Resumen

La logística y la manutención están adquiriendo una importancia clave en la mayoría de empresas e instituciones, muchas veces los problemas y sus soluciones no son fácilmente detectables y requieren herramientas de análisis que permitan la toma de decisiones para poder mejorar y optimizar los procesos.

Los potentes programas informáticos que permiten la simulación de complejos procesos son un ejemplo de dichas herramientas, como queda patente en el presente trabajo, donde se ha simulado una planta real de recuperación de bidones metálicos, con el fin de hallar los problemas, proponer soluciones y evaluar la viabilidad de dichas soluciones.

La metodología usada ha sido modelar la realidad virtualmente, simular dicho modelo mediante el software Simio y proponer mejoras en base al modelo inicial, simulando las propuestas y luego evaluando económicamente los resultados obtenidos.

Del modelo inicial se han presentado 4 propuestas de mejora, y una vez analizadas las 4 se ha llegado a la conclusión que sólo 2 son económicamente viables y que de ellas la mejor solución pasa por la automatización de dos procesos que suponen un incremento de la producción del 40%.

Aprovechando el análisis de la planta se han normalizado los procesos de toma de decisiones de acuerdo a la norma ISO 9001. Así mismo, se analiza también el impacto ambiental del proceso y los residuos que genera el desarrollo de la actividad, aprovechando dicho análisis para normalizar la gestión medioambiental de acuerdo con los estándares de la norma ISO 14001.
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.

David Pérez Pelegrín
Índice

RESUMEN 1

ÍNDICE 3

ÍNDICE DE FIGURAS 5

1.- GLOSARIO 9

2.- INTRODUCCIÓN 11
 2.1. Presentación de la empresa 11
 2.2. Motivo y objetivo del PFC 11
 2.3. Alcance del proyecto 12

3.- ANÁLISIS DEL PROCESO PRODUCTIVO 13
 3.1. Layout de la planta 13
 3.2. Simplificaciones 21
 3.3. Análisis mediante Simio 22
 3.3.1 Objetivos de la simulación 22
 3.3.2 Metodología 26
 3.3.3 Resultados 26
 3.3.4 Validación del modelo 29

4.- ANÁLISIS DE ESCENARIOS 31
 4.1. Descripción de escenarios a analizar 31
 4.1.1 Escenario 1 31
 4.1.2 Escenario 2 33
 4.1.3 Escenario 3 35
 4.1.4 Escenario 4 38
 4.2. Análisis de resultados mediante Simio 38
 4.2.1 Resultados para el escenario 1 38
 4.2.2 Resultados para el escenario 2 40
 4.2.3 Resultados para el escenario 3 42
 4.2.4 Resultados para el escenario 4 46

5.- ESTUDIO ECONÓMICO 49
 5.1. Coste del presente estudio 49
 5.2. Escenario 1 50
 5.3. Escenario 2 51
 5.4. Escenario 3 53
5.5. Escenario 4... 54
5.6. Análisis de resultados.. 56

6.- ESTUDIO DEL IMPACTO MEDIO AMBIENTAL .. 57
6.1. Interacción con el medio ambiente... 57
 6.1.1 Impacto visual ... 57
 6.1.2 Impacto acústico .. 57
 6.1.3 Residuos .. 57
6.2. Residuos debidos al funcionamiento del proceso... 58

7.- NORMALIZACIÓN DE PROCESOS SEGÚN ISO .. 61
 7.1.1 Objetivo .. 61
 7.1.2 Ámbito de aplicación .. 61
 7.1.3 Responsabilidades ... 61
 7.1.4 Procedimiento .. 61
 7.1.5 Mejora continua.. 66
7.2. Normalización según ISO 14001:2004.. 66
 7.2.1 Objetivo .. 66
 7.2.2 Ámbito de aplicación .. 66
 7.2.3 Responsabilidades ... 67
 7.2.4 Procedimientos .. 67
 7.2.5 Mejora continua.. 68

CONCLUSIONES .. 69

AGRADECIMIENTOS .. 71

BIBLIOGRAFÍA ... 73
Índice de figuras

Figura 1: Imagen del bidonST 13
Figura 2: Imagen del bidonTA 14
Figura 3: Diagrama de bloques del proceso de recuperación de bidones 15
Figura 4: Tabla explicativa de las operaciones que conforman el proceso 21
Figura 5: Imagen en 3D del modelo de simulación 23
Figura 6: Imagen en 3D del escurridor (op. 10) 23
Figura 7: Imagen en 3D del lavado externo (op. 40) 24
Figura 8: Imagen en 3D del cepillado (op. 100) 24
Figura 9: Imagen en 3D de la cabina de pintura (op. 110) 25
Figura 10: Imagen en 3D del almacén automático (op. 150) 25
Figura 11: Tabla de producción en el escenario inicial 26
Figura 12: Tabla de porcentaje de bloqueo, op. 80, escenario inicial 26
Figura 13: Tabla de porcentaje de bloqueo, op. 20 y 30, escenario inicial 27
Figura 14: Tabla de bidones enviados a destrucción, escenario inicial 27
Figura 15: Tabla con la tipología de bidones en el automático, escenario inicial 27
Figura 16: Tabla de bidones lavados en op. 30, escenario inicial 28
Figura 17: Tabla con número de paros en máquinas, escenario inicial 28
Figura 18: Tabla modelo real vs modelo simulado, escenario inicial 29
Figura 19: Detalle en 2D de los cambios introducidos en el escenario 1 32
Figura 20: Imagen 3D de las 4 cabinas de desetiquetado, escenario 1 32
Figura 21: Cambios en el diagrama de flujo, escenario 2 34
Figura 22: Detalle en 2D de los cambios introducidos en el escenario 2

Figura 23: Imagen 3D de robots de desetiquetado, escenario 2

Figura 24: Explicación de los procesos previos al lavado

Figura 25: Imagen 2D de los cambios introducidos en el escenario 3

Figura 26: Tabla de producción del escenario 1

Figura 27: Tabla con % de bloqueo op. 20 y 30, escenario 1

Figura 28: Tabla con porcentajes de inactividad op. 90, escenario 1

Figura 29: Tabla de producción del escenario 2

Figura 30: Tabla con porcentajes de inactividad op. 90, escenario 2

Figura 31: Tabla con tiempos de ciclo de los robots, escenario 2

Figura 32: Tabla con estadísticas de la op. 95, escenario 2

Figura 33: Bidones retrabajados en op. 95, escenario 2

Figura 34: Tabla con % de bloqueo op. 20 y 30, escenario 2

Figura 35: Tabla de producción para el escenario 3

Figura 36: Tabla con tiempo de ciclo op. 20, escenario 3

Figura 37: Tabla con tiempo de ciclo op. 30, escenario 3

Figura 38: Tabla con tiempo de inactividad op. 30, escenario 3

Figura 39: Tabla con tiempo de bloqueo op. 30, escenario 3

Figura 40: Tabla con tiempo de permanencia en op. 30, escenario inicial

Figura 41: Tabla con tiempo de permanencia en op. 30, escenario 3

Figura 42: Tabla con estadísticas de la volteadora, escenario 3

Figura 43: Tabla de producción para el escenario 4

Figura 44: Tabla con tiempo de bloqueo op. 50 y 80, escenario 4
Figura 45: Tabla con estadísticas de la op. 30, escenario 4

Figura 46: Tabla con estadísticas de la op. 40, escenario 4

Figura 47: Tabla con estadísticas de la op. 90, escenario 4

Figura 48: Estudio económico del escenario 1

Figura 49: VAN y TIR de las inversiones del escenario 1

Figura 50: Estudio económico del escenario 2

Figura 51: VAN y TIR de las inversiones del escenario 2

Figura 52: Estudio económico del escenario 3

Figura 53: VAN y TIR para las inversiones del escenario 3

Figura 54: Estudio económico del escenario 4

Figura 55: VAN y TIR para las inversiones del escenario 4

Figura 56: Resumen de resultados de las inversiones

Figura 57: Normalización de op. 20 según ISO 9001:2008

Figura 58: Normalización op. 80 según ISO 9001:2008
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.
1.- Glosario

BidónST: Bidón metálico, denominado estándar, de forma cilíndrica y con capacidad para 200 L. Con apertura circular en la parte superior que se cierra mediante tapón de rosca.

BidónTA: Bidón metálico, denominado de tapa y aro, de forma cilíndrica y con capacidad para 200 L. La parte superior está completamente abierta y se cierra mediante una tapa y un mecanismo de palanca.

FIFO: First In First Out, sistema de almacenamiento donde el primer objeto que llega es el primero en ser atendido, y por tanto, es el primero en salir.

LIFO: Last In First Out, sistema de almacenamiento donde el último objeto que llega es el primero en ser atendido, y por tanto el primero en salir.

VAN: Valor Actualizado Neto, es la diferencia entre el valor actualizado de los cobros y pagos generados por una inversión. Proporciona una medida de la rentabilidad del proyecto.

TIR: Tasa Interna de Retorno, mide la rentabilidad de los cobros y los pagos actualizados generados por una inversión, en términos relativos.

Ball: Beneficio antes de Impuestos e Intereses, resultado de explotación, sin tener en cuenta los ingresos y costes financieros, así como el impuesto de sociedades.

Bdi: Beneficio después de Impuestos, resultado de deducir del Ball el impuesto de sociedades.
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.
2.- Introducción

2.1. Presentación de la empresa

Reenvas S.A. es una empresa fundada en 1981 con el objetivo de reciclar y recuperar envases metálicos y plásticos de origen industrial para su posterior utilización. El sector de la recuperación de bidones nació de la necesidad de disponer de recipientes limpios para el uso en una época donde escaseaban los materiales. Hoy en día, sigue siendo una industria importante en Cataluña, desde donde llegan bidones metálicos de todo el estado para ser tratados. Un bidón estándar de 200 L se puede reutilizar hasta 6 veces y el coste respecto a uno nuevo es un 50 % menor, además, a la ventaja económica se le suma la ecológica, ya que no es necesario nuevo metal para un nuevo bidón.

Reenvas S.A. empezó en el sector de la recuperación de bidones metálicos con un proceso completamente manual, llegando a tratar hasta 15 bidones/h. Posteriormente amplió la oferta de servicios con lavado de bidones plásticos, destrucción de bidones plásticos y lavado de depósitos de 1000 L. En 2003 se llevó a cabo una profunda remodelación de la planta, finalizando con prácticamente la totalidad de todos los procesos automáticos, concluyendo en 2006 con la incorporación de un almacén automático de producto intermedio y producto acabado de bidones metálicos con capacidad para 1500 unidades. La incorporación de estas tecnologías ha hecho posible que hoy en día Reenvas tenga una capacidad para tratar hasta 90 bidones/h con mucho menos personal que entonces.

Actualmente Reenvas cuenta con más de 10000 m² donde dispone de tres líneas operativas; una para el reciclaje de bidones metálicos, otra para el lavado de bidones plásticos y otra para el lavado de depósitos. Además se suman a éstas, la zona de destrucción de bidones metálicos irrecuperables y la destrucción de bidones plásticos que no se pueden reciclar.

2.2. Motivo y objetivo del PFC

El motivo de este Proyecto Final de Carrera es el interés en la profundización en materia de simulación por ordenador de procesos logísticos debido a la realización de un proyecto que hice en la asignatura Manutenció, dentro de la intensificación de Transports y Vehicles de Ingeniería Industrial. Además se pretende aprovechar la estancia en SEAT, en el departamento de Gestión de Materiales para, junto con los conocimientos adquiridos en la redacción del presente trabajo, reforzar el conocimiento dentro del campo de la logística interna y la manutención.
El objetivo es el análisis del proceso de recuperación de bidones metálicos en Reenvas, proponiendo cuatro escenarios diferentes que hagan cambiar las cargas de trabajo y/o las modifiquen, para posteriormente extraer conclusiones derivadas del análisis económico de dichos escenarios.

