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1. ABSTRACT 

 

Regenerative medicine integrates different biomedical approaches to restore normal 

function in damaged tissues using a combination of cell/molecular biology and materials 

engineering. One of the most promising alternatives is to design a biodegradable and porous 

scaffold decorated with inductive factors that promote cell colonization and proliferation. In 

this context, an appropriate processing of the polymer is required in order to obtain a scaffold 

that acts as a support for tissue growth. 

 

In this work is developed a new route for the preparation of porous matrices with appropriate 

physico-chemical and biological properties using supercritical fluid technology. In special, we 

investigate the PLA polymer to obtain 3D porous scaffolds and its decoration with bacterial 

inclusion bodies. IB’s have been revealed as adhesive, mechanically and biocompatible 

protein materials that can be used to favour cell colonization and proliferation when used to 

decorated flat surfaces. 

 

The synthesis of new matrices with improved properties concerning porosity, 

interconnectivity and mechanical properties has been possible using supercritical fluid 

technology for the processing of PLA. In addition, the decoration of PLA porous scaffolds 

with bacterial inclusion bodies promotes cell adhesion and colonization. Inclusion bodies do 

not result toxic to the cells and contrarily improve cell proliferation on the surface. The hybrid 

polymeric-IB’s porous matrices obtained for the first time is this work are promising 

platforms to be used in bone tissue engineering. 
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2. RESUMEN 

 

La medicina regenerativa integra diferentes estrategias biomédicas con el objetivo de 

restablecer la función normal en tejidos dañados usando una combinación entre la biología 

celular y molecular y la Ingeniería de materiales. Una de las alternativas mas prometedoras es 

diseñar un soporte, poroso y biodegradable, decorado con factores inductivos que promuevan 

la colonización y proliferación celular. En este sentido, es necesario un correcto procesado del 

polímero para obtener una estructura que pueda actuar como soporte para el crecimiento de 

tejidos.  

 

En este trabajo, se desarrolla una nueva ruta para la preparación de matrices porosas con 

características físico-químicas y biológicas adecuadas, usando la tecnología de fluidos 

supercrítica. En particular, investigamos el ácido poli lactido para la obtención de matrices 

porosas y su posterior decoración con cuerpos de inclusión (IB’s). Estos cuerpos de inclusión 

son materiales proteicos biocompatibles y adhesivos que pueden ser empleados para favorecer 

la colonización y proliferación celular cuando son usados para decorar superficies. 

 

La síntesis de nuevas matrices con propiedades mejoradas en cuanto a porosidad, 

interconectividad y características mecánicas ha sido posible usando la tecnología de fluidos 

supercrítica para el procesado del polímero PLA. Además, la decoración de las matrices 

porosas de PLA con cuerpos de inclusión promueve la adhesión y colonización celular. Los 

cuerpos de inclusión no resultan tóxicos para las células y, contrariamente, mejoran la 

proliferación celular en la superficie. La matrices porosas híbridas, polímero-IB’s, obtenidas 

por primera vez en este trabajo constituyen una plataforma prometedora para ser usada en 

Ingeniería de tejido óseo. 
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3. INTRODUCTION 

 

3.1. Regenerative medicine 

 

Humanity has been exposed to disease and injury since the beginning of its existence. 

While many diseases such as bacterial infections and injuries can be cured by drugs and 

surgery, many others remain incurable. When such incurable diseases become severe, they are 

often treated by transplantation of tissues and organs from a donor. However, such cases pose 

the problems of preservation of the organs to be transplanted and dealing with rejection of the 

transplanted organs. Regenerative medicine was devised as a revolutionary treatment method 

for solving such problems. 

 

There are four areas of interest in the field of regenerative medicine: 

- Medical devices and artificial organs. There is a critical shortage of donor organs of 

all type. This approach is based in the fabrication of artificial biomedical devices that 

perform the function of natural organ or tissue. 

- Cell therapy. This approach is directed to restore a tissue or organ by introducing 

cells capable of developing the function of the mentioned tissue or by stimulating 

other cells to do it. 

- Tissue engineering. This term refers to methods that promote the growth of cells lost 

due to trauma or disease. Tissue engineering uses many strategies, including the 

manipulation of artificial and natural materials that provide structure to cells for 

growing into specific kinds of tissues. These materials are called scaffolds. 

- Gene therapy. It consists in the application of genetic engineering to inserting one or 

more corrective genes into genetic material of a patient’s cells in order to cure a 

disease caused by a genetic defect. The expression of the new gene can then alter the 

DNA or RNA transcripts used to synthesis proteins and therefore correct the disease. 

This therapy is still in the experimental stages. 

 

3.2.  Bone tissue engineering 

Despite its constant ability to repair small damages in response to injury, bone is not always 

able to achieve a complete regeneration of the injured area by itself. In this cases, tissue 

engineering emerges as a promising technology that integrates different strategies in order to 

restore, maintain, replace and enhance tissue normal function using the combination of 

biology, engineering, material science and medicine. The main advantage of this technology 

is that can provide a permanent solution to the problem of organ function (Khademhosseine et 

al, 2006). 

 
In the past years, two important strategies have been developed in this field:  

- Implantation of tissues, which have been pre-cultured in vitro. In this route, 3D 

biocompatible material called scaffold is designed to promote bone formation as an 
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ex situ template on which cells are seeded and cultured, followed by a subsequent 

implantation. 

 
 

Figure 1: Tissue engineering ex situ approach. 1: extraction of cells from the patient, 2: culture of cells in 

vitro, 3: cell seeding on the 3D porous scaffold, 4: cell proliferation and differentiation on scaffold, 5: 

transplantation of scaffold to repair or regenerate the damaged tissue (Sachot, N., 2014; figure made 

using images from www.servier.fr). 

 

- Insertion of a 3D porous scaffold directly in vivo with the purpose to stimulate and 

to direct tissue formation in situ. The advantage of this approach is the reduced 

number of operations needed. 

 
Figure 2: Tissue engineering in situ approach (figure made using images from www.servier.fr) 

(1) (2)

(3)

(4)(5)

http://www.servier.fr/
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Although both approaches may appear very different, they have the same requirements, which 

are the followings (Barry J.J.A., et al., 2006): 

- Cells, which will proliferate to create the tissue. 

- Growth factors that signal the cells to proliferate. 

- A method of delivery and stabilizing the cells in the bone defects. The vehicle for 

delivering cells is called scaffold.  

Moreover, these two strategies support the principle that cell seeded in 3D biocompatible 

scaffolds are able to reassembly into functional structures similar to normal tissue. (Shi et al., 

2010). Consequently, cells and scaffolds are the two essential components, and an adequate 

combination between them is required for the regenerative process. 

Cells 

Bone is a complex system formed by different cell types. Stem cells are undifferentiated cells 

that have unique capability of self-renewal and multipotential differentiation to serve as a cell 

source (Zhao C. et al., 2013). Mammals present two different kinds of stem cells, embryonic 

an adult. The difference between them is that embryonic can generate all cell types and adult 

only a few lineages. In bone tissue engineering, the most commonly cellular line is adult, in 

particular, meshenchymal stem cells. 

Scaffolds for bone tissue engineering 

The success of a scaffold-based strategy is dependent not only in providing a structural 

support for the cells, but also in establishing a microenvironment to maintain and regulate cell 

behaviour and function.  

 

A scaffold can be a polymeric structure, which acts as a support for cell adherence, growth 

and proliferation during repair and regeneration of damaged tissue. For a long time, two-

dimensional scaffolds composed of natural polymer such as collagen have been used as 

scaffolds for tissue engineering. However, there is an important limitation in the number of 

cells that can be attached. By using three dimensional porous materials as scaffolds, the 

number of cells that can be loaded in the material increases. In addition, the natural polymer 

can cause manufacturing and immunologic problems (Langer, R. 2009). 

 

From a general point of view, scaffolds have to possess many different characteristics to be 

considered as good candidates for bone tissue engineering. As a three dimensional structure 

they provide mechanical integrity and a surface responsible of the chemical and architectural 

guidance for regenerating tissues. The most important characteristics are the followings: 

 

- Be biocompatible and biodegradable without releasing toxic by products. 

- Act as a template to support cell adhesion, colonization, proliferation and 

differentiation. 

- Have a high degree of porosity and interconnection between pores to favour cell 

migration towards the centre of the material structure. An adequate cell attachment, 
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colonization and, as consequence, tissue regeneration, can be possible throughout a 

3D matrix, promoting the integration of the scaffold and facilitating cell migration 

and nutrient transfer during tissue formation. 

- Stimulate simultaneously osteogenesis and angiogenesis 

- Resorb at the same time than the new bone is formed 

- Possess mechanical properties and keep a structural integrity at the beginning of the 

regeneration process. 

- Be sterilizable. 

 

Nowadays, there are two types of materials widely used in the fabrication of porous scaffold: 

polymers (naturals or synthetics) such as polysaccharides, hydrogels or thermoplastic 

elastomers and bioactive ceramics, such as calcium phosphates and bioactives glasses.  

 

3.2.1. Biodegradable polymers for porous materials preparation in tissue engineering 

 

The use of degradable polymers is desirable because scaffolds are designed as temporary 

structures (Shoichet, M., 2010). Biodegradable polymers are separated in two groups: natural 

polymers, including polysaccharides (starch, alginate, chitin/chitosan, hyaluronic acid 

derivates) or proteins (soy, collagen, fibrin gels, silk), and synthetic polymers. This second 

group present many advantages such as production under controlled conditions, predictable 

and reproducible mechanical and physical properties and control of material impurities. 

Indeed, toxicity, immunogenecity and infections are lower for synthetic polymers.  

 

The most commonly biodegradable synthetic polymers in tissue engineering are saturated 

aliphatic polyesters: poly(lactic acid) (PLA), poly(glycolic acid) (PGA), their copolymer 

poly(lactic-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL) (Rezwan et. al., 2006). 

 

 
 

Figure 3: Biodegradable polymers used in tissue engineering. (a) PLA structure, (b) PGA structure, (c) 

PLGA structure and (d) PCL structure. 

 

(a) (b)

(c) (d)
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PLA has unique properties like good appearance, high mechanical strength, low toxicity and 

good barrier properties. This polymer exists in three forms: L-PLA (PLLA), D-PLA (PDLA), 

and racemic mixture of DL-PLA (PDLLA). Crystalline state is given by L-phase of the 

polymer while amorphous, is given by D-phase. 

 

One of most important parameters is the degradation rate in order to know that the polymer 

will be stable enough time to fulfil its purpose as a temporary structure. In general, 

degradation takes longer in crystalline (PLLA) than amorphous (PDLA and PDLLA) 

polymers because crystalline parts are chemically more stable that amorphous parts (Rezwan 

K. et al., 2006) 

 

These polymers can be degraded through de-esterification into their monomeric components 

(lactic and glycolic acids) and completely removed from the body by natural ways. PLA, for 

example, can be eliminated through the tricarboxylic acid cycle. 

 

3.3. Inclusion bodies as cell growth promoters 

 

Bacterial inclusion bodies (IB’s) are protein aggregates formed in bacteria during 

recombinant protein overexpression (Carrió 2002). IB’s are in the size range of a few hundred 

nanometers and formed by polypeptide chains that can retain a certain amount of native or 

native-like structure (García-Fruitós, E. et al., 2009) 

 

 
 

Figure 4: SEM images of bacterial inclusion bodies; (a) (Elena García Fruitós et al., not published), (b) 

(Joaquin Seras-Franzoso et al. not published) and (c) (Joaquin Serás-Franzoso et al. not published) 
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Inclusion bodies have been regarded as a major obstacle in protein product process by 

recombinant DNA technologies. At first, these aggregates were described as inactive proteins 

formed by misfolded polypeptides and considered as non-desired products of the recombinant 

DNA production process (García fruitós, E. et al, 2012). However, several studies showing 

the capacity of the IB’s to retain certain grade of the biological activity of the forming 

proteins have changed this perception. In this sense, potential applications for these protein 

aggregates have raised such as their use to act as immobilized biocatalysts or more recently 

their use as a biocompatible biomaterial with application in regenerative medicine and tissue 

engineering approach. 

 

IB’s are commonly found in the bacterial cytoplasm. In recombinant E. coli, the target protein 

is the main IB component but other cell proteins can be found in lower concentration.  

 

In this work, bacterial IB’s formed by Green fluorescence protein (GFP) linked to major 

capsid protein of the foot and mouth disease virus (VP1) were employed. GFP is an active 

protein that emits green light following excitation of an internal fluorophore composed of a 

Ser-Tyr-Gly sequence positioned near the protein’s amino terminus (Feilmeier, 2000). This 

protein is stable, species-independent, and can be monitored noninvasively in living cells 

using fluorescence microscopy (Bizarri, 2009). The VP1 protein conducts and facilitates the 

GFP aggregation as Inclusion bodies.  

