLV) encoding [30]. Sometimes,
an end-of-content octet is required.

• Identifier octets

They indicate the type of the encoded value, whether it is a primitive type
or a constructed type.

• Length octets

For definite length types, this field indicates the length of the value that
follows. For indefinite length types, the length octet indicates that the
following type is of indefinite length and is terminated by an end-of-content
octet.

• Content octets

They contain the data value.

16

• End-of-content octet

It indicates the end of an indefinite length value.

In BER certain data types have multiple valid encodings. For instance, the
boolean value true can be encoded as any non-zero value within an octet.

2.7.3 Distinguished Encoding Rules (DER)

DER is a subset of BER that provides exactly one way to encode a data struc-
ture. BER and DER are interoperable, meaning that a BER decoder can decode
a DER stream.

2.7.4 Packed Encoding Rules (PER)

PER aims to achieve a more compact encoding than BER. Unlike BER, it does
not use a type-length-value encoding. To further reduce the number of bits
needed to encode a value, lower and upper bounds on the numerical values can
be specified. The decoder needs to know the complete abstract syntax of the
structure.

There exist two variants of PER: unaligned and aligned. In the unaligned
variant (UPER) the data is encoded using the minimum number of bits, with
no regard for byte alignment of the fields. This may require more processing
time to decode. In the aligned variant, data structures are aligned on a byte
level, introducing padding bits when necessary [31].

Similarly to DER, Canonical-PER provides a unique way to encode a data
structure.

The syntax to constrain the value range of a data field is to specify the
lower bound lb and/or upper bound ub as (lb..ub) after the data type. As an
example, Figure 2 shows a comparison between UPER, with constrained and
unconstrained values, and BER. It shows how specifying the value range of a
field effectively reduces its encoded length. PER also has the benefit over BER
of not needing to include data type tags.

2.8 System software
2.8.1 lp_solve

lp_solve is a Mixed Integer Linear Programming (MILP) solver distributed
under the GNU Lesser General Public Licence (GNU LGPL). The solver is based
on the revised simplex algorithm and the branch-and-bound method. There are
a great variety of ways to use lp_solve, ranging from an IDE, a native C API and
interfaces for other languages such as MATLAB, Java, Python and others. In
this project, we interact with lp_solve using its C API, which can be compiled
on the BeagleBone arm-hf architecture. The current version is 5.5.2.0 and can
be found at http://lpsolve.sourceforge.net/5.5/.

Supported features include the MILP solver, Special Ordered Set (SOS)
variables, integer variables and semi-continuous variables.

17

http://lpsolve.sourceforge.net/5.5/

Encoder Type Value Encoded Bytes
UPER INTEGER(0..255) 25 1
UPER INTEGER 25 2
BER INTEGER 25 3
UPER INTEGER(0..65535) 25000 2
UPER INTEGER 25000 3
BER INTEGER 25000 4
UPER MySeqA 25 | 25000 3
UPER MySeqB 25 | 25000 5
BER MySeqB 25 | 25000 9

MySeqA ::= SEQUENCE {
first INTEGER(0..255),
second INTEGER(0..65535)

}

MySeqB ::= SEQUENCE {
first INTEGER,
second INTEGER

}

Figure 2: Encoding length comparison.

2.8.2 OpenCV

Open Source Computer Vision (OpenCV) is a programming library that in-
cludes functions to perform visual analysis tasks, specially aimed at real-time
applications. It is distributed under the BSD licence. OpenCV is written in
C/C++ and has interfaces for C/C++, Python and Java, and support for
Linux, Windows, Mac OS, iOS and Android. It includes an implementation
of SURF, BRISK and other algorithms.

2.8.3 ASN.1 compiler

An ASN.1 compiler reads an ASN.1 definition and generates C/C++ code that
contains a native representation of the data types and provides the functions to
encode and decode the data. The ASN.1 compiler we use in this project can be
found at http://lionet.info/asn1c/.

2.9 Testbed hardware
The testbed consists of BeagleBone Black computers equipped with an IEEE
802.11 WiFi communication module or an IEEE 802.15.4 TelosB module.

2.9.1 BeagleBone Black

The BeagleBone Black is a small low-power open-source hardware computer
belonging to the BeagleBoard family. The board has a microSD card reader,
from which operating systems can be booted. It is capable of running Linux
distributions such as Ubuntu, which we use in this testbed. In our configuration,

18

http://lionet.info/asn1c/

one can access the board using SSH through the ethernet port, a USB to ethernet
adapter installed on the board or IEEE 802.11 if the adapter is connected. The
board can be powered through a USB cable attached to a computer or through
a 5V DC power supply.

The nodes in our VSN are BeagleBone Black boards, and wireless commu-
nications is done either by a IEEE 802.15.4 or a IEEE 802.11 stick attached to
the USB port.

The dimensions of the board are 86.40 mm x 53.3 mm and its cost is around
$45USD

Figure 3: BeagleBone Black

Hardware specifications:

• Processor: AM335x 1GHz ARM Cortex-A8

• Memory: 512MB DDR3 RAM

• On-board flash storage: 2GB eMMC

• NEON floating-point accelerator

• 2x PRU 32-bit microcontrollers

• Power: 210-460 mA@5V

Connectivity:

• USB client for power and communications

• USB host

• Ethernet

• HDMI

• 2x 46 pin headers

19

2.9.2 IEEE 802.11 WiFi module

The WiFi module we use for communication between the nodes is the Netgear
N150 (WNA1100). The module supports IEEE 802.11b/g/n at the 2.4 GHz
frequency band and can be plugged in the USB port of the BeagleBone Black.
The Linux driver available for this module supports IBSS mode (ad-hoc), which
was as issue with other modules where it was not supported.

Figure 4: Netgear N150

2.9.3 IEEE 802.15.4 TelosB module

Crossbow’s TelosB mote is used for 802.15.4 communications between the nodes.
It can be connected to the BeagleBone’s USB port.

Specifications:

• IEEE 802.15.4/ZigBee compliant RF transceiver

• Integrated onboard antenna

• Frequency band: 2.4 to 2.4835 GHz

• Data rate: 250 kbps

• RF power: -24 dBm to 0 dBm

• Receive sensibility: 90 dBm (min), -94 dBm (typ)

• Outdoor range: 75 m to 100 m

• Indoor range: 20 m to 30 m

Figure 5: TelosB

20

3 System design
The objective of this thesis is to implement a system that achieves to perform
real-time feature extraction from video sequences captured by a camera node.
The extraction of the visual features is distributed among multiple nodes of
the VSN. This section describes a solution that allows to balance the workload
among the nodes, minimizing the completion time of the task while maintaining
good visual analysis performance, which requires the detection of a number of
features close to a target value.

The camera node offloads the visual analysis task by assigning the pro-
cessing of a different region of an image to each one of the cooperator nodes,
referred as area-split. The camera node performs neither detection nor extrac-
tion (ND/NE). The processing load of each cooperator depends on the size of
the sub-area and the number of features contained in it. The camera node is in
charge of computing the optimal distribution of the workload, which includes
determining the size of the sub-areas assigned to each node, the node scheduling
order and predicting a detection threshold that yields a number of features close
to the target value.

In Section 3.1 a description of the system operation is provided. Section 3.2
describes the optimization of the size of the sub-areas assigned to each node to
minimize the completion time. In Section 3.3 the scheduling of the cooperators
is discussed. In Section 3.4 the prediction of an optimal detection threshold is
described. Finally, Section 3.5 describes the estimation of multiple parameters
required to perform the optimization.

3.1 System description
A node can adopt three different roles: sink, camera or cooperator. The sink
node is connected to a server and can forward requests from the server to the
rest of the nodes. For example, the sink node can instruct the camera node to
take a picture. The camera node captures images and is able to process them
locally, send them to the cooperator nodes for distributed processing or forward
them directly to the sink node. In any case, the camera node sends back to
the sink the results of the requested operation. In Figure 6 the topology of the
system is shown. The nodes communicate to each other through IEEE 802.11
in IBSS (ad-hoc) mode and are capable of unicast, multicast and broadcast
transmissions.

After the camera has captured an image, the extraction of its features can
be done in three different ways. In Compress-Then-Analyze (CTA) the image
is compressed using JPEG and sent to the server, where the processing will be
performed. In Analyze-Then-Compress (ATC) the camera node extracts the
descriptors and sends them to the sink node. Finally, in Distributed-Analyze-
Then-Compress (DATC) the camera node splits the image in multiple regions
and assigns their processing to different cooperators. The cooperators report
the results back to the camera node, and the camera node aggregates them and
sends the descriptors to the sink node.

When splitting an image in multiple regions, an overlapping area along the
border needs to be sent twice. This is due to the fact that the detectors require
a square region around the pixels to detect an interest point. Figure 7 shows
the area-split of an image in three parts and their overlapping areas. The

21

Sink Camera

Cooperator 1

Cooperator 2

Cooperator 3

Figure 6: Topology of the links between a sink node, a camera node and three
cooperators.

overlapping area can be transmitted separately by unicast to the two nodes, or
by multicast.

The transmission of the sub-areas to the cooperators is done as follows. A
node is idle during the time its preceding nodes receive their data, then receives
the overlapping data between the previous node and itself, then receives its
non-overlapping data, and finally receives the overlapping data between itself
and the next node. Once a node has received all the data it needs, it can start
processing. In Figure 8 the different transmission and processing phases are
illustrated.

3.2 Optimal cut-point locations
This section describes the solution proposed in [20] for optimizing the size of the
sub-area assigned to each node, given a particular node scheduling. The solution
is then implemented in linear programming so it can be solved in real-time on
the testbed.

