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by Javier Ribera Prat

Video surveillance systems are evolving from simple closed-circuit television (CCTV)

towards intelligent systems capable of understanding the recorded scenes. This trend

is accompanied by the widespread increase in the amount of cameras, which makes the

continuous monitoring of video feeds a practically impossible task. In this scenario, video

surveillance systems make intensive use of video analytics and image processing in order

to allow their scalability and boost their effectiveness.

One of such video analytics performed in video surveillance systems is crowd analysis.

Crowd analysis plays a fundamental role in security applications. For instance, keeping

a rough estimate of the amount of people present in a given area or inside a building is

critical to prevent jams in an emergency or when planning the distribution of entry and

exit nodes.

In this thesis, we focus on crowd flow estimation. Crowd flow is defined as the number of

people that have crossed a specific region over time. Hence, the goal of the method is to

estimate the crowd flow as accurately as possible in real time. Many automatic methods

have been proposed in the literature to estimate the crowd flow.

However, video analytics techniques often face a wide range of difficulties such as occlu-

sions, shadows, environmental conditions changes or distortions in the video. Developed

methods struggle to maintain a high accuracy in such situations. Crowdsourcing has

been shown as an effective solution to solve to problems that involve complex cognitive

tasks. By incorporating human assistantship, the performance of automatic methods

can be enhanced in adverse situations.

In this thesis, an automatic crowd flow estimation method, previously developed in

the Video and Image Processing Laboratory at Purdue University, is implemented and

crowdsourcing is used to enhance its performance. Also, a web platform is developed

to control the whole system remotely by the operator of the system, and to allow the

crowdsourcing members to perform their tasks.

http://www.upc.edu
http://www.purdue.edu
http://www.etsetb.upc.edu


UNIVERSITAT POLITÈCNICA DE CATALUNYA

PURDUE UNIVERSITY

Resum
Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

Enginyeria de Telecomunicació

Automatic crowdflow estimation enhanced by crowdsourcing

by Javier Ribera Prat

Els sistemes de videovigilància estan evolucionant des de simples circuits tancats de tele-

visió (CCTV) cap a sistemes intel·ligents capaços d’entendre les escenes enregistrades.

A aquesta tendència li acompanya l’extès increment en la quantitat de càmeres, fet

que fa que monitoritzar continuament tots els fluxes de video sigui una tasca pràctica-

ment impossible. En aquest escenari, els sistemes de videovigilància fan un ús intensiu

d’analítiques de video i processament d’imatge per tal de permetre la seva escalabilitat

i impulsar la seva efectivitat.

Una d’aquestes analítiques de video que es realitzen en els sistemes de videvigilància

és l’anomenat «crowd analysis»o anàlisi de multituds. El «crowd analysis»duu a terme

un rol fonamental en aplicacions de seguretat. Per exemple, mantenir una estimació

aproximada de la quantitat de persones presents en una àrea o dintre d’un edifici és

crític per prevenir embusos en una emergència o per planejar la distribució de nodes

d’entrada o sortida.

En aquesta tesis, ens focalitzem en estimació del «crowd flow»o fluxe de mutituds.

«Crowd flow»es defineix com el nombre de persones que han creuat una regió específica

al llarg del temps. Així, l’objectiu del mètode és estimar el «crowd flow»tan precisa-

ment com sigui possible en temps real. En la literatura s’han proposat molts mètodes

automàtics per estimar el «crowd flow».

Tot i així, les tècniques d’analítiques de video sovint s’enfronten a una àmplia gamma de

dificultats com ara oclusions, sombres, canvis en les condicions ambientals o distorsions en

el video. Els mètodes desenvolupats barallen per mantenir una alta precisió en aquestes

situacions. El «crowdsourcing»s’ha demostrat com una sol·lució efectiva als problemes

que involucren tasques cognitives complexes. Incorporant assistència humana, es pot

millorar el rendiment dels mètodes automàtics en situacions adverses.

En aquesta tesi, s’implementa un mètode automàtic d’estimació del «crowd flow», prèvia-

ment desenvolupat al Video and Image Processing Laboratory a la universitat de Purdue,

http://www.upc.edu
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i es fa servir «crowdsourcing»per millorar el seu rendiment. A més, es desenvolupa una

plataforma web per controlar tot el sistema remotament per l’operador, i per permetre

als membres del «crowdsourcing»portar a terme les seves tasques.
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Los sistemas de videovigilancia están evolucionando desde simples circuitos cerrados de

televisión (CCTV) hacia sistemas inteligentes capaces de entender las escenas registradas.

A esta tendencia le acompaña el extendido incremento en la cantidad de cámaras, hecho

que hace que monitorizar continuamente todos los flujos de vídeo sea una tarea prác-

ticamente imposible. En este escenario, los sistemas de videovigilancia hacen un uso

intensivo de analíticas de video y procesado de imagen al fin de permitir su escalabilidad

e impulsar su efectividad.

Una de estas analíticas de vídeo que sea realizan en los sistemas de videovigilancia es

el llamado «crowd analysis»o análisis de multitudes. El «crowd analysis»lleva a cabo

un rol fundamental en aplicaciones de seguridad. Por ejemplo, mantener una estimación

aproximada de la cantidad de personas presentes en una área o dentro de un edificio es

crítico para prevenir atascos en una emergencia o para planear la distribución de nodos

de entrada o salida.

En esta tesis, nos focalizamos en estimación del «crowd flow»o flujo de multitudes.

«Crowd flow»se define como el número de personas que han cruzado una región es-

pecífica a lo largo del tiempo. Así, el objetivo del método es estimar el «crowd flow»tan

precisamente como sea posible en tiempo real. En la literatura se han propuesto muchos

métodos automáticos para estimar el «crowd flow».

Aun así, las técnicas de analíticas de vídeo a menudo se enfrentan con una amplia gama

de dificultades tales como oclusiones, sombras, cambios en las condiciones ambientales o

distorsiones en el vídeo. Los métodos desarrollados pelean por mantener una alta pre-

cisión en estas situaciones. El «crowdsourcing»se ha demostrado como una solución efec-

tiva a los problemas que involucran tareas cognitivas complejas. Incorporando asistencia

humana, se puede mejorar el rendimiento de los métodos automáticos en situaciones

adversas.
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En esta tesis, se implementa un método automático de estimación del «crowd flow»,

previamente desarrollado en el Video and Image Processing Laboratory en la universidad

de Purdue, y se usa «crowdsourcing»para mejorar su rendimiento. Además, se desarrolla

una plataforma web para controlar todo el sistema remotamente por parte del operador,

y permitir a los miembros del «crowdsourcing»llevar a cabo sus tareas.
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Chapter 1

Introduction

Video surveillance systems play an important role in commercial, law enforcement and

military applications for security purposes [1]. For instance, private buildings, airports

or border control points make use of continuous monitoring for prevention and a pos-

teriori analysis of incidents. However, the current trend in surveillance systems shows

an exponential increase of the number of cameras. The vast amount of deployed cam-

eras makes the continous monitoring of all the video feeds a hardly impossible task to

be performed by a human operator [2]. This would lead to an underuse of the video

surveillance system, as any preventing capability wouldn’t be possible.

Hence, video surveillance systems are moving towards intelligent solutions to provide

a scalable solution [1]. In such situation, video analytics are responsible of allowing

the system to understand the scenes and react to certain events by warning the security

operators in real time. Fight, intrusion or left-luggage detection are examples of incidents

that can be detected by means of video processing. Many video analytic techniques have

been developed to provide automatic analysis of the video data [3].

One type of video analytics performed in video surveillance systems is crowd flow esti-

mation. Crowd flow is defined as the number of people that has crossed a spatial region

over time. By analyzing the crowd flow in the entry of a building, system operators can

watch the capacity of the building not to be surpassed. It may also help to avoid jams

and provide useful information when designing paths or entry and exit nodes.