2.3. Alcance del proyecto

El presente trabajo se limita al análisis del proceso de la recuperación de bidones metálicos, quedando excluida la recuperación de bidones plásticos, la recuperación de depósitos y la destrucción, tanto de bidones metálicos como plásticos.

El por qué de este hecho es que la complejidad de los procesos que han quedado al margen es menor en comparación con la recuperación de bidones metálicos, siendo los excluidos procesos básicamente lineales.

En cuanto a la recuperación de bidones metálicos propiamente dicha, pretende simular de la forma más fidedigna posible la realidad, habiendo simplificaciones que se explican en el apartado de la presente memoria: 3.2. Simplificaciones. Quedan excluidos del trabajo la recepción y la expedición de bidones, por no ser de interés para el mismo. Queda excluido el proceso completo de envío de bidones, por ser considerados irrecuperables, a la zona de destrucción.

Así mismo, la presente memoria no pretende ser una guía para la utilización del programa Simio, ya que es una exposición de resultados, las descripciones sobre las funcionalidades de Simio descritas en el anexo son las imprescindibles para la correcta interpretación de los resultados.
3.- Análisis del proceso productivo

3.1. Layout de la planta

Reenvas trabaja principalmente con 4 tipos de bidones metálicos:

- Bidones sin pintado interno (llamados de chapa)
- Bidones vitrificados internamente (llamados empavonados)
- Bidones metálicos con recubrimiento interior de plástico
- Bidones de tapa y aro

Los tres primeros se diferencian del último en cuanto a que tienen una apertura circular en su parte superior y se cierran roscando un tapón, los de tapa y aro están abiertos completamente por su parte superior y se cierran mediante un tapa que se ajusta al bidón con un mecanismo de palanca.

La distancia a la que se encuentra el tapón del extremo del bidón, el radio de la apertura y las medidas del bidón varían según el fabricante, por lo que las medidas no son estándares y ello provoca cambios en el proceso. Para el presente estudio se ha cogido el más generalizado, de 0,6 m de diámetro y 0,8 m de alto.

Para facilitar el diseño mediante Simio se ha simplificado de la siguiente manera: Bidones con tapón (75% del total, en adelante bidonST) y bidones de tapa y aro (25% del total, en adelante bidonTA), para tener en cuenta el hecho de los bidones con tapón que tienen la apertura desplazada se ha hecho una media estadística del último año, cuyo resultado es que del total de bidones con tapón tratados, el 10% son de boca desplazada. En las figuras 1 y 2 se puede observar la diferencia entre el tipo de bidonST y bidonTA.

![Figura 1: Imagen del bidonST](image)
La diferencia de proceso entre los bidones de medidas más generalizadas y los bidones de boca desplazada, es que los bidones de boca desplazada son lavados externamente en una máquina especial, esto quiere decir que los bidones TA no entran en esta máquina, ya que no tienen boca.

En cuanto al bidón TA la diferencia es que, como se usan para residuos sólidos, no necesitan un lavado interno exhaustivo, con lo que el lavado externo que se le hace es suficiente (ya que durante el lavado externo se lava internamente de nuevo el bidón), además, en el lavado interno el tiempo de ciclo es menor, ya que aquí la máquina encara la apertura del bidón con un tubo que debe ser introducido por ella, al no tener apertura este proceso se ahorra. Otra diferencia es que después del secado, durante el control previo a desetiquetado, el tiempo es mayor, ya que se les coloca y cierra la tapa, cuyo proceso es más largo que roscar un tapón.

Así pues, los bidones modelizados en Simio son:
- Bidón ST: 75% del total, de los cuales el 10% son de boca desplazada
- Bidón TA: 25% del total

El orden en que se suceden las operaciones desde recepción hasta expedición es el siguiente:
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.

Figura 3: Diagrama de bloques del proceso de recuperación de bidones
<table>
<thead>
<tr>
<th>Núm. op.</th>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Escurridor</td>
<td>Aquí se les quita el tapón, si disponen de él, y la máquina los carga de 4 en 4 boca abajo mediante pinzas neumáticas sobre unas cadenas que avanzan lentamente, por gravedad caen los restos que pudieran quedar en los bidones y son almacenados en depósitos. Una vez acabado este proceso, dos pinzas voltean de nuevo los bidones y los cargan sobre cintas de rodillos, donde circulan hasta el control interior. La normativa indica que un bidón enviado a recuperación/destrucción no puede contener más de un 10% del volumen ocupado en su interior, los bidones con los que se trabaja son de 200 L, lo cual quiere decir que como máximo pueden contener 20 L en su interior. Teniendo en cuenta que el escurridor dispone de dos depósitos de 1000 L cada uno, en el peor de los casos se deberán retirar estos depósitos y substituir por dos vacíos cuando hayan pasado por la máquina 100 bidones, aunque hay que destacar que lo normal es que no lleven apenas residuos en su interior. El cambio de los depósitos que recogen los restos supone el paro de la máquina y un tiempo aproximado de 10 minutos.</td>
</tr>
<tr>
<td>20</td>
<td>Control interior</td>
<td>En el control interior un operario examina, por la boca del bidón con ayuda de una lámpara, lo que el bidón ha contenido y el estado interior del bidón. Puede ocurrir que el bidón esté en malas condiciones (demasiado golpeado, demasiado oxidado o con la pintura interna en malas condiciones) y a criterio del operario sea irrecuperable, en cuyo caso lo envía a destrucción, en este punto hay un 3% de bidones rechazados.</td>
</tr>
<tr>
<td>30</td>
<td>Lavado interno</td>
<td>Los que son considerados aptos para el lavado, son dispuestos en la maquinaria de lavado interior por aspersión, según lo que hayan contenido son lavados con disolvente (resinas y pinturas), sosa (los restantes) y con ácido + sosa (bidones con el interior oxidado), el lavado con ácido es para retirar el óxido, pero para evitar la nueva oxidación interna del bidón es necesario un inmediato lavado con sosa cáustica, neutralizando de esta forma la reacción de oxidación que pudiera producirse, estas máquinas tienen capacidad para lavar simultáneamente 2 bidones cada</td>
</tr>
</tbody>
</table>
una. Se dispone de 3 máquinas de lavado con sosa, 2 de lavado con disolvente y 1 de lavado con ácido. De toda la producción el 75% requiere lavado exclusivamente con sosa, un 20% lavado con disolvente y un 5% requiere el proceso de lavado con ácido y sosa. Una vez lavados internamente son dispuestos en una cinta de rodillos que los envía al lavado externo. Este proceso está asistido por un operario que es el encargado de colocar los bidones en su posición correcta dentro de la máquina (con la boca hacia abajo), cuando el lavado ha finalizado es la propia máquina la que los coloca de nuevo boca arriba y el operario los dispone en la cinta para continuar el proceso.

Como se ha detallado con anterioridad, este proceso no es necesario para el bidonTA, ya que se usarán para almacenaje de residuos sólidos y por tanto no requieren lavado interno exhaustivo. Este tipo de bidón pasa directamente al proceso siguiente.

<table>
<thead>
<tr>
<th>40</th>
<th>Lavado externo</th>
</tr>
</thead>
</table>
| El túnel de lavado externo consiste de tres procesos: el primero es disponer los bidones (se lavan de dos en dos) en la posición correcta, para ello se hace girar al bidón sobre su base hasta que un láser con cámara determina la posición correcta de la boca, cuando los dos bidones están correctamente posicionados una pinza los voltea 180°, dejando la parte superior boca abajo, y los coloca en una cinta, al voltear un tubo es introducido por la boca del bidón, de ahí su importancia en el correcto posicionamiento. Como se ha explicado anteriormente el bidonTA no necesita este primer proceso, ya que esté en la posición que esté a la entrada del túnel, el tubo se introduce de forma correcta. El segundo proceso es el lavado externo propiamente dicho, el túnel dispone de tres compartimentos de lavado consecutivos, la diferencia entre los tres es la temperatura del agua, que se incrementa gradualmente, esto es así para evitar que un incremento muy brusco de temperatura pueda dañar los recubrimientos interiores. Simultáneamente, el cilindro que hay en la boca inyecta también agua a presión para dar un segundo lavado interno, la disolución es agua y sosa cáustica. El último proceso, una vez los bidones salen del tercer compartimento, consiste en voltear los bidones con la ayuda de una pinza neumática y dejarlos en posición horizontal en una cinta de rodillos, donde por gravedad
circulan hasta el pesaje.

Se dispone de dos máquinas para acometer esta función, la principal es por donde circula el 90% de la producción de bidones tipo bidonST, el otro 10% son bidones con la boca desplazada, lo que provoca problemas con la máquina principal, por ello circulan por una máquina secundaria con capacidad para lavar un bidón simultáneamente. Como se ha explicado los bidonesTA no utilizan esta máquina ya que están completamente abiertos en su parte superior y pueden ser lavados en la máquina principal.

<table>
<thead>
<tr>
<th>50</th>
<th>Pesaje</th>
<th>El bidón es dispuesto en una báscula que determina el peso del mismo, la información obtenida aquí se transmite al siguiente proceso, al cual llegan los bidones mediante cinta de rodillos.</th>
</tr>
</thead>
</table>
| 60 | Reconformado y estanqueidad | Mediante la masa que proporciona el pesaje, la máquina de reconformado y estanqueidad determina la presión de aire que inyecta al bidón. La presión es inyectada por una goma que recubre toda la parte superior del bidón, a más masa más grosor de chapa y por tanto más presión a inyectar, hasta un máximo de 3 bar, por motivos de seguridad. El correcto calibrado de esta máquina es crucial pues un exceso de presión en un bidón de chapa muy fina puede hacer que explote el bidón.

En esta máquina se producen dos procesos simultáneamente: por un lado, prueba de estanqueidad: se inyecta presión y durante 4 segundos se mide si el bidón pierde presión, si no pierde, el bidón es estanco y la prueba es correcta. Si durante esos 4 segundos se detecta pérdida de presión suena una alarma y el operario debe comprobar si ha sido por fallo en la goma o bien porque el bidón tiene un poro. El hecho de goma mal colocada supone menos del 1% de los paros de esta máquina. Los poros en bidón suponen un 2% de rechazo en este punto. Simultáneamente, mientras se inyecta el aire se hace girar sobre sí mismo el bidón, en la superficie exterior del bidón hay unos rodillos metálicos que con ayuda del aire inyectado y el movimiento de rotación corregen los pequeños defectos y golpes que pueda tener la chapa. |
| 70 | Secado | Los bidones son dispuestos en posición vertical para el secado. El secado consiste en dos filas con capacidad para 25 bidones |
cada una, los bidones circulan por una cinta de cadenas y se paran en la posición adecuada, cuando hay 25 bidones se elevan para dar entrada a una boca de aire caliente que seca el bidón internamente.