Section 3.2.1 describes how the completion time is formulated and states
the optimization problem. This formulation requires the approximation and
prediction of the spatial distribution of the features, which is detailed in Sec-
tion 3.2.3. In Section 3.2.4 the optimization problem is implemented in linear
programming.

3.2.1 Problem formulation

We consider a VSN consisting of a camera node C, a set of N processing nodes P,
and a sink node S. We consider the nodes numbered by the order in which they
will receive the data and that the overlapping area spans only two nodes. We
denote the average pixel transmission time from C to Pn ∈ P as Cn. We define
CM

n , max(Cn, Cn+1) as the pixel transmission time for multicast transmissions
to nodes n and n + 1. The multicast transmission rate to two nodes is limited
by the throughput of the slowest one. Let Dj and Ej be N ×N matrices and
Gj a N × 1 column vector. We define the normalized positions for the vertical
cuts of image i as a column vector xi = (xi,1, . . . , xi,N), with xi,N = 1.

The completion time for each node can be decomposed in different compo-
nents. MatricesDj and Ej and vectorGj can be formulated for each component:

22

2o 2o

0 x1 x2 x3 = 1

Figure 7: Area-split of an image in three parts, with normalized overlap o and
cut-vector x = (x1, x2, x3).

Unicast case

C TU TU TU

P1 RU P

P2 W RU P

P3 W RU P

Multicast case

C TU TM TU TM TU

P1 RU RM P

P2 W RM RU RM P

P3 W RM RU P

Figure 8: Transmission and processing with three cooperators. TU indicates
unicast transmission, TM multicast transmission, RU unicast reception, RM

multicast reception, W waiting to receive data and P processing of the image.

23

• Idle time:

Tidle,i = D1xi +G1

d1,m,n =

hwCn, m = n+ 1

hwCn − hwCn+1, m > n+ 1

0, otherwise

g1,n =

{
0, n = 1

−hwoC1 +
∑n−1

j=2 (2hwoC
M
j−1 − 2hwoCj), n > 1

• Overlapping transmission time (multicast transmission):

Toverlap,i = G2

g2,n =

2hwoCM

1 , n = 1

2hwoCM
n−1 + 2hwoCM

n , 1 < n < N

2hwoCM
N−1, n = N

• Non-overlapping transmission time (unicast transmission):

Ttransmit,i = D3xi +G3

d3,m,n =

hwCn, m = n

−hwCn+1, m = n+ 1

0, otherwise

g3,n =

{
−hwoCn, n ∈ {1, N}
−2hwoCn, otherwise

• Interest point detection:
The distribution of the interest points in each region Fi(υi, xi) is approx-
imated by its values at Q quantiles as F̃i(υi, xi). The number of interest
points assigned to each node results in

f̃i,n =M∗
(
F̃i(υi, xi,n)− F̃i(υi, xi,n−1)

)
,

with M∗ being the desired number of interest points to be detected.

Tdetect,i = D4xi + E4fi(υi, xi)

d4,m,n =

hw

Pd,px,n
, m = n

− hw
Pd,px,n+1

, m = n+ 1

0, otherwise

e4,m,n =

{
1

Pd,ip,n
, m = n

0, otherwise

with Pd,px,n being the rate at which interest points are analyzed as a linear
function of the area, and Pd,ip,n the rate at which the interest points are
detected, as a function of the number of interest points being detected.

24

• Interest point extraction:

Textract,i = E5fi(υi, xi)

e5,m,n =

{
1

Pe,n
, m = n

0, otherwise

with Pe,n being the rate at which the descriptors for the interest points are
calculated, as a linear function of the number of detected interest points.

Therefore, we can group the terms together:

D , D1 +D3 +D4,

G , G1 +G2 +G3,

E , E4 + E5.

We can calculate the approximated completion time for each node for image
i as

T̃i(υi, xi) = Dxi + Ef̃i(υi, xi) +G

The cut-vector xi that minimizes the completion time can be found by solv-
ing the following integer linear programming (ILP) problem:

min t

s.t.
Dxi + Ef̃i(υi, xi) +G ≤ t1 (1)

xi,nw − xi,n+1w ≤ −1 ∀n (2)

xi,nw ∈ {1, . . . , w} ∀n (3)

The inequality in (1) is evaluated for each component. 1 is an N × 1 vector
of ones. Condition (2) enforces that the cut-point coordinates are increasing.
Condition (3) ensures that the cuts are aligned to an integer pixel location.

We can solve a linear relaxation of the previous ILP by omitting condition
(3). We also impose that overlap spans only two nodes, 2o ≤ xi,n+1 − xi,n, so
constraint (2), under the linear relaxation, can be transformed to xi,n−xi,n+1 ≤
−2o.

Therefore, the piecewise-linear optimization problem that needs to be solved
is the following:

min t (4)

s.t.
Dxi + Ef̃i(υi, xi) +G ≤ t1 (5)

xi,n − xi,n+1 ≤ −2o (6)

25

3.2.2 Unicast-only formulation

This section proposes a modification to the formulation in the previous section.
This modified formulation considers exclusively unicast links. In this case, each
overlapping area will have to be transmitted separately to the corresponding
nodes, increasing the transmission time. This will allow us to make a comparison
with the multicast version. This formulation is also suitable for systems where
multicast transmissions are not possible.

Vectors G1, G2 and G3 are modified, while the rest remain unchanged:

• Idle time:

Tidle,i = D1xi +G1

d1,m,n =

hwCn, m = n+ 1

hwCn − hwCn+1, m > n+ 1

0, otherwise

g1,n =

{
0, n = 1

hwoC1 +
∑n−1

j=2 2hwoCj , n > 1

• Multicast transmission time:

Toverlap,i = 0

g2,n = 0

• Unicast transmission time:

Ttransmit,i = D3xi +G3

d3,m,n =

hwCn, m = n

−hwCn+1, m = n+ 1

0, otherwise

g3,n =

{
hwoCn, n ∈ {1, N}
2hwoCn, otherwise

The times related to the processing task do not change respect to the previ-
ous formulation.

3.2.3 Interest point spatial distribution estimation

Because we consider the sub-areas as slices defined by vertical cuts of the original
image, in order to know the number of interest points contained in each sub-
area we want to find their spatial distribution along the horizontal direction.
Thus Fi(υi, x) is defined as the distribution of the interest points’ horizontal
coordinates, from which we are able to calculate the number of interest points
in each region fi(υi, x) for the given cut-point locations x.

The distribution Fi(υi, x), however, can’t be known prior to performing the
feature extraction process, and can be arbitrary. Therefore, in order to include
the distribution in our LP formulation for the current frame, it has to be pre-
dicted based on the distribution for the previous frames. The prediction of the

26

position of every single keypoint is infeasible. Therefore, we will approximate
the distribution by its percentiles.

The approximation can be done by taking evenly spaced percentiles, named
quantiles, or by choosing the optimal percentiles that minimize the approxima-
tion error. The second approach improves the prediction quality and reduces
the number of percentiles needed to obtain the same performance, which makes
solving the linear programming problem faster. However, obtaining the optimal
percentiles is computationally expensive. This approach can be beneficial when
dealing with large number of nodes, because the complexity of the LP problem
increases with the number of nodes and the number of percentiles, however the
complexity of finding the optimal percentiles does not depend of the number of
nodes. Therefore, we can use a smaller number of optimal percentiles to achieve
the same approximation error than using a larger number of uniformly spaced
percentiles [20].

The distribution is approximated by linear interpolation between its values
at Q percentiles. The prediction for the next frame is done by predicting its
percentiles. In [20], different predictors are evaluated. The last value predictor
assumes that the content of the next image is identical to the previous image.
Autoregressive predictors of different orders are also studied. The last value
predictor shows good results while being computationally very simple. The
gain of higher order autoregressive predictors is small, and in some cases can
even achieve worse results when faced with large changes of the image content.
For this reason, in this implementation we will use the last value predictor.

3.2.4 Implementation in linear programming

The optimization problem described in Section 3.2.1, together with the percentile-
based approximation of the distribution of the interest points has to be formu-
lated as a linear programming problem so the optimal cut-point locations can
be found by a LP solver.

The interest point distribution is implemented using SOS2 variables, as dis-
cussed in Section 2.6.2.

For a model containing N processing nodes and considering Q quantiles to
approximate the keypoint distribution, the implementation is the following:

Objective function: min t (7)
subject to

N constraints
{
Dx+ Eip− t1 ≤ −G (8)

N-1 constraints
{
xn − xn+1 ≤ −2o (9)

1 constraint
{
xN = 1 (10)

N-1 constraints

x1 = q1d1,1 + q2d1,2 + . . .+ qQd1,Q + 1d1,Q+1

...
xN−1 = q1dN−1,1 + q2dN−1,2 + . . .+ qQdN−1,Q + 1dN−1,Q+1

(11)

27

N-1 constraints

d1,0 + d1,1 + . . .+ d1,Q + d1,Q+1 = 1
...
dN−1,0 + dN−1,1 + . . .+ dN−1,Q + dN−1,Q+1 = 1

(12)

N-1 constraints

f1 = 1

Qd1,1 +
2
Qd1,2 + . . .+ Q

Qd1,Q + 1d1,Q+1

...
fN−1 = 1

QdN−1,1 +
2
QdN−1,2 + . . .+ Q

QdN−1,Q + 1dN−1,Q+1

(13)

N constraints

ip1 = f1

ip2 = f2 − f1
...
ipN = 1− fN−1

(14)

SOS2 sets:
{d1,0, . . . , d1,Q+1}
...
{dN−1,0, . . . , dN−1,Q+1}

Constraints in (8) include matrix D and vectors E and G. x is a vector
containing the N cut-point locations and ip is a vector containing the number
of interest points in each of the N sub-regions. The variable to minimize t is
included in this group of constraints.

x =

x1
x2
...
xN

 ,

with xN = 1;

ip =

ip1
ip2
...

ipN

 .

t is the objective function, representing the expected completion time, that
is, the worst completion time over all the nodes. Our goal is to obtain the
optimal cutvector x that achieves to minimize the completion time t.

