
Algorithms for the linear colouring
arrangement problem

Bachelor’s thesis

Author:
Isaac Sánchez Barrera
Opting for the Bachelor’s degree

in Informatics Engineering

Computing specialisation

Director:
María José Serna Iglesias

Department of Computer Science

Facultat d’Informàtica de Barcelona

Universitat Politècnica de Catalunya · BarcelonaTech

Defence date:

Wednesday 28th January, 2015

Abstract

This project undertakes the task of developing efficient algorithms for solving or approximating

the Minimum linear colouring arrangement problem for graphs (minlca), a variation of the

Minimum linear arrangement problem (minla). In our case, the linear mapping is defined on

the set of colours of a proper graph colouring instead of its vertices. It is the first approach to its

algorithms and computational complexity, and we present the results on a simple, open-access

benchmarking platform.

Resum

El projecte emprèn la tasca de desenvolupar algorismes eficients per resoldre o aproximar el

problema de l’arranjament lineal mínim d’una coloració per a grafs (minlca), una variació

del problema de l’arranjament lineal mínim (minla). En aquest cas, l’assignació lineal està

definida en el conjunt de colors d’una coloració correcta del graf en comptes dels seus vèrtexs.

És la primera aproximació als seus algorismes i complexitat computacional, i en presentem els

resultats a una plataforma de comparació simple i d’accés obert.

Resumen

El proyecto lleva a cabo la tarea de desarrollar algoritmos eficientes para resolver o aproximar

el problema de la colocación lineal mínima de una coloración para grafos (minlca), una

variación del problema de la colocación lineal mínima (minla). En este caso, la asignación

lineal está definida en el conjunto de colores de una coloración correcta del grafo en lugar

de sus vértices. Es la primera aproximación a sus algoritmos y complejidad computacional, y

presentamos los resultados en una plataforma de comparación simple y de acceso abierto.

Acknowledgements

First of all, I would like to thank professor Maria Serna from the Department of Computer Science

(CS) for accepting to direct my Bachelor’s Thesis and proposing the project herself. This project

would have not been possible without her support and guidance, including all the material,

help when reviewing the documents, and support during the presentation rehearsals. From the

moment I was presented with the project it seemed very interesting, and a good application

for everything I had studied during all my years at University, both in Computer Science (a.k.a.

Informatics Engineering, Computing specialisation) and Mathematics.

I cannot but thank professors Jordi Cortadella and Jordi Petit from CS. Right at the beginning

of the project they assisted me when choosing the software for developing the algorithms and

looking for the state of the art of the problem.

I would also like to thank professor Carme Àlvarez from CS for having shown interest when

I was seeking a director. And professor Dani Jiménez from the Department of Computer

Architecture for having proposed an interesting project when it was still a bit early for me, and

apologies for having answered so late.

Executing the algorithms for the project might have been impossible without using the cluster

at RDlab. Therefore, I would like to thank Gabriel and Iván from RDlab for having helped me

with the doubts and problems I had when using the cluster. It is fair to say they have saved the

project on two occasions.

I should not forget to thank professors Marc Noy and Simeon Ball from the Departments of

Applied Mathematics II and IV, respectively, for letting me attend their course on Combinatorics

and Graph Theory. It has been a very interesting course, with some ideas I have been able to

apply to this project, and has helped me not lose contact with the academic world (apart from

this thesis).

Though not strictly related to the project, thanks to my friends Alberto, Alex, Anne, Ander,

Francesc, Guillermo and Marta and my mates from the choir. The many good times I have spent

with them during the last four and a half months have been invaluable.

Last but not least, thanks to my parents and sister. Without their comprehension, I would not

have been able to embrace this project properly.

v

Contents

Contents vii

List of Tables x

List of Figures x

List of Algorithms xi

I Introduction 1

1 Problem definition and scope 1
1.1 Problem formulation . 1

1.2 Goals of the project . 1

1.3 Scope of the project . 2

2 Context and state of the art 2
2.1 Interest in the problem . 2

2.2 Current state of the art . 3

3 The project within the computing specialisation 4
3.1 Relation with the studied subjects . 4

3.2 Technical skills and level of achievement . 5

II Project management 7

4 Project planning 7
4.1 Schedule . 7

4.2 Project planning . 7

4.2.1 Resources . 7

4.2.2 Project management course . 8

4.2.3 Resources preparation . 8

4.2.4 Project preparation . 8

4.2.5 Greedy algorithms development . 9

4.2.6 Local search algorithms . 9

4.2.7 Follow-up milestone . 9

4.2.8 Result comparison and writing of conclusions 9

vii

Contents

4.3 Alternative plans and changes in the initial plan 10

5 Budget, sustainability and regulations 13
5.1 Budget . 13

5.1.1 Preliminary considerations . 13

5.1.2 Human resources budget . 13

5.1.3 Hardware budget . 13

5.1.4 Software budget . 14

5.1.5 Total budget . 16

5.1.6 Deviation control . 16

5.2 Sustainability . 16

5.3 Laws and regulations . 17

III Definitions, theorems and properties 19

6 Basic definitions 19
6.1 Preliminaries . 19

6.2 The minimum linear colouring arrangement problem 21

6.2.1 Parameterised formulation . 21

6.2.2 Non-parameterised formulation . 21

7 Complexity of the problem 22
7.1 Classic computational complexity . 22

7.2 Bounds and closed results for particular graphs 25

7.2.1 Bipartite graphs . 25

7.2.2 Complete graphs . 26

7.2.3 Planar graphs . 27

IV Algorithms and instances 29

8 Exact algorithms 29
8.1 Integer linear programming . 29

8.1.1 Other models . 29

9 Greedy algorithms 29
9.1 Nearest colour . 30

9.2 Least cost . 31

9.3 Discarded algorithms . 32

10 Local search algorithms 33
10.1 Based on greedy recolourings . 33

10.2 Based on changing the colours . 34

viii

Contents

11 Chosen instances 34
11.1 Used in MinLA benchmarking . 34

11.2 Binomial random graphs . 35

11.2.1 Choosing the edge probability . 35

11.2.2 Bounds on the chromatic number . 36

11.3 Random geometric graphs . 36

11.3.1 Choosing the radius . 36

11.4 Graphs with cliques . 37

11.4.1 Cycles of cliques . 37

11.4.2 Interconnected cliques . 37

11.5 Outerplanar graphs . 38

V Experimental results 43

12 General considerations 43
12.1 Implementation details . 43

12.2 The cluster at RDlab . 43

12.3 Random instances . 43

13 Integer linear programming 44
13.1 Experiment design . 44

13.2 Results . 44

14 Greedy algorithms 45
14.1 MinLA instances . 45

14.1.1 Experiment design . 45

14.1.2 Results . 45

14.2 Randomly generated instances . 45

14.2.1 Experiment design . 45

14.2.2 Results . 46

15 Simulated annealing 46
15.1 MinLA instances . 47

15.1.1 Experiment design . 47

15.1.2 Results . 48

15.2 Randomly generated instances . 49

15.2.1 Experiment design . 49

15.2.2 Results . 49

VI Sustainability report 51

16 Sustainability analysis 51
16.1 Timing and economic costs . 51

ix

16.2 Social implications . 51

16.3 Environmental implications . 51

17 Sustainability evaluation 52

VII Final words 55

Future work 55

Conclusions 55

Bibliography and references 56

List of Tables

5.1 Human resources budget . 14

5.2 Hardware budget . 14

5.3 Software services budget . 15

5.4 Total budget . 16

5.5 Project planning sustainability table . 17

14.1 Results of the greedy algorithms for the minla instances 47

15.1 Result comparison between the algorithms . 49

17.1 Sustainability table template . 52

17.2 Sustainability table . 52

List of Figures

2.1 Comparison between minla and minlca . 3

4.1 Initial gantt chart for the project . 11

4.2 Final gantt chart for the project . 12

6.1 Visual representation of a graph . 20

x

7.1 Linear colouring arrangement for a complete graph Kn 26

7.2 Example of a plane graph . 27

7.3 An outerplanar graph . 28

11.1 A binomial random graph with n = 40 and p = 0.133 35

11.2 A random geometric graph with n = 500 and r2 = 0.018 37

11.3 A random outerplanar graph with n = 50 . 38

14.1 Sample boxplot of the greedy algorithms results 46

15.1 Sample cost evolution plot using simulated annealing 48

16.1 Invoice for cluster resources usage . 53

List of Algorithms

7.1 Verifier for minlca-deck . 23

9.1 Greedy nearest colour algorithm . 31

9.2 Greedy least cost algorithm . 32

11.1 Outerplanar graph generator . 39

11.2 Crossing chords helper for generating outerplanar graphs 40

11.3 Bridges helper for generating outerplanar graphs 41

xi

Part I

Introduction

1 Problem definition and scope

1.1 Problem formulation

Nowadays many real life problems, especially in engineering, can be modelled as problems in

graphs. One big group of such problems are those known as graph layout problems, which

consist in finding a way to place the vertices of a graph in a grid or in a line so that an objective

mathematical function of the edge induced lengths is minimised or maximised.

Of all these layout problems, a thoroughly studied one by the computer science community is

the minimum linear arrangement problem. The objective is to find the best way to order the

vertices of a graph, which can be seen as putting them in a straight line at equidistant points,

such that the sum of the induced distances between two adjacent vertices is the minimum. This

can be more formally defined using mathematical notation:

Problem 1.1 (Minimum linear arrangement). Given a graph G = (V, E), with |V | = n, find a

bijective function φ:V ⟶ {1,… , n} such that 􏾝
{u,v}∈E

|φ(u) − φ(v)| is the minimum possible.

However, the problem we are going to study is a variation of minla. Instead of putting all of

the vertices in a straight line, each one in a different position, we are now allowed to group

them as long as not two vertices in a group are adjacent. Mathematically speaking, the function

φ only needs to be a proper colouring of the graph. Because of this, this problem can be known

as the minimum linear colouring arrangement problem, or minlca for short.

1.2 Goals of the project

The most general goal of the project is the study of the minimum linear colouring arrangement

problem (minlca), a generalisation of the well-known graph layout problem minimum linear

arrangement (minla). The results obtained during the development of this project should serve

as a basis for further studies on this problem.

We initially want to establish the problem complexity in a classic way (NP-hardness) and
from there continue with some theoretical and practical results on certain types of graphs. In

order to do this, we will develop some heuristic algorithms and evaluate their performance

1

on different classes of graphs such as bipartite graphs and random graphs generated using a

binomial distribution for the edges.

The heuristic algorithms we plan to develop will mostly use greedy and local search approaches,

with the help of linear programming for their development. Also, whenever possible, we will

use integer linear programming (ILP) models so as to get the actual optimums for the instances

used. That way, we will be able to analyse the empirical results from a practical point of

view. This will allow us to classify the algorithms along with the theoretical results according

to their performance.

As a final step we plan to build a simple, online benchmarking platform to compare the

obtained results and possibly a technical report including all of them. As stated at the beginning

of this section, this should allow the computer science community to have the most basic results

in order to study the problem in more depth.

1.3 Scope of the project

A computational problem can be studied in many different ways, from many points of view.

This can cause a project like this to stall and reach nowhere, so it is important to set some limits

in the ways it is going to be studied.

To start off, the time constraints for the development of the project mean we cannot study

this problem for too many families of graphs. We will mainly concentrate in binomial random

graphs and random geometric graphs together with some ad-hoc graph families.

There is no need to reinvent the wheel. Because of that, we are going to use existing libraries

of data structures for graph representation and software which is already well tested in order to

solve the linear programming models. However, we should explain the reasons for choosing

some options instead of others.

Finally, this project should be understandable on its own, including people with little to

no knowledge of graph theory. As such, it should contain all needed definitions and results.

What this means is not that the project should be a book on graph theory but that all required

basic knowledge is included within. For deeper understanding for the reader, however, all the

provided references could be of use.

2 Context and state of the art

2.1 Interest in the problem

The study of the complexity of computational problems is an important field in computer science

and mathematics. As this problem can be shown to be computationally difficult, theoretical

and practical results on it would be useful for the whole computer science community. It is

also important to say that the Algorithmics, Bioinformatics, Complexity and formal Methods

2

2.2 Current state of the art

(a)Original graph
(b)Optimal layout for minla,

cost 6

(c)Optimal layout for minlca,

cost 4

Figure 2.1: Comparison between minla and minlca. The numbers below the nodes v are the φ(v) values.

(ALBCOM) research group from the Computer Science department (CS) of UPC · BarcelonaTech

is interested in this problem and the proposal of its study came directly from them. In particular,

it is an initial generalisation to the minimum linear arrangement problem thoroughly studied by

Jordi Petit among others, see [1], [2] for a full list of results and references to this and other

graph layout problems. As such, the study of this problem will benefit to both the ALBCOM

group and the computer science community in general.

Apart from being a graph layout problem, minlca is strongly related to other very well known

graph problems: graph colouring and graph homomorphism. When regarded as a special

case of the latter, it is possible to find a real world application related to computer science. The

vertices of the graph can be seen as different tasks of a computer program and the edges as

incompatibility rules between them (two tasks which need to be executed by different computers;

but that may need to share information). Considering the computers are sequentially numbered

and physically distributed in the order of the sequence, φ would the assignment of the tasks

to the different computers which minimises the physical distance between incompatible tasks

sharing information. Considering this, the solution might be a way to minimise the time and

energy spent in information exchange, though it is an oversimplified model.