In this thesis, we focus on crowd flow estimation. A method previously developed in the

VIPER laboratory [4] is taken as starting point. This method had been tested as a proof

of concept with successful results. However, it lacked consistency throughout the code

to be implemented in a real scenario. In addition, it was coded in MATLAB, leading

to performance and licensing problems beyond simple testing scenarios. Therefore, the

1
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whole crowd flow estimation method has been implemented from scratch in Python, using

convenient libraries, and has been built in such a way that could be easily incorporated

to a much wider video surveillance platform.

On the other hand, a different project was carried out by Khalid Tahboub and Neeraj

Gadgil also at the VIPER laboratory [5]. In that project, a web-based video annotation

system for crowdsourcing surveillance videos was developed . The result of this project

was this tool, which centralizes different video feeds coming from security cameras or

video files. The operator allows certain users to manually anotate specific events in the

video streams. It also can be used to train the users to perform specific tasks.

Any video analytics technique faces challenges when trying to keep a good accuracy

level. These may be occlusions, shadows, distortions in the video due to packet losses

or video compression, and sudden or gradual environmental changes, such as light con-

ditions. Crowdsourcing has been proven to be an effective solution for utilizing human

intelligence, or the “wisdom of the crowd” to perform several tasks. By crowdsourcing

here we mean the use of a group of people (e.g. expert observers, or the “o-crowd”) to

observe the surveillance video and “help” the automatic analysis method perform better.

In this thesis, an approach is proposed to enhance the performance of the automatic

crowd flow estimation method. To avoid confusion, the group of people observing the

surveillance video and helping with the crowd flow analysis will be called “o-crowd”. The

crowd of people being recorded by the cameras and being counted will be known as the

“crowd.” By using crowdsourcing, the automatic method “asks” the o-crowd whenever

it is uncertain in making a particular decision. The answers from the o-crowd are read

by the system in order to overcome this specific uncertain decision. Not only that, but

also the information provided by the o-crowd is assimilated so that it can reduce future

uncertainties and keep asking the o-crowd less often. This way, the system “learns”

from the o-crowd. The threshold specifies the maximum uncertainty that the system

will tolerate before triggering the o-crowd. It can be tuned so the utilization of the o-

crowd can be controled. Because of this reason, it has been denominated crowdsourcing

parameter.

A web interface (front-end) has also been to be able to control the whole system. It

allows the operator to monitor all the processes running in the backend and their current

status. Each process runs a crowd flow estimation analyzing one video feed, coming from

a file or a real-time stream. It also lets the operator to invoke new processes, specifying

different parameters, and let the o-crowd perform their tasks, among other things. This

interface is meant to be easily incorporated in the video annotation tool.
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In the backend, for the crowd flow estimation method, the language used is Python 2.7.5.

All non-temporary information is stored in PostgreSQL through the Object-Relational

Mapper (ORM) SQLAlchemy 0.8.7. For image processing functionalities, OpenCV 2.4.9

and scikit-image 0.10.1 are used. For array manipulations, NumPy 1.8.2 is used to boost

performance due to its implementation in C. The API that the frontend will interact

with is written in PHP for compatibility reasons with the anotation platform.

The frontend is coded in Javascript using HTML5 functionalities for video displaying and

canvas drawing. AngularJS has been the chosen framework. The frontend communicates

asynchronously with the backend through AJAX requests. For the design, Bootstrap

3.2.0 has provided templates and animations.

The server where the backend is running is located at the VIPER laboratory and has

the following specifications:

• Intel(R) Xeon(R) CPU E3-1225 V2 @ 3.20GHz

• 32 GB DIMM DDR3 1600 MHz

• Gigabit Ethernet interface

Part of this project was published in an IEEE paper and presented in the IEEE NAECON

conference, held in Dayton, Ohio, from June 25th to June 27th, 2014. The title of the

paper was “Automatic crowd flow estimation enhanced by crowdsourcing” and its authors

were Javier Ribera Prat, Khalid Tahboub and Edward J. Delp.

An extension of it will be presented in the IS&T/SPIE EI conference, held in San Fran-

cisco, California, from February 8th to February 12th, 2015. For now, the title of the

paper will be “Characterizing the uncertainty of classification methods and its impact

on the performance of crowdsourcing”. Its authors will be Javier Ribera Prat, Khalid

Tahboub and Edward J. Delp.



Chapter 2

Literature Review

In this chapter, we will mention and discuss some of the methods present in the literature

for crowd flow estimation. Also, a brief review of studies about crowdsourcing will be

done.

2.1 Crowd flow estimation

Crowd analysis is an extensively studied topic in the video analytics field. Analyzing

the crowd includes detecting the direction that the crowd is moving, the speed, the

number of people, the density, anomalous events (e.g. fighting) or any other pattern. Its

applications extend beyond video surveillance. In [3, 6], a survey of many methods for

crowd analysis employed in computer vision can be found.

Regarding crowd flow estimation, the approaches taken by different authors span a wide

range of image processing techniques. Direct methods intend to estimate the crowd flow

by detecting every individual and tracking them throughout the scene. This approach

lacks scalability when dealing with large crowds, as simultaneous tracking of hundrends

of targets is not robust and it becomes computationally too expensive. On the other side,

indirect methods deduce crowd characteristics from features extracted from the image

or video. Thus, this type of methods propose a relation between some low level features

and the crowd flow.

In [7], the use of features such as edge orientation and blob size histograms is described.

In [8], the number of people in the crowd is estimated using geometric, edge, and dynamic

texture features. In [9], a novel spatial-temporal matrix, support vector machine (SVM)

and mean-shift clustering are used to count pedestrians.

4
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In [10], a linear relationship between the number of pixels in the foreground segmentation

and the number of people is proposed, assuming a constant level of occlusion. In [11, 12],

the relation between level of occlusion, or crowdedness, in an image and its texture is

shown. In [4], this linear assumption was used to estimate the crowd flow and texture

was incorporated to consider changing crowd densities.

This work is based on the indirect method explained in [4]. Some enhancements are

proposed and crowdsourcing is incorporated to assist the method in its weak points.

2.2 Crowdsourcing

The crowdsourcing paradigm was introduced by J. Howe in 2006 in [13] and a definition

proposed in [14]. Originally, it was conceived as a way to obtain services by soliciting

them to a large group of undefined people, instead of using the internal resources of the

requester [14]. By demanding the work to be done by an extern crowd, not only a much

more inexpensive, but also a diverse result can be achieved [13]. The vision of the whole

picture that the “wisdom of the crowd” holds, usually leads a more accurate outcome

[15]. Recently, a more wide and consistent definition of crowdsourcing was presented [16].

In this work, we refer as crowdsourcing to the use of a group of humans, the “o-crowd”,

to assist the automatic analysis carried out by a machine in order to make it perform

better.

[17] shows a study reviewing the current crowdsourcing systems on the world-wide web.

Several commercial platforms that allow requesters to reach the public crowd already ex-

ist. Examples are Amazon Mechanical Turk (MTurk) [18], Freelancer [19], Mob4Hire [20],

uTest [21], TopCoder [22], CloudCrowd [23], and CrowdFlower [24]. Issues concerning

using commercial crowdsourcing systems for law enforcement arise, due to requirements

like video contents protection [25]. In [5], a web-based tool to allow fine control over

annotations of events on video surveillance videos is described.

Crowdsourcing has been widely used in the computer vision community for building up

training data. The idea to make use of human intelligence to assist machines in an

automatic method is not new. In [26], a scheme to enhance machine learning by using

crowdsourcing is proposed. It is applied to apprehension of new objects by autonomous

robots. Although manual human-provided segmentations of the objects of interest and

supervised review of the tasks by experts are required, the models for these new ob-

jects are built from crowdsourced labels requested through MTurk. In [27], an object

detection method was trained and the model of the classifier was continuously refined
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using crowdsourcing. It iteratively identifies unlabeled data and automatically uploads

annotation requests to MTurk.

In this work, the members of the “o-crowd” are reached through a web platform, specif-

ically developed for crowd flow estimation, that allow controlled members to answer

very tailored answers, with a view to integrate it into the video annotation tool [5]. A

crowdsourcing-helped video surveillance system with many other detectors and applica-

tions would be, then, a long-term goal.



