
Universitat Politècnica de Catalunya

Final year project

User space approach to audio device
driving on UNIX-like systems

Author:
Robert Millan Hernandez

Advisor:
Dr. J.R. Herrero Zaragoza

January 17, 2015

Acknowledgements

To my advisor, Dr. J.R. Herrero Zaragoza, for his teachings and guidance, for steering me
in the right direction at each turning point, and overall for his generous support during
development of this project.

To Dr. Ferran Sabaté for his supervision during the management course, his atten-
tion to detail, his many corrections and improvements and his feedback on management
aspects of the project.

To Daniel Ruiz Muñoz, for LATEX advice and allowing me to peek at some of his
templates.

1

Abstract

The proposed project attempts to resolve some of the inconvenience factors
related to implementing device drivers in kernel space, by using a different approach.

With the goals of simplifying development efforts and of maximizing perfor-
mance, design decisions have been taken in the majority of UNIX-like operating
systems to implement their kernels using a monolithic design and to build most
device driver subsystems into them. This has a number of drawbacks which this
proposal document will elaborate on.

The proposed project will attempt to resolve these drawbacks by implementing
a driver framework entirely in user space. The proposal is to do this specifically
for sound devices because this appears to be a very suitable class of drivers for this
kind of experiment.

Abstract (Catalan)

El projecte que proposem pretén resoldre alguns dels inconvenients relacionats
amb la implementació de controladors de dispositiu en espai de kernel, tot emprant
un mètode diferent.

Amb els objectius de simplificar costos de desenvolupament i maximitzar el
rendiment, la majoria dels sistemes operatius de tipus UNIX incorporen com a la
implementació dels seus kernels amb un disseny monoĺıtic, on la majoria dels subsis-
temes de control de dispositius s’hi han integrat. Això té determinats inconvenients
que seran abordats en aquesta proposta.

Aquest projecte intentarà resoldre aquests inconvenients mitjançant la imple-
mentació d’un entorn de controladors completament en espai d’usuari. La proposta
consisteix en fer això espećıficament per a dispositius de so, els quals creiem que
constitueixen una àrea molt adient per a aquest tipus d’experiment.

2

Contents

1 Introduction and state of the art 5
1.1 Introduction . 5
1.2 Research context . 5

1.2.1 Easier development . 5
1.2.2 Robustness and system stability 5
1.2.3 Performance . 5
1.2.4 Other areas of research . 6

1.3 Motivation . 6
1.3.1 Portability . 6
1.3.2 Release engineering . 6
1.3.3 Privilege separation . 7

1.4 Target audience . 7

2 General scope of the project 7
2.1 Framework . 7
2.2 Unmodified drivers . 8
2.3 Kernel interaction . 8
2.4 System architecture . 9

3 Development plan 9
3.1 Overview . 9
3.2 Development resources . 10
3.3 Potential technologies . 11
3.4 Potential risks & mitigation strategies . 12
3.5 Schedule . 12

4 Validation 12
4.1 Samples . 13
4.2 Subjects . 13
4.3 Test procedure . 14
4.4 Result interpretation . 14

5 Budget 14
5.1 Foundations . 14
5.2 Budget . 16
5.3 Financial viability of the project . 18

6 Project execution 18
6.1 Back end development . 18

6.1.1 Potential problems found that question the viability of using Device
Driver Environment (DDE) . 18

6.1.2 Attempts to use Universal Serial Bus (USB) Audio Class devices
led to a dead end . 19

6.1.3 RUMP with Peripherial Component Interconnect (PCI) 20
6.2 Back end testing and debugging . 20
6.3 Design and implementation of the front end 35
6.4 Result validation . 36

3

6.4.1 Programmatic buffer control . 36
6.4.2 Field validation based on subject experiments 37

6.5 Schedule deviations and final time line 39

7 Sustainability and social impact 40
7.1 Applicable laws and regulations . 40
7.2 Environmental sustainability . 40
7.3 Social impact . 41

8 Conclusions 41

Annexes 42
I Original project schedule . 42
II Revised project schedule . 45
III ABC/HR experimental results . 47

Acronyms 50

Glossary 51

References 53

4

1 Introduction and state of the art

1.1 Introduction

Traditionally, UNIX-like operating systems have used a monolithic design for their ker-
nels. This applies not just to logical facilities such as the network stack or filesystems,
but also to the majority of device drivers. In general there is a good explanation for this
design decision: a hardware resource is often shared by many processes (or even users)
within the system; sharing requires a routine to manage this resource and multiplex its
use requests. Such kind of management is more expensive to do in userland due to Inter-
Process Communication (IPC) overhead, which explains why in most cases it is handled
by the kernel.

The analysis of kernel-mode driver systems will be focused on Linux-based GNU
systems. However, it is likely that similar conclusions can be extrapolated to other
operating systems.

1.2 Research context

Previous research on user space device driving is very rich in its conclusions regarding
the feasibility and usefulness of such systems.

1.2.1 Easier development

Most researchers who have conducted similar efforts agree that moving device drivers
to user space provides a more suitable environment for driver development, allowing
programmers to easily test their code without risk of bringing the system down, and
making debugging much simpler [12] [17].

Decoupling from internal kernel Application Programming Interfaces (APIs) is also
found to open many possibilities. For example, upgrading a device driver without having
to upgrade the entire kernel is then possible. This could be very relevant on safety-critical
industrial machines, where an upgrade of the entire kernel requires a very expensive
certification process [23].

1.2.2 Robustness and system stability

Drivers in user space are also expected to be more robust/stable than their in-kernel
counterparts. Research conducted using Linux as a sample code base found that device
drivers are seven times more likely to contain coding mistakes than other kind of code [11].
Other experiments show that device drivers are the cause for 85% of operating system
failures [21].

1.2.3 Performance

This kind of experiment is not without difficulties. Performance throughput drawbacks
are common due to additional IPC overhead. However, this loss of performance has been
found to diminish to neglectable levels when optimal block transfer levels are used [12].

5

1.2.4 Other areas of research

It is important to make a distinction between user space driving of peripheral devices and
user space management of hardware resources that are shared by many hardware com-
ponents and their respective drivers. For instance, it’s been found that non-centralized
handling of Interrupt Request (IRQ) logic leads to hard-to-track synchronization bugs,
non-portable code, and priority inversion, whereas a centralizing IRQ management in a
user space server is subject to IPC overhead with a direct impact on interrupt service
latency [19].

Another interesting finding is that, although it is tempting to leverage the flexibility
provided by user space device drivers to implement a security system (that is, making
it possible to use untrusted code with unprivileged user ids), this is much harder than
it may seem because drivers may easily obtain read or write access to arbitrary memory
using Direct Memory Access (DMA) [12] [17]. Implementing user space drivers with such
security constraints is a specialized area of research and is left outside the scope of this
project.

1.3 Motivation

There are a few reasons why we think the proposed approach in this project could yield
interesting advantages to users and developers of audio device drivers:

1.3.1 Portability

One important drawback to kernel-mode driver systems is the lack of portability.
Userland code has a wide range of portable system APIs at its disposal. When one

writes code in userland, chances are that it won’t have many dependencies on OS-specific
facilities, and it will be easy to port this code to other operating systems. This has enabled
projects like CUPS or the X Window System to support a specific class of devices (printers
or displays, respectively) on multiple operating systems using the same driver code.

On the other hand, when writing drivers in kernel space, the interfaces the driver will
depend on are very specific to the kernel it is being programmed for. In practice it is
very likely that this driver will only be useful to one operating system.

1.3.2 Release engineering

Operating system kernels often go a step further in their lack of portability. It is very
common that a driver written for a specific version of certain operating system kernel
won’t build or run correctly on a different version of the same kernel!

While this (not having to maintain API compatibility) may have many advantages
to kernel developers, it also means that the release cycle of device drivers has to be
synchronized with the release cycle of the kernel as a whole. This can be a significant
disadvantage for end users.

If sound drivers weren’t tied to internal kernel interfaces, they could be released as a
separate software package, and users could run the latest version of sound drivers without
compromising the safety of other system components.

6

1.3.3 Privilege separation

Another important inconvenient to kernel-mode drivers is their lack of privilege separa-
tion. A device driver only needs privileged access to a small set of hardware resources.
For example a sound driver may need to access the PCI bus, specific areas of memory for
DMA operations and synchronization with interrupt events. However, a software bug in
this driver has the potential to compromise much more than those resources. A buffer
overflow or an invalid pointer could corrupt kernel data or code, or it could leak kernel
memory to user space; a small programming mistake could lead the kernel to a panic or
deadlock; etc.

It’s a significant benefit when the code associated with a hardware driver doesn’t need
to be given more responsibility than to manage correctly the resources that are strictly
required for the task. This can be easily achieved by running the driver in user space.

1.4 Target audience

The project intends to develop a production-ready system. Therefore our target audience
is very broad: it includes any computer user who runs audio-capable applications. System
administrators and power users should be able to easily deploying our system to manage
their audio hardware.

In addition, software developers should be able to integrate new drivers into the system
with minimal effort (as seen in previous documents, one of the goals of the project is
supporting unmodified drivers) in order to support their hardware.

2 General scope of the project

The goal of this project is to engineer a framework that will perform playback on com-
modity audio hardware using unmodified drivers, where the device driver logic resides
entirely in user space, bypassing kernel interaction in all cases where this is possible.

2.1 Framework

The project doesn’t just aim to produce a system that can play audio on user space on a
specific device. Obviously, for the purpose of debugging and demonstrating the results,
it will have to support at least one device, but the goal is for this system to be extensible;
that is, a generic framework for audio in user space where:

1. New drivers can be easily integrated with no changes in the framework itself. This
implies driver code will be isolated from the system core via abstraction layers,
which will provide:

(a) Facilities required by drivers to access hardware resources (PCI bus, Input/Out-
put (I/O) space, interrupts...)

(b) Interaction with upper-level audio APIs

2. Standard audio APIs are provided, so that most user applications can be easily con-
figured to use our framework with minimal or no modification. The following audio
APIs are prominent within the libre software ecosystem and will be considered. At
least one of them will be provided by the system:

7

(a) Open Sound System (OSS). Since OSS is designed to provide a low-level in-
terface based on kernel syscalls (open, write, ioctl...), providing this API in
user space for unmodified applications could present some challenges as some
mechanism would have to be implemented to intercept such calls.

(b) Advanced Linux Sound Architecture (ALSA). Since the ALSA API is provided
through a user space library (libasound2), it could be simple to supply this API
on user space by providing an Application Binary Interface (ABI)-compatible
libasound. However, the ALSA API is much more extensive than OSS and
also less portable, which might present some difficulties.

(c) PulseAudio, unlike the other two, is a sound server that takes audio input from
user applications and redirects it to other audio APIs for output (generally OSS
or ALSA). PulseAudio is deployed as the default audio server in most Linux-
based GNU distributions and therefore is a widely supported API among audio
applications. In principle PulseAudio would be automatically available if OSS
or ALSA are implemented. However, as PulseAudio is able to support multiple
audio API back ends, it should also be possible to support PulseAudio directly
by implementing the appropriate extensions.

2.2 Unmodified drivers

The project aims to be useful in general, for the vast majority of commodity audio
hardware. To fulfill this goal, it must be easy to integrate new drivers in it.

Fortunately there is a wide range of libre software device drivers for such audio hard-
ware, available to us in free operating system kernels such as Linux and the kernels of
*BSD operating systems.

After the project is complete, it will be possible to take a working device driver from
at least one of those libre operating system kernels and integrate it into the project with
minimal effort. In particular, it should be possible to do this without performing any
changes in the driver itself. This can be achieved by maintaining a compatibility layer
with the internal APIs of the targeted kernels.

2.3 Kernel interaction

The system will take the necessary provisions so that the driver code itself, as well as all
the associated driver logic, runs entirely in user space.

Interaction with the kernel will be limited to the minimum that is strictly necessary
in order to gain access shared hardware resources.

In some cases (e.g. PCI or interrupts), the resources are also used by other drivers
and therefore the kernel will have to maintain its role of arbiter in order to grant access
to the user space process implementing our system.

In other cases (e.g. I/O space) special privileges will be requested to the kernel so that
our user space process is capable of directly using the resource from that point onwards.

Overall, the goal of the project is that the requirements for kernel interaction are well
defined, and limited in scope (section 1.3.2 provides a good perspective on the reasoning
behind this goal).

Upon completion, the project will run only on Linux, which is by far the most popular
libre operating system kernel, and also provides a number of key facilities we expect to
be essential to satisfy the previously-mentioned requirements.

8

2.4 System architecture

An overview of the system architecture is provided in the following graph:

3 Development plan

3.1 Overview

1. The project will attempt to focus on integration of existing technologies whenever
possible. Rather than developing new components from scratch, it will attempt to

9

leverage existing libre software projects and invest effort into:

(a) Finding existing technologies under permissive licensing terms that could be
integrated as components of the project.

(b) Evaluating existing technologies under permissive licensing terms that could
be integrated as components of the project. For each technology: its code
quality, documentation, the developer community behind it, etc.

(c) Devising how said technology can be integrated into the project, and imple-
menting the necessary glue code, bindings, missing features, etc.

(d) Reading, understanding and ultimately debugging foreign code in order to fix
any outstanding problems within that component which affect the project as
a whole.

The advantage of this is two-fold: On one hand, the project will be based on
a foundation of widely tested code, which has gone under review, scrutiny and
improvement for long periods of time. On the other, this will allow to direct devel-
opment effort to achieve ambitious goals that no one else has fulfilled before, and
as a result provide something that is new and uniquely useful to average computer
administrators.

2. Once the desired technologies have been identified, the project will focus its effort
in implementing a proof of concept playback using, rather than any standard audio
APIs, a modified audio player application, specifically tailored for the purpose of
testing the lower end of the system’s audio stack.

3. When basic playback in user space is finally achieved, the missing pieces can be
implemented, making it possible for unmodified applications to use the system.

The reason for this division of steps is that each landmark can be accurately tested
on its own, which makes it easier for debugging and also to identify clearly when it has
been completed.

3.2 Development resources

The resources available for development of this project are enumerated as follows:

1. Research information available on the Internet about implementing drivers on user
space (academical papers and other sort of material).

2. Existing projects that already implement other areas of device driving in user space.
These may be used as reference, to gain understanding or insight, and/or as integral
part of the project if considered suitable.

3. Development tools:

(a) A desktop PC at the student’s workplace will be used for most of the devel-
opment.