2.2 Current state of the art

Even though the minimum linear arrangement problem has been studied for many years now,

our variation has not. All the existing results that we know of are unpublished and in many

cases are not even results but simple conjectures.

The main difference between the two problems is on the solution φ: in the original problem it

has to be a bijective mapping between the set of vertices and a set of integers, but in our case

we only need it to be a proper colouring. Since every linear arrangement is a linear colouring

arrangement in particular, all the known upper bounds for the minla problem are also valid

(though rough) bounds for the minlca problem. The differences between the problems can be

seen in Fig. 2.1.

Some of the algorithms for minla might give ideas on how to develop the algorithms for our

problem, but their differences will mean that the algorithms need to be different. We plan to

3

use local search, but using parallelisation techniques such as those in [3] falls out of the scope

of this project because of the time constraints. What Petit does in that paper is to combine a

technique known as spectral sequencing, which, as Koren and Harel [4] explain, works by doing

some operations on a matrix generated with the graph information in order to get good initial

solution, with a parallel version of simulated annealing.

It is interesting to notice that, while [5] by Petit is dated of 2003, the results were originally

published in 2001 on his page at the Computer Science department website before Koren and

Harel published their paper, and their solutions are an improvement in execution time to Petit’s.

When using the ILP formulation for the problem, the current state of the art solver is the

Gurobi Optimizer. When looking for a graph library for C++, one of the best options is LEMON

(Library for Efficient Modelling and Optimisation in Networks) [6]. Unfortunately, there is no

interface allowing to use LEMON and Gurobi simultaneously. Thus one of our objectives is to

develop such interface using the C++ reference documentation [7].

LEMON does have interfaces for other solvers, but either they are not practical with our time

constraints or their price is not accessible to a research project at this level. Open source projects

such as the Clp solver from the COIN-OR initiative [8] take too much time to solve an ILP model,

or even get stuck when there are many variables and constraints. Other commercial solvers like

the CPLEX Optimizer from IBM [9] are expensive and constrained even for academic use, and

Gurobi is currently one of the best available options.

Other graph libraries have been discarded in favour of LEMON, like the open source BGL (Boost

Graph Library) [10] and the commercial LEDA (Library of Efficient Data types and Algorithms)

[11]. The former is more complex and difficult to use than LEMON and requires the whole

installation of the Boost libraries, and the latter has many restrictions when using it for free or

for research purposes.

All in all, there are not any results publicly available for the problem; at least that we know

of. With the use of existing results for its similar problems and theoretical results on colourings

for random graphs, like the ones by Bollobás [12], this project should serve as a basis for any

future studies in the subject.

3 The project within the computing
specialisation

3.1 Relation with the studied subjects

Algorithmics and Advanced algorithmics These two subjects are together because of the strong

link between them. On the one hand, Algorithmics served as a basis for the development

and analysis of greedy algorithms, among others. On the other hand, Advanced algorithmics

was partly focused in doing a more advanced study on the complexity of the problems,

4

3.2 Technical skills and level of achievement

their approximability and the quality of the approximation algorithms.

Artificial intelligence Most of the knowledge I obtained about local search algorithms was while

I was enrolled in this subject. For instance, this has helped when developing the operators

which generate the neighbourhood of each node in the search space, and to decide on

the compromise between having access to the whole search space and the speed of the

algorithm.

Operations research This is not a subject I have studied, but I have done a strongly related one in

the degree in Mathematics, Mathematical programming. The knowledge I got in this subject

has come of use when modelling the problem as a linear programme with integrality

constraints on the variables (an integer linear programme) and to understand how the

solvers work.

3.2 Technical skills and level of achievement

CCO1.1 To evaluate the computational complexity of a problem, know the algorithmic strategies which
can solve it and recommend, develop and implement the solution which guarantees the best
performance according to the established requirements [in depth].

The main goal of the project is exactly that, to study the complexity of minlca and to study

and implement different approaches to solving it which may have different requirements

(in the use of space and time, or the quality in comparison with the optima). We have

studied the problem and from there, have developed, analysed and implemented different

approximation algorithms.

CCO1.3 To define, evaluate and select platforms to develop and produce hardware and software for
developing computer applications and services of different complexities [a little].

In order to decide which technologies we were going to use for the development of the

project, we needed to evaluate the available options and justify why we have chosen one

over the rest. Because of time constraints, however, this analysis was done right at the

beginning and taking the decisions with the objective of simplifying the work.

CCO2.3 To develop and evaluate interactive systems and systems that show complex information, and
its application to solve person-computer interaction problems [a little].

A final goal for the project is to present the results in an online benchmarking platform

(i.e., a simple website). The presentation of technical results needs a prior evaluation on

what is good way to show these. Even so, the goal of the project is not to do a study on

the presentation of technical results, and for that reason this part has not had a strong

dedication.

CCO3.1 To implement critical code following criteria like execution time, efficiency and security [quite
a lot].

Related to CCO1.1, approximation algorithms are a compromise between the optimal res-

ults and their execution time/use of memory. There is no reason to develop approximation

5

3 The project within the computing specialisation

algorithms if they are less efficient in memory and slower than their exact counterparts. To

take this into account, the algorithms have been developed trying to do the computations

in an incremental manner. In the implementation, we have made all our efforts to use as

little memory as possible, but always without compromising the execution times.

6

Part II

Project management

4 Project planning

4.1 Schedule

The project was planned to take around four months (half a university year), and the final

presentations for the second turn of the first half of academic year 2014-2015 should take place

between 26th and 30th January, 2015. Having that in mind, the deadline for the follow-up

milestone was originally thought to be in mid November, 2014. When the deadlines were

published, the date

Since writing a report after doing all the work is not an option when considering the kind

of project, it has been planned during the development of all the other phases. That is usually

indicated as the formalisation and analysis steps in every phase.

The initial plan, explained in the following sections, is also available as a Gantt chart in

Fig. 4.1.

4.2 Project planning

4.2.1 Resources

The project was planned to fit the date constraints. The resources included in the planning are:

FPI-GEP The human resources for project management, with around 2 hours per day

FPI The human resources for the project development, around 5 hours per day except during

project management (max. 3 hours per day)

Computer cluster The use of the computer cluster resources. It is shown in a sequential way

on the Gantt chart so as to have in mind the total computation time, but the cluster can

execute more than one program simultaneously and the execution time is less than the

computation time.

In order not to clutter the Gantt chart even more, it is missing a weekly two-hour meeting

with the project director, planned for every Tuesday. The chart also misses the workstation used

for writing the reports and developing the algorithms. Extensive explanations for the contents

of the chart are to come in the following sections.

7

4 Project planning

4.2.2 Project management course

Considering it is worth 3 ECTS credits, it should take around 75 hours of student work, 25 per

credit. This phase had 7 steps, and all of them took more or less the same time (around 10 hours

of work each step). According to the course plan, these steps were:

1. Scope definition

2. Project planning

3. Budget and sustainability

4. Initial presentation

5. Context and bibliography

6. Module for degree specialisation conditions

7. Final presentation and document

After preparing the final presentation and document, there was a presentation on Monday

21st October, 2014, at 15:00.

There is a direct precedence relationship between all the steps. In Fig. 4.1, the tasks correspond

to identifiers 2 to 8. Tasks 9 and 10 are also part of this phase, and correspond to the rehearsals

of the presentation for the initial milestone and the presentation itself.

4.2.3 Resources preparation

This phase, which took part simultaneously with the previous one, consists of the preparation of

the development environment and the tools used to write the reports in the workstation. It also

includes getting to know how the computer cluster works. This cluster is quite similar to the

cluster used in another course of the Bachelor’s degree, but some tests were needed to make a

better use of the resources.

4.2.4 Project preparation

The initial part of the definitions and theorems had already been written during the management

course, during the context and bibliography step. Two of the reference papers are a 2002 survey

on graph layouts by Díaz, Petit and Serna [1] and the 2011 addenda by Petit [2]. Apart from

the results on layout problems, they present many ways of generating random graphs which can

be used for the creation of new instances of the problem.

Another way of getting instances for the problem is to use one of the many databases of graphs

freely available (for free use) on the Internet. These databases usually include real-life graphs

(tube maps, service locations, etc.) and might be useful in some cases.

This finally led to using the same instances as for minla and finding some other papers to

develop other random graph generators.

8

4.2 Project planning

4.2.5 Greedy algorithms development

The initial idea was to develop some greedy algorithms for the problem. The results obtained

have been used as initial solutions for the execution of the ILP solver, and that is the reason for

such dependency in the Gantt chart.

After discussing with the director, we thought that deterministic greedy algorithms sometimes

have a bias. Having this in mind, we added, after developing the simple versions, a bit of

randomness on some decisions of the algorithm. The execution for the analysis (task 24) came

next, but without the randomness because preliminary tests did not show any interesting results

using it.

4.2.6 Local search algorithms

When studying optimisation problems, one usual way of dealing with them is to use a local

search approach; because greedy algorithms sometimes fail to give good enough results. The

first thing we needed to do was developing some operators to define the neighbourhood of the

search space of the problem, formalising them in the report, and finally implementing them in

C++/LEMON and checking their results.

During the execution of the other algorithms (linear programming and greedy with random-

isation) in the computer cluster, we can started developing the operators for local search.

This phase might took longer than the previous one in terms of development time, for the

operators were not trivial to choose. Also, the execution time is usually longer, and for that

reason we have planned a longer time in the cluster for these algorithms.

4.2.7 Follow-up milestone

Originally, the follow-up milestone was thought to happen in mid November. Since doing the

original plan, the Barcelona School of Informatics (FIB) has published the correct dates for the

January presentations and we decided with the director to change the date to 18th December,

around one month later. This decision was taken in order to ease the execution of the project,

because the original date we had decided was too conservative.

Having this in mind, all previous work to the original date has been done, local search

executions have started, and the rest of the work has been rescheduled in order to use three

more weeks which were available in December.

4.2.8 Result comparison and writing of conclusions

Once all executions had finished, and their results had been analysed in the previous phases, the

results of every algorithm were compared and included in the benchmarking platform.

Once the results had been compared, we got to the point of writing the conclusions and

finishing this report.

9

4 Project planning

4.3 Alternative plans and changes in the initial plan

The planning was done trying to do the work in an agile and relaxed way. We initially chose to

have a couple of empty weeks in December and January to overcome any possible problems.

Finally, these weeks have been moved to be during the Christmas holidays, and work has been

finished during January.

The initial plan is on Fig. 4.1, and the final schedule can be seen on Fig. 4.2.

10

4
.3

A
ltern

a
tiv

e
p
la
n
s
a
n
d
ch
a
n
g
es

in
th
e
in
itia

l
p
la
n

Figure 4.1: Initial gantt chart for the project

1
1

4
P
ro
ject

p
la
n
n
in
g

Figure 4.2: Final gantt chart for the project

1
2

5 Budget, sustainability and regulations

5.1 Budget

5.1.1 Preliminary considerations

This kind of research project is usually developed within universities, and in many cases by

research fellows. Quite often these projects are part of a bigger project which a research group

is working on.

The Gantt chart in Fig. 4.1, used for the planning, contains the hours of work of the researcher

and the computer cluster. When adding up the costs there will be some differences because in

this budget analysis we have rounded some numbers to get simpler costs. Nevertheless, it is an

estimation and such round errors are not considerable.

What follows is the budget as we had done it during the project management course, and as

such talks about many things in the future. Final updates are considered in Section 5.1.6 and

with some more depth in Section 16.1.

5.1.2 Human resources budget

As stated before, this kind of project is reasonably developed by a research fellow from a

university. Reading the announcements of the FPI fellowships,1 the gross salary for such a

research fellow must be at least €16 422 per year. To make numbers a bit nicer, we will round

it to €10/h. This is reasonable considering the total amount given by the government to the

universities is of €20 600 per fellow.2

Considering the total amount of hours of the FPI when doing the project management course

(90.5 hours), and the rest of the project (305 hours), it adds up to around 400 hours of work.

A part that is missing in the Gantt chart, as stated in Section 4.2.1 is a weekly two-hour

meeting with the director in order to adjust the planning and make any needed corrections in

the project, and that adds around 30 hours of work of the director, with an estimated salary of

€50/h.
The results are available in Table 5.1.

5.1.3 Hardware budget

Whereas the execution of the algorithms will take place in a computer cluster, their development

and the writing of the reports should be done on a workstation, be it a desktop computer or a

1Formación del personal investigador, granted by the Spanish government
2Data available in BOE 218§III, pages 69989–70010

13

5 Budget, sustainability and regulations

Role Est. salary Est. hours Est. cost

FPI/researcher €10.00/h 400h €4000.00
Director €50.00/h 30h €1500.00

Total estimated €5500.00

Table 5.1:Human resources budget

laptop. In order to be able to work in various places, a laptop will be used. It is important to

notice that laptops are usually more energy-efficient than desktop computers, and that can be

another reason to choose one of the former for the development.

Excessive power is not required, but for compiling is quite interesting to have a not too low

amount of RAM memory, so we can choose a laptop in the price tag of €800 (Intel Core i5

processor, 8GB RAM).

Considering a lifespan of five years for the hardware, for a project of 4 months, the cost and

depreciation estimates are in Table 5.2.

