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1 Introduction

Modern modelling problems are difficult for a number of reasons, including the chal-
lenge of dealing with a significant amount of missing information. Kernel methods
have won great popularity as a reliable machine learning tool; in particular, Support
Vector Machines (SVMs) are kernel-based methods that are used for tasks such as
classification and regression, among others [13]. The kernel function is a very flexible
container under which to express knowledge about the problem as well as to capture
the meaningful relations in input space. Some classical modelling methods –like
Näıve Bayes and CART decision trees– are able to deal with missing values without
any preprocessing step. However, the process of optimizing an SVM assumes that
the training data set is complete.

The main goal of this work is to study kernel functions and extend them in such a
way that the kernel-based methods, mentioned above, are able to handle data sets
with missing values directly. There is a very big range of possibilities when talking
about types of kernel functions. We had selected the most important ones, as they
are widely used and by this reason their extension may become a very useful and
practical approach for the missing value problem.

The extensions are then compared with other methods through statistical analy-
sis and observing their behaviour ob the different scenarios, for instance, varying
the rate of missing information or examining their performance on a real data set
problem.

The data sets with missing information appear in many applications and studies, as
biological indicators or social source surveys and many others. In addition, when
working with kernel methods, these do not accept incomplete data sets and thus, an
imputation procedure is then necessary but often leads to a very complex solutions
due to the missingness mechanism that will be discussed later. So, an extension to
kernel functions becomes a very interesting alternative.

This study is based on previous work [2, 5] which handles missing values in kernel
methods by extending kernel functions. There are several methods that use kernel
functions, but here the learning method corresponds to Support Vector Machines
(SVMs).

The work had been divided in several parts:

� Study of related literature and knowledge acquisition

� Analytical kernel function extension

� Implementation

� Experimentation

� Analysis of the results

Several SVM kernel functions and KDE basis functions had been proposed for the
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analysis. After the extension, and careful implementation, the methods had been
compared, including imputation models. Finally, several results had been presented
and future work discussion.
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2 Planification, methodology and alternatives

The planification have been followed as strict as possible. The working phase con-
sisted in several iterative steps, composed by

� Analyses

� Extension

� Validation

� Implementation

� Experimentation

The duration of each iteration has been incremented from the beginning of the
semester due to:

Analytical mistakes detected during the implementation Computational efficiency

Finally, the main goals were achieved. The most important kernel functions were
analyzed and extended.

In the following figure can be seen the final Gantt diagram that matches the whole
work performed during the realization of this sudy.

Figure 1: Final Gantt diagram.

Regarding the methodology, the programming languages that have been used are:
Maple, Matlab, R and C++. The first two have been used to deal with symbolic
expressions and for test purposes. R deals with data and training parts. C++ is
used uniquely to compute the Gram matrix (expleined later)
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The R scripts perform the following tasks:

� Dataset generation

� Parameter estimation

� Model training

� Presentation of results

Matlab is used for numerical computing and results checking.

Regarding the error detection and analyses of alternatives, the computation perfor-
mance had to be reviewed and a new programming language was introduced (C++).
Additionally, the parameter estimation had to be reviewed.

The choice of the best solution was based on the analyses of the bottleneck in the
extended methods computation.
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3 Preliminaries

In this chapter we will develop the theoretical foundations of the methods used in
this work. First, we will start introducing the SVM method. Later on, we will define
and present several kernel functions and finally we will talk about the missing value
problem and its solutions.

3.1 Sparse Kernel Machines

The algorithms based on kernel functions that determine sparse solution, are such
that the evaluation of this kernel functions is done only over a small subset of the
training dataset. The parameters of the SVM (Support Vector Machine) model are
found through the optimization of a quadratic function subject to certain conditions,
a set of linear inequations. Thus, the optimum is always found.

Let D = {(x1, t1), ..., (xN , tN )} the dataset to be separated, where xn ∈ Rd and
tn ∈ {−1, 1}. Linear model for two classes:

y(x) = wTϕ(x) + w0 (1)

Regarding maximum margin separators, the OHS (optimum hiperplane separator)
is such that defines the largest margin.

γ = max
w,w0

min
1≤n≤N

m(xn)

where m(x) = t(wTϕ(x)+w0)
∥w∥ , the distance from the point to the separator and

wTϕ(x)+w0 is the separator. Is forced that min
xn

|wTϕ(xn)+w0| = 1 with n = 1÷N .

The support vectors, by definition, are such that xn where tn(w
Txn + w0) = 1.

Then, the margin to be maximized is γ = 1
∥w∥ , that is equivalent to minimize ∥w∥2

2 ;
that is to say, the optimization problem is the following:

min
w,w0

∥w∥2

2

that, at the same time, is subject to a set of conditions of the form:

tn(w
Tϕ(xn) + w0) ≥ 1

with n = 1÷N . In order to solve this optimization problem with the corresponding
conditions, is convenient to introduce Lagrange multipliers of the form an ≥ 0 with
n = 1÷N , that results in a Lagrangian function:

6



L(w, w0,a) =
∥w∥2

2
−

N∑
n=1

an{tn(wTϕ(xn) + w0)− 1}

where the sign (−) is due to the fact that the conditions that been multiplied by
(−1), minimizing with respect to w and w0 and maximizing with respect to a.
Derivative with respect to w and w0 is obtained:

w =

N∑
n=1

antnϕ(xn)

and

0 =
N∑

n=1

antn

So substituiting in the Lagrangian function it gives dual representation of the max-
imum margin separator problem:

L̃(a) =
N∑

n=1

an − 1

2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm)

where the kernel function is defined as k(x,x′) = ϕ(x)Tϕ(x′).

Substituiting these results in the equation (1) is obtained:

y(x) =

N∑
n=1

antnk(x,xn) + w0

Using the support vector properties xn, that satisfy tny(xn) = 1 and using the
previous expression it gives:

tn

(∑
m∈S

amtmk(xn,xm) + w0

)
= 1

where S is the set of indexes that correspond to support vectors. Multiplying by tn
both sides it results in:

w0 =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk(xn,xm)

)
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where NS is the total number of support vectors.

In the practice, when classes distributions overlap it can lead to a bad model gen-
eralization. For this reason is convenient to modify support vector machine so that
it allows some data points to be missclassified. Therefore slack variables are intro-
duced. They representthe penalties for the missclassified points. In this way, the
data points that are inside or just over the boundary have ξn = 0, those that are
on the decision boundary ξn = 1, ξn > 1 for the points that are missclassified and
ξn = |tn − y(xn)| for the rest.

The following conditions arise:

tny(xn) ≥ 1− ξn

with ξn ≥ 0 and n = 1 ÷ N . This environment is sensitive to the outliers, as
the penalty for the missclassified points is incremented linerly with ξ. Thus, the
objective becomes to maximize the margin and penalize softly the points that lie
on the wrong side of the boundary of the margin. The expression to be minimized
is as follows:

C ·
N∑

n=1

ξn +
∥w∥2

2

where
∑N

n=1 ξn is the upper bound of the number of missclassified points and the
parameter C > 0 (cost constant) controls the balance between the slack variables
penalty and the margin; that is to say, establishes the control of minimizing training
data error and the model complexity. When C → ∞ the margin decreases and can
over-fit, otherwise if C → 0 the margin increases and the generalization is better,
but it can lead to under-fitting. Usually, is sorted out by k-fold cross-validation.

The Lagrangian form is:

L(w, w0,a) =
∥w∥2

2
+ C ·

N∑
n=1

ξn −
N∑

n=1

an{tny(xn)− 1 + ξn} −
N∑

n=1

µnξn

The dual representation is obtained in similar way as in the previous case, but
without slack variables. Actually, the model y(xn) has the same appearance in both
cases, but the Lagrangian multipliers, for example, are now subject to 0 ≤ an ≤ C
with n = 1÷N . Other conditions are added too [12].