(b) VirtualBox will be used to run the system in an isolated environment, as well
as to provide emulated audio hardware for testing purposes.

10

(c) Debian GNU/Linux operating system will be used to host VirtualBox in-
stances, as well as a guest OS.

(d) The GNU C Compiler (GCC) and associated development environment (binu-
tils, make, etc) will be used to compile the project components directly from
guest OS.

Notably missing from this list is any specific audio hardware. The system device
driving will use one of the VirtualBox emulated audio devices, and therefore the result of
the project will be usable (for testing, development and demonstration purposes) on any
PC / OS combination that is equipped with audio hardware and also capable of running
VirtualBox.

3.3 Potential technologies

There exist a few frameworks available which have been written to facilitate the devel-
opment of user space device drivers:

1. DDE, and its companion project DDEkit, comprise a very complete system as
they provide abstraction for all the necessary kernel facilities in a single layer. Its
functionality includes interrupt management (using User Space I/O (UIO) as back
end), PCI enumeration (using libpci as back end), direct I/O space access (using
ioperm/iopl) and even DMA by means of a custom Linux module. Additionally,
the DDE driver glue code is separated from DDEkit, allowing for multiple kernels
to be supported (currently, Linux is supported but variants exist for other such as
the kernel of FreeBSD [15])

2. RUMP provides a useful solution for running drivers in user space, as drivers written
for NetBSD are easy to integrate with. Being a component of NetBSD itself, this
provides strong assurance of continued support. It is also conceptually simpler than
DDE/DDEkit. However, it has the disadvantage that it can only be used by drivers
written for NetBSD (or other drivers after porting to internal NetBSD kernel APIs).

Both frameworks seem suitable options for implementing device driving in user space.
Using either of them will allow the project to focus effort on integration of the various
components, and on resolving problems derived from this integration, rather than on
implementing a new framework from scratch.

In addition, both frameworks provide a solution for interfacing with existing device
drivers that have been written for a specific kernel: DDE implements glue code for Linux
drivers, and RUMP implements the glue code for drivers from the NetBSD kernel.

A generic audio subsystem will have to be developed, providing extensions to higher-
level sound APIs like OSS.

In case ALSA support is provided, an ALSA emulation library has been identified,
libsalsa. Libsalsa implements ALSA on top of OSS, using the latter as back end. For
this project, it could potentially be modified to send its output to our audio subsystem
instead of OSS.

11

3.4 Potential risks & mitigation strategies

1. The project intends to rely on the facilities made available by a large body of
external code. Although this allows it to leverage on great technology already
available in the libre software ecosystem, relying on external code opens the door
for unforeseen problems to appear, specially when trying to use it for purposes that
haven’t tried before. There are two mitigation strategies for this problem:

(a) Take advantage that all the code we’re using is open source as an aid for
debugging, and fix the problems by patching such code when necessary.

(b) If a particular technology is found not to be suitable for some reason, and
an alternative is available (as is the case with DDE/RUMP), fall back to the
alternative.

2. The project intends to run entirely in user space, and only rely on standard kernel
facilities for initialization. This approach is known to work, as similar projects
have tried it before. However, the specifics of audio device driving may impose
additional latency constraints: We could find that an event originated by hardware
requires a quick response from the device driver, and due to scheduling problems
we cannot guarantee this from user space. In case this happens, we could mitigate
the problem by developing a helper kernel module to provide this quick response,
while still allowing for the bulk of the driver logic to reside in user space.

3.5 Schedule

The project is broken down in four major tasks:

1. Back end development

2. Back end testing and debugging

3. Design and implementation of the sound API front end

4. Result validation

with each of these tasks broken down into smaller subtasks. The tables in Annex I
give an exhaustive list of all the steps, and their associated Gantt diagram a schedule of
their planned execution.

4 Validation

The initial milestone document of this project explained (in section 2.5) the difficulties
in finding a proper validation method. The dilemma was that a simple quantitative
approach cannot satisfy our desire to validate the result, because the motivation factors
for this project are clearly qualitative ones.

When trying to solve this problem, we found that the Broadcasting Service (BS) rec-
ommendations published by the Radiocommunication Sector of the International Telecom-
munication Union (ITU-R) are among the most rigorous and recognized standards for
validation of audio quality.

12

Among them, recommendation BS.1116-2 [16] appears to be the most suitable for this
kind of experiment as we expect that impairments in audio quality in our system will be
very small (if perceivable at all) in comparison with those in other kinds of experiment
such as analog radio transmission or lossy audio compression.

However, upon careful examination of BS.1116-2 [16], we’ve come to the conclusion
that this standard is too ambitious for a project of this size, as the resources required for
implementing it cannot be possibly fit in our budget. Because of this, we’ve opted to use
BS.1116-2 [16] for inspiration, and drafted a validation method based on similar ideas.

The validation method consists of a test procedure that needs to be carried out with
collaboration of volunteer subjects over a single session (per subject), using a series of
audio samples. Finally, results can be interpreted using statistical analysis.

A more elaborate description of each topic is covered in the subsections below. Please
note, that references to specific section numbers refer to sections in BS.1116-2 [16], not to
sections in the Followup report itself (in order to facilitate its reading this is not stated
explicitly with each reference).

4.1 Samples

BS.1116-2 [16] establishes that the number of samples per session should be between
10 and 15, as a larger number might result in subject getting tired and losing auditive
capacities (c.f. section 4.2).

Following this advice, we decided to make the sample selection as large as possible (15
samples), in order to compensate for the shortcomings in the number of subjects (refer
to section 4.2 below for details).

Samples should have the following properties:

1. They should be neither too attractive nor too wearisome to listen. This is to prevent
the subject from being distracted (c.f. section 6).

2. They should be presented without accompanying pictures or visual stimulus of any
kind. This is, again, to prevent the subject from being distracted (c.f. section 2).

3. They should last between 10 and 25 seconds. With longer samples, it is believed
that the subject will remember less details since auditive memory has a very short
time span (c.f. section 4.2).

4. They should be different from each other in order to increase the chances that
they expose different problems. The sample set should include samples that feature
different combinations of pitch and timbre (c.f. section 6).

4.2 Subjects

Based on field experience, BS.1116-2 [16] states that 20 is a sufficient number of subjects
in order to draw appropriate conclusions from the experiment (c.f. section 3.3).

Furthermore, BS.1116-2 [16] also recommends that the listening panel is composed
exclusively from subjects who have expertise in detection of small auditive impairments
(c.f. section 3.1).

We have no doubt that the recommendations in BS.1116-2 [16] are solidly grounded
and widely recognised as best practice when performing validation of this kind. However,

13

our position for this project will have to differ. We find the recommendations are exces-
sively demanding for a project of this size and budget. Forming a listening panel of 20
subjects would require that financial compensation is offered to them.

In addition, if we needed each subject to be an audition expert, this would make
selection even harder and require a substantial expense to recruit them.

Therefore, in order to simplify validation of the project, we will rely only on volunteer
subjects and will not establish a mandatory minimum number of subjects. We will
attempt to encourage participation of as many subjects as possible, within our available
means.

We will not require specific expertise or perform any kind of selection when forming
the listening panel. As long as a candidate has a healthy auditive system, he will be
accepted.

4.3 Test procedure

Before the test procedure begins, it is expected of the subjects that they have familiarised
themselves with the samples (c.f. attachment 3 to annex 1). This will improve their ability
to identify impairments when the test is conducted.

A triple-stimulus with hidden reference (ABC/HR) test procedure will be followed,
as recommended by BS.1116-2 [16], but with a few divergences. The divergences will be
described below; however, description of the specific details of ABC/HR is outside the
scope of this document. The reader is encouraged to consult section 4 of BS.1116-2 [16]
before proceeding.

Specifics of our implementation are as follows:

1. BS.1116-2 [16] recommends that a double-blind method is used for the test pro-
cedure. However, this would place the additional requirement of recruiting and
training a control group, which is again not affordable within our budget. We have
therefore opted to implement single-blind test method instead.

2. BS.1116-2 [16] provides a grading scale with five pre-defined anchor points. It
recommends that the scale be treated as continuous, allowing the subject to pick any
intermediate value, but without providing intermediate anchor points, as studies
show that this may introduce bias [20]. Although BS.1116-2 isn’t strict about this
(the option of providing them is also contemplated), we find this to be a sensible
recommendation and will implement it.

4.4 Result interpretation

Result interpretation will be based on statistical analysis, following the recommendations
in BS.1116-2 [16]. The reader is encouraged to consult section 9 of that document for the
details.

5 Budget

5.1 Foundations

Foundations for drafting of the project budget:

14

1. This project is a not-for-profit venture. Its purpose is to develop a framework for
audio playback in user space and release it to the public in order to encourage better
driver development in UNIX-like operating system kernels.

2. The project manager, Robert Millan Hernandez, will work under the direction of
Dr. J.R. Herrero Zaragoza (associate professor in the Computer Architecture De-
partment at UPC), who has kindly offered to take this role.

3. The project will be developed by a single engineer (Robert himself), acting at the
same time as Project Manager, Designer and Programmer. Robert will work on this
project every day since the beginning date (including weekends) until completion
of the project, with a work schedule of 8 hours per day. Robert will also act as
sponsor for the project and provide funding for all the liabilities enumerated in this
budget, at his own personal cost and expense.

4. Project development will require access to several resources, split in two categories:

(a) Initial investment. The project will require resources that are not consumed
during development and have a considerable cost, therefore must be lent rather
than purchased:

i. A small office to be used as workplace environment. This office includes
air conditioning infrastructure to make work environment comfortable, one
desk with chairs and a drawer to store and classify project documentation.
Fees for energy supply, bottled water supply and Internet service provider
(ISP) are included with office rental payment.

(b) Ongoing expenses:

i. Depreciation of computer equipment (a high-end workstation is to be pur-
chased in order to build large code bases in a short time).

ii. As the project is a not-for-profit venture, there are no costs associated
with legal permits or municipal taxes. The project will, however, have
to assume the cost of VAT (Value-Added Tax) for materials (which in
Catalonia stands for 21% of the base price).

Possible events that may delay or impede project execution within expected results
and/or schedule, and their associated contingency plans:

Event Contingency plan

DDE (Device Drive Envi-
ronment) is found unsuit-
able

RUMP is used instead

Binding DDE with USB is
found unviable or too costly

PCI hardware is used in-
stead

Implementing OSS as front
end sound API is found un-
viable or too costly

PulseAudio is used instead

In order to minimize possible impact caused by these undesired events, a task to
thoroughly evaluate each possible path before implementation has been scheduled.
If evaluation fails in first option, when the alternative (contingency plan) is the only
remaining option, it is executed directly without evaluation.

15

5.2 Budget

The following project budget is elaborated using results from Gantt diagram and lists
resources separated by task allocation category. Please refer to section 3.5 for details on
which amount of the resource is spent on each individual task.

16

Resource Amount Price Info Days Cost Notes

Robert Mil-
lan’s time

100% 200 e/day This only
includes time
spent in ideal
situation
(no contin-
gency plans
activated)

61 12200 e This expense is tax-
free as Robert is the
project sponsor and
doesn’t require pay-
ment

Office 100% 5 e/day Includes In-
ternet service,
energy supply
and bottled
water supply

61 305 e Price includes VAT

Depreciation
of PC work-
station

100% 1 e/day High-end
workstation
designed for
strong CPU
workloads

61 61 e 1500 e amortized
over a period of 4
years. Price includes
VAT

SUBTOTAL 206 e/day 61 12566 e
Optional
expenses
that may be
caused by
contingency
plans:
Robert Mil-
lan’s time

100% 200 e/day This only
includes time
spent in ideal
situation
(no contin-
gency plans
activated)

2 400 e This expense is tax-
free as Robert is the
project sponsor and
doesn’t require pay-
ment

Office 100% 5 e/day Includes In-
ternet service,
energy supply
and bottled
water supply

2 10 e Price includes VAT

Depreciation
of PC work-
station

100% 1 e/day High-end
workstation
designed for
strong CPU
workloads

2 2 e 1500 e amortized
over a period of 4
years. Price includes
VAT

SUBTOTAL 206 e/day 2 412 e
TOTAL 206 e/day 63 12978 e

17

5.3 Financial viability of the project

The total cost of the project in worst-case scenario (all contingency plans have to be
activated) amounts to 12978 e. This cost is assumed in full by the project sponsor.

It should be noted that a significant portion of this cost (12600 e) isn’t being spent in
currency (e), but rather contributed directly in time and effort by the project sponsor.

The remaining 378 eare already funded in cash by the project sponsor, so there is no
risk of insolvency.

6 Project execution

6.1 Back end development

6.1.1 Potential problems found that question the viability of using DDE

The prospect of using DDE as the abstraction layer to embed existing, production-quality
device drivers into our project was very promising. Our alternative (RUMP) provides
similar functionality; however, DDE was chosen as our first option as it is more ker-
nel-agnostic: whereas RUMP is designed to provide access to drivers from the kernel
of NetBSD, DDE is a generic framework, whose main focus is on Linux but has been
successfully used to wrap device drivers from other kernels.

However, upon closer inspection we found that DDE was not actively maintained
software and in its current state was not even usable with modern versions of Linux:

1. Latest update of DDE/Linux26 (the layer that encapsulates Linux drivers) was
performed on 2008, and it was based on Linux 2.6.6.

Later a new version based on Linux 2.6.29 was developed [23]; however, this version
has never been integrated in the main branch of DDE hosted at the facilities of
Technische Universität Dresden: Operating Systems (TUD:OS), nor has it been
updated to newer versions of Linux, nor has received updates of any kind.

On the other hand, DDE/FreeBSD (the layer that encapsulates FreeBSD drivers)
is even older (dates back to 2006).

This, however, is not a severe show stopper, since dependency between DDE and
Linux 2.6.29 source code is restricted to DDE’s role as glue layer; therefore, this
condition would prevent us from using drivers from recent versions of Linux, but
not from running the software on a recent platform.

2. Regarding DDEkit, the latest Linux version was released in 2011 [23]. The specific
Linux version this release intended to support is not specified. However, through
a combination of trial and error and binary search, we found that it is most likely
targeted at Linux 2.6.37 (or close to that), which was released in the same year
(2011).

In contrast with DDE, DDEkit doesn’t just use specific kernel APIs from user space,
it comes with kernel modules of its own, which of course are strongly tied to internal
Linux interfaces.