Chapter 3

Crowd flow estimation

In this chapter, we thoroughly describe the automatic crowd flow estimation method

used in this work. It was originally conceived in [4] by Satyam Srivastava, Ka Ki Ng and

Edward J. Delp at the Video and Image Processing Laboratory at Purdue University.

Also, some proposed improvements are explained.

In Section 3.1, a general scheme of the method is presented as a first approach. An

overview of the key ideas and components is explained. In Section 3.2, the process to

obtain the foreground pixel count, which is directly related to the final estimation, is

described in detail. In Section 3.3

3.1 Key ideas and overall scheme

The final goal is to estimate the number of people that have crossed a desired region of

the image in a given time, i. e. crowd flow.

As stated before, this method follows an indirect approach. This is, it relates characteris-

tics of the crowd to low level features. In this case, our low level feature is the number of

foreground pixels. The assumption is that the number of people present is proportional

to the number of foreground pixels.

The region of the space where people crossing will be counted is called “Tripwire” and it

must be manually specified by the user.

We compute the crowd flow estimation proportionally to the accumulation of foreground

pixels in the Tripwire. Thus, the proportionality rule results in

υN =
S̃N
C

(3.1)

7
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where υN represents the number of people that have crossed the Tripwire up to the

frame number N . SN represents the accumulated foreground pixel count in that period.

The details of the foreground pixel count will be discussed in Section 3.2. C is the

proportionality factor, also called scaling factor, used to scale the number of foreground

pixels to the amount of people crowssing. It represents the amount of pixels that every

person shows. Crowdedness is related to occlusions, and more occlusions means less

pixels can be seen per person. Because of this reason, the lineal proportion holds true

as long as the crowdedness remains constant. Thus, the value of C depends on the level

of crowdedness of the scene. More explanation about the scaling factor and the level of

crowdedness will be given in Section 3.3.

In addition to the Tripwire, the operator must also select another region called Region

of Interest (ROI) used for the crowdedness estimation. An example of a Tripwire and a

ROI over a surveillance videos are depicted in 3.1.

Figure 3.1: Example of a Region of Interest (ROI) and a Tripwire drawn over a frame
of a surveillance video. ROI is in blue, and Tripwire in red.

An overall scheme of the whole method is shown in Figure 3.2. For each frame, the

lower branch computes the foreground pixel count inside the Tripwire and the upper

brand estimates the scaling factor from the density level of the ROI. The lower branch

is detailed in Section 3.2 and the upper branch in Section 3.3.
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Figure 3.2: Overall scheme of the automatic crowd flow estimation method.

3.2 Foreground pixel count

In Figure 3.3, the process to obtain the foreground pixel count from the Tripwire is

schematized.

Figure 3.3: Scheme of the foreground pixel count.

Let the image of an arbitrary frame with frame number n be defined as

Fn = {fn(i, j)|i = 0, 1, ...,W − 1 and j = 0, 1, ...,H − 1} (3.2)

where the fn(i, j) is the value of the pixel (that may be a 3-D RBG value if it is not a

gray-scale image) at width position i and height position j. W and H are the width and

height of the frame, respectively. Then, we can represent the foreground mask of Fn as

an indicative function In that is 1 when the pixel belongs to the foreground segmentation

and 0 otherwise, i.e,

In(i, j) =

{
1 : (i, j) ∈ foreground segmentation

0 : (i, j) /∈ foreground segmentation
(3.3)
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Also, let the Tripwire be represented as the set of pixels < = {(i, j)|(i, j) ∈ Tripwire}.
An example of the foreground mask of the Tripwire is shown in Figure 3.4.

Figure 3.4: An arbitrary frame, on the left, and the foreground mask of the Tripwire
on the right.

To obtain the foreground mask In, we apply a technique called Background Subtraction

(BS), which is explained in detail in Subsection 3.2.2. There is only need to obtain the

foreground mask of the Tripwire. Note, then, that the computational cost of performing

Background Subtration in a small region is much smaller than in the whole frame.

The foreground pixel count Sn of a frame Fn is then determined as how many pixels

belong to the foreground segmentation, i. e,

Sn =
∑

(i,j)ε<

In(i, j) (3.4)

The foreground pixel accumulation SN up to the frame number N is the accumulation

of foreground pixels in that period, i. e,

SN =
N∑
n=0

Sn =
N∑
n=0

∑
(i,j)ε<

In(i, j) (3.5)

However, Equation (3.5) deals with all frames in the period the same way, regardless of

their level of crowdedness. To overcome this limitation, an improvement of this equation

that takes into consideration variance in the level of crowdedness will be provided and

discussed in Section 3.3.

In addition, due to perspective distortions, the blob size of an object in the foreground

mask varies according to the distance from the camera. Unfortunately, if Equation (3.5)

is directly used, all pedestrians will be assumed to be at the same distance to the camera,

which doesn’t always hold true. This may lead to an inaccurate result of the crowd flow
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estimation. A weighting function is introduced to consider perspective in the foreground

mask.

3.2.1 Weighting function

Not only for perspective distortions, but also to account for the effect of perspective, ve-

locities and direction of the movement of the pedestrians, a weighting function is needed.

Nevertheless, only perspective distortion remains constant throughout the video, as nei-

ther the Tipwire boundaries or the position of the camera are supposed to move. Velocity

and direction of movement change every frame. Hence, only perspective distortion was

considered to reduce computational complexity.

The weighting function is represented as ω(i, j) and weights every pixel (i, j) of the

foreground mask I(i, j) as in Equation (3.6). The result of using a weighting function

results in a weighted foreground count accumulation S̃N .

S̃N =

N∑
n=0

∑
(i,j)ε<

In(i, j) · ω(i, j) (3.6)

The goal is to make the value of ω(i, j) higher as the object at pixel (i, j) is further from

the camera. Then, an object that provides less number of pixels to the foreground pixel

count because it is far away from the camera will see its contribution increased because

of the weighting function. The proposed algorithm to compute ω(i, j) works as follows:

First, the user is asked to draw a quadrilateral which corresponds to a rectangle on the

floor in the real world. This quadrilateral is defined by its four sides L1, L2, Lc and Lf
as in Figure 3.5. The user is also asked to indicate the closer and further sides, Lc and

Lf , respectively.

Due to perspective, lines L1 and L2, which are parallel in the real world, appear to

intersect at the vanishing point F . Second, for each point (i, j) inside the tripwire <,
a line parallel to L1 and L2 in the real world is defined as the line that passes through

(i, j) and the vanishing point F . This line intersects with Lc at the point Q. Third, we

define a segment Sc centered at Q and laying on Lc. This segment Sc will always have

a predefined length Wc. Forth, this segment is projected towards the vanishing point,

F , until it reaches the original point (i, j), resulting in a segment called Sf centered at

(i, j) and parallel to Sc, Lf and Lc. This segment Sf has length Wf . As a result of

perspective, the resulting length Wf is not equal to Wc: it is shorter because it is further

from the camera.
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Figure 3.5: Weighting scheme illustration. The further a pixel is, the smaller the
segment Wf becomes and the higher its weight results.

Therefore, the weighting function is defined as:

ω(i, j) =
Wc

Wf
(3.7)

ω(i, j) will not depend on the value of Wc, as Wf will be proportional to Wc. Because of

this, the length Wc can be hardcoded and fixed with the same value for all points (i, j).

As stated earlier, the resulting weighting function doesn’t depend on n, so it can be

computed only once before the crowd flow estimation even starts.

The implementation of this method was done using homogeneous coordinates [28], as

it leads to simpler equations in perspective geometry. The code of the “Perspective

Weight Calculator” can be found at perspective_weight_calculator.py. The code of

classes for 2D homogeneous lines, segments and points, and related geometry functions

was also implemented from scratch and can be found in the module geometry.py of the

basicClasses package.

