Resumen

Este proyecto tiene como objetivo el diseño teórico de una instalación de cogeneración mediante un motor Stirling, generando electricidad utilizando una energía que anteriormente se desaprovechaba. El proyecto está orientado a una aplicación en viviendas y por ello se pretende hacer funcionar la instalación gracias a los gases calientes de la salida de un calentador doméstico.

En primer lugar se estudiará el método más idóneo para calcular las necesidades energéticas de agua caliente de una vivienda, teniendo en cuenta el agua caliente sanitaria utilizada en los distintos aparatos de la casa y el agua caliente utilizada para la calefacción.

En segundo lugar se estudiará el funcionamiento del calentador, para de esta manera poder conocer la energía residual que quedará de él, que será la que utilizará el motor para funcionar.

En tercer lugar se estudiará el motor Stirling con sus distintas configuraciones y con las partes que lo componen. Una vez conocido su funcionamiento se estudiará el motor cinemáticamente y termodinámicamente, para poder así hacer una modelización del motor a través de ecuaciones.

En cuarto lugar se estudiará el método para poder transformar la energía mecánica obtenida del motor Stirling en energía que pueda ser utilizada en la vivienda en que se implante la instalación.

Una vez creado todo el proceso se hará el cálculo de la instalación para una aplicación práctica en una vivienda real. De esta manera se podrá verificar la magnitud de energía obtenida y las dimensiones de la instalación.

Por último se ha hecho un análisis económico y un análisis del impacto ambiental. En el análisis económico se especifica el coste de ejecución de este proyecto y el coste de la instalación para una aplicación práctica, incluyendo el tiempo de retorno de la inversión de la misma. Y en el análisis del impacto ambiental se especifican los beneficios ambientales derivados de la implantación de esta instalación.
Sumario

RESUMEN ... 1

SUMARIO ... 3

1. GLOSARIO .. 7

2. INTRODUCCIÓN ... 11
 2.1. Objetivos del proyecto ... 11
 2.2. Alcance del proyecto ... 11

3. NECESIDADES ENERGÉTICAS 13
 3.1. Agua caliente sanitaria ... 13
 3.2. Calefacción .. 14
 3.2.1. Carga térmica a través de los cristales 15
 3.2.2. Carga térmica a través de paredes y cubiertas exteriores ... 17
 3.2.3. Carga debida a las infiltraciones de aire 17
 3.2.4. Factor de intermitencia 18
 3.3. Cálculo total .. 18
 3.4. Programas de cálculo ... 19

4. CALENTADOR ... 21
 4.1. Calentadores en función del medio de obtención de energía 21
 4.1.1. Calentador eléctrico 21
 4.1.2. Calentador de gas ... 22
 4.2. Calentadores en función del trato que hacen del agua 23
 4.2.1. Calentador con acumulador 23
 4.2.2. Calentador de flujo ... 24
 4.2.3. Caldera ... 24
 4.3. Eficiencia energética del calentador 26
 4.3.1. Estudio termodinámico 26
 4.3.2. Ficha de características técnicas 29
 4.3.3. Cálculo de la temperatura 29

5. MOTOR STIRLING .. 31
 5.1. Breve historia .. 31
 5.2. Descripción del motor .. 32
 5.2.1. Funcionamiento ... 32
 5.2.2. Configuraciones ... 34
 5.2.3. Componentes del motor 36
5.3. Estudio termodinámico .. 39
5.3.1. Ciclo termodinámico ideal .. 39
5.3.2. Ciclo termodinámico real .. 41
5.4. Parámetros de diseño ... 42
5.5. Proceso de cálculo ... 44
5.5.1. Proceso para el cálculo del mecanismo 44
5.5.2. Proceso para el cálculo termodinámico 47

6. TRANSFORMACIÓN DE LA ENERGÍA 53
6.1. Generador .. 53
6.2. Batería ... 55
6.3. Transformador ... 55

7. CASO PRÁCTICO ... 57
7.1. Cálculo de las necesidades energéticas 57
7.1.1. Cálculo de las necesidades de agua caliente sanitaria 57
7.1.2. Cálculo de las necesidades de calefacción 58
7.1.3. Cálculo total .. 59
7.2. Cálculo del calentador ... 60
7.3. Cálculo del motor Stirling ... 62
7.3.1. Cálculo del mecanismo ... 62
7.3.2. Cálculo termodinámico ... 65
7.3.3. Contrastación de resultados .. 67
7.4. Transformación de la energía ... 68
7.4.1. Generador .. 68
7.4.2. Batería ... 69
7.4.3. Transformador .. 69
7.5. Cálculo final .. 70
7.6. Montaje de la instalación ... 71