In this case, limitations caused by interface dependencies are much more demand-
ing: If left unfixed, they would prevent our software from being used on modern

18

operating systems based on a recent version of Linux. This would imply a manda-
tory port of DDEkit internals to up-to-date Linux APIs in case we decided to go
this route.

3. Problems were found when attempting to build DDEkit on a test PC running
AMD64 architecture. The problems themselves were not that significant, but their
presence suggests this software has only been tested on computers running 32-
bit x86 architecture. For a low-level component like DDEkit, runtime portability
problems -in case they were found- could be quite difficult to debug and overcome.
We think this implies a risk for the project schedule that needs to be taken into
account.

4. We setup a test system with 32-bit x86 binaries for the purpose of evaluating DDE
and DDEkit. An operating system distribution based on an old version of Linux
was used in order to accommodate for DDE version requirements. During this test,
severe runtime errors were found that prevented successful execution of the example
code in DDE package. In case we used DDE / DDEkit, these problems would have
to be debugged and fixed. Again, we think this is indicative of the abandoned state
of this code base and it is likely that similar problems will be found if we proceed
further with this route.

5. Another potential problem is that of licensing. We find that DDE and DDEkit
rely heavily on code licensed under GNU General Public License (GPL) version 2.
This license is incompatible with widely adopted free software licenses such as GPL
version 3, the Apache license, etc. This is not usually a problem when running such
code as a stand alone program (or even a kernel such as Linux). However, as our
project aims to provide a framework that can be used directly by most application
programs, this would place additional restriction on which programs can benefit.

In light of the potential problems that were found with DDE and DDEkit, decision
was taken to discard this option and rely on the RUMP framework instead. RUMP is
an actively maintained project, as is made clear by the considerable activity found in
its source repository and its mailing lists. In addition it is an integral part of NetBSD,
which means that it will automatically be integrated with newer versions of the NetBSD
kernel APIs and therefore enjoy the availability of driver updates and support for new
hardware with relative ease.

6.1.2 Attempts to use USB Audio Class devices led to a dead end

Initially, we intended to focus on integration of drivers for USB Audio Class devices. This
seemingly would involve less difficulties than PCI because the usual abstraction layer for
accessing USB from user space, LibUSB, relies on a complete, self-contained kernel API
and provides all the necessary facilities in one single library. In contrast, with PCI in
order to access hardware facilities like DMA or IRQs one has to rely on many distinct
APIs. This involves additional effort, as we expect that not all those facilities will be
readily implemented in our framework of choice.

Before looking at RUMP in detail, we held the belief that we would be able to inte-
grate drivers for USB devices into RUMP, and use those on top of a Linux-based system
with little effort. Extensions for RUMP to integrate USB drivers had already been im-
plemented [17], so we didn’t expect significant trouble in this area.

19

However, we found that RUMP didn’t use the generic LibUSB library for interfacing
with USB (if it had, it would have been easy to port it to Linux). Instead, it relied on a
NetBSD-specific interface known as ugenhc. This interface is very different from the one
provided by LibUSB.

When faced with this problem, we decided that it would be more worthwhile to direct
efforts towards overcoming the PCI-related problems than with performing a complete
rewrite of the USB back end in RUMP.

6.1.3 RUMP with PCI

In contrast with the USB situation, we’ve found that PCI support with RUMP on top of
Linux is in a more advanced stage. As a recent development, we found a plugin that adds
PCI support on Linux is now available for RUMP [9]. However, it had some limitations
that had to be overcome to be used in our environment (more details are provided below).

A summary of the tasks we’ve had to perform in order to implement the PCI back
end follows:

1. We’ve chosen an audio chipset model for testing purposes and to use as the reference
target hardware for the whole project. For consistency, everything in the project,
from development to validation will be done using this chipset.

The chipset chosen is the Intel 82801AA AC97 because of its wide availability both
in real hardware and as a virtual device in our emulated environment.

2. We integrated the AUICH driver from NetBSD into RUMP. This just required the
addition of a few configuration files and an initialization routine for the NetBSD
driver configuration framework (c.f. [18], page 6):

https://github.com/.../commit/dc106d26e3bf0595c105d9ed1423aa3e1c3cf91b

6.2 Back end testing and debugging

The back end configuration we built included the NetBSD “audio(4)” driver. This is the
abstraction layer in the kernel of NetBSD that sits on top of specific device drivers and
provides generic audio facilities to userland.

The API exported by this layer is the native audio API of NetBSD (c.f. [6]). It
originates from the Solaris operating system, and is generally known as “Sun audio”
in other projects (such as the MPlayer code base) or just “audio(4)” in the context of
NetBSD or RUMP.

This is very relevant to our project, because before we could move on to front end
development using one of the standard APIs we targeted, we had to setup a simpler,
more direct way to test the back end and confirm it was working correctly.

Since the application we wanted to use for testing purposes (MPlayer) already included
“Sun audio” support, this seemed like the more obvious approach.

Below is the list of tasks we carried on for back end testing and debugging, starting
with the MPlayer modifications we mentioned:

1. We modified MPlayer to add support for a new back end (selectable using “-ao
rump” flag). Rather than writing the new back end code from scratch, the Sun
audio back end was reused, with some C pre-processor magic to redirect its requests
to RUMP using the same API. This comprises three distinct sets of changes:

20

https://github.com/robertmillan/src-netbsd/commit/dc106d26e3bf0595c105d9ed1423aa3e1c3cf91b

(a) Fix portability problems in the “Sun audio” extension of MPlayer. As Sun
audio is not a native API provided by Linux, this code has never been used
on Linux-based systems and required portability adjustments:

−−− l i b a o 2 / ao sun . c 2014−07−29 11 : 33 : 20 +0000
+++ l i b a o 2 / ao sun . c 2014−07−30 16 : 45 : 34 +0000
@@ −25,6 +25 ,7 @@

#inc lude <uni s td . h>
#inc lude < f c n t l . h>
#inc lude <errno . h>

+#inc lude <time . h> /∗
nanos leep ∗/

#inc lude <sys / i o c t l . h>
#inc lude <sys / time . h>
#inc lude <sys / types . h>

@@ −455 ,7 +465 ,7 @@
e l s e

i n f o . play . ba lance = (vol−>r i g h t −
vol−> l e f t + volume) ∗
AUDIO RIGHT BALANCE / (2∗ volume) ;

}
−#i f ! de f ined (OpenBSD) && ! de f ined (NetBSD)
+#i f ! de f i ned (OpenBSD) && ! de f ined (NetBSD) &&

! de f ined (l i n u x)
i n f o . output muted = (volume == 0) ;

#e n d i f
i o c t l (fd ,AUDIO SETINFO,& i n f o) ;

(b) Avoid collisions in NetBSD ioctl namespace. The “Sun audio” API definitions
are provided on NetBSD by sys/audioio.h header. In turn, this header relies
on internal ioctl definitions, which are provided on NetBSD by sys/ioccom.h
header.

These definitions are also required by applications that use RUMP, so the
header had to be extracted from NetBSD source tree [?] and manually installed
system-wide.

However, neither of these headers could be used unmodified, because of names-
pace collisions in internal ioctl macros with their Linux counterparts. We had
to ensure applications linked with these headers used the NetBSD version of
these macros in order for their ABI to remain compatible with RUMP.

In order to avoid namespace collision, a few macros had to be renamed as well
as all their users:

d i f f −ur s r c / sys / sys / aud io io . h new/ sys / sys / aud io io . h
−−− s r c / sys / sys / aud io io . h 2011−09−06

03 :16 :43 .000000000 +0200
+++ new/ sys / sys / aud io io . h 2014−07−29

13 :10 :17 .590114112 +0200
@@ −169 ,26 +169 ,26 @@

/∗

21

∗ Audio dev i ce ope ra t i on s
∗/

−#d e f i n e AUDIO GETINFO IOR (’A’ , 21 , s t r u c t a u d i o i n f o)
−#d e f i n e AUDIO SETINFO IOWR(’A’ , 22 , s t r u c t a u d i o i n f o

)
−#d e f i n e AUDIO DRAIN IO (’A’ , 23)
−#d e f i n e AUDIO FLUSH IO (’A’ , 24)
−#d e f i n e AUDIO WSEEK IOR (’A’ , 25 , u long)
−#d e f i n e AUDIO RERROR IOR (’A’ , 26 , i n t)
−#d e f i n e AUDIO GETDEV IOR (’A’ , 27 , s t r u c t

aud io dev i c e)
−#d e f i n e AUDIO GETENC IOWR(’A’ , 28 , s t r u c t

aud io encod ing)
−#d e f i n e AUDIO GETFD IOR (’A’ , 29 , i n t)
−#d e f i n e AUDIO SETFD IOWR(’A’ , 30 , i n t)
−#d e f i n e AUDIO PERROR IOR (’A’ , 31 , i n t)
−#d e f i n e AUDIO GETIOFFS IOR (’A’ , 32 , s t r u c t

a u d i o o f f s e t)
−#d e f i n e AUDIO GETOOFFS IOR (’A’ , 33 , s t r u c t

a u d i o o f f s e t)
−#d e f i n e AUDIO GETPROPS IOR (’A’ , 34 , i n t)
+#d e f i n e AUDIO GETINFO NB IOR (’A’ , 21 , s t r u c t

a u d i o i n f o)
+#d e f i n e AUDIO SETINFO NB IOWR(’A’ , 22 , s t r u c t

a u d i o i n f o)
+#d e f i n e AUDIO DRAIN NB IO (’A’ , 23)
+#d e f i n e AUDIO FLUSH NB IO (’A’ , 24)
+#d e f i n e AUDIO WSEEK NB IOR (’A’ , 25 , u long)
+#d e f i n e AUDIO RERROR NB IOR (’A’ , 26 , i n t)
+#d e f i n e AUDIO GETDEV NB IOR (’A’ , 27 , s t r u c t

aud io dev i c e)
+#d e f i n e AUDIO GETENC NB IOWR(’A’ , 28 , s t r u c t

aud io encod ing)
+#d e f i n e AUDIO GETFD NB IOR (’A’ , 29 , i n t)
+#d e f i n e AUDIO SETFD NB IOWR(’A’ , 30 , i n t)
+#d e f i n e AUDIO PERROR NB IOR (’A’ , 31 , i n t)
+#d e f i n e AUDIO GETIOFFS NB IOR (’A’ , 32 , s t r u c t

a u d i o o f f s e t)
+#d e f i n e AUDIO GETOOFFS NB IOR (’A’ , 33 , s t r u c t

a u d i o o f f s e t)
+#d e f i n e AUDIO GETPROPS NB IOR (’A’ , 34 , i n t)

#d e f i n e AUDIO PROP FULLDUPLEX 0x01
#d e f i n e AUDIO PROP MMAP 0x02
#d e f i n e AUDIO PROP INDEPENDENT 0x04
#d e f i n e AUDIO PROP PLAYBACK 0x10
#d e f i n e AUDIO PROP CAPTURE 0x20
−#d e f i n e AUDIO GETBUFINFO IOR (’A’ , 35 , s t r u c t

a u d i o i n f o)

22

+#d e f i n e AUDIO GETBUFINFO NB IOR (’A’ , 35 , s t r u c t
a u d i o i n f o)

/∗
∗ Mixer dev i ce

@@ −261 ,9 +261 ,9 @@
/∗
∗ Mixer ope ra t i on s
∗/

−#d e f i n e AUDIO MIXER READ IOWR(’M’ , 0 ,
m i x e r c t r l t)

−#d e f i n e AUDIO MIXER WRITE IOWR(’M’ , 1 ,
m i x e r c t r l t)

−#d e f i n e AUDIO MIXER DEVINFO IOWR(’M’ , 2 ,
m i x e r d e v i n f o t)

+#d e f i n e AUDIO MIXER READ NB IOWR(’M’ , 0 ,
m i x e r c t r l t)

+#d e f i n e AUDIO MIXER WRITE NB IOWR(’M’ , 1 ,
m i x e r c t r l t)

+#d e f i n e AUDIO MIXER DEVINFO NB IOWR(’M’ , 2 ,
m i x e r d e v i n f o t)

/∗
∗ Well known dev i ce names

d i f f −ur s r c / sys / sys / ioccom . h new/ sys / sys / ioccom . h
−−− s r c / sys / sys / ioccom . h 2011−10−19

12 :53 :12 .000000000 +0200
+++ new/ sys / sys / ioccom . h 2014−07−29

13 :10 :22 .638114329 +0200
@@ −44 ,32 +44 ,32 @@
∗ | I /O | Parameter Length | Command Group
| Command |

∗
+−−−+

∗/
−#d e f i n e IOCPARM MASK 0 x 1 f f f /∗

parameter length , at most 13 b i t s ∗/
−#d e f i n e IOCPARM SHIFT 16
−#d e f i n e IOCGROUP SHIFT 8
−#d e f i n e IOCPARM LEN(x) (((x) >> IOCPARM SHIFT)

& IOCPARM MASK)
−#d e f i n e IOCBASECMD(x) ((x) & ˜(IOCPARM MASK <<

IOCPARM SHIFT))
−#d e f i n e IOCGROUP(x) (((x) >> IOCGROUP SHIFT)

& 0 x f f)
+#d e f i n e NB IOCPARM MASK 0 x 1 f f f /∗

parameter length , at most 13 b i t s ∗/

23

+#d e f i n e NB IOCPARM SHIFT 16
+#d e f i n e NB IOCGROUP SHIFT 8
+#d e f i n e NB IOCPARM LEN(x) (((x) >>

NB IOCPARM SHIFT) & NB IOCPARM MASK)
+#d e f i n e NB IOCBASECMD(x) ((x) & ˜(

NB IOCPARM MASK << NB IOCPARM SHIFT))
+#d e f i n e NB IOCGROUP(x) (((x) >>

NB IOCGROUP SHIFT) & 0 x f f)

−#d e f i n e IOCPARM MAX NBPG /∗ max s i z e o f
i o c t l args , mult . o f NBPG ∗/

+#d e f i n e NB IOCPARM MAX NBPG /∗ max s i z e o f
i o c t l args , mult . o f NBPG ∗/