After some initial testing, there was hardly any quantitative improvement on the final

estimation when using this weighting function. A reasonable explanation may be that

the only dataset against which we tested exhaustively the whole method was the UCSD
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dataset [29]. In this dataset, because of the position of the camera, any thin Tripwire

drawn perpendicular to the footpath, will contain pixels approximately at the same

distance to the camera. Figure 3.1 shows an example of a Tripwire in this dataset. This

may have leaded to an almost constant weighting function.

Because of this, the weighting function was disabled for all testings, i.e, ω(i, j) = 1,∀(i, j).

3.2.2 Background subtraction

To obtain the foreground mask, we employ Background Subtraction (BS). Background

Subtraction is a widely used approach in computer vision, where the frame where back-

ground will be subtracted from is compared pixelwise to a “reference image” or a “back-

ground model”. If the difference in a given pixel is high enough, that pixel is considered

as “foreground”. All the pixels considered as foreground conform the foreground segmen-

tation.

Specifically, the technique used in this work, Mixture Of Gaussians (MOG) was conceived

by Chris Stauffer andW.E.L Grimson in [30] and later improved in [31–33]. A more recent

survey can be found in [34]. This technique is robust against shadows, lighting changes

and objects being introduced and removed from the scene. It models the recent history

of a pixel as a weighted sum of gaussian functions. Some of these gaussians represent

foreground and other background. This means that the background model, in each pixel

independently, consists of B,B < K of the K different gaussians Ng, g = 0, 1, 2, ...,K−1.

Ng(i, j) (fn | µg,n,Σg,n) =
1

(2π)D/2
1

|Σg,n|1/2
exp

(
−1

2
(fn − µg,n)TΣ−1g,n (fn − µg,n)

)
(3.8)

where fn represents, as in Equation (3.2), the value of the pixel (i, j) at frame number

n, e.g, scalar for grayscale images or vector for color images, µg,n is the mean value of

the gaussian number g of the pixel (i, j) at frame n and Σg,n its covariance matrix.

The gaussians in each pixel are weighted to conform the probability of a pixel (i, j) to

have a specific value:

P (fn) =

K∑
g=1

ωg,n ·N (fn|µg,n,Σg,n) (3.9)
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Accordingly to its definition as a probability function, P (fn) should be normalized to 1.

Then, given the fact that each gaussian is already normalized to 1, the weights of each

pixel at any time instant should sum up to 1:

K∑
g=1

ωg,n = 1 (3.10)

The reason of the dependance on the frame instant n is that the model can be, and in

fact is, constantly updated.

A representation of the mixture of gaussians of one pixel (P (fn)) for the case of a

grayscaled image (N = 1) and with K = 4 is shown at Figure 3.6.

Figure 3.6: Mixture of Gaussians representation. Each gaussian is weighted and
results in the model for the history of a pixel. In this case, the pixel is in 8 bits
grayscale and the number of gaussians is K = 4. Some of the gaussians would be

assigned to foreground and other to background.

C. Stauufer et al. chose a gaussian function to model the background after observing

that the RGB values of the background pixels seem to follow a gaussian distribution [30].

In this experiment they also observed the multi-modal distribution of the background

values that leaded to consider more than one gaussian. Besides, the gaussian function is

a very easily described function with only 2 values: mean and covariance.

The number of gaussians, K, is usually between 3 and 5 [30], but in [32] a mechanism

was proposed to constantly and automatically adapt the number of components in the

mixture of each pixel.
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To reduce memory and processing consumption, the covariance matrix of each gaussian,

Σg,n, is assumed to be:

Σg,n = σg,nI (3.11)

While this assumes that red, green and blue values are independent and of the same

variance, Equation (3.11) avoids a costly constant matrix inversion and a scalar, instead

of a matrix, has to be stored.

For every new frame, the new pixel value is checked against the existing gaussian distri-

butions, so it can be cathegorized as foreground or background. If the pixel fn(i, j) value

falls into one of the existing gaussians (gaussian g0), there is a “match”, such gaussian is

updated the following way:

ωg0,n = (1− α)ωg0,n−1 + α (3.12)

µg0,n = (1− ρ)µg0,n−1 + ρ (3.13)

σ2g0,n = (1− ρ)σ2g0,n−1 + ρ(fn − µt)T (fn − µt) (3.14)

where α is the learning rate and

ρ = αNgo(fn|µg0,n, σg0,n) (3.15)

With α = 0 the background model is never updated, and with α = 1 only the last frame

is used to build the model. In other words, the component that is still present “corrects”

its mean toward the new value and adapts its variance to use the new value. The other

gaussians remain untouched. The weights are renormalized after every update.

A match occurs if the pixel value is within 2.5 times the σg of a gaussian.

If the pixel value fn(i, j) does not match any gaussian distribution, this is interpreted

as a sudden appearance of a new object in the scene. In this case, in order to model

this new object, a new gaussian is created centered at the current pixel value fn with a

predefined variance.
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Background is expected to have lower variance and appear more often than foreground

objects. Thus, a gaussian is more likely to represent a background object if the value of

the ratio ω
σ is higher.

Once a pixel has matched a given gaussian, in order to decide whether the pixel cor-

responds to foreground or background, the gaussians must be classified to belong to

background or foreground objects. To do so, the gaussians are sorted by the value of
ω
σ , resulting in the most likely to be background to be at the top and the most likely

to be at the bottom. The first B distributions that sum enough evidence are considered

background:

B = argminb

 b∑
g=1

ωg > T

 (3.16)

where T is the threshold that determines the minimum portion of data that should

correspond to background.

OpenCV [35] provides an efficient implementation of a Background Subtractor using

Mixture of Gaussians. OpenCV 2.4.9 contains a class called “BackgroundSubtractor-

MOG2” that is based on the method explained here and the enhancements explained in

[32, 33], which incorporate shadow detection and adaptive number of components. In

this thesis, this is the implementation that has been used.

3.3 Crowdedness estimation

Once the weighted foreground pixels count S̃N has been computed, it must be scaled

properly to get the final people count. As shown in Equation (3.1), the proportionality

factor is 1/C. In order to estimate C, i.e, the number of pixels every person shows, the

level of crowdedness must be estimated. In this thesis, we refer to level of crowdedness,

crowdedness and level of occlusion as synonyms. Given that more crowdedness results

in more occlusion between people and less pixels visible per person, a higher level of

crowdedness should correspond to a lower value of C.

This method uses the approach described in [11, 12], where the relation between crowd-

edness and texture is detailed. As Figure 3.7 shows, the texture of an image reflects its

crowdedness. A sparse scene, with a low level of crowdedness, presents a fine texture. In

contrast, a crowded scene, with a high level of crowdedness, presents a coarse texture.

Hence, we deduce the level of crowdedness of every frame using texture properties. An

extensive study of texture in image processing can be found in [36].
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Figure 3.7: A sparse scene, with a low level of crowdedness, presents a fine texture. In
contrast, a crowded scene, with a high level of crowdedness, presents a coarse texture.

In this study, we characterize the texture of an image by means of a Gray Level Co-

occurrence Matrix (GLCM). The GLCM matrix models a texture by characterizing the

probability that a pixel with a given gray level is adjacent to another specific gray level. It

consists on an SxS matrix Pij that contains the probability of “jumping” from gray level

i to j when the image is scanned in a given direction, where i, j = 0, 1, ..., S− 1 and S is

the number of quantized gray tones of the input image. Generally, the GLCM technique

analyzes pixels separated by distance d, but in this method we focus on adjacent pixels,

i.e, we fix d = 1. Figure 3.8 shows an example of GLCM calculations from a very simple

image.

0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

(a) 4x4 image con-
sisting of 4 gray
levels

PH =


4 2 1 0
2 4 0 0
1 0 6 1
0 0 1 2


(b) GLCM of 3.8(a)
scanned in horizontal
(θ = 0o)

PV =


6 0 2 0
0 4 2 0
2 2 2 2
0 0 2 0


(c) GLCM of 3.8(a)
scanned in vertical
(θ = 90o)

PLD =


2 1 3 0
1 2 1 0
3 1 0 2
0 0 2 0


(d) GLCM of 3.8(a) scanned
in diagonal (θ = 135o)

PRD =


4 1 0 0
1 2 2 0
0 2 4 1
0 0 1 0


(e) GLCM of 3.8(a) scanned
in diagonal (θ = 45o)

Figure 3.8: GLCM calculations (d = 1).