80	Control	El operario analiza el resultado del lavado. Algunos bidones que no han quedado en buenas condiciones (bien sea porque aun quedan restos del contenido anterior, el óxido no se ha limpiado convenientemente, o el vitrificado interno ha sido dañado) son retirados, éstos representan el 4%. De éstos, el 70% son reentrados en el circuito en la operación 20 (los que tienen residuos del contenido anterior) y el 30% enviado a destrucción. Si pasan el control, el operario les coloca el tapón (bidonST) o la tapa (bidonTA) y siguen avanzando por el circuito mediante cintas de rodillos. Como se ha comentado anteriormente, existe una diferencia de tiempo de ciclo entre bidonST y bidonTA en este punto, ya que roscar un tapón es un proceso más rápido que poner una tapa.
90	Desetiquetado	Una vez los bidones están limpios por el interior es necesario retirar las múltiples pegatinas adhesivas que éstos tienen en la superficie (indicaciones de materiales inflamables, albaranes del almacén de la empresa de donde proceden, etc.). Éste es un proceso manual donde hay 3 cabinas con pistolas neumáticas de púas. El operario hace avanzar un bidón a su cabina y lo cepilla para eliminar todas las etiquetas, una vez ha terminado coloca el bidón en la cinta de salida y hace avanzar la cinta de entrada que le proporciona un nuevo bidón.
100	Cepillado	A causa del desetiquetado, quedan adheridos al bidón pequeños trozos de papel procedentes de las etiquetas, para obtener una correcta calidad es necesario retirar estos trozos antes de pintar. El cepillado retira estos trozos mediante cepillos cilíndricos que giran en torno a la superficie del bidón.
110	Cabina de pintura	En la primera cabina se le imprima un color uniforme con pinturas en base agua, este proceso es susceptible de tener que repetirse (10% de la producción), sobre todo cuando hay cambios de color, ya que es necesario ajustar las boquillas, a veces es necesario repetir la operación por el color anterior que ha tenido el bidón, si
es un color que contrasta con el nuevo necesita más tiempo de pintado, en el menor de los casos hay que repetir por problemas de obstrucción de boquillas.

120	Horno de secado	El primer horno es un proceso en el cual la pintura es secada mediante temperatura, los bidones circulan por su interior y se consigue un secado superficial de la pintura. Sólo es necesario el secado parcial puesto que posteriormente hay otro horno que concluye el secado.
130	Cabina de pintura	La diferencia con la primera cabina es que aquí las boquillas están ajustadas para dar diferentes colores a la tapa, la parte superior y la parte inferior. Los colores los determina el cliente. Como en la primera cabina de pintura, un 10% de los bidones necesitan repetir el proceso por imperfecciones. Dado que la mayoría de clientes piden bidones monocolor, el 90% de la producción no requiere este segundo pintado.
140	Horno de secado	La diferencia con el primero es que aquí los bidones entran en grupos de cuatro, sobre cintas de cadenas circulan a muy baja velocidad por el interior de un horno, donde por temperatura la pintura se seca completamente.
150	Almacén automático	El almacén automático tiene una doble función, almacenar producto intermedio y almacenar producto acabado. Recoge producto al final de la operación 90 (si es producto intermedio) o de la operación 130 (si es producto final). Sirve como pulmón de producto intermedio a la espera de completar un lote del mismo tipo de bidón para enviarlo todo junto a pintado o bien para almacenar producto acabado en espera de completar las unidades totales pedidas por el cliente en caso de ser un pedido muy grande o para no tener que trabajar bajo pedido. La decisión de enviar bidones al almacén es responsabilidad del director de producción en función de los pedidos que la empresa tiene, por tanto para las futuras simulaciones se ha cogido una media basada en la producción de los últimos 3 meses de enviar un 20% de producto intermedio y un 40% de producto acabado respecto el total de bidones que salen de la operación 90 y 130. Es una superficie de 4x20x15 m donde tienen cabida 1500 bidones en 12 alturas. El almacén consta de una boca de entrada.
por la parte posterior y una boca de salida por la parte anterior. A la entrada, los bidones son introducidos en un ascensor, cuando hay 5 unidades en la cinta, ésta asciende hasta el piso asignado. Una vez arriba, los bidones avanzan dirigiéndose hacia la parte delantera del almacén.

Con este sistema se garantiza el FIFO en el almacén ya que los bidones de atrás no pueden salir si no lo hacen los bidones que hay delante. Al ser un almacén de producto intermedio y acabado con estas características, no se pueden mezclar en el mismo piso bidones terminados y bidones aún por terminar. El software del almacén lo impide dedicando exclusivamente un piso a un solo tipo de bidón.

Figura 4: Tabla explicativa de las operaciones que conforman el proceso

En el anexo, página 33, se puede consultar la distribución o el layout de la planta. También puede ser consultado en el anexo, página 13, la modelización de todos los objetos en Simio.

3.2. Simplificaciones

Si bien se ha intentado modelar la realidad de la forma más fidedigna posible, como en cualquier modelo, existen aspectos que no pueden ser tenidos en cuenta con todo detalle, sin embargo, las simplificaciones que se hagan no alterarán significativamente los resultados de las simulaciones.

Las simplificaciones que se han realizado respecto a la realidad son las siguientes:

En el modelo, sólo hay dos tipos de bidones, bidonST y bidonTA, que si bien es cierto que cubren la mayor parte de la producción real de la planta, no son los únicos existentes, Reenvas trabaja con varios tipos de bidones y cada uno de ellos comporta modificaciones en el proceso de recuperación. Dado que la suma de todos ellos no llega al 7% de la producción total no se ha considerado necesario introducir dichos bidones en el modelo, puesto que lo complicaría en demasía.

Como cualquier máquina, las descritas en el modelo tienen averías que obligan a detener la producción, en el modelo se han representado las averías o paros más representativos y de los cuales se tiene medida (parada en escurridor por cambio de depósitos, parada en prueba de estanqueidad por poro en bidón o mal funcionamiento y parada en cabinas de

David Pérez Pelegrín
pintura por obstrucción de boquillas o por cambio de color). De los demás fallos que puedan afectar a la productividad no se tienen medidas y no han sido contemplados. Cabe destacar que tampoco hay paros por mantenimiento, pues se llevan a cabo en horas de no producción.

El uso que se le da al almacén automático depende completamente de la operativa y de los pedidos previstos que tenga la empresa, la casuística de uso es muy variada, entre las situaciones posibles están: trabajar contra el almacén, almacenar sólo producto intermedio, almacenar sólo producto acabado, almacenar tanto producto intermedio como acabado y trabajar sin hacer uso del almacén. Por este hecho se ha modelizado la opción que más se ajusta a la realidad de uso de 3 meses, que es: producción con almacenamiento en automático de producto intermedio y producto acabado, un 20% de los bidones a la salida del cepillado y un 40% de los bidones a la salida del horno son almacenados, respetando en la salida del automático el % de bidones que deben ir hacia expedición y hacia las cabinas de pintura. Además, y debido al no conocimiento del tiempo de residencia de los bidones en el almacén y para evitar, en el estado estacionario acumulación en el automático, se ha definido un tiempo de ciclo igual a cero.

Por último, la cinta que discurre al lado del almacén es de dos niveles, siendo el nivel inferior para el material que pasa de la operación de cepillado a la de pintura sin almacenarse, y el nivel superior para el producto acabado que va dirección a la entrada del automático. La entrada de dicho producto al automático se realiza desde el segundo nivel, haciendo que el ascensor se eleve hasta la altura de la cinta. En el modelo todos los bidones acceden por el mismo nivel.

3.3. Análisis mediante Simio

3.3.1 Objetivos de la simulación

Una vez modelada la realidad de la planta y realizadas las simplificaciones que se han considerado oportunas, es necesario que el modelo plasme con fiabilidad el proceso.

El objetivo de la simulación del proceso original de la planta es hallar el cuello de botella y obtener datos acerca de la producción diaria, cantidad de bidones rechazados o uso del automático. En las figuras 5 a 10 se puede observar el modelo simulado mediante Simio.

Así mismo, se puede encontrar en el CD adjunto un vídeo de la simulación.
Figura 5: Imagen en 3D del modelo de simulación

Figura 6: Imagen en 3D del escurridor (op. 10)
Figura 7: Imagen en 3D del lavado externo (op. 40)

Figura 8: Imagen en 3D del cepillado (op. 100)
Figura 9: Imagen en 3D de la cabina de pintura (op. 110)

Figura 10: Imagen en 3D del almacén automático (op. 150)
3.3.2 Metodología

Del escenario inicial se ha simulado un turno productivo (8h) con 20 réplicas en estado estacionario.

Como se explica en el anexo, apartado 2, durante el diseño del modelo se han utilizado distribuciones aleatorias para diversos aspectos del diseño. Simio, al realizar las réplicas, tiene en cuenta este aspecto y al generar los números aleatorios garantiza que una misma distribución con igual parámetros no genera los mismos números aleatorios en diferentes réplicas.

3.3.3 Resultados

Los resultados más significativos son los mostrados a continuación:

Producción

<table>
<thead>
<tr>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>666,15</td>
<td>660,05 - 672,25</td>
</tr>
</tbody>
</table>

Figura 11: Tabla de producción en el escenario inicial

Medido a través de los bidones que han salido por expedición.

Cuello de botella

El cuello de botella es la operación 90, desetiquetado, ya que la operación anterior (número 80, control) es la que tiene el mayor porcentaje de tiempo de bloqueo, y la operación 90 trabaja al 100%.

<table>
<thead>
<tr>
<th>% medio Blocked op. 80</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>77,87 %</td>
<td>76,60% - 79,15 %</td>
</tr>
</tbody>
</table>

Figura 12: Tabla de porcentaje de bloqueo, op. 80, escenario inicial
El segundo cuello de botella es la operación 40, tal y como se puede observar en la siguiente tabla:

<table>
<thead>
<tr>
<th>Operación</th>
<th>% medio Blocked</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Control Interior</td>
<td>68,89 %</td>
<td>66,21 % - 71,33 %</td>
</tr>
<tr>
<td>30. Lavado Interno</td>
<td>7,38 %</td>
<td>6,00 % - 8,74 %</td>
</tr>
</tbody>
</table>

Figura 13: Tabla de porcentaje de bloqueo, op. 20 y 30, escenario inicial

Dichas operaciones son precedentes de la operación 40 (lavado externo), que tiene un tiempo de trabajo del 100%.

Bidones enviados a destrucción

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>43,90</td>
<td>40,70 - 47,10</td>
</tr>
</tbody>
</table>

Figura 14: Tabla de bidones enviados a destrucción, escenario inicial

Bidones enviados al automático

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
<th>% respecto a la producción total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producto intermedio</td>
<td>130,85</td>
<td>126,81 - 134,89</td>
<td>14,93 %</td>
</tr>
<tr>
<td>Producto acabado</td>
<td>268,20</td>
<td>260,22 - 276,18</td>
<td>40,26 %</td>
</tr>
</tbody>
</table>

Figura 15: Tabla con la tipología de bidones en el automático, escenario inicial

Nota: El modelo se ha diseñado para que envíe al automático el 20% del producto intermedio (bidones que salen de la operación 100) y el 40% del producto acabado (bidones que salen de la operación 140). La no concordancia de datos respecto al % de bidones de producto intermedio es porque se ha medido respecto la producción, si se mide con respecto a los bidones que han salido de la operación 100, el resultado es un 19,21 %.

David Pérez Pelegrín
Bidones lavados en operación 30 (lavado interno)

<table>
<thead>
<tr>
<th>Tipo de lavado interno</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
<th>% respecto al total de lavados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sosa cáustica</td>
<td>456,10</td>
<td>448,47 - 463,73</td>
<td>75,29 %</td>
</tr>
<tr>
<td>Disolvente</td>
<td>118,80</td>
<td>114,69 - 122,91</td>
<td>19,61 %</td>
</tr>
<tr>
<td>Ácido</td>
<td>30,90</td>
<td>28,03 - 33,77</td>
<td>5,10 %</td>
</tr>
<tr>
<td>Total lavados</td>
<td>605,80</td>
<td>598,51 - 613,09</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Figura 16: Tabla de bidones lavados en op. 30, escenario inicial

Recordamos que en el modelo se estableció que el 75% de los bidones lavados fueran con sosa, el 20% con disolvente y el 5% con ácido, viendo los resultados, se confirma que el modelo trabaja tal y como se espera.

Cabe destacar que la no concordancia entre la producción y los bidones lavados se debe a que los lavados internamente son los bidones tipo bidonST, hay parte de la producción (bidonTA) que no está contemplada en la tabla, ya que no se lavan internamente. Además hay cierto número de bidones que han sido lavados pero están dentro del circuito y aún no han llegado a expedición.