8. PLANIFICACIÓN DEL PROYECTO .. 73

9. ANÁLISIS ECONÓMICO ... 75
9.1. Ahorro mensual .. 75
9.2. Coste del proyecto ... 76
9.3. Coste de implementación ... 76
9.4. Modelos de aplicación ... 77
9.4.1. Vivienda única .. 77
9.4.2. Grupo de viviendas ... 77
9.4.3. Plan de negocio empresarial .. 78

10. ANÁLISIS DEL IMPACTO AMBIENTAL ... 79
10.1. Aprovechamiento de una energía existente 79
10.2. Generación de energía limpia .. 79
10.3. Motor limpio ... 79
10.4. Aprovechamiento de una energía existente 80
10.5. Reducción de la contaminación térmica ... 80

CONCLUSIONES .. 81
Líneas futuras de actuación .. 81

AGRADECIMIENTOS ... 83

BIBLIOGRAFÍA .. 85
Referencias bibliográficas .. 85
Bibliografía complementaria ... 86

A. CÁLCULOS DEL MOTOR STIRLING ... 89
A.1 Cálculo de la temperatura de los gases de salida 89
A.2 Programa de cálculo del mecanismo rómbico 91
A.3 Programa de cálculo del análisis termodinámico 96

B. TABLAS .. 113

C. VIVIENDA A ESTUDIAR .. 117
1. **Glosario**

ACS: Agua caliente sanitaria

CTE: Código Técnico de Edificación

Q\textsubscript{ACS}: Caudal de agua caliente sanitaria

K\textsubscript{p}: Coeficiente de simultaneidad

D\textsubscript{ACS}: Demanda energética del agua caliente sanitaria

\(\rho\): Densidad del agua

Q\textsubscript{s}: Carga térmica sensible

Q\textsubscript{sv}: Carga térmica sensible a través de las ventanas

Q\textsubscript{vr}: Carga térmica sensible por radiación a través de las ventanas

Q\textsubscript{vt}: Carga térmica sensible por transmisión a través de las ventanas

F: Factor corrector de la radiación

O: factor de Orientación

Q\textsubscript{sp}: Carga sensible a través de las paredes

Q\textsubscript{st}: Carga sensible a través de los techos y suelos

K\textsubscript{t}: Conductividad térmica

Q\textsubscript{si}: Carga sensible debida a infiltraciones de aire

I: factor de intermitencia

Q\textsubscript{entrada}: Calor entrante del calentador

PCI: Poder calorífero inferior

Q\textsubscript{saliente}: Calor saliente del calentador
Q_{FLUIDO}: Calor del fluido saliente del calentador

Q_{PÉRDIDAS}: Calor de las pérdidas del calentador

Q_{HUMOS}: Calor perdido por los humos del calentador

Q_{INQUEMADOS}: Calor perdido por los inquemados del calentador

Q_{PAREDES}: Calor perdido a través de las paredes del calentador

\eta_{cal}: Rendimiento del calentador

\tau: Relación de temperaturas

k: Relación de compresión

X: Relación entre el volumen muerto del motor y el volumen de la zona caliente

L_c: Longitud de carrera

z: Relación longitud de la biela, longitud del radio de la manivela

\rho: Parámetro del mecanismo rómbico

D_{pe}: Diámetro primario de los engranajes

\alpha: Ángulos de posiciones extremas del pistón

\beta_i: Ángulos de posiciones extremas del desplazador

L_p: Longitud del pistón

L_{d}: Longitud del desplazador

L_{vp}: Longitud del vástago del pistón

L_{vd}: Longitud del vástago del desplazador

X_{P1}: Posición del pistón
XP2: Posición del desplazador

XPD: Diferencia entre la posición del pistón y el desplazador

Ve: Volumen de la zona caliente

Vc: Volumen de la zona fría

VelP: Velocidad del pistón

VelD: Velocidad del desplazador

Cs: Zona de compresión del motor Stirling

Es: Zona de expansión del motor Stirling

Rs: Regenerador del motor Stirling

Hs: Celda del calentador del motor Stirling

Ks: Celda del enfriador del motor Stirling

Qe: Calor en la zona caliente

Qc: Calor en la zona fría

Qtapa: Calor a través de la tapa del cilindro

Qpared.c: Calor a través de la pared del cilindro

M: masa total de gas en el interior del motor

P: Presión en el interior del motor

Ws: Trabajo en el eje

Li: Potencia indicada

Liₖ: Potencia del eje
2. Introducción

La propuesta del desarrollo de este proyecto nace de la idea de que cuando se hace uso de un calentador doméstico de gas parte del calor generado se pierde a través de los gases de escape. En este proyecto se intentará aprovechar la energía residual de los gases calientes para generar electricidad a través de un motor Stirling de tipo Beta de mecanismo rómico.

