We selected a very thin, light column and very thick partitions, and we wanted to study the idea of reducing the usual hierarchy between structure and partition. So we tried to make structure disappear and partitions very thick and heavy.

Diagram:

- Option A: Vertical lines + cores
- Option B: Transversal stability
- Option C: Longitudinal stability
- Option D: Transversal stability
- Option E: Longitudinal stability

Text:

The new building is stable because the structure of the existing warehouses does not allow horizontal movement. The new building is weak by itself (not stable) because the wind pushes it and there is not any warehouse structure to stop horizontal movement. Then, it will get horizontally stable with the "vertical lines + cores" strategy (2E). The new building is stable because the wind can pass through the open structure (no glass, only columns) matching columns (closed form) is stable.

Table:

<table>
<thead>
<tr>
<th>Distribution of Mass</th>
<th>Horizontal Stability</th>
<th>Parts of the Building</th>
<th>Type of Joints</th>
<th>Buckling Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light option</td>
<td>Strong option</td>
<td>Distribution of Mass</td>
<td>Horizontal</td>
<td>Type of Joints</td>
</tr>
<tr>
<td>Cement board</td>
<td>Concrete slab</td>
<td>Light option</td>
<td>Horizontal</td>
<td>Type of Joints</td>
</tr>
<tr>
<td>Light option</td>
<td>Strong option</td>
<td>Distribution of Mass</td>
<td>Horizontal</td>
<td>Type of Joints</td>
</tr>
<tr>
<td>Cement board</td>
<td>Concrete slab</td>
<td>Light option</td>
<td>Horizontal</td>
<td>Type of Joints</td>
</tr>
<tr>
<td>Light option</td>
<td>Strong option</td>
<td>Distribution of Mass</td>
<td>Horizontal</td>
<td>Type of Joints</td>
</tr>
<tr>
<td>Cement board</td>
<td>Concrete slab</td>
<td>Light option</td>
<td>Horizontal</td>
<td>Type of Joints</td>
</tr>
</tbody>
</table>

Buckling Calculation:

- If the joint can be moved, it should be considered as a revolute joint, getting a longer buckling length.
- If the joint cannot be moved because of the stability strategy (2E), it can be considered as a fixed end, getting a shorter buckling length.

Distribution of Mass:

- Light option
- Heavy option

Horizontal Stability:

- Light option
- Strong option

Parts of the Building:

- Distribution of Mass
- Horizontal Stability

Type of Joints:

- Fixed end
- Revolute joint

Buckling Calculation:

- Horizontal stability: $\lambda = \frac{l}{2h} < 200$
- Vertical stability: $\lambda = \frac{l}{2h} < 200$
- Transversal stability: $\lambda = \frac{l}{2h} < 200$
- Longitudinal stability: $\lambda = \frac{l}{2h} < 200$

Notes:

- The new building is stable because the structure of the existing warehouses does not allow horizontal movement.
- The new building is weak by itself (not stable) because the wind pushes it and there is not any warehouse structure to stop horizontal movement. Then, it will get horizontally stable with the "vertical lines + cores" strategy (2E).
- The new building is stable because the wind can pass through the open structure (no glass, only columns) matching columns (closed form) is stable.

Buckling Table:

- Light option
- Heavy option

Diagram:

- Option A: Vertical lines + cores
- Option B: Transversal stability
- Option C: Longitudinal stability
- Option D: Transversal stability
- Option E: Longitudinal stability

Text:

"Image source: "Day care center for the elders" by SANAA, 2000."

"Text source: By Kazuyo Sejima from the interview "A Conversation", SANAA Croquis 99, 2000."