Número de paradas

<table>
<thead>
<tr>
<th>Operación</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Escurridor</td>
<td>2,45</td>
<td>2,21 - 2,69</td>
</tr>
<tr>
<td>60. Reconformado y estanqueidad</td>
<td>4,40</td>
<td>4,02 - 4,78</td>
</tr>
<tr>
<td>110. Pintura_1</td>
<td>2,10</td>
<td>1,57 - 2,62</td>
</tr>
<tr>
<td>130. Pintura_2</td>
<td>1,80</td>
<td>1,47 - 2,12</td>
</tr>
</tbody>
</table>

Figura 17: Tabla con número de paros en máquinas, escenario inicial

David Pérez Pelegrín
3.3.4 Validación del modelo

Dado que el modelo informático inicial ha partido de un modelo real simplificado, la validación ha sido efectuada poniendo en conocimiento al director de producción de la planta los datos obtenidos y comparando los datos con aquellos de los que se tiene una serie histórica (55 medidas).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Modelo real</th>
<th>Modelo simulado</th>
<th>Variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>Media I.C 95%</td>
<td>Media I.C 95%</td>
<td>(real – sim)/real</td>
</tr>
<tr>
<td>Producción</td>
<td>641</td>
<td>666</td>
<td>3,9%</td>
</tr>
<tr>
<td>Destrucción</td>
<td>58</td>
<td>44</td>
<td>24%</td>
</tr>
<tr>
<td>Paradas en estanqueidad</td>
<td>4,2</td>
<td>4,4</td>
<td>4,8%</td>
</tr>
</tbody>
</table>

Como se puede observar, la producción y el número de paradas en estanqueidad tienen una variación menor al 5%, en tanto que los bidones enviados a destrucción sí sufren una variación importante, esto es debido a que durante el proceso hay múltiples puntos donde los bidones pueden ser enviados a rechazo, el % en cada punto de envíos a rechazo se conoce, pero no se tiene un valor histórico y es por eso que al realizar el modelo no se ha podido aproximar más el resultado. Los demás resultados obtenidos de la simulación, a criterio del responsable de producción, son válidos y se asemejan a la realidad.
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.
4.- Análisis de escenarios

4.1. Descripción de escenarios a analizar

Se han analizado cuatro tipos de escenarios que requieren uno o más cambios en el modelo, estudiando su impacto en el proceso productivo, estos escenarios son:

- 1.- Aumento de la producción: Identificado el cuello de botella en el apartado anterior, para aumentar la producción será necesario introducir cambios en el cuello de botella.
- 2.- Cambio de las cabinas de la operación número 90 por robots automatizados: Aquí será necesario substituir las tres cabinas de desetiquetado por robots automáticos, debido a ello será necesaria la creación de un nuevo proceso para garantizar la calidad de los robots.
- 3.- Cambio de la operación 30 por una máquina de trabajo en continuo: Cambio de las máquinas que trabajan con cargas separadas por una de trabajo en continuo.
- 4.- Introducción simultánea de los cambios del escenario 2 y 3: Cambio de las cabinas por robots y cambio de las máquinas del proceso número 30 por máquinas de trabajo continuo.

4.1.1 Escenario 1

En el primer escenario, se necesita aumentar la producción de la planta un 10%, medido en la cantidad de bidones que salen por Expedición. Como el cuello de botella es la operación de desetiquetado (número 90) se deberá aumentar la producción en este punto.

Se ha optado por añadir una cuarta cabina de desetiquetado, lo cual a nivel productivo, supone incorporar un empleado más y realizar la infraestructura necesaria para que pueda ser llevada a cabo la operación, es decir se deberá construir la nueva cabina y desplazar la operación de cepillado (número 100) para dejar suficiente espacio. En la figura 19 se puede observar el detalle del original con respecto a los cambios introducidos en el escenario 1, el layout completo puede ser consultado en el anexo, página 35.
A nivel simulación sólo es necesario añadir un Server más, de iguales características que los que ya están en funcionamiento, y conectarlo mediante un conveyor, cuya longitud es la que hay físicamente en la planta. La condición de envío de bidones "Available" (anexo, página 16, op. 90) sigue sirviendo para este nuevo modelo con 4 cabinas de desetiquetado. En la figura 20 se puede observar los cambios realizados en el modelo de simulación.
4.1.2 Escenario 2

En el segundo escenario, y con el objetivo de modernizar y aumentar la producción, se cambian las tres cabinas de desetiquetado originales por robots automáticos. Esta operación necesita del robot, unas cámaras especiales que marcan dónde están las etiquetas a eliminar y una cabina acondicionada a tal efecto. No obstante, dado que cada bidón requiere un tratamiento especial por la ubicación o tipo de etiquetas que pueda llevar y con el fin de garantizar la calidad en este proceso, es necesario crear un control posterior para verificar el correcto funcionamiento del proceso, dando lugar a posibles retrabajos de los bidones que no hayan quedado correctamente desetiquetados.

A pesar de que la inversión es importante, supone un aumento de producción (el proceso con robot es más rápido que el proceso manual) y un ahorro de 2 personas, ya que el tercer operario pasa a realizar el control posterior.

Una vez contactado con un experto de la empresa Kuka, y según su experiencia en instalaciones que realizan procesos similares, en el caso que se presenta será necesario un pequeño robot de 5 ejes con capacidad de carga máxima de 5 kg, el cabezal será un disco giratorio de desbaste.

El proceso será el siguiente: el bidón entrará en la cabina y se situará encima de una plataforma giratoria, habrá un escáner detectando donde están las etiquetas mientras el bidón gira sobre su eje vertical, una vez realizado el análisis se parará la rotación y una fijación accionada neumáticamente mantendrá el bidón en su posición mientras el robot trabaja, si fuera necesario rotar el bidón a una nueva posición de trabajo debido a que quedan etiquetas sin retirar, la fijación se suelta y la plataforma gira el bidón, tras lo cual se vuelve a sujetar el bidón y se hace trabajar al robot. Una vez las cámaras determinan que no quedan etiquetas sin retirar se deja libre el bidón, que continúa hasta la siguiente operación, y se da entrada a uno nuevo.

Para la obtención de datos que nos permitan conocer el tiempo de ciclo de los robots ha sido necesario extrapolar datos de tiempos de ciclo de robots que realizan operaciones de desbaste similares, además se ha tenido que sumar el escáner previo. Finalmente se ha modelizado con un tiempo fijo el Transfer-In Time y con una distribución normal el Processing Time. Con la automatización del proceso se ahorra respecto a la operación manual un 60% de tiempo, lo cual permite pasar de 3 cabinas de desetiquetado a 2 robots.

Para determinar el tiempo de ciclo del nuevo control generado, se han hecho pruebas de campo con 55 medidas, como resultado se ha obtenido una distribución normal. En cuanto al % de bidones que deben ser retrabajados por defectos de calidad, se debe tener en cuenta que el proceso que se está intentando implementar no existe y es personalizado a
las necesidades de la planta, por tanto se ha cogido un 3,0% como valor genérico. Se pueden observar los cambios en el diagrama de flujo de las operaciones 80 a 100 en la figura 21:

![Diagrama de flujo](image)

Figura 21: Cambios en el diagrama de flujo, escenario 2

Dado que las cabinas con los robots requieren más espacio se hace necesaria una pequeña redistribución de la zona, tal y como se puede observar en la figura 22, donde se puede ver el original en comparación con el layout del escenario número 2. Así mismo aparece una nueva operación, marcada en la imagen como 12.5 denominada control post desetiquetado, a dicha operación le corresponde el número 95 en el orden de operaciones. El layout completo puede ser consultado en el anexo, página 37.

![Layout](image)

Figura 22: Detalle en 2D de los cambios introducidos en el escenario 2

Los cambios necesarios en el modelo han sido la substitución de los Server que hacían de cabinas por la de los robots, con los tiempos de ciclos explicados anteriormente y la adición de un Server que hace las veces de control post-desetiquetado, el tiempo de ciclo de esta operación es una distribución normal pero en el 3% de los casos el tiempo de procesamiento es mayor porque tiene que retrabajar el bidón, la modelización de este...
proceso puede ser consultado en el anexo, apartado 3.5. página 28. La unión entre elementos es mediante Conveyor, a excepción de la recirculación de bidones por fallo de calidad, que es mediante Path. Se puede observar el nuevo modelo en la figura 23.

Figura 23: Imagen 3D de robots de desetiquetado, escenario 2

4.1.3 Escenario 3

En el tercer escenario se pretende modificar el proceso de la operación número 30, lavado interno. En el proceso original hay hasta seis máquinas independientes (3 para el lavado con sosa cáustica, 2 para el lavado con disolvente y 1 para el lavado con ácido) que lavan internamente el bidón, que previamente ha sido colocado por un operario. Estas máquinas trabajan con cargas de dos bidones, es decir, se cargan dos bidones en la máquina, se realiza el proceso, se descargan los bidones y la máquina queda lista para una nueva carga. Lo que se quiere hacer es instalar tres túneles de lavado (uno para cada producto de limpieza), de forma que el proceso pase a ser continuo. Con esta mejora se ahorra el operario que daba soporte al proceso y se disminuye el tiempo de ciclo de esta operación, además, en la operación original hay una doble manipulación del bidón, que con esta mejora desaparece. En la operación 30 se necesita voltear el bidón 180º para iniciar la operación, cuando ésta acaba el bidón vuelve a su posición original, la doble manipulación viene de la operación 40, ya que nuevamente se volteó el bidón 180º.

Con el nuevo proceso se pretende que se volteee el bidón en la operación 30, realice el proceso, pero avance hasta la operación 40 en dicha posición, para tener que evitar voltearlo de nuevo.
Por otro lado será el operario de la operación 20 (control interior) el que distribuirá los bidones en cada túnel, de forma que no será necesario ningún operario más.

Dichos túneles funcionarán de la siguiente manera: el bidón será colocado en una plataforma giratoria, posteriormente, una serie de sensores determinarán donde está la boca y harán girar el bidón (sentido horario o antihorario, según sea el camino más corto) hasta centrar la boca del bidón en la posición adecuada, acto seguido, una pinza neumática fijará el bidón y lo volteará 180°, al voltearlo un tubo es introducido por la boca del bidón (estos procesos pueden observarse en la figura 24). Una vez en la posición correcta el bidón avanza al interior del túnel donde es lavado, cuando finaliza el lavado interno avanza en esta posición hasta la operación 40.

El proceso anteriormente descrito es sólo válido para el bidón tipo bidonST, ya que el bidonTA será desviado directamente desde la operación 20 hacia la operación 40.

Para poder realizar estos cambios es necesario retirar la maquinaria actualmente instalada en la operación 30 y substituirla por tres túneles de lavado, similares a los que ya hay en la operación 40. Éstos túneles darán entrada a bidones de uno en uno y tendrán capacidad en su interior para 8 bidones. Además se debe cambiar las cadenas que unen las operaciones 30 y 40 para poder instalar unas que garanticen la posición correcta. Por último para el correcto funcionamiento se deberá instalar el acceso que tendrán los bidones tipo bidonTA, accediendo directamente desde la operación 20, en este acceso se deberá instalar también una volteadora, pero más sencilla, ya que no precisa detectar donde está la apertura. Estos
cambios se pueden observar en la figura 25, el layout completo puede ser consultado en el anexo, página 39.

Figura 25: Imagen 2D de los cambios introducidos en el escenario 3

El control de los caminos que deben tomar los bidones se hace desde la posición número 2 (operación 20, control interior), en dicho puesto el operario deberá analizar el interior de los bidones (como hasta ahora) e indicar a la máquina que camino debe tomar el bidón, incluido si después del lavado interno debe ir a la máquina principal o secundaria de lavado externo. El hecho de seleccionar a que camino debe ir el bidón hace que el tiempo de ciclo en este punto aumente sensiblemente. Se ha optado por modelarlo con una distribución normal tras pruebas de campo, tomando 55 medidas.