/∗ no parameters ∗/
−#d e f i n e IOC VOID (unsigned long) 0

x20000000
+#d e f i n e NB IOC VOID (unsigned long) 0

x20000000
/∗ copy parameters out
∗/

−#d e f i n e IOC OUT (unsigned long) 0
x40000000

+#d e f i n e NB IOC OUT (unsigned long) 0
x40000000

/∗ copy parameters in ∗/
−#d e f i n e IOC IN (unsigned long) 0

x80000000
+#d e f i n e NB IOC IN (unsigned long) 0

x80000000
/∗ copy parameters in

and out ∗/
−#d e f i n e IOC INOUT (IOC IN | IOC OUT)
+#d e f i n e NB IOC INOUT (NB IOC IN |NB IOC OUT)

/∗ mask f o r IN/OUT/VOID
∗/

−#d e f i n e IOC DIRMASK (unsigned long) 0
xe0000000

+#d e f i n e NB IOC DIRMASK (unsigned long) 0
xe0000000

−#d e f i n e IOC (inout , group , num, l en) \
− ((inout) | (((l en) & IOCPARM MASK) << IOCPARM SHIFT

) | \
− ((group) << IOCGROUP SHIFT) | (num))
−#d e f i n e IO (g , n) IOC (IOC VOID , (g) , (n)

, 0)
−#d e f i n e IOR(g , n , t) IOC (IOC OUT, (g) , (n)

, s i z e o f (t))

24

−#d e f i n e IOW(g , n , t) IOC (IOC IN , (g) , (n)
, s i z e o f (t))

+#d e f i n e NB IOC(inout , group , num, l en) \
+ ((inout) | (((l en) & NB IOCPARM MASK) <<

NB IOCPARM SHIFT) | \
+ ((group) << NB IOCGROUP SHIFT) | (num))
+#d e f i n e NB IO (g , n) NB IOC(NB IOC VOID ,

(g) , (n) , 0)
+#d e f i n e NB IOR(g , n , t) NB IOC(NB IOC OUT,

(g) , (n) , s i z e o f (t))
+#d e f i n e NB IOW(g , n , t) NB IOC(NB IOC IN ,

(g) , (n) , s i z e o f (t))
/∗ t h i s should be IORW, but s t d i o got the re f i r s t ∗/
−#d e f i n e IOWR(g , n , t) IOC (IOC INOUT, (g) , (n)

, s i z e o f (t))
+#d e f i n e NB IOWR(g , n , t) NB IOC(NB IOC INOUT,

(g) , (n) , s i z e o f (t))

#e n d i f /∗ ! SYS IOCCOM H ∗/

(c) Modify the “Sun audio” extension of MPlayer to send its output to RUMP. Fi-
nally, the “Sun audio” extension was modified, linking with appropriate RUMP
libraries, calling RUMP initialization routines and using C pre-processor magic
to redirect the bulk of external audio calls to RUMP:

=== modi f i ed f i l e ’ con f i gure ’
−−− c o n f i g u r e 2014−07−29 11 : 34 : 07 +0000
+++ c o n f i g u r e 2014−07−30 16 : 42 : 04 +0000
@@ −5538 ,6 +5539 ,8 @@

i f t e s t ” $ sunaudio ” = yes ; then
de f sunaud io=’#d e f i n e CONFIG SUN AUDIO 1 ’
aomodules=”sun $aomodules”

+ e x t r a l d f l a g s =”$ e x t r a l d f l a g s −l rumpvfs −lrumpdev −
l rumpdev audio ”

+ e x t r a l d f l a g s =”$ e x t r a l d f l a g s −l rumpdev pci −
l rumpdev pc i au ich ”

e l s e
de f sunaud io=’#undef CONFIG SUN AUDIO’
noaomodules=”sun \$noaomodules”

=== modi f i ed f i l e ’ l i b a o 2 / ao sun . c ’
−−− l i b a o 2 / ao sun . c 2014−07−29 11 : 33 : 20 +0000
+++ l i b a o 2 / ao sun . c 2014−07−30 16 : 45 : 34 +0000
@@ −49,6 +50 ,15 @@

#inc lude ”mp msg . h”
#inc lude ”help mp . h”

+/∗ Redi rec t c a l l s to rump ∗/
+#inc lude <s t d i n t . h>

25

+#inc lude <rump/rump . h>
+#inc lude <rump/ rump sys ca l l s . h>
+#d e f i n e open rump sys open
+#d e f i n e wr i t e rump sys wr i te
+#d e f i n e i o c t l r u m p s y s i o c t l
+#d e f i n e c l o s e rump sys c l o s e
+

s t a t i c const a o i n f o t i n f o =
{

”Sun audio output ” ,
@@ −381 ,7 +391 ,7 @@
{

i f (audio dev == NULL) {
i f ((audio dev = getenv (”AUDIODEV”)) == NULL)

− audio dev = ”/dev/ audio ” ;
+ audio dev = ”/dev/ audio0 ” ;

}

i f (sun mixe r dev i c e == NULL) {
@@ −477 ,6 +487 ,8 @@

i n t ok ;
i n t conve r t u8 s8 ;

+ rump in i t () ;
+

s e t u p d ev i c e p a t h s () ;

i f (enab l e sample t iming == RTSCUNKNOWN

2. Implement PCI I/O space support. We found that the RUMP PCI plugin [9] was
missing support for mapping I/O space of PCI devices. Attempting to run the
driver would result in:

auich0 : can ’ t map codec i /o space

We fixed this problem thus:

(a) We implemented the missing routines, using iopl(2) [4] system facility to re-
quest I/O access privileges to Linux for our user space process.

(b) We implemented the missing stubs for bus space(9) [7] routines using GCC
inline assembly [14].

Aforementioned changes can be consulted in:

https://github.com/.../commit/8f2fd610334072e92406e78d14eefb0f8466d28b

3. Implement missing bits of DMA support. We found existing DMA support in the
RUMP PCI plugin, which allowed mapping physical memory for use with DMA,
by reserving anonymous memory using mmap() [8]. However this part of the code
was incomplete, as it had no provision to free mapped memory after it is no longer
needed. Again this made our execution fail, this time with:

26

https://github.com/robertmillan/src-netbsd/commit/8f2fd610334072e92406e78d14eefb0f8466d28b

panic : bus dmamem free not implemented

We implemented the missing routine (bus dmamem free) by storing information
relative to the virtual memory address of allocated blocks in their meta-data struc-
tures, which would later allow us to liberate it using munmap() [8].

This change is split in two parts, one for RUMP itself, and one for the PCI plugin:

https://github.com/.../commit/17fc0ea0ee88f51ca31345a5ad222c66426b56f6

https://github.com/.../commit/92c8b2ed831dc76fcfdc4fe5642426480b3f3b34

4. Fix division by zero in auich calibrate(). We found that our process often received
a Floating Point Exception (SIGFPE) during initialization phase.

This turned to be very hard to debug, as the problem only manifested itself occa-
sionally. And once it did, it put the hardware in an inconsistent state (see note
below about unexpected process termination leading to deadlocks) where it was no
longer reproducible.

Ultimately (after fixing the deadlock problem), a backtrace (captured with the GNU
Debugger (GDB)) revealed that this exception was raised at the following line of
auich calibrate():

a c t u a l 4 8 k r a t e = (bytes ∗ UINT64 C(250000)) / wa i t us ;

in which “wait us” represents the time (measured in µs) it has taken to exit the
calibration loop at the beginning of this routine:

/∗ wait ∗/
nc iv = oc iv ;
do {

microtime(&t2) ;
i f (t2 . t v s e c − t1 . t v s e c > 1)

break ;
nc iv = bus space r ead 1 (sc−>i o t , sc−>aud ioh

,
ICH PCMI + ICH CIV) ;

} whi le (nc iv == oc iv) ;
microtime(&t2) ;

/∗ omitted ˜rmh ∗/

/∗ turn time de l t a in to us ∗/
wai t us = ((t2 . t v s e c − t1 . t v s e c) ∗ 1000000) + t2 .

tv u s e c − t1 . t v u s e c ;

As we can see, this loop polls an I/O hardware address, and it is thus at least a
theoretical possibility that the hardware response time is lower than 1 µs, which
would cause the loop to exit with a “wait us” value of zero, thereby raising a division
by zero SIGFPE.

Obviously, this being a production-ready device driver, this problem isn’t expected
to happen under normal conditions. We believe our particular setup (emulated

27

https://github.com/robertmillan/src-netbsd/commit/17fc0ea0ee88f51ca31345a5ad222c66426b56f6
https://github.com/robertmillan/pci-userspace/commit/92c8b2ed831dc76fcfdc4fe5642426480b3f3b34

virtual hardware and driver running in userspace) triggers faster response time,
which uncovers this previously undetected bug.

We fixed the problem by adding a special case to handle the “wait us == 0” situ-
ation:

https://github.com/.../commit/6a38ce4778d18a569ab593099929afe24e24d811

This is one of the changes we’ve made to the RUMP code base which directly
revert back as improvements to the NetBSD device drivers it is based on, and could
potentially be useful in situations other than user space device driving.

5. Prevent a situation in which unexpected process termination leads to subsequent
deadlocks. We think that this problem is an interesting finding, because it exempli-
fies the kind of new situations that arise when moving kernel-based device drivers
to user space.

As we’ve found, a very important difference between driving hardware devices from
kernel vs user space is that user space code flow can be aborted at any time if the
process that contains it is killed.

This could be triggered by multiple reasons. For example, the process is killed
because it raised an exception (like SIGFPE example above), a user or system
administrator outright kills the process, etc.

In this particular case, if our process were aborted during execution of certain parts
of auich read codec() or auich write codec() routines, I/O Controller Hub (ICH)
Codec Access Semaphore (ICH CAS) register may be left in an inconsistent state,
which would lead to deadlock:

(a) a command is expected by ICH CAS before granting access to the driver

(b) the driver has requested codec access and is polling ICH CAS before issuing a
command

This would be triggered if abortion happened immediately after codec access is
granted by ICH CAS, i.e. after this poll loop has finished:

/∗ wait f o r an a c c e s s semaphore ∗/
f o r (i = ICH SEMATIMO / ICH CODECIO INTERVAL; i−− &&

bus space r ead 1 (sc−>i o t , sc−>aud ioh ,
ICH CAS + sc−>sc modem of f set) & 1 ;

DELAY(ICH CODECIO INTERVAL)) ;

but before the codec access transaction is finished and ICH CAS is cleared (see
auich clear cas() below):

∗ va l = bus space r ead 2 (sc−>i o t , sc−>mix ioh
,

reg + (sc−>sc codecnum ∗
ICH CODEC OFFSET)) ;

DPRINTF(ICH DEBUG CODECIO,
(” au i ch r ead codec(%x , %x)\n” , reg , ∗ va l

)) ;

28

https://github.com/robertmillan/src-netbsd/commit/6a38ce4778d18a569ab593099929afe24e24d811

s t a t u s = bus space r ead 4 (sc−>i o t , sc−>
aud ioh ,

ICH GSTS + sc−>sc modem of f set) ;
i f (s t a t u s & ICH RCS) {

b u s s p a c e w r i t e 4 (sc−>i o t , sc−>
aud ioh ,

ICH GSTS + sc−>
sc modem of fset
,

s t a t u s & ˜(ICH SRI
| ICH PRI |
ICH GSCI)) ;

∗ va l = 0 x f f f f ;
DPRINTF(ICH DEBUG CODECIO,

(”%s : read codec e r r o r \n” ,
device xname (sc−>sc dev))) ;

i f (reg == AC97 REG GPIO STATUS)
a u i c h c l e a r c a s (sc) ;

r e turn −1;
}
i f (reg == AC97 REG GPIO STATUS)

a u i c h c l e a r c a s (sc) ;

Our solution to this problem has been to make auich read codec() and auich write codec()
more permissive when run for first time, so that they can recover from this incon-
sistent state:

https://github.com/.../commit/c8ee3813f55586e02c660e4e4a90df54cc77ab5a

6. At this point playback is partially working:

RUMP VERBOSE=2 . / mplayer /home/rmh/ s p l i t−t rack02 . f l a c −ao
sun

MPlayer SVN−r34540 −4.7 (C) 2000−2012 MPlayer Team
mplayer : could not connect to socke t
mplayer : No such f i l e or d i r e c t o r y
Fa i l ed to open LIRC support . You w i l l not be ab le to use

your remote c o n t r o l .

Playing /home/rmh/ s p l i t−t rack02 . f l a c .
l i bav fo rmat ve r s i on 5 3 . 1 9 . 0 (i n t e r n a l)
Audio only f i l e format detec ted .
Load s u b t i t l e s in /home/rmh/
==

Opening audio decoder : [f fmpeg] FFmpeg/ l i bavcodec audio
decoders

l i bavcodec ve r s i on 5 3 . 3 2 . 2 (i n t e r n a l)
AUDIO: 44100 Hz , 2 ch , s16 l e , 976 .0 kb i t /69.16% (r a t i o :

121996−>176400)

29

https://github.com/robertmillan/src-netbsd/commit/c8ee3813f55586e02c660e4e4a90df54cc77ab5a

Se l e c t ed audio codec : [f f f l a c] afm : ffmpeg (FFmpeg FLAC
audio)

==

Copyright (c) 1996 , 1997 , 1998 , 1999 , 2000 , 2001 , 2002 ,
2003 , 2004 , 2005 ,

2006 , 2007 , 2008 , 2009 , 2010 , 2011 , 2012 , 2013 , 2014
The NetBSD Foundation , Inc . Al l r i g h t s r e s e rved .
Copyright (c) 1982 , 1986 , 1989 , 1991 , 1993
The Regents o f the Un ive r s i ty o f C a l i f o r n i a . Al l r i g h t s

r e s e rved .