Product Price Units Lifespan Est. depreciation

Laptop €800.00 1 5 years €55.00

Total estimated €800.00 €55.00

Table 5.2:Hardware budget

The cost of the computer cluster is not included because the hardware is owned by ALBCOM

and other research groups, and RDlab (which is part of the CS department) offers them the

maintenance. However, the cost of the hardware and maintenance is not included and is not

possible to know until you have used the resources themselves. For that reason, a calculation

using another provider which includes both hardware and software is available in the software

budget within the software budget.

5.1.4 Software budget

Apart from the linear programming optimiser Gurobi, we will use Open Source software which

is available for free. The chosen operating system is Xubuntu 14.04 [13], a Long-term support

release (5 years) from the Ubuntu family of GNU/Linux operating systems, highly compatible

with modern hardware and software. For compiling we will use the C++ compilers from the

GNU Compiler Collection [14], and the GNU Make tools and CMake [15] to ease the building of

the binaries. To edit the source codes we will use GNU Emacs [16] and Geany [17]. Finally, the

documentation and final report will be built using the LuaTEX engine available in TEX live 2014

[18]. All this software is available within the Xubuntu distribution.

The code for the approximation algorithms has been built using the LEMON C++ Library

for graphs, part of the COIN-OR project, as stated before. This library is available under the

14

5.1 Budget

permissive BOOST Open Source licence, compatible with the GNU GPL, and allows its use with

commercial software.

There are no costs associated to this area because the resources used are offered for free.

Software not considered during the initial planning

For the parsing and plotting of the results, we have chosen Python (CPython) 3.4 [19] and

libraries NumPy 1.9 [20] and matplotlib 1.4 [21]. They are available under permissive BSD-like

software licences.

Another piece of software we need to mention is Inkscape [22], an open-source vector graphics

editor offered under the GNU General Public License version 2. We are using it in order to make

some drawings.

Finally, the source code documentation has been generated using Doxygen [23].

Apart from their licences, they are offered free of charge, so they do not incur new fees.

Software services

Git is a great Open Source tool to maintain different versions of the code and roll-back when

needed, used by small and large projects such as the Linux kernel. In order to have a private

copy of the code in the cloud, the free Git service offered by BitBucket will be used.

For the Gurobi optimiser, the costs are quite more difficult to compute. It is available for

free for academic research purposes, and is also available in ALBCOM’s computer cluster. The

estimated cost for 1 hour of computing and 2GB of RAM in the cluster is €0.40 + VAT, but that

does not include the maintenance costs of the service, as stated in the previous section. In order

to do this budget we will use the by-hour licences offered by Gurobi, with a cost of $25.00 per

hour (around €20.00), which also include the the hardware maintenance and software support,

and 8 CPU cores and 8GB of RAM.3 This cost will be higher than the final real cost, for which

RDlab can create the invoice to compare to once the project is finished. For this we will consider

20 hours of testing in order to know how the cluster works; two whole weeks of computation

time, because we will have many instances of the problem running and ILP problems take

long time to solve, and 25 hours more which include the execution of greedy and local search

algorithms.

The total costs can be seen in Table 5.3.

Product Price Est. usage time Est. cost

BitBucket service 0 4 months 0

Gurobi by-hour licence €20.00/h 2 weeks and 45 hours €7620.00

Total estimated €7620.00

Table 5.3: Software services budget

3Original document at http://www.gurobi.com/pdf/Commercial_Pricing_Gurobi_27March2013.
pdf not available anymore. Updated prices at http://www.gurobi.com/products/
licensing-and-pricing/price-list§Cloud licenses.

15

http://www.gurobi.com/pdf/Commercial_Pricing_Gurobi_27March2013.pdf
http://www.gurobi.com/pdf/Commercial_Pricing_Gurobi_27March2013.pdf
http://www.gurobi.com/products/licensing-and-pricing/price-list
http://www.gurobi.com/products/licensing-and-pricing/price-list

5 Budget, sustainability and regulations

5.1.5 Total budget

Adding all previous costs, the estimated budget for this project is available in Table 5.4.

Concept Est. cost

Human resources €6500.00
Hardware €55.00
Software licences and services €7620.00

Total estimated cost €14 175.00

Table 5.4: Total budget

As stated before, the cost will probably be much lower because of the cheaper price of

ALBCOM’s computer cluster service.

5.1.6 Deviation control

Like we have stated in Sections 4.2.1 and 5.1.2, we planned a weekly meeting with the director.

This allowed us to do an agile development, and helped us do the changes in such a way that

the costs can be minimally modified.

However, there have been some changes regarding the cost of the cluster service for two

reasons. On the one hand we have used the computer cluster operated by RDlab, and on the

other hand the way of calculating the amount of resources used is different. A complete analysis

of this topic is in Section 16.1.

5.2 Sustainability

From an economic point of view, this project tries to go through the cheap way. The budget is

clearly too high for a University project done in four months, but the final cost will probably

be much less than calculated because the use of the cluster will be cheaper almost for sure. It

also tries to use existing technologies for the implementation of the algorithms, reducing costs

and giving more time to develop the project itself. For the unrealistic numbers in the budget,

but the considerations for making such calculations, we are giving our project a mark of 5 in

regarding economic sustainability.

A project like this one does not have many social implications. But the use of open source

software whenever possible is good from an open-knowledge point of view. And giving public

access to the results when the project is finished is a way to contribute with the technology.

Also, once the project is finished, the implementation of the interface between LEMON and

Gurobi, will be given back to the open source community. The implementation of this feature

into LEMON has been asked to the community for around 4 years.4. Moreover, the ALBCOM

group is interested in the results of this project, so it will benefit them directly. However, there

4See http://lemon.cs.elte.hu/trac/lemon/ticket/367

16

http://lemon.cs.elte.hu/trac/lemon/ticket/367

5.3 Laws and regulations

are not any social implications for the rest of the population in general. For these reasons, we

are giving the project a mark of 7 in this area.

Considering an environmental point of view, being an optimisation problem, it can be positive

to the environment in an indirect way. If the results are positive, the algorithms developed and

the results obtained could be used to minimise some costs in real-life problems related to the

abstract family of graph layout problems.

A negative input to the environmental impact analysis is the use of ILP models to solve the

problem. It is one of the few ways to get the global optimums for the problem, but trying to

optimally solve an NP-complete problem is usually a waste of computer resources for large

instances.

Computer clusters usually consume much energy, since they are very well refrigerated.

Nowadays they are more efficient than they were before, and their use allows the developers to

keep working on the project using the workstation.

The project itself does not create a manufacturable product, nor makes a direct use of natural

resources for its results. It does use computers, which are built using minerals from areas under

civil wars (and these minerals are many times the causes for these wars). But this is a problem

which many projects in computer science related areas have problems, and is difficult to solve

without global actions.

For all these reasons, we are giving a mark of 4 to the environmental implications.

Sustainable? Economic Social Environmental Total points

Planification 5 7 4 16

Table 5.5: Project planning sustainability table

5.3 Laws and regulations

Just like any other project, ours has to comply with some legal and ethical requirements. For

the most part, the written work must respect the intellectual property of the authors of the used

references. To meet this requirement, we have included all references using a standard style at

the end of the document.

As for the software and algorithms we have developed, we make use of open source libraries

which allow modifications and custom redistribution as long as original copyright notices are

well retained. We have not changed these libraries but worked on top of them using them as a

tool for our project.

For the non open source software such as Gurobi, we have used an academic licence because

all our results are solely for research purposes. The implementation of the interface between

LEMON and Gurobi is planned to be given back to the community developing LEMON to be

included within the project. This does not fail to comply the Gurobi licence because creating

interfaces for use with other software is allowed; in order to be able to use these interfaces the

users still need to install Gurobi and have a valid licence.

17

5 Budget, sustainability and regulations

Other regulations for which our project has had to take care are those governing the cluster

from the Computer Science Department. We can only use it for the development and execution

of the algorithms. Use for other purposes is not allowed, thus using it for personal interests is

not allowed. Some other fact is the shared nature of the cluster, and although it has its own

ways to control abuse, common sense and fair use must be taken into account when using it.

Regarding laws and regulations for the developed software itself, we are not dealing with any

personal or critical data, nor doing anything that can be on the boundaries of ethical research.

As for the licenses and intellectual property of the software developed during the project, we

have to comply with the University’s rules [24]. The interface between LEMON and Gurobi has

been implemented at the sole discretion of the author, with no participation from the University

other than evaluating its use in the project. Following from this, we have decided to offer the

code under the same open source license as LEMON.

The rest of the code implementing the algorithms falls under Title 2, Article 3, Section 3 (on

the student works directed or coordinated by the faculty of UPC) of the same document. According

to the contents of the section, UPC is the owner of the exploitation rights. It is not the exclusive

owner, though, and since the authors are by default owners of the exploitation rights according

to the Spanish law, we have decided to release it under the same software license.

18

Part III

Definitions, theorems and properties

6 Basic definitions

6.1 Preliminaries

Let us begin with some basic definitions and properties. Most of them are the standard in graph

theory, but they are here in order to help to understand the whole document. The notation and

conventions are taken from [25] mainly.

Definition 6.1 (Graph). A simple undirected graph G is an ordered pair of disjoint sets (V, E),
where V is the set of vertices and E ⊆ {{u, v} | u, v ∈ V, u ≠ v} is the set of edges.
In this sense, V(G) is the vertex set of the graph G, and E(G) is its edge set.
Given an edge e = {u, v}, we say it joins vertices u and v, which are its endvertices, and can

also be denoted by uv or vu (we are considering undirected graphs). If e ∈ E(G), we say u and v

are adjacent or neighbours in G, denoted u ∼ v (or u ∼G v), and incident with edge e. And

since we are considering simple graphs, there are no loops (edges joining x ∈ V with itself) nor

multiple edges (more than one edge joining the same pair of vertices).

The order of a graph G is |V(G)| and its size is |E(G)|.
We say H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G), and it is denoted as H ⊆ G.

When E(H) = {uv ∈ E(G) | u, v ∈ V(G)}, that is when H contains all edges of G joining two edges

in V ′ = V(H), the graph H is known as an induced subgraph (induced by V ′) and is denoted

by G[V ′].

Notation. Unless stated otherwise, we will use the letters u, v,w, x, y, z, s, t,… ∈ V = V(G) for
the vertices in general and e, f , g, uv = {u, v},… ∈ E = E(G) for the edges of a graph G.

Comment. See that graphs can be visually represented as points (the vertices) joined by lines

(the edges), such as in Fig. 6.1.

Definition 6.2 (Paths and cycles). A graph P is said to be a path of length n when V(P) =
􏿺v0,… , vn􏿽 and E(P) = 􏿺v0v1, v1v2,… , vn−1vn􏿽. It is denoted by Pn.

A graph C is a cycle of length n ≥ 3, denoted by Cn, when V(C) = 􏿺v1,… , vn􏿽 and E(C) =
􏿺v1v2, v2v3,… , vn−1vn, vnv1􏿽. When n is even it is known as an even cycle, and otherwise it is

known as an odd cycle.

Definition 6.3 (Neighbourhoods and degrees). Given a graph G and a vertex v ∈ V(G), its

19

6 Basic definitions

V(G) = {a, b, c, d, e, f }
E(G) = {ab, ae, af , bc, bf , cd, cf , de, df , ef }

Figure 6.1: Visual representation of a graph

neighbourhood is the set of vertices adjacent to v in G:

ΓG(v) = {u ∈ G | uv ∈ E(G)}

The degree of a vertex v ∈ V(G) is the number of edges v is incident with. Since we are

considering simple graphs, it is the same as its number of neighbours:

degG(v) = 􏿖ΓG(v)􏿖

The maximal degree and minimal degree of (the vertices of) G are, respectively,

Δ(G) = max
v∈V(G)

degG(V)

δ(G) = min
v∈V(G)

degG(V)

When δ(G) = Δ(G) = k we say G is regular of degree k or k-regular.

Definition 6.4 (Complete graph). The complete graph with n vertices is Kn = (V, E), with
E = {{u, v} | u, v ∈ V, u ≠ v}. That is, |V | = n and for any u, v ∈ V, u ≠ v we have u ∼ v.

Comment. See what complete means: the graph contains all possible edges, which is the same

as all possible pairs of vertices. For that reason, the number of edges in a complete graph is

􏿶
n

2
􏿹 =

n(n − 1)
2

.

Definition 6.5 (Graph homomorphism). Given two graphs G and H, an application φ:G⟶ H,

defined by φ:V(G) ⟶ V(H), is a graph homomorphism if, for any uv ∈ E(G), then φ(u)φ(v) ∈
E(H). In this case we say G is H-colourable, or φ is an H-colouring of G.

We can extend this definition to map graphs to sets of integers [k] = {1,… , k}, seeing H

as Kk, the complete graph with k vertices. This way, an application φ:V(G) ⟶ [k] is an
homomorphism, also called a vertex colouring of G, if, for any uv ∈ E(G), then φ(u) ≠ φ(v). If
such homomorphism exists, we say the graph G is k-colourable and φ is a k-colouring of G.