3.2 Kernel functions

By definition, a function that returns the inner product between the images of two
inputs in some feature space is known as a kernel function.
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This feature space must be an inner product space; those that satisfy the existence of
real-valued symmetric bilinear map that also satisfies ⟨x,y⟩ ≥ 0. Actually, Hilbert
space satisfies these conditions and also the separability and completeness properties
[13].

Another, more intuitive way of seeing the kernel functions is as a similarity measure
(inner product) between two inputs expressed in some feature space.

Among the most widely used and well-known Kernels we find:

� Linear Kernel
K(u, v) = ⟨u, v⟩

� Polynomial Kernel
K(u, v) = (⟨u, v⟩+ γ)d

with γ ∈ R and d ∈ N parameters.

� Gaussian Kernel, also known as Radial Basis Function (RBF) kernel

K(u, v) = e−
||u−v||2

σ2

with σ ∈ R parameter.

� Sigmoid Kernel
K(u, v) = tanh(α⟨u, v⟩+ r)

for some (not every) α > 0 and r < 0 parameters, where tanh is the hyperbolic
tangent function.

The RBF is by far the most popular choice of kernel in Support Vector Machines.
This is mainly because of its localized and finite response across the entire range
of the real line; it also includes the polynomial Kernel as a limiting case. All these
Kernels assume and need the data set features to be continuous.

3.3 Kernel density estimation (non parametric)

Kernel density estimation [2, 10, 11] allows density function p(x) to be estimated
using the dataset. One of the simplest approaches is the Parzen windows technique.
For the univariate case is convenient to consider {x1, · · · , xn} i.i.d. sample of contin-
uous random variableX for which the density p(x) is unknown. As p(x) is the deriva-
tive of the (cumulative) distribution function P (x) (here Pn(x) = 1

n

∑n
i=1 I{xi≤x}

that means ”proportion of points that are on the left of x”) p̂(x) is defined as pro-
portion of points in the interval (x− h, x+ h):

p̂(x) =
1

2h
(Pn(x+ h)− Pn(x− h))

9



or

p̂(x) =
1

n

n∑
i=1

1

h
ϕ(z)

where ϕ(z) = 1
2I|z|≤1 is Parzen basis function and z = x−xi

h with h as a bandwidth
parameter (to be estimated). The basis function must satisfy certain conditions of
regularity [2, 10].

If the parameter h is too small, then the estimation of the density function leads
to degeneration, on the the other had if it is too large, then the estimation is over-
smoothed and it tends to uniform distribution.

The basis functions that have been used in this work are Gaussian and Epanechnikov
[10] (their definition can be seen in the section of kernel extension).

Intuitively, p̂(x) with Gaussian basis function is the mean probability value of x
following all possible ditributions, that is to say, centered on each known data point
xi with the same standard deviation. The Epanechnikov basis function is similar to
Parzen window, with the difference that the distance to the points that lie in the
window (x− h, x+ h) is weighted.
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4 The missing value problem

Missing data arises in many statistical analyses nowadays. Absent information can
be categorized as [14]:

� Missingness completely at random (MCAR)

� Missingness at random (MAR)

� Missingness that depends on unobserved predictors

� Missingness that depends on the missing value itself

MCAR happens when the probability of missingness is the same for all units. Throw-
ing out cases with missing data does not bias inferences.

MAR is that the probability a variable is missing depends only on available infor-
mation.

In the first case the missingness depends on information that has not been recorded
and this information also predicts the missing values.

The last case is particularly difficult as the probability of missingness depends on
the (potentially missing) variable itself.

In general, is very difficult to know whether data really are missing at random,
or whether the missingness depends on unobserved predictors or the missing data
themselves. In practice, as many predictors as possible are included.

Missing information is an old issue in statistical analysis ?. For example, they are
very common in Medicine and Engineering, where many variables come from on-line
sensors or device measurements, or are simply too costly to be measured at the
same rate as other variables (e.g., analytical tests). There are several causes for the
absence of a value and they are so variate that we mention but a few:

� Technical limitations (e.g. sensors working only for given periods of time or
sensor malfunctioning)

� Measures costly to perform in time or money or involving destructive methods
(e.g., data from car crash tests)

� Measures not done by unknown number of reasons, or in invalid conditions, or
simply lost during transmission or storage

� Senseless values related to other variables (e.g., number of pregnancies in male
adults)

� Reluctance to supply the value (e.g., salaries, phone or credit card number,
etc)

Missing information is difficult to handle, specially when the lost parts are of signif-
icant size. It can be either removed (the entire case) or “filled in” with the mean,
median, nearest neighbour, or encoded by adding another input equal to one only
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if the value is absent and zero otherwise. Statistical approaches need to make para-
metric assumptions about or model the input distribution itself.

There are two basic ways of dealing with missing data:

1. Complete the object description in a hopefully optimal way

2. Extend the methods to be able to work with incomplete object descriptions

The possibility of simply discard the involved data can not be considered as a
“method” and is also frustrating because of the lost effort in collecting the informa-
tion. This can be done only if the number of missing values is very small or else
they are heavily concentrated in some variables. In practice, it is not uncommon
that missing values are distributed randomly (that is, according to an unknown dis-
tribution but independently of the observed values) and hence, if their quantity is
not negligible, it is likely to affect a significant number of examples (in the worst
scenario, just one missing value per example) so that discarding them all can not be
afforded.

The single Mean imputation method seems the easiest way to impute, however this
strategy can severely distort the distribution for this variable; for example, underes-
timating the standard deviation. Moreover, mean imputation distorts relationships
between variables by ”pulling” estimates of the correlation toward zero.

If the missing data are MAR, all simple techniques for handling missing data, com-
plete and available case analyses, the indicator method and overall mean imputation,
give biased results. When they are MCAR, these methods should be discarded too
[16].

More complex method is the Multiple Imputation by Chained Equations [15], that
consists of three steps:

� Imputation

� Analysis

� Pooling

The way of creating extended kernels for datasets with missing values has some
important advantages:

� Any existent Kernel k can be extended to adapt to a dataset with missing
values;

� No preprocessing of the missing values is needed; we create kernels by cal-
culating directly the values of k(x,X ) and k(X ,X ) where x is a non-missing
value and X represents a missing value, that is, without the need to estimate
the value of X in every case. Moreover, there is no necessity of removing
information because of the missing values; in other words, no information is
lost.
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� Missing values are allowed both in training and test examples (this is quite
difficult with traditional imputation methods).
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5 Kernel extension

In this section we extend the two more commonly used kernel functions for the SVM
method; that are RBF (Radial Basis Function) and Polynomial kernels. Addition-
ally, we need another kernel for each extension, that is the KDE kernel or, that is
the same, the KDE basis function (for more details please check the section 3.3).
In this work we have used two of them: Gaussian and Epanechnikov. Obviously,
the first one assumes normality in the data, therefore we will see how the extension
behaves over synthetic data set generated following the normal distribution (please
check the section 7).

For clarity, the complete development is presented in 10, but only the initial form
and the analytical result are exposed in this chapter. At the final of each subsection
we reference the section with complete development.

The kernel extension for a single variable is proposed in the following form [2]:

k̂(x, y) =


k(x, y) if x, y are not missings∫∞
−∞ p̂(x)k(x, y) dx if x is missing∫∞
−∞ p̂(y)k(x, y) dy if y is missing∫∞
−∞

∫∞
−∞ p̂(x)p̂(y)k(x, y) dxdy if x, y are both missings

The first case has no need for treatment, obviously. The second and the third ones
are identical, so only will be seen the second case in detail. The fourth is an extension
of the second and also will be seen in detail.