NetBSD 6 . 9 9 . 4 3 (RUMP−ROAST) #0: Tue Nov 11 13 : 52 : 59 CEST
2014

rmh@tfg : / home/rmh/rump/buildrump . sh/ obj / l i b / librump
t o t a l memory = unl imited (host l i m i t)
t imecounter : Timecounters t i c k every 10 .000 msec
t imecounter : Timecounter ” rumpclk” f requency 100 Hz q u a l i t y

0
cpu0 at t h i n a i r 0 : rump v i r t u a l cpu
cpu1 at t h i n a i r 0 : rump v i r t u a l cpu
root f i l e system type : rumpfs
mainbus0 (root)
pc i0 at mainbus0 bus 0
pc i0 : i /o space , memory space enabled , rd/ l i n e , rd/mult , wr/

inv ok
auich0 at pc i0 dev 0 func t i on 0 : i82801AA (ICH) AC−97 Audio
auich0 : i n t e r r u p t i n g at pausebreak
auich0 : ac97 : SigmaTel STAC9700 codec ; no 3D s t e r e o
auich0 : ac97 : ext id 0x809<AC97 23 ,VRM,VRA>
ac97 wr i t e : reg=MASTER VOLUME, wr i t t en=0x8020 , read=0x803f
auich0 : ac97 l i n k ra t e c a l i b r a t i o n timed out a f t e r 0 us
audio0 at auich0 : f u l l duplex , playback , capture , mmap,

independent
ao2 : 44100 Hz 2 chans s 1 6 l e [0 x9]

AO: [sun] 44100Hz 2ch s 1 6 l e (2 bytes per sample)
Video : no video
S ta r t i ng playback . . .
A: 0 . 3 (0 0 . 2) o f 121 .0 (0 2 : 0 1 . 0) ?? ,?%

However, after a few seconds, the process gets stuck and sound is interrupted. This
issue required careful investigation:

(a) First we run MPlayer using GDB, up to the point where playback gets stuck,
then manually interrupted the process and extracted a backtrace:

AO: [sun] 44100Hz 2ch s 1 6 l e (2 bytes per sample)
Video : no video

30

Sta r t i ng playback . . .
A: 0 . 3 (0 0 . 2) o f 121 .0 (0 2 : 0 1 . 0) ?? ,?%
Program r e c e i v e d s i g n a l SIGINT , In t e r rup t .
pthread cond wait@@GLIBC 2 . 3 . 2 () at . . / npt l / sysdeps /

unix / sysv / l i nux / x86 64 / pthread cond wait . S :162
1 6 2 . . / npt l / sysdeps / unix / sysv / l i nux / x86 64 /

pthread cond wait . S : El f i t x e r o d i r e c t o r i no
e x i s t e i x .

(gdb) bt
#0 pthread cond wait@@GLIBC 2 . 3 . 2 () at . . / npt l / sysdeps

/ unix / sysv / l i nux / x86 64 / pthread cond wait . S :162
#1 0 x00007 f f f eadcb21a in rumpuser cv wait (cv=0x197c8b0

, mtx=0x197c550)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / l ibrumpuser /

rumpuser pth . c :547
#2 0 x00007 f f f e f a cb21d in docvwait (cv=0x1a6b0e0 , mtx=0

x1a61c10 , t s=0x0)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump

/ . . / . . / sys /rump/ librump /rumpkern/ l o c k s . c :359
#3 0 x00007 f f f e f a cb3b3 in c v w a i t s i g (cv=0x1a6b0e0 , mtx

=0x1a61c10)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump

/ . . / . . / sys /rump/ librump /rumpkern/ l o c k s . c :409
#4 0 x0 0007 f f f f 5 91 7c1 0 in aud i o wa i t i o (sc=0x1a6b000 ,

chan=0x1a6b0e0)
at /home/rmh/rump/buildrump . sh/ s r c / sys /rump/dev/ l i b /

l i b a u d i o / . . / . . / . . / . . / dev/ audio . c :1261
#5 0 x00007 f f f f 591a0d2 in aud io wr i t e (sc=0x1a6b000 , u io

=0 x 7 f f f f f f f d 2 a 0 , i o f l a g =16)
at /home/rmh/rump/buildrump . sh/ s r c / sys /rump/dev/ l i b /

l i b a u d i o / . . / . . / . . / . . / dev/ audio . c :2279
#6 0 x 0 0 0 0 7 f f f f 5 9 1 7 f d 6 in aud iowr i t e (dev =10880 , u io=0

x 7 f f f f f f f d 2 a 0 , i o f l a g =16)
at /home/rmh/rump/buildrump . sh/ s r c / sys /rump/dev/ l i b /

l i b a u d i o / . . / . . / . . / . . / dev/ audio . c :1374
#7 0 x0 0007 f f f e f a 9 860 7 in cdev wr i t e (dev =10880 , u io=0

x 7 f f f f f f f d 2 a 0 , f l a g =16)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump

/ . . / . . / sys /rump / . . / kern / subr devsw . c :886
#8 0 x0 0007 f f f f 5d6 e c7 6 in s p e c w r i t e (v=0 x 7 f f f f f f f d 1 c 0)

at /home/rmh/rump/buildrump . sh/ s r c / l i b / l ibrumpvfs
/ . . / . . / sys /rump / . . / mi s c f s / s p e c f s / spec vnops . c :790

#9 0 x00007 f f f f 5d962c4 in rump vop spec (v=0
x 7 f f f f f f f d 1 c 0)

at /home/rmh/rump/buildrump . sh/ s r c / l i b / l ibrumpvfs
/ . . / . . / sys /rump/ librump /rumpvfs/ rumpfs . c :1680

#10 0 x0 0007 f f f e f a 7 941 1 in VOP WRITE (vp=0x1aab818 , u io=0
x 7 f f f f f f f d 2 a 0 , i o f l a g =16, cred=0x19a f f 00)

31

at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump
/ . . / . . / sys /rump / . . / kern / v n o d e i f . c : 430

#11 0 x00007 f f f f 5d783ca in vn wr i t e (fp=0x1acbe80 , o f f s e t
=0x1acbe80 , u io=0 x 7 f f f f f f f d 2 a 0 , cred=0x19af f00 , f l a g s
=1)

at /home/rmh/rump/buildrump . sh/ s r c / l i b / l ibrumpvfs
/ . . / . . / sys /rump / . . / kern / v f s vnops . c :571

#12 0 x00007 f f f e f a5ba52 in d o f i l e w r i t e (fd =3, fp=0
x1acbe80 , buf=0x1b02010 , nbyte =16384 , o f f s e t =0
x1acbe80 , f l a g s =1,

r e t v a l=0 x 7 f f f f f f f d 4 8 0) at /home/rmh/rump/buildrump .
sh/ s r c / l i b / librump / . . / . . / sys /rump / . . / kern /
s y s g e n e r i c . c :355

#13 0 x00007 f f f e f a5b9a9 in s y s w r i t e (l=0x19b6800 , uap=0
x 7 f f f f f f f d 4 6 0 , r e t v a l=0 x 7 f f f f f f f d 4 8 0)

at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump
/ . . / . . / sys /rump / . . / kern / s y s g e n e r i c . c :323

#14 0 x 0 0 0 0 7 f f f e f a d 2 7 f 9 in s y c a l l (sy=0x 7 f f f e f d 0 a c c 0 , l
=0x19b6800 , uap=0 x 7 f f f f f f f d 4 6 0 , r v a l=0 x 7 f f f f f f f d 4 8 0)

at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump
/ . . / . . / sys /rump / . . / sys / s y s c a l l v a r . h : 61

#15 0 x00007 f f f e f ad28cb in sy invoke (sy=0x 7 f f f e f d 0 a c c 0 ,
l=0x19b6800 , uap=0 x 7 f f f f f f f d 4 6 0 , r v a l=0 x 7 f f f f f f f d 4 8 0 ,
code=4)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump

/ . . / . . / sys /rump / . . / sys / s y s c a l l v a r . h : 85
#16 0 x00007 f f f e f ad3d3a in rump sysca l l (num=4, data=0

x 7 f f f f f f f d 4 6 0 , d len =24, r e t v a l=0 x 7 f f f f f f f d 4 8 0)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump

/ . . / . . / sys /rump/ librump /rumpkern/rump . c :846
#17 0 x 0 0 0 0 7 f f f e f a c 4 0 6 1 in rump sys imp l wr i t e (fd =3,

buf=0x1b02010 , nbyte =16384)
at /home/rmh/rump/buildrump . sh/ s r c / l i b / librump

/ . . / . . / sys /rump/ librump /rumpkern/ rump sys ca l l s . c
: 110

#18 0 x00000000004f39f9 in play ()
#19 0 x00000000004af7bf in main ()

the backtrace revealed that our process was stuck in audio waitio(), which is
a hardware synchronization routine.

Ultimately the backtrace leads to pthread cond wait() [2], which is a POSIX
Threads library (pthread) waiting call that yields the CPU until a condition
is met. Since this thread of execution is halted, rather than actively using
the CPU to poll hardware registers, and it can only be awakened by another
thread, it is clear that it is waiting for an interrupt-triggered event to resume
its operation. This suggests that something is failing with hardware interrupts
for this device or their handler routines.

(b) We checked the interrupt counters for UIO driver in Linux and verified in-

32

terrupts are being received as the counters increment between two successive
checks:

$ grep u i o p c i g e n e r i c / proc / i n t e r r u p t s
21 : 8138 IO−APIC−f a s t e o i u i o p c i g e n e r i c

$ grep u i o p c i g e n e r i c / proc / i n t e r r u p t s
21 : 8515 IO−APIC−f a s t e o i u i o p c i g e n e r i c

(c) Having discarded the possibility that interrupts aren’t being received by the
driver, we went on to check the kernel side of interrupt handling. We reviewed
the Linux source code (specifically, version 3.2.60) to find out what conditions
could lead to interrupts not being processed.

Close inspection of the source code reveals the only possible way this would
happen is if the interrupt service routine (uio interrupt()) didn’t execute uio event notify(),
which in turn is a condition determined by irqhandler() return value:

s t r u c t u i o d e v i c e ∗ idev = (s t r u c t u i o d e v i c e ∗)
dev id ;

i r q r e t u r n t r e t = idev−>i n fo−>handler (i rq , idev
−>i n f o) ;

i f (r e t == IRQ HANDLED)
u i o e v e n t n o t i f y (idev−>i n f o) ;

As we can see, IRQ HANDLED is the only possible return value that would
result in the interrupt event being notified. And when we analyze the irqhan-
dler() routine of the UIO driver, we find that there is only one way to exit this
routine without returning IRQ HANDLED:

/∗ Check i n t e r r u p t s t a t u s r e g i s t e r to see whether
our dev i ce

∗ t r i g g e r e d the i n t e r r u p t . ∗/
i f (! (s t a t u s & PCI STATUS INTERRUPT))

goto done ;

As a quick way to verify our thesis, we added a printk() at the part of the
routine that is never supposed to run:

−−− l inux −3 .2 . 60 . o r i g / d r i v e r s / u io / u i o p c i g e n e r i c . c
2014−06−09 14 :29 :18 .000000000 +0200

+++ linux −3.2.60/ d r i v e r s / uio / u i o p c i g e n e r i c . c
2014−08−17 16 :18 :00 .202810091 +0200

@@ −70,6 +70 ,8 @@
i f (! (s t a t u s & PCI STATUS INTERRUPT))

goto done ;

+ pr in tk (KERN EMERG ” i r q f o r us !\n”) ;
+

/∗ We t r i g g e r e d the in t e r rupt , d i s a b l e i t . ∗/
newcmd = origcmd | PCI COMMAND INTX DISABLE;
i f (newcmd != origcmd)

33

And indeed, we found that our message is never printed.

(d) The check we found is related to shared IRQs. When receiving an interrupt,
UIO driver needs to verify it is directed at our device before processing it. But,
for some reason it was always thinking the interrupt is meant for someone else.

Since supporting the driver using shared IRQs was not part of the goals of
the project, and we can (as we’ve found) successfully demonstrate user space
audio drivers without this feature, we’ve opted for modifying the UIO driver
to disabled shared IRQs. This can be accomplished simply by:

i. Removing he IRQF SHARED flag in the uio pci generic dev structure.

ii. Disabling the aforementioned check.

Thus, changes were performed as follows:

Index : l inux −3.2.60/ d r i v e r s / uio / u i o p c i g e n e r i c . c
===

−−− l inux −3 .2 . 60 . o r i g / d r i v e r s / u io / u i o p c i g e n e r i c . c
2014−07−24 18 :59 :42 .916804862 +0200

+++ linux −3.2.60/ d r i v e r s / uio / u i o p c i g e n e r i c . c
2014−07−25 09 :15 :17 .660640451 +0200

@@ −65 ,10 +65 ,12 @@
origcmd = cmd status dword ;
s t a t u s = cmd status dword >> 16 ;

+#i f 0
/∗ Check i n t e r r u p t s t a t u s r e g i s t e r to see

whether our dev i c e
∗ t r i g g e r e d the i n t e r r u p t . ∗/

i f (! (s t a t u s & PCI STATUS INTERRUPT))
goto done ;

+#e n d i f

/∗ We t r i g g e r e d the in t e r rupt , d i s a b l e i t . ∗/
newcmd = origcmd | PCI COMMAND INTX DISABLE;

@@ −154 ,7 +156 ,7 @@
gdev−>i n f o . name = ” u i o p c i g e n e r i c ” ;
gdev−>i n f o . v e r s i on = DRIVER VERSION;
gdev−>i n f o . i r q = pdev−>i r q ;

− gdev−>i n f o . i r q f l a g s = IRQF SHARED;
+ gdev−>i n f o . i r q f l a g s = 0 ;

gdev−>i n f o . handler = i rqhand l e r ;
gdev−>pdev = pdev ;

After performing these changes, playback finally works reliably without time
constraints. This means the first major milestone of the project (au-
dible playback) is finally achieved.

34

6.3 Design and implementation of the front end

As we mentioned earlier on section 2, as a result of using RUMP our system already
provides a standard audio API that can be used by applications, which is generally
known as “Sun audio” or “audio(4)” (c.f. [6]).

However, our goal as defined in section 2.1 was to provide one of the more widespread
audio APIs (OSS, ALSA and PulseAudio). The reason we wanted to provide one of these
interfaces was to maximize the usefulness of our platform. Given that “Sun audio” API
is seldom known or used outside of NetBSD, we feel there is no reason to deviate from
our initial goal, as exporting another interface is still necessary.

As established in the project schedule (refer to Gantt diagram in section 3.5), we
would begin evaluating the implementation of an OSS front end as our first option.

In this regard, our use of “Sun audio” turned out to be quite productive. After some
research, we found that a compatibility library libossaudio existed for the sole purpose
of allowing OSS applications to run using “Sun audio”.

This library, however, was targeted at a very different use case than we intended, and
required a number of modifications in order to serve our purpose:

1. It used native NetBSD audio(4) API as back end, as it was only intended to be
useful on NetBSD. Instead, we wanted it to use the same API on a different back
end (RUMP).

Fixing this required some C pre-processor magic to redirect ioctl() calls issued by
libossaudio to RUMP:

https://github.com/.../commit/c499f3a84f8040e123641b4c0a8f0565b3f3bfb0

2. It relied on system-wide availability of NetBSD audio(4) API definitions (which
were obviously not present when run on our target Linux-based system).