Definition 6.6 (Colouring family). Given a graph G, the colouring family ℱk of G is defined as

the set of colourings V(G) ⟶ [k]. That is

ℱk(G) = {φ:V(G) ⟶ [k] 􏿖 uv ∈ E(G) ⟹ φ(u) ≠ φ(v)}

20

6.2 The minimum linear colouring arrangement problem

We can then define the family of all colourings,

ℱ(G) = 􏾌
k∈ℕ

ℱk(G) = {φ:V ⟶ℕ 􏿖 uv ∈ E(G) ⟹ φ(u) ≠ φ(v)}

Comment. Note that for k′ ≤ k we have ℱk′(G) ⊆ ℱk(G), because the homomorphisms do not

need to be onto mappings.

Definition 6.7 (Chromatic number). Given a graph G = (V, E), its chromatic number χ(G) is
the least k for which G is k-colourable. Equivalently,

χ(G) = min 􏿺k 􏿖 ℱk(G) ≠ ∅􏿽

6.2 The minimum linear colouring arrangement problem

Definition 6.8 (Linear distance of a colouring). Given a graph G and a colouring φ of G, we

define the linear distance of φ as

L[φ](G) =􏾝
uv∈E

􏿖φ(u) − φ(v)􏿖

6.2.1 Parameterised formulation

Before defining our problem, it is better to start with a more classic problem such as the graph

colouring problem, which is highly related. In fact, as the definitions show, any valid solution

for our problem is also a proper colouring.

Problem 6.9 (graph-colouringk). Given a graph G and an integer k, find a k-colouring

φ ∈ ℱk(G).

Problem 6.10 (graph-colouring-deck). Given a graph G and an integer k, decide if there is

a colouring φ ∈ ℱk(G).

Definition 6.11. Given a graph G and an integer k for which ℱk(G) ≠ ∅ we define

LCAk(G) = min
φ∈ℱk(G)

L[φ](G)

Problem 6.12 (minlcak). Given a graph G and an integer k, find a colouring φ ∈ ℱk(G) such
that L[φ](G) = LCAk(G).

Problem 6.13 (minlca-deck). Given a graph G, and two integers k and L, decide if there is a

colouring φ ∈ ℱk(G) such that L[φ](G) ≤ L.

6.2.2 Non-parameterised formulation

A more general formulation of the minimum linear colouring arrangement problem consists in

leaving out the parameter k for the maximum number of allowed colours.

21

Definition 6.14. Given a graph G, we define

MinLCA(G) = min
φ∈ℱ(G)

L[φ](G) = min
k∈ℕ

LCAk(G)

Problem 6.15 (minlca). Given a graph G find a colouring φ ∈ ℱ(G) such that L[φ](G) =
MinLCA(G).

Problem 6.16 (minlca-dec). Given a graph G, and an integer L, decide if there is a colouring

φ ∈ ℱ(G) such that L[φ](G) ≤ L.

7 Complexity of the problem

7.1 Classic computational complexity

In this section we study the computational complexity of this problem in the classic way. After

proving the NP-hardness of the problem (and completeness of the decisional formulation), we

move on to see its relation to other computationally difficult problems such as integer linear

programming.

Lemma 7.1 (Upper bound on the linear colouring arrangement). Let G = (V, E) be a graph and

k an integer. Then,

L[φ](G) ≤ |E| (k − 1) ∀φ ∈ ℱk(G)

Proof. We have max
uv∈E

􏿖φ(u) − φ(v)􏿖 ≤ k − 1 since max
v∈V

φ(v) ≤ k and min
v∈V

φ(v) = 1. That way,

L[φ](G) =􏾝
uv∈E

􏿖φ(u) − φ(v)􏿖 ≤􏾝
uv∈E

(k − 1) = |E| (k − 1)

Theorem 7.2. The decisional version of minlcak is NP-complete.

Proof. First of all, we need to show that minlca-deck is in NP. Algorithm 7.1 verifies

minlca-deck in polynomial time.

The running time of this algorithm is clearly polynomial. First of all, in 7.1.3 we are doing a

loop linear in n = |V |. The other loop does at most m = |E| steps. So the cost of this algorithm

is u� (n + m). If we consider the costs of the comparisons and sums are not constant, then we

are simply missing a log n factor in the cost function.

We now need to prove the problem is NP-hard. In order to do so, we reduce from

graph-colouring-deck. Suppose u�(G, k, L) decides minlca-deck and let L = |E|(k − 1).
If G is k-colourable, equivalently ℱk(G) ≠ ∅, by Lemma 7.1 we have that ⟨G, k, L⟩ is a

22

7.1 Classic computational complexity

yes-instance for u�.

If ⟨G, k, L⟩ is a yes-instance for u�, we know there is φ ∈ ℱk(G) (whatever the value of L).
We can then conclude that minlca-deck is NP-complete.

Algorithm 7.1: Verifier for minlca-deck

Precondition Let G = (V, E) be a graph, V = {1,… , n}, |E| = m, represented as an

adjacency list.

Let k and L be two non-negative integers.

Let φ be a possible solution for the problem (witness).

Postcondition Verifies whether φ is in ℱk(G) and L[φ](G) ≤ L.

1: function MinLCA-verif(G, k, L, φ)
2: LCA← 0

3: for all v ∈ V do

4: if φ(u) > k then ▷ If true, then φ ∉ ℱk(G)
5: Reject
6: end if

7: end for

8: for all uv ∈ E do

9: if φ(u) = φ(v) then ▷ If true, then φ is not a proper colouring

10: Reject
11: end if

12: LCA← LCA + 􏿖φ(u) − φ(v)􏿖
13: end for

14: if LCA ≤ L then

15: Accept
16: else

17: Reject
18: end if

19: end function

23

7 Complexity of the problem

Proposition 7.3 (minlca-ilpk). The following integer linear programme is a correct model for

minlcak:

min􏾝
uv∈E

Luv (7.1)

s.t. xu,c + xv,c ≤ 1 uv ∈ E, c = 1,… , k (7.2)

k

􏾝
c=1

xv,c = 1 v ∈ V (7.3)

φv =
k

􏾝
c=1

c xv,c v ∈ V (7.4)

φu − φv ≤ Luv uv ∈ E (7.5)

φv − φu ≤ Luv uv ∈ E (7.6)

xv,c ∈ {0, 1} v ∈ V, c = 1,… , k (7.7)

Luv ∈ {1,… , k − 1} uv ∈ E (7.8)

See that the φv variables are unnecessary, but the model is easier to understand with them: they

correspond to the colour of vertex v in the solution. That is, φ(v) = φv once the programme is

solved. We could change every other appearance of these variables with the definition given in

7.4.

The rest of the variables and expressions mean the following:

• xv,c are binary variables (with values 0 or 1, the same as False or True). They have a

value of 1 when vertex v has been assigned colour c; i.e., φ(v) = c.

• In order to make sure they have only one colour assigned, we have the corresponding

equalities in 7.3. And to ensure there are no two adjacent vertices with the same colour,

we use the inequalities in 7.2

• Luv are the differences between the adjacent nodes u, v. Equivalently, they are the cost of

the edge uv in the solution.

• Linear programming does not allow the use of absolute values, because they are not linear

functions. For that reason, we use φu and φv to express the lower bounds for the variables

Luv. Their value is never higher than the difference between φu and φv because they are

used in the objective function 7.1, which is a minimisation. And they are never negative

because of the domain given in 7.8.

Proof. The solution space defined by the constraints is the one we want: this is justified

within the proposition itself.

The objective defined in this programme is exactly the objective for minlcak. Notice

that Luv ≥ 􏿖φu − φv􏿖, and because the sum of Luv is minimised, the value it attains is exactly

􏿖φu − φv􏿖. Finally, since the solution space contains all possible k-colourings of G, the value

for the objective will be the minimum possible.

24

7.2 Bounds and closed results for particular graphs

See that this is a reduction from minlcak to optimisation ilp (integer lineal programming),

which is also NP-hard. The number of variables is polynomial in n = |V |, since there are

|V | k = u� 􏿴n2􏿷 variables xv,c, there are |E| = u� 􏿴n2􏿷 variables Luv and there are n variables φv.

The number of constraints is also polynomial: there are |E| k = u� 􏿴n3􏿷 constraints of type 7.2,
n of types 7.3 and 7.4 and |E| = u� 􏿴n2􏿷 of types 7.5 and 7.6.

7.2 Bounds and closed results for particular graphs

Proposition 7.4 (Lower bound for minlca). Given a graph G = (V, E), the number of edges is a

lower bound for MinLCA(G). If |E| = m, that is

m ≤ MinLCA(G)

Proof. There arem edges, and each edge uv has a cost 􏿖φ(u) − φ(v)􏿖 ≥ 1 since φ(u) ≠ φ(v).

Theorem 7.5 (Rough upper bound for minlca). Given a graph G = (V, E), the chromatic number

of G and the number of edges m give us the following upper bound

MinLCA(G) ≤ (χ(G) − 1) m

And equality holds only when χ(G) ≤ 2.

Proof. Let k = χ(G) and apply Lemma 7.1. And considering m ≥ 1, there is always at least

one edge with cost 1, therefore equality holds only when all edges have cost 1.

7.2.1 Bipartite graphs

Definition 7.1 (Bipartite graph). A graph G = (V, E) is bipartite if V can be divided into two

disjoint sets A,B, that is V = A ∪ B and A ∩ B = ∅, such that all edges have one vertex in A and

the other in B.

Theorem 7.6. A graph G is bipartite if and only if it contains no odd cycles as subgraphs.

Comment. See [25, p. 9] for a proof.

Lemma 7.7. A graph G is bipartite if and only if χ(G) ≤ 2.

Proof. We simply need to see the disjoint sets A,B from the definition as colours 1 and 2 for

φ and vice-versa.

Theorem 7.8 (Minimum linear colouring arrangement for bipartite graphs). A graph G = (V, E),
with |E| = m, is bipartite if and only if MinLCA(G) = m.

Proof. ⇒ We have χ(G) ≤ 2. Apply Proposition 7.4 and Theorem 7.5.

⇐ We will proceed by showing that G needs to be 2-colourable.

Suppose χ(G) = k ≥ 3. Let φ ∈ ℱ be a colouring of G such that L[φ](G) = MinLCA(G) =

25

7 Complexity of the problem

1 2 ... n

Figure 7.1: Linear colouring arrangement for a complete graph Kn

m. Let v ∈ V such that φ(v) = max
u∈V

φ(u) = r ≥ k, which exists because we need at least

k colours.

Given that L[φ](G) = m, all vertices adjacent to v must have colour r − 1. But then, v

could be coloured with colour r − 2 E.

So χ(G) ≤ 2 and G is bipartite.

7.2.2 Complete graphs

Theorem 7.9. If G = (V, E) is the complete graph Kn, then MinLCA(G) = n3 − n

6

Proof. Since G is complete, all vertices are adjacent to each other and we need to use exactly

n colours. Without loss of generality, suppose V = [n] and that we choose the colouring

φ(v) = v for every v ∈ V.

Then, we have

L[φ](G) =􏾝
uv∈E

􏿖φ(u) − φ(v)􏿖 =􏾝
uv∈E

|u − v|

If we consider the edges uv with u < v, since uv and vu are the same edge,

L[φ](G) =
n−1

􏾝
u=1

n

􏾝
v=u+1

(v − u)

changing v for v − u,

L[φ](G) =
n−1

􏾝
u=1

n−u

􏾝
v=1

v

for which the inner sum can be seen as the cost of the edges incident to u which are on its

right, as shown on Fig. 7.1. Now change u for n − u,

L[φ](G) =
n−1

􏾝
u=1

u

􏾝
v=1

v

The inner sum is an arithmetic series from 1 to u,

L[φ](G) =
n−1

􏾝
u=1

u (u + 1)
2

= 1

2

⎛
⎜⎜⎜⎜⎜⎝

n−1

􏾝
u=1

u2 +
n−1

􏾝
u=1

u

⎞
⎟⎟⎟⎟⎟⎠ =

1

2

⎛
⎜⎜⎜⎜⎜⎝

n−1

􏾝
u=1

u2 +
n (n − 1)

2

⎞
⎟⎟⎟⎟⎟⎠

26

7.2 Bounds and closed results for particular graphs

Figure 7.2: Example of a plane graph. The shaded area corresponds to the unbounded face.

and using the identity for the series of the first n − 1 squares,

L[φ](G) = 1

2
􏿶
n (n − 1) (2n − 1)

6
+
n (n − 1)

2
􏿹 =

n (n − 1) (n + 1)
6

= n3 − n

6

Comment. The solution for a complete graph Kn is exactly the same for minlca and minla.

7.2.3 Planar graphs

Definition 7.2 (Planar graph). A graph G is planar if it can be drawn on the plane without any

crossing edges. Such planar embedding is called a plane graph.

The regions of ℝ2 obtained when removing the vertices and edges of a plane graph are its

faces. See that there is always an unbounded face, which corresponds to the fundamental

cycle when the graph is drawn on a sphere.

Theorem 7.10 (Four colour theorem). If G is a planar graph, then χ(G) ≤ 4.

Comment. This result is really difficult to prove. Indeed, all accepted proofs make use of

computers and were not widely accepted at first. For more information on this topic, including

the story of the theorem and a complete list of references, you can refer to [26].

Corollary 7.11. If G = (V, E) is planar, with |E| = m, then MinLCA(G) < 3m.

Outerplanar graphs

Definition 7.3 (Outerplanar graph). A graph G is outerplanar if it is planar and there is a plane

graph for which all the verices are on the boundary of the unbounded face.