Constraints in (9) impose the increasing condition for the cut-point locations,
that is, the next cut-point pixel position must be greater than the previous one.
In these constraints it is also ensured that the overlap will only span two nodes.

Constraint in (10) sets the last cut-vector element to 1, which is the position
of the last pixel when normalized by the width of the image.

Constraints in (11), (12) and (13) are used to represent the piecewise linear
approximation of the interest point distribution. We need to define a different
SOS2 set for each node. Constraints in (11) constitute the reference rows, where

28

qi are the values for the Q quantiles. Constraints in (12) constitute the convexity
rows. Constraints in (13) constitute the function rows, such that fi represent
the number of interest points left of the normalized horizontal coordinate xi.

Finally, in constraints in (14), ipi represents the proportion (over 1) of the
number of interest points located in region i.

Therefore, the model contains 6N − 3 constraints and 3N + (N − 1)(Q+ 2)
variables, of which (N − 1)(Q+ 2) belong to N − 1 different SOS2 sets.

When the model is solved, the variables of interest are the cut-point locations
x = (x1, . . . , xN) and the expected completion time t.

The model assumes the proposed linear relaxation, therefore the resulting
cut-point vector x has to be denormalized by multiplying by the width of the
image and each element rounded to the closest integer pixel value.

3.3 Processing nodes scheduling
In Section 3.2 the optimal area cuts that minimize the completion time with
a specific node ordering are found. The minimum achievable completion time,
however, depends on the node scheduling. Using all the available nodes is not
always optimal [10] and therefore one needs to find the optimal subset of nodes
to be used and the optimal order among these nodes. In our system, where we
have to transmit an overlapping area to two different nodes, we are faced with
another decision. The overlapping area can be transmitted by unicast or by
multicast. In [20] the authors discuss a simplified case where only two nodes
are considered and the processing time is only a function of the area, and not of
the number of interest points. It is shown that the existence of an overlapping
area affects the optimal scheduling. When there is no overlap, it is shown that
the completion time is minimized by scheduling the nodes by increasing order
of bit transmission time, regardless of their processing capabilities. When there
exists an overlapping area, it is shown that there exist some bit transmission
times and processing rates for which the reverse scheduling, the usage of a single
processor or the unicast transmission of the overlapping areas are optimal.

As the VSN considered in this thesis is homogeneous, in the sense that all
the processing nodes have the same processing capabilities, we can consider a
simplified case where the node scheduling can be done by decreasing link speed
between the camera node and each cooperator.

A possible way to find the optimal number of cooperators that should be
used is to solve the linear programming problem iteratively. One can start
considering one single cooperator and solve the linear programming problem
adding one more node at each step until the optimal completion time is found.
This process is computationally expensive and it is not feasible to perform it
for every frame.

3.4 Detection threshold
In order to achieve good image analysis results we need to compute the descrip-
tors for a sufficient number of interest points. The objective is to obtain a target
amount of interest points by selecting only the M most significant ones. This
is referred as Top-M extraction in [15].

In a non-distributed scheme, where the entire image is analyzed by a single
node, only the descriptors for the keypoints with the highest response would

29

be extracted. In a distributed analysis scheme, where each node of the VSN
analyses a portion of the image (area-split), each processing node has to deter-
mine which of the detected interest points belong to the Top-M set of the entire
image. In a processing intensive approach, each node would detect and extract
M interest points and transmit them to the central node, where the non-Top-M
interest points would be discarded. This results in all the Top-M interest points
being detected, at the expense of unnecessary processing load. On the other
hand, in the least processing intensive approach, if we consider N processing
nodes, each node would extract the M/N descriptors with the highest response
in its assigned region. In this case, the processing load is balanced across the
nodes, but the complete Top-M set is not guaranteed to be found. This would
be the case if the spatial distribution of the interest points is not uniform.

In [11] it is shown that for SURF and BRISK, the spatial distribution of
the interest points location presents a high variability, therefore balancing the
load among the processing nodes while maintaining good Top-M accuracy is not
feasible without a-priori information.

The next sections describe the solution proposed in [19], which leverages the
temporal correlation between successive frames of a video sequence to recon-
struct the missing data and predict the optimal threshold for the next frame.

3.4.1 Threshold reconstruction

If the threshold used for frame i results in more than the desired number of
interest points M∗, we can conclude that the threshold for that frame should
have been higher, concretely, the score of M∗-th interest point when ordered by
decreasing score.

If the threshold used for image i results in less than the desired number of
interest points M∗, we should have used a lower threshold. However, in this
case the optimal threshold is unknown. Our goal is to obtain an estimate of
the optimal value based on the information of previous frames for which the
number of obtained keypoints was greater than M∗. This allows us to estimate
the slope of function fi(ϑ̂i), defined as the number of detected interest points in
image i when using threshold ϑ̂i. We can define its inverse function f−1i (m) =

max{ϑ|fi(ϑ) = m}, and the set of images before i for which fj(ϑ̂j) ≥ M∗ as
Ii−.

The two proposed regression schemes in [19] are:

• Forward Estimate: We use the regression coefficients

βf
i− =

1
|Ii−|

∑
j∈Ii−(fj(ϑ̂j)−M

∗)(ϑ̂j − f−1j (M∗))

1
|Ii−|

∑
j∈Ii−(fj(ϑ̂j)−M

∗)2

to estimate the slope of the function f−1i . Then, the estimated threshold
is

ϑ̂f∗i = ϑ̂i − (fi(ϑ̂i)−M∗)βf
i−

• Backward Estimate: We compute a regression coefficient for each dif-
ference d =M∗ − fj(ϑ), d < M∗:

βb
i−(d) =

1

|Ii−|
∑

j∈Ii−

f−1j (M∗)− f−1j (M∗ − d)
d

30

Then, the estimated threshold is

ϑ̂b∗i = ϑ̂i − (fi(ϑ̂i)−M∗)βb
i−(d)

In the previous expressions for the regression coefficients, all the samples
are weighted equally. In order to adapt quickly to changes in the statistics of
the images we propose a weighted average of the regression coefficients, where
the most recent samples have a higher weight than the older ones. The next
coefficient can be computed recursively by updating the previous one.

For the forward estimate coefficients we define βf
n = Pn

Qn
, with

Pn =
∑

j∈In−

(fj(ϑ̂j)−M∗)(ϑ̂j − f−1j (M∗))

Qn =
∑

j∈In−

(fj(ϑ̂j)−M∗)2

Then, we obtain the next regression coefficient as

βf
n =

(1− αf)Pn−1 + αf (fj(ϑ̂j)−M∗)(ϑ̂j − f−1j (M∗))

(1− αf)Qn−1 + αf (fj(ϑ̂j)−M∗)2

For the backward estimate coefficients:

βb
n(d) = (1− αb)β

b
n−1(d) + αb

f−1j (M∗)− f−1j (M∗ − d)
d

Another method, referred as scaling, consists in scaling the threshold value by
a value 0 < α < 1 whenever fi(ϑ̂i) < M∗. In this case, ϑ̂s∗i = α · ϑ̂i

3.4.2 Threshold prediction

Once we have estimated the optimal detection threshold for frame i, we want
to predict the threshold for frame i + 1. In [19], autoregressive predictors of
different orders are studied, alongside the last value predictor, which predicts
that the next threshold is the same as the optimal threshold that we should
have used for the last frame.

Results show that the last value predictor achieves good performance while
presenting very little computational complexity. At the same time, autoregres-
sive predictors of higher order show little gains and sometimes present even
worse performance.

3.5 Performance parameters estimation
The solution described in Section 3.2 needs knowledge of the transmission speed
between the camera node and each node, as well as their processing speeds.
Those parameters are not constant and need to be estimated in real time for
every processing node.

31

3.5.1 Transmission speed estimation

The unicast link speed between the camera node and a processing node i, re-
ferred as Ci, can be measured by the camera node when transmitting data to
the processing node if the transmission is done through a reliable protocol that
acknowledges the reception of message once it is completely received. There-
fore, the considered transmission time spans the transmission of the data, the
reception of the acknowledgement message, as well as any possible packet re-
transmissions due to lost packets.

The observations are obtained by measuring the time between the start of
the transmission and the reception of the acknowledgement message. In order
to obtain an estimation robust to noisy variations we apply an exponential
smoothing to the observations:

C0 = x0

Ct = αxt−1 + (1− α)Ct−1

where α is the smoothing factor 0 < α < 1, Ct is the link speed estimation at
instant t and xt is the observation at instant t.

The estimated value will be used to calculate the transmission time for im-
ages, which are big messages. In the case of IEEE 802.11, the overhead added
by the packet header is small in comparison to the payload data. For IEEE
802.15.4, which has a much smaller MTU, the overhead is significant. In any
case, for our estimation we should not consider small messages, such as control
messages, where there is very little payload data, as it would not provide a good
estimation of the time needed to transfer an image.

3.5.2 Processing speed estimation

When performing feature extraction we can measure two different processing
times. The first one is the time it takes to detect the keypoints. The other is
the time it takes to extract their descriptors.

The time it takes to detect the interest points of a region has two compo-
nents. One is a linear function of the size of the area in pixels, with rate Pd,px

pixels/second. The other is a linear function of the number of interest points
in the region, detected with rate Pd,ip interest points/second [20]. Thus, the
detection time can be expressed the following way:

Tdetect = Npix
1

Pd,px
+Nip

1

Pd,ip
,

where Npix and Nip denote respectively, the number of pixels and interest points
in the region.