 

Recent studies on the applications of IB’s have demonstrated their potential as biomaterial in 

regenerative medicine, where cell proliferation can be stimulated through the topographical 

modification of the material surfaces with these protein aggregates (García-fruitós, E. 2009 

and Diez-Gil, C., 2010). IB’s cannot only stimulate cell proliferation but also direct cell 

growth to specific regions when a surface is decorated or patterned with these aggregates, 

providing an appropriate environment for cells. In this regard, recent results show that cells 

cultivated on supports functionalized with IB’s are adhered to the IB’s areas, aligned and 

elongated according to specific patterns (Tatkiewicz, W.I et al, 2013), proving again their 

potential as protein-based nanomaterials for cell growth promotion. 

 

3.3.1. IB’s production by recombinant DNA technology 

 

DNA keeps all the information needed for the normal function of a living organism. This 

information is codified in polynucleotide chains combining 4 distinct nucleotides. These 

DNA chains are firstly transcribed into mRNA and then translated into proteins carrying out 

all functions that support life in an organism. The direct connection between DNA sequences 

and protein sequences implies that potentially new and different protein can be created by 

changing the DNA sequence.  

 

Recombinant DNA technology involves all procedures that are used to join DNA segments 

from two different sources to produce the desired protein. The most common approach inside 



Impregnation of PLA porous matrices with Inclusion bodies 

for their use as scaffolds for Tissue Engineering. 
 

INTRODUCTION   21 

this technology consists on the introduction of a DNA fragment from one organism into a 

second organism.  The basic procedure of this technology is described in the following figure. 

 
 

Figure 5: Recombinant DNA technology (figure made using images from www.servier.fr) 

 

As it is described in Figure 5, a recombinant protein could be produced when a fragment of 

DNA isolated and purified, which contains the gene of interest, is cut by the action of 

restriction enzymes at the recognition site. These fragments are then inserted into a vector, 

forming a recombinant plasmid that is after placed into the bacterial host. Once the 

recombinant vector is transformed, bacterial cells grow forming colonies that contain the 

desired fragment of DNA.  

 

The main objective of recombinant DNA technology is to produce a high amount of the 

desired protein. For achieving this objective, the host organism is normally forced to produce 

above its capacity, leading to the formation of protein aggregates, which often gives raise to 

inclusion bodies formation (Peternel 2011). Stress conditions such as high growth 

temperature or overproduction of foreign polypeptides cause the deficiency of the cellular 

quality control system producing a failure of folding and holding activities (García-Fruitós, E. 

et al., 2005). DnaK and their co-chaperones are involved in the protein folding. In cell devoid 

of functional DnaK, overproduction of foreign proteins results into inclusion bodies 

formation.  

 

a) IB’s production in E. Coli 

Choosing and optimal expression system is crucial for an efficient protein production 

process. Bacterial host systems are very attractive, as they are usually genetically well 

characterized having a large number of cloning vectors and mutant host strains available. 

Indeed, they grow rapidly at high density on inexpensive substrates. In this regard, E. coli is 

Recombinant plasmid

Recombinant plasmid
inserted into host bacteria

Gene of interest from a cellPlasmid from a bacteria
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the most common host used in the biotechnology industry for the production of recombinant 

proteins.  

 

E. coli is a Gram-negative enterobacteria, generally found in animal intestines being part of 

the normal intestinal flora and is involved in the nutrients uptake. These cells grow fast in a 

simple and inexpensive growth medium. Its genetics is well understood and the gene transfer 

mechanisms are easy to perform. Therefore, it can be easily manipulated.   

 

There are many factors that play an important role in the protein production in E. coli, 

including the expression vector and strains. 

 

Expression vector 

A vector is a DNA molecule that can be used to transport foreign DNA segments from one 

organism to another. The most commonly used vectors in E. Coli are plasmids. 

Commonly protein expression vector contain 3 main structures: a replication origin, allows 

the maintenance of the DNA molecule in the host organism through an autoreplicative 

process; a selection marker, since protein production and the vector maintenance suppose an 

extra metabolic load for the microbial host it is necessary to favour the growth of the 

recombinant bacteria through the application of a selective pressure. This external pressure 

consists usually in the presence of antibiotics while the selection markers are usually genes 

codifying for the resistance to the mentioned antibiotics. Finally, a protein expression vector 

needs a promoter to regulate the recombinant protein expression. 

 

Strains 

At present, a higher variety of E. coli strains are available for their use in recombinant protein 

technology. Some examples of E. coli are: BL21(DE3) is the most widely used host for 

protein expression being deficient in the Lon and OmpT proteases (Sorense, H.P., and 

Mortensen, K.K., 2005). Rosetta host strains are BL21 derivatives designed to enhance the 

expression of proteins that contain condons rarely used in E. Coli (Tegel, H., et al., 2010) 

Origami host strains are K-12 derivatives that have mutations in both the thioredoxin 

reductase (trxB) and glutathione reductase (gor) genes, which enhance disulfude bond 

formation in the cytoplasm (Zhang, L., et al., 2011).  

 

K-12 derivatives are the last example, which are deficient in DnaK, ClpA and ClpP protein 

quality modulators. MC4100 strain is an example of K-12 derivatives and will be used in this 

work. 

 

3.4. Current methods for polymeric scaffolds fabrication 

 

Fabrication methods of polymeric scaffolds have to have a high control of final material 

porosity, pore size and mechanical properties. Additionally, they have to keep material 

biocompatibility. At present the most widely used preparation methods are described below: 
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- Solvent casting.and particulated leaching 

Solvent casting an particulated leaching (SCPL) method involves the dissolution of 

the polymer in an organic solvent, mixing with porogen granules, like sugar, inorganic 

salt (salt leaching), paraffin spheres and casting the solution into a predefined 3D 

mould (Ravichandran, R. et al., 2012). The organic solvent is then evaporated, 

resulting in a solid as final product. It is simple, easy and inexpensive and does not 

require any large specialized equipment. However, organic solvents must be fully 

removed in order to avoid any possible damage to cells seeded on scaffolds . Pore 

uniformity and pore interconnectivity can be enhanced with the combination of SCPL 

with centrifugation. 

This method has application in bone and cartilage tissue engineering. 

 

- Thermally induced phase separation (TIPS) 

In this method, the porous material is obtained due to a phase change. This phase 

change is produced by a temperature gradient that separates the polymeric solution in 

two phases, one having the lower polymer concentration and other, having the high. 

(Akbarzadeh, R. et al., 2014). The first step is to make a homogenous polymer 

solution. The polymer is dissolved in solvent by heating the mixture for a certain 

period of time. The solution is then cooled down to the desired quenching 

temperature. The final step is removing the solvent that yields the final porous 

structure. Changing the quantity of solvent in the mixture can regulate porosity. 

The main disadvantage of this method is the use of organic solvent. In addition, a user 

and equipment sensitive are needed. 

 

- Freeze drying 

In this method, polymer is dissolved in a solvent to form a solution with desired 

concentration. The solution is then frozen and solvent is removed by lyophilisation 

under the high vacuum. Nevertheless, this process generates various stresses during 

freezing and drying steps, and material characteristics are difficult to control. 

When emulsion is frozen, a solid is obtained with the same porous morphology as the 

emulsion template. 

As it happened in phase separation, this method implies the use of organic solvent in 

order to dissolve the polymer, being incompatible with proteins, drugs and gens. 

  

- Compression moulding 

The compression moulding process is a method of moulding in which a pre-heated 

polymer is placed into an open and heated mould cavity. The mould is closed and 

pressure is applied to force the material to contact all areas of the mould. Throughout 

the process, heat and pressure are maintained until the polymer has cured. This 

method does not involve any organic solvents during the scaffold fabrication process 

(Oh, S.H., et al., 2003). The main problem of this method is the high temperature 

required. 
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Table 1: Comparison between methods for scaffold preparation 

 

Method 
Organic 

solvent 

Compatibility 

with proteins, 

gens and 

drugs 

Cost Advantages Disadvantages 

Solvent casting 

and 

particulated 

leaching 

Yes No Cheap 
Interconnected 

pores 

Poor control 

over pores 

Remaining salt 

Thermally 

induced Phase 

separation 

Yes Possible Cheap 

Highly and 

interconnected 

porous scaffolds 

Control over 

pore morphology 

Limited to 

certain 

polymers 

Use of organic 

solvent 

Freeze drying Yes No Cheap Easy 

Use of solvents 

Difficult to 

control material 

characteristics 

Compression 

moulding 
No No Expensive 

No use of 

organic solvent 

Fabrication of 

complex 

geometries 

Easy process 

High 

temperature 

required 

Limited to 

certain 

polymers 

 

As it can be seen in the Table 1, all above described methods are not adequate for the one-step 

preparation of scaffolds loaded with biological components (drugs, proteins and genes). 

Solvent casting, phase separation and freeze drying are the cheapest but they imply the use of 

organic solvents during the process. An operation for removing all organic solvent is needed 

in order to avoid any contamination and this could be very difficult. 

In the case of phase separation, an elevated processing temperature is required which can 

prohibit their use in the preparation of scaffolds.  

 

3.5. Supercritical fluid technology for 3D porous scaffold preparation 

 

During the past two decades, supercritical fluid technology has attached interest for the 

preparation of 3D polymeric scaffold unloaded and loaded biological. 

 

In the case of tissue engineering, this technology has been used for developing new strategies, 

including the encapsulation of growth factors, pharmaceuticals and plasmids in order to 

develop tissues; the elimination of residual solvents, the improvement of tissue biointegration 

and, finally, the preparation of 3D scaffolds with appropriated properties such as high 



Impregnation of PLA porous matrices with Inclusion bodies 

for their use as scaffolds for Tissue Engineering. 
 

INTRODUCTION   25 

porosity and interconnected pore structure. Carbon dioxide is the most common fluid used as 

compressed fluid for this application. 

 

A supercritical fluid (SCF) is formed when its critical pressure and temperature are exceeded. 

Under these conditions, SCFs have special properties: its density is similar to a liquid but 

diffusivity and viscosity are comparable with a gas. In the case of SCCO2, the combination of 

gas-like diffusivity and liquid-like density makes it a unique medium for polymer synthesis 

and processing (Cooper 2001). Its properties can be adjusted by small manipulation in 

pressure and temperature.  

 

Figure 6: Idealized phase diagram 

In regenerative medicine, processing with SCFs, especially SCCO2, has been used for 

different applications, including (Davis, 2008): 

 

- 3D porous polymer scaffolds production. 

- Encapsulation of growth factors and cells for tissue engineering. 

- Removal of residual solvent from pre-fabricated scaffolds. 

- Sterilization of implantable materials. 

SCCO2 is the most commonly used SCF for the preparation of 3D polymeric scaffolds.  

 

3.5.1. Scaffold production with SCCO2 

 

SCCO2 is the most investigated SCF because it presents many advantages not only economics 

but also environmental. It has emerged as an attractive alternative of water and organic 

solvent in synthesis as well as other processing areas for polymers. CO2 is non-toxic, non-

flammable and chemically inert, therefore is considered a “green solvent”. Moreover, its 

critical conditions are easy to achieve and a large amount of CO2 is available from NH3 and 

ethanol industries and refineries. It can be removed by simple depressurization.  

 

Critical conditions for the CO2 are 304 K and 7,38 MPa. In supercritical region, properties of 

fluids are intermediate between those of liquid and gas. Density of a supercritical fluid is 

similar to liquid. They have a high diffusivity and low viscosity.   
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3D porous scaffolds can be produced using a foaming technique, which is based on 

plasticising action of the CO2. Polymer foams are formed when a polymer, plasticized by 

saturation in a supercritical fluid is rapidly depressurized at a constant temperature. (Davies et 

al., 2008). When CO2 reaches its critical parameters, it can dissolve into the amorphous region 

of polymers, plasticising them at low temperature in a solvent-free environment. (Ginty. P.J. 

et al., 2008). Under these conditions, the glass transition temperature of the polymer (Tg) is 

reduced, resulting in the formation of foams.  

 

For instance, a common procedure for the preparation of polymeric scaffold with sCCO2 is 

described below and schematized in the Figure 7.  

 

 
Figure 7: Schema of experiment for 3D scaffolds preparation 

 

- This experiment starts with the preparation of a polymeric disk using a special mould.  

 

- Disk is then placed into high pressure vessel pre-heated at the working temperature.  