Comment. An outerplanar graph can be seen as cycles with non-overlapping chords (edges going

from one side to the other), possibly with a vertex in common or some paths joining them. See

figure 7.3 for an example.

Theorem 7.12. If G is an outerplanar graph, then χ(G) ≤ 3.

27

7 Complexity of the problem

Figure 7.3: An outerplanar graph

Corollary 7.13. If G = (V, E) is outerplanar, with |E| = m, then MinLCA(G) < 2m.

28

Part IV

Algorithms and instances

8 Exact algorithms

8.1 Integer linear programming

One way of evaluating the quality of the approximation algorithms is to compare their approx-

imations to the exact solutions. In order to do this, we have decided to use the integer linear

programme described in Proposition 7.3. The implementation contains variables to check which

colours are used, with their respective constraints. They are not needed at all, in fact, the solver

removes them before starting to solve the problem; but they come of use when extracting the

results to do some benchmarks.

The way of working is as follows:

1. It starts by finding an optimal basic1 solution for the relaxed2 problem. This solution is a

lower bound for the problem.

2. It then tries to find an initial integer solution which will serve as the first incumbent

or upper bound. In order to ease this, the initial solution is given by one of the greedy

algorithms described in Chapter 9.

3. Using different methods which usually involve the dual simplex algorithm, such as branch

and bound and cutting planes, it tries to either increase the non-integer lower bound or

decrease the incumbent.

8.1.1 Other models

For the linear arrangement problem there are other integer linear programming models such as

the one described in [27], which uses betweenness variables. These variables use the fact that

in minla every vertex is exactly between two others in the arrangement, except for the first and

the last ones.

The results and properties are quite interesting, but we do not know if the model can be

adapted to our problem because it is out of scope. Future work on our problem could include

trying to adapt this formulation of minla to minlca.

1A vertex of the polytope described by the constraints
2Without the integrality constraints

29

9 Greedy algorithms

9 Greedy algorithms

These algorithms are based on a breadth-first search. The contents are simply the actions to do

when the algorithm visits a vertex after taking it from the pending queue.

Comment. During the analysis of the cost of the algorithms it is implicit that computation of the

linear distance of the colouring for G has a cost of u� (|V(G)| + |E(G)|) and, at most, a log |V(G)|
factor. It is not considered because the whole algorithm has a greater cost than computing the

linear distance of the colouring.

9.1 Nearest colour

The idea behind this greedy approach is quite simple. We want to get a colouring with minimal

linear distance, so when the algorithm has to assign a colour to a vertex v, it checks the colour of

its neighbours and increases the preference of the one colour before and the one colour after the

colour of each neighbour. In other words, if u ∼ v and u is of colour c, the algorithm increases

the preference for colours c − 1 and c + 1 and forbids colour c (otherwise, it would not be a

proper colouring). It then assigns to vertex v the available colour with the highest preference.

Suppose posMax returns the position of the maximum element of an array. The algorithm for

nearest colour is formalised in 9.1.

Proposition 9.1. The greedy nearest colour algorithm (Algorithm 9.1) runs in polynomial time

and either gives a proper colouring or returns an error.

Proof. Let G be the graph we want to arrange, and let V = V(G), E = E(G), n = |V |, m = |E|.
The correctness of the algorithm is quite straightforward. When the input is v ∈ V, on

line 6 it forbids the colour of all of its already coloured neighbours. And line 15 only sets φ(v)
when some colour is not forbidden, because otherwise posMax(Colours) is not well defined.
Regarding the cost, we can suppose maxK ≤ n. The initialisation of Colours on line 2

takes Θ (maxK) steps. Notice that the loop on line 3 has a cost of u� 􏿴degG(v) logmaxK􏿷,
considering Colours has random access in constant time and the comparisons and increments

take u� (logmaxK) time. The call to posMax(Colours) on line 15 can be done in linear (on

maxK) time. So processing one vertex can be done in u� 􏿴degG(v) logmaxK + maxK􏿷 time.

If we consider the whole graph using a breadth-first search, all the steps can be done in

u� (m logmaxK + nmaxK + m) = u� 􏿴n2 logmaxK􏿷 time, since 􏾝
v∈V

degG(v) = 2m = u� 􏿴n2􏿷.

30

9.2 Least cost

Algorithm 9.1: Greedy nearest colour algorithm

Precondition Suppose the following implicit parameters: the graph G = (V, E), the
maximum number of colours maxK, the partial k-colouring φ.

Let v ∈ V. Suppose φ(v) = Undefined.
Postcondition Either the subgraph induced by the already coloured vertices including v

is properly coloured or the breadth-first search will stop giving an error.

1: function MinLCA-greedyNearest-paintVertex(v)
2: Colours← (0)maxKi=1 ▷ Precedence for the colours. Larger is better. Initially all colours are

allowed

3: for all u ∈ ΓG(v) do
4: uC ← φ(u)
5: if uC ≠ Undefined then

6: ColoursuC ← Forbidden
7: if uC − 1 ≥ 1 and ColoursuC−1 ≠ Forbidden then

8: ColoursuC−1 ← ColoursuC−1 + 1

9: end if

10: if uC + 1 ≤ maxK and ColoursuC+1 ≠ Forbidden then

11: ColoursuC+1 ← ColoursuC+1 + 1

12: end if

13: end if

14: end for

15: φ(v) ← posMax(Colours) ▷ If all the colours are forbidden, returns an error

16: end function

9.2 Least cost

In this case, the colour assigned to a vertex by the algorithm is the one with the least increment

of the cost at each step. A more formal description to this approach is in Algorithm 9.2.

Proposition 9.2. The greedy least cost algorithm (Algorithm 9.1) runs in polynomial time and

either gives a proper colouring or returns an error.

Proof. Let G be the graph we want to arrange, and let V = V(G), E = E(G), n = |V |, m = |E|.
The correctness of the algorithm is also quite straightforward. When the input is v ∈ V , the

algorithm starts by counting the number of neighbours of each colour on line 3. Initially, the

best colour so far is not known, so it is set to an undefined state with potentially infinite cost

on line 10. The loop starting on line 11 only considers the cost of using colours not in the

neighbours (line 12), and it works by computing the linear distance of v coloured with c with

all its neighbours. It is then clear that this algorithm gives a proper colouring.

As for the cost, supposing maxK ≤ n, the initialisation of ColourCount takes Θ (maxK)
steps. The counting of the vertices of each colour on line 3 takes Θ 􏿴degG(v)􏿷 time. And

since the sum on line 13 can be done in Θ (maxK logmaxK) time, the for loop on line 11 takes

u� 􏿴maxK2 logmaxK􏿷 time. So processing one vertex can be done inu� 􏿴degG(v) + maxK2 logmaxK􏿷

31

9 Greedy algorithms

Algorithm 9.2: Greedy least cost algorithm

Precondition Suppose the following implicit parameters: the graph G = (V, E), the
maximum number of colours maxK, the partial k-colouring φ.

Let v ∈ V. Suppose φ(v) = Undefined.
Postcondition Either the subgraph induced by the already coloured vertices including v

is properly coloured or the breadth-first search will stop giving an error.

1: function MinLCA-greedyLeastCost-processVertex(v)
2: ColourCount ← (0)maxKi=1 ▷ Number of neighbours of each colour.

3: for all u ∈ ΓG(v) do
4: uC ← φ(u)
5: if uC ≠ Undefined then

6: ColourCountuC ← ColourCountuC + 1

7: end if

8: end for

9: colourCost ← +∞
10: bestColour ← Undefined
11: for c← 1 to maxK do

12: if ColourCountc = 0 then

13: currentCost ←
maxK

􏾝
nC=1

|nC − c|ColourCountnC

14: if currentCost < colourCost then

15: colourCost ← currentCost

16: bestColour ← c

17: end if

18: end if

19: end for

20: φ(v) ← bestColour ▷ If it is still undefined, returns error

21: end function

time.

And considering the whole graph using a breadth-first search, it can be done using

u� 􏿴m + nmaxK2 logmaxK􏿷 = u� 􏿴n3 logmaxK􏿷 time.

9.3 Discarded algorithms

There are some variations we have tried to use but have given such bad results with the initial

tests that have been discarded completely.

The first variation consisted in randomising a bit the greedy approaches. With probability p,

vertex v was not of the colour assigned by the greedy approach but randomly from the available

ones. When p was small enough, this gave some small improvement in some cases, but it

depended too much on the random seed and the graph.

The other variation we had consisted in solving the relaxed linear model (without the integrality

32

constraints) and using the values of the colours for every vertex as preferences. Then, when the

breadth-first search was visiting one vertex, the colour assigned to it was the available one with

the highest preference. When the number of colours was bounded by the maximum degree of the

graph, the algorithm ended up using too many colours and giving a solution with a very large

cost. And when the number of colours was bounded by that of the used colours in a standard

greedy approach, the preferences given by solving the linear programme made the new solution

non-existent in some cases.

10 Local search algorithms

Local search algorithms work by making small modifications to an initial solution with the

aim to get a better solution at each step. One way of doing local search is with the simulated

annealing algorithm. According to Russell, Norvig and Davis [28], “annealing is the process

used to temper or harden metals [...] by heating them to a high temperature and then gradually

cooling them, thus allowing the material to reach a low-energy crystalline state.” More generally

speaking, the algorithm starts with a high-temperature on high-energy solution and jumps to

lower energy solutions (better solutions) while the temperature decreases. If the solution is

worse (with higher energy), it accepts it with a probability P(T) which decreases exponentially

the difference of energy ΔE(T) and the inverse of the temperature ℱ(T) (with T the number of

steps already done):

P(T) = exp 􏿶
ΔE

ℱ(T)􏿹

In order for the algorithm to work, we need to decide the operators which generate the new

solutions or neighbour or successor nodes in the search space, and the function to determine

the energy of a node. In our case, the energy is simply the linear distance of the colouring, with

a negative sign because the algorithm is implemented for maximising the objective function.

What follows is the description of the approaches for the operators for generating the solutions.

10.1 Based on greedy recolourings

With this approach, we give an order to the vertices and colour them in that order using the

same two greedy algorithms as in Chapter 9. So we start with an ordering of the vertices, such

as that given by a breadth-first search on the graph, and generate the successors by swapping

two vertices in the original ordering and recolouring the graph using the greedy algorithm on

this new ordering.

In order to reduce the execution times, the recolourings are done from the first vertex changed

in the order, and not from the beginning every time.

33

10.2 Based on changing the colours

With this approach, instead of reordering the vertices and recolouring them, we change the

colour of some vertices and see what happens. The different ways of changing the colours that

we will consider are the following:

By adding a new colour If we are not using the maximum number of allowed colours, we can add

a new colour and randomly choose a vertex to have that colour instead of the one it had.

By changing the colour of a vertex Instead of adding a new colour, we can try to change the colour

of a vertex to another colour already being used, as long as no neighbours are of that

colour.

By swapping two colours We can select two different colours and change the vertices of one

colour to the other and vice-versa.

When there is a gap in the used colours, which can happen when adding a new colour or

changing the colour of a vertex, the solution is compressed. In other words, all vertices with a

colour greater than the one not used are assigned their preceding colour.

It is important to notice that the colouring obtained when applying operators other than

swapping two colours might not be a proper colouring, and hence not a valid solution. In this

case, the algorithm discards the solution and tries to generate a new solution.

11 Chosen instances

In this chapter we show the different instances we are going to use in our benchmarking.

11.1 Used in MinLA benchmarking

Although the minimum linear arrangement problem was known before, in [5] the author

Jordi Petit chose some particular graphs in order to do some benchmarks. Since then, many

publications about the linear arrangement problem have used the same graphs when testing the

algorithms.

The different instances can be classified as follows:

Graphs with known solution for MinLA There is a complete binary tree with 10 levels (bintree10),
a 10-hypercube (hc10) and a 33 × 33 grid graph (mesh33x33).

Random graphs Graphs randomA1 and randomA2 are binomial random graphs, described in

Section 11.2, with n = 1000 in both cases and p = 0.01 and p = 0.05 respectively. Graph

randomG4 is a random geometric graph in the unit square, see Section 11.3, with n = 1000

34

11.2 Binomial random graphs

Figure 11.1: A binomial random graph with n = 40 and p = 0.133

and r = 0.075. Instance randomA4 is also a binomial random graph, but with a number

of edges similar to randomG4 to study their differences.

Real life graphs These graphs come from different engineering applications. The VLSI family of

graphs comes from different circuit layouts, and are c1y to c5y. Some other graphs come

from finite elements discretisations for problems such as fluid dynamics (airfoil1 and

3elt), earthquake wave propagation (whitaker3) and structural mechanics (crack).
Finally, some graphs come from graph drawing competitions and are mostly planar (gd95c
and gd96a to gd96d).

11.2 Binomial random graphs

If G is a binomial random graph from family u�(n, p), then |V(G)| = n and every edge exists with

probability p.

One reason to study these graphs is that all graphs are potentially in them. In fact, u�(n, p = 0.5),
contains all graphs (with isomorphism) with equiprobability.

Even though there are binomial random graphs on the family of minla instances, we are

generating some new instances with p such that the expected number of edges is not within a

constant factor of n2. This can be one way generating not-too-dense graphs.

11.2.1 Choosing the edge probability

If we want the number of edges of G to be a function of the number of vertices n, that is

|E(G)| = f (n) ≤ 􏿶
n

2
􏿹, we can use probability theory to choose an adequate probability p.