Both Pd,px and Pd,ip have to be estimated from the observation of the time
it took to perform the detection process, with the knowledge of how many
pixels and interest points were processed. If we have multiple observations
with different Npix or Nip, we can solve it as a least-squares parameter fitting
problem. Given the variability of the image content it is reasonable to assume
that Npix and Nip will present enough variation between different frames of a
video sequence to make the least-squares fitting possible.

The resulting estimation should reflect the current load of the system by
considering only the most recent samples. The use of multiple samples, apart

32

from allowing us to obtain the two parameters, also provides averaging. The
most recent samples can be given a higher weight.

The least-squares problem is formulated as follows. y is a vector of the last
n observations of the detection time. X is an n by p matrix containing, for each
of the n observations, its number of pixels (Npix) and number of interest points
(Nip). Vector c contains the p unknown parameters, with p = 2 in our case.

X =

Npix,1 Nip,1

Npix,2 Nip,2

...
...

Npix,n Nip,n

 , c =

[
1

Pd,px
1

Pd,ip

]
, y =

Tdetect,1
Tdetect,2

...
Tdetect,n

The system can be expressed as

y = Xc+ ε

where vector ε is an error term.
Given y and X, the objective is to estimate the value of the two parameters

in vector c that result in the best fit. The objective function is defined as

S(c) =

n∑
i=1

wi(yi −
p∑

j=1

Xijcj)
2,

where wi are the elements of the weighting vector and can be used if we wish to
assign a higher weight to the most recent observations. The best fit is achieved
when S(c) is minimized:

ĉ = argmin
c

S(c)

The parameter related to the extraction of descriptors, Pe, expressed as inter-
est points/second, can be obtained simply by dividing the number of extracted
descriptors by the time it took to extract them.

Pe =
Nip

Textract

Exponential smoothing is applied to obtain a more stable estimation. The choice
of the initial value for the exponential smoothing is important and can affect
the quality of the estimation for many observations. Thus, to ensure that the
measured initial value is close to the true value, the initial value is obtained by
averaging the first samples, which constitutes a training period. After that, the
exponential smoothing begins.

The cooperator nodes measure Tdetect and Textract and report them to the
camera node together with the results of the image analysis task. The camera
node calculates the parameters and stores them.

33

4 Previous testbed
This section presents an overview of the base testbed, described in [32], where
our load balancing algorithm will be implemented. The base testbed demon-
strates a VSN where the nodes can act as cameras, cooperators or sinks. The
roles of the nodes can change over time and their software is capable of acting
as any type.

Different wireless communication modules are available. Communications
between the sink node and the camera are done over IEEE 802.15.4 using TelosB
modules. Communications between the camera node and the cooperators are
done over IEEE 802.11 and TCP is used to provide reliability.

The testbed implements three modes of operation. In Compress-Then-
Analyze (CTA) the camera compresses the acquired image and sends it to the
sink node. In Analyze-Then-Compress (ATC) the camera extracts and encodes
the visual features of an image and sends them to the sink node. In Distributed-
Analyze-Then-Compress (DATC) the camera offloads the processing of the im-
age by splitting it in multiple regions and sending each one of them to a different
cooperator node for processing.

In order to minimize the completion time, the offloading algorithm described
in Section 3 will be implemented on top of the current DATC implementation.
The implementation of the new offloading algorithm on the testbed is detailed
in Section 5.

4.1 Class structure
The central class of the system is the NodeManager, which coordinates the other
components. The NodeManager creates the different classes needed according
to the role assigned to the node. The TaskManager keeps a list of operations
that the node has to execute. Each operation is represented as a Task object. A
Task is an atomic operation that is performed by one of the subsystems of the
NodeManager. The TaskManager reads the list of pending Tasks and executes
them sequentially or according to a priority. When a task is completed, the
NodeManager is notified. Complex operations are accomplished by combining
multiple Tasks.

The RadioSystem contains the methods that handle the communication to
other nodes. It keeps track of the existing connections, packetizes the mes-
sages and sends them. Transmissions from other nodes are also received by
the RadioSystem. The received packets are assembled into complete messages,
then decoded by MessageParser and delivered to the NodeManager, where the
message will be interpreted and the corresponding tasks will be allocated. The
RadioSystem can send and receive messages from different interfaces, such as
IEEE 802.11 (WiFi) and IEEE 802.15.4 (TelosB).

The MultimediaSystem contains the methods related to image analysis, such
as image adquisition, encoding of images, detection and extraction of keypoints
and object recognition.

The OffloadingManager handles the offloading of processing loads to the
cooperators when preforming Distributed-Analyze-Then-Compress. It keeps a
list of cooperators, information about them and a pointer to their connection
object. The OffloadingManager is in charge of deciding the size of the load

34

assigned to each cooperator, coordinating them and creating the corresponding
messages.

4.2 Message exchanges
Figure 9 shows the message exchange between the sink node and the camera
node when operating in CTA mode. The sink node sends a StartCTAMessage
to the camera node. This message contains parameters regarding the image to
be captured and how to encode it. Then the camera captures the image and
sends it to the sink node in a DataCTAMessage.

Figure 10 shows the message exchange between the sink node and the camera
node when operating in ATC mode. The sink sends a StartATCMessage to
the camera indicating the parameters for the feature extraction task. Then
the camera node captures the image and analyzes it according to the received
parameters, and sends the results to the sink in a DataATCMessage.

Figure 11 shows the message exchange between the sink node, the camera
node and two cooperators when operating in DATC mode. The sink node sends
a StartDATCMessage to the camera node indicating the parameters for the
feature extraction task, the number of cooperators to be used and the offloading
algorithm that should be used. The camera node sends a StartDATCMessage to
the cooperators indicating the feature extraction parameters. Then the camera
captures the image, splits it according to the offloading algorithm and sends each
part to its corresponding cooperator in a DataCTAMessage. The cooperators
process their slice of the image and send the results to the camera node in a
DataATCMessage. The camera node aggregates the results and sends them to
the sink node in a DataATCMessage.

The complete ASN.1 definitions for the messages can be seen in Appendix A.

35

S C

StartCTAMessage

DataCTAMessage

Image capture

Feature extraction

Figure 9: Message exchange in Compress Then Analyze (CTA).

S C

StartATCMessage

DataATCMessage

Image capture &
Feature extraction

Figure 10: Message exchange in Analyze Then Compress (ATC).

36

S
C

P
1

P
2

St
ar
tD

A
T
C
M
es
sa
ge

St
ar
tD

A
T
C
M
es
sa
ge St

ar
tD

A
T
C
M
es
sa
ge

D
at
aC

T
A
M
es
sa
ge

Im
ag
e
ca
pt
ur
e

D
at
aC

T
A
M
es
sa
ge

D
at
aA

T
C
M
es
sa
ge

Fe
at
ur
e
ex
tr
ac
ti
on

D
at
aA

T
C
M
es
sa
ge

A
gg
re
ga
te

da
ta

D
at
aA

T
C
M
es
sa
ge

F
ig
ur
e
11
:
M
es
sa
ge

ex
ch
an

ge
in

D
is
tr
ib
ut
ed

A
na

ly
ze

T
he
n
C
om

pr
es
s
(D

A
T
C
)
w
it
h
tw

o
co
op

er
at
or
s.

37

5 System Implementation
This section describes the implementation of the DATC offloading mechanism
in terms of class structure and interaction with the rest of the testbed. In
particular, it describes the classes that calculate the size of the slices assigned
to each node, calculate the detection threshold to achieve a target number of
keypoints, estimate the transmission speed and processing speed parameters
and the storage of the required information about the cooperators.

The base testbed was described in Section 4. The implementation of the new
offloading algorithm requires the modification of the OffloadingManager class
and the development of new classes that will be used by OffloadingManager.

The LoadBalancing class is used to calculate the size of the sub-area as-
signed to each cooperator and to predict the detection threshold for the next
frame. LoadBalancingConfig is used to set multiple configuration parameters
for LoadBalancing.

ProcessingSpeedEstimator is used to estimate the processing speed pa-
rameters of each cooperator. TxSpeedEstimator estimates the transmission
throughput of each cooperator. The estimated parameters will then be used by
LoadBalancing to optimize the area distribution.

5.1 DATC offloading workflow
Figure 12 shows the workflow in the camera node when operating in DATC
mode. When the camera node receives a StartDATCMessage from the sink
node, it sends a StartDATCMessage to the cooperators to initialize them, takes
a picture and converts it to grayscale using the MultimediaSystem. Then
NodeManager creates the offloading task in OffloadingManager and sets the
number of cooperators to use and the target number of features. NodeManager
instructs OffloadingManager to sort the cooperators by decreasing transmis-
sion bandwidth and compute the load assigned to each cooperator. In turn,
OffloadingManager instructs LoadBalancing to calculate the optimal cuts for
splitting the image. LoadBalancing reads the cooperator information from a
list of cooperators stored in OffloadingManager and solves the linear program-
ming problem to obtain the optimal cuts. After the computation of the loads,
NodeManager instructs the OffloadingManager to transmit the loads to the
cooperators. When a cooperator finishes the processing of its load, it trans-
mits the results to the camera node in a DataATCMessage and the keypoints
are passed to OffloadingManager. Once the results from all the cooperators
have been received, the keypoints are passed to LoadBalancing to update the
approximation of their spatial distribution and predict the detection threshold
for the next frame. OffloadingManager then notifies the NodeManager that the
offloading task is completed and the process can start again for the next image.