 

- After, a high pressure pump is employed to introduce SCCO2 into the vessel to reach 

the working pressure. The polymer/compressed fluid mixture is maintained at working 

pressure during the soak time, producing polymer saturation with CO2. This first step 

produces the plasticization and a decrease in the Tg of the polymer. Moreover, 

polymer will expand due to the plasticization process.  

 

- Depressurization step. This step induces phase separation and nucleation due to an 

alteration of thermodynamic equilibrium. At this point, the amount of CO2 present in 

the polymer decreases and the Tg of the polymer starts to increase again, returning to 

the glassy state. When Tg for the polymer is higher than the foaming temperature, the 

porous structure is fixed (Davies et al., 2008).  

Depressurization occurs at constant rate. As a result, porous scaffolds are obtained. 

 

PLA porous matrices obtained with this technology can be observed in the Figure 8: 

Disk

Compressed fluid

Depressurization
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Figure 8: SEM image for PLA porous scaffold obtained with SCCO2 

 

3.5.2.  Scaffold production with Freon R-134a. 

 

The use of SCCO2 in scaffold preparation could be restricted by the high-pressure equipment 

required and the low solubility of many compounds restricts its potential (Gimeno, 2005). 

 

Recently, NANOMOL group of CSIC and CIBER-BBN have studied the use of 1,1,1,2- 

tetrafluoroethane as an alternative to SCCO2 in porous polymer fabrication. Commercially 

known as R-143a, this fluid belongs to the group of freons, a group of halogenated 

hydrocarbons that are characterized by their high stability and safety, as well as, they are non-

fammable, odourless and colourless. It has been used in refrigeration and in auto air 

conditioning system.  

 

The use of R-134a presents numerous advantages, including a lower pressure to become 

liquid (< 2 MPa, RT) if we compare with the 7,38 MPa, RT for the CO2. Although it remains 

more expensive, the lower pressure for the liquid phase could result in a lower cost of 

equipment because equips that tolerate high pressure are not necessary. In addition, pumps are 

not needed for achieving a high pressure, resulting in a lower initial investment.   

The risks associated with working at high pressure are also reduced. 

 

As can be observed in SEM image of Figure 9, by using compressed Freon R-134a, it is also 

possible to prepare porous matrices of PLA. 

 

 

 

 

 

 

 

500 μm
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Figure 9: SEM image for PLA porous scaffold obtained with compressed R-134a 
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4. OBJECTIVE 

 

An adequate combination between the biology and material engineering can be used for the 

regeneration of damaged tissue employing not only a biodegradable support where cell can 

growth and proliferate but also a biological agent to stimulate cell proliferation. Following 

this well accepted approach, the main objective of this work is to study the influence of 

polymer nature in structural properties obtained, Inclusion bodies presence and processing 

conditions on the behaviour on 3D porous matrices as scaffolds for bone tissue engineering. 
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5. EXPERIMENTAL 

 

In this work, the experimental methodology summarized in the diagram of Figure 10 

has been followed, in order to achieve the proposed objectives. This methodology includes: 

 

- Production of Inlusion Bodies (IB’s) composed by VP1GFP protein by recombinant 

DNA technology. 

- Production of 3D porous scaffolds employing Supercritical fluid technology. 

- Functionalization of 3D scaffolds with the bacterial inclusion bodies purified and 

quantified.  

- Cultivation of 3D porous scaffolds unloaded and loaded with human mesenchymal 

stem cells for studying cell viability and proliferation and, finally, IB’s impact. 

 

 
 

Figure 10: Experimental methodology 

 

Bacterial IB’s

production

Human

mesemchymal
stem cells

Inclusion

bodies
quantification

3D porous

scaffolds
preparation

3D porous

scaffolds
characterization

Porous scaffold

impregnation
with IB’s

3D porous

scaffolds cut

Viability and 

proliferation
cell study

Porous scaffold

loaded with
IB’s

Porous scaffold

unloaded with
IB’s
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5.1. Inclusion bodies production and purification 

Bacterial IB’s formed by VP1GFP protein were produced by Recombinant DNA technology 

at the laboratory of Prof. Antonio Villaverde (IBB-UAB), following the procedure describe in 

Figure 11.  

 

 
 

Figure 11: Diagram of recombinant DNA technology 

 

As it can be seen en the figure 11, first step in this technology is to select a fragment of DNA 

to be inserted into a vector. Employing different restrictive enzymes, the fragment selected is 

cut and placed into the vector using a DNA ligase. For this work, gene for VP1GFP protein 

was inserted into a plasmid which was then inserted into a host cell. This process is called 

transformation and requires a selectable marker which allows the identification of 

recombinant molecules. Selectable markers can be for antibiotic resistance, colour changes or 

any other characteristics which can distinguish transformed from untransformed hosts.  

Normally, an antibiotic marker is used.  

 

In our case, we’ll use Escherichia coli as a host cell and a plasmid as a vector.  

 

Experimental procedure has been also made following the protocol supplied by Professor 

Antonio Villaverde, from the Applied microbiology group (Institut de Biomedicina i 

biotecnologia, UAB). 

 

 

Plasmid from a bacteria

pTVP1GFP plasmid

pVP1GFP plasmid
inserted into E. Coli

Gene for VP1GFP protein

Clones Bacteria platted on medium
(only bacteria containing

recombinant plasmid grow)

Culture IB’s purification
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5.1.1. Bacterial cell culture: strains and plasmids 

The E. Coli strains used for the production of Inclusion bodies were MC4100 and its 

derivative JGT20 which is deficient in DnaK. Those bacteria were transformed with 

pTVP1GFP plasmid that contains the gen for the VP1GFP protein.  

 

 
 

 

Figure 12: Structure of pTVP1GFP plasmid. 

 

The gene of interest was under the control of PTRC promoter, a DNA region situated upstream 

of the gen VP1GFP.  In addition, this vector contains the gen coding for the resistance to 

ampicillin as a marker.  

 

5.1.2. Inclusion bodies production 

Starting with bacterial inoculums which contain transformed E. Coli with pTVP1GFP, 

inclusion bodies were produced in 1 l of Luria Bertani medium (LB) divided in two shake 

flasks of 500 ml.  

 

Ampr

ori
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Figure 13: Inclusion bodies production 

 

- 4,67 mL of the initial inoculum were added to 500 mL of LB medium in the two 

flasks at an optical density of 0,05 at 550 nm (OD550) 

- These cultures were then cultured in a shaker flask at 37º C and 250 r.p.m using LB 

medium. The LB is a rich medium designed for growth of pure cultures and it is used 

for maintaining and cultivating recombinant strains of E. Coli. Indeed, this medium is 

supplemented with the corresponding antibiotics: ampicillin for plasmid maintenance, 

streptomycin as a strain selection marker and tetracycline. 

- Bacterial strains were cultured in the conditions mentioned above until they reach an 

OD550 of 0.5. 

At this point, bacterial cultures were in exponential phase. This is the optima phase 

because bacteria are in rapidly growing and dividing, showing an active metabolism 

essential for a good protein. The culture reaches the maximum growth rate and the 

number of bacteria increases exponentially. 

- The iso propyl-D-thiogalactoside (IPTG) was then added in order to induce gene 

expression and protein deposition as IB’s. IPTG is the gene expression inductor and 

responsible for activating the promoter.    

- The culture is then incubated for 3 hours at 37ºC and 250 rpm. 

 

5.1.3. Inclusion bodies purification 

 

After protein production, bacterial inclusion bodies were isolated by a combination of 

enzymatic and mechanical cell lysis, followed by extensive sample washing in the presence of 

detergents. 

Table 2: Material for inclusion bodies purification 

Product Supplier Reference 

Complete EDTA free Roche 05 056 489 001 

PMSF Roche 11 359 061 001 

Lysozyme (0,5 mg/ml) Roche 10 837 059 001 

Triton X-100 Roche 10 789 704 001 

NP-40 Roche 11 754 599 001 

MgSO4 1M n.a. n.a. 

DNasa I (a 1 mg/ml) Roche 10 104 159 001 

Lysis buffer + Triton X-100 n.a. n.a. 

PBS buffer n.a. n.a. 

E. Coli and pTVP1GFP 500 mL of LB 500 mL of LB
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- Once induction was finished, three reagents were added directly to the culture: 

complete EDTA free, PMSF and lysozyme for cell wall digestion.  The culture was 

incubated during 2 hours, at 37ºC and 250 rpm and after, was placed in a beaker for 

freezing at -80ºC overnight. After, culture was thawed at room temperature (RT). 

This freeze/thaw cycle was performed in order to disrupt the partially digested bacteria 

to release the inclusion bodies. 

- Triton X100 (0,4 vol. %) was added to culture and incubated during 1 hour at ambient 

temperature with stirring. Culture was then frozen at -80ºC for two hours. 

- Once culture was thawed, a sterility control was made. To this end, 100 μL of culture 

were seeded in LB plate (without antibiotics) at 37ºC. This culture was then frozen at -

80ºC overnight and after, thawed at RT. In this point, contamination degree was 

checked by counting the number of colonies. This step was repeated until no colonies 

are shown on the plate. 

- Once culture was free from colonies, NP-40 (0,025 vol.%) reagent was added and 

incubated during 1 hour with stirring.  

- Two reagents were then added to samples (MgSO4 and DNAsa) and incubated 1 hour 

at 37ºC with stirring. Culture was centrifuged at 15.000 g, for 4 minutes at 4ºC. 

Supernatant is discarded and pellet is re-suspended. 

This DNase treatment and washing with detergent was carried out for removing 

bacterial DNA and cell membrane contaminats. 

- 100 μL of culture were seeded in LB plate (without antibiotics) at 37ºC overnight. 

This culture is then centrifuged at 15.000 g for 15 minutes at 4ºC. Supernatant was 

discarded and pellet is re-suspended. 

- This final step was repeated and pellets were kept at -80ºC until their use. 

 

Once purification is finished, inclusion bodies quantification is made using SDS-PAGE and 

Western-Blot method. 

 

5.1.4. Inclusion bodies quantification: SDS-PAGE and Western-Blot method 

 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western-blot 

is one of the most widely used laboratory techniques to detect proteins. SDS-PAGE relies on 

the migration of charged molecules in a gel matrix in response to an electrical field. This 

technique facilitates the separation and resolution of a mixture of proteins according to the 

molecular weight. Western-blot method transfers proteins from SDS-PAGE gel to a solid 

supporting membrane.  

 

a) SDS-PAGE electrophoresis 

 

Two types of gels are employed in this electrphoresis: a “staking gel” and a “running gel”. 

 

- “Staking gel” is located on top of the running gel. It has a lower degree of crosslinking 

and is the section of the support in which the sample wells are located.  
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- “Running gel” is the support used for the electrophoretic separation of substances in 

the sample. This gel is formed first and is located throughout the middle and lower 

section of the system. 

 

After the sample has been placed in the wells and an electric field has been applied, analytes 

travel quickly through the stacking gel until they reach its boundary with the running gel. 

 

Sample preparation 

 

Samples were dissolved in the Laemli solution and then, heated at 98ºC during 25 minutes. 

We used the Precision Plus Prtoein TM All blue standards as a standard (Ref. 161-0373 

BioRad).  

Samples were prepared in the presence of loading buffer that contains glycerol to increase the 

density of samples and their deposition on the bottom of the wells. The loading buffer also 

contains a dye, blue of bromophenol that indicates the position of the samples during the 

electrophoresis. 

 

SDS-PAGE Electrophoresis assembly 

 

SDS-PAGE electrophoresis starts with the preparation of “running” and “stacking” gels that 

will be placed between two glasses. 

 

Table 3: Composition of SDS polyacrylamide gel 

 

Reactives 
Running gel 

Polyacrylamide 15% 

Staking gel 

Polyacrylamide 3.5% 

H20 MQ 9,86 mL 4,124 mL 

Solution A 5 mL 0,7 mL 

Solution B 

0,4 g SDS 

18,2 g Tris base 

pH=8,8 

5 mL  

Solution C 

0,4 g SDS 

6 g Tris base 

pH= 6,8 

 1.575 mL 

APS 120 µL 70 µL 

Temed 16 µL 7 µL 

 

 

- The top and separator glasses were fixed to the support with a space between them of 

0,75 mm, approximately. 

- This is a discontinuous electrophoresis, so running gel was prepared first.  

- 9,86 ml of utltrapure water were added followed by 5 ml of the running gel buffer at 

pH= 8,8 (solution B). 
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- The, mixture of acrylamide/bisacrylamide was added followed by the SDS. 

- Then, polymerization was started by the addition of 60 μl ammonium persulfate, APS, 

a free radical generation. 

- Finally, 8 μl the reagent TEMED was added in order to complete the polymerization. 