Todos los cambios descritos hacen disminuir el tiempo de ciclo del conjunto de operaciones 30 y 40, puesto que se ahorraron dobles manipulaciones y se automatiza parte del proceso, además hay un ahorro de personal de 1 operario.
En cuanto al modelo de simulación ha sido necesario cambiar las máquinas por los túneles (modelizados igualmente mediante Server) con su correspondiente tiempo de ciclo, añadir la volteadora para los bidones tipo bidonTA, hacer las conexiones (utilizando Conveyor), eliminar el Transfer-In Time de la operación 40 y cambiar el tiempo de ciclo de la operación 20.

4.1.4 Escenario 4

Como última opción se ha modelado el proceso uniendo los escenarios 2 y 3, es decir, substituyendo las cabinas por robots e implementando el lavado continuo en el lavado interior. El layout resultante puede ser consultado en el anexo, página 41.

4.2. Análisis de resultados mediante Simio

Igual que en el escenario original, para los diferentes escenarios se han simulado 20 réplicas en estado estacionario

4.2.1 Resultados para el escenario 1

Producción

Con respecto al escenario inicial

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>666,15</td>
<td>660,05 - 672,25</td>
</tr>
<tr>
<td>Escenario 1</td>
<td>763,90</td>
<td>755,34 - 772,46</td>
</tr>
</tbody>
</table>

Figura 26: Tabla de producción del escenario 1

Se puede observar que la producción ha aumentado un 14,67 %, dado que el objetivo era aumentar la producción un 10%, se concluye que es suficiente con añadir una cuarta cabina de desetiquetado.

Cuello de botella

El nuevo cuello de botella pasa a ser la operación 40 (lavado externo) ya que la operación 20 presenta los máximos porcentajes de bloqueos.
De los datos extraídos se puede concluir que la incorporación de una cuarta cabina de desetiquetado no aumenta la producción todo lo que pudiera aumentarla (un máximo de un 33%), ya que sólo lo hace en un 15 %, aproximadamente, si trabajara al máximo, el cuello de botella sería la operación de desetiquetado, y se puede observar que el cuello de botella es la operación 40.

Si detallamos el porcentaje de tiempo que las cabinas están sin trabajar se obtiene:

<table>
<thead>
<tr>
<th>Máquina</th>
<th>% medio Starved</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desetiquetado_1</td>
<td>14,96 %</td>
<td>13,48 % - 16,44 %</td>
</tr>
<tr>
<td>Desetiquetado_2</td>
<td>15,33 %</td>
<td>13,73 % - 16,93 %</td>
</tr>
<tr>
<td>Desetiquetado_3</td>
<td>14,75 %</td>
<td>13,46 % - 16,03 %</td>
</tr>
<tr>
<td>Desetiquetado_4</td>
<td>15,63 %</td>
<td>14,03 % - 17,22 %</td>
</tr>
<tr>
<td>Global</td>
<td>15,16 %</td>
<td>14,46 % - 15,87 %</td>
</tr>
</tbody>
</table>

Con lo que se concluye que en caso de querer aumentar más la producción se deben tomar medidas en la operación 40, que es el nuevo cuello de botella.
4.2.2 Resultados para el escenario 2

Producción

Con respecto al escenario inicial

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>666,15</td>
<td>660,05 - 672,25</td>
</tr>
<tr>
<td>Escenario 2</td>
<td>757,65</td>
<td>742,64 - 772,66</td>
</tr>
</tbody>
</table>

Figura 29: Tabla de producción del escenario 2

De los datos extraídos se puede concluir que la producción aumenta un 13,73 %, similar al aumento experimentado en el escenario 1. Cabe destacar que este resultado es lógico a la luz del hecho de que el nuevo cuello de bota pasa a ser la operación 40 (tal y como ocurre en el escenario 1), y por tanto el desetiquetado tiene tiempos donde no trabaja, como se puede observar en la siguiente tabla:

<table>
<thead>
<tr>
<th>Máquina</th>
<th>% medio Starved</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot_1</td>
<td>47,49 %</td>
<td>46,05 % - 48,93 %</td>
</tr>
<tr>
<td>Robot_2</td>
<td>48,04 %</td>
<td>46,66 % - 49,41 %</td>
</tr>
<tr>
<td>Global</td>
<td>47,76 %</td>
<td>46,81 % - 48,72 %</td>
</tr>
</tbody>
</table>

Figura 30: Tabla con porcentajes de inactividad op. 90, escenario 2

Por otro lado es interesante conocer también el tiempo de ciclo de estas máquinas:

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Media tiempo de ciclo [s]</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot_1</td>
<td>38,63 s</td>
<td>38,47 s - 38,79 s</td>
</tr>
<tr>
<td>Robot_2</td>
<td>38,55 s</td>
<td>38,33 s - 38,77 s</td>
</tr>
<tr>
<td>Global</td>
<td>38,59 s</td>
<td>38,45 s - 38,72 s</td>
</tr>
</tbody>
</table>

Figura 31: Tabla con tiempos de ciclo de los robots, escenario 2
Cabe destacar que aquí sólo se incluye el Processing Time, el Transfer-In Time, no está incluido. En los robots, dicho Transfer-In Time, es de 10 segundos.

Como queda de manifiesto, la introducción de los robots supone una gran mejora en la operación de desetiquetado, ya que se ahorra tiempo y personal. Sólo con dos robots se puede hacer la producción que antes hacían 3 operarios.

Por otro lado las estadísticas de la nueva operación, 95, (control post desetiquetado) son:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidones tratados</td>
<td>771,80</td>
<td>761,25 - 782,35</td>
</tr>
<tr>
<td>Processing Time [%]</td>
<td>35,42 %</td>
<td>34,60 % - 35,88 %</td>
</tr>
<tr>
<td>Starved Time [%]</td>
<td>64,58 %</td>
<td>63,91 % - 65,25 %</td>
</tr>
<tr>
<td>Processing Time [s]</td>
<td>13,45 s</td>
<td>13,37 s - 13,54 s</td>
</tr>
</tbody>
</table>

Figura 32: Tabla con estadísticas de la op. 95, escenario 2

Nota: La diferencia entre el número de bidones tratados y la producción son bidones que están dentro del circuito y no han llegado a expedición.

Número de bidones retrabajados en la operación 95

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21,67</td>
<td>18,94 - 24,46</td>
</tr>
</tbody>
</table>

Figura 33: Bidones retrabajados en op. 95, escenario 2

Lo cual supone un 2,81% (del 3% fijado en el diseño) de los bidones que han sido revisados en el control post- desetiquetado.
Cuello de botella

<table>
<thead>
<tr>
<th>Operación</th>
<th>% medio Blocked</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Control Interior</td>
<td>67,59 %</td>
<td>64,43 % - 70,82 %</td>
</tr>
<tr>
<td>30. Lavado Interno</td>
<td>7,48 %</td>
<td>6,07 % - 8,91 %</td>
</tr>
</tbody>
</table>

Figura 34: Tabla con % de bloqueo op. 20 y 30, escenario 2

El cuello de botella es la operación 40. Los resultados son muy similares a los obtenidos en el escenario 1.

4.2.3 Resultados para el escenario 3

Producción

Con respecto al escenario inicial

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>666,15</td>
<td>660,05 - 672,25</td>
</tr>
<tr>
<td>Escenario 3</td>
<td>668,90</td>
<td>664,43 - 673,37</td>
</tr>
</tbody>
</table>

Figura 35: Tabla de producción para el escenario 3

La producción se mantiene prácticamente igual debido a que en el escenario 3 no se han hecho actuaciones en el cuello de botella.

Si detallamos la operación 20 (control interior) anterior a donde se han introducido los cambios (30 y 40):

<table>
<thead>
<tr>
<th>Escenario</th>
<th>% medio Processing</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>31,11 %</td>
<td>29,68 % - 33,54 %</td>
</tr>
<tr>
<td>Escenario 3</td>
<td>63,67 %</td>
<td>61,37 % - 65,98 %</td>
</tr>
</tbody>
</table>

Figura 36: Tabla con tiempo de ciclo op. 20, escenario 3
Con el lavado en continuo y debido al cambio de ciclo de la operación 20, se consigue un porcentaje de tiempo de procesamiento mayor.

Operación 30 - Processing Time [%]

<table>
<thead>
<tr>
<th></th>
<th>Máquina</th>
<th>% medio Processing</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>Sosa</td>
<td>72,01 %</td>
<td>71,48 % - 72,54 %</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>46,07 %</td>
<td>40,40 % - 51,74 %</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>67,37 %</td>
<td>62,55 % - 72,20 %</td>
</tr>
<tr>
<td>Escenario 3</td>
<td>Sosa</td>
<td>92,51 %</td>
<td>92,10 % - 92,92 %</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>56,77 %</td>
<td>55,28 % - 58,26 %</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>45,06 %</td>
<td>42,52 % - 47,61 %</td>
</tr>
</tbody>
</table>

Figura 37: Tabla con tiempo de ciclo op. 30, escenario 3

Operación 30 - Starved Time [%]

<table>
<thead>
<tr>
<th></th>
<th>Máquina</th>
<th>% medio Starved</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>Sosa</td>
<td>13,24 %</td>
<td>12,30 % - 14,18 %</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>53,93 %</td>
<td>48,26 % - 59,60 %</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>32,63 %</td>
<td>27,80 % - 37,46 %</td>
</tr>
<tr>
<td>Escenario 3</td>
<td>Sosa</td>
<td>7,49 %</td>
<td>7,08 % - 7,90 %</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>43,23 %</td>
<td>41,75 % - 44,72 %</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>54,94 %</td>
<td>53,39 % - 57,48 %</td>
</tr>
</tbody>
</table>

Figura 38: Tabla con tiempo de inactividad op. 30, escenario 3
Operación 30 - Blocked time [%]

Sólo se bloquean las máquinas de lavado interno por sosa en el escenario inicial, las demás máquinas del escenario inicial y los tres túneles del tercer escenario no sufren bloqueos.

<table>
<thead>
<tr>
<th>Máquina</th>
<th>% medio Blocked</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sosa</td>
<td>14,75 %</td>
<td>14,18 % - 15,32 %</td>
</tr>
<tr>
<td>Escenario 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las máquinas no sufren bloqueo</td>
<td></td>
</tr>
</tbody>
</table>

Figura 39: Tabla con tiempo de bloqueo op. 30, escenario 3

Se puede constatar que las mejoras introducidas, en lo que respecta a la operación 30 (lavado interno), aumentan los % de tiempo en que la máquina trabaja y hacen desaparecer el tiempo de bloqueo.

Cabe destacar que los datos pueden llevar a confusión, teniendo en cuenta que Simio, considera como tiempo de proceso aquel en que la máquina está a la espera de ser llenada antes de arrancar el Processing-In Time propiamente dicho. En el escenario inicial recordamos que las máquinas no inician su proceso hasta que no hayan entrado en ellas 2 bidones, no así en el tercer escenario, donde los bidones van entrando de forma continua y no es necesario esperar.

Este hecho puede ser apreciado (Figura 37) claramente en el lavado con ácido, puesto que en el escenario inicial hay un porcentaje considerablemente mayor en Processing Time, lo cual no se explica, dado que la producción es muy similar, y no existe bloqueo en esa máquina.

En el lavado con sosa no es muy significativo este punto puesto que el volumen de producción hace que en el escenario inicial, las máquinas no deban esperar prácticamente nada a ser llenadas.