Consider a random variable M for the number of edges. This random variable follows a

binomial distribution, M ∼ Binom 􏿶􏿶
n

2
􏿹, p􏿹, so if we want to have f (n) edges on average, we can

35

11 Chosen instances

use the formula for the expectation of M

f (n) = E[M] = p 􏿶
n

2
􏿹 = p

n (n − 1)
2

≈ p
n2

2

and hence we can set p =
2 f (n)
n2

.

11.2.2 Bounds on the chromatic number

This family of graphs has been thoroughly studied. For instance, there is a result in [12, theorem

12] regarding the chromatic number which is valid for almost every graph G ∈ u�(n, p):

Theorem 11.1. Let 0 < p < 1 and ε > 0 be fixed and set d = 1/(1 − p). Then, almost every

G ∈ u�(n, p) satisfies

n

logd n
􏿶1 − 2

logd log n

log n
􏿹 ≤ χ(G) ≤ n

logd n
􏿰1 + (2 + ε)

log log n

log n
􏿳

where log is the natural logarithm and logd is in base d.

In fact, in many cases, the chromatic number satisfies χ(G) ≤ n/ logd n, according to Bollobás

[12, theorem 10]. These results can give us expected upper bounds when used in combination

with Lemma 7.1.

11.3 Random geometric graphs

A graph G from this family u�(n; r) of graphs has n vertices uniformly distributed in some metric

space and two u ∼ v if d(u, v) ≤ r for some valid distance d. For instance, Díaz, Petit and

Serna [1, p. 336] used the unit square with the standard Euclidean distance. However, for

implementation reasons we have chosen the unit disc instead.

The reason to choose these graphs is that they are not too dense, for a small radius r which

may depend on n, and usually have some interesting properties.

11.3.1 Choosing the radius

Suppose we have chosen a small radius r > 0. Since the distribution is uniform in the unit disc

D1(0), which has an area of π, the average proportion of vertices adjacent to a vertex v (those in

the disc Dr(v)) approaches the ratio between both disks,
π r2

π
= r2.

Considering this, the degree of v is deg(v) = n r2 on average. And since, by double counting,

we have 2 |E(G)| = 􏾝
v∈V(G)

deg(v) ≈ 2 n2 r2, if we want |E(G)| = f (n) we can take r2 =
2 f (n)
n2

.

36

11.4 Graphs with cliques

Figure 11.2: A random geometric graph with n = 500 and r2 = 0.018

11.4 Graphs with cliques

These graphs have been chosen as a way of having more or less symmetric graphs for which we

can know their optimal cost analytically in an easy way. This is in order to test if our algorithms

behave well or not for easy instances.

11.4.1 Cycles of cliques

If we choose two integers s and t, a graph of this family has t cliques isomorphic to Ks. Then,

we build a cycle connecting all the cliques, choosing two different vertices from each clique.

Corollary 11.2. If G = (V, E) is a cycle of t cliques of order s, then

MinLCA(G) = t 􏿶1 +
s3 − s

6
􏿹

Proof. It is enough to notice each clique has cost
s3 − s

6
by applying Theorem 7.9, and the

cycle connecting the cliques has length 2 t, with t edges from a different clique each.

If we colour the cycle using colours 1 and 2 (the subgraph is bipartite; it is an even cycle)

the cliques can be optimally coloured because they have at least one edge with cost 1, which

can be the one which is part of the cycle.

11.4.2 Interconnected cliques

These graphs are thought to be locally dense graphs. If we choose two integers s and t, a graph

of this family has t cliques each one isomorphic to Ks. Then, chosen a probability p, two cliques

are adjacent with probability p, using the same idea as the u�(t, p) family (with the end-vertices

in each clique chosen at random).

The expected cost for this kind of graph is around t
s3 − s

6
+MinLCA(H), where H ∈ u�(t, p).

37

11 Chosen instances

Figure 11.3: A random outerplanar graph with n = 50

11.5 Outerplanar graphs

For outerplanar graphs we are only considering the blocks (cycles with chords) because having

minimally arranged the blocks, getting the colouring for the complete graph is easy. This way

of working means using more than the minimum number of colours, but we are not minimising

the colours but the cost of doing a linear arrangement of a colouring.

Generating random outerplanar graphs has been studied in different publications. For instance,

Bodirsky and Kang [29] show a method of generating outerplanar graphs uniformly at random

by means of a Las Vegas algorithm. The problem is the algorithm for generating such graphs is

scattered through the text and is not easy to jump from its description to the implementation,

therefore failing out of scope for the project.

In order to generate these graphs we have implemented a way which may not be uniform at

all, but has given results which are different enough one from another. The description is in

Algorithm 11.1, and makes use of two helper recursive functions to add the chords.

The algorithm works by breaking the outer cycle in two parts, randomly add chords crossing

from one part to the other by means of Algorithm 11.2. It then adds more chords between

the vertices of the same side, which we have called bridges, using Algorithm 11.3. A sample

outerplanar graph generated with this method is on Fig. 11.3.

For all three algorithms, suppose Random(l, r) is a function which uniformly returns an

integer from {l, r}, RandomBoolean() is a function following a fair Bernoulli distribution and

Edges((v1, v2,… , vn)) is a function which generates the edges {v1, v2}, {v2, v3},… , {vn−1, vn}.

38

11.5 Outerplanar graphs

Algorithm 11.1: Outerplanar graph generator

Precondition Let n be a positive integer.

Postcondition Returns an outerplanar graph G with |V | = n.

1: function Outerplanar(n)
2: V ← [n]
3: E ← Edges((1, 2,… ,A, n, n − 1,… ,A + 1, 1))
4: A← Random(1, n/2)
5: E ← E ∪ CrossingChords(1,A,A + 1, n) ▷ At this moment, there are no edges between

vertices from {1,… ,A} or {A + 1,… , n} except for those from the cycle

6: BridgeLeft ← 1

7: while BridgeLeft ≤ A do

8: while BridgeLeft ≤ A and deg(V,E)(BridgeLeft) > 2 do ▷ Bridges go from a lesser

value vertex to a greater one. If the degree is greater than 2, edges might overlap.

9: BridgeLeft ← BridgeLeft + 1

10: end while

11: BridgeRight ← BridgeLeft

12: while BridgeRight ≤ A and deg(V,E)(BridgeRight) = 2 do

13: BridgeRight ← BridgeRight + 1

14: end while

15: if BridgeRight ≤ A then

16: E ← E ∪ Bridges(BridgeLeft,BridgeRight)
17: BridgeLeft ← BridgeRight + 1

18: end if

19: end while

20: BridgeLeft ← A

21: while BridgeLeft ≤ n do ▷ The same, but for the other side of the graph

22: while BridgeLeft ≤ n and deg(V,E)(BridgeLeft) > 2 do

23: BridgeLeft ← BridgeLeft + 1

24: end while

25: BridgeRight ← BridgeLeft

26: while BridgeRight ≤ n and deg(V,E)(BridgeRight) = 2 do

27: BridgeRight ← BridgeRight + 1

28: end while

29: if BridgeRight ≤ n then

30: E ← E ∪ Bridges(BridgeLeft,BridgeRight)
31: BridgeLeft ← BridgeRight + 1

32: end if

33: end while

34: return G← (V, E)
35: end function

39

11 Chosen instances

Algorithm 11.2: Crossing chords helper for generating outerplanar graphs

Precondition Let l1, r1, l2, r2 be four positive integers such that r1 < l2
Postcondition Returns some non-overlapping edges between the sets {l1,… , r1} and

{l2,… , r2}
1: function CrossingChords(l1, r1, l2, r2)
2: if r1 < l1 or r2 < l2 then

3: E ← ∅
4: else

5: Top← Random(l1, r1)
6: Bottom← Random(l1, r1)
7: E ← {{Top,Bottom}}
8: if RandomBoolean() then ▷ Randomly add chords to the left of the added chord

9: E ← E ∪ CrossingChords(l1, Top, l2,Bottom − 1)
10: else

11: E ← E ∪ CrossingChords(l1, Top − 1, l2,Bottom)
12: end if

13: if RandomBoolean() then ▷ Randomly add chords to the right of the added chord

14: E ← E ∪ CrossingChords(Top, r1,Bottom + 1, r2)
15: else

16: E ← E ∪ CrossingChords(Top + 1, r1,Bottom, r2)
17: end if

18: end if

19: return E

20: end function

40

11.5 Outerplanar graphs

Algorithm 11.3: Bridges helper for generating outerplanar graphs

Precondition Let l, r be positive integers.

Postcondition Returns some non-overlapping edges between vertices {l,… , r} except for
vertices u, v such that v = u + 1.

1: function Bridges(l, r)
2: E ← ∅
3: if l + 2 ≤ r then ▷ When l + 1 = r we have the two vertices are adjacent in the outer

cycle, so we can stop.

4: if RandomBoolean() then
5: E ← {{l, r}}
6: end if

7: R← Random(1, 3)
8: if R = 1 then

9: E ← E ∪ Bridges(l + 1, r − 1)
10: else, if R = 2 then

11: E ← E ∪ Bridges(l, r − 1)
12: else

13: E ← E ∪ Bridges(l + 1, r)
14: end if

15: end if

16: return E

17: end function

41

Part V

Experimental results

12 General considerations

12.1 Implementation details

All the algorithms in this project have been implemented using the C++11 language along with

the open-source graph library LEMON [6] version 1.3.1+, part of the COIN-OR initiative.

The code has been written with a strong emphasis on portability and reusability, using C++

templates and inheritance. It should work on any system with a modern C++ compiler, subject

to the availability of Gurobi in case of trying to use the linear programming models.

The results have been parsed using Python [19] version 3.4 and the plots have been generated

with the use of libraries NumPy [20] version 1.9 and matplotlib [21] version 1.4.

The whole details for the implementation and executions are available on the companion

benchmarking platform. This benchmarking platform is available at http://albcom.cs.upc.
edu/minlca/.

12.2 The cluster at RDlab

The cluster used by ALBCOM at RDlab [30] works by means of the Oracle Grid Engine, a queue

system which allows for assigning dedicated resources to each task. It runs on a Ubuntu 12.04.2

LTS system with an x86_64 architecture with Intel Xeon X5670 CPUs running at 2.93GHz. The
executions have been done using a single thread and a maximum of 2GB of RAM unless stated

otherwise.

The code has been compiled using C++ compiler from the GNU Compiler Collection (GCC)

version 4.6 and the CMake build tool version 2.8 in release mode (uses flag -O3 for GCC).

12.3 Random instances

We have done executions for random graphs of orders 1000, 5000, 10000, 50000, 10000, using

five different seeds for each order and kind of graph.

In the case of binomial random graphs and random geometric graphs, we decided to have

f (n) = 1

2
n log2 n as the expected size (number of edges), with n the order of the graph. Therefore,

43

http://albcom.cs.upc.edu/minlca/
http://albcom.cs.upc.edu/minlca/

we chose p =
log2 n

n
and r2 =

log2 n

n
, respectively.

For the graphs with cliques, we decided to have t copies ofK10, for t ∈ {100, 500, 1000, 5000, 1000},
and interconnected them using f (t) edges, so the probability of two cliques being connected was

p =
log2 t

t
.

13 Integer linear programming

13.1 Experiment design

We have done one execution for every input, with a limit of 8 threads and 8GB of RAM instead

of 2, and a time limit of 5h for each instance (that is around 40h of CPU time).

The executions have been done using the Gurobi solver version 5.6.0, with an initial solution

given by the greedy algorithms. For Gurobi, we set a node file start at 500MB. What this means

is that when more than 500MB are in use when searching through the ILP solution tree, the

information of the nodes is written to disk to free memory. Having 8 threads, this means the

algorithm should spend at most 4GB (each thread has its own copy of the solution tree), but

because there are some other factors spending memory not considered here, there have been

instances for which the execution was aborted because of using excessive memory.

Only the instances for minla have been used to test the algorithm because we had started

with them and the results showed to be too bad when compared to the execution times. The

logs have been saved for future analysis.

13.2 Results

In this case we have only tested the integer linear programme with the instances from the

Minimum linear arrangement problem. The reason is that these executions have taken much

time and, in general, the results have been not of much interest. In some case there has been a

10% decrease in the cost when compared to the greedy execution when randomising the order

of the vertices in the input, but in general we do not know if the results are near the optima or

not.

As Table 15.1 shows, in some cases using integer programming has reached the best solutions,

though we can only confirm they are the optima for gd96c and small and for bipartite graphs

(those with average cost 1). When inf appears as the cost of the MIP solution, it means the

execution was aborted due to excessive memory usage (it has happened for the three graphs

with the most edges).

The results show that this is not a good approach for the problem. All executions had a time

limit of 5h of real time, which for 8 threads can mean up to 40h of CPU time per instance, and

compared to the little improvements obtained to the initial solutions this means we can discard

44

using integer programming for this problem for the nearest future, or at least discard the model

described in this document.

Not only that, the huge use of memory even after forcing to write the partial results to disc

has meant aborted executions for crack, randomA3 and whitaker3, the three largest graphs
from minla.

If it were not by the initial solutions given by the greedy algorithms, the results would have

been much worse. Initial tests showed very bad solutions even for bipartite graphs when there

was no initial colouring.