 

The final mixture was well stirred for achieving a complete homogenization and, then, placed 

in the space between the two glasses. This mixture was added until it occupies the third of the 

total volume. In the upper part, a thin layer of ultrapure water was added to prevent the 

contact with the air. Once the polymerization has finished, water was removed and running 

gel is ready. 

Now, the stacking gel is prepared. The procedure is similar to running gel but modifying the 

proportions in order to obtain a larger pore size. 

 

- 4,124 ml of ultrapure water were added followed by 1,575 ml of the stacking gel 

buffer at pH= 6,8. (solution B) 

- The, mixture of acrylamide/bisacrylamide was added followed by the SDS. 

- Then, polymerization has started by the addition of 70 μl ammonium persulfate, APS, 

a free radical generation. 

- Finally, 7 μl the reagent TEMED was added in order to complete the polymerization. 

 

The stacking gel was located at the top and its function is to concentrate the protein prior to 

separation. 

Finally, a plastic comb was placed for allowing the formation of the wells where the samples 

will be charged. SDS-PAGE system was ready and placed in the electrophoresis cuvette. 

 

 
Figure 14: SDS-PAGE electrophoresis system 

 

The support contains the electrodes, which supply the current once the electrophoresis buffer 

is in contact. Once the system was in cuvette, the electrophoresis buffer was added until it 

covers the gel. 
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Table 4: Electrophoresis buffer composition 

 

Reactives V(mL) 

Phoresis tampon 10X 80 100 300 

SDS 10X 8 10 30 

H2Od 712 890 2670 

Vfinal 800 1000 3000 

 

The comb is removed and samples are loaded into the wells.  

In order to begin the electrophoresis, the electrodes are connected to an electrical source and 

the appropriate voltage is selected. In our case, selected voltage is 100 V and intensity is 40 

mA. The electric field generated causes the protein migration from the top to the bottom, 

causing their separation by size. The gel will be running until samples reach the final of the 

glass. 

 
Figure 15: Electrophoresis end 

 

Once the migration is ended, the current is turned off and the electrophoresis buffer is 

removed. 

Table 5: Transference buffer composition 

 

Reactives V(mL) 

Phoresis tampon 10X 70 100 200 

Methanol 140 200 400 

H2Od 490 700 1400 

Vfinal 700 1000 2000 

 

b) Western-blot method 

 

When gel electrophoresis has finished, analytes bands can be detected in two different 

ways: directly on the gel or transferred to a different support for detection. In our case, we’ll 

use the second way, in particular, a blotting method, which consists in transfer a portion of the 
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analyte bands to a second support, where they are reacted with a labelled agent. This method 

is called Western-Blot and we are going to use Watman membrane as a second support. 

 

In this technique, proteins separated by electrophoresis are blotted onto a second support. This 

support is then treated with labelled antibodies that can specifically bind the proteins of 

interest. After antibodies and proteins have been allowed to form complexes, any extra 

antibodies are washed away and the remaining bound antibodies are detected through their 

labels. 

 
Figure 16: Western-Blot detection 

 

Before the addition of antibodies, the gel has to be transfer to the second support. Steps for 

transference are the followings: 

- The gel is cut removing the staking part. 

 
Figure 17: Removal of staking gel 

 

- The rest of the gel is then placed in a cuvette with a little of transference buffer 

 
Figure 18: Transference assembly 

Sponge

Absorbent paper
Watman membrane

Gel

Absorbent paper

Sponge



Impregnation of PLA porous matrices with Inclusion bodies 

for their use as scaffolds for Tissue Engineering. 
 

EXPERIMENTAL 40 

 

- The gel transference conditions were 100 V and 190 mA during 1 hour. 

- The transferred membrane was finally placed with 40 mL of PBS and 2 gr. of milk in 

a continuous swinging overnight. 

- 20 μl of the first antibody (SC-17767, 200 μg/ml, Santa Cruz Biotechnology) were 

added to 10 ml of the mixture PBS+milk (dilution 1/5000). 

This mixture was maintained during 2 hours with the first antibody at RT. 

- The transferred membrane was then washed with PBS. 

- After, the membrane was washed again two times with a mixture of PBS-Tween, 

during 15 minutes each washing. 

- 5 μl of the second antibody was added with 10 ml of PBS. The membrane was then 

incubated during 1 hour at ambient temperature. 

- Then, a fast washing with PBS was made. 

- The membrane was washed again with a mixture of PBS-tween, during 15 minutes. 

- This mixture was removed and PBS-tween was added again for a new washing during 

15 minutes. 

- Finally, revealed solution was added to the gel. 

 

Table 6: Composition of revealed solution 

 

Reactives Composition 

4-cloranaftol 13 mg. 

Cold methanol (-20ºC) 5 ml. 

H2O2 40 µl. 

PBS 20 ml. 

 

- The membrane was maintained in the revealed solution until the signal is clearly 

visible. 

- The membrane was after washed in distilled water and placed on paper until dry.  

 

5.2. Scaffold fabrication by supercritical fluid technology 

 

5.2.1. Materials 

 

In this study, the polilactic acid PL,DLLA, with inherent viscosity between 5,7-6,5 dl/g, 

RESOMER LR708, was purchased from Evonik Röhm GmbH (Darmstadt, Germany), in 

bags of 100 g and in “pellet” form. This polymer is kept at 4ºC until its use and has the 

following structure: 
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Figure 19: PLA structure used for this work 

 

The polilactic co-glicolic acid, PLGA, with inherent viscosity between 0, 32- 0,44 dl/g, 

RESOMER RG503, was also purchased from Evonik Röhm GmbH. 

 

 
Figure 20: Structure of PLGA used for this work 

 

CO2 (purity 99,995%) with 62730 reference and Freon R134a with 62730 reference were 

supplied by Carburos metálicos-Air products S.A. (Barcelona, Spain). 

 

5.2.2. Equipment and preparation methods 

 

The scaffold preparation process with supercritical fluid technology can be divided in two 

different steps: first, the preparation of polymer disk and, second, the 3D porous scaffold 

production by processing of the polymer disks with supercritical fluid technology.  

 

a) Equipment and protocol for polymer disk preparation. 

 

Polymer disks were prepared using a special mould of 13 mm of diameter, which is showed in 

the following figure: 
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Figure 21: Mould used for disk preparation 

 

This mould has two detachable parts to allow removal the disk after fabrication. 

 

Protocol for PLA disk preparation 

 

The PLA used for this work contains a crystalline and amorphous part. The first one is done 

for the L phase of the polymer, while the amorphous is done for the DL phase. In previous 

work (Parera, M., 2013) , it has been demostrated that crystalline part is more difficult to be 

expanded that the amorphous one, consequently its elimination is mandatory. A thermal pre 

treatment of the polymer is done in a oven following the protocol described bellow:  

 

- Starting with the polymer in pellet form, PLA disks have been prepared with a desired 

mass  m of polymer , 13 mm of diameter and 3 mm of thikness.  

- Oven was estabilished at working temperature during one hour before the experiment. 

- The desired mass  m of polymer was weighed in a precision lab scale (0,1 mg.), in 

order to achieve a final disk of m grames. 

- The polymer was then introduced into the oven during 15 minutes for ensuring that all 

material reaches the working temperature. 

- After 15 minutes, the material was placed into the special mould with a diameter of 13 

mm.  

- Using a piston and a hidraulic press of 10 tones (Perkin Elmer), the mass was 

compressed with 3 tones during 20 seconds. 

 

 
Figure 22: Perkin Elmer hidraulic press. 
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- Disk formed was removed from the mould using the two detachable parts. 

 

Protocol for PLGA disk preparation 

 

Since PLGA used does not contain a crystalline part,  thermal pre-tretament was not 

necessary.  

Protocol for the preparation of PLGA disks is the same as described for PLA disks but 

eliminating the part corresponding to thermal treatment. 

 

- A desirable mass m of PLGA, weighed in a precision lab scale, was directly placed in 

the mould with a diameter of 13 mm. 

- Polymeric mass m was compressed with 3 tones during 20 seconds using a piston and 

a hidraulic press of 10 tones (Perkin Elmer). 

- PLGA disk was removed from the mould throught the two detachable parts. 

 

Both polymeric disks were stored in the friged at 4ºC untill their use. 

 

b) Equipment and protocol for 3D porous scaffolds preparation with compressed fluids. 

 

For the preparation of 3D porous scaffolds, a high-pressure plant at laboratory scale has been 

used. This plant belongs to CIBER-BBN instrumental and is schematized in the Figure 23: 

 

 

 

 
 

Figure 23: Experimental system diagram. This system consists of one entry for CO2, other for N2 and 

liquid connection, a liquid pump (BCO2), check-valves (BV), mass flow (FCO2), regulation valves for gaz 

entry (V-1, V-2, V-3, V-1B), vent valve (V-4), manual decompression valve (V-5, V-6), back-pressure valve 

(V-8), rupture disk (DR1, DR2)  

 

Three addition lines form this system: one for the CO2, other for N2 and the last one, for 

Freon R-134. 
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This plant is equipped with a high-pressure vessel of 300 mL with maximum working 

pressure of 19,5 MPa at 523 K.  

 

 
 

Figure 24: 300 ml high-pressure plant (a) and reactor detail (b), (c). 

 

The temperature vessel is regulated with a water-ethilenglicol mixture that circulates through 

a jacket around the vessel at working temperature, TW. A Haake is used for controlling the 

temperature of this mixture and propelling it through the circuit.  

Temperature is measured with a type K thermocouple that is introduced inside the high-

pressure vessel, in direct contact with compressed fluid. 

 

The system controller registers process variables once every 4 seconds with an acquisition 

programme.  

 

The polymer disks prepared in previous step are placed into the high-pressure vessel using a 

special stainless steel basket. 

 

(A) 

(B) 

(C) 
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Figure 25: Stainless steal basket 

 

This basket consists of different levels where disks are placed. On the extremes, experimental 

conditions can be different then disks are not put in the higher and lower level. Only 

intermediated levels are used for experiments. In each experiment, 4 are placed in this basket. 

 

Protocol for the preparation of 3D porous scaffolds 

 

The operation procedure for porous polymer production using high-pressure plant consists on 

different steps that are summarized below.. 

 

- High-pressure vessel was stabilized at working temperature, TW. 

- The basket with polymer disks was then placed inside the vessel. Disks were weighed 

before introduction in the basket. 

- Pressure vessel was closed, making sure the Teflon gasket was properly positioned. 

The reactor was screwed with a screwdriver and after with a torque wrench. 

- The system was pressurized through fluid addition (CO2 or Freon R-143). (See below 

specific operational protocol followed for each fluid) 

- When addition was finished, the pressure vessel was depressurized trough V-8 valve.  

This valve can work in two different operational modes: manual and automatic. 

The manual consists of setting a valve opening grade value between 0 (closed) and 95 

(totally opened) to open/close/regulate valve, which will remain at the set value during 

depressurization process.  

The automatic option (back-pressure) consists of setting a constant pressure value. 

When the system detects that the pressure is exceeded inside the vessel, valve V-8 is 

opened in order to maintain the pressure settle in the set value. 

For those experiments, depressurization was made with V-8 in manual option with a 

desired period of time. 

- Then, temperature control was stopped and porous scaffolds were removed from the 

reactor.  

- Scaffolds were weighed and kept at 4ºC in the refrigerator.  
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Procedure for CO2 addition 

 

- Before starting the CO2 addition, ensured that valves V-1B, V-2, V-3, V-4, V-5 and 

V-8 are closed. V-6 will be opened during the experiment. 

- To perform vessel pressurization, V-1B was opened slowly to let CO2 enter in the 

vessel until line pressure is reached, normally 50-60 bar. 

- For reaching the working pressure, PW, a BCO2 pump was used with a flow of 200 

ml/hr.  

- When working pressure was achieved, pump was stopped and V-1B is closed. 

- The system was then stabilized during a period of time, t. 

 

Procedure for Freon R-134 addition  

 

- Freon addition was made through V-3 valve. In this case, a syringe pump (BISCO) was 

used to perform vessel pressurization.  

- First, Freon volume was measured and registered in the ISCO pump, at constant 

pressure and temperature (20 bar and 10ºC). 

- Before starting the addition, ensured that valves V-1B, V-2, V-4, V-5 and V-8 were 

closed. V-3 and V-6 will be opened during the experiment. 

- Freon addition was made at 25ml/min., trough V-3 valve until deposit exceeds liquid-

vapour equilibrium region. 

- For reaching the working pressure, Freon was added slowly.  

- When working pressure was achieved, V-3 was closed and Freon volume was 

measured and registered, at constant pressure and temperature (20 bar and 10ºC). 