5.1 RBF (SVM kernel) - Gaussian (KDE kernel)

The RBF kernel has the form:

k(x,y) = exp
(
− 1

2σ2
∥x−y∥22

)
= exp

(
− 1

2σ2

d∑
j=1

(xj−yj)
2
)
=

d∏
j=1

exp
(
− 1

2σ2
(xj−yj)

2
)

The gaussian KDE base function has the form:

p̂(x) =

d∏
j=1

1

n

n∑
i=1

1√
2h2jπ

exp
(
− 1

2h2j

(
xij − xj

)2)

The extension for the case two has the form:

k̂(x,y) =

d∏
j=1

ωj

14



where

ωj =


1

(n−mj)
√

2h2
jπ

∑n
i=1
i/∈Mj

δ if xj is missing

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

with δ = exp
(
− a
(
σ2
jx

2
ij+h2

jy
2
j

h2
j+σ2

j

)
+ ab2

)√
π
a , a =

h2
j+σ2

j

2h2
jσ

2
j
and b =

h2
jy+σ2

jxij

h2
j+σ2

j
.

The extension for the case four has the form:

k̂(x,y) =

d∏
j=1

ωj

where

ωj =


1

2(n−mj)2h2
j

√
a
√
a′

∑n
k=1
k/∈Mj

∑n
i=1
i/∈Mj

δ if xj , yj are missings

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

with δ = exp
(
a′b′2−y2kjh

2
j+y2kjσ

2
j+x2

ijh
2
j

2h2
j (h

2
j+σ2

j )

)
, a′ =

2σ2
jh

2
j+σ4

j

2h2
jσ

2
j (h

2
j+σ2

j )
and b′ =

ykjσ
2
jh

2
j+ykjσ

4
j+σ2

jh
2
jxij

2σ2
jh

2
j+σ4

j
.

Please, notice that a and b have the same definition as in the case two.

For complete development, please check the section 10.1.

5.2 RBF (SVM kernel) - Epanechnikov (KDE kernel).

The kernel RBF is the same as in 5.1. The Epanechnikov KDE base function has
the form:

p̂(x) =
d∏

j=1

3

4hjn

n∑
i=1

(
1−

(xij − xj
hj

)2)
I∣∣xij−xj

hj

∣∣≤1

The extension for the case two has the form:

k̂(x,y) =

d∏
j=1

ωj

where

ωj =


3

4hj(n−mj)

∑n
i=1
i/∈Mj

I if xj is missing

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings
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with

I21 =
x2ij
h2j

[ √
π

2
√
a
erf ((x− y)

√
a)

]b
c

I22 =
2xij
h2j

[
− 1

2a
exp(−a(x− y)2) +

y
√
π

2
√
a
erf ((x− y)

√
a)

]b
c

I23 =
1

h2j

[ √
π

4
√
a3

erf ((x− y)
√
a)− x

2a
exp(−a(x− y)2)

− y

2a
exp(−a(x− y)2) +

y2
√
π

2
√
a
erf ((x− y)

√
a)

]b
c

and a = 1
2σ2

j
, c = xij − hj and b = xij + hj , such that I2 = I21 − I22 + I23 and

I = I1 − I2.

The extension for the case four has the form:

k̂(x,y) =

d∏
j=1

ωj

where

ωj =


(

3
4hj(n−mj)

)2∑n
k=1
k/∈Mj

∑n
i=1
i/∈Mj

I if xj , yj are missings

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

with

I1 =

[[h2j√π − y2kj
√
π

2h2j
√
a

∫
erf ((x− y)

√
a) dy

−
√
π

2h2j
√
a

(∫
y2erf((x− y)

√
a) dy − 2ykj

∫
yerf ((x− y)

√
a) dy

)]d
e

]b
c
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I2 =

[[ x2ij√π

2h2j
√
a

∫
erf ((x− y)

√
a) dy

− 2xij
h2j

( √
π

2
√
a

∫
yerf ((x− y)

√
a) dy − 1

2a

∫
exp(−a(x− y)2) dy

)
+

1

h2j

( √
π

4
√
a3

∫
erf ((x− y)

√
a) dy

− x

2a

∫
exp(−a(x− y)2) dy

− 1

2a

∫
y exp(−a(x− y)2) dy

+

√
π

2
√
a

∫
y2erf ((x− y)

√
a) dy

)]d
e

]b
c

I31 =
(xijykj)

2

h4j

[[ √π

2
√
a

∫
erf ((x− y)

√
a) dy

]d
e

]b
c

I32 = −
2x2ijykj

h4j

[[ √π

2
√
a

∫
yerf ((x− y)

√
a) dy

]d
e

]b
c

I33 =
x2ij
h4j

[[ √π

2
√
a

∫
y2erf ((x− y)

√
a) dy

]d
e

]b
c

I34 = −
2xijy

2
kj

h4j

[[σj√π√
2

∫
yerf ((x− y)

√
a) dy − σ2

j

∫
exp(−a(x− y)2) dy

]d
e

]b
c

I35 =
4xijykj

h4j

[[σj√π√
2

∫
y2erf ((x− y)

√
a) dy − σ2

j

∫
y exp(−a(x− y)2) dy

]d
e

]b
c

I36 = −2xij
h4j

[[σj√π√
2

∫
y3erf ((x− y)

√
a) dy − σ2

j

∫
y2 exp(−a(x− y)2) dy

]d
e

]b
c
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I37 =
y2kj
h4j

[[ √
π

4
√
a3

∫
erf ((x− y)

√
a) dy − x

2a

∫
exp(−a(x− y)2) dy

− 1

2a

∫
y exp(−a(x− y)2) dy +

√
π

2
√
a

∫
y2erf ((x− y)

√
a) dy

]d
e

]b
c

I38 =−
2ykj
h4j

[[ √
π

4
√
a3

∫
yerf ((x− y)

√
a) dy − x

2a

∫
y exp(−a(x− y)2) dy

− 1

2a

∫
y2 exp(−a(x− y)2) dy +

√
π

2
√
a

∫
y3erf ((x− y)

√
a) dy

]d
e

]b
c

I39 =
1

h4j

[[ √
π

4
√
a3

∫
y2erf ((x− y)

√
a) dy − x

2a

∫
y2 exp(−a(x− y)2) dy

− 1

2a

∫
y3 exp(−a(x− y)2) dy +

√
π

2
√
a

∫
y4erf ((x− y)

√
a) dy

]d
e

]b
c

and a = 1
2σ2

j
, e = ykj − hj , d = ykj + hj , c = xij − hj and b = xij + hj , such that

I3 = I31 + I32 + I33 + I34 + I35 + I36 + I37 + I38 + I39 and I = I1 − I2 + I3

For complete development, please check the section 10.2.

5.3 Polynomial (SVM kernel) - Gaussian (KDE kernel)

The Polynomial kernel has the form:

k(x,y) = (⟨x,y⟩)g =

g∏
j=1

( d∑
ij=0

xijyij
)
=

d∑
i1=0

·
d∑

i2=0

· · ·
d∑

ig=0

(xi1yi1 · xi2yi2 · · ·xigyig)

where g is the degree of the polynomial and x0 = y0 =
√
b with b ≥ 0 (the constant

term of the polynomial).

The gaussian KDE base function is the same as in 5.1.

The extension is of the form:

k̂(x,y) =

[
d∑

i=0

κi

]g

18



where

κi =

{
Iyi if yi is missings
yi · ωi otherwise

and

ωi =

{
Ixi if xi is missings
xi otherwise

with

Iyi = ωi
1

(n−mi)

n∑
k=1
k/∈Mi

yki

Ixi =
1

(n−mi)

n∑
k=1
k/∈Mi

xki

where mi is the number of missings in the i-th variable and Mi = {i′ : i′ ∈
{1..n}, xi′i is a missing}.