Often, the GLCM is normalized to 1 by dividing all the elements by the number of

elements, so it represents a probability, i. e,
∑S

i=1

∑S
j=1 Pij = 1
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Our goal is to obtain the level of crowdedness in the Tripwire for each frame. As stated

in Section 3.1, the user must also manually select a Region of Interest, a rectangular

region of the image, and it must surround the Tripwire. This will be the region where

the crowdedness will be estimated from.

This method follows the scheme in Figure 3.9 to characterize the texture of every frame.

From the ROI of a given frame, 4 GLCM matrix are created. Each matrix is computed

by considering different directions for the adjacent pixels: right (0o), top-right (45o),

top (90o), and top-left (135o). Then for each matrix, we extract 4 scalars features:

energy (3.17), entropy (3.20), homogeneity (3.19) and contrast (3.18). With these 16

scalar features, a 16-D texture feature vector, tn, is assembled to represent the texture

of the ROI in the frame number n.

Figure 3.9: Scheme to obtain the texture feature vector.

“Energy" is defined to be the square root of the sum of squared elements in the GLCM

and is maximum for a constant image. Contrast is a measure of the intensity contrast

between a pixel and its neighbors over the whole image. Contrast is minimum for a

constant image. Homogeneity measures the closeness of the distribution of elements in

the GLCM to the diagonal of the matrix and is 1 for a diagonal GLCM. Entropy is a

statistical measure of randomness.

Energy(P ) =

√∑
i,j

p2ij (3.17)
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Contrast(P ) =
∑
i,j

pij(i− j)2 (3.18)

Homogeneity(P ) =
∑
i,j

pij
1 + (i− j)2

(3.19)

Entropy(P ) = −
∑
i,j

pij log pij (3.20)

Once we have the texture feature vector tn of the ROI, we have to classify it into one

of the L levels of crowdedness. As a result of the training process, explained in detail in

Section 3.4, every level of crowdedness is represented by a texture feature vector, called

“reference” vectors. Each reference feature vector is associated with its corresponding

scaling factor Cl, l = 0, 1, ..., L−1. This is a classification problem in which we classify a

16-D vector into one of the levels of crowdedness represented by the L reference vectors.

The closest reference vector is used for classification, this is a K-Nearest Neighbors (KNN)

classifier in which K = 1. Figure 3.10 shows a 2-D representation of the feature space.

Figure 3.10: A 2-D representation of the 16-D feature space. tn is the texture feature
vector of the ROI and τl, l = 0, 1, ..., L − 1 are the reference feature vectors of the L
levels of crowdedness. The closest τl to tn is taken and its corresponding scaling factor

is used.

The level of crowdedness ln of a given frame is estimated as the level that the closest

reference texture feature vector τl represents, as shown in Equation (3.21):

ln = arg min
l
d(tn, τl) (3.21)

The Euclidean distance function d(·, ·) is used to compare feature vectors. As the range

of the possible values of each feature might differ much, this may lead to the domination

of one component in the distance measure. Because of this, we normalize the components

of the feature vectors to approximately [0, 1].

When the level of crowdedness is determined, the second step is to use the associated

scaling factor Cn for this level of crowdedness and estimate the number of people as
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determined in Equation (3.22), which is a combination of Equations (3.1) and (3.4):

υN =

N∑
n=1

∑
x,yε< In(x, y) · ω(x, y)

Cn
(3.22)

The code of the “Crowdedness Estimator” can be found at crowdedness_estimator.py.

To compute the GLCM matrix and to extract the scalar features from it, the Python

library scikit-image [37] 0.10.1 has been used.

3.4 Training data

This method requires a preliminary training stage to be performed by an expert, e.g, the

operator of the system. The accuracy of the result is highly dependent on the quality of

the training data and the exactitude of the training stage output.

Let L be the number of crowdedness levels specified by the operator for a video. As

mentioned earlier, the scaling factor C relating the number of foreground pixels to the

number of people crossing the Tripwire region is dependent on the level of crowdedness.

Therefore, the training process aims to train the classifier to classify the 16-D texture

feature vectors into one of the levels of crowdedness. The first output of the training stage

is L texture feature vectors (τ0, τ1, ..., τL−1) representing L levels of crowdedness. Each

vector is used as a reference vector for the corresponding level of crowdedness. From now

on we shall call these L texture feature vectors as reference vectors. During the training

stage, the operator is asked to count the number of people crossing the Tripwire region

during a short period of time and Cl is determined accordingly. Cl, l ∈ 0, 1, ..., L− 1, is

the second output of the training stage.

The training process is performed as follows: first, the system operator is asked to mark

the Tripwire region and the ROI surrounding it. The perspective weighting function

is determined according to Subsection 3.2.1. Figure 3.1 shows an example from our

test dataset [29] including the Tripwire region and the ROI surrounding it. Next, M

video frames are chosen randomly from the training video segment. For each frame, the

operator is asked to classify each video frame into one of the L levels of crowdedness.

τl’s are estimated as the average of the training vectors for each corresponding level. To

find the scaling factor Cl for each level, we find the longest stable period for each level

of crowdedness. A stable period is a set of consecutive frames with the same level of

crowdedness. L video segments corresponding to each level l are shown during training

and the operator has to count the number of persons crossing the tripwire region, υl.

The scaling factor Cl for each level of crowdedness is determined by computing the
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accumulation of foreground pixels in each video segment, S̃l, and inverting Equation

(3.1), which results in Equation (3.23):

Cl =
S̃l
υl

(3.23)

A visual interface to guide the operator in the training data stage will be shown in

Subsection 5.2.4.



Chapter 4

Crowdsourcing

The classification step and the resulting scaling factor of the current ROI is critical for

the performance of the method. As any video analytics technique, shadows, distortions

or sudden or gradual environmental changes may lead to poor accuracy of the result.

In this crowd flow estimation method, a crowd distribution not captured in the training

data or distortions in the video will change the texture, resulting in a misclassification of

the texture feature vector. As the scaling factor is so sensitive to the level of occlusion,

the foreground pixel count would be improperly scaled. In the end, a misclassification

would imply a highly biased crowd flow estimation.

To overcome this, the performance of the classification is enhanced by using crowdsourc-

ing. We aim to reduce the uncertainty in the classification by asking the “o-crowd”, the

crowdsourcing members, to assist the automatic method.

4.1 Uncertainty of the classifier

For a frame n, the distance between the texture feature vector tn and the nearest reference

vector, d1, might be very comparable to the distance between tn and the second nearest

neighbor, d2. In this case, the classifier will choose the level of crowdedness corresponding

to the nearest reference vector even if the difference between the two distances (d2− d1)
is very small.

To overcome such uncertain classification decisions, we define “uncertainty" µ as the ratio
d1
d2

to represent the uncertainty of the classification decision:

µ =
d1
d2

(4.1)

22
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By definition d1 ≤ d2 and therefore µε[0, 1]. Greater values of µ represent greater uncer-

tainties as d1 and d2 values are comparable.

4.2 Use of crowdsourcing

For each frame n, the uncertainty of its classification µn is watched. Therefore, whenever

µn is greater than a predefined threshold, α, the o-crowd is asked to classify the uncertain

frame number n. In other words, this is formally performed when Equation (4.2) is

fulfilled.

µ =
d1
d2

> α (4.2)

α represents the maximum uncertainty allowed in the classifier and should be between

0 and 1, as uncertainty is. For example, α = 0.5 requires the feedback of the o-crowd

whenever the distance between tn and the second closest reference is less than twice the

distance to the closest reference vector. We call α the “crowdsourcing parameter." It is

related to how often we refer to the o-crowd, i.e. how often we ask the o-crowd for help.