2.1. Objetivos del proyecto

Este proyecto tiene dos objetivos:

- Crear el proceso para poder diseñar una instalación de cogeneración mediante un motor Stirling Beta de mecanismo rómico
- Evaluar si la aplicación de la instalación en una vivienda es viable.

Para cumplir con el primer objetivo habrá que conocer cómo calcular las tres etapas del proceso: las necesidades energéticas, el calentador de gas y el motor Stirling Beta de mecanismo rómico. Para cumplir con el segundo objetivo deberá tomarse un ejemplo representativo, pudiendo de esta manera estudiar los resultados del procedimiento de cálculo diseñado y evaluar su viabilidad.

2.2. Alcance del proyecto

En este proyecto se calculará y dimensionará la instalación de cogeneración mediante un motor Stirling Beta de mecanismo rómico en el contexto de una vivienda unifamiliar. Para ello deberán calcularse y dimensionarse las necesidades energéticas, la caldera y por último el motor Stirling que generará la energía. La construcción física de la instalación queda fuera del alcance de este proyecto.

Al tener como objetivo el aprovechamiento del calor residual obtenido de los gases calientes del calentador doméstico, se pretenderá generar el máximo de energía posible, pero es una posibilidad que no se tenga la capacidad de generar electricidad para todos los usos posibles. El alcance principal del proyecto es generar electricidad como para poder conectar el máximo de bombillas de la vivienda.
3. Necesidades energéticas

En este proyecto se pretende aprovechar la energía sobrante de un calentador doméstico para generar electricidad a través de un motor. Para poder calcular la cantidad de energía que puede aprovecharse en el motor lo primero que hay que hacer es saber la energía de que se dispondrá, y por tanto hay que calcular las necesidades de agua caliente para los diversos usos que se le puede dar: agua caliente sanitaria y agua para calefacción.

3.1. Agua caliente sanitaria

Para el cálculo se puede recurrir al documento básico HE de ahorro de energía del Código Técnico de Edificación [1], CTE a partir de ahora, donde aparecen dos métodos.

El primer método consiste en utilizar una tabla en la que se establecen las necesidades de agua caliente sanitaria, ACS a partir de ahora, a 60°C en función del tipo de edificio que se esté estudiando, Tabla B.1. Para conocer el caudal total solo hay que multiplicar las necesidades de ACS por las personas que habitan la vivienda. A través de este primer método se obtiene la cantidad total de ACS diaria para la cual debe dimensionarse la vivienda. Para este primer método el cálculo se haría a través de la expresión siguiente:

\[Q_{ACS} \left(m^3/dia \right) = Consumo_{ACS} \cdot n_{habitantes} \]
\[\text{(Eq. 3.1)} \]

El segundo método consiste en recurrir a una tabla dónde aparece el caudal instantáneo, \(Q_{inst,i} \), para cada tipo de aparato, Tabla B.2; conociendo el número de aparatos de cada tipo que hay en la vivienda, \(n_i \), y con ello se pueden calcular las necesidades instantáneas de ACS que habrá. A este cálculo hay que añadirle un cierto coeficiente de simultaneidad, \(K_p \), ya que en la mayoría de circunstancias no estarán encendidos todos los aparatos de un local. Para este cálculo se utilizarán las fórmulas siguientes:

\[Q_{ACS}(l/s) = \sum Q_{inst,i} \cdot n_i \]
\[\text{(Eq. 3.2)} \]

\[K_p = \frac{1}{\sqrt{n-1}} \]
\[\text{(Eq. 3.3)} \]

Dónde \(n \) es el número total de aparatos que necesitan ACS de la vivienda. Éste segundo cálculo proporciona un caudal de uso instantáneo, es decir, la cantidad de agua que necesitará calentar la caldera en los momentos de más uso.
Una vez calculado el caudal de ACS se puede calcular cuál será la demanda de energía térmica que corresponderá a este caudal a 60ºC. Para ello es necesario conocer varios parámetros.