We fixed this by importing a copy of “sys/audioio.h” and “sys/ioccom.h” from the
NetBSD source tree [?], and afterwards renaming a few macros (and their users) to
avoid namespace collisions with system-wide ioctl definitions:

https://github.com/.../commit/37bfb1e7c82fe927d276d6df37ff5badcdbfff0c

https://github.com/.../commit/dd5596f20126e54b723d312ba5ad182747a38b9b

this is very similar to what we did when implementing the “Sun audio” back end
for MPlayer (refer to section for details).

3. It included its own version of the “sys/soundcard.h” header, as it expected appli-
cations to use it. However, this was contrary to our goals: we intended to support
unmodified programs as already provided on Linux-based systems, which had been
linked with a different implementation of “sys/soundcard.h”.

In order to maintain ABI compatibility, we had to make some portability improve-
ments in libossaudio as to allow it to link using the Linux version of “sys/sound-
card.h” instead:

https://github.com/.../commit/d6c7605ad28b9db5ae19bbba2b25204adda7d99f

4. It expected applications to use libossaudio’s own version of ioctl(), which is exported
as the “ oss ioctl” symbol by the library. Conveniently, it provided C pre-processor
define in “sys/soundcard.h” to redirect “ioctl()” function calls to “ oss ioctl()”.
However, this imposed two requirements that we were unable to meet:

35

https://github.com/robertmillan/rumposs/commit/c499f3a84f8040e123641b4c0a8f0565b3f3bfb0
https://github.com/robertmillan/rumposs/commit/37bfb1e7c82fe927d276d6df37ff5badcdbfff0c
https://github.com/robertmillan/rumposs/commit/dd5596f20126e54b723d312ba5ad182747a38b9b
https://github.com/robertmillan/rumposs/commit/d6c7605ad28b9db5ae19bbba2b25204adda7d99f

(a) Applications had to be rebuilt. However, this wasn’t compatible with our goal
of supporting unmodified applications.

(b) The libossaudio version of “sys/soundcard.h” had to be deployed system-wide.
However, this posed ABI-related problems as explained above.

In order to avoid this situation, we developed an upper layer to intercept calls to
“ioctl()” and related calls (such as “open()” or “close()”). It would then redirect
them to our own handlers when they were intended for OSS audio playback, or to
standard system facilities otherwise.

Note that this problem is in fact close to our initial expectation, as we already
stated in section 2.1 that implementing seamless support for OSS would require a
system to intercept system calls.

The implementation of this layer, however, is more complex than we expected:
It has to assign a fake file descriptor to each new OSS handle requested by the
application, and keep track of them in a global, Mutual Exclusion (mutex)-protected
data structure (a hash table, in order to do this efficiently). Complete source code
to accomplish this can be found at:

https://github.com/.../commit/0b3e2de52cf30678eb3a948c5acb8957bdf5fd43

The final result for the front end (dubbed “rumposs”) is a RUMP-based application,
which can be consulted at:

https://github.com/robertmillan/rumposs

6.4 Result validation

6.4.1 Programmatic buffer control

Prior to the field validation based on experimental audition that we described previously,
we considered it would also be useful to monitor the status of playback buffers used by
audio hardware to see if there could be any risk of buffer underrun problems because of
the additional overhead when running the driver in user space.

In order to achieve this, we modified Kernel-based Virtual Machine (KVM) and added
a routine that calculates the current amount of used space at a given point, and regularly
prints it every time a new chunk of data is processed:

−−− qemu−kvm−1.1.2+ df sg . o ld /hw/ ac97 . c 2012−09−09
15 :21 :39 .000000000 +0200

+++ qemu−kvm−1.1.2+ df sg /hw/ ac97 . c 2014−12−31
18 :33 :04 .054061226 +0100

@@ −967 ,6 +967 ,19 @@

whi le (temp) {
i n t copied ;

+
+ /∗ Print b u f f e r u t i l i z a t i o n ∗/
+ p r i n t f (”%u\n” ,
+ /∗ Total impl i ed b u f f e r u t i l i z a t i o n because o f

the d i s t anc e

36

https://github.com/robertmillan/rumposs/commit/0b3e2de52cf30678eb3a948c5acb8957bdf5fd43
https://github.com/robertmillan/rumposs

+ between cur rent b u f f e r and l a s t b u f f e r . ∗/
+ ((r−> l v i − r−>c i v + 32) % 32) ∗ (r−>bd . c t l l e n &

0 x f f f f)
+ /∗ Plus number o f bytes pending to proce s s in our

cur r ent
+ b u f f e r ∗/
+ + r−>picb
+ /∗ Minus what we ’ ve j u s t wr i t t en in t h i s

execut ion o f wr i t e aud i o ()
+ be f o r e PICB i s updated ∗/
+ − (wr i t t en >> 1)) ;
+

to copy = audio MIN (temp , s i z e o f (tmpbuf)) ;
pc i dma read (&s−>dev , addr , tmpbuf , to copy) ;
cop ied = AUD write (s−>vo ice po , tmpbuf , to copy) ;

Then we executed our modified KVM (playing a 2 min sample) and plotted the output
(once using the native kernel driver in Linux, and once using the RUMP-based user space
approach).

Figure 1: Native kernel driver in Linux

As we can see in the figures 1 and 2, in both cases buffer utilization is maintained
very close to 100% during the whole test. One can observe that the user space version
takes a more conservative approach in that it refills the buffer more often and keeps it
to a higher minimum, but other than that we don’t see any significant differences when
validating our work from this perspective.

6.4.2 Field validation based on subject experiments

ABC/HR is a repeated measures design. In fact, it implements repeated measures in
two different dimensions: intra-subject and intra-sample. This eliminates possible error
sources that would be derived from cross-comparison of results between different subjects
or different samples.

In addition to this, when subjects compare samples with the original reference, they
base their assessments in a recent memory footprint of the original reference. This elim-

37

Figure 2: RUMP-based user space approach

inates possible distortions derived from time lapse (recall that human auditive memory
has a very short time span, as mentioned in section 4.2 of BS.1116-2 [16]).

Finally, the order in which the hidden reference is presented to the subject has been
counter-balanced to compensate possible order derived distortions.

We consider that such exhaustive control of error sources guarantees a very high degree
of statistical significance, and therefore are confident that we will obtain reliable results
despite the fact that the number of subjects (5) is below BS.1116-2 [16] recommendation
(20 or more).

It should be noted as well that each subject evaluated 15 samples, allowing for a grand
total of 150 test results after each of our subjects compared each sample twice (once with
the userland version and once with the hidden reference).

A complete listing of the test results, as well as the paired differences for each individ-
ual test, and their corresponding average and standard deviation is provided in Annex III
of this document.

For statistical analysis of the results we used parametric statistics as recommended
by section 9 of BS.1116-2 [16]; however, our understanding is that the two compared sets
are too similar for Analysis of Variance (ANOVA) to yield useful results. Therefore we
performed our analysis using Student’s t-test for paired samples [24].

We obtained t-value by applying Student’s formula:

t =
XD

sD ÷
√
n

(1)

where XD is the average of the paired differences, sD is the standard deviation of the
paired differences and n is the number of subject-sample combinations.

Thus:

t =
XD

sD ÷
√
n

=
0, 0066666667− 0

0, 4754324726÷
√

75
= 0, 1214368606 (2)

For a bilateral test, given a 0,95 degree of confidence and 74 degrees of freedom, our
threshold for statistical significance is 1,99, which is a much larger value than the t-value
we obtained (0,1214368606).

38

Therefore, we can assure with a 0,95 level of confidence that both of the studied sets
are the same. That is, there is no observable difference between sound output produced
using our user space solution and the reference (native Linux sound system).

6.5 Schedule deviations and final time line

It hasn’t been possible to carry the project according to plan. A number of deviations
have been necessary. Some of them were already foreseen and had contingency plans,
which have been activated; in another case, the problem was unforeseen due to a mistake
in the initial plan, and caused unexpected delay.

1. During the initial stages of back end development, we concluded that some of the
choices we made on interfaces or technology to be relied on, were not suitable
for successful execution of the project. Fortunately we had contingency plans to
manage these situations.

An elaborate explanation on the problems found, as well as the reasoning for our
design choices can be found in section 6.1.

2. Debugging of MPlayer + Backend combination took much longer than expected.
We planned to perform this step in less than a week; however, it took almost an
entire month to completion. Unfortunately we found a lot of unforeseen problems,
many of which were related to low level kernel and hardware subtleties and required
expensive debugging work.

A complete listing of the problems we found, with description for each problem as
well as the solution we implemented, can be found in section 2.

3. Initial planning didn’t account for some of the tasks. Due to a mistake when drafting
the initial project schedule, some of the tasks that are implied for development of
this project were not explicitly included:

(a) Definition of the validation method. Section 2.5 of the initial project document
(section 4 in this document) established that a validation method was yet to
be defined, and implied that a specific task with this purpose would be added
to the project.

However, the schedule as defined in section 3.5 of the initial project document
(or section 3.5 in this one) did not take this into account. As a result it had
to be refactored to include it.

(b) Actual execution of the result validation method wasn’t included in the initial
schedule either.

(c) Drafting of the Follow up report merited a task of its own. However this hadn’t
been accounted for in the initial schedule.

(d) Drafting of this document (the final report) also merited a task of its own.
Again, this hadn’t been accounted for in the initial schedule.

Consequently, a number of adjustments have had to be performed in the project
schedule in order to accommodate the missing tasks, correcting all of the above mistakes.
This pushes the target completion date back several days, from Nov 10th 2014 to Jan
2nd 2015.

For the revised project schedule (including Gantt diagram), refer to Annex II.

39

7 Sustainability and social impact

7.1 Applicable laws and regulations

To the best of our knowledge, there are no areas of law and regulation that could be of
concern for our project plan. However, for completeness we considered some of which
could possibly affect us in order to provide a rebuttal:

1. Directive 2009/490/EC of the European Parliament [22] establishes certain safety
requirements for personal music players. It places on device manufacturers the
responsibility of implementing security controls that restrict device owners in order
to prevent them from harming themselves.

Specifically, Article 3 states the following requirements:

(a) “Exposure to sound levels shall be time limited to avoid hearing damage. At 80
dB(A) exposure time shall be limited to 40 hours/week, whereas at 89 dB(A)
exposure time shall be limited to 5 hours/week. For other exposure levels a
linear intra- and extrapolation applies. Account shall be taken of the dynamic
range of sound and the reasonably foreseeable use of the products.”

(b) “Personal music players shall provide adequate warnings on the risks involved
in using the device and to the ways of avoiding them and information to users
in cases where exposure poses a risk of hearing damage.”

However, as the software we’re developing is only a middleware framework, and
not a complete application, our understanding is that it doesn’t fall upon us to
implement any sort of warning or restriction, but rather to end manufacturers or
application vendors.

2. From a copyright standpoint, we think our project is on safe ground as well: In our
current plan, it will only be integrated with code from RUMP. RUMP is a derivative
of NetBSD, which is available under liberal license terms for use and redistribution
in either modified or unmodified form.

More details on the copyright and license terms of RUMP and NetBSD are available
at:

http://www.netbsd.org/about/redistribution.html

3. Finally, a word on patents. Article 52 of the European Patent Convention [1]
(section 2.c) establishes that computer programs cannot be regarded as an invention
in order to qualify for an European patent. Since the project we’re developing is
comprised of software only, we believe that patent law is of no concern for our
project.

7.2 Environmental sustainability

As the project produces only software it has no direct impact on the environment. It
should be noted, however, that its development will require energy supply for a high-end
workstation during at least 488 h, amounting to a rough energy expenditure of 878 MJ,
which equals to emitting a small amount of CO2 to the atmosphere.

40

http://www.netbsd.org/about/redistribution.html

7.3 Social impact

Section 1.3 already elaborates on the technical factors that we think justify the develop-
ment of user space device drivers. We expect that the social impact of developing user
space device drivers in general will be the logical consequence of these factors:

1. As user space device drivers tend to be more portable than kernel-mode drivers,
we expect end users of different operating systems will benefit from wider driver
availability, as they are no longer restricted to using drivers written for their own
operating system.

2. As user space device drivers allow for decoupled release cycles and more flexible
release engineering, we expect end users will benefit from installing new drivers as
they desire without compromising the stability of their systems.

3. As user space device drivers run inside the same isolated sandbox environment as
all user space processes, we expect end users will benefit from higher reliability
and stability in their computer experience. (section 1.2.2 provides more detail on
existing research regarding device driver stability).

We think all the aforementioned benefits are applicable to our project to some degree.
On the other hand, we found that development of user space device drivers is not

entirely possible without modifying the original drive code, as in some cases it would have
made assumptions that are only valid in kernel environment. Fixing this problem involves
getting rid of the assumptions, making such code more robust and thereby improving its
quality as a collateral effect.

Two notable examples of such improvements are explained in section 2 (division by
zero in auich calibrate() and hardware inconsistency caused by unexpected process ter-
mination).

8 Conclusions

We have found that audio device driving in user space is a viable option: Our work
complies with existing laws and regulations (c.f. section 7.1); once the infrastructure
provisions are in place, integration of new drivers requires little effort (c.f. section 6.1.3);
the resulting framework works reliably, ensuring a sustainable data flow (c.f. section 6.4.1)
and with audible output of very high quality, which has been experimentally proven to
be indistinguishable from the traditional kernel-based approach (c.f. section 6.4.2).

In contrast, we’ve learnt that the initial goal of supporting unmodified drivers cannot
be fulfilled: device driving in user space doesn’t just require provisions to access I/O
facilities; it presents new problems because of the fundamental differences between kernel
and user space modes.

We have learnt about one such difference from one of the problems we fixed in AUICH
(c.f. section 2): user space processes can die, even while inside a critical section! The
system needs to be able to cope with that event and handle it gracefully. In contrast,
when the kernel panics it doesn’t have to worry about cleaning things up, as a panic is
immediately followed by a hardware reboot.

That means if a device driver contains any code region that temporarily puts the
hardware in an inconsistent state (e.g. an incomplete transaction), it needs to take into

41

account the possibility that execution is interrupted precisely inside this region and be
able to detect (and fix) this inconsistency afterwards when the process is restarted.

It is possible that other fundamental differences between kernel and user space modes
generate new problems for drivers in user space. So far we haven’t found any, but given
what we’ve seen, our expectation is that more could be found in case user space drivers
are developed in future directions.