For complete development, please check the section 10.3.
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6 Implementation

Regarding the computational complexity, the solution for the SVM approach can
be found in polynomial time. Thus, following a good programming practices the
algorithm is straightforward. However, as it is described below, the choice of the
programming language and different techniques were crucial in order to achieve
good performance results, as some polynomial time algorithms may take days or
even weeks to be computed.

All the kernel methods must compute a Gram matrix, that is the metrics matrix
of the space of the data. Is a positive semi-definite symmetric matrix [13]. Its
computation is the most time-consuming part when training an SVM model. It
needed much effort to achieve good time performance.

The first goal was to implement the solution carefully, programming small scripts or
functions ensuring this way their correctness by separate. That is to say, fulfilling
the basic rule of modular programming.

The first attempt was to implement using symbolic calculus provided by Matlab. As
this approach was too much time-consuming, several optimization have been done
(please see the figure below):

Figure 2: Execution time improvement in Matlab (50× 2 data set).

where each cumulative optimization step (x label) means:

1. No optimization done

2. Partial loop vectorization

3. Complete loop vectorization

4. By reference mode of passing variables

5. Use of variables instead of symbolic expressions
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6. Use of erf approximation [3] with three correct decimals

After measuring the time consumption of every function (extension case), the bot-
tleneck turned out to be the 4-th case, as it was expected. In the latest optimization
(erf approximation) the execution time had been reduced from 0.46s to 0.35s, and
for big datasets it was not noticeable.

Finally, the decision was to implement this part in C++ and also to precalculate the
4-th case. These improvements have made the execution time to be very reasonable.
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7 Experimentation

In this chapter we will perform an experimental study of the extended methods
performance against other imputation methods. Thus we have kernel extensions
that are (for more details please check the section 5):

1. RBF (SVM) - Gaussian (KDE)

2. RBF (SVM) - Epanechnikov (KDE)

3. Polynomial (SVM) - Gaussian (KDE)

And the imputation methods are:

1. MICE (Multivariate Imputation by Chained Equations) [15] - RBF (SVM)

2. Mean imputation - RBF (SVM)

Therefore, two data sets had been provided. One of them consisted of artificially
generated data, while the second one was based on a real data [4].

The first and the third extensions are assuming normal distribution of the data, as
they integrate the Gaussian KDE basis function.

MICE constructs a very complex models and its performance is expected to be
good in any situation. By the contrary, Mean imputation is a very simple and
straightforward way of univariate imputation.

The goal of this study is to see the effect of the missing value rate on the meth-
ods (mentioned above) performance and also to check the stability of the extended
methods; that is to say, RBF - Gaussian extension should perform better than RBF
- Epanechnikov on the synthetic data set (this will be discussed later). Moreover,
the real-data data set allows us to compare the accuracy of the methods objectively.

7.1 Data sets

The artificial data set was generated from the gaussian distribution with the follow-
ing parameters:

µ1 = (0, 0) µ2 = (3, 3) Σ1 = Σ2 =

(
2 0
0 2

)
where the subindex 1 is for the class +1 and the subindex 2 is for the class −1.

Training set size corresponds to n = 200. The test set is generated only once and
it consists of 500 examples. The number of variables is two (without label) for 2-D
representation purposes.
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The missings are added randomly over the whole training and test data sets, thus
the missing-data mechanism corresponds to MCAR. In order to perform more ac-
curate and complete study, the training sets are sampled 10 times and the rate of
missings ranges from 0% to 80% by steps of 10% for each of these sets.

The real data problem is a much studied dataset and represents a complex classifi-
cation problem, in which a population of Pima Indian women living near Phoenix,
Arizona, was tested for diabetes according to World Health Organization criteria.

The dataset contains 768 examples, 500 meaning negative conditions for diabetes
(class 1) and 268 showing positive conditions of diabetes (class 2). Each example
contains 8 attributes plus the class label.

In this data set, most of the variables show impossible zero values (e.g, the diastolic
blood pressure), which are actually missing values. A more exhaustive analysis have
been done, as can be seen in the table 1.

Pregnancies Pedigree Age Plasma BMI Blood Skin Serum
392 1 1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1 1 1
140 1 1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1 1 1
4 1 1 1 0 1 1 1 0 2
2 1 1 1 1 1 0 1 0 2

192 1 1 1 1 1 1 0 0 2
1 1 1 1 1 0 1 1 0 2

26 1 1 1 1 1 0 0 0 3
2 1 1 1 1 0 1 0 0 3
7 1 1 1 1 0 0 0 0 4

0 0 0 5 11 35 227 374 652

Table 1: This table shows how the missings are distributed over the data set.

It turns out that only 392 out of the 768 observations are unaffected by missing
values. There are 51% of rows with missing values for which only Skin (Triceps skin
fold thickness in mm) and Serum (2-Hour serum insulin in mu U/ml) are missing.
In fact, this variables have the biggest proportion of missingnes through all the
observations (30% and 49% respectively). The third less observed variable is the
Blood (Diastolic blood pressure mm Hg) with 5%. Thus, the conclusion is that Skin
and Serum are critical.

In 37% of rows with missings only Serum is not informed.

3 and 4 variables are not informed in 7% and 2% of rows with missings respectively.

The total proportion of missing values is ≈ 10.6% against 48.9% of rows with missing
values.
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After this analysis it seems to be obvious that this difference is due to the high
concentration of missings in the two critical variables, Skin and Serum.

7.2 Training

The training for extended kernel approach and imputation methods differs com-
pletely, as in the first case a Gram matrix is precomputed and in the second case it
does ksvm() itself.

7.2.1 Training for extended kernels

For each kernel extension the corresponding training Gram matrix had been com-
puted, that is, only over the training examples. There are three parameters to take
into account, that are bandwidth KDE parameter, σ RBF kernel parameter (where
it appears as γ = 1

2σ2 ) and polynomial degree and offset parameters for Polynomial
kernel.

The first one is inherent to kernel extension and is estimated with density() [7],
giving as parameters bandwidth smoothing and kernel or window basis function
(Gaussian and Epanechnikov have been proposed in this work). The rest of pa-
rameters are so called hyperparameters and, usually, are tuned by means of k-fold
cross-validation technique, that is explained below. In this work and for computa-
tional purposes the σ RBF kernel parameter had been estimated over training data
set with sigest() [9] from kernlab package and the polynomial degree parameter
was set by k-fold cross-validation, the offset was set to 1 by default.

For the regularization parameter C − cost k-fold cross-validation method had been
applied.

7.2.2 Training for imputed data sets

In the case of imputed data is slightly different. The model is trained with RBF
predefined kernel. For this purpose, the imputation must be performed against both
sets (training and test), but separately.

For the case of MICE imputation, the parameters are the number of imputations for
each missing (5 by default) and predictor matrix, that describes the relation between
the variables, thus only some of the variables might be used for the imputation of
another variable. For example, the diagonal is zero, as no variable predicts itself.

For the case of Mean imputation, there are no parameters.

The σ parameter had been estimated as in the extension case, but over the whole
training data matrix. The regularization parameter C−cost had been tuned through
k-fold cross-validation.
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6.2.3 K-fold cross-validation technique

This technique is widely used for the hyperparameter estimation. The model is
sequentially trained over each k − 1 training data set folds and then tested against
the fold that had not been used for training. This is performed for each C − cost
value. In fact, this technique is used to estimate any parameter that needs to be
tuned. Finally, the best parameter is selected comparing the (mean) cross-validation
error.

7.3 Test

The test corresponds to the weighted summation of the evaluation of the kernel
function for test examples against the support vectors found in the training step.