A lower value of alpha implies a lower utilization of the o-crowd, whilst a higher value

makes the o-crowd to be asked more often. For instance, if α = 0, the o-crowd will be

referred every frame, as Equation (4.2) will always be fulfilled by definition, and if α = 1

the o-crowd will never be referred, as Equation (4.2) can never be true.

This threshold defines a “certainty area" around the reference vectors. Figure 4.1 illus-

trates a 2-D representation of the certainty areas around two reference vectors. Feature

vectors outside all certainty areas are automatically referred to the o-crowd. The video

frame corresponding to this tn is shown to the o-crowd and they are asked to estimate

its level of crowdedness and the number of people in the crowd.

In Figure 4.1, each circle represents a certainty area around the reference vectors for a

specific value of α. When α = 1, the entire feature space is divided into two regions,

each region is a certainty area around one of the two reference feature vectors. This

corresponds to the case when crowdsourcing is not used. Choosing α = 0.8 reshapes

the certainty areas to circles, each circle surrounding one of the reference feature vectors.

During testing, any video frame which has a resulting texture feature vector outside both

circles will be referred to the o-crowd for evaluation. Therefore, by controlling the size

of each circle we control how often we ask the o-crowd for help. Choosing α = 0.6 or 0.4

clarifies this case as the size of the certainty areas become smaller and it is likely that

the o-crowd is engaged more often.
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Figure 4.1: Certainty areas around two reference vectors corresponding to four values
of α. Reference vectors are represented by cross signs.

4.3 Crowdsourcing task

When the o-crowd is asked to assist the classifier because a frame is too uncertain, i.e,

higher than the desired threshold, we create a “crowdsourcing task”. In Amazon MTurk,

these are called HITs, Human Intelligence Tasks, but in this thesis we will refer to them

more generally as crowdsourcing tasks. The members of the o-crowd are requested to

solve it. In this case, the task consists of classifying the uncertain frame and counting

people crossing the Tripwire.

Figure 4.2: Certainty areas around two reference vectors corresponding to four values
of α. Reference vectors are represented by cross signs.
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As shown in Figure 4.2, first, the o-crowd member is asked to classify the ROI of the

uncertain frame into one of the L levels of crowdedness. Second, the number of people

crossing the Tripwire in a short video segment centered at the uncertain frame number

must be provided. The length of the video must be short enough to contain only one

level of crowdedness but long enough to allow the human to be able to count people,

as counting fractions of bodies is notably hard. In this work, the length of the video

segment was fixed empirically to 200 frames 1.

With this information, a new scaling factor can be computed the same way as in the

training stage as in Equation (4.3).

C =
S̃

υ
(4.3)

where υ is the people count provided by the o-crowd and S̃ is the accumulation of

foreground pixels in the video segment of the crowdsourcing task. The formerly uncertain

feature vector tn now has been provided a new scaling factor and can be used in the

estimation.

In addition, when using crowdsourcing, we make sure not to ask the o-crowd for redudant

information. This is particularly important because consecutive video frames are likely

to have similar feature vectors. Therefore, we store the t’s for which the o-crowd has

provided feedback as new reference vectors, as well as their recently computed scaling

factors. Accordingly to a reference vector, implicit certainty areas centered at the t’s are

created. Hence, future feature vectors in next frames will not be referred to the o-crowd,

as they will likely fall into the certain area of the new reference vector. Also, future

classifications will perform better by taking into consideration this new reference vector.

However, the reference feature vectors coming from the training data have been averaged

from many frames and the training process has been performed by an expert operator.

Thus, the original reference vectors are more trustworthy than a reference computed

from only one frame. To take this into account, certainty areas surrounding o-crowd

reference vectors are scaled down. This is done by reducing α by a factor of 0.9 only for

reference vectors produced by crowdsourcing.

In conclusion, we make use of crowdsourcing to help the automatic method whenever

the classifier analyzes a frame that would lead to a poor estimation. Furthermore, we

achieve active learning by incorporating the information provided by the o-crowd to the

classifier in order to make the method learn from crowdsourcing.

1200 frames in our dataset [29], which runs at 30 fps, corresponds to 6.6 s.
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Web platform

In this chapter, a brief overview of the whole system from the code point of view will be

shown. Also, the Graphical User Interface (GUI) of the front-end of the web platform is

presented. With this web application, the user can interact with the system. It allows

the operator to control every aspect of the crowd flow estimation and lets the o-crowd

members to solve crowdsourcing tasks.

5.1 System overview

Figure 5.1 shows a conceptual scheme of the structure of the whole system, divided in

the backend, run in the server, and the front-end, run in the client web browser.

Figure 5.1: Overview of the system. Video analytics are performed in the backend
server and the user interacts with the front-end, that sends asynchronous requests to

the API in the server.
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5.1.1 Backend

Originally, the crowd flow estimation method was coded in MATLAB. Although it was

enough for proof-of-concept testings, such development environment has strong draw-

backs in the long term, such as poor performance and licensing problems. Besides, the

original implementation consisted on a plethora of independent scripts that lacked con-

sistency to be employed in a real scenario. Because of this reason, the original idea was

implemented from scratch.

The main programming language used to code the backend was Python. The reason was

its rapid prototyping and easy readability. Also, it has many scientific libraries built in

C that boost the performance of the code, like NumPy [38] for operations with arrays

and OpenCV [35] and scikit-image [37] for image processing.

The server holds all the computations. The CrowdFlowEstimator class, in the mod-

ule crowd_flow_estimator.py, is the point of entry where the estimation starts. The

foreground segmentation is relegated to the class ForegroundDetector, in the module

foreground_detector.py, which is a wrapper around OpenCV’s class BackgroundSubtractorMOG2

with custom added functionality. The CrowdednessEstimator class, in the module

crowdedness_estimator.py, is in charge of computing texture feature vectors, looking

for the nearest neighbour and computing the uncertainty. The PerspectiveWeightsCalculator

class, in the module perspective_weights_calulator.py, computes the weighting func-

tion explained in Subsection 3.2.1. The Trainer class, in module trainer.py, is respon-

sible of generating new training data at the operator’s request. The basicClasses pack-

age contains modules that take care of geometry (geometry.py), building, drawing and

managing ROIs and Tripwires (roi.py and tripwire.py, respectively), and packaging

and normalizing texture feature vectors (texture_features.py). Miscellaneous classes

and functions for image and video manipulations, mathematical and coding functions,

and control of UNIX processes are contained in the modules of the utils package.

Also, any non-volatile information is stored in a PostgreSQL database through the

Object-Relational Mapper (ORM) SQLAlchemy [39]. This allows to access the database

in a high level with Python language. The ORM provides a mapping between an instan-

tiation of a Python class with a row of a database table. In addition, it makes trivial the

change to any other database such as MySQL, Oracle or SQLite, as it is dialect-agnostic.

The interaction with the database is performed with the package database. Any reading

or writing to the database is controlled by the class Database of the module database.py,

that maps any object stored in the database to a class in the module sql_classes.py.

This package makes sure that every time that is used, the tables on the server database
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correspond to the tables definitions in the definition.py module. If not, it creates or

modifies the database tables accordingly.

Any external interaction with the backend is done through an API composed of some

scripts in Python. This public API makes sure the input parameters are acceptable.

It can be accessed manually by the operator (through the command line) or via web

through an interface that is exposed to the web server (in this case Apache). The

interface is, in turn, composed of scripts written in PHP. The choice of PHP was because

of compatibility reasons with the annotation platform, that had already been developed

in PHP. We wanted to stick to use Python for the backend but make it easy to incorporate

to the annotation platform in the future.

The versions used in this work were: Python 2.7.5, SQLAlchemy 0.8.7, OpenCV 2.4.9,

scikit-image 0.10.1, NumPy 1.8.2, PHP 5.5.19, Apache 2.4.10 and PostgreSQL 9.3.5.