When it comes to user space audio driving on UNIX-like operating systems, we think
after having proved that the concept is viable, there are many exciting possibilities for
expanding this work in other directions. To name a few:

1. Our work only developed support for PCI devices, but support for other buses could
also be implemented. We think USB Audio Class devices would be an interesting
complement. We’ve explored this possibility only on the surface (c.f. section 6.1.2).

2. Even within the scope of PCI bus devices, more drivers could be integrated. As
we’ve seen, integration itself is a simple process (c.f. section 6.1.3) but it could
lead to discovery of new bugs in the drivers when moved to their new user space
environment (c.f. section 2).

3. So far we’ve developed support for only OSS audio API. We’ve performed some
superficial analysis on other front ends (ALSA and PulseAudio) and we think it
would be a nice addition to this project in order to extend the number of supported
applications a bit further.

4. Our work has only focused on Linux as the host kernel, on one hand because it’s
the most widespread UNIX-like kernel and on the other because it provided readily
available facilities for user space driver development (such as UIO). However, we
think with some effort it could support other kernels. For example, the kernel of
FreeBSD implements a PCI pass-through facility similar to UIO [10], which could
potentially be adapted for this purpose.

Overall, we’re quite satisfied with the result of this project. Now that it has been
shown to be a viable alternative, end users can automatically obtain the benefits initially
laid out in section 1.3.

We think there’s a lot more to explore in this area and that in the end it can be very
rewarding both from an engineering or research perspective as well as from the point of
view of the end user or system administrator.

Annexes

I Original project schedule

42

WBS Name

1 Backend development

1.1 Using DDE

1.1.1 Evaluate viability of using DDE as framework fo

1.1.2 with USB hardware

1.1.2.1 Evaluate viability of binding DDE

1.1.2.2 Implement extensions to bind DDE framewo

1.1.3 with PCI hardware

1.1.3.1 Implement extensions to bind DDE framewo

1.2 Using RUMP

1.2.1 with USB hardware

1.2.1.1 Evaluate viability of binding RUMP with

1.2.1.2 Implement extensions to bind RUM

1.2.2 with PCI hardware

1.2.2.1 Implement extensions to bind RUM

2 Backend testing and debugging

2.1 Modify MPlayer to send audio output directly to

2.2 Debug MPlayer+Backend combination a

3 Milestone: Audible playback

4 Design and implement extensions for s

4.1 Using OSS

4.1.1 Evaluate viability of implementing O

4.1.2 Implement extensions for OSS soun

4.1.3 Test and debug OSS support using

4.2 Using ALSA

4.2.1 Evaluate viability of implementing A

4.2.2 Implement extensions for ALSA so

4.2.3 Test and debug ALSA support usin

4.3 Using PulseAudio

4.3.1 Implement extensions for PulseAud

4.3.2 Test and debug PulseAudio support u

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

robert, office, pc

Week 44, 2014 Week 45, 2014 Week 46, 2014

22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Gantt Chart

Tasks

WBS Name Start Finish Work Complete Cost Assigned to

1 Backend development Oct 22 Oct 29 54d

1.1 Using DDE Oct 22 Oct 29 32d

1.1.1 Evaluate viability of using DDE as framework for userspace device driving Oct 22 Oct 25 10d 0% 320 robert, office, pc

1.1.2 with USB hardware Oct 25 Oct 29 12d

1.1.2.1 Evaluate viability of binding DDE with USB hardware for audio output Oct 25 Oct 25 2d 0% 64 robert, office, pc

1.1.2.2 Implement extensions to bind DDE framework with USB backend Oct 26 Oct 29 10d 0% 320 robert, office, pc

1.1.3 with PCI hardware Oct 26 Oct 29 10d

1.1.3.1 Implement extensions to bind DDE framework with PCI backend Oct 26 Oct 29 10d 0% 320 robert, office, pc

1.2 Using RUMP Oct 25 Oct 29 22d

1.2.1 with USB hardware Oct 25 Oct 29 12d

1.2.1.1 Evaluate viability of binding RUMP with USB hardware for audio output Oct 25 Oct 25 2d 0% 64 robert, office, pc

1.2.1.2 Implement extensions to bind RUMP framework with USB backend Oct 26 Oct 29 10d 0% 320 robert, office, pc

1.2.2 with PCI hardware Oct 26 Oct 29 10d

1.2.2.1 Implement extensions to bind RUMP framework with PCI backend Oct 26 Oct 29 10d 0% 320 robert, office, pc

2 Backend testing and debugging Oct 29 Nov 5 22d

2.1 Modify MPlayer to send audio output directly to Backend Oct 29 Oct 29 2d 0% 64 robert, office, pc

2.2 Debug MPlayer+Backend combination and fix any outstanding problems Oct 30 Nov 5 20d 0% 640 robert, office, pc

3 Milestone: Audible playback Nov 5 Nov 5

4 Design and implement extensions for standard sound API frontend Nov 5 Nov 10 49d

4.1 Using OSS Nov 5 Nov 9 17d

4.1.1 Evaluate viability of implementing OSS as frontend sound API Nov 5 Nov 6 2d 0% 64 robert, office, pc

4.1.2 Implement extensions for OSS sound API Nov 6 Nov 9 10d 0% 320 robert, office, pc

4.1.3 Test and debug OSS support using arbitrary applications with audio output Nov 5 Nov 7 5d 0% 160 robert, office, pc

4.2 Using ALSA Nov 6 Nov 10 17d

4.2.1 Evaluate viability of implementing ALSA as frontend sound API Nov 6 Nov 6 2d 0% 64 robert, office, pc

4.2.2 Implement extensions for ALSA sound API Nov 7 Nov 10 10d 0% 320 robert, office, pc

4.2.3 Test and debug ALSA support using arbitrary applications with audio output Nov 6 Nov 7 5d 0% 160 robert, office, pc

User space approach to audio device driving on UNIX-like systems

Company: FIB

Manager: Robert Millan

Start: October 22, 2014

Finish: November 10, 2014

Report Date: October 11, 2014

◆

4.3 Using PulseAudio Nov 7 Nov 10 15d

4.3.1 Implement extensions for PulseAudio sound API Nov 7 Nov 10 10d 0% 320 robert, office, p

4.3.2 Test and debug PulseAudio support using arbitrary applications with audio output Nov 7 Nov 8 5d 0% 160 robert, office, p

Resources

Name Short name Type Group Email Cost

Robert Millan robert Work robert.millan@est.fib.upc.edu 10

Office office Material 1

PC workstation (amortization) pc Material 1

This file was generated by Planner

II Revised project schedule

45

WBS Name Work

1 Backend development 7d 1h

1.1 Using DDE 3d 2h

1.1.1 Evaluate viability of using DDE as framework for userspace device driving 3d 2h

1.2 Using RUMP 3d 7h

1.2.1 with USB hardware 5h

1.2.1.1 Evaluate viability of binding RUMP with USB hardware for audio output 5h

1.2.2 with PCI hardware 3d 2h

1.2.2.1 Implement extensions to bind RUMP framework with PCI backend 3d 2h

2 Backend testing and debugging 25d 5h

2.1 Modify MPlayer to send audio output directly to Backend 5h

2.2 Debug MPlayer+Backend combination and fix any outstanding problems 25d

3 Milestone: Audible playback

4 Define validation method 10d

5 Write followup report 5d

6 Followup meeting

7 Design and implement extensions for standard sound API frontend 19d 2h

7.1 Using OSS 5d 4h

7.1.1 Evaluate viability of implementing OSS as frontend sound API 5h

7.1.2 Implement extensions for OSS sound API 3d 2h

7.1.3 Test and debug OSS support using arbitrary applications with audio output 1d 5h

7.2 Using ALSA 8d 7h

7.2.1 Evaluate viability of implementing ALSA as frontend sound API 5h

7.2.2 Implement extensions for ALSA sound API 3d 2h

7.2.3 Test and debug ALSA support using arbitrary applications with audio output 5d

7.3 Using PulseAudio 4d 7h

7.3.1 Implement extensions for PulseAudio sound API 3d 2h

7.3.2 Test and debug PulseAudio support using arbitrary applications with audio output 1d 5h

8 Result validation 5d

9 Write final report 10d

Week 44, 2014 Week 45, 2014 Week 46, 2014 Week 47, 2014 Week 48, 2014 Week 49, 2014 Week 50, 2014 Week 51, 2014 Week 52, 2014 Week 1, 2015

22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8

Gantt Chart

Tasks

WBS Name Start Finish Work Complete Cost Assigned to

1 Backend development Oct 22 Oct 29 7d 1h

1.1 Using DDE Oct 22 Oct 25 3d 2h

1.1.1 Evaluate viability of using DDE as framework for userspace device driving Oct 22 Oct 25 3d 2h 0%

1.2 Using RUMP Oct 25 Oct 29 3d 7h

1.2.1 with USB hardware Oct 25 Oct 25 5h

1.2.1.1 Evaluate viability of binding RUMP with USB hardware for audio output Oct 25 Oct 25 5h 0%

1.2.2 with PCI hardware Oct 25 Oct 29 3d 2h

1.2.2.1 Implement extensions to bind RUMP framework with PCI backend Oct 25 Oct 29 3d 2h 0%

2 Backend testing and debugging Oct 29 Nov 23 25d 5h

2.1 Modify MPlayer to send audio output directly to Backend Oct 29 Oct 29 5h 46%

2.2 Debug MPlayer+Backend combination and fix any outstanding problems Oct 29 Nov 23 25d 0%

3 Milestone: Audible playback Nov 23 Nov 23

4 Define validation method Nov 23 Dec 3 10d 0%

5 Write followup report Dec 3 Dec 8 5d 0%

6 Followup meeting Dec 8 Dec 8

7 Design and implement extensions for standard sound API frontend Dec 8 Dec 18 19d 2h

7.1 Using OSS Dec 8 Dec 14 5d 4h

7.1.1 Evaluate viability of implementing OSS as frontend sound API Dec 8 Dec 9 5h 0%

7.1.2 Implement extensions for OSS sound API Dec 9 Dec 12 3d 2h 0%

7.1.3 Test and debug OSS support using arbitrary applications with audio output Dec 12 Dec 14 1d 5h 0%

7.2 Using ALSA Dec 9 Dec 18 8d 7h

7.2.1 Evaluate viability of implementing ALSA as frontend sound API Dec 9 Dec 10 5h 0%

7.2.2 Implement extensions for ALSA sound API Dec 10 Dec 13 3d 2h 0%

7.2.3 Test and debug ALSA support using arbitrary applications with audio output Dec 13 Dec 18 5d 0%

7.3 Using PulseAudio Dec 10 Dec 15 4d 7h

7.3.1 Implement extensions for PulseAudio sound API Dec 10 Dec 13 3d 2h 0%

7.3.2 Test and debug PulseAudio support using arbitrary applications with audio output Dec 13 Dec 15 1d 5h 0%

8 Result validation Dec 18 Dec 23 5d 0%

9 Write final report Dec 23 Jan 2 10d 0%

Resources

Name Short name Type Group Email Cost

Robert Millan robert Work robert.millan@est.fib.upc.edu 10

Office office Material 1

PC workstation (amortization) pc Material 1

This file was generated by Planner

User space approach to audio device driving on UNIX-like systems

Company: FIB

Manager: Robert Millan

Start: October 22, 2014

Finish: January 2, 2015

Report Date: December 8, 2014

◆

◆

III ABC/HR experimental results

47

Sheet1

Page 1

Núria

sample A-B A-C HR REF-REF REF-RUMP difference
1 4,90 5,00 C 5,00 4,90 0,10
2 5,00 5,00 B 5,00 5,00 0,00
3 4,50 4,70 C 4,70 4,50 0,20
4 5,00 5,00 B 5,00 5,00 0,00
5 5,00 4,50 C 4,50 5,00 -0,50
6 5,00 5,00 B 5,00 5,00 0,00
7 5,00 5,00 C 5,00 5,00 0,00
8 4,80 5,00 B 4,80 5,00 -0,20
9 4,00 5,00 C 5,00 4,00 1,00

10 5,00 5,00 B 5,00 5,00 0,00
11 4,70 4,60 C 4,60 4,70 -0,10
12 5,00 5,00 B 5,00 5,00 0,00
13 5,00 5,00 C 5,00 5,00 0,00
14 5,00 5,00 B 5,00 5,00 0,00
15 5,00 4,70 C 4,70 5,00 -0,30

Angela

sample A-B A-C HR
1 5,00 5,00 B 5,00 5,00 0,00
2 5,00 5,00 C 5,00 5,00 0,00
3 4,90 4,90 B 4,90 4,90 0,00
4 5,00 4,80 C 4,80 5,00 -0,20
5 5,00 5,00 B 5,00 5,00 0,00
6 5,00 5,00 C 5,00 5,00 0,00
7 5,00 5,00 B 5,00 5,00 0,00
8 5,00 5,00 C 5,00 5,00 0,00
9 5,00 5,00 B 5,00 5,00 0,00

10 5,00 5,00 C 5,00 5,00 0,00
11 5,00 5,00 B 5,00 5,00 0,00
12 5,00 5,00 C 5,00 5,00 0,00
13 5,00 5,00 B 5,00 5,00 0,00
14 5,00 5,00 C 5,00 5,00 0,00
15 5,00 5,00 B 5,00 5,00 0,00

Carles

sample A-B A-C HR
1 5,00 5,00 C 5,00 5,00 0,00
2 5,00 5,00 B 5,00 5,00 0,00
3 5,00 5,00 C 5,00 5,00 0,00
4 5,00 5,00 B 5,00 5,00 0,00
5 5,00 5,00 C 5,00 5,00 0,00
6 5,00 5,00 B 5,00 5,00 0,00
7 5,00 5,00 C 5,00 5,00 0,00
8 5,00 5,00 B 5,00 5,00 0,00
9 5,00 5,00 C 5,00 5,00 0,00

10 5,00 5,00 B 5,00 5,00 0,00
11 5,00 5,00 C 5,00 5,00 0,00
12 5,00 5,00 B 5,00 5,00 0,00
13 5,00 5,00 C 5,00 5,00 0,00
14 5,00 5,00 B 5,00 5,00 0,00
15 5,00 5,00 C 5,00 5,00 0,00