Los parámetros necesarios para calcular la demanda calorífica son:
- Consumo de ACS (Q_{ACS})
- Temperatura de entrada del agua (T_{red})
- Temperatura del agua de consumo (T_{cons})
- Propiedades del agua: densidad y calor específico

$$D_{ACS} = Q_{ACS} \cdot \rho \cdot cp \cdot (T_{cons} - T_{red})$$ (Eq 3.4)

A pesar de que, según el CTE, el caudal de agua caliente sanitaria utilizado será constante a lo largo de todo el año, la demanda energética no lo será, ya que la temperatura de entrada del agua T_{red} varía a lo largo del año. En el IDAE (Instituto de la Diversificación y Ahorro de Energía)[2] se puede encontrar la Tabla B.3 en la que figuran las temperaturas medias del agua para cada provincia correspondiente a todos los meses del año.

3.2. Calefacción

Para conocer cuáles serán las necesidades de calefacción deberán hacerse los cálculos de las cargas térmicas del edificio en el momento más crítico del día, es decir, el momento en que menor sea la temperatura exterior.

Las cargas térmicas de un edificio pueden subdividirse en dos grandes grupos: cargas latentes y sensibles. Las cargas latentes corresponden a los cambios en la humedad del recinto y las cargas sensibles corresponden a los cambios de temperatura. En lo que respecta al alcance de este proyecto solo deberán tenerse en cuenta las cargas sensibles. La carga sensible de un edificio está compuesta por varios factores y todos ellos aparecen en la ecuación que se encuentra a continuación.

$$Q_s = (Q_{sv} + Q_{stc} + Q_{si}) \cdot (1 + I)$$ (Eq. 3.5)
Los términos corresponden a:
- Q_{sv}, carga debida a la transmisión y radiación a través de los cristales
- Q_{stc}, carga debida a la transmisión y radiación a través de paredes y cubiertas exteriores
- Q_{si}, carga debida a las infiltraciones de aire
- I, factor de intermitencia

3.2.1. Carga térmica a través de los cristales

El primer término a calcular, Q_{sv}, es la carga térmica a través de los cristales. Esta carga está compuesta por una componente de transmisión, Q_{vr}, y otra de radiación, Q_{vt}.

$$Q_{sv} = Q_{vr} + Q_{vt} \quad \text{(Eq. 3.6)}$$

3.2.1.1 Carga debida a radiación

El primer término de la ecuación, Q_{vr}, corresponde a la carga debida a radiación que pasa a través de los cristales, en este caso la carga térmica solo es de entrada. Para su cálculo se utiliza la fórmula que se ve a continuación.

$$Q_{vr} = R \cdot S \cdot F \quad \text{(Eq. 3.7)}$$

El término R (kWh/m2·dia) de la ecuación corresponde a la radiación que sufre la superficie acristalada de la ventana, ésta depende de la orientación, el mes y la latitud del edificio que se esté estudiando. Los datos para este valor pueden encontrarse en los históricos de datos climatológicos. En el gráfico aparecen los valores de la irradiancia directa y difusa para cada mes del año. Para el término R hay que coger el valor de la radiación total, que es la suma de la irradiancia directa y la difusa.

El término S de la ecuación corresponde a la superficie de ventanas del edificio. Por último el término F corresponde a factor de corrección, éste se calcula con la ecuación siguiente.

$$F = Fs \cdot [(1 - Fm) \cdot g + Fm \cdot 0.04 \cdot Umarco \cdot \alpha] \quad \text{(Eq. 3.8)}$$

El factor sombra Fs es el valor de la radiación que no queda obstaculizado, este valor se obtiene de la Tabla B.4. Para poder determinar el valor es necesario conocer el valor de las tres dimensiones de la ventana: altura, anchura y profundidad.
El factor de marco \(F_m \) corresponde al porcentaje de la ventana que está ocupado por el marco. El siguiente término \(g \) corresponde al factor solar del cristal a incidencia perpendicular, que se puede determinar una vez conocido el tipo de ventana y su grosor con la Tabla B.5.

El término \(\alpha \) corresponde a la absorptividad del vidrio, depende básicamente del color del vidrio y de la oscuridad. Sus valores pueden verse en la Tabla B.6.

3.2.1.2 Carga debida a transmisión

En la ecuación de la carga sensible a través de los cristales, \(Q_{vt} \), corresponde a la carga debida a transmisión a través de las ventanas. Ésta es la carga que sale a través de los cristales. Para calcularla hay que utilizar la fórmula siguiente.

\[
Q_{vt} = \sum (U \cdot A \cdot (T_{ext} - T_{tint})) \cdot (1 + O)
\]

(Eq. 3.9)

En la que el coeficiente de transferencia \(U \) es una combinación de las resistencias del cristal y del marco, y se puede calcular con la fórmula siguiente.

\[
U = (1 - F_m) \cdot U_{crystal} + F_m \cdot U_{marco}
\]

(Eq. 3.10)

En la ecuación anterior hay varios factores que deben ser calculados previamente. \(F_m \) corresponde al factor de marco, que se ha explicado en el apartado 3.2.1.1. Los coeficientes de transferencia \(U \) del cristal y el marco pueden obtenerse del Catálogo de Elementos Constructivos del CTE [4], en los apartados que llevan el nombre de Vidrios, y Marcos. En el apartado de Vidrios que puede encontrarse la Tabla B.5, dónde \(U_{crystal} \) corresponde a la columna \(U_{HV} \) vertical, en el apartado Marcos se utiliza la Tabla B.7 en la que en base al material puede obtenerse el coeficiente de transferencia de calor.