Para poder entender mejor este aspecto se muestra el tiempo medio de permanencia de los bidones dentro de la máquina.
En el escenario 3, los tiempos medios son exactamente los tiempos de ciclo de cada máquina, es decir:

<table>
<thead>
<tr>
<th>Escenario 3</th>
<th>Máquina</th>
<th>Tiempo medio [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sosa</td>
<td>90 s</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>120 s</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>360 s</td>
</tr>
</tbody>
</table>

Figura 41: Tabla con tiempo de permanencia en op. 30, escenario 3

En la sosa, hay que tener en cuenta, que hay cierto tiempo en que la máquina está bloqueada en el escenario inicial y eso hace aumentar el tiempo medio de permanencia. En cuanto al disolvente existe cierta variación entre los dos escenarios, pero es en el lavado con ácido donde se puede observar que hay mucho tiempo de espera, puesto que la media se sitúa 148 s por encima del tiempo de ciclo, lo que confirma lo anteriormente explicado acerca de que los bidones en espera aumentan el porcentaje de Processing Time.

A continuación se muestran las estadísticas de la volteadora, es decir, la máquina que da paso a los bidones tipo bidonTA desde la operación 20 directamente a la 40:
Como se puede observar trabaja muy por debajo de su capacidad máxima.

4.2.4 Resultados para el escenario 4

Producción

Con respecto al escenario inicial

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Media</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicial</td>
<td>666,15</td>
<td>660,05 - 672,25</td>
</tr>
<tr>
<td>Escenario 4</td>
<td>936,10</td>
<td>914,25 - 957,95</td>
</tr>
</tbody>
</table>

La operación con más bloqueo es la número 50, lo cual quiere decir que es la operación 60 (reconformado y estanquiedad) el cuello de botella.
Operación 30 - Lavado interno

<table>
<thead>
<tr>
<th></th>
<th>Máquina</th>
<th>% medio</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing</td>
<td>Sosa</td>
<td>92,14 %</td>
<td>91,69 % - 92,58 %</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>56,04 %</td>
<td>54,98 % - 57,09 %</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>52,65 %</td>
<td>50,89 % - 54,41 %</td>
</tr>
<tr>
<td>Starved</td>
<td>Sosa</td>
<td>7,86 %</td>
<td>7,42 % - 8,31 %</td>
</tr>
<tr>
<td></td>
<td>Disolvente</td>
<td>43,96 %</td>
<td>43,03 % - 45,02 %</td>
</tr>
<tr>
<td></td>
<td>Ácido</td>
<td>47,35 %</td>
<td>45,59 % - 49,11 %</td>
</tr>
</tbody>
</table>

Figura 45: Tabla con estadísticas de la op. 30, escenario 4

Operación 40 - Lavado externo

<table>
<thead>
<tr>
<th>Variable</th>
<th>% medio</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Time [%]</td>
<td>98,67 %</td>
<td>98,17 % - 99,18 %</td>
</tr>
<tr>
<td>Starved Time [%]</td>
<td>1,33 %</td>
<td>0,82 % - 1,83 %</td>
</tr>
</tbody>
</table>

Figura 46: Tabla con estadísticas de la op. 40, escenario 4
Operación 90 - Desetiquetado

<table>
<thead>
<tr>
<th>Variable</th>
<th>% medio</th>
<th>Intervalo de confianza 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing Time [%]</td>
<td>65,55 %</td>
<td>64,37 % - 66,72 %</td>
</tr>
<tr>
<td>Starved Time [%]</td>
<td>34,45 %</td>
<td>33,28 % - 35,62 %</td>
</tr>
<tr>
<td>Robot 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing Time [%]</td>
<td>64,44 %</td>
<td>62,68 % - 66,19 %</td>
</tr>
<tr>
<td>Starved Time [%]</td>
<td>35,56 %</td>
<td>33,81 % - 37,32 %</td>
</tr>
</tbody>
</table>

Figura 47: Tabla con estadísticas de la op. 90, escenario 4

En conclusión, en este escenario, a pesar de la inversión que supone instalar los robots y los túneles de lavado, hay un aumento importante de la producción y un ahorro de 3 personas.
5.- Estudio económico

Para la correcta interpretación de los diferentes estudios económicos que se expondrán a continuación hay que tener en cuenta los siguientes puntos:

- Tasa de actualización de salarios y precio de ventas anual estimado: 1,5%
- Coste de un operario para la empresa: 20000 €
- Coste de indemnización por despido: 10000 €
- Impuesto de sociedades para pequeñas y medianas empresas: 25%
- Días laborables al año: 240 días
- Para las inversiones, el 50% del capital necesario saldrá de fondos propios y el otro 50% de préstamos.
- Horizonte de las inversiones: 5 años
- Interés de los préstamos: 4%.
- Rentabilidad esperada para el capital propio: 7%
- Amortización: Linear a 5 años
- Beneficio neto por bidón recuperado: 1,6 €

Tasa de descuento para las inversiones:

Se calcula multiplicado el porcentaje de la inversión financiado mediante crédito (en este caso un 50%), multiplicado por el interés del crédito (4%) y por el coste del crédito después de impuestos, más el capital propio (50%) multiplicado por la rentabilidad esperada (7%).

\[
0,5 \cdot 4 \% \cdot (1 - 0,25) + 0,5 \cdot 7 \% = 5 \%
\]

Es una medida financiera para calcular el valor presente de flujos efectivos futuros. Se utilizará para el cálculo del VAN (Valor Actualizado Neto) y para comparar con el TIR (Tasa Interna de Retorno).

5.1. Coste del presente estudio

El presente estudio consta de la realización del análisis in situ de la empresa, elaboración de la simulación (incluido la elaboración de los modelos en 3D), análisis de la simulación y elaboración de la memoria y anexo. El desglose es el siguiente:

- Horas totales: 600 h
- Coste por hora: 20 €
- Desplazamientos: 12
- Coste del desplazamiento: 6,5 €
- Coste total: 12078 €
Para los estudios económicos de los diferentes escenarios el coste del presente proyecto se incluirá en los fondos invertidos por la empresa.

5.2. Escenario 1

En el primer escenario se instalaba una cuarta cabina de desetiquetado, lo que supone la instalación de la misma, el desplazamiento de la cabina de cepillado y la contratación de un operario más. Por contra todo ello aumentaba la producción diaria en 98 bidones diarios.

- Instalación de la nueva cabina: 12600 €
- Operario: 20000 €, anuales.
- Amortización: (12600 + 12078)/5 = 4935,6 €
- Mantenimiento anual de la nueva cabina: 5000 €

<table>
<thead>
<tr>
<th>Año</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones</td>
<td>12600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coste del estudio</td>
<td>12078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fondos invertidos</td>
<td>24678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reducción de costes

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento de ventas</td>
<td>37632,0</td>
<td>38196,5</td>
<td>38769,4</td>
<td>39351,0</td>
<td>39941,2</td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aumento de costes

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indemnizaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>20000,0</td>
<td>20300,0</td>
<td>20604,5</td>
<td>20913,6</td>
<td>21227,3</td>
<td></td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>5000,0</td>
<td>5075,0</td>
<td>5151,1</td>
<td>5228,4</td>
<td>5306,8</td>
<td></td>
</tr>
<tr>
<td>Amortización (-)</td>
<td>4935,6</td>
<td>4935,6</td>
<td>4935,6</td>
<td>4935,6</td>
<td>4935,6</td>
<td></td>
</tr>
<tr>
<td>Beneficio antes de impuestos e intereses (Bal)</td>
<td>7696,4</td>
<td>7885,9</td>
<td>8078,2</td>
<td>8273,4</td>
<td>8471,5</td>
<td></td>
</tr>
<tr>
<td>Impuesto de Sociedades</td>
<td>1924,1</td>
<td>1971,5</td>
<td>2019,6</td>
<td>2068,4</td>
<td>2117,9</td>
<td></td>
</tr>
</tbody>
</table>
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.

<table>
<thead>
<tr>
<th>Beneficio después de impuestos (BdI)</th>
<th>5772,3</th>
<th>5914,4</th>
<th>6058,7</th>
<th>6205,1</th>
<th>6353,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortización (+)</td>
<td>4935,6</td>
<td>4935,6</td>
<td>4935,6</td>
<td>4935,6</td>
<td>4935,6</td>
</tr>
<tr>
<td>Fondos generados</td>
<td>-24678</td>
<td>10707,9</td>
<td>10850,0</td>
<td>10994,3</td>
<td>11140,7</td>
</tr>
<tr>
<td>Flujo de caja</td>
<td>-24678</td>
<td>-13970,1</td>
<td>-3120,1</td>
<td>7874,2</td>
<td>19014,8</td>
</tr>
</tbody>
</table>

Figura 48: Estudio económico del escenario 1

Con estos datos se puede calcular el VAN y el TIR:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>5376,7 €</td>
</tr>
<tr>
<td>TIR</td>
<td>8,39 %</td>
</tr>
</tbody>
</table>

Figura 49: VAN y TIR de las inversiones del escenario 1

De los datos se puede extraer que el pay back es de 3 años, y dado que el VAN es positivo y el TIR es mayor que la tasa de descuento (5%), la inversión es rentable.

5.3. Escenario 2

En el segundo escenario se substituían las cabinas de desetiquetado por dos robots. Como contrapartida de la automatización del proceso se creaba una nueva operación de control. El aumento de producción es de 92 bidones al día, ahorrando dos operarios.

- Inversión en infraestructura, instalaciones, software y "set up": 120000 €
- Amortización: \((120000 + 12078)/5 = 26415,6\) €
- Indemnizaciones: 20000 €
- Incremento anual en mantenimiento debido a los robots (considerando que la antigua partida de mantenimiento de las cabinas pasa a ser ahora mantenimiento de los robots): 4600 €

<table>
<thead>
<tr>
<th>Año</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones</td>
<td>120000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coste del estudio

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12078</td>
</tr>
</tbody>
</table>

Fondos invertidos

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>132078</td>
</tr>
</tbody>
</table>

Reducción de costes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento de ventas</td>
<td>35328,0</td>
</tr>
<tr>
<td></td>
<td>35857,9</td>
</tr>
<tr>
<td></td>
<td>36395,8</td>
</tr>
<tr>
<td></td>
<td>36941,7</td>
</tr>
<tr>
<td></td>
<td>37495,9</td>
</tr>
<tr>
<td>Personal</td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td>40000</td>
</tr>
</tbody>
</table>

Aumento de costes

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indemnizaciones</td>
<td>20000</td>
</tr>
<tr>
<td>Personal</td>
<td>20000,0</td>
</tr>
<tr>
<td></td>
<td>20300,0</td>
</tr>
<tr>
<td></td>
<td>20604,5</td>
</tr>
<tr>
<td></td>
<td>20913,6</td>
</tr>
<tr>
<td></td>
<td>21227,3</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>4600,0</td>
</tr>
<tr>
<td></td>
<td>4669,0</td>
</tr>
<tr>
<td></td>
<td>4739,0</td>
</tr>
<tr>
<td></td>
<td>4810,1</td>
</tr>
<tr>
<td></td>
<td>4882,3</td>
</tr>
<tr>
<td>Amortización (-)</td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td>Ball</td>
<td>24312,4</td>
</tr>
<tr>
<td></td>
<td>24473,3</td>
</tr>
<tr>
<td></td>
<td>24636,7</td>
</tr>
<tr>
<td></td>
<td>24802,4</td>
</tr>
<tr>
<td></td>
<td>24970,7</td>
</tr>
<tr>
<td>Impuesto de Sociedades</td>
<td>6078,1</td>
</tr>
<tr>
<td></td>
<td>6118,3</td>
</tr>
<tr>
<td></td>
<td>6159,2</td>
</tr>
<tr>
<td></td>
<td>6200,6</td>
</tr>
<tr>
<td></td>
<td>6242,7</td>
</tr>
<tr>
<td>Bdl</td>
<td>18234,3</td>
</tr>
<tr>
<td></td>
<td>18355,0</td>
</tr>
<tr>
<td></td>
<td>18477,5</td>
</tr>
<tr>
<td></td>
<td>18601,8</td>
</tr>
<tr>
<td></td>
<td>18728,0</td>
</tr>
<tr>
<td>Amortización (+)</td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td></td>
<td>26415,6</td>
</tr>
<tr>
<td>Fondos generados</td>
<td>-152078</td>
</tr>
<tr>
<td></td>
<td>44649,9</td>
</tr>
<tr>
<td></td>
<td>44770,59</td>
</tr>
<tr>
<td></td>
<td>44893,1</td>
</tr>
<tr>
<td></td>
<td>45017,4</td>
</tr>
<tr>
<td></td>
<td>45143,6</td>
</tr>
<tr>
<td>Flujo de caja</td>
<td>-152078</td>
</tr>
<tr>
<td></td>
<td>-107428,1</td>
</tr>
<tr>
<td></td>
<td>-62657,5</td>
</tr>
<tr>
<td></td>
<td>-17764,4</td>
</tr>
<tr>
<td></td>
<td>27253,0</td>
</tr>
<tr>
<td></td>
<td>72396,6</td>
</tr>
</tbody>
</table>

Figura 50: Estudio económico del escenario 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>-247422,5 €</td>
</tr>
<tr>
<td>TIR</td>
<td><0</td>
</tr>
</tbody>
</table>

Figura 51: VAN y TIR de las inversiones del escenario 2

David Pérez Pelegrín
Según se muestra en el flujo de caja el pay back es a 4 años, pero dado que el VAN es negativo y el TIR es negativo, la inversión no es rentable.