To ensure that the image slices are transmitted sequentially to each cooper-
ator, that is, the transmission to a cooperator does not start until the previous
one has successfully received its slice, a new message called ACKsliceMessage
is implemented. When a cooperator has received its slice, an ACKsliceMessage
is sent to the camera node to trigger the transmission to the next cooperator.
Figure 13 shows the sequential transmission of slices to the cooperators upon
reception of an ACKsliceMessage.

38

tr
an

sm
it
St
ar
tD

A
T
C
()

Se
tT

ar
ge
tK

ey
po

in
ts
()

cr
ea
te
O
ffl
oa
di
ng

T
as
k(
)

so
rt
C
oo

pe
ra
to
rs
()

Se
tI
m
ag
eP

ar
am

et
er
s(
)

lp
_
so
lv
e_

m
od

el
()

lp
_
cr
ea
te
_
m
od

el
()

lp
_
m
at
ri
x_

fo
rm

ul
at
io
n(
)

C
ut
ve
ct
or
O
pt
im

iz
at
io
n(
)

ge
tC

ut
V
ec
to
r(
)

cu
tv
ec
to
r

co
m
pu

te
L
oa
ds
()

tr
an

sm
it
L
oa
ds
()

A
dd

K
ey
po

in
ts
A
nd

Fe
at
ur
es
()

U
pd

at
e
re
gr
es
si
on

co
effi

ci
en
ts

Q
ua

nt
ile

A
pp

ro
xi
m
at
io
n

A
dd

K
ey
po

in
ts
()

ge
tN

ex
tD

et
ec
ti
on

T
hr
es
ho

ld
()

de
te
ct
io
nT

hr
es
ho

ld
no

ti
fy
O
ffl
oa
di
ng

C
om

pl
et
ed

()

no
de

m
an

ag
er
:N

od
eM

an
ag
er

offl
oa
di
ng

m
an

ag
er
:O

ffl
oa
di
ng

M
an

ag
er

lo
ad

ba
la
nc
in
g:
L
oa
dB

al
an

ci
ng

nu
m
_
co
op

ti
m
es F
ig
ur
e
12
:
U
M
L
se
qu

en
ce

di
ag
ra
m

fo
r
th
e
co
m
pu

ta
ti
on

of
th
e
lo
ad

s
an

d
de
te
ct
io
n
th
re
sh
ol
d
in

D
A
T
C
.

39

transmitNextCoop()

transmitLoads()

transmitNextCoop()

notifyACK()

transmitNextCoop()

notifyACK()

nodemanager:NodeManager offloadingmanager:OffloadingManager

Figure 13: UML sequence diagram of the transmission of loads to the coopera-
tors.

5.2 Class layout
The following section presents an overview of the classes related to the offloading
mechanism.

5.2.1 OffloadingManager

Figure 14 shows an overview of the OffloadingManager class. OffloadingManager
is used by the camera node to manage the offloading of the processing of im-
age sub-areas to the cooperators. It keeps a list of the available cooperators
with information about them and implements the methods for slicing the im-
age and sending the slices to the cooperators. To calculate the size of each
slice OffloadingManager has an instance of the LoadBalancing class. When a
cooperator sends the results back to the camera node, OffloadingManager ag-
gregates the received keypoints and features in a buffer. The information about
the cooperators is then updated with the new data. When all cooperators have
finished, the aggregated keypoints and features are delivered to NodeManager.

The information contained in Cooperator is detailed in Figure 15. It in-
cludes a pointer to its Connection object, the slice of the image assigned to
that node and information regarding the bandwidth and processing parameters
needed by LoadBalancing. It also contains instances of ProcessingSpeedEstimator
and TxSpeedEstimator used to estimate the processing parameters and trans-
mission throughput for that particular cooperator.

5.2.2 LoadBalancing

The LoadBalancing class implements the methods that compute the cut-points
for splitting the image and the prediction of the optimal detection thresh-
old as described in sections 3.2 and 3.4. Figure 16 shows an overview of
LoadBalancing.

40

OffloadingManager

- cooperators_to_use : int
- received_cooperators : int
- cooperatorList : vector<cooperator>
- keypoint_buffer : vector<Keypoint>
- features_buffer : cv::Mat
- loadbalancing : LoadBalancing
- next_detection_threshold : double

+ OffloadingManager(nm : NodeManager*)
+ addKeypointsAndFeatures(kpts : vector<Keypoint>&, features : cv::Mat&,
cn : Connection*, detTime : double, descTime : double, kencTime : double,
fencTime : double) : void
+ createOffloadingTask(numCooperators : int, targetNumKeypoints : int) : void
+ addCooperator(c : Connection*) : void
+ removeCooperator(c : Connection*) : void
+ computeLoads(image : cv::Mat&) : cv::Mat
+ estimate_parameters(coop : cooperator*) : void
+ transmitStartDATC(msg : StartDATCMsg*) : void
+ transmitLoads() : void
+ notifyACKslice(frameID : int, cn : Connection*) : void
+ probeLinks() : int
+ sortCooperators() : void
+ getNumAvailableCoop() : int
- void transmitNextCoop() : void

Figure 14: UML class diagram of OffloadingManager.

To formulate the linear programming problem, the information about the
nodes and the keypoint spatial distribution is read from OffloadingManager.
The keypoint spatial distributed is approximated by a number of uniformly
spaced quantiles. The spatial distribution for the next frame is assumed to
be identical to the previous frame. The method lp_matrix_formulation()
generates the matrix expressions for the transmission and processing times as
described in Section 3.2.1. The method lp_create_model() introduces the lin-
ear programming problem as described in 3.2.4, using the lp_solve library. The
method lp_solve_model() solves the linear programming problem to obtain
the cut-point locations.

To predict the next detection threshold, the keypoint scores from the previ-
ous frame are read from OffloadingManager and used to compute the regression
coefficients. The predicted detection threshold for the next freame is calculated
by calling the mehtod GetNextDetectionThreshold(). Three different recon-
struction methods are implemented: forward estimation, backward estimation
and scaling. The predictor used is the last value predictor.

5.2.3 LoadBalancingConfig

The LoadBalancingConfig class contains settings for the LoadBalancing class.
Figure 17 shows an overview of LoadBalancingConfig. The class also imple-
ments a method for reading a configuration from a file. The settings are the

41

Cooperator

+ connection : Connection*
+ bandwidth : double
+ Pdpx : double
+ Pdip : double
+ Pe : double
+ image_slice : cv::Mat
+ overlap_slice : cv::Mat
+ col_offset : int
+ detTime : double
+ descTime : double
+ Nkeypoints : int
+ Npixels : int
+ psestimator : ProcessingSpeedEstimator*
+ txestimator : TxSpeedEstimator*
+ completionTime : double
+ txTime : double

Figure 15: UML diagram of Cooperator.

following:

• reconstruction_method: {backward, forward, scaling}. Sets the detection
threshold reconstruction method.

• bdr_update_coef: Exponential smoothing coefficient for the backward
reconstruction regression coefficients. If 0, unweighted average.

• fdr_update_coef: Exponential smoothing coefficient for the forward re-
construction regression coefficient. If 0, unweighted average.

• scaling_coef: Threshold scaling factor for the scaling method.

• num_quantiles: Number of quantiles used to approximate the spatial dis-
tribution of the keypoints.

• solver_timeout: Timeout in seconds for the linear programming solver.

• multicast_enabled: {true, false}. Whether to consider multicast links or
not.

• use_fixed_uniform_cuts: {true, false}. Assign equally sized sub-areas to
each cooperator or optimize the sizes to minimize the completion time.

An example of a configuration file is the following:

reconstruction_method=backward
bdr_update_coef=0.05
fdr_update_coef=0.05
scaling_coef=0.9
num_quantiles=10
solver_timeout=2

42

LoadBalancing

- IPx_quantile_approx_ : vector<int>
- lastIPscores_ : vector<float>
- bdr_ : vector<float>
- fdr_ : float
- optimal_cutvector_ : vector<int>

+ LoadBalancing()
+ LoadBalancing(config : LoadBalancingConfig)
+ LoadNewConfig(config : LoadBalancingConfig) : void
+ SetImageParameters(width : int, height : int, overlap : double) : void
+ SetNumQuantiles(Q : int) : void
+ SetTargetKeypoints(M : int) : void
+ AddKeypoints(kpts : vector<KeyPoint>&) : void
+ GetNextDetectionThreshold() : float
+ CutVectorOptimization(num_cooperators : int, c : vector<double>&,
pdpx : vector<double>&, pdip : vector<double>&, pe : vector<double>&)
+ getCutVector() : vector<int>
+ setInitialDetectionThreshold(th : double) : void
+ reset() : void
- lp_matrix_formulation() : void
- lp_create_model() : void
- lp_solve_model() : int

Figure 16: UML class diagram of LoadBalancing.

multicast_enabled=false
use_fixed_uniform_cuts=false
END

When LoadBalancing is initialized, it tries to read a configuration from a file
named loadbalancing.conf. If the file does not exist, a default configuration
is loaded.

5.2.4 ProcessingSpeedEstimator

ProcessingSpeedEstimator estimates the processing speed parameters as pro-
posed in Section 3.5.2. For each Cooperator in the list of cooperators kept in
OffloadingManager there exists an instance of ProcessingSpeedEstimator.
When the camera node receives the results from a cooperator, which include
the keypoints and the time it took to detect and extract them, this information
is passed to ProcessingSpeedEstimator to calculate the parameters.

To estimate the two parameters concerning the keypoint detection rate, one
as a function of the area in pixels and the other as a function of the number of
keypoints detected, a least-squares multi-parameter fit is solved. To do so we
employ the GNU Scientific Library (GSL).

Figure 18 shows an overview of the ProcessingSpeedEstimator class.