7.4 Statistical study of the error rates

Depending on the kind of the data set, I applied different types of study:

1. Artificial data set: boxplot for each method and number of examples.

2. Real-data data set: confidence interval and paired t-test [6].

7.4.1 Confidence interval definition

The goodness of the prediction is measured with a variable that measures a number
of successfull predictions and follows the binomial distribution (n, p). By the CLT, as
n is big enough, the distribution of the sample mean will be approximately normal.
It can also be seen as a summation of n random independent variables with Bernoulli
distribution. Then, the proportion is the mean of this summation and it corresponds

to the sample mean that follows N(µ = p, σ =

√
p(1−p)

n ). I set p = p̂, where p̂ is the
measured error rate.

The confidence interval at 95% is defined as follows

p ∈

[
p̂− zα/2 ·

√
p̂(1− p̂)

n
, p̂+ zα/2 ·

√
p̂(1− p̂)

n

]

with the significance level α = 0.05.

7.4.2 Paired t-test definition

A paired data sample is a set of observations of two variables (here methods) sampled
over the same individuals, so that there are two observations for each individual. In
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order to perform the paired t-test, first of all I have converted two samples in one
sample as a result of the difference. The difference must be done as:

difference = extended kernel error rate− imputed error rate

Then, the paired t-test is defined as follows (n is big enough or normality assump-
tion):

H0 : µ = 0 against H1 : µ > 0

the test statistic is

√
n(x̂− µ0)

s

where x̂ is the mean of the differences and s is the sample standard deviation. To
refuse the null hypothesis the inequality must hold:

1− P

(
tn−1 ≤

√
n(x̂− µ0)

s

)
< α

with α = 0.05 as a significance level.
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8 Results

In this section we present several tables and plots in order to perform a reliable
comparative between methods analyzed in this work. Further on, the results will be
discussed in the sub section 8.3.

8.1 Results for the synthetic-data data set

In order to compare the performance of every method, we have constructed a boxplot
for each missing rate and method; that is, ranging from 0% to 80%. Additionally,
we have constructed a plot which shows the effect of the missing rates on every
method. In this way we will be able to check the stability of the methods and also
their consistency; that is to say, not oscilating behaviour or at least not too much.
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Figure 3: Boxplots to measure a general performance between methods for each
missing rate.
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Figure 4: Comparative of different methods over sinthetic data varying the missing
rate.
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8.2 Results for the real-data data set

Here we present two measures for the analysis of the performance of the methods
on a real-data data set. The first table shows the confidence interval with 5% of
confidence level. In order to build it we had needed at least 30 different samples
(here training sets).

Method CI at 95%

RBF (SVM) - Gaussian (KDE) [0.2546, 0.2726]

RBF (SVM) - Epanechnikov (KDE) [0.2542, 0.2722]

Polynomial (SVM) - Gaussian (KDE) [0.2713, 0.2896]

MICE - RBF (SVM) [0.2471, 0.2649]

Mean - RBF (SVM) [0.2376, 0.2552]

Table 2: Confidence intervals for real-data data set

In the following table is shown the result of the paired t-test. Performing this test
we are expecting to check if the difference between the extension methods error
rates and the imputation methods error rates is significant. We had chosen the
significance level of 5% to be careful accepting the null hypothesis when in fact
there is a difference.

MICE - RBF (SVM) Mean - RBF (SVM)
RBF (SVM) - Gaussian (KDE) 0.4535 · 10−1 0.7851 · 10−4

RBF (SVM) - Epanechnikov (KDE) 0.787 · 10−1 0.3282 · 10−3

Polynomial (SVM)- Gaussian (KDE) 0.4187 · 10−4 0.3749 · 10−8

Table 3: p-value of paired t-test with α = 0.05 (extended kernels against imputation
methods).

8.3 Discussion

With respect to a synthetic-data problem, the three extension methods perform
similarly to the Mean imputation method. Their interquartile range is very com-
pressed independently of the missing rate. But, in this case, the MICE - RBF (SVM)
method seems to be the most robust one. As can be seen in the figure 4, it maintains
the accuracy even incrementing the missing rate. However, its interquartile range
is much wider and for 30% and 70% of missings its maximum error rate can be as
high as other methods.

Regarding the real-data problem, the method Polynomial (SVM) - Gaussian (KDE)
had the worst behavior, as it shows its confidence interval in the table 2. It turns out
that this method is similar to the Mean imputation approach, but using Polynomial
kernel function instead of RBF kernel, as it is done in this work. The results differ
significatively between these two methods, as can be seen in the table 3.
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The other two extensions behave similarly (very similar confidence interval) and also
we can not afirm that there is a significant difference between these two methods
and MICE - RBF (SVM) method, as show their p-values in the table 3.

It appears to be that the Mean - RBF (SVM) method works better in the real-data
problem than even MICE - RBF (SVM). On the other hand, in the synthetic-data
problem the best performance shows MICE imputation method, as it was expected.
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9 Conclusions and future work

This work have consisted mostly in theoretical development under the guidance
of my teacher. The approach that has been presented is considered novel in the
literature and there is much work to do.

The main goal of practical part was to make a feasible solution from the computa-
tional point of view. There is much room for improvement and optimization.

Moreover, as have been seen in section 8.3, all three kernel extensions are competitive
with standard imputation methods. In the synthetic-data problem they behave
similarly to Mean - RBF (SVM) method and in the real-data problem, statistical
analyses show that they are near to the MICE - RBF (SVM) method.

The advantages that present kernel extension methods are the following:

� They do not modify the data

� They are completely deterministic

� They allow to predict data with missings (even one observation)

� They are well formed theoretically

There can be done several improvements in the future:

� Normalize the kernels

� Optimize σ parameter

� Improve the efficiency

� Test with more problems
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10 Annex

10.1 RBF (SVM kernel) - Gaussian (KDE kernel)

Case 2:

k̂(x,y) =

d∏
j=1

∫ ∞

−∞

1

n−mj

n∑
i=1
i/∈Mj

1√
2h2jπ

exp
(
− 1

2h2j

(
xij − xj

)2)

exp
(
− 1

2σ2
j

(
xj − yj

)2)
dxj

where mj is the number of missings in the j-th variable and Mj = {i′ : i′ ∈
{1..n}, xi′j is a missing}. All d integrals are identical, thus only one of them will be
solved.

k̂j(x,y) =

∫ ∞

−∞

1

n−mj

n∑
i=1
i/∈Mj

1√
2h2jπ

exp
(
− 1

2h2j

(
xij−x

)2)
exp

(
− 1

2σ2
j

(
x−y

)2)
dx

with x = xj and y = yj (for simplicity).

By the linearity of the antidifferentiation:

k̂j(x,y) =
1

(n−mj)
√

2h2jπ

n∑
i=1
i/∈Mj

∫ ∞

−∞
exp

(
− 1

2h2j

(
xij−x

)2)
exp

(
− 1

2σ2
j

(
x−y

)2)
dx

that performing simple algebraic operations conduces to

k̂j(x,y) =
1

(n−mj)
√

2h2jπ

n∑
i=1
i/∈Mj

exp

(
−a

(
σ2
jx

2
ij + h2jy

2

h2j + σ2
j

))∫ ∞

−∞
exp

(
−a
(
x2−2bx

))
dx

where a =
h2
j+σ2

j

2h2
jσ

2
j
and b =

h2
jy+σ2

jxij

h2
j+σ2

j
.
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I =

∫ ∞

−∞
exp

(
− a
(
x2 − 2bx

))
dx

=exp
(
ab2
)∫ ∞

−∞
exp

(
− a
(
x− b

)2)
dx

=exp
(
ab2
)∫ ∞

−∞
exp

(
− at2

)
dt

=exp
(
ab2
)√π

a

where t = x− b and dt = ∂
∂x(x− b) = dx. For more details, please check 10.4.