5.4. Escenario 3

En el tercer escenario se substituían las máquinas de lavado interno por túneles de carga continua. No hay incremento de producción, pero hay ahorro en personal.
- Inversión en infraestructura, instalaciones, software y "set up": 80000 €
- Amortización: \((80000 + 12078) / 5 = 18415,6 \) €
- Indemnización: 10000 €
- Incremento anual en la partida de mantenimiento: 1300 €

<table>
<thead>
<tr>
<th>Año</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversiones</td>
<td>80000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coste del estudio</td>
<td>12078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fondos invertidos</td>
<td>92078</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducción de costes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aumento de ventas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Personal</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10000</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aumento de costes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indemnizaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>1300</td>
<td>1319,5</td>
<td>1339,3</td>
<td>1359,4</td>
<td>1379,8</td>
<td></td>
</tr>
<tr>
<td>Amortización (-)</td>
<td>18415,6</td>
<td>18415,6</td>
<td>18415,6</td>
<td>18415,6</td>
<td>18415,6</td>
<td></td>
</tr>
<tr>
<td>Ball</td>
<td>284,4</td>
<td>264,9</td>
<td>245,1</td>
<td>225,0</td>
<td>204,6</td>
<td></td>
</tr>
<tr>
<td>Impuesto de Sociedades</td>
<td>71,1</td>
<td>66,2</td>
<td>61,3</td>
<td>56,3</td>
<td>51,2</td>
<td></td>
</tr>
<tr>
<td>Bdl</td>
<td>213,3</td>
<td>198,7</td>
<td>183,8</td>
<td>168,76</td>
<td>153,5</td>
<td></td>
</tr>
</tbody>
</table>
5.5. Escenario 4

El cuarto y último escenario es unir los escenarios 2 y 3. Con ello se consigue un aumento de producción de 270 bidones diarios.

- Inversión en infraestructura, instalaciones, software y "set up": 200000 €
- Amortización: (200000 + 12078)/5 = 42415,6 €
- Indemnizaciones: 30000 €
- Incremento anual en la partida de mantenimiento: 5900 €
El pay back es 3 años, a la vista del resultado positivo del VAN y dado que el TIR es mayor que la tasa de descuento (5%), la inversión resultaría rentable.
5.6. Análisis de resultados

Como ha quedado patente, de los cuatro escenarios analizados, sólo el número 1 y 4 son rentables.

Esto es así debido a que en el escenario inicial hay dos operaciones que tienen tiempos de ciclo similares, estas son: la operación número 90, desetiquetado (cuello de botella) y la operación número 40, lavado interno. Al quedar resuelto el cuello de botella en la operación 90, la operación 40 pasa a ser el nuevo cuello de botella.

Las actuaciones realizadas en el cuello de botella en el escenario 1 (adición de una cabina de desetiquetado) permiten aumentar la producción, y debido al bajo coste de la inversión resulta rentable.

Las actuaciones en el escenario 2 (introducción de los robots) no resultan rentables, a pesar de actuar en el cuello de botella, porque aumentan la producción pero no lo suficiente en comparación con lo costoso de la inversión. El nuevo cuello de botella pasa a ser la operación 40 y los robots implementados tienen un considerable porcentaje de tiempo de inactividad. El ahorro en personal y el aumento de producción no compensan la inversión inicial.

En el escenario 3 (introducción de los túneles de lavado) se automatiza la operación 30, mejorando implícitamente la operación 40, pero dado que dichas operaciones no son el cuello de botella la producción se mantiene constante. El ahorro de personal no compensa la inversión.

El escenario 4 (introducción de los robots más los túneles de lavado) es el más favorable desde el punto de vista económico puesto que resulta rentable y además consigue aumentar la producción en un 40%.

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Inversión Inicial [€]</th>
<th>VAN [€]</th>
<th>TIR [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escenario 1</td>
<td>24678 €</td>
<td>5376,7 €</td>
<td>8,39 %</td>
</tr>
<tr>
<td>Escenario 2</td>
<td>132078 €</td>
<td>- 247422,5 €</td>
<td><0</td>
</tr>
<tr>
<td>Escenario 3</td>
<td>92078 €</td>
<td>- 310164,8 €</td>
<td><0</td>
</tr>
<tr>
<td>Escenario 4</td>
<td>212078 €</td>
<td>156046,9 €</td>
<td>14,69 %</td>
</tr>
</tbody>
</table>

Figura 56: Resumen de resultados de las inversiones

David Pérez Pelegrín
6.- Estudio del impacto Medio ambiental

El presente capítulo da cuenta de la interacción que el proceso tiene con el medio ambiente, así como los residuos que provoca.

En este apartado sólo se ha tenido en cuenta el proceso de recuperación de bidones metálicos, quedando al margen los demás procesos, que evidentemente, generan residuos y tienen cierto impacto con el entorno.

Hay que tener en cuenta la naturaleza del proceso productivo, por eso la planta, necesita y dispone de la autorización pertinente por parte de la Agència de Residus de Catalunya, para la recuperación de envases.

6.1. Interacción con el medio ambiente

6.1.1 Impacto visual

El proceso se desarrolla dentro de un planta industrial de un polígono industrial, el impacto visual no es mayor que el de cualquier planta industrial de cualquier ámbito.

6.1.2 Impacto acústico

La contaminación acústica principalmente proviene de los compresores para el aire comprimido y de la extracción de aire de las cabinas que requieren ventilación forzada, como pueden ser las operaciones de desetiquetado o el cepillado.

Para evitar molestias en este aspecto se debe tener especial cuidado en la selección de motores de ventilación poco ruidosos y en aislar convenientemente los compresores.

Según marca el Decreto 176/2009 sobre contaminación acústica y la ordenanza municipal de Granollers reguladora de ruidos y vibraciones aprobada el 30 noviembre del 2010, el suelo donde se ubica la planta es de tipo C2 (predominio de suelo industrial) de baja sensibilidad acústica y por tanto los límites de inmisión son de 70 dB a excepción del periodo nocturno (23 h - 7 h) que son 60 dB.

6.1.3 Residuos

Los residuos generados por este proceso deben ser estudiados con minuciosidad dado que se trabaja con bidones que han contenido productos químicos que pueden ser potencialmente dañinos para el medio ambiente.
Además, dada la naturaleza del proceso, durante la fase de recuperación de bidones se producen residuos que deben ser tratados adecuadamente. Estos residuos y su tratamiento están detallados en el siguiente apartado.

Reenvas como gestor de residuos tiene la certificación necesaria por parte de la Agencia Catalana de Residuos en base al Decreto 1/2009 del 21 de Julio por el cual se aprueba la ley reguladora de residuos.

6.2. Residuos debidos al funcionamiento del proceso

Los datos que a continuación se muestran están extraídos de la declaración anual para gestores de residuos (DARIG) de Reenvas, que debe hacerse anualmente según el Decreto 88/2010 del 29 de Junio donde se aprueba el programa de gestión de residuos industriales en Catalunya.

La normativa aplicable a los residuos se recoge en: Real Decreto 815/2013 por el que se aprueba el reglamento de emisiones industriales, Ley 5/2013 sobre control y prevención integrados de la contaminación y el Real Decreto 117/2003 sobre limitación de emisiones de compuestos orgánicos volátiles.

La relación de residuos producidos es la siguiente:

En primer lugar hay que tratar adecuadamente los residuos provenientes del interior de los bidones, estos residuos pueden ser inflamables, corrosivos o de cualquier naturaleza, para ello son recogidos en depósitos y una empresa especializada los recoge una vez éstos están llenos, posteriormente los destruye mediante incineración. La estimación de generación de líquidos escurridos es de 800 t anuales.

Por otro lado, durante el proceso se usan disoluciones de agua con sosa cáustica, disolventes o ácido para el lavado interno de los bidones. Una vez estas aguas han cumplido su ciclo de trabajo son enviadas a una depuradora con un sistema de evaporadores. El agua depurada se reutiliza en el circuito para suplir el agua que se pierde durante el proceso. La depuradora y los lavadores generan 380 t de residuos líquidos anuales, más 4 m³ de aguas ácidas provenientes del lavado interno con ácido que no pueden ser enviadas a la depuradora. Estas aguas son tratadas mediante el uso de reactivos químicos.

Los túneles de lavado requieren de agua caliente, y las operaciones de secado y horno requieren aire caliente. La temperatura se obtiene de la combustión de diesel, dando lugar a las emisiones de SO₂, CO y NOₓ propias de este proceso, para estos contaminantes existe un límite establecido en 180 mg/Nm³ para SO₂, 500 mg/Nm³ para CO y de 300 mg/Nm³ para
NO$_x$. Las chimeneas que emiten dichos gases están equipadas con filtros que retienen las partículas nocivas.

Las operaciones de desetiquetado y cepillado generan partículas de papel en suspensión que son retiradas por el sistema de ventilación. Antes de poder expulsar estos gases y para garantizar que no se expulsen partículas al exterior son tratados por ciclones, que sedimentan las partículas, cuando éstas son retiradas, son tratadas como residuos banales.

Las cabinas de pintura y los hornos de secado generan emisiones COV (Compuestos Orgánicos Volátiles) debido a los disolventes y pinturas que se usan. La ventilación de las cabinas disponen de Scrubbers o depuradores que atrapan las partículas mediante condensación. Los depuradores generan alrededor de 23 t de aguas sucias (llamadas lechada) que son secadas y trasladadas a plantas de tratamiento de residuos sólidos urbanos.

Las cabinas de pintura disponen de paneles en forma de "panal de abeja" para retener la pintura sobrante, evitando contaminar el ambiente.

Tanto los motores como los bombas requieren de aceites y emulsiones lubricantes que deben ser substituidos, éstos, una vez cumplido su ciclo de trabajo, se almacenan hasta enviarlos a una empresa que regenera dichos aceites dándole otros usos, se estima en 2 t la generación de dichos residuos.

Los bidones metálicos rechazados son destruidos (compactados para minimizar el volumen) y almacenados a la espera de ser recogidos por una empresa especializada en recuperación de metales.

La generación de palets en la empresa se estima en 25 t anuales. Éstos son tratados por empresas especializadas en la recuperación de los mismos, donde son reparados para ser reutilizados.