- The system was then stabilized during a period of time, t. 

 

5.3. Scaffold characterization 

 

Scaffolds produced with Supercritical fluid technology have been characterized studying their 

solid density and porosity, morphology and qualitative IB’s loading. The different techniques 

used for each characterization are described below. 

 

5.3.1. Solid phase density and porosity 

 

Solid phase density and porosity of scaffolds were measured using a helium picnometer. 

This equipment measures skeletal density of a solid which is defined as the ratio of dry 

specimen mass to volume of its solid part.  
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Figure 26: He picnometer used in measures 

 

This technique is based on measuring the volume of helium displaced by the volume of solid 

introduced. Helium is used because is an inert gas, does not affect samples, its atomic ratio is 

very small as a result it has a great capacity for penetration in the porous matrix. 

 

The equipment used for the experiment is an Ultrapycnometer 1200e from Quantachrome 

Instruments, using the small cell for measurements. 

 

 
Figure 27: ULTRAPYC flow diagram 

 

The variables employed are the followings: 

- Small measurement cell 

- Purge time to remove air from the system: 5 minutes. 

- Helium pressure: 180 psia 

- Stabilization time: automatic mode. 

- Measures number for average: 5 

- Standard deviation: 0,005%. 

      
  

   
  

  
  

 

Where, 

- VC is the cell volume 

- VA is the volume added 

- P2 is the pressure in the chamber before opening the valve that connects with VA 
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- P3 is the pressure after opening the valve that connects with VA 

 

For obtaining solid density, scaffolds were weighed before introduction in the pycnometer. 

This mass is necessary for density calculation, using the following equation: 

 

        
          

  
 

 

The equipment make a measurement report and saves it in USB storage device in .txt. Format. 

It is possible to estimate the porosity of scaffold samples with remarkable accuracy, speed and 

using gas pycnometry. Subtraction the sample volume from the geometric volume yields the 

total pore volume of the sample. The pore volume can be expressed as a percentage of 

geometric volume. 

         
       

  
     

Where, 

- Vg is the geometric volume, calculated as a cylinder:           

- VP is the solid phase volume calculated with He picnometry. 

 

5.3.2. Morphology and pore size. 

 

In this work, micro and nanoscopic morphology of the porous polymeric matrices was 

analysed by scanning electron microscopy. This microscope produces images by scanning the 

sample with a high-energy beam of electrons. The electrons in the beam interact with the 

sample, producing various signals that can be used to obtain information about the surface 

topography.  

 

Comparing with optical microscopy, electron microscopy has a higher resolution and is 

therefore also able of a higher magnification. In addition, it is possible to view the three-

dimensional external shape of the samples and they have a greater depth of field. 

 

Polymers used are non-conductive, thus a metallization process is needed before SEM study. 

This metallization was made in evaporator Emitech K550X during four minutes at 20 mA, in 

the electron microscopy service from the Universidad Autonoma de Barcelona (UAB). In 

order to achieve a homogeneous metallization of the scaffolds surface, the procedure was 

repeated two times with different inclination from the horizontal (-45ºC and 45ºC) because 

gold deposition is made mainly in the horizontal plane. A correct metallization is desired in 

order to avoid electric charge of sample during microscopic inspection. 

 

5.3.3. Qualitative IB’s loading in scaffolds. 

 

A qualitative measure of IB’s retained in porous matrices can be done with an optical 

microscopy in order to evaluate the efficiency of impregnation process. In this case, 

OLYMPUS BX51 microscope has been used.  
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Figure 28: Optical microscopy 

 

The microscope configuration used for these measurements was the following: 

 

- Ultraviolet light produced in mercury lamp. 

- Light filter allowing passage of the wavelength corresponding to green. 

- Specific shutter speed. 

 

Only matrices decorated with IB’s were analysed using this technique. 

 

5.4. Culture of human mesenchyme stem cells: viability cell tests 

 

Cell health can be monitored by numerous methods. Plasma membrane integrity, 

enzyme activity, presence of ATP and cellular reducing conditions are known indicators of 

cell viability and cell death. In this present work, the reagent used for cell viability test is 

alamarBlue® that uses the reducing power of living cells to quantitatively measure the 

proliferation of cells. When cells are alive they maintain a reducing environment within the 

cytosol of the cell. Resazurin, the active ingredient of alamarBlue reagente, is a non-toxic, cell 

permeable compound that is blue and non fluorescence. Upon entering cells, resazurin is 

reduced to resofurin, a compound that is red in color and highly fluorescence. Viable cells 

continuously convert resazurin to resofurin, increasing the overall fluorescence and color of 

the media surrounding cells. 

 

 
Figure 29: Resazurin reduction to resofurin 

 

 

It incorporates a fluorimetric/colorimetric growth indicator based on detection of metabolic 

activity.  
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5.4.1 Protocol for measuring cell viability using alamarBlue® 

 

All cell viability test of this work were performed at.Hospital Universitario La Paz, in 

collaboration with FIOBI-HULP group. 

 

Protocol for cell viability test is schematized in the following figure  

 

 
Figure 30: Alamarblue cell viability assay protocol 

 

- Materials scaffolds were placed in a 24 well plate. 

- Cells were, then, seeded over material scaffolds. 

 

- AlamarBlue dissolved in DMEM (10%) red phenol free, was directly added to each 

well. 

- The plates were incubated at 37ºC to allow cells to convert resazurin to resofurin 

during 3 hours. 

- Fluorescence at 590 nm was measured after excitation at 530 nm with a 

spectrofluorimeter “Synergy” (BioTek Instruments, Winooski, VT, EE.UU.) 

- As higher is fluorescence emission, higher is the number of cells living. 

 

 

 

 

 

 

 

 

 

 

1-4 hrs at 37ºC

a) Materials are placed 

and cells are seeded

b) Add reagent to cell c) IncubationAlamarBlue® d) Read fluorescence
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6. RESULTS AND DISCUSSION 

 

In the present work, it was studied the influence of different structural characteristics of 3D 

polymeric porous materials on their behaviour as scaffolds for mesenchymal stem cells 

growth. Inclusion bodies presence was also evaluated as promoting agents that can stimulate 

cell proliferation on porous scaffolds. 

 

To achieve this objective, different series of materials have been prepared, physic-chemically 

characterized and tested as scaffold for cell growth. 
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6.1. Inclusion bodies production 

 

In the present work, a batch of IB’s was prepared for further decoration of PLA based 

scaffolds. These protein aggregates composed by Green Fluorescence protein were produced 

in 1 litre of LB medium using recombinant DNA technology. The host organism was 

Escherichia Coli, in particular, MC4100 strain and its derivative JGT20 (dnak756 thr::tn10, 

Sm
R 

, Tc
R
). Escherichia Coli was then transformed with pTVP1GFP plasmid in order to 

obtain the inclusion bodies formed by the protein of interest, following the procedure 

described in the experimental section. 

 

Inclusion bodies were produced inside the bacteria, consequently a purification treatment was 

needed for obtaining the protein aggregates. The procedure was describe in the experimental 

section and is schematized in the following figure. 

 

 
Figure 31: Protocol for inclusion bodies purification (Seras Franzoso, J., 2012) 

 

Once inclusion bodies were purified, Western-Blot was used in order to quantify them. For 

this method, polyacrylamide gel was prepared using the protocol described in the section 4. It 

starts with the protein separation by SDS-PAGE, followed by the protein transfer to a 

membrane (Watman membrane), block of binging sites and finally, protein detection. The 

polyacrylamide gel was charged as it can see in the figure 32: 

 

 
Figure 32: Polyacrylamide gel charged for Western-Blot detection 

20 µL 20 µL 5 µL 5 µL 20 µL 20 µL 5 µL 5 µL 

Molecular 

weight 

marker 
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The gel was first loaded with the molecular weight marker, followed by four known amounts 

of the protein to be detected. These amounts were, placed in this order on the gel, 500, 250, 

125 and 62,5 ng. of protein and they were used for the creation of a line pattern. Finally, the 

last four corresponds to protein that we want to quantify.  

 

We want to quantify the amount of IB’s that we have in 1 aliquot. The quantity of IB’s 

present in 1 aliquot has been resuspended in 1 ml and two different dilutions have been 

prepared: 1/40 y 1/20. From each dilution, we loaded 20 and 5 μL.  

 

Once SDS-PAGE has finished, 2 mL of first antibody was added for starting the 

quantification of the IB’s. We are using polyclonal antibodies produced in rabbits. The green 

fluorescent protein is injected in these animals and they produce the correspondent antibody. 

The result can be seen in the next figure: 

 

 
Figure 33: Result for Western-Blot detection 

 

The quantification of the inclusion bodies present in aliquot is based on the comparison 

between the bands obtained after membrane development. Starting from the known amounts 

of proteins and their producing bands in the membrane, we can construct a calibration curve 

where the amount of protein is represented against the integrated density provide by each. 

This area was calculated by Image J software. The calibration curved is represented in the 

figure: 

 
Figure 34: Calibration curve 
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First, we calculate the integrated density of the different bands obtained and then, using the 

calibration curve, we can estimate the quantity of protein in each charge.  

 

Table 7: Calculation of IB’s quantity in 1 aliquoat 

 

Sample Point Area  M (ng) 
Ccharge 

(ng/μL) 

Caliquoat 

(ng/μL) 

Maliquoat 

(μg) 

20 μL (1/20) 
1 0,465 

0,595 475,87 23,79 475,87 475,87 
2 0,13 

20 μL (1/40) 
3 0,376 

0,453 339,52 16,97 679,04 679,04 
4 0,077 

5 μL  (1/20) 
5 0,26 

0,272 165,72 33,14 662,87 662,87 
6 0,012 

5 μL  (1/40) 7 0,164 0,164 62,01 12,40 496,10 496,10 

 

Finally, taking the results obtained in table, the quantity of IB’s present in each aliquoat is 

578,47 ± 107, 31 μg. 

 

6.1.1. IB’s size determination 

 

Particle size of bacterial inclusion bodies produced was analysed using dynamic light 

scattering instrument (DLS). The equipment used for this determination is the Zetasizer Nano 

ZS.  

The particle size measured in a DLS is the diameter of the sphere that diffuses at the same 

speed as the particle being measured. This system determines the size by first measuring the 

Brownian motion of the particles in a sample using dynamic light scattering. The procedure 

followed is described below: 

 

- 1 aliquoat of Inclusion bodies were resuspended in 1 ml of ultrapure water and 

sonicated during 10 minutes to facilitate the formation of an appropriate particle 

suspension, using the same conditions as in the preparation of suspension. 

- DLS measurements were carried out in triplicate. 

 

The result is showed in figure 35: 

 

 
Figure 35: IB’s size determination by DLS 
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This batch name IB-VP1GFP has a particle size of 264.57 nm and will be used in this work 

for scaffold decoration. 

 

6.2. Development of a cutting scaffold procedure 

 

SCF processing of PLA based polymer yields porous materials which have a non-

porous skin layer. Porous have to be accessible for cell attachment. In order to improve the 

behaviour of these materials as scaffolds, it is necessary to remove this skin layer.  

 

In the present work it was developed a suitable procedure, based on the use of a saw, in order 

to obtain disks of porous PLA with reproducible dimensions and free of the skin layer.  

 

There are many advantages in using the diamond saw, such a fabrication of porous disks with 

desired thickness, good repeatability and reproducibility and lower risk level to the user.  

 

 
Figure 36: Diamond saw 

 

Below is detailed the cutting method designed in this present work for scaffolds disks 

fabrication from porous materials prepared with compressed fluids.  

- Porous materials were pasted in the holder of the diamond saw. Before starting the 

cutting, make sure that diamond has enough water as lubricant. Water was used to 

refrigerate diamond saw during the cutting.  

- For ensuring that cuts were parallels and, for irregular nature given of the porous 

sample, a first cutting was made in order to obtain a perpendicular plane to the rotation 

axis of the saw. This cutting also allowed the removal of the first non-porous layer. 

This layer was always rejected.  

- After, the cutting position was adjusted with the micrometer of the saw for fixing the 

desired thickness in disks, 3,5 mm. 
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One of the most important parameters during the cutting is the rotation speed of the 

saw. An excessive speed could overheat the samples. We used 200 r.p.m. 

 

 
 

Figure 37: Final scaffold after cutting method 

- Finally, in order to remove the non-porous part around the disks, a die of 15 mm of 

diameter was used. Therefore, porous disks with a diameter of 15 mm were obtained 

- Porous disks were kept at 4ºC in the refrigerator until its use.  

 

6.3. Influence of polymer nature on cell growth over 3D scaffolds 

 

In this section is compared the cell growth observed over two scaffolds composed by different 

polymers (PLGA and PLA) but processed with the same compressed fluid, Freon R-134. 