Finally, the kernel extension expression is:

k̂(x,y) =
d∏

j=1

ωj

where

ωj =


1

(n−mj)
√

2h2
jπ

∑n
i=1
i/∈Mj

δ if xj is missing

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

with δ = exp
(
− a
(
σ2
jx

2
ij+h2

jy
2
j

h2
j+σ2

j

)
+ ab2

)√
π
a .

Case 4:

k̂(x,y) =

d∏
j=1

∫ ∞

−∞

∫ ∞

−∞

1

(n−mj)

n∑
k=1
k/∈Mj

1√
2h2jπ

exp
(
− 1

2h2j

(
ykj − yj

)2)
1

(n−mj)

n∑
i=1
i/∈Mj

1√
2h2jπ

exp
(
− 1

2h2j

(
xij − xj

)2)

exp
(
− 1

2σ2
j

(
xj − yj

)2)
dxjdyj

Again, is considered only one integral. Performing substitution of the result obtained
in case 2:
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k̂j(x,y) =

∫ ∞

−∞

1

(n−mj)
√

2h2jπ

n∑
k=1
k/∈Mj

exp
(
− 1

2h2j

(
ykj − y

)2)·
· 1

(n−mj)
√

2h2jπ

n∑
i=1
i/∈Mj

exp

(
− a

(
σ2
jx

2
ij + h2jy

2

h2j + σ2
j

))
exp(ab2)

√
π

a
dy

=

√
π(

(n−mj)
√

2h2jπ
)2√

a

n∑
k=1
k/∈Mj

n∑
i=1
i/∈Mj

∫ ∞

−∞
exp

(
− 1

2h2j

(
ykj − y

)2)·
· exp

(
− a

(
σ2
jx

2
ij + h2jy

2

h2j + σ2
j

))
· exp(ab2) dy

I take

I =

∫ ∞

−∞
exp

(
− 1

2h2j

(
ykj − y

)2 − a

(
σ2
jx

2
ij + h2jy

2

h2j + σ2
j

)
+ ab2

)
dy

and applying simple algebraic operations

I = exp
(
−

y2kjh
2
j + y2kjσ

2
j + x2ijh

2
j

2h2j (h
2
j + σ2

j )

)∫ ∞

−∞
exp

(
− a′(y2 + 2b′y)

)
dy

where a′ =
2σ2

jh
2
j+σ4

j

2h2
jσ

2
j (h

2
j+σ2

j )
and b′ =

ykjσ
2
jh

2
j+ykjσ

4
j+σ2

jh
2
jxij

2σ2
jh

2
j+σ4

j
.

I =exp(a′b′2) exp
(
−

y2kjh
2
j + y2kjσ

2
j + x2ijh

2
j

2h2j (h
2
j + σ2

j )

)∫ ∞

−∞
exp

(
− a′(y + b)2

)
dy

=exp(a′b′2) exp
(
−

y2kjh
2
j + y2kjσ

2
j + x2ijh

2
j

2h2j (h
2
j + σ2

j )

)∫ ∞

−∞
exp

(
− a′t2

)
dt

=exp(a′b′2) exp
(
−

y2kjh
2
j + y2kjσ

2
j + x2ijh

2
j

2h2j (h
2
j + σ2

j )

)√ π

a′

where t = y + b′ and dt = ∂
∂y (y + b′) = dy. For more details, please check 10.4.

Finally, the kernel extension expression is:

k̂(x,y) =

d∏
j=1

ωj
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where

ωj =


1

2(n−mj)2h2
j

√
a
√
a′

∑n
k=1
k/∈Mj

∑n
i=1
i/∈Mj

δ if xj , yj are missings

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

with δ = exp
(
a′b′2 − y2kjh

2
j+y2kjσ

2
j+x2

ijh
2
j

2h2
j (h

2
j+σ2

j )

)
.

10.2 RBF (SVM kernel) - Epanechnikov (KDE kernel)

Case 2:

Is considered only one integral as in 10.1.

k̂j(x,y) =

∫ ∞

−∞

3

4hj(n−mj)

n∑
i=1
i/∈Mj

(
1−
(xij − x

hj

)2)
I∣∣xij−x

hj

∣∣≤1
·exp

(
−a
(
x−y

)2)
dx

where x = xj , y = yj and a = 1
2σ2

j
. Manipulating the terms is obtained the following

expression:

k̂j(x,y) =
3

4hj(n−mj)

n∑
i=1
i/∈Mj

∫ b

c

(
1−

(xij − x

hj

)2)
· exp

(
− a
(
x− y

)2)
dx

where c = xij − hj and b = xij + hj .

I take the following integrals

I =

∫ b

c

(
1−

(xij − x

hj

)2)
· exp

(
− a
(
x− y

)2)
dx

=

∫ b

c
exp

(
− a
(
x− y

)2)
dx−

∫ b

c

(xij − x

hj

)2
· exp

(
− a
(
x− y

)2)
dx

,

I1 =

∫ b

c
exp

(
− a
(
x− y

)2)
dx

=

√
π

2
√
a

[
erf ((x− y)

√
a)

]b
c
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I2 =

∫ b

c

(xij − x

hj

)2
· exp

(
− a
(
x− y

)2)
dx

and

I21 =
x2ij
h2j

∫ b

c
exp

(
− a
(
x− y

)2)
dx

=
x2ij
h2j

[ √
π

2
√
a
erf ((x− y)

√
a)

]b
c

I22 =
2xij
h2j

∫ b

c
x · exp

(
− a
(
x− y

)2)
dx

=
2xij
h2j

[
− 1

2a
exp(−a(x− y)2) +

y
√
π

2
√
a
erf ((x− y)

√
a)

]b
c

I23 =
1

h2j

∫ b

c
x2 · exp

(
− a
(
x− y

)2)
dx

=
1

h2j

[ √
π

4
√
a3

erf ((x− y)
√
a)− x

2a
exp(−a(x− y)2)

− y

2a
exp(−a(x− y)2) +

y2
√
π

2
√
a
erf ((x− y)

√
a)

]b
c

such that I2 = I21 − I22 + I23 and I = I1 − I2. For more details, please check 10.4.

Finally, the kernel extension expression is:

k̂(x,y) =

d∏
j=1

ωj

where

ωj =


3

4hj(n−mj)

∑n
i=1
i/∈Mj

I if xj is missing

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

Case 4:
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k̂j(x,y) =

∫ ∞

−∞

∫ ∞

−∞

3

4hj(n−mj)

n∑
k=1
k/∈Mj

(
1−

(ykj − y

hj

)2)
I∣∣ ykj−y

hj

∣∣≤1

· 3

4hj(n−mj)

n∑
i=1
i/∈Mj

(
1−

(xij − x

hj

)2)
I∣∣xij−x

hj

∣∣≤1

· exp
(
− a
(
x− y

)2)
dxdy

where a = 1
2σ2

j
, x = xj and y = yj . Manipulating the expression above

k̂j(x,y) =
( 3

4hj(n−mj)

)2 n∑
k=1
k/∈Mj

n∑
i=1
i/∈Mj

∫ d

e

∫ b

c
δx,y dxdy

where δx,y =
((

1 −
(
ykj−y
hj

)2)
−
(
xij−x
hj

)2(
1 −

(
ykj−y
hj

)2))
exp

(
− a

(
x − y

)2)
,

e = ykj − hj , d = ykj + hj , c = xij − hj and b = xij + hj .