Por último, los envases, cartón y papel, cristales y residuos banales que se puedan generar en el desarrollo de la actividad son procesados y depositados en los contenedores habilitados a tal efecto en el polígono. Se estima una generación anual de 540 t de dichos residuos más 1250 m3 de aguas residuales provenientes de sanitarios, duchas y limpieza, estas aguas son vertidas directamente en el colector de la planta que conecta con el alcantarillado.
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.
7.- Normalización de procesos según ISO

El presente capítulo contiene la formalización de los procedimientos para la estandarización de los procesos de retrabajos y/o recirculación de bidones que ocurren en la operación 20 (control interior) y 80 (control), de acuerdo con lo que requiere la norma ISO 9001:2008 de gestión de procesos.

7.1.1 Objetivo

El objetivo del procedimiento es establecer mecanismos para la mejora continua, de forma que se disminuya el número de bidones que deben ser tratados de nuevo, aumentando con ello la calidad y reduciendo el uso de recursos.

7.1.2 Ámbito de aplicación

Se incluye dentro del alcance de estos procedimientos la evaluación de indicadores que puedan conducir a una disminución de número de bidones retrabajados y por tanto a una mejora de calidad.

7.1.3 Responsabilidades

La realización de los manuales necesarios que definen los estándares de calidad que la empresa quiere aplicar son responsabilidad de la dirección y el responsable de producción.

La aplicación de dichos cánones es responsabilidad del operario al cargo de la operación.

La revisión de los resultados de los criterios de calidad, así como la realización, aplicación, y supervisión de medidas correctoras es responsabilidad de la dirección y el responsable de producción

7.1.4 Procedimiento

Operación 20

1. Evaluación del tipo de bidón.

2. Si es bidonTA, evaluación de defectos en la parte superior que impidieran la correcta colocación de la tapa, pintura interior dañada o perforaciones. De encontrarse estos defectos el bidón es enviado a rechazo y se finaliza el proceso. Si el bidón es considerado apto es enviado directamente a la operación 40.
3. Si es bidonST, el operario introduce por la boca una linterna y mira el interior, en caso de que esté oxidado en aproximadamente más de un 80% se rechaza directamente puesto que el exceso de óxido daña la chapa del bidón y además es difícil de retirar con ácido, no quedando garantizada su calidad (en caso de duda se envía a rechazo), si el bidón no presenta exceso de óxido es enviado al lavado interno con ácido, previo registro de esta incidencia; en caso de que en el interior se detecten residuos resinosos es enviado al lavado por disolvente, para los demás contenidos es enviado a lavado con sosa. Si se detecta algún punto con pintura interior dañada se descarta directamente, por pequeño que sea el defecto.
Figura 57: Normalización de op. 20 según ISO 9001:2008
Operación 80

1. Evaluación del tipo de bidón

2. En caso de ser bidonTA, colocar tapa y aro, si no queda perfectamente cerrada enviar a rechazo, en caso contrario avanzar el bidón a la operación 90.

3. En caso de bidonST, examinar el interior, si hay óxido (registrar la incidencia) o pintura interior en mal estado, enviar a rechazo, si hay restos del producto contenido anteriormente enviar a la operación 20, si esto ocurriera, guardar registro del por qué es reenviado a la operación 20. En caso de que todo esté correcto roscar tapón, si el tapón no puede ser roscado enviar el bidón a rechazo. Si el tapón puede ser roscado con normalidad avanzar el bidón hasta operación 90.
Figura 58: Normalización op. 80 según ISO 9001:2008
7.1.5 Mejora continua

Como ya ha quedado patente en el objetivo, la calidad es la base de la normalización de estos procesos, por eso se deben analizar periódicamente los registros que se extraen de los procesos, como por ejemplo el número de bidones enviados desde la operación 80 a 20, y tratar de aplicar medidas para disminuir dicho número.

La dirección y el equipo productivo son los que deben velar porque el manual de calidad de la empresa esté actualizado, sea útil y se cumpla. A través del análisis de los registros deben aplicarse las medidas que se crean necesarias a fin de conseguir el objetivo fijado de calidad.

Por ejemplo, los registros de las incidencias de número de bidones con óxido es para poder comparar el número en la operación 20 con el número en la operación 80, para poder extraer conclusiones sobre la efectividad del lavado interno con ácido, que es el más complejo.

De igual forma se debe proceder con los bidones que son reenviados a la operación 20 con restos del producto anteriormente contenido. Es necesario evaluar estos datos para encontrar soluciones que permitan no tener que recircular bidones.

7.2. Normalización según ISO 14001:2004

7.2.1 Objetivo

El objetivo de adaptar el proceso de recuperado de bidones a los estándares de la norma ISO 14001:2004 de sistemas de gestión ambiental es alcanzar y demostrar un sólido desempeño ambiental mediante el control de los impactos y sus actividades, acorde a los objetivos ambientales.

7.2.2 Ámbito de aplicación

El ámbito de aplicación de esta norma será en el proceso denominado "recuperación de bidones metálicos" de la planta de Reenvas.

Para la aplicación de la norma se debe:
- Establecer una política ambiental apropiada.
- Identificar los aspectos ambientales que surjan del desarrollo de la actividad.
- Identificar los requisitos legales aplicables.
- Identificar las prioridades y establecer los objetivos y metas ambientales.
- Establecer una estructura y un programa para implementar la política y alcanzar los objetivos.
• Facilitar la planificación, el control, el seguimiento, las acciones correctivas y preventivas y las actividades de auditoría y revisión.
• Tener capacidad de adaptación a circunstancias cambiantes.

7.2.3 Responsabilidades

La responsabilidad del establecimiento de la política ambiental recae en la dirección de la empresa con ayuda de los informes o evaluaciones que le sean necesarios.

La responsabilidad de la aplicación de la política medioambiental para la consecución de los objetivos y la auditoría interna estará a cargo del director técnico medioambiental que la empresa designe a tal efecto.

La correcta aplicación de las políticas que se estimen necesarias estará a cargo de toda la organización.

7.2.4 Procedimientos

La definición de la política ambiental deberá ser a intervalos planificados a cargo de la dirección, con soporte de las auditorías externas e internas que se estimen necesario así como del técnico medioambiental designado y, si procediera, con la ayuda del responsable de producción. Debe ser apropiada a la naturaleza e impactos ambientales que la actividad produce, comunicarse a todas las personas que trabajan en la empresa o en su nombre y debe estar a disposición del público.

La identificación de los aspectos ambientales está detallada en el apartado 6.0 del presente proyecto. La identificación de los residuos generados se detalla en el apartado 6.2, siendo a ellos aplicables las normas medioambientales siguientes: Real Decreto 815/2013 por el que se aprueba el reglamento de emisiones industriales, Ley 5/2013 sobre control y prevención integrados de la contaminación y el Real Decreto 117/2003 sobre limitación de emisiones de compuestos orgánicos volátiles. La ley 5/2013 integra las diferentes autorizaciones medioambientales exigidas en una sola: la autorización medioambiental integrada.

En base a las normas antes descritas, y considerando el tipo de residuos que la empresa genera se deben tener en cuenta los siguientes límites de emisión:

Para las emisiones provenientes de combustión de diesel, por foco emisor:
• CO: 500 mg/Nm³
• SO₂: 180 mg/Nm³
• NOₓ: 300 mg/Nm³
Para las emisiones de gases residuales en el lavado interno:
 - 75 mg C/Nm³

Para las cabinas de pintura (por cabina):
 - 100 mg C/Nm³

Siendo los métodos de muestreo los siguientes:
 - Caudal y velocidad. Según UNE 77225:2000
 - Humedad: Según UNE 14790
 - Condiciones normales para el volumen: 273 K y 1 atm

Una vez determinados los requisitos legales aplicables, la empresa debe establecer y mantener unos objetivos que deben ser conseguidos mediante el desarrollo de programas, que deben incluir las responsabilidades, los medios y los plazos para lograr dichos objetivos.

La dirección velará por la disponibilidad de los recursos esenciales para mantener y mejorar el sistema de gestión ambiental y proporcionará la formación o las acciones necesarias para satisfacer los objetivos marcados, siendo la comunicación interna clave en este aspecto.

7.2.5 Mejora continua

A través del técnico medioambiental que designe la empresa se hará el seguimiento de las medidas que se hayan acordado. A tal fin se establecerán y mantendrán los registros que sean necesarios para poder realizar las auditorías internas.

Si del resultado de las auditorías internas hubiera algún punto no conforme con los procedimientos y/o objetivos marcados se deberán aplicar las medidas correctivas que hagan falta.

La mejora continua debe ser un compromiso de toda la empresa y es por ello necesario que haya una toma de conciencia al respecto.
Conclusiones

Debido a la globalización y la competencia que impera en estos días se hace necesario aplicar políticas de mejora continua que permitan aumentar la calidad, ahorrando costes. La logística y la manutención tienen un papel fundamental en la consecución de estos objetivos y deben valerse de las herramientas que la tecnología pone a du disposición para poder hallar respuesta a los problemas que se plantean.

En el presente proyecto se ha analizado el proceso de una planta industrial y propuesto diversas mejoras a problemas reales que la planta tiene. Las soluciones aportadas pueden ser implementadas, mejorando con ello el desarrollo de la actividad.

En el mejor de los escenarios se ha conseguido aumentar la producción de la planta un 40%, con un retorno de la inversión a 3 años. Debido a la coyuntura económica, la planta trabaja a un turno y hoy en día no requiere de un aumento tan acusado de su producción, pero en el caso de que la planta funcionara a 3 turnos, tal y como lo hacía antaño, se puede valorar la posibilidad de implementar las mejoras, puesto que supondría casi ahorrar un turno productivo completo. Incluso si siguiera trabajando a un turno se puede considerar aplicar la solución propuesta, puesto que permite ahorrar costes, haciendo la misma producción en menos tiempo.

Además, con la gestión de procesos según el estándar ISO se pretende gestionar la calidad y enfocarla a la satisfacción del cliente, creando además simbiosis con los proveedores con el fin de satisfacer las necesidades de los clientes.

Así mismo, se pretende una gestión medioambiental escrupulosa y respetuosa con el medio ambiente, mediante los estándares ISO.

Las simulaciones por ordenador requieren de una inversión de tiempo elevada para el correcto modelado del proceso, sin embargo una vez éste está realizado, los cambios en el modelo son fáciles de introducir, y los resultados justifican esa inversión de tiempo.
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.

David Pérez Pelegrín
Agradecimientos

Antes que nada decir que durante la realización de este proyecto he aprendido mucho, no sólo en lo que respecta a las utilidades de Simio (algo desconocido para mí), también en todas las vertientes que aquí se trabajan, es un ejemplo que la vida es un aprendizaje continuo y a pesar de llamarse proyecto final de carrera yo he aprendido tanto como cuando estudiaba cualquiera de sus asignaturas. He disfrutado mucho durante la realización de este proyecto que toca de lleno el campo que más me interesa que es la gestión logística y manutención.

Gracias a mis padres y mi familia, por su apoyo incondicional, no sólo durante la realización de este proyecto o durante la carrera, también en cada día de mi vida.

Gracias a mi tío, Julio, por su paciencia y generosidad en mis excursiones periódicas a la planta.

Gracias a mis amigos que se interesaron infinitamente por el proyecto y cuyas aportaciones enriquecieron el resultado final.

Gracias a Reenvas por permitirme estudiar su proceso, en especial a Pascual, cuya experiencia e ingenio han sido claves para la comprensión de las intríngeulis del sector.

Por último, gracias a mi director, Joaquim, por su paciencia conmigo y sus inmejorables indicaciones, sin las cuales este proyecto no habría sido posible.
Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.
Bibliografía

Estudio e implementación de mejoras en el proceso logístico y de fabricación de una empresa de recuperación de bidones metálicos.