14 Greedy algorithms

14.1 MinLA instances

14.1.1 Experiment design

We want to see the influence of the order when reading the graph on the results obtained with

the greedy algorithms described in Chapter 9. In order to do so, we have chosen 50 randomly

distributed integers from the set {1,… , 1 × 109} as seeds for the graph reading method. This

method chooses a uniform ordering of the vertices using the Mersenne twister random number

generator from LEMON. However, for practical reasons the edges are not added to the graph in

random order. This means we are not considering some orderings which might be better when

doing the breadth-first search on the graph.

14.1.2 Results

The results are in Table 14.1, and a sample boxplot for graph randomG4 is on Fig. 14.1. The rest

of the boxplots are on the benchmarking platform. See that, in general, the greedy algorithms

have performed very similar one to another. Most differences can be seen when comparing the

results of random graphs, and it is clear that in general the greedy least cost algorithm gives

better results than the greedy nearest colour one. In fact, in all cases when doing a particular

breadth-first search the cost of the solution given by the greedy least cost algorithm is at most

as high as the greedy nearest colour counterpart.

14.2 Randomly generated instances

14.2.1 Experiment design

We have done one execution of both algorithms per random instance.

45

neares
t

least c
ost

randomG4

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

Figure 14.1: Sample boxplot of the greedy algorithms results for graph randomG4

14.2.2 Results

The results show many similarities with those obtained with the minla instances. The execution

times show a good time performance when used to solve graphs with up to 105 vertices, not

reaching 0.5 seconds in any case for the tested instances in RDlab’s environment.

In the case of the graphs with cliques, the results seem to confirm the expected cost formula

given in Section 11.4.2, which is a good signal.

Regarding outerplanar graphs, the results have always been using 4 colours for the selected

sizes, instead of chromatic number χ(G) = 3 (unless bipartite). This is a result with more

importance than it may seem because outerplanar graphs are very easily colourable using the

chromatic number, but it is possible it means nothing. Another interesting fact is that both

algorithms have given solutions with the same cost for all outerplanar instances. They are

not the best solutions, however, because the simulated annealing approach has given better

solutions.

The real problem is when we take the result from Theorem 11.1 and compare it to the solutions

we have got. According to the theorem, in almost every case the graph should be colourable

with 3 colours, and we have needed many more. This could be for various reasons:

1. The greedy algorithms do not behave as well as initially thought and use a number of

colours so high that the cost cannot be lower

2. The bound could be valid only for fixed p and the order n large enough.

46

15.1 MinLA instances

nearest colour least cost

cost/|E| cost/|E|
Graph |V | |E| avg. colours min. avg. median max. avg. colours min. avg. median max.

3elt 4720 13722 7.12 1.56 1.58 1.58 1.59 7.30 1.55 1.56 1.56 1.58

airfoil1 4253 12289 7.22 1.56 1.58 1.58 1.60 7.12 1.54 1.56 1.56 1.58

bintree10 1023 1022 2.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00

c1y 828 1749 5.00 1.33 1.37 1.35 1.41 5.00 1.33 1.37 1.35 1.41

c2y 980 2102 4.96 1.30 1.34 1.32 1.38 4.96 1.30 1.34 1.32 1.38

c3y 1327 2844 5.00 1.32 1.35 1.34 1.38 5.00 1.32 1.35 1.34 1.38

c4y 1366 2915 5.00 1.27 1.30 1.28 1.34 5.00 1.27 1.29 1.28 1.33

c5y 1202 2557 5.00 1.30 1.32 1.31 1.36 5.00 1.30 1.32 1.31 1.36

crack 10240 30380 6.30 1.54 1.56 1.55 1.60 6.38 1.52 1.54 1.54 1.57

gd95c 62 144 5.30 1.45 1.53 1.54 1.63 5.30 1.45 1.53 1.54 1.61

gd96a 1096 1676 4.58 1.18 1.21 1.20 1.24 4.58 1.18 1.20 1.20 1.23

gd96b 111 193 2.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00

gd96c 65 125 4.08 1.19 1.25 1.26 1.30 4.08 1.19 1.25 1.26 1.30

gd96d 180 228 2.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00

hc10 1024 5120 2.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00

mesh33x33 1089 2112 2.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00

randomA1 1000 4974 7.96 1.95 2.04 2.04 2.10 8.02 1.93 2.02 2.02 2.08

randomA2 1000 24738 19.74 5.44 5.59 5.58 5.77 19.44 5.34 5.46 5.46 5.58

randomA3 1000 49820 31.72 9.15 9.40 9.39 9.63 31.60 8.99 9.22 9.23 9.49

randomA4 1000 8177 10.18 2.63 2.71 2.71 2.84 10.14 2.59 2.68 2.68 2.78

randomG4 1000 8173 15.48 3.71 3.81 3.82 3.89 15.72 3.56 3.62 3.62 3.69

small 5 8 3.80 1.25 1.35 1.38 1.38 3.80 1.25 1.35 1.38 1.38

whitaker3 9800 28989 8.78 1.55 1.57 1.57 1.60 8.94 1.52 1.54 1.54 1.57

Table 14.1: Results of the greedy algorithms for the minla instances

15 Simulated annealing

15.1 MinLA instances

15.1.1 Experiment design

In this case, we have chosen a discretised exponential function as the temperature schedule,

based on the sample Java implementation of the algorithm by Russell, Norvig and Davis [28]. If

we are doing step T, and each iteration has s steps, the formula for the temperature is:

ℱ(T) = k exp 􏿵−λ 􏿩T
s
􏿬 s􏿸

where k > 0 and λ ∈ (0, 1) are two parameters.

The executions have been done with the following parameters, selected by plotting the

probability function when ΔE(T) = 1 and adjusting them manually. They are chosen to have a

47

15 Simulated annealing

0 10000 20000 30000 40000 50000

steps

44000

44500

45000

45500

46000

46500

47000

47500

48000

co
st

Figure 15.1: Sample cost evolution plot using simulated annealing for graph crack with greedy recolourings

using the second group of parameters

high probability of changing to a possibly worse solution when the number of steps done is still

less than a half of the maximum allowed:

First group of parameters With a maximum of 25000 steps, s = 500, k = 1000, λ = 0.00035

Second group of parameters With a maximum of 50000 steps, s = 500, k = 2000, λ = 0.0002

15.1.2 Results

Using the greedy recolourings as described in Section 10.1 with the nearest colour greedy

algorithm from Section 9.1 and the second group of parameters (the ones with a 2 in Table 15.1),

we have obtained some of the best results in the executions, especially when we take into account

the execution time (around one minute for the largest graphs of this set of instances). The results

have been the best, in general, when the initial ordering was given by doing a breadth-first

search on the graph instead of using a random order for the vertices (indicated with an r in

Table 15.1). A sample plot for the evolution of the cost using simulated annealing

The results obtained when using the method of changing the colours, described in Section 10.2,

are also interesting. Sometimes they are worse than those obtained by doing the simple greedy

colouring with a BFS, but that is because the initial solutions were without having randomised

the order of the vertices when reading the input graphs; in fact, the initial solutions were given

by doing a BFS using the nearest colour greedy approach. But the most interesting part are

the execution times: they are slightly less than using the greedy recolourings, when using the

second group of parameters they take around half of the time.

48

15.2 Randomly generated instances

Graph nearest least ilp sa. col. sa. col. (2) sa. greedy sa. greedy (2) sa. greedy (r) sa. greedy (r, 2)

3elt 1.56 1.55 1.56 1.58 1.57 1.50 1.50* 1.60 1.57

airfoil1 1.56 1.54 1.55 1.58 1.58 1.49 1.49* 1.58 1.57

bintree10 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.04 1.03

c1y 1.33 1.33 1.22 1.30 1.30 1.22 1.22* 1.25 1.24

c2y 1.30 1.30 1.17* 1.28 1.28 1.22 1.21 1.25 1.24

c3y 1.32 1.32 1.18* 1.30 1.30 1.22 1.22 1.24 1.24

c4y 1.27 1.27 1.18* 1.24 1.24 1.20 1.20 1.23 1.23

c5y 1.30 1.30 1.17* 1.26 1.26 1.21 1.21 1.25 1.25

crack 1.54 1.52 inf 1.56 1.55 1.46 1.45* 1.61 1.57

gd95c 1.45 1.45 1.38* 1.49 1.49 1.47 1.47 1.42 1.42

gd96a 1.18 1.18 1.12* 1.17 1.17 1.15 1.15 1.22 1.17

gd96b 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00*

gd96c 1.19 1.19 1.16* 1.21 1.21 1.16* 1.16* 1.18 1.18

gd96d 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00*

hc10 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00*

mesh33x33 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.03 1.03

randomA1 1.95 1.93 1.79 1.98 1.95 1.79 1.78* 1.86 1.84

randomA2 5.44 5.34 5.38 5.35 5.25 5.11 5.01 5.01 4.98*

randomA3 9.15 8.99 inf 8.95 8.82 8.63 8.60* 8.88 8.75

randomA4 2.63 2.59 2.62 2.60 2.57 2.39 2.37* 2.46 2.43

randomG4 3.71 3.56* 3.69 3.82 3.78 3.59 3.56 3.68 3.66

small 1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*

whitaker3 1.55 1.52 inf 1.58 1.57 1.51 1.50* 1.64 1.61

Table 15.1: Result comparison between the algorithms. Values are cost/|E|. Stars indicate the best solution
known for each instance.

15.2 Randomly generated instances

15.2.1 Experiment design

For this group of instances we have executed the simulated annealing search with greedy

recolourings using the greedy nearest colour approach, but only with the second group of

parameters described in Section 15.1.1. The instances have been the same as for the standard

greedy algorithms, but limited to random geometric graphs and random outerplanar graphs

with orders 1000 and 5000.

15.2.2 Results

There is not much to say about the results for these instances. The solutions are better than those

given by simply doing a breadth-first search on the graph and applying the greedy colourings in

that order. Perhaps the most interesting fact is that the best solutions for the chosen outerplanar

graphs have been using 4 colours.

49

Part VI

Sustainability report

16 Sustainability analysis

As stated many times in this document, due to the nature of the project there are not many

true implications from a sustainability point of view. However, we comment here the few

sustainability considerations.

16.1 Timing and economic costs

The final work has used taken more time than originally planned. The reason is not because

the lack of it, but because the periods without working have been inserted in the middle of the

working periods. We can therefore say the planning has not been strictly followed, but the goal

of having it ready for the January call has been met successfully.

Regarding the cost, as predicted in Section 5.1 during the planning phase, the true costs of

the project have been much lower than estimated. According to the RDlab invoice in Fig. 16.1,

we have used a total of 586 execution packs, where a pack is equivalent to 2GB of RAM and 1h

of CPU, with a final cost of €234.40 + VAT(21%) = €283.62, quite different from the estimated

€7620.00. Some more good news is there have been no added costs related to hardware, support

or requirement of extra resources, with the two former being thanks to the contract between

ALBCOM and the RDlab.

16.2 Social implications

The only natural implications are those derived from making the results available in an open

access platform. Since we have done that, and hope to give the implementation of the Gurobi

interface for LEMON back to the open-source community, results in this area are positive.

16.3 Environmental implications

The computational resources usage can be considered the most important aspect of this project.

When considering the used 570.6h of CPU in the cluster (3 weeks and 67 hours), somebody

could argue that the usage of resources has been higher than the 2 weeks and 45 hours planned.

51

However, the plan has been done considering a different service with the 8 threads running

constantly during the executions, which would be the equivalent to around 3000 execution

packs in RDlab.

17 Sustainability evaluation

According to the Bachelor’s Thesis regulations from FIB and the requirements in an internal

document titled El informe de sostenibilidad del TFG, literally The sustainability report of the

Bachelor’s Thesis, all thesis must include a sustainability report based on Table 17.1.

Sustainable? Economic Social Environmental Range

Planification
Economic

viability

Life quality

improvement

Resources

analysis
(0: 10)

Results
Final cost vs.

estimate
Social impact Resources usage (−10: 10)

Risks
Adaptation to

changes
Social damages

Environmental

damages
(−20: 0)

Final evaluation (−90: 60)

Table 17.1: Sustainability table template

We can consider there are no dangerous risks associated to any of the three aspects of the

sustainability analysis, since this is purely a research project with no more possible negative

implications. Taking the evaluations in the planning phase from Section 5.2 and the analysis

from the previous chapter, Table 17.2 contains the final sustainability evaluation.

Sustainable? Economic Social Environmental

Planification 5 7 4

Results 9 10 −1
Risks 0 0 0

Final evaluation 34

Table 17.2: Sustainability table

52

Figure 16.1: Invoice for cluster resources usage

53

Part VII

Final words

Future work

The minimum linear colouring arrangement problem offers much work to do. The available

options range from trying different approaches when using local search like tabu search or

changing the methods of generating the successors in the search tree, to implementing a branch

and bound algorithm using backtracking, to developing new integer linear programming methods,

or to using other techniques when developing new approximation algorithms.

Another path to follow would be to try and find exact algorithms for particular families of

graphs. The minlca problem is difficult in general, but there might be cases with some practical

interest which allow for polynomial-time exact algorithms (unless P = NP, then all instances

would have such algorithm). For instance, bipartite graphs can be optimally solved using a

linear-time algorithm, exactly the same we would use to know the two vertex classes.

From a more theoretical point of view, there are a few conjectures which can be of interest,

but may not have practical implications in the short term.