The machine which acts as server is located at the VIPER laboratory and has the fol-

lowing specifications:

• Intel(R) Xeon(R) CPU E3-1225 V2 @ 3.20GHz

• 32 GB DIMM DDR3 1600 MHz

• Gigabit Ethernet interface

5.1.2 Front-end

The front-end was programmed using Javascript (JS) and makes use of CSS3 and HTML5

elements like the <video> tag. It should run properly on any modern web browser that

respects the web standards, as it uses no proprietary extension.

Google’s AngularJS [40] 1.3.0 was used as web framework to build a web application

following the model-view-controller (MVC) architecture and to allow modularization of

the code. Data binding to DOM elements was of special interest to write clear code.

RequireJS [41] 2.1.14 allows to manage JS dependencies. It was used to download and

load AngujarJS modules that depend on each other asynchronously without breaking

dependencies. This leads to improvements in loading times and better code encapsulation

in small files. Such approach is called Asynchronous Module Definition (AMD).

Twitter’s Bootstrap [42] 3.2.0 provided templates and animations for a nice design of the

front-end.
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Files in services are pieces of code that offer small functionalities and are built as

Angular services that are injected into Angular modules as dependencies. Files in

services/backend send AJAX requests to the appropiate URI of the server where the de-

sired API functionality is exposed. services/backend/crowdsourcing.js file is used for

interactions relating crowdsourcing tasks, services/backend/processes.js for interac-

tions relating crowd flow estimation processes and services/backend/trainingData.js

for interactions relating training data. services/ZoneSelector.js contains a class that

allows the user to select an area in a <canvas> HTML5 tag. These services are injected

into the modules in apps folder when needed. Each file in apps isolates the functionality

of the sections of the front-end that correspond to the sections of the GUI explained in

Section 5.2.

5.1.3 Real-time streams

The system can analyze real-time video streams that may come from camera networks.

To test this capability, a real-time stream is generated from a video file using ffmpeg:

ffmpeg -re -i videos/ucsd/long.mp4 -vcodec vp8 -f rtp rtp :// localhost :70000 \

> ~/ PycharmProjects/crowd/streams /1.sdp ; \

rm ~/ PycharmProjects/crowd/streams /1.sdp

This generates an .sdp file describing the incoming real-time stream. Reading from this

.sdp file from the crowd flow method is equivalent to read directly from a video file.

This is an ffmpeg functionality and OpenCV makes use of ffmpeg underneath.

In order to be able to generate the video segment needed for the crowdsourcing task,

a custom buffer mechanism specifically tailored to this application was developed. In

general, this is a sliding buffer centered at the frame to be analyzed and the same length

as the video segment of the crowdsourcing task. To generate a video segment, it is enough

to join all the frames in the buffer into a video file. This buffer is implemented in the

class Buffer, in the module programming.py, in the package utils.

5.2 Graphical User Interface

A user-friendly GUI is crucial for any web application that is intended to be used by a

regular user. This web platform will be used by the operator of the system to control the

video analytics and by the members of the o-crowd to solve crowdsourcing tasks. Neither

of these can be assumed to be programmers or engineers. The following subsections will

cover the functionalities of every section of the GUI.



Chapter 5. Web platform 30

5.2.1 Monitor of processes

The first tab (Figure 5.2) lets the operator (e.g, a police officer or the owner of the

system) to monitor every process which is running a crowd flow estimation in the server.

Each process can analyze only one video file or one real-time stream. For each process,

these are the aspects that can be monitored:

• The Process ID (PID) of the UNIX process

• The video being analyzed (it can be displayed in a modal box)

• The progress of the analysis (frame position over total number of frames)

• The people that have been counted crossing the Tripwire so far

• The last time when we have information about this processed

• Whether this process has emitted a crowdsourcing task and it has not been solved

yet

• How many crowdsourcing tasks have been emitted

• The value of the crowdsourcing parameter

• The name (or label) used to reference the training data that this process is using

• The number of reference feature vectors that the classifier contains

• Whether the “time machine” option is enabled or not

• Whether the process has reached the end of the video or not

The operator can also stop the analysis using the “×” button. This implies killing the

UNIX process running in the server.

Finally, the slider in the lower part sets the interval to retrieve or refresh information

from the server.

The time machine option makes the crowd flow estimation process store the frame number

at the instant when a crowdsourcing request is created. Then, whenever this task is

solved, it goes back to that frame number. This rewinding allows to use all the new

information the method has available to improve the estimation as much as it can, as

by default the estimation doesn’t stop because a crowdsourcing task has been emitted.

Obviously, when a real-time stream is being analyzed, it makes no sense to go back in

time because we the method to be real-time. This is why in the tab to invoke processes,

as shown in Subsection 5.2.2, this option is disabled when the operator selects a real-time

video stream.
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Figure 5.2: Web platform: processes monitor. This tab lets the operator watch
processes running a crowd flow estimations in the server.
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5.2.2 Invoker of processes

In the second tab, the operator can spawn new processes in the server that will analyze

a video file or a real-time stream. Figures 5.3 and 5.4 display this screen.

Figure 5.3: Web platform: processes invoker. A video file is selected as video input
type.

Figure 5.4: Web platform: processes invoker. A real-time video stream is selected as
video input type.

If the operator has selected a video file, he must write the path to the file (a warning

will be arisen if the file does not exist). If he has selected a real time video stream, a list

of incoming streams will be shown and one must be selected.
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5.2.3 Crowdsourcing tasks

Figure 5.5: Web platform: crowdsourcing tasks. The o-crowd can select and solve a
pending crowdsourcing task.

The screen shown in Figure 5.5 is the only one available for the non-operator users. In

it, the members of the o-crowd can select one of the pending crowdsourcing tasks, i.e,

a crowdsourcing task that has not been solved yet. A crowdsourcing task contains the

PID of the process that generated it and when it was generated. Once the desired task is

selected, the questions to the o-crowd will appear on the bottom. The o-crowd member

can move the slider to indicate the level of crowdedness of the uncertain frame and type

how many people are crossing the Tripwire in the video segment. One all answers are

provided, the button “Solve Task” sends the solved crowdsourcing task to the server so

it can be incorporated to the process that emitted it.

5.2.4 Training

In this tab, the operator can either check in the upper section all the available training

data and their parameters, or create new training data through the guide of process of

the bottom section.
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Figure 5.6: Web platform: training. The upper section shows the available training
data and the lower section allows to create new training data.

The process to create new training data consists of the following steps. If a step is not

satisfactory, i.e, no answer or a nonsense is provided, the next step will not be available.

Answers of a given step may be undone and overwritten by clicking on the back button

(arrow to the left). First, as shown in the lower section of Figure 5.6, the operator must

type the video path. Its existance will be checked. Second, as shown in Figure 5.7, the

name or label for the future training data must be written. It must be unique, so the

backend will check if such label already exists.

Figure 5.7: Web platform: new training data, step 2. The label of the future training
data can be chosen.

Third, as shown in Figure 5.8, the Tripwire must be provided. The GUI allows to draw

a Tripwire on the surveillance video by clicking and dragging its vertices.
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Figure 5.8: Web platform: new training data, step 3. The Tripwire must be drawn
over the surveillance video.

Forth, as shown in Figure 5.9, the ROI must be provided. The same way as with the

Tripwire in the previous step, the GUI also allows to draw a ROI on the surveillance

video by clicking and dragging its vertices.

The fifth step corresponds to the weighting scheme explained in Subsection 3.2.1. As

stated previously, the improvements were not noticeable, so this step is disabled.

Sixth, as shown in Figure 5.10, the operator is asked to classify the level of crowdedness

of some random snapshots focused on the ROI. The number of levels of crowdedness, as

well as the number of random snapshots to be asked for classification, is configurable.

Seventh, as shown in Figure 5.11, the backend computes and returns as many video

segments with a Tripwire drawn on them as levels of crowdedness. These video segments

contain only one level of crowdedness in all their frames. The user is asked to provide

the people count of each of them.

Lastly, Figure 5.12 shows the final step, where the values of the parameters of the Back-

ground Subtraction can be specified. The button labeled “Assemble new training data”

will send all the information collected from the user to the backend and new training

data will be computed, hence appearing its corresponding entry to the table of the upper

part of the screen shown in Figure 5.6.
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Figure 5.9: Web platform: new training data, step 4. The ROI must be drawn over
the surveillance video.