I take the following integrals

I1 =

∫ d

e

∫ b

c

(
1−

(ykj − y

hj

)2)
exp

(
− a
(
x− y

)2)
dxdy

=

∫ d

e

(
1−

(ykj − y

hj

)2) √
π

2
√
a

[
erf ((x− y)

√
a)
]b
c
dy

=

[[h2j√π − y2kj
√
π

2h2j
√
a

∫
erf ((x− y)

√
a) dy

−
√
π

2h2j
√
a

(∫
y2erf((x− y)

√
a) dy − 2ykj

∫
yerf ((x− y)

√
a) dy

)]d
e

]b
c
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I2 =

∫ d

e

∫ b

c

(xij − x

hj

)2
exp

(
− a
(
x− y

)2)
dxdy

=

[[ x2ij√π

2h2j
√
a

∫
erf ((x− y)

√
a) dy

− 2xij
h2j

( √
π

2
√
a

∫
yerf ((x− y)

√
a) dy − 1

2a

∫
exp(−a(x− y)2) dy

)
+

1

h2j

( √
π

4
√
a3

∫
erf ((x− y)

√
a) dy

− x

2a

∫
exp(−a(x− y)2) dy

− 1

2a

∫
y exp(−a(x− y)2) dy

+

√
π

2
√
a

∫
y2erf ((x− y)

√
a) dy

)]d
e

]b
c

and

I3 =

∫ d

e

∫ b

c

((xij − x)(ykj − y)

h2j

)2
exp

(
− a
(
x− y

)2)
dxdy

that can be decomposed into the following integrals

I31 =
(xijykj)

2

h4j

∫ d

e

∫ b

c
exp

(
− a
(
x− y

)2)
dxdy

=
(xijykj)

2

h4j

[[ √π

2
√
a

∫
erf ((x− y)

√
a) dy

]d
e

]b
c

I32 =−
2x2ijykj

h4j

∫ d

e

∫ b

c
y exp

(
− a
(
x− y

)2)
dxdy

=−
2x2ijykj

h4j

[[ √π

2
√
a

∫
yerf ((x− y)

√
a) dy

]d
e

]b
c

I33 =
x2ij
h4j

∫ d

e

∫ b

c
y2 exp

(
− a
(
x− y

)2)
dxdy

=
x2ij
h4j

[[ √π

2
√
a

∫
y2erf ((x− y)

√
a) dy

]d
e

]b
c
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I34 =−
2xijy

2
kj

h4j

∫ d

e

∫ b

c
x exp

(
− a
(
x− y

)2)
dxdy

=−
2xijy

2
kj

h4j

[[σj√π√
2

∫
yerf ((x− y)

√
a) dy − σ2

j

∫
exp(−a(x− y)2) dy

]d
e

]b
c

I35 =
4xijykj

h4j

∫ d

e

∫ b

c
yx exp

(
− a
(
x− y

)2)
dxdy

=
4xijykj

h4j

[[σj√π√
2

∫
y2erf ((x− y)

√
a) dy − σ2

j

∫
y exp(−a(x− y)2) dy

]d
e

]b
c

I36 =− 2xij
h4j

∫ d

e

∫ b

c
y2x exp

(
− a
(
x− y

)2)
dxdy

=− 2xij
h4j

[[σj√π√
2

∫
y3erf ((x− y)

√
a) dy − σ2

j

∫
y2 exp(−a(x− y)2) dy

]d
e

]b
c

I37 =
y2kj
h4j

∫ d

e

∫ b

c
x2 exp

(
− a
(
x− y

)2)
dxdy

=
y2kj
h4j

[[ √
π

4
√
a3

∫
erf ((x− y)

√
a) dy − x

2a

∫
exp(−a(x− y)2) dy

− 1

2a

∫
y exp(−a(x− y)2) dy +

√
π

2
√
a

∫
y2erf ((x− y)

√
a) dy

]d
e

]b
c

I38 =−
2ykj
h4j

∫ d

e

∫ b

c
yx2 exp

(
− a
(
x− y

)2)
dxdy

=−
2ykj
h4j

[[ √
π

4
√
a3

∫
yerf ((x− y)

√
a) dy − x

2a

∫
y exp(−a(x− y)2) dy

− 1

2a

∫
y2 exp(−a(x− y)2) dy +

√
π

2
√
a

∫
y3erf ((x− y)

√
a) dy

]d
e

]b
c
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I39 =
1

h4j

∫ d

e

∫ b

c
y2x2 exp

(
− a
(
x− y

)2)
dxdy

=
1

h4j

[[ √
π

4
√
a3

∫
y2erf ((x− y)

√
a) dy − x

2a

∫
y2 exp(−a(x− y)2) dy

− 1

2a

∫
y3 exp(−a(x− y)2) dy +

√
π

2
√
a

∫
y4erf ((x− y)

√
a) dy

]d
e

]b
c

such that I3 = I31 + I32 + I33 + I34 + I35 + I36 + I37 + I38 + I39 and I = I1 − I2 + I3.

Finally, the kernel extension expression is:

k̂(x,y) =
d∏

j=1

ωj

where

ωj =


(

3
4hj(n−mj)

)2∑n
k=1
k/∈Mj

∑n
i=1
i/∈Mj

I if xj , yj are missings

exp
(
− 1

2σ2
j

(
xj − yj

)2)
if xj , yj are not missings

10.3 Polynomial (SVM kernel) - Gaussian (KDE kernel)

For construction of the extension I will assume that both variables are completely
missing, except the constant term, and then two more variables will be introduced
in order to manage all the possible cases.

By the linearity of the antidifferentiation, the extension has the following form:

k̂(x,y) =

d∑
i1=0

·
d∑

i2=0

· · ·
d∑

ig=0

∫ ∞

−∞

∫ ∞

−∞
xi1yi1 p̂(xi1)p̂(yi1) dxi1 dyi1 ·

·
∫ ∞

−∞

∫ ∞

−∞
xi2yi2 p̂(xi2)p̂(yi2) dxi2 dyi2 · · ·

·
∫ ∞

−∞

∫ ∞

−∞
xigyig p̂(xig)p̂(yig) dxig dyig

Grouping the terms the expression is (here the first auxiliar variable is introduced)
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k̂(x,y) =
d∑

i1=0

∫ ∞

−∞
yi1 p̂(yi1)

∫ ∞

−∞
xi1 p̂(xi1) dxi1 dyi1 ·

d∑
i2=0

∫ ∞

−∞
yi2 p̂(yi2)

∫ ∞

−∞
xi2 p̂(xi2) dxi2 dyi2 · · ·

d∑
ig=0

∫ ∞

−∞
yig p̂(yig)

∫ ∞

−∞
xig p̂(xig) dxig dyig

=

[
d∑

i=0

∫ ∞

−∞
yip̂(yi)

∫ ∞

−∞
xip̂(xi) dxi dyi

]g

=

[
d∑

i=0

κi

]g

where (here the second variable is introduced)

κi =

{
Iyi if yi is missings
yi · ωi otherwise

and

ωi =

{
Ixi if xi is missings
xi otherwise

The integrals have the following solution

Iyi = ωi

∫ ∞

−∞
yip̂(yi) dyi = ωi

1

(n−mi)

n∑
k=1
k/∈Mi

yki

Ixi =

∫ ∞

−∞
xip̂(xi) dxi =

1

(n−mi)

n∑
k=1
k/∈Mi

xki

where mi is the number of missings in the i-th variable and Mi = {i′ : i′ ∈
{1..n}, xi′i is a missing}.

The integral of the form

∫ ∞

−∞
x · exp

(
− a(y − x)2

)
dx
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is solved taking t = y−x, dt = ∂
∂x(y−x) = −dx. Due to the substitution, the limits

of integration are changed and it results in

−
∫ −∞

∞
(y − t) · exp(−at2) dt

that is the same as

∫ ∞

−∞
(y − t) · exp(−at2) dt = y

∫ ∞

−∞
exp(−at2) dt−

∫ ∞

−∞
t · exp(−at2) dt = y

√
π√
a
+ 0

when a > 0 (in this case is so by definition). For more details, please check 10.4.