43

LoadBalancingConfig

+ reconstruction_method : int
+ bdr_update_coef : float
+ fdr_update_coef : float
+ scaling_coef : float
+ num_quantiles : int
+ solver_timeout : float
+ multicast_enabled : int
+ use_fixed_uniform_cuts : int

+ LoadBalancingConfig(reconstruction_method : int, bdr_update_coef : float,
fdr_update_coef : float, scaling_coef : float, num_quantiles : int,
solver_timeout : float, multicast_enabled : int)
+ ParseConfigFile(fid : std::ifstream*) : int

Figure 17: UML class diagram of LoadBalancingConfig.

ProcessingSpeedEstimator

- num_processing_observations : int
- Pe_exp_coef : float
- ProcessObs_ : vector<ProcessingPerformanceObservation_t>
- Pdpx : float
- Pdip : float
- Pe : float

+ ProcessingSpeedEstimator()
+ ProcessingSpeedEstimator(num_processing_observations : int,
Pe_exp_coef : float)
+ AddObservation(Tdetect : float, Textract: float, Npixels : int, Nip : int) : int
+ getPdpx() : float
+ getPdip() : float
+ getPe() : float

Figure 18: UML class diagram of ProcessingSpeedEstimator.

5.2.5 TxSpeedEstimator

TxSpeedEstimator estimates the unicast transmission speed to a cooperator
node based on the time it took to transmit a slice of the image. Exponential
smoothing is applied to the estimated throughput to make it robust to random
fluctuations in the transmission time. The first observations constitute a train-
ing period and are averaged arithmetically to obtain the initial value for the
exponential smoothing.

Figure 19 shows an overview of the TxSpeedEstimator class.

44

TxSpeedEstimator

- bandwidth : float
- tx_exp_coef_ : float

+ TxSpeedEstimator()
+ TxSpeedEstimator(tx_exp_coef : double)
+ AddObservation(txtime : float, Npixels : int) : void
+ getBandwidth() : float

Figure 19: UML class diagram of TxSpeedEstimator.

5.3 UDP-based reliable communication module
The offloading mechanism requires multicast transmissions to transmit the over-
lapping area. This is not possible with the TCP-based communication system
implemented in the base testbed. To make multicast transmission possible, a
reliable communication protocol designed for a previous version of the testbed
[33] is ported to the current testbed. The protocol was originally designed to
work over IEEE 802.15.4 ZigBee. To adapt it to the current testbed, based on
IEEE 802.11, the protocol is modified to work over UDP packets.

The interaction between the new communication module and the rest of the
system is not altered, with the exception of the addition of a new method for
transmitting multicast messages.

5.4 Slice stitching logic
When multicast transmission is used the nodes receive the images fragmented in
multiple parts. The first cooperator receives a region of interest (ROI) followed
by an overlap slice. The second node receives that same overlap slice followed
by its ROI and another overlap slice. The last node receives an overlap slice
followed by a ROI.

A cooperator needs to know how many slices need to be received before it can
join them and trigger the start of the processing. A cooperator can know how
many cooperators are being used by reading the field numCooperators of the
StartDATCMessage. A cooperator can know its position in the scheduling order
by reading the field sliceNumber of the received DataCTAMessage. Therefore,
the first and the last cooperator will expect to receive two slices, while the
cooperators in the middle will expect three.

45

6 Experimental results
This section presents an evaluation of the performance of multiple aspects of
the system, including the execution times of calculations such as the linear pro-
gramming optimization algorithm and the parameter estimation, the processing
capabilities of the BeagleBones, the transmission bandwidth between nodes, the
time it takes to process a frame and the number of detected keypoints. The tests
are run on the BeagleBones with their CPU frequency limited to 300MHz, which
is the lowest frequency that can be set, to better approximate to the capabilities
of a sensor node. The tests are performed using a video sequence referred as
"Pedestrian" trace.

6.1 Execution time of the optimization algorithm
Figure 20 shows the time it takes to solve the linear programming optimization
problem that produces the optimal image cuts, as a function of the number
of cooperators and the number of quantiles used to approximate the spatial
distribution of the keypoints. The optimization problem has to be solved once
for each image frame.

The evaluation is done on a BeagleBone with its CPU running at 300MHz.
The linear programming problem is solved 100 times each number of quantiles
and each number of nodes using sample data.

The results show that the execution time of the algorithm increases with the
number of processing nodes, as more cuts have to be calculated. The execution
time also increases with the number of quantiles used. By using more quantiles
a better approximation of the spatial distribution of the keypoints is achieved,
which improves the accuracy of the results of the optimization.

6.2 Execution time of the least-squares fit
To analyze the execution time of the least-squares fit algorithm, the algorithm
is executed on a recorded trace of results. The results come from the analysis
of the complete "pedestrian" video trace, consisting of 375 frames, processed
using two cooperators. For one of the cooperators, the detection time, the
extraction time, the number of keypoints detected and the number of pixels
processed is recorded. The same recorded data is used for all the evaluations
of the execution time of the least-squares fit, repeated for different number of
considered samples. The least-squares algorithm is run on a BeagleBone with
its CPU limited to 300MHz.

Figure 21 shows the time it takes to solve the least-squares fit used to obtain
an estimation of the processing rate parameters, as a function of how many of
the most recent samples are considered. The results show that the time required
to solve the fit grows linearly with the number of samples. For each frame the
fit has to be solved in the camera node once for each of the cooperators that
were used.

6.3 Processing speed and transmission throughput
This section evaluates the processing capabilities of the BeagleBones and the
achievable transmission throughput between nodes. The measures are repeated

46

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
S

ol
ve

 ti
m

e
(s

),
 9

5%
 C

I

Number of processing nodes

Execution time of the linear programming optimizaiton algorithm

5 Quantiles
10 Quantiles
15 Quantiles
20 Quantiles

Figure 20: Execution time of the linear programming optimization algorithm
measured on the BeagleBones.

for different CPU frequencies. Figure 22 presents the results. Parameters Pd,px

and Pd,ip are related to keypoint detection process, while the parameter Pe is
related to the extraction process. The transmission throughput is measured at
the application layer when transmitting images to the cooperators. The unicast
measure is done using the TCP communication module, while the multicast
measure is done using the UDP-based reliable communication module. The
multicast throughput is limited to less than 1Mbit/second because in IEEE
802.11 multicast and broadcast frames are transmitted at the lowest possible
rate to assure that all types of equipment are able to receive them.

6.4 Completion time
This section seeks to evaluate the performance of the optimal image splitting
algorithm. The camera node runs on a laptop computer, while the processing
nodes are BeagleBones. To provide a comparison, three different allocation
strategies are compared:

• Equal split : The image is divided in equally sized slices and each one is
assigned to a different cooperator.

• Not considering keypoint distribution: The image cuts are calculated con-
sidering only the processing speed parameters and the throughput, but
not the spatial distribution of the keypoints. Instead, the spatial distri-
bution of the keypoints is considered uniform. The predicted best cuts
within this assumption are used to divide the image.

47

0 10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

6
x 10

−3

Number of samples

M
ea

n
fit

 e
xe

cu
tio

n
tim

e
(s

),
 9

5%
 C

I
Execution time of the least−squares algorithm

Figure 21: Execution time of the least-squares fit as a function of the number
of samples.

• Optimal split : The image is divided using the predicted optimal cuts,
considering the spatial distribution of the keypoints. This constitutes the
complete solution implemented in this work.

In all cases the detection threshold is predicted such that the amount of
keypoints detected is close to a target number.

The evaluation is done both for the case where only unicast transmission is
possible and the case where multicast transmission is possible. The evaluation
is performed by analyzing the same video sequences for the different cases. The
video sequence, referred as "Pedestrian" trace, shows a street intersection with
pedestrians moving horizontally across the field of view, covering and uncovering
objects. This leads to important changes in the spatial distribution of the
interest points. The sequence is about 15 seconds long and is analyzed taking 5
frames per second, resulting in a total of 70 frames.

6.4.1 Unicast offloading

In this case the TCP-based unicast transmission module is used. The overlap-
ping areas are transmitted twice. The image size is 1024x768 pixels and the
target number of keypoints is 500. Up to three coperators are considered.

Figure 23 shows the mean completion times for different offloading strategies
and number of cooperators. The completion time is the worst finish time out
of all the cooperators and includes the time to transmit the image to the coop-
erators, the time to process it and the time to transmit the results back to the
camera node. It is shown that the optimal allocation reduces the completion

48

300 600 800 1000
0

1

2

3

4
x 10

6 P
d,px

CPUfreq (MHz)

P
d

p
x

(p
ix

e
ls

/s
e

c)

300 600 800 1000
0

2000

4000

6000

8000

10000

P
d,ip

CPUfreq (MHz)

P
d

ip
 (

ke
y

p
o

in
ts

/s
e

c)

300 600 800 1000
0

500

1000

1500

P
e

CPUfreq (MHz)

P
e

 (
ke

yp
o

in
ts

/s
e

c)

300 600 800 1000
0

2

4

6

8

10

12
x 10

6 Bandwidth

CPUfreq (MHz)

b
a

n
d

w
id

th
 (

b
it

s/
se

c)

Unicast

Multicast

Figure 22: Processing rate parameters and transmission throughput measured
on the BeagleBones for different CPU frequencies.

time respect to the two other sub-optimal allocation strategies. When three
cooperators are used the equal split strategy does not reduce the completion
time respect to the case where only two cooperators are used, while the other
strategies slightly reduce the completion time.