Figure 5.10: Web platform: new training data, step 6. The random snapshots must
be classified into one of the levels of crowdedness.
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Figure 5.11: Web platform: new training data, step 7. The people count for the video
segment corresponding to each level of crowdedness must be provided.

Figure 5.12: Web platform: new training data, step 8. The parameters of the Back-
ground Subtraction can be configured in this screen.
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However, before sending the definitive training data to the server, it is convenient to check

the effect of the BS parameters on the foreground segmentation. The button “Preview”

of Figure 5.12 raises a modal box that shows such preview. The foreground segmentation

of the training video is computed in the server with the provided parameters and the

resulting video is shown to the user. This way the user can fine-tune the BS parameters

to achieve the desired foreground segmentation.

Figure 5.13: Web platform: new training data, BS preview. The effect of the BS
parameters on the foreground segmentation can be tested using this preview feature.
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5.2.5 Command History

Finally, this complementary feature of the web application may be used for debugging

purposes. With the screen shown in Figure 5.14, the operator can watch a history of the

commands run in the server. This may be useful to verify that the system is being used

in a proper manner.

Figure 5.14: Web platform: command history.

To avoid overload, only the last commands are shown, but it can be completely config-

ured. Also, the operator can clean the history with the trash button.
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Experimental results

6.1 Testing conditions

6.1.1 Dataset

The dataset used to test the proposed method is the University of California, San Diego

(UCSD) pedestrian dataset [29]. It contains video of pedestrians on UCSD walkways,

taken from a stationary camera at the resolution of 238× 158.

Figure 6.1: A frame of the University of California, San Diego pedestrian dataset

As the video was originally split into a set of .png files, it had to be compiled to a video

file using ffmpeg [43], as in real scenarios the method would analyze a real-time stream

or a video file.

This dataset is suitable for testing purposes since it is long enough (54 minutes) and

contains different crowd density levels. We used 8 minutes of video and segmented it

40



Chapter 6. Experimental results 41

into 6 clips, the first clip was used solely for training and is 3 minutes long. The remaining

5 minutes are segmented into 5 clips each of 1 minute duration. The clip segmentation

is depicted in Figure 6.2.

Figure 6.2: The first 3 minutes of the UCSD dataset were used solely for training.
The testing was performed only using the following 5 minutes, segmented into 1 minute

long clips.

The UCSD dataset does not include ground truth information. Therefore, we used our

best judgment to provide the ground truth data. However, the numbers might be “0.5"

person form the true values due to the fact that some people are crossing the tripwire at

the beginning or the end of each clip. The provided ground truth appears in Table 6.1

and this is the ground truth we used in this study.

3’-4’ 4’-5’ 5’-6’ 6’-7’ 7’-8’
Ground Truth 46 46.5 46 34.5 25

Table 6.1: Provided ground truth of the UCSD dataset for the testing segments of
Figure 6.2.

6.1.2 Parameters

The parameters of the method were manually selected, as they heavily depend on the

video being analyzed. For our dataset, we chose the number of levels of crowdedness and

the background subtraction parameters empirically, as the operator of the surveillance

system would do.

The selected number of crowdedness levels was L = 3. In [4], it was noted that a larger

number of levels of crowdedness gives better results. However, in this dataset, 3 distinct

levels of crowdedness could be observed.

During training and testing, moving object detection was done using the background

subtraction method explained in 3.2.2. The learning rate, that represents how fast the

background model is updated, was set to 0.01 during both stages. The threshold, that

represents the distance to decide whether a pixel is well described by the background

model, was set to 400 also for both training and testing.

The o-crowd consisted on two expert members that jointly solved the crowdsourcing

tasks.
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6.2 Experiments

Several tests were conducted to examine various aspects of our proposed method. We

measured the error rate of the final crowd flow estimation result, defined as the absolute

difference between the estimated value and the ground truth, as a percentage of the

ground truth value:

ER =
|υestimation − υGT |

υGT
(6.1)

We also measured the utilization of the o-crowd, this is, the number of crowdsourcing

tasks emitted.

The first is to evaluate the performance of the automatic method with no use of crowd-

sourcing (α = 1). The aim is to introduce contrast changes and compression attacks

to the video and evaluate the drop in performance. The second experiment considers

crowdsourcing as a solution to quality degradation. We compare the performance and

evaluate the utilization of the crowd for two values of α.

6.2.1 First experiment: no crowdsourcing

Figure 6.3 shows the increase in the error rate when the video is considerably degraded.

The degradation consisted of H.264 compression using ffmpeg. The Constant Rate Factor

(CRF) was set to 33. Also, contrast was boosted to 1.68 using eq2 filter. As a result,

the video size was reduced to a 40%.

The average error rate increases from 9.2% to 34.4% when distortions are introduced.

The average error rate is the average of the error rates in all the 5 video segments used for

testing. We can conclude than degradation of the video quality can significantly impact

the automatic analysis.
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Figure 6.3: Results of first experiment: Average error rate increases from 9.2% to
34.4% when distortions are introduced

6.2.2 Second experiment: crowdsourcing incorporation

In this experiment, we incorporate crowdsourcing to the automatic method to increase

its performance when the video is degraded. We check the average error rate and track

the evolution of the utilization of the o-crowd throughout the video segments. The values

of α = 0.5, 0.6 and 1 were used. Table 6.2 shows the reduction of the average error rate

when crowdsourcing is incorporated.

Average error rate
α (alpha) = 1 (no crowdsourcing) 34.4%
α (alpha) = 0.6 14.3%
α (alpha) = 0.5 18.0%

Table 6.2: Results of second experiment: Average error rate appreciably decreases
when crowdsourcing is incorporated.

The average error rate decreases appreciably when crowdsourcing is incorporated. We

can conclude that the proposed method manages to identify correctly the uncertainty

and crowdsourcing effectively enhances the performance of the automatic method.

Furthermore, when using crowdsourcing, we would like the method to learn from the

o-crowd input, so it would be desirable that the utilization of the o-crowd decrease as we

progress in time. In other words, the number of crowdsourcing tasks, when the o-crowd

is asked to assist the method, should decrease throughout the video segments. Figure

6.4 displays the number of emitted crowdsourcing tasks per video segment.
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Figure 6.4: Results of second experiment: Utilization of the o-crowd

Figure 6.4 clearly depicts that our proposed method not only reduces the error rates,

but also trains the classifier in an effective way, such that the number of crowdsourcing

tasks decreases as we progress in time. Also, as expected, it shows that for lower value

of α the o-crowd is engaged more often.
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Conclusions

In this work, we presented enhancements to a crowd flow estimation method previously

developed in the VIPER laboratory. Experimental evaluation on a publicy available

dataset demonstrates that our proposed method identifies uncertainties and uses crowd-

sourcing in an effective way. The automatic method makes use of new information pro-

vided by the o-crowd and incorporates it into the model, hence achieving active learning.

The final result is that the crowd flow estimation error rate is significantly reduced and

the rate at which the o-crowd is engaged decreases in time.

Also, a web platform was developed to be able to control the whole system. It can

be used by the operator to tune, start and oversight the crowd flow estimation of the

video feeds. It also lets the o-crowd members perform their crowdsourcing tasks, so

crowdsourcing can be incorporated into the automatic method. This platform is crucial

for the scalability of the proposed method and it can be integrated into larger video

surveillance systems.

As for future work, we will propose new characterizations of the uncertainty, for example

by using Support Vector Machines (SVMs) [44], a technique widely used in machine

learning. Also, a future extension of this work may include building a pyramid model

to differentiate the accuracy of various o-crowd members. For example, assuming that

the “wisdom of the crowd” leads to an accurate result in average, different roles and

trustworthiness can be assigned to each o-crowd member, using as a reference the average

of the answers of the whole o-crowd. Finally, testing a wider range of combination of

parameters with a larger o-crowd size may also increase the understanding of the method

and make the results more accurate.
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