10.4 Solutions for the used integrals

The integral of the form

I(a) =

∫ ∞

−∞
exp(−at2) dt

can be solved in this way

(I(a))2 =

∫ ∞

−∞
exp(−at2) dt

∫ ∞

−∞
exp(−at′

2
) dt′

=

∫ ∞

−∞

∫ ∞

−∞
exp

(
− a
(
t2 + t′

2))
dtdt′

=

∫ ∞

−∞

∫ ∞

−∞
exp

(
− ar2

)
dtdt′

where r2 = t2 + t′
2
is the circle equation with radius r. To be noticed, that the

integrand presents the same value for all the points (t, t′) that form the circle with
radius r. Therefore, if the integrated plane is divided into several circles with r =
0..∞, instead of thinking on it as a set of rectangles, is obtained then that the
contribution of each annular region is exp(−ar2) · 2πr · dr, where dr is the width of
every such strip. Thus

(I(a))2 =

∫ ∞

0
exp(−ar2) 2πr dr

Be u = r2, hence, du = 2r · dr and
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(I(a))2 = π

∫ ∞

0
exp(−au) du =

π

a

with
∫∞
0 exp(−au) du = − 1

a

[
exp(−au)

]∞
0

= 1
a . Therefore

I(a) =

√
π

a

The integral of the form

∫
exp(−at2) dt

can be solved using u-substitution taking at2 = u2, hence t = u√
a
(with a > 0).

Thus dt = ∂
∂u(

u√
a
) = 1√

a
du and

∫
exp(−at2) dt =

1√
a

∫
exp(−u2) du

where using error function erf (x) = 2√
π

∫ x
0 exp(−t2) dt

∫
exp(−at2) dt =

√
π

2
√
a
erf (t

√
a)

∫
exp(−a(x− y)2) dx =

∫
exp(−at2) dt =

√
π

2
√
a
erf ((x− y)

√
a)

taking t = x− y, dt = ∂
∂x(x− y) = dx.

∫
x exp(−a(x− y)2) dx = − 1

2a
exp(−a(x− y)2) +

y
√
π

2
√
a
erf ((x− y)

√
a)

taking t = x− y, dt = ∂
∂x(x− y) = dx.

∫
x2 exp(−a(x− y)2) dx =2y

∫
t exp(−at2) dt+ y2

∫
exp(−at2) dt+

∫
t2 exp(−at2) dt

=

√
π

4
√
a3

erf ((x− y)
√
a)− x

2a
exp(−a(x− y)2)

− y

2a
exp(−a(x− y)2) +

y2
√
π

2
√
a
erf ((x− y)

√
a)

taking t = x− y, dt = ∂
∂x(x− y) = dx and x = t+ y.
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∫
exp(−a(x− y)2) dy = −

∫
exp(−at2) dt = −

√
π

2
√
a
erf ((x− y)

√
a)

taking t = x− y, dt = ∂
∂y (x− y) = −dy.

∫
erf ((x− y)

√
a) dy =yerf ((x− y)

√
a) +

2
√
a√
π

∫
y exp(−a(x− y)2) dy

=yerf ((x− y)
√
a)− 1√

π
√
a
exp(−a(x− y)2)− xerf ((x− y)

√
a)

taking u = erf ((x − y)
√
a), du = ∂

∂y erf ((x − y)
√
a) = − 2

√
a

sqrtπ exp(−a(x − y)2) dy,

dv = dy and v =
∫

dy = y.

∫
y exp(−a(x− y)2) dy =

∫
t exp(−at2) dt− x

∫
exp(−at2) dt

=− 1

2a
exp(−a(x− y)2)− x

√
π

2
√
a
erf ((x− y)

√
a)

taking t = x− y and dt = ∂
∂y (x− y) = −dy.

∫
yerf ((x− y)

√
a) dy =

y2

2
erf ((x− y)

√
a) +

√
a√
π

∫
y2 exp(−a(x− y)2) dy

=
y2

2
erf ((x− y)

√
a)− x√

π
√
a
exp(−a(x− y)2)

− x2

2
erf ((x− y)

√
a)− 1

4a
erf ((x− y)

√
a)

+
1

2
√
π
√
a
exp(−a(x− y)2)(x− y)

taking u = erf ((x−y)
√
a), du = −2

√
a√
π
exp(−a(x−y)2) dy, dv = y and v =

∫
y dy =

y2

2 .

∫
y2 exp(−a(x− y)2) dy =2x

∫
t exp(−at2) dt− x2

∫
exp(−at2) dt−

∫
t2 exp(−at2) dt

=− x

a
exp(−a(x− y)2)− x2

√
π

2
√
a
erf ((x− y)

√
a)

−
√
π

4
√
a3

erf ((x− y)
√
a) +

1

2a
exp(−a(x− y)2)(x− y)

taking t = x− y, dt = ∂
∂y (x− y) = −dy and y = x− t.

44



∫
y2erf ((x− y)

√
a) dy =

1

3

(
y3erf ((x− y)

√
a)− y2√

π
√
a
exp(−a(x− y)2)

− xy2erf ((x− y)
√
a) +

2√
π
√
a

∫
y exp(−a(x− y)2) dy

+ 2x

∫
yerf ((x− y)

√
a) dy

)
taking u = y2, du = ∂

∂y (y
2) = 2y dy, dv = erf ((x − y)

√
a) dy and v =

∫
erf ((x −

y)
√
a) dy.

∫
y3 exp(−a(x− y)2) dy = −

√
π

2
√
a
y3erf ((x− y)

√
a) +

3
√
π

2
√
a

∫
y2erf ((x− y)

√
a) dy

taking u = y3, du = ∂
∂y (y

3) = 3y dy, dv = exp(−a(x−y)2) dy and v =
∫
exp(−a(x−

y)2) dy = −
√
π

2
√
a
erf ((x− y)

√
a).

∫
y3erf ((x− y)

√
a) dy =

1

4

(
y4erf ((x− y)

√
a)− y3√

π
√
a
exp(−a(x− y)2)

− xy3erf ((x− y)
√
a) +

3√
π
√
a

∫
y2 exp(−a(x− y)2) dy

+ 3x

∫
y2erf ((x− y)

√
a) dy

)
taking u = y3, du = ∂

∂y (y
3) = 3y2 dy, dv = erf ((x − y)

√
a) dy and v =

∫
erf ((x −

y)
√
a) dy.

∫
y4erf dy =

1

5

(
y5erf ((x− y)

√
a)− y4√

π
√
a
exp(−a(x− y)2)− xy4erf ((x− y)

√
a)

+
4√
π
√
a

∫
y3 exp(−a(x− y)2) dy + 4x

∫
y3erf ((x− y)

√
a) dy

)
The integral

∫
t2 exp(−at2) dt is convenient to solve in this way:

∫
t2 exp(−at2) dt = − ∂

∂a

(∫
exp(−at2) dt

)

Should be applied the derivative of the summation and product and, then, to apply
the fundamental theorem of algebra (for the error function, that is not zero because
the variable a appears in its upper limit)
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− ∂

∂a

(∫
exp(−at2) dt

)
=− ∂

∂a

( √
π

2
√
a
erf (t

√
a)

)

=−

[( ∂

∂a

√
π

2
√
a

)
erf (t

√
a) +

√
π

2
√
a

( ∂

∂a
erf (t

√
a)
)]

=

√
π

4
√
a3

erf (t
√
a)− 1

2a
exp(−at2)t
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