These materials are the followings: 

 

- PLGA (RG-503) processed with Freon R-134a 

- PLA (LR-708) processed with Freon R-134a 

 

6.3.1. Preparation of 3D porous materials 

 

Following the procedure describe with detail in section 5.2.2. of Experimental Part, and 

schematized in Figure 38 , porous scaffolds of PLA (LR-708) and PLGA (RG-503H) were 

prepared. 

 

 
 

Figure 38: Procedure for 3D scaffolds obtaining with Freon R-134 

 

As schema depicts, there are three operations required: 
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a) Polymer disk preparation 

b) Freon processing 

c) Cutting procedure 

 

The variable values used for the preparation of both porous scaffolds with different polymeric 

nature are detailed in Table 8, for polymer disk preparation, and in Table 9 for processing 

polymeric disk with Freon R-134. 

 

Table 8: Conditions for polymer disk preparation 

 

Polymer 
Thermal 

Treatment 

Tª 

(ºC) 
M (g) 

Applied 

Pressure 

(Tn) 

PLGA No - 0,3 0,5 

PLA Yes 150 0,4 3 

 

Table 9: Experimental conditions for 3D porous materials preparation 

 

Polymer 
Tª 

(ºC) 

P 

(BAR) 

Incubation time 

(h) 

Opening 

degree 

(%) 

Porous 

matrices? 

PLGA 35 20 2 60 Yes 

PLA 40 20 3 60 Yes 

 

After experiment, disks were inflated leading to the formation of porous matrix. There is a 

clear difference between first disk and final scaffold that it can be seen in Figure 39: 

 

 
Figure 39: Comparison between initial disk and final scaffold. (A) Corresponds to PLGA and B) to PLA. 

 

Figure 39 shows the difference between the initial polymer disk and final scaffolds for two 

materials tested. PLGA and PLA processed with Freon have inflated producing a porous 

matrix. PLA processed with Freon presents a structure formed by bubbles.  

 

(a)

(b)
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By the experimental conditions detailed in Tables 8 and 9, several batches of scaffolds disk 

were prepared. In all of them, the same structural characteristics were achieved. 

 

6.3.2. Physic-chemical characterization of 3D porous material 

 

The structural characterization of representative porous materials of PLA and PLGA is 

described below. 

 

A) Mass variation study 

Mass of scaffolds obtained were measure before the experiment, directly after the experiment 

and after 7 days of stabilization. The mass of fluid retained in scaffolds can be studied with 

these values, as it can be seen in the next figure. Figure 40 shows the increase in the mass of 

the scaffolds in these two different moments: directly after the experiment and after 7 days of 

stabilization. 

 

 
Figure 40: Mass variation in the scaffolds processed with compressed fluids 

 

In the two materials tested, an increase of mass is produce after the experiments made with 

Freon. The increase of the mass is higher is the case of the PLA scaffold than in the PLGA.  

 

After 7 days of stabilization after experiment, the graphic shows that polymers processed with 

Freon accumulate a high amount of residual Freon. This fact indicates that these scaffolds 

have a lot of closed pores and, as a consequence, Freon cannot escape from them.  

 

If we compare two polymers processed with Freon, the graphic shows that in the case of PLA 

the retention of the fluid is higher than in the case of the PLGA. The PLA has a very high 

viscosity in comparison with the PLGA, consequently going out from the structure of the 

scaffold is more difficult for Freon in the case of the PLA based scaffold. 
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B) Solid density study 

The solid density of the two different materials has been measured using Helium picnometry 

following the procedure describe in Experimental section. 

 
Figure 41: Solid density for the three different materials 

 

In Figure 41, it is observed that solid density is higher in PLA scaffolds than in scaffolds 

composed by PLGA. 

As we can see in visual inspection, Freon creates larger pores. Polymers processed with 

compressed Freon increase their volume, resulting in the formation of larges pores and lower 

solid density. 

 

C) Porosity study 

 

Porosity is a morphological property necessary for bone tissue regeneration (Karageorgiou, V. 

et al, 2005). Pores allow migration and proliferation of osteoblastos and mesenchymal cells, 

as well as the proper vascularization of the implant. (Gentile P., et al, 2012). 

 

The characterization of the porosity of scaffolds can be a problem sometimes. Studies found 

in literature normally report the measurement of the porosity and pore size using mercury 

intrusion (Sarazin, P. et al., 2004; Heang Oh, S. et al., 2003). However, if we are working 

with a non-rigid material, this technique is not recommended. This technique requires high 

pressure to perform the measurements. When this force is applied to materials, the pore 

arrangement can be modified. This means that this technique does not measure the initial pore 

size and porosity of the material as produced and consequently, the measurements are not 

reliable.  

 

For this reason, porosity of the two different materials was estimated using the equation 

described in section 5.3.1. The following graph shows results obtained for these samples 
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Figure 42: Porosity for the two different materials 

 

Porosity is higher in scaffolds formed by PLGA than in scaffolds formed by PLA, following 

the tendency showed in the density. This result demonstrated that all scaffolds produced show 

a porous structure which is crucial for cell adhesion and proliferation, being good candidates 

for bone regeneration.  

 

D) Morphology and pore size study. 

 

Morphology of scaffolds obtained can be studied with scanning electron microscopy as well 

as the size of pores formed during the experiments with Freon R-134a. 

 

 
 

Figure 43: SEM images for PLGA scaffolds processed with Freon R-134a 
 

500 μm 500 μm
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Figure 44: SEM images for PLA scaffolds processed with Freon R-134a 

 

SEM images confirm porosity results. Pores formed in PLA based scaffolds are lower than 

those PLGA based scaffolds. Pore size is higher in the case of PLGA scaffolds, followed by 

PLA scaffolds. Most of pores in PLGA based scaffolds have a size above 800 μm, but smaller 

pores can be also showed in these matrices with a size between 200 and 300 μm. In the case 

of PLA based scaffolds, pore size is situated between 200 and 800 μm. There are a few pores 

with a pore size higher, around 1mm.  

 

There is a minimum pore size recommended for a scaffolds and it is 100 μm (Hulbert, S.F., et 

al, 1970), due to cell size, migration requirements and transport. But recent studies have 

showed better bone regeneration in scaffolds with pores > 300 μm (Karageorgiou, V., et al., 

2005; Kuboki , Y., et al., 2001; Tsuruga, E., et al., 1997). 

 

In general, high degree of porosity and larger pores favor direct bone regeneration, thus 

PLGA could be the best candidate for its use as scaffolds. However, there is a limitation in 

porosity and pore size and it is associated with mechanical properties. As we have said, a 

highly porous structure is preferred but normally, it is achieved at the expense of mechanical 

properties (Gentile P., et al, 2012).  When the void volume increases, mechanical strength of 

scaffold is reduced.   

 

Taking these considerations into account, PLGA scaffolds present higher porosity and pore 

size but its mechanical properties are not the desirable’s one for a scaffold. For this reason, 

PLA matrices are, a priori, the best candidates for their use as scaffolds. 

 

6.3.3. Cell viability test 

 

Procedure for viability cell assay has been developed by FIOBI-HULP group, from Hospital 

Universitario La Paz and is divided in the following steps: 

 

- Porous disks were sterilised during 1 hour for each face with ultraviolet light and then, 

placed in 24 well plate. 
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- These disks float in culture medium and do not cover completely space in the wells, 

producing cells settle in the bottom when they are added for cultivation. In order to 

avoid this problem, plastic devices showed in Figure 45 that allow the immobilization 

of materials were used (Scaffdex, tampere, Finlandia). 

 

 

Figure 45: Scaffdex plastic device 

 

- Disks were then pre-incubated in a medium culture during 20-24 hours at 37ºC, in an 

atmosphere with 5% of CO2 and 95% of relative humidity in DMEM medium 

(“Dulbecco’s Modified Eagle medium”, Invitrogen, Barcelona, Spain) supplemented 

with 15% of fetal bovine serum, penicillin and streptomycin (Invitrogen, Carlsbad, 

CA, EE.UU). 

- As cellular lines, commercial human meshenquymal cells, isolated from bone narrow 

donor between 21 and 30 years, were used (hMSCs, Cambrex, Bio Science, Verviers, 

Belgium). In this case, cell viability was measured using cell from two donors 

(hMSCs1 and hMSCs2). Each material was tested in duplicate; as a result, four disks 

from each material were used for test. 

 

Following the procotol described in Experimental Section, cellular viability was tested using 

AlamarBlue® reagent. 400.000 cells were added to each well where scaffolds disks were 

placed. This 24 well plate was incubated with alamarBlue reagent during 3-4 hours. Results 

for this cell viability test are represented in Figure 46. 

 
Figure 46: Relative cell viability for the two different materials 
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Figure 46 shows that cells are viable for two materials tested but the viability is higher in the 

PLA than PLGA scaffolds. From 1 to 13 day of measures, cell viability increases over PLA 

based materials, contrarily to 50:50 PLGA scaffolds where only little changes are observed.  

 

But, after 18 days in culture, it is observed that cell viability did not increase. This fact 

indicates that cells have colonized the entire available surface of the material and begins to 

die for lack of surface available for growth. 

 

As a conclusion of this test, and taking into account the physico-chemical characterization of 

these two materials, PLA based scaffolds processed with Freon is a better candidate for it use 

as scaffold.  

 

6.4. Variation of cell growth over materials CO2 or Freon processed 

 

In this section is compared the cell growth observed over two scaffolds composed by the 

same polymer but processed with two different compressed fluids, Freon R-134 and sCO2. 

These materials are the followings: 

 

- PLA (LR-708) processed with Freon R-134a 

- PLA (LR-708) processed with sCO2 

 

6.4.1. Preparation of 3D PLA based scaffolds. 

 

Following the procedure describe with detail in section 5.2.2. of Experimental Part, and 

schematized in Figure 47 , PLA (LR-708) based porous scaffolds were prepared. 

 

 
 

Figure 47: Procedure for 3D PLA based scaffold obtaining using Freon and sCO2 

 

As it is represented in Figure 47, there are three operations required: 

 

a) Polymer disk preparation 

b) Freon R-134a or sCO2 processing 

c) Cutting procedure 
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The variable values used for the preparation of both porous scaffolds using Freon or sCO2 in 

processing are detailed in Table 10, for polymer disk preparation, and in Table 11 for 

processing polymeric disk with Freon R-134 and sCO2. 

 

Table 10: Conditions for polymer disk preparation 

 

Polymer 
Thermal 

Treatment 

Tª 

(ºC) 
M (g) 

Applied 

Pressure 

(Tn) 

PLA Yes 150 0,4 0,5 

PLA Yes 150 0,8 3 

 

Table 11: Experimental conditions for the preparation of 3D PLA based materials 

 

Compressed 

fluid 

Tª 

(ºC) 

P 

(BAR) 

Incubation time 

(h) 

Opening 

degree 

(%) 

Porous 

matrices? 

Freon R-134a 40 20 3 60 Yes 

sCO2 35 100 2 60 Yes 

 

After experiment, disks were inflated leading to the formation of porous matrix, as can be 

seen in Figure 48. 

 

 
Figure 48: Comparison between initial disk and final scaffold. (a) Corresponds to PLA processed with 

Freon and (b) to PLA processed with sCO2. 

 

6.4.2. Physico-chemical characterization of 3D porous materials. 

 

A) Mass variation study 

 

The mass of compressed Freon and sCO2 retained in scaffolds can be studied by measuring 

the mass of scaffolds before the experiment, directly after the processing with compressed 

(a)

(b)
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fluids and, finally, after 7 days of stabilization. Figure 49 shows the increase in the mass of 

the porous materials directly after the experiment and after 7 days of stabilization. 

 
Figure 49: Mass variation of PLA based scaffolds processed with Freon and CO2 

 

In the two PLA based materials tested, an increase of mass is produce after the experiments 

made with Freon and with Supercritical CO2. The increase of the mass is higher is the case of 

the PLA scaffold processed with Freon.  

 

After 7 days of stabilization after experiment, the graphic shows that polymers processed with 

Freon accumulate a high amount of residual Freon. This fact indicates that these scaffolds 

have a lot of closed pores and, as a consequence, Freon cannot scape from the scaffold. In the 

case of the PLA processed with CO2, tendency is oppose: these scaffolds do not retain a large 

amount of residual CO2. These samples do not show retention of the gas after 7 days. This 

fact can be explained due to the higher diffusivity of the CO2 in comparison with the Freon. 