Sheet1

Page 2

Nil

sample A-B A-C HR
1 4,00 4,00 B 4,00 4,00 0,00
2 4,00 4,00 C 4,00 4,00 0,00
3 4,80 4,80 B 4,80 4,80 0,00
4 4,00 4,00 C 4,00 4,00 0,00
5 4,00 3,50 B 4,00 3,50 0,50
6 4,00 3,50 C 3,50 4,00 -0,50
7 4,50 5,00 B 4,50 5,00 -0,50
8 4,00 4,00 C 4,00 4,00 0,00
9 4,50 4,00 B 4,50 4,00 0,50

10 5,00 4,00 C 4,00 5,00 -1,00
11 4,00 4,00 B 4,00 4,00 0,00
12 4,00 4,00 C 4,00 4,00 0,00
13 4,50 4,00 B 4,50 4,00 0,50
14 4,00 4,00 C 4,00 4,00 0,00
15 4,00 4,00 B 4,00 4,00 0,00

Cristina

sample A-B A-C HR
1 4,00 3,00 C 3,00 4,00 -1,00
2 5,00 4,00 B 5,00 4,00 1,00
3 2,00 4,00 C 4,00 2,00 2,00
4 4,00 5,00 B 4,00 5,00 -1,00
5 5,00 4,00 C 4,00 5,00 -1,00
6 3,00 2,00 B 3,00 2,00 1,00
7 5,00 5,00 C 5,00 5,00 0,00
8 4,00 4,00 B 4,00 4,00 0,00
9 4,00 3,00 C 3,00 4,00 -1,00

10 4,00 4,00 B 4,00 4,00 0,00
11 4,00 3,00 C 3,00 4,00 -1,00
12 4,00 4,00 B 4,00 4,00 0,00
13 4,00 5,00 C 5,00 4,00 1,00
14 4,00 4,00 B 4,00 4,00 0,00
15 4,00 5,00 C 5,00 4,00 1,00

AVG: 0,00666667
STDEV: 0,47543247

Student's t-value for paired samples: 0,12143686

Acronyms

ABC/HR triple-stimulus with hidden reference. 14, 37

ABI Application Binary Interface. 8, 21, 35, 36

ALSA Advanced Linux Sound Architecture. 8, 11, 35, 42, 52, See glossary: Advanced
Linux Sound Architecture

ANOVA Analysis of Variance. 38

API Application Programming Interface. 5–8, 10, 11, 15, 18–21, 35, 42, 51–53

BS Broadcasting Service. 12

BSD Berkeley Software Distribution. 51, 52

DDE Device Driver Environment. 3, 11, 12, 15, 18, 19, See glossary: Device Driver
Environment

DMA Direct Memory Access. 6, 7, 11, 19, 26

GCC the GNU C Compiler. 11

GDB the GNU Debugger. 27, 30

GPL GNU General Public License. 19

I/O Input/Output. 7, 8, 11, 26, 27, 41

ICH I/O Controller Hub. 28, 50, 51, See glossary: I/O Controller Hub

ICH CAS ICH Codec Access Semaphore. 28, See glossary: ICH Codec Access Semaphore

IPC Inter-Process Communication. 5, 6

IRQ Interrupt Request. 6, 19, 34

ITU-R Radiocommunication Sector of the International Telecommunication Union. 12

KVM Kernel-based Virtual Machine. 36, 37, See glossary: Kernel-based Virtual Ma-
chine

mutex Mutual Exclusion. 36, See glossary: Mutual Exclusion

OSS Open Sound System. 8, 11, 15, 35, 36, 42, 51, 52, See glossary: Open Sound System

PCI Peripherial Component Interconnect. 3, 7, 8, 11, 15, 19, 20, 26, 27, 42, 51

pthread POSIX Threads library. 32

SIGFPE Floating Point Exception. 27, 28

50

TUD:OS Technische Universität Dresden: Operating Systems. 18

UIO User Space I/O. 11, 32–34, 42, See glossary: User Space I/O

USB Universal Serial Bus. 3, 15, 19, 20, 42, 52, 53

Glossary

ICH Codec Access Semaphore Semaphore register in ICH which is read by software
to check whether a codec access is currently in progress. For details, refer to Intel
datasheet [3] (page 328). 28, 50

Advanced Linux Sound Architecture ALSA was designed to support a set of ad-
vanced features which at that time were not available in OSS. Although only imple-
mented by Linux-based systems, it’s the most commonly used API on such systems,
and enjoys widest support among audio-capable applications. 8, 50

AUICH NetBSD driver for Intel 82801AA AC97 audio hardware. 20, 41

critical section A piece of code that accesses a shared resource (data structure or de-
vice) that must not be concurrently accessed by more than one thread of execution.
41, 52

DDEkit Abstraction layer which maps hardware access facilities provided by the differ-
ent subsystems of the underlying kernel (currently, only Linux is supported) into a
unified API that is exported to userland programs. 11, 18, 19, 51

Device Driver Environment Wrapper library which emulates the internal API of cer-
tain kernels (including Linux) and uses DDEkit as back end to implement the nec-
essary facilities. It allows for drivers written for Linux to be used unmodified on a
user space environment. 3, 50

double-blind Test method in which the subject, as well as any operator of the experi-
ment whom the subject interacts with, are agnostic about the expected outcome of
the subject’s evaluation. 14

FreeBSD Free, UNIX-like operating system that descends from Berkeley Software Dis-
tribution (BSD). 11, 18, 42

I/O Controller Hub A highly-integrated, multi-functional I/O Controller Hub that
provides the interface to the PCI Bus and integrates many of the functions needed
in today’s PC platforms [3]. 28, 50

kernel The definition of this word is a bit lax. Traditionally, the kernel is interpreted
to be the core of the operating system. This includes, among other things, man-
agement of shared resources (hardware or otherwise) and most of the time device
drivers too. However, sometimes certain resources can be managed in user space,
and sometimes devices can be driven by user space too. To avoid ambiguities, in

51

this document we take a practical approach: if the processor is set in privileged
mode when running a piece of code, then this code is part of the kernel; otherwise
it is part of userland. In contrast with userland, UNIX-like kernels typically exhibit
very tight integration of their internal components, with direct communication gov-
erned by constantly evolving APIs. 2, 3, 5–8, 11, 12, 15, 18–20, 28, 33, 37, 41, 42,
51–53

Kernel-based Virtual Machine Full virtualization solution for Linux-based hosts on
x86 hardware with x86 guests. KVM is intended for systems where the processor
has hardware support for virtualization. 36, 50

libossaudio A NetBSD compatibility library which provides emulation of the OSS audio
interface. [5]. 35, 36

LibUSB A portable interface for accessing USB from userland (http://www.libusb.
org/). 19, 20

Linux A very popular kernel implementation, used as the foundation for most UNIX-like
operating systems. Traditionally used only in combination with GNU userland (so-
called Linux-based GNU systems, or GNU/Linux systems), nowadays it’s almost
ubiquitous as a component of mobile operating systems such as Android. 5, 8, 11,
18–21, 26, 32, 33, 35, 37, 39, 42, 52

MPlayer Free media player for UNIX-like operating systems. 20, 21, 25, 30, 35, 39

Mutual Exclusion The requirement of ensuring that no two concurrent processes are
in their critical section at the same time. 36, 50

NetBSD Free, UNIX-like operating system that descends from BSD. 11, 18–21, 28, 35,
40, 51–53

Open Sound System The traditional audio API for UNIX-like operating systems. Its
API follows the UNIX “everything is a file” philosophy which makes it relatively
simple to understand and implement. It has lost traction over the years since it was
deprecated in favour of ALSA on Linux-based GNU systems, but is still supported
as an output option by the vast majority of applications. 8, 50

PulseAudio Audio server which takes audio input from user applications and redirects
it to other audio APIs for output (generally OSS or ALSA). PulseAudio is deployed
as the default audio server in most Linux-based GNU distributions and therefore is
a widely supported API among audio applications. 8, 15, 35, 42

RUMP Framework for running internal subsystems of the NetBSD kernel directly as a
user space process. It maps the required facilities for hardware access to the internal
NetBSD kernel APIs, thereby making it possible for NetBSD device drivers to run
in user space. 3, 11, 12, 15, 18–21, 25–28, 35–38, 40

single-blind Test method in which the subject is agnostic about the expected outcome
of his evaluation. 14

52

http://www.libusb.org/
http://www.libusb.org/

Solaris A proprietary derivative of AT&T UNIX operating system. 20

ugenhc An interface for accessing USB from userland specific to NetBSD (http://nxr.
netbsd.org/source/xref/src/sys/rump/dev/lib/libugenhc/ugenhc.c). 20

UNIX-like operating system Broad family of operating systems whose design (and
sometimes code heritance) derives from AT&T Unix System V. All references to
operating systems in this document refer to this kind, unless stated otherwise. 5,
15, 52

user space System components which are not part of the kernel. This includes the most
noticeable part of the vast majority of processes in the system (although some part
of each process runs in the kernel, and many kernel implementations provide a set
of kernel-only processes). An important characteristic of user space well-defined
layer separations that use very stable APIs to communicate. Examples of these are
the C library API, and many of the public APIs exported by the kernel. 5–8, 10–12,
15, 18, 19, 26, 28, 34, 36–39, 41, 42, 51–53

User Space I/O Public kernel API provided by Linux which implements certain fa-
cilities useful to perform device driving in user space. Despite its name, its main
purpose is not enabling I/O access to user space (that is the domain of ioperm and
iopl), but to give user space the ability to synchronize with hardware interrupts [13].
11, 51

userland Same as user space. In this document they may be used interchangeably. 5,
6, 38, 51–53

VirtualBox Free ia32/amd64 virtualization solution allowing a wide range of operating
systems. 10, 11

References

[1] The European Patent Convention. Article 52. URL http://www.epo.org/law-
practice/legal-texts/html/epc/2013/e/ar52.html. 1973.

[2] pthread cond wait(3). URL http://pubs.opengroup.org/onlinepubs/007908799/xsh/pthread cond wait.html.
1997.

[3] http://www.intel.com/design/chipsets/datashts/290655.htm. 1999.

[4] iopl(2). URL http://linux.die.net/man/2/iopl. 2004.

[5] ossaudio(3). URL http://netbsd.gw.com/cgi-bin/man-cgi?ossaudio+3. 2009.

[6] audio(4). URL http://netbsd.gw.com/cgi-bin/man-cgi?audio+4+NetBSD-current.
2011.

[7] bus space(9). URL http://netbsd.gw.com/cgi-bin/man-cgi?bus space++NetBSD-
current. 2011.

[8] mmap(2). URL http://linux.die.net/man/2/mmap. 2012.

53

http://nxr.netbsd.org/source/xref/src/sys/rump/dev/lib/libugenhc/ugenhc.c
http://nxr.netbsd.org/source/xref/src/sys/rump/dev/lib/libugenhc/ugenhc.c

[9] Kernel PCI drivers in userspace. URL https://github.com/rumpkernel/wiki/wiki/Repo:-
pci-userspace. 2014.

[10] PCI passthrough support in bhyve. URL https://wiki.freebsd.org/bhyve/pci passthru.
2014.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of operating
systems errors, volume 35. ACM, 2001.

[12] P. Chubb et al. Linux kernel infrastructure for user-level device drivers. In In Linux
Conference, 2004.

[13] J. Corbet. UIO: user-space drivers. LWN.net, 2007.

[14] Free Software Foundation. How to Use Inline Assembly Language in C Code. URL
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html. 2014.

[15] T. Friebel. Übertragung des Device-Driver-Environment-Ansatzes auf Subsysteme
des BSD-Betriebssystemkerns. PhD thesis, Masters thesis, Technische Universität
Dresden, March 2004. Available at http://os.inf.tu-dresden.de/papers ps/friebel-
diplom.pdf. 7, 22, 2006.

[16] ITU-R. BS.1116. Methods for the Subjective Assessment of Small Im-
pairments in Audio Systems Including Multichannel Sound Systems,” Interna-
tional Telecommunication Union, Geneva, Switzerland (1994 March). Available at
http://www.itu.int/rec/R-REC-BS.1116/en, 1994.

[17] A. Kantee. Rump device drivers: Shine on you kernel diamond. Proceedings of
AsiaBSDCon, pages 75–84, 2010.

[18] J. Kunz. Writing Drivers for NetBSD. URL
http://netbsd.mirrors.tds.net/pub/NetBSD/misc/agc/writing drivers.pdf. 2003.

[19] J. Lser and M. Hohmuth. Omega0: A portable interface to interrupt hardware for
l4 systems. 1999.

[20] E. C. Poulton. Bias in quantifying judgements. Taylor & Francis, 1989.

[21] R. Short. Vice President of Windows Core Technology. Microsoft Corp. private
communication, 2003.

[22] The European Commission. Directive 2009/490/EC of the European Par-
liament on the safety requirements to be met by European standards for
personal music players pursuant to Directive 2001/95/EC. URL http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:161:0038:0039:EN:PDF.
Official Journal of the European Union, 2009.

[23] H. Weisbach, B. Döbel, and A. Lackorzynski. Generic User-Level PCI
Drivers. In Proceedings of the 13th Real-Time Linux Workshop. URL
http://lwn.net/images/conf/rtlws-2011/proc/Doebel.pdf, 2011.

[24] Wikipedia. Student’s t-test — Wikipedia, The Free Encyclopedia. URL
http://en.wikipedia.org/wiki/Student’s t-test, 2014. [Online; accessed 30-December-
2014].

54

	Introduction and state of the art
	Introduction
	Research context
	Easier development
	Robustness and system stability
	Performance
	Other areas of research

	Motivation
	Portability
	Release engineering
	Privilege separation

	Target audience

	General scope of the project
	Framework
	Unmodified drivers
	kernel interaction
	System architecture

	Development plan
	Overview
	Development resources
	Potential technologies
	Potential risks & mitigation strategies
	Schedule

	Validation
	Samples
	Subjects
	Test procedure
	Result interpretation

	Budget
	Foundations
	Budget
	Financial viability of the project

	Project execution
	Back end development
	Potential problems found that question the viability of using dde
	Attempts to use usb Audio Class devices led to a dead end
	rump with pci

	Back end testing and debugging
	Design and implementation of the front end
	Result validation
	Programmatic buffer control
	Field validation based on subject experiments

	Schedule deviations and final time line

	Sustainability and social impact
	Applicable laws and regulations
	Environmental sustainability
	Social impact

	Conclusions
	Annexes
	Original project schedule
	Revised project schedule
	ABC/HR experimental results

	Acronyms
	Glossary
	References