Conjecture 17.1 (Number of colours in an optimal linear colouring arrangement). The minimum

linear colouring arrangement can be obtained using as many colours as the chromatic number.

In other words, if G is a graph and χ(G) = k, then

MinLCA(G) = LCAk(G)

Comment. The best results obtained for outerplanar graphs, however, have been using 4 colours

instead of 3. This could be because of the algorithms used or because they can serve as

counter-examples to this conjecture.

Conjecture 17.2. If G is a graph and χ(G) = 3, then

MinLCA(G) ≤ 3

2
|E(G)|

Comment. This conjecture seems to be easily provable for outerplanar graphs, and might be

extensible to the general case. In the case of outerplanar graphs, consider the cycles of each

block obtained when dividing the graph through the chords. Each cycle can be 3-coloured with

only one edge with cost 2, and making the right decisions this seems to show the result.

55

Conclusions

In this project we have done an initial study for the minimum linear colouring arrangement

problem. We have established the initial results, developed and implemented some algorithms

using different techniques. Finally, we have made everything publicly available.

There is no doubt the minimum linear colouring arrangement problem is a computationally

difficult problem. There are two extreme cases, bipartite and complete graphs, which have a

known optimal solution and can be found in linear time with respect to the size and order of the

graph. However, most cases are difficult to solve, as can be observed in the results obtained by

the simulated annealing algorithms.

Doing an extensive study of a problem is not an easy task, and can sometimes lead to unwanted

situations. These situations range from getting extremely bad results, to discovering the darkness

of the programming language used. Related to this second statement, the project has served to

help me learn better how C++ templates work and the delicacies of multiple inheritance, which

have come of great use.

I would have liked to do a more deep statistical analysis of the results. However, the lack of

time derived from attending a course on graphs, having the Christmas holidays just before the

presentation date and the amount of work needed to do the rest of the project have not allowed

me to. All that without forgetting my way of organising my time. But all the data generated

during the experiments is publicly available, allowing future work on this regard, and reminding

this project has simply been the initial step to studying the minlca problem.

Bibliography and references

[1] J. Díaz, J. Petit andM. Serna, “A survey of graph layout problems,” ACMComputing Surveys,

vol. 34, no. 3, pp. 313–356, Sep. 2002, issn: 03600300. doi: 10.1145/568522.568523.
[2] J. Petit, “Addenda to the Survey of Layout Problems,” Bulletin of the European Association

for Theoretical Computer Science, no. 105, pp. 177–201, Oct. 2011, issn: 0252-9742. [On-

line]. Available: http://www.eatcs.org/beatcs/index.php/beatcs/article/
view/98.

[3] ——, “Combining spectral sequencing and parallel simulated annealing for the MinLA

problem,” Parallel Processing Letters, vol. 13, no. 1, pp. 77–91, Mar. 2003, issn: 0129-6264.

doi: 10.1142/S0129626403001161.

56

http://dx.doi.org/10.1145/568522.568523
http://www.eatcs.org/beatcs/index.php/beatcs/article/view/98
http://www.eatcs.org/beatcs/index.php/beatcs/article/view/98
http://dx.doi.org/10.1142/S0129626403001161

[4] Y. Koren and D. Harel, “A Multi-scale Algorithm for the Linear Arrangement Problem,”

in Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer

Science, G. Goos, J. Hartmanis, J. van Leeuwen and L. Kučera, Eds., ser. Lecture Notes in

Computer Science, vol. 2573, Berlin, Heidelberg: Springer Berlin Heidelberg, Feb. 2002,

pp. 296–309, isbn: 978-3-540-00331-1. doi: 10.1007/3-540-36379-3.
[5] J. Petit, “Experiments on the minimum linear arrangement problem,” Journal of Experi-

mental Algorithmics, vol. 8, Jan. 2003, issn: 10846654. doi: 10.1145/996546.996554.
[6] Egerváry Research Group on Combinatorial Optimization, Library for Efficient Modelling

and Optimization in Networks (LEMON Graph Library), COIN-OR initiative, 2014. [Online].

Available: http://lemon.cs.elte.hu/trac/lemon.
[7] Gurobi Optimizer Reference Manual, Gurobi Optimization, Inc, 2013. [Online]. Available:

http://www.gurobi.com/documentation/5.6/reference-manual/ (visited on

14/01/2015).

[8] C. team, Clp, COIN-OR initiative, 2013. [Online]. Available: https://projects.coin-
or.org/Cbc.

[9] IBM, CPLEX Optimizer. [Online]. Available: http : / / www . ibm . com / software /
commerce/optimization/cplex-optimizer/.

[10] J. Siek, L.-Q. Lee and A. Lumsdaine, Boost Graph Library, Boost C++ Libraries, 2001.

[Online]. Available: http://www.boost.org/doc/libs/1_57_0/libs/graph/doc/
index.html.

[11] Algorithmic Solutions Software GmbH, Library of Efficient Data types and Algorithms

(LEDA), 2012. [Online]. Available: http://www.algorithmic-solutions.com/
leda/index.htm.

[12] B. Bollobás, “Colouring Random Graphs,” in Random graphs, London: Academic Press,

1985, ch. XI.3, pp. 262–267, isbn: 0121117561.

[13] Xubuntu Community, Xubuntu. [Online]. Available: http://xubuntu.org/.
[14] GNU Project, GNU Compiler Collection, 2014. [Online]. Available: https://gcc.gnu.

org/.
[15] Kitware Inc. and Insight Software Consortium, CMake, 2014. [Online]. Available: http:

//www.cmake.org/.
[16] GNU Project, GNU Emacs.

[17] G. authors, Geany. [Online]. Available: http://www.geany.org/.
[18] TEX live, TeX user groups. [Online]. Available: https://www.tug.org/texlive/.
[19] Python Software Foundation, Python, 2014. [Online]. Available: https://www.python.

org/.
[20] NumPy Developers, NumPy, 2014. [Online]. Available: http://www.numpy.org/.
[21] T. matplotlib development team,Matplotlib, 2014. [Online]. Available: http://matplotlib.

org/.
[22] The Inkscape Team, Inkscape, 2014. [Online]. Available: https://inkscape.org/.
[23] D. van Heesch, Doxygen, 2014. [Online]. Available: http://www.doxygen.org/.
[24] Normativa sobre els drets de propietat industrial i intel·lectual a la UPC, 10th Oct. 2008.

[Online]. Available: https://www.upc.edu/normatives/documents/consell-de-
govern/normativa-sobre-els-drets-de-propietat-intelb7lecutal-de-la-
upc (visited on 14/01/2015).

57

http://dx.doi.org/10.1007/3-540-36379-3
http://dx.doi.org/10.1145/996546.996554
http://lemon.cs.elte.hu/trac/lemon
http://www.gurobi.com/documentation/5.6/reference-manual/
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.boost.org/doc/libs/1_57_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_57_0/libs/graph/doc/index.html
http://www.algorithmic-solutions.com/leda/index.htm
http://www.algorithmic-solutions.com/leda/index.htm
http://xubuntu.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
http://www.cmake.org/
http://www.cmake.org/
http://www.geany.org/
https://www.tug.org/texlive/
https://www.python.org/
https://www.python.org/
http://www.numpy.org/
http://matplotlib.org/
http://matplotlib.org/
https://inkscape.org/
http://www.doxygen.org/
https://www.upc.edu/normatives/documents/consell-de-govern/normativa-sobre-els-drets-de-propietat-intelb7lecutal-de-la-upc
https://www.upc.edu/normatives/documents/consell-de-govern/normativa-sobre-els-drets-de-propietat-intelb7lecutal-de-la-upc
https://www.upc.edu/normatives/documents/consell-de-govern/normativa-sobre-els-drets-de-propietat-intelb7lecutal-de-la-upc

Bibliography and references

[25] B. Bollobás, Modern Graph Theory, ser. Graduate Texts in Mathematics. New York, NY:

Springer New York, 1998, vol. 184, isbn: 978-0-387-98488-9. doi: 10.1007/978-1-
4612-0619-4.

[26] Wikipedia, Four color theorem, Wikipedia, The Free Encyclopedia, Dec. 2014. [Online].

Available: http: / / en . wikipedia. org / w / index .php ? title = Four _color _
theorem&oldid=636281207 (visited on 14/01/2015).

[27] A. Caprara, M. Oswald, G. Reinelt, R. Schwarz and E. Traversi, “Optimal linear arrange-

ments using betweenness variables,” Mathematical Programming Computation, vol. 3, no.

3, pp. 261–280, Aug. 2011, issn: 1867-2949. doi: 10.1007/s12532-011-0027-7.
[28] S. J. Russell, P. Norvig and E. Davis, Artificial Intelligence: A Modern Approach, Third ed.

Upper Saddle River, N.J.: Prentice Hall, 2010, isbn: 9780136042594.

[29] M. Bodirsky and M. Kang, “Generating Outerplanar Graphs Uniformly at Random,”

English, Combinatorics, Probability and Computing, vol. 15, no. 03, pp. 333–343, Apr. 2006,

issn: 0963-5483. doi: 10.1017/S0963548305007303.
[30] RDlab website, Computer Science Department, Universitat Politècnica de Catalunya ·

BarcelonaTech. [Online]. Available: http://rdlab.cs.upc.edu/index.php/en/
(visited on 14/01/2015).

[31] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Belmont, Massachu-

setts: Athena Scientific, 1997, isbn: 1886529191.

[32] J. Díaz, M. D. Penrose, J. Petit and M. Serna, “Linear Orderings of Random Geometric

Graphs,” in Proceedings of the 25th International Workshop on Graph-Theoretic Concepts in

Computer Science, P. Widmayer, G. Neyer and S. Eidenbenz, Eds., ser. Lecture Notes in

Computer Science, vol. 1665, Berlin, Heidelberg: Springer Berlin Heidelberg, Dec. 1999,

pp. 291–302, isbn: 978-3-540-66731-5. doi: 10.1007/3-540-46784-X.
[33] Wikipedia, Graph homomorphism, Wikipedia, The Free Encyclopedia, Jun. 2014. [On-

line]. Available: http : / / en . wikipedia . org / w / index . php ? title = Graph _
homomorphism&oldid=611849953 (visited on 14/01/2015).

[34] Gurobi Optimizer Quick Start Guide, Gurobi Optimization, Inc, 2013. [Online]. Available:

http://www.gurobi.com/documentation/5.6/quick-start-guide/ (visited on

14/01/2015).

58

http://dx.doi.org/10.1007/978-1-4612-0619-4
http://dx.doi.org/10.1007/978-1-4612-0619-4
http://en.wikipedia.org/w/index.php?title=Four_color_theorem&oldid=636281207
http://en.wikipedia.org/w/index.php?title=Four_color_theorem&oldid=636281207
http://dx.doi.org/10.1007/s12532-011-0027-7
http://dx.doi.org/10.1017/S0963548305007303
http://rdlab.cs.upc.edu/index.php/en/
http://dx.doi.org/10.1007/3-540-46784-X
http://en.wikipedia.org/w/index.php?title=Graph_homomorphism&oldid=611849953
http://en.wikipedia.org/w/index.php?title=Graph_homomorphism&oldid=611849953
http://www.gurobi.com/documentation/5.6/quick-start-guide/

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Problem definition and scope
	Problem formulation
	Goals of the project
	Scope of the project

	Context and state of the art
	Interest in the problem
	Current state of the art

	The project within the computing specialisation
	Relation with the studied subjects
	Technical skills and level of achievement

	Project management
	Project planning
	Schedule
	Project planning
	Resources
	Project management course
	Resources preparation
	Project preparation
	Greedy algorithms development
	Local search algorithms
	Follow-up milestone
	Result comparison and writing of conclusions

	Alternative plans and changes in the initial plan

	Budget, sustainability and regulations
	Budget
	Preliminary considerations
	Human resources budget
	Hardware budget
	Software budget
	Total budget
	Deviation control

	Sustainability
	Laws and regulations

	Definitions, theorems and properties
	Basic definitions
	Preliminaries
	The minimum linear colouring arrangement problem
	Parameterised formulation
	Non-parameterised formulation

	Complexity of the problem
	Classic computational complexity
	Bounds and closed results for particular graphs
	Bipartite graphs
	Complete graphs
	Planar graphs

	Algorithms and instances
	Exact algorithms
	Integer linear programming
	Other models

	Greedy algorithms
	Nearest colour
	Least cost
	Discarded algorithms

	Local search algorithms
	Based on greedy recolourings
	Based on changing the colours

	Chosen instances
	Used in MinLA benchmarking
	Binomial random graphs
	Choosing the edge probability
	Bounds on the chromatic number

	Random geometric graphs
	Choosing the radius

	Graphs with cliques
	Cycles of cliques
	Interconnected cliques

	Outerplanar graphs

	Experimental results
	General considerations
	Implementation details
	The cluster at RDlab
	Random instances

	Integer linear programming
	Experiment design
	Results

	Greedy algorithms
	MinLA instances
	Experiment design
	Results

	Randomly generated instances
	Experiment design
	Results

	Simulated annealing
	MinLA instances
	Experiment design
	Results

	Randomly generated instances
	Experiment design
	Results

	Sustainability report
	Sustainability analysis
	Timing and economic costs
	Social implications
	Environmental implications

	Sustainability evaluation

	Final words
	Future work
	Conclusions
	Bibliography and references