 

B) Solid density study 

 
Figure 50: Solid density for PLA based scaffolds 
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Figure 50, it is observed that solid density is higher in PLA scaffolds processed with CO2 than 

in PLA scaffolds processed with Freon R-134a. As we can see in visual inspection, Freon 

creates larger pores than those created by supercritical CO2. Polymers processed with 

compressed Freon increase their volume more during the experiment resulting in the 

formation of larges pores and, consequently, lower solid density. 

 

C) Porosity study 

 

Porosity of two PLA bases scaffolds has been estimated using the equation described in 

Experimental Section. 

 

 
Figure 51: Porosity for two PLA based scaffolds 

 

Figure 51 shows that porosity is higher for PLA scaffolds processed with Freon R-134a, 

following again the tendency showed for solid density. This result demonstrates that PLA 

based scaffolds have a porous structure which is a property necessary for cell adhesion and 

proliferation, being also good candidates for bone tissue regeneration. 

 

D) Morphology and pore size study 

 

Morphology and pore size of PLA bases scaffolds was studied using scanning electron 

microscopy. 
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Figure 52: SEM images for PLA scaffolds processed with Freon R-134a 

 

 
Figure 53: SEM images for PLA scaffolds processed with sCO2. 

 

SEM images confirm again porosity results. Pores formed in PLA based scaffolds processed 

with Freon are higher than those processed with sCO2. In the case of PLA based scaffolds 

processed with Freon, pore size is situated between 200 and 800 μm. There are a few pores 

with a pore size higher, around 1mm. Pore size for PLA scaffolds processed with sCO2 is 

situated between 150 and 600 μm. These two PLA based scaffolds present pores with 

recommended size for scaffolds (>300 μm), consequently they are also good candidates for 

their use in bone tissue regeneration. 

 

6.4.3 Cell viability test 

 

Following the procedure developed by FIOBI-HULP group and described in detail in Section 

6.3.3., cell growth over two materials prepared was tested.  

 

As cellular lines, commercial human meshenquymal cells were used (hMSCs1 and hMSCs2). 

These cells have been isolated from bone narrow donor between 21 and 30 years (Cambrex, 
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Bio Science, Verviers, Belgium). Each material was tested in duplicate; therefore four disks 

from each material were used for test. 

 

Cellular viability was tested using the protocol for alamarBlue® described in Section 4.4.1. 

400.000 cells were added to each well where scaffolds disks were placed. This 24 well plate 

was incubated with alamarBlue reagent and after 3-4 hours, fluorescence was measure. The 

results of this cell viability study are represented in Figure 54 

 
Figure 54: cell viability test for two PLA based scaffolds 

 

Figure 54 shows that cells are viable for two materials tested but the viability is a bit higher in 

the PLA processed with CO2. From 1 to 13 day of measures, cell viability increases over two 

PLA based materials.  

 

But, after 18 days in culture, it is observed that cell viability did not increase. This fact 

indicates again that cells have colonized the entire available surface of the material and begins 

to die for lack of surface available for growth. 

 

In this case, and regarding the physic-chemical characterization, the two PLA based scaffolds 

are good candidates for their use as support for cell colonization. 

 

6.5. Variation of cell growth over IB’s decorated and non decorated 

scaffolds 

 

As it is widely explained in the introduction, Inclusion bodies (IB’s) are protein aggregates, 

which have recently used to enhance cell growth mainly on 2D scaffolds. Scaffolds based on 

PLA have been prepared because they are more widely used by the scientific community 

working in this field. In addition, the use of PLA CO2 processed scaffolds, will allow a 

comparison of IB’s with other cell growth stimulators already used to decorate these CO2 

processed polymeric matrices. 
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In this section, it is studied the impact of IB’s on cell growth over 3D porous PLA based 

scaffolds. 

 

6.5.1. Development of IB’s scaffold disk impregnation method. 

 

In order to carry on properly the above described study, in the present work it was developed 

a suitable methodology for 3D porous scaffold impregnation with IB’s. 

 

Three different alternatives have been explored for matrix impregnation using inclusion 

bodies prepared following the procedure described in Experimental part. Those alternatives 

are the followings: 

 

a) Suspension addition before scaffold formation 

b) Immersion 

c) Filtration. 

 

a) Suspension addition before scaffold preparation 

 

In this method, IB’s are directly added to polymer as it is schematized in Figure 55 

 

 
Figure 55: Suspension addition method 

 

For this method, it is necessary that Inclusion bodies tolerate working pressure and 

temperature because inclusion bodies are added before de polymer disk formation. 

 

b) Immersion 

 

This method consists of immersing the porous disk (disk obtained by cutting scaffold) in the 

inclusion bodies suspension. 

 

 
Figure 56: Immersion method 
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c) Filtration 

 

In this technique, the porous disk, obtained by cutting the scaffold, is placed in a filtration 

equip, formed by a kitasato flask, a funnel and a vacuum pump.  

 

 
Figure 57: Filtration method 

 

Results obtained from these studies show the following conclusion: 

 

- The major disadvantage of the inclusion bodies addition before forming the polymer 

disk is the thermal pre-treatment needed for removing the crystalline part because a 

temperature of 150ºC is required, therefore IB’s have to tolerate this high temperature. 

Immersion and filtration techniques are applied after thermal pre-treatment, 

consequently, inclusion bodies are not exposed to high temperatures. 

 

- If immersion and filtration are compared, the second one presents a greater efficiency 

regarding the inclusion bodies adherence by optical microscopy. Results in this 

technique are more homogenous on the scaffold surface and inclusion bodies have 

greater penetration.  

 

For this reason, filtration technique has been selected as scaffold impregnation technique and 

will be used in this work.  

 

6.5.2. Preparation of PLA matrices processed with sCO2 and decorated with IB’s 

 

Following the protocol described in section 5.2.2, PLA based scaffolds have been prepared 

using sCO2. As it has been described and schematized in Figure 58, this procedure is divided 

in three different steps: it starts with the preparation of the polymer disk. Then, PLA porous 

matrix is produced using sCO2 and, finally, PLA scaffold disks are generated with a cutting 

methodology. 
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Figure 58: Procedure for 3D porous scaffolds preparation using sCO2 

 

For the preparation of polymer disk and following the protocol described in Experimental 

part, 0.8 g. of PLA (LR-708) were weight and put in the oven for thermal treatment, during 15 

minutes. Polymer was then placed into a special mould for giving to disk a round form with a 

diameter of 15 mm by applying 3 tons. Then, PLA disks were placed inside high-pressure 

plant, at 10 MPa and 35ºC for the preparation of 3D porous scaffolds. 

 

Finally, the porous matrices where cut following the procedure describe in Section 6.2, in 

order to obtain scaffold disks with 3,5 mm of thickness and 15 mm of diameter. From 1 

porous scaffold, two disks were obtained after cutting method. 

 

PLA porous scaffold impregnation with inclusion bodies was made using aqueous 

suspensions of the protein aggregates prepared by the procedure described in Section 5.1. 

611 μg of inclusion bodies were re suspended in 20 ml of PBS 1x (c = 30,55 μg/ml). In order 

to avoid possible contamination of the scaffolds during its manipulation, 1,6 ml of three 

antibiotics were added to the suspension. Those antibiotics are tetracyclin, kanamycin and 

chloramphenicol. Finally, suspension was sonicated during 10 minutes.  

 

A kitasato flask, a funnel and a vacuum pump form filtration equipment. The porous disks 

were placed on the funnel as it can be seen in the following figure:  

 

 
Figure 59: Scaffold position during filtration 

 

Once the scaffold disk was placed and the filtration equipment was mounted, vacuum pump 

was connected to the system. The final montage can be seen in Figure 60. 
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Figure 60: Filtration equip 

 

In order to increase the process efficiency, filtration procedure was repeated 3 times with 5 

mL of suspension. Scaffolds disks were then removed and dried with compressed air. 

Scaffolds were weight before and after filtration, and then after drying process. Finally, they 

were conserved at -20ºC. 

 

Following the above described procedure, 8 disks of PLA scaffolds free of IB’s and 8 disks of 

PLA scaffolds loaded with IB’s were prepared and properly characterized.  

 

As it has been describe in Experimental part, section 5.3.3. , IB’s loading in scaffolds can be 

qualitatively estimated using optical microscopy. For this estimation, scaffolds were looked at 

the upper face, which first receives suspension during filtration process; and at the lower face, 

the one receiving in last place.  

 

In Figure 61 is shown IB’s observation by Optical microscopy of a representative disk of all 

set prepared. 

 
Figure 61: Optical microscopy for PLA scaffolds processed with CO2. (a) and (b) corresponds to upper 

face; (c) and (d) to the lower face. 
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PLA based scaffolds processed with sCO2 present higher quantity of Inclusion bodies, not 

only in the upper face but also in the lower face. 

 

6.5.3.  Cell viability test 

 

Cell viability test was made following the protocol developed by FIOBI-HULP group and 

properly described in Section 6.3.3. 

 

As cellular lines, commercial human meshenquymal cells were used (hMSCs3). These cells 

have been isolated from bone narrow donor between 21 and 30 years (Cambrex, Bio Science, 

Verviers, Belgium).  

 

Cellular viability was tested using the protocol for alamarBlue® described in Section 5.4.1. 

400.000 cells were added to each well where scaffolds disks were placed. This 24 well plate 

was incubated with alamarBlue reagent and after 3-4 hours fluorescence was measured. The 

results of this cell viability study are represented in Figure 62. 

 

 

 
Figure 62: Cell viability test for PLA scaffolds 

 

As it can be seen in the figure, human meshemquimals stem cells are adhered to all the 

scaffolds and they grow on them, both scaffolds containing inclusion bodies and those who do 

not. 

 

But, cells grow significantly faster in the scaffolds decorated with bacterial IB’s. 
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6.6. Relative importance of IB’s decoration, polymer nature and processed 

conditions over the behaviour of 3D polymeric matrices as scaffolds. 

 

On the basis of the promising results achieved with PLA IB’s loaded scaffolds, a new set of 

experiments was designed in order to confirm the relationship between mesenchymal cell 

growth stimulation and structural characteristics described in previous sections, and to try to 

quantify the relative importance of them. The followings materials form this new set of 

experiments: 

 

- PLGA (RG-503) processed with compressed Freon and without IB’s 

- PLA (LR-708) processed with compressed Freon and without IB’s. 

- PLA (LR-708) processed with compressed Freon and functionalized with IB’s. 

- PLA (LR-708) processed with supercritical CO2 and without IB’s. 

- PLA (LR-708) processed with supercritical CO2 and functionalized with IB’s. 

 

The main idea for this part of the work is not only repeat the experiment made using PLA 

matrices processed with CO2 and decorated with IB’s but also study IB’s decoration in PLA 

matrices processed with Freon and compare them with those that are not decorated. Indeed, 

PLGA will be study for comparing all materials tested during the realization of this work. 

 

6.6.1. Preparation of 3D porous matrices and their impregnation with IB’s 

 

This new set of porous scaffolds has been prepared using protocol widely described in 

Section 5.2.2 of Experimental part, and schematized in Figure 63. 

 

 
Figure 63: procedure for 3D porous scaffolds preparation using compressed fluids. 

 

As it is showed in Figure 63, procedure for 3D porous scaffolds is formed by three steps: 

 

a) PLGA and PLA polymer disk preparation 

b) Freon R-134a and sCO2 processing 

c) Cutting procedure 

 

The different values used for the preparation of both porous scaffolds with different 

polymeric nature are detailed in Table 12, for polymer disk preparation, and in Table 13 for 

processing polymeric disk with Freon R-134 and sCO2. 
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Table 12: Conditions for polymer disk preparation 

 

Polymer 
Thermal 

Treatment 

Tª 

(ºC) 
M (g) 

Applied 

Pressure 

(Tn) 

PLGA No - 0,3 0,5 

PLA Yes 150 0,4 3 

PLA Yes 150 0,8 3 

 

Table 13: Experimental conditions for 3D porous material preparation 

 

Polymer 

Compressed 

fluid 
Tª 

(ºC) 

P 

(BAR) 

Incubation time 

(h) 

Opening 

degree 

(%) 

Porous 

matrices? 

PLGA Freon R-134a 35 20 2 60 Yes 

PLA Freon R-134a 40 20 3 60 Yes 

PLA sCO2 35 100 2 60 Yes 

 

Following the above described procedure, 7 disks of each material were prepared and 

properly characterized (See annexe for more information). 

 

Contrary to experiment described in Section 6.5.2, in this large experiment, all materials were 

treated with antibiotics (tetracycline, kanamicine and chloramphenicol) and not only those 

loaded with IB’s in order to avoid any possible contamination; then two different suspensions 

were prepared. 