Figure 24 shows the evolution of the cut locations across the frames of the
video sequence for the three allocation strategies with two cooperators. The
pixels below the cut are processed by the first cooperator, while those above
are processed by the second. One can see how the optimal splitting strategy
produces large variations of the location of the image cuts to adapt to the
changes of the image content. Similarly, Figure 25 shows the same for the case
where three cooperators are used.

Figure 26 shows the completion times for each frame for the three different
strategies when two cooperators are used. The optimal allocation consistently
achieves the smallest completion time.

6.4.2 Multicast offloading

In this case the UDP-based reliable communication module is used. The over-
lapping areas are only transmitted once by multicasting them. As shown in
Section 6.3, the maximum multicast throughput is less than 1Mbit/second. For
that reason, to evaluate this case the same throughput limit is applied for uni-
cast transmissions. Due to the reduced transmission speed the image size is set

49

1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

Number of cooperators

M
ea

n
w

or
st

 c
om

pl
et

io
n

tim
e

(s
),

 9
5%

 C
I

TCP unicast, image size=1024x768, target keypoints=500

Equal split
Not considering keypoint distribution
Optimal split

Figure 23: Time to process a frame with different number of cooperators and
different splitting algorithms.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

1000

Frame

C
ut

 x
−

co
or

di
na

te

TCP unicast, image size=1024x768, target keypoints=500, 2 cooperators

Optimal split
Not considering keypoint distribution
Equal split

Figure 24: Evolution of the slice cut across frames for 2 cooperators and different
splitting algorithms.

50

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

1000

Frame

C
ut

 x
−

co
or

di
na

te
TCP unicast, image size=1024x768, target keypoints=500, 3 cooperators

Optimal split
Not considering keypoint distribution
Equal split

Figure 25: Evolution of the slice cuts across frames for 3 cooperators and dif-
ferent splitting algorithms.

0 10 20 30 40 50 60 70
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Frame

W
or

st
 c

om
pl

et
io

n
tim

e
(s

)

TCPunicast, no limit, no compression, 2coop, moving average(3 samples)

Equal split
Not considering keypoint distribution
Optimal split

Figure 26: Worst cooperator completion time across frames for 2 cooperators
and different splitting algorithms.

51

1 2
0

1

2

3

4

5

6

Number of cooperators

M
ea

n
w

or
st

 c
om

pl
et

io
n

tim
e

(s
),

 9
5%

 C
I

UDP multicast, throughput limited to 1Mbit/s, image size=640x480, target keypoints=1000

Equal split
Not considering keypoint distribution
Optimal split

Figure 27: Time to process a frame with different number of cooperators and
different splitting algorithms.

at 640x480 pixels. The target number of keypoints is 1000. Only up to two
cooperators are considered, as there would be no improvement in using more
cooperators due to the minimum slice size restriction with this image size.

Figure 27 shows the mean completion times for the different offloading strate-
gies. The optimal split presents a slight reduction of the completion time, al-
though the difference is small because most of the completion time is spent
transmitting the image.

6.5 Number of interest points detected
This section analyzes the threshold prediction to produce the desired number
of keypoints. The test is performed by processing all of the 375 frames of
the pedestrian trace. The size of the images is 640x480 pixels and the target
number of keypoints is 200. The trace is analyzed by one single cooperator.
The number of cooperators does not influence the prediction of the detection
threshold. The camera node records the number of keypoints detected and the
predicted threshold for every frame.

Figure 28 shows the evolution of the detection threshold across the frames.
The threshold adapts to the characteristics of the video sequence to achieve the
target number of keypoints. Significant changes in the threshold occur when ob-
jects in the field of view are covered or uncovered. The threshold reconstruction
method is the backward scheme. The other reconstruction methods produce
similar results.

Figure 29 shows an histogram of the number of keypoints detected. The

52

mean number of detected keypoints is 201. Figure 30 shows a QQplot of the
number of detected keypoints against a normal distribution, which suggests
that a normal distribution is a good approximation of the number of detected
keypoints.

0 50 100 150 200 250 300 350 400
45

50

55

60

65

70

75

80

Frame

P
re

di
ct

ed
 d

et
ec

tio
n

th
re

sh
ol

d

Pedestrian trace, target number of keypoints = 200

Figure 28: Predicted detection threshold for the pedestrian trace when the
target number of keypoints is 50, using the backward reconstruction method.

53

140 160 180 200 220 240 260
0

10

20

30

40

50

60

70

Number of keypoints detected

Histogram of the number of keypoints detected

Figure 29: Histogram of the number of detected keypoints for the pedestrian
trace when the target number of keypoints is 200, using the backward recon-
struction method.

−3 −2 −1 0 1 2 3
140

160

180

200

220

240

260

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

Figure 30: QQ plot of the number of detected keypoints against a normal dis-
tribution.

54

7 Conclusion and future work

7.1 Conclusion
In this thesis an algorithm to optimally distribute image processing tasks among
nodes of a visual sensor network has been implemented on a real testbed system.
The goal is to leverage the processing power of other nodes of the network
to minimize the time required to process an image, which allows for real-time
processing of video in low-powered nodes. Distributing the processing tasks also
achieves to balance the power consumption of the nodes, which is important in
energy constrained arrangements. The images captured by a camera node are
split in multiple slices and each one of them is sent to a different cooperator
node for processing. The cooperators extract visual features from the images
and return their descriptors to the camera node.

The implemented algorithm seeks to optimize the size of the images in order
to minimize the global completion time, defined as the worst completion time out
of all the cooperators. The optimal distribution is that where all the cooperators
finish their task at the same time. The optimization is modeled as a linear
programming problem that takes into account the time required to transmit
the images to the nodes, the time it takes to detect the interest points and the
time it takes to extract their descriptors. These times are dependent on the
communication channel conditions, the processing capabilities of the nodes and
the image content. All of them can vary along the time. The system is able to
estimate them and adapt to the changes in real-time.

The solution is evaluated on the testbed. The results show the importance
of an optimal allocation of the tasks. The optimal allocation effectively reduces
the completion time compared to simpler sub-optimal allocation methods.

7.2 Future work
In the current implementation the images are not compressed before sending
them to the cooperator nodes. As a result, a significant part of the completion
time is spent transmitting the image slices instead of processing. This limits
the achievable improvement of using more cooperators. To improve the perfor-
mance of the system, image compression could be considered. The compression
scheme should be optimized for feature extraction, like the one proposed in [12].
If compression is used, the completion time optimization algorithm implemented
in this thesis should be modified to account for the compression. The compres-
sion ratio would be dependent on the image content. One could measure the
compression ratio for blocks along the horizontal direction of the image. This
information would be used to model the transmission time in the optimization
algorithm.

The offloading algorithm could also be extended to optimally schedule to
process simultaneously the information from multiple camera nodes.

Further development of the testbed could also include routing capabilities.
For instance, currently the camera needs direct communication to the coopera-
tors. The bandwidth and energy costs of multihop routing should be taken into
account when offloading tasks to cooperators.

55

References
[1] S. Soro and W. Heinzelman. A survey of visual sensor networks. Advances

in Multimedia, 2009.

[2] D.G. Lowe. Object recognition from local scale-invariant features. In Com-
puter Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on, volume 2, pages 1150–1157 vol.2, 1999.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-up robust features
(SURF). Computer Vision and Image Understanding (CVIU), 110(3):346–
349, 2008.

[4] Edward Rosten, R. Porter, and Tom Drummond. Faster and better: A ma-
chine learning approach to corner detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 32(1):105–119, Jan 2010.

[5] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
Brief: Binary robust independent elementary features. In Computer
Vision–ECCV 2010, pages 778–792. Springer, 2010.

[6] S. Leutenegger, M. Chli, and R.Y. Siegwart. BRISK: Binary robust invari-
ant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, pages 2548–2555, Nov 2011.

[7] O. Miksik and K. Mikolajczyk. Evaluation of local detectors and descrip-
tors for fast feature matching. In Pattern Recognition (ICPR), 2012 21st
International Conference on, pages 2681–2684, Nov 2012.

[8] A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, J. Ascenso, and
R. Cilla. Evaluation of low-complexity visual feature detectors and descrip-
tors. In Digital Signal Processing (DSP), 2013 18th International Confer-
ence on, pages 1–7, July 2014.

[9] A. Redondi, L. Baroffio, M. Cesana A, Canclini, and M. Tagliasacchi.
Briskola: Brisk optimized for low power arm architectures. In IEEE Inter-
national Conference on Image Processing 2014, 2014.

[10] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisible load theory: A
new paradigm for load scheduling in distributed systems. Cluster Comput-
ing, 6(1):7–17, 2003.

[11] M. A. Khan, G. Dán, and V. Fodor. Characterization of SURF and BRISK
interest point distribution for visual processing in sensor networks. In Proc.
of 18th Intl. Conf. on Digital Signal Processing, Jul 2013.

[12] Jianshu Chao, Hu Chen, and E. Steinbach. On the design of a novel jpeg
quantization table for improved feature detection performance. In Image
Processing (ICIP), 2013 20th IEEE International Conference on, pages
1675–1679, Sept 2013.

[13] J.J. Ahmad, H.A. Khan, and S.A. Khayam. Energy efficient video com-
pression for wireless sensor networks. In Information Sciences and Systems,
2009. CISS 2009. 43rd Annual Conference on, pages 629–634, March 2009.

56

[14] A. Redondi, L. Baroffio, J. Ascenso, M. Cesano, and M. Tagliasacchi. Rate-
accuracy optimization of binary descriptors. In Image Processing (ICIP),
2013 20th IEEE International Conference on, pages 2910–2914, Sept 2013.

[15] A. Redondi, M. Cesana, and M. Tagliasacchi. Rate-accuracy optimization
in visual wireless sensor networks. In Image Processing (ICIP), 2012 19th
IEEE International Conference on, pages 1105–1108, Sept 2012.