 

- Materials, which were not functionalized with IB’s received a suspension formed by 

PBS and three antibiotics. For preparing this suspension, 1,6 ml of each antibiotics 

were added to 20 ml of PBS. 5 ml of this suspension was filtrated over scaffold three 

times. 

- Materials, which were functionalized, received a suspension formed by PBS, IB’s and 

three antibiotics. This suspension contained 20 ml of PBS, 1,6 ml of each antibiotics 

and 611 μg of IB’s. 

 

Following this procedure, we avoid any contamination in all materials treated and, in 

addition, the only difference between them is the presence or absence of IB’s. 

 

In Figure 64 and Figure 65 are shown IB’s observation by optical microscopy of a 

representative disk of all set prepared.  
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Figure 64: Optical microscopy for PLA based scaffolds disks processed with Freon R-134a. (a) and (b) 

corresponds to face which receives first the suspension during filtration; (c) and (d) corresponds to face 

which receives suspension in last place. 

 

In this figure, result for impregnation with IB’s of PLA based scaffolds processed with Freon 

can be seen, showing that face which is not directly exposed to IB’s suspension during 

filtration accumulates less quantity of inclusion bodies. In the other hand, and as it was 

expected, face that receives the IB’s suspension first, accumulates more quantity of these 

protein aggregates. Indeed, distribution is not homogenous in the entire surface, accumulating 

in specific regions of scaffold.  
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Figure 65: Optical microscopy for PLA scaffolds processed with CO2. (a) and (b) corresponds to face 

which receives first the suspension during filtration; (c) and (d) corresponds to face which receives 

suspension in last place 

 

As it can be observed by optical microscopy, PLA based scaffolds processed with sCO2 

present higher quantity of Inclusion bodies, not only in the upper face but also in the lower 

face. Protein aggregates are accumulated in specific region, especially around pores.  

 

Comparing two PLA based scaffolds, the presence of Inclusion bodies is higher in scaffolds 

processed with sCO2. 

 

6.6.2 Estimation of the quantity of IB’s retained in scaffolds. 

 

Quantity of Incusion bodies can be estimated using a fluorescence spectrophotometer. 

Inclusion bodies are formed by a fluorescent component and this property can be used in 

order to know the quantity retained comparing signals before and after filtration. 

Concentration of IB’s suspension is known, therefore signal obtained before filtration 

corresponds to this value. With these information and signal obtained after filtration, final 

concentration of Inclusion bodies can be estimated and, as a consequence, the quantity of IB’s 

retained in matrices. 

 

a) Protocol for estimating the quantity of IB’s retained in scaffolds 

 

This procedure starts with the preparation of 20 ml of IB’s suspension, with a concentration 

of 30, 55 μg/ml. 
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- 200 μl of suspensión were taken before filtration process. This signal corresponds to 

initial concentration of suspension. All matrices receive the same initial quantity of 

IB’s that was estimated with the filtration volume (5 ml) and initial concentration. 

Quantity of IB’s added to matrices was estimated in 152, 75 μg. 

- After filtration, the collected filtrate was brought to a final volume of 5 ml. From this 

volume, 1 ml was taken in order to measure the fluorescence.  

- Knowing the initial concentration of the suspension and comparing these two signals, 

the concentration of the collected filtrate could be estimate. 

 

Estimation of IB’s retained in porous matrices was done for this last large experiment and 

results are shown in the Figure 66: 

 

 
Figure 66: % of IB’s retained in PLA matrices processed with Freon and with CO2 

 

As the figure shows, the quantity of IB’s retained in PLA matrices processed with CO2 is 

higher than the quantity retained in PLA matrices processed with Freon. This fact could 

explain why scaffolds processed with CO2 present high cell viability. 

 

Based on the idea that IB’s stimulate cell growth as it has been demonstrated in the 

experiment done with PLA scaffolds disks processed with CO2, PLA scaffold disks which 

retain more quantity of IB’s, should present faster cell growth than those which are less 

loaded. Figure 66 shows that the quantity of IB’s retained is higher in PLA scaffold disks 

processed with CO2; as a result cell growth should be faster in those matrices. And this is 

what shows Figure 66, PLA scaffold disks processed with CO2 grow faster than PLA scaffold 

disks processed with Freon. 

 

However, these fluorimetric measures are made in a suspension not in a solution and starting 

from initial quantities of protein estimated by Western-Blot; consequently, result obtained is 

only estimation that could be used as a possible explanation of why cells grow faster in 

matrices processed with CO2.  
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6.6.3 Confocal microscopy 

 

An important parameter when studying matrices impregnation with IB’s is their penetrability 

through the porous zones. The penetrability of IB’s can be analysed using confocal 

microscopy. This technology allows us to analyse different parts of the material in order to 

see how deep the IB’s have reached during filtration method. We have studied the two 

different matrices impregnated with IB’s: PLA scaffolds processed with Freon R-134a and 

sCO2. 

First, we needed to cut a cross section of each porous scaffold using a diamond wire saw. Cut 

with this type of saw is more precise and samples are less degraded due to lower friction 

during the cutting. Cut made in matrices appear schematized in Figure 67: 

 

 
 

Figure 67: Portion of scaffold used for confocal studies 

 

Inclusion bodies were observed both on the surface and inside the PLA scaffold processed 

with Freon 

 

 
Figure 68: Confocal microscopy images for PLA scaffolds processed with Freon R-134a 

 

After microscopic examination of different areas of the sample, it is observed that the IB’s 

colonize inside the material through the pores. Indeed, the distribution of the IB’s in the 

material is not homogeneous, accumulating randomly in certain regions.  
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Figure 69: Confocal microscopy images for PLA scaffolds processed with sCO2 

 

In the case of the PLA scaffolds processed with sCO2, there are some areas where IB’s are 

located exclusively on the surface of the material (area 1) and others, where the IB’s penetrate 

inside the materials through the pores (area 2). 

 

Also, the accumulation of IB’s is observed inside the material. As in the PLA scaffolds 

processed with Freon, the distribution of IB’s in the material is not homogenous and they are 

accumulated in certain areas.  

 

If we compared the two different materials, the higher concentration of Inclusion bodies is 

observed in PLA scaffolds processed with sCO2, both on the surface and inside the material. 

This could be an explanation of why cells seeded on PLA scaffolds processed with sCO2 

growth faster, because these matrices accumulate more quantity of IB’s. 

 

6.6.4 Cell viability test 

 

Following the procedure developed by FIOBI-HULP and protocol described in Section 5.4.1., 

of Experimental Part, cell viability was measure for this large experiment. 
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In this case, cell viability was measured using cell from two donors different from the 

employees in the first test (hMSCs4 and hMSCs5). Each material was tested in duplicate; 

therefore four disks from each material were used for test. 

 

In Table 14, there are detailed some of the most relevant physic-chemical characteristics of 

disks. 

Table 14: Physico-chemical characteristics for scaffold disks prepared 

 

Material m (g) Porosity (%) 
IB's quantity 

(µg) 
IB's /m (µg/g) 

PLGA 

20,50 77,29   

21,02 68,82   

22,16 67,40   

32,41 71,26   

PLA  

(Freon/-IB's) 

199,26 55,75   

189,31 53,88   

197,94 53,31   

203,96 44,12   

PLA 

(Freon/+IB's) 

138,49 64,37 76,91 0,56 

180,18 63,19 70,83 0,39 

164,46 50,64 63,08 0,38 

205,93 51,84 66,64 0,32 

PLA  

(CO2/-IB's) 

173,65 30,03   

200,11 32,83   

215,33 36,36   

175,37 36,08   

PLA 

(CO2/+IB's) 

166,83 34,56 120,61 0,72 

157,02 37,20 118,84 0,76 

209,11 28,23 117,65 0,56 

156,77 32,70 134,09 0,86 

 

Cellular viability was tested using the protocol for alamarBlue® described in Section 4.4.1. of 

Experimental Part. 400.000 cells were added to each well where porous scaffolds disks were 

placed. As it is described in Section 6.3.3., scaffolds processed with Freon (PLGA and PLA), 

materials do not cover completely the space in the wells, then a plastic device has to be used. 

We think that cells could also be bind to the small proportion of this plastic device, then we 

are considering those cells for viability test and not only those that are adhere to scaffolds 

disks. For this reason, all materials tested have changed to a new 24 well plat prior to 

incubation with the alamarBlue reagent. In this way, we quantify only the cells adhered to 

material under study. After 3-4 hours of incubation, fluorescence was measured.  

 

The results of this cell viability study are represented in Figure 70. 
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Figure 70: Cell viability test results 

 

The figure shows that, as in the first viability test, cells are viable for all materials tested. As it 

happened in the first assay, cell viability is much higher in the PLA scaffolds than in PLGA.  

 

During the 8 first days of measures, the cell viability increases in all materials, except for the 

PLGA where even decreases. After 13 days in culture, it is observed that cell viability 

decreases, indicating that cells have colonized the whole available surface on the material and 

begins to die for lack of surface available for growing.  

If we compare two tests, in the first one, the decrease in cell viability was observed on day 18 

while, in the second one, was detected on day 13. These differences may be due to differences 

in the growth rate of cells from different donors, as well as the passage number used was not 

the same in all cases.  

 

In this second test, cell viability is higher in the PLA scaffolds processed with sCO2 compared 

to PLA scaffolds processed with Freon confirming results obtained in previous cell viability 

test. 

 

 

Regarding IB’s impact on cell proliferation, their presence improved cell viability in both 

PLA based materials, confirming result obtained in first experiment made with only PLA 

scaffolds processed with sCO2. 
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7 CONCLUSION 

 

The conclusions that can be after the realization of this work are the followings: 

 

- SCF processing gives porous structures which are adequate for bone tissue 

regeneration. Pores allow migration and proliferation of osteoblastos and 

mesenchymal cells, as well as the proper vascularization of the implant 

 

- Comparing the physic-chemical characteristics, such porosity, pore size and 

morphology, and relative cell viability between PLGA and PLA, PLGA porous 

materials are not good candidates for their use as scaffolds. Degradation rate is faster 

than in the case of PLA scaffolds and cells do not growth over these materials. 

Therefore, PLGA was rejected as scaffold for bone tissue regeneration  

 

- Contrary to PLGA, PLA based scaffolds are good materials for their use as support for 

cell attachment, colonization and proliferation. In both cases, cells can grow over 

these materials. Cell viability is higher in the case of PLA processed with CO2, being 

the best option for a scaffold. 

 

- The presence of IB’s in scaffolds stimulates cell adhesion and colonization, as it can 

be seen in cell viability test results. Inclusion bodies do not result toxic to the cells and 

contrarily improve cell proliferation on the surface. Cells grow faster in scaffolds 

decorated with these protein aggregates, being promising platforms to be used in bone 

tissue engineering. 

 

- Cell grow stimulation is higher in the case of PLA base scaffold disk processed with 

sCO2 and decorated with IB’s. This material (CO2+IB’s) is the best scaffold to 

stimulate bone grow and, consequently, regeneration. 
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10 ANEXE 
 

10.1 Physico-chemical characterization for large set of experiment 

a) Mass variation study 

  
Figure 1: mass variation in scaffolds processed with compressed fluid 

 

Tendency observed in this case is the same to that in the first experiment. After experiment, 

all materials have increased their mass, being higher in the case of scaffolds processed with 

Freon.  

 

As it saw in previous experiment, after 7 days of stabilization polymers processed with Freon 

accumulate a high amount of residual Freon. In the case of the PLA processed with CO2, 

tendency is oppose: these scaffolds do not retain a large amount of residual CO2 which can be 

explained due to the higher diffusivity of the CO2 in comparison with the Freon. This figure 

also shows that in the case of PLA the retention of the fluid is higher than in the case of the 

PLGA. The PLA has a very high viscosity in comparison with the PLGA, so going out from 

the structure of the scaffold is more difficult for Freon in the case of the polilactic-acid 

polymer based scaffold. 

 

b) Solid density study 
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Figure 2: solid density study for three materials 

 

This figure confirms that solid density is higher in the case of PLA scaffolds processed with 

sCO2. PLGA scaffolds have the lower solid density. 

 

c) Porosity 

 
Figure 3: porosity for three materials 

 

This figure corroborates the results showed in previous experiment and also the initial visual 

inspection. Pores showed in PLGA scaffolds are larger, so porosity has to be higher for this 

matrix. PLA scaffolds processed with CO2 have the lowest porosity; pore size is smaller for 

this material. 
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d) Morphology 

 
Figure 4: SEM images for PLGA scaffolds processed with Freon R-134a 

 

 
Figure 5: SEM images for PLA scaffolds processed with Freon R-134a 

 

 
Figure 6: SEM images for PLA scaffolds processed with sCO2 

 