[16] L. Baroffio, M. Cesana, A. Redondi, M. Tagliasacchi, and S. Tubaro. Cod-
ing visual features extracted from video sequences. Image Processing, IEEE
Transactions on, 23(5):2262–2276, May 2014.

[17] V. Sulic, J. Pers, M. Kristan, and S. Kovacic. Efficient feature distribution
for object matching in visual-sensor networks. Circuits and Systems for
Video Technology, IEEE Transactions on, 21(7):903–916, July 2011.

[18] Hailong Li, V. Pandit, and D.P. Agrawal. Gaussian distributed deployment
of relay nodes for wireless visual sensor networks. In Global Communica-
tions Conference (GLOBECOM), 2012 IEEE, pages 5374–5379, Dec 2012.

[19] E. Eriksson, G. Dán, and V. Fodor. Prediction-based load control and
balancing for feature extraction in visual sensor networks. In Proc. of
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2014.

[20] E. Eriksson, G. Dán, and V. Fodor. Real-time distributed visual feature
extraction from video in sensor networks. In Proc. of IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS), May
2014.

[21] A Shokripour and M. Othman. Survey on divisible load theory. In Com-
puter Science and Information Technology - Spring Conference, 2009. IAC-
SITSC ’09. International Association of, pages 9–13, April 2009.

[22] Y. Yang and H. Casanova. Umr: a multi-round algorithm for scheduling
divisible workloads. In Parallel and Distributed Processing Symposium,
2003. Proceedings. International, pages 9 pp.–, April 2003.

[23] J. Sohn and T.G. Robertazzi. Optimal time-varying load sharing for di-
visible loads. Aerospace and Electronic Systems, IEEE Transactions on,
34(3):907–923, Jul 1998.

[24] Suriayati Chuprat, S. Salleh, and S. Goddard. Real-time divisible load
theory: A perspective. In Parallel Processing Workshops, 2009. ICPPW
’09. International Conference on, pages 6–10, Sept 2009.

[25] Suriayati Chuprat, S. Salleh, and S.K. Baruah. Evaluation of a linear
programming approach towards scheduling divisible real-time loads. In
Information Technology, 2008. ITSim 2008. International Symposium on,
volume 1, pages 1–8, Aug 2008.

[26] Bradley, Hax, and Magnanti. Applied Mathematical Programming.
Addison-Wesley, 1977.

57

[27] C. Guéret, C. Prins, and M. Sevaux. Applications of optimization with
Xpress-MP. Editions Eyrolles, 2000.

[28] International Telecommunications Union (ITU). Introduction to ASN.1.
Online, 2014.

[29] O. Dubuisson. ASN.1, Communication between Heterogeneous Systems.
OSS Nokalva, 2000.

[30] Telecommunication standarization sector of ITU (ITU-T). Information
technology – ASN.1 encoding rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER), 2002.

[31] Telecommunication standarization sector of ITU (ITU-T). Information
technology – ASN.1 encoding rules: Specification of Packed Encoding Rules
(PER), 2002.

[32] L Baroffio, A Canclini, M Cesana, A Redondi, M Tagliasacchi, G Dán,
E Eriksson, V Fodor, J Ascenso, and P Monteiro. Enabling visual analysis
in wireless sensor networks.

[33] A. Aurensanz. A reliable transmission protocol for distributed extraction
of visual features using brisk and surf. Master’s thesis, KTH, School of
Electrical Engineering, 2014.

58

Appendices
A ASN.1 definitions of the messages
VSNTestBed DEFINITIONS AUTOMATIC TAGS ::= BEGIN

CooperatorInfo ::= SEQUENCE {
coopId INTEGER,
ipAddress OCTET STRING,
port INTEGER,
status CoopStatus

}

DataATCMessage ::= SEQUENCE {
frameID INTEGER, -- Identifies which frame the features belong to.
blockNumber INTEGER, -- Features are grouped into blocks.
numBlocks INTEGER, -- Tot. number of blocks
detTime REAL, -- Time spent for keypoint detection
descTime REAL, -- Time spent for features description
kencTime REAL, -- Time spent for encoding keypoints
fencTime REAL, -- Time spent for encoding features
featuresData OCTET STRING, -- Descriptor data.
kptsData OCTET STRING -- Keypoints data

}

DataCTAMessage ::= SEQUENCE {
frameID INTEGER, -- Identifies which frame the data belongs to.
sliceNumber INTEGER, -- An image would be divided in several slices

-- each of which can be decoded into useful
-- sub-area of the complete image.

topLeft Coordinate, -- Describes where the slice is positioned in the
-- original image.

dataSize INTEGER, -- The length of the data bit string.
encTime REAL, -- time spent for JPEG encoding
data OCTET STRING -- JPEG encoded image data.

}

--Sent from server to camera. Specifies the details of, and initiates CTA
--mode operation
StartCTAMessage ::= SEQUENCE {

framesPerSecond INTEGER, -- Valid options are: -1=as high as
-- possible, 0=one-shot, <=1=specific rate.

qualityFactor INTEGER, -- JPEG quality factor to be used.
frameHeight INTEGER, -- Height of the frame to be captured.
frameWidth INTEGER, -- Width of the frame to be captured.
numSlices INTEGER

}

--Sent from server to camera. Specifies the details of, and initiates ATC

59

--mode operation
StartATCMessage ::= SEQUENCE {

framesPerSecond INTEGER, -- Valid options are: -1=as high
-- as possible, 0=one-shot,
-- <=1=specific rate.

detectorType DetectorTypes, -- Type of detector to be used.
detectorThreshold REAL, -- Detection threshold.
descriptorType DescriptorTypes, -- Type of descriptor to be used.
descriptorLength INTEGER, -- Length of each descriptor.
maxNumberOfFeatures INTEGER, -- Maximum number of features to

-- transfer back to the server.
rotationInvariant BOOLEAN, -- Use rotation invariant

-- descriptors.
coding CodingChoices, -- Type of coding to be performed on

-- the descriptors.
transferCoordinates BOOLEAN, -- Should coordinates be transferred?
transferScale BOOLEAN, -- Should scale be transferred?
transferOrientation BOOLEAN, -- Should orientation be transferred?
numFeaturesPerBlock INTEGER

}

StartDATCMessage ::= SEQUENCE {
framesPerSecond INTEGER, -- Valid options are: -1=as high

-- as possible, 0=one-shot,
-- <=1=specific rate.

detectorType DetectorTypes, -- Type of detector to be used.
detectorThreshold REAL, -- Detection threshold.
descriptorType DescriptorTypes, -- Type of descriptor to be used.
descriptorLength INTEGER, -- Length of each descriptor.
maxNumberOfFeatures INTEGER, -- Maximum number of features to

-- transfer back to the server.
rotationInvariant BOOLEAN, -- Use rotation invariant

-- descriptors.
coding CodingChoices, -- Type of coding to be performed on

-- the descriptors.
transferCoordinates BOOLEAN, -- Should coordinates be transfered?
transferScale BOOLEAN, -- Should scale be transfered?
transferOrientation BOOLEAN, -- Should orientation be transfered?
numFeaturesPerBlock INTEGER,
numCooperators INTEGER, -- 0 auto
offloading OffloadingChoices

}

ACKsliceMessage ::= SEQUENCE {
frameID INTEGER

}

CoopStatus ::= ENUMERATED {
online,
offline

60

}

CodingChoices ::= ENUMERATED {
none,
entropyCoding

}

OffloadingChoices ::= ENUMERATED {
polimi,
kth

}

Coordinate ::= SEQUENCE {
xCoordinate INTEGER,
yCoordinate INTEGER

}

--Whichever descriptors we support.
DescriptorTypes ::= ENUMERATED {

sift,
surf,
brief,
brisk,
orb,
freak

}

--Whichever detectors we support.
DetectorTypes ::= ENUMERATED {

fast,
star,
sift,
surf,
orb,
brisk,
mser

}

END

61

	Introduction
	Methodology
	Report structure

	Background
	Wireless Sensor Networks
	Visual Sensor Networks
	Visual feature extraction
	SURF
	BRISK

	Distributed feature extraction in VSNs
	Delegation of interest point detection
	Delegation of processing steps
	Recent work on distributed feature extraction in VSNs

	Divisible Load Theory
	Linear programming
	Special Ordered Sets
	Approximating non-linear functions as piecewise-linear functions

	ASN.1
	Data types
	Basic Encoding Rules (BER)
	Distinguished Encoding Rules (DER)
	Packed Encoding Rules (PER)

	System software
	lp_solve
	OpenCV
	ASN.1 compiler

	Testbed hardware
	BeagleBone Black
	IEEE 802.11 WiFi module
	IEEE 802.15.4 TelosB module

	System design
	System description
	Optimal cut-point locations
	Problem formulation
	Unicast-only formulation
	Interest point spatial distribution estimation
	Implementation in linear programming

	Processing nodes scheduling
	Detection threshold
	Threshold reconstruction
	Threshold prediction

	Performance parameters estimation
	Transmission speed estimation
	Processing speed estimation

	Previous testbed
	Class structure
	Message exchanges

	System Implementation
	DATC offloading workflow
	Class layout
	OffloadingManager
	LoadBalancing
	LoadBalancingConfig
	ProcessingSpeedEstimator
	TxSpeedEstimator

	UDP-based reliable communication module
	Slice stitching logic

	Experimental results
	Execution time of the optimization algorithm
	Execution time of the least-squares fit
	Processing speed and transmission throughput
	Completion time
	Unicast offloading
	Multicast offloading

	Number of interest points detected

	Conclusion and future work
	Conclusion
	Future work

	Appendices
	ASN.1 definitions of the messages