El último factor de la ecuación \(O \) corresponde al factor de orientación. Este es una corrección que debe establecerse ya que la temperatura exterior depende de la orientación. Los coeficientes de corrección para la orientación son:

- Sur: 0%
- Este/ Oeste: 5%
- Norte: 10%
3.2.2. Carga térmica a través de paredes y cubiertas exteriores

El término Q_{str} de la ecuación de las cargas térmicas corresponde a la suma de las cargas térmicas por transmisión y radiación de las paredes y cubiertas exteriores. En este caso, el término de radiación puede ser obviado ya que no es representativo comparado con la transmisión. La carga se calcularía con la expresión siguiente:

$$Q_{str} = Q_{sp} + Q_{st}$$ \quad (Eq.3.11)

Ambas cargas térmicas Q_{sp} y Q_{st} pueden calcularse según la fórmula de conducción. Para cada caso hay que calcular la superficie S y la conductividad térmica K, en este caso también hay que utilizar el coeficiente de corrección para la orientación sólo para las paredes.

$$Q_{sp} = (K_p \cdot S \cdot (Text - Tint)) \cdot (1 + O)$$ \quad (Eq. 3.12)

$$Q_{st} = K_c \cdot S \cdot (Text - Tint)$$ \quad (Eq. 3.13)

En el caso de las paredes la conductividad térmica K_p depende de las capas de materiales varios que tenga, es decir, la fábrica de ladrillo, hormigón, aislante, etc.

$$K_p = \frac{1}{R + R_{AT}}$$ \quad (Eq. 3.14)

En función de las capas y el tipo de cierre la K tiene una resistencia R diferente, el valor de ésta puede encontrarse en el Catalogo de Elementos Constructivos del CTE [4]. La R_{AT} corresponde a la resistencia del material aislante, cuyo valor puede calcularse con la conductividad térmica y el grosor. La conductividad térmica puede extraerse de la web del CTE.

Para las cubiertas exteriores hay que tener en cuenta que hay dos tipos cubiertas distintos: el techo y el suelo. Cada una de ellas con una superficie y unos coeficientes de transmisión distintos.

3.2.3. Carga debida a las infiltraciones de aire

En cualquier local, sea un domicilio particular o un local comercial, debe asegurarse una cierta calidad para el aire interior, recogida en el CTE sección HS3 [3]. Para mantener la calidad deben establecerse unos caudales mínimos de renovación de aire en función del tipo de
estancia que se esté tratando. En la tabla B.8, extraída del CTE, se puede ver que para algunos tipos de estancias las renovaciones se establecen por ocupantes, para otros por m² y para otros en función del local.

Estas renovaciones de aire, al venir de la calle, tienen una temperatura inferior a la de la estancia, por ello constituirán una carga térmica, \(Q_i \). Para poder calcularla deberemos conocer el número de estancias de cada tipo, el número de ocupantes y los metros cuadrados. Una vez conocido el cálculo es muy sencillo y se hace a través de la ecuación siguiente:

\[
Q_{si} = V_{aire} \cdot \rho \cdot C_{e,aire} \cdot (T_{ext} - T_{int})
\]

(Eq. 3.15)

3.2.4. Factor de intermitencia

El factor de intermitencia es un factor corrector que trata de cuantificar el porcentaje de calor extra que hay que añadirle a las cargas térmicas debido a la intermitencia en el funcionamiento de la calefacción, éste porcentaje corresponde al porcentaje de horas en las que la calefacción está apagada. Para calcularlo se utiliza la expresión siguiente:

\[
I = 1 - \frac{horas\%\,funcionando}{24h}
\]

(Eq. 3.16)

3.3. Cálculo total

Una vez calculados todos los términos correspondientes al ACS y a la calefacción hay que sumarlos para obtener la demanda total de energía. A lo largo del año se podrá observar una gran variabilidad en la demanda de energía, ésta vendrá dada en su mayoría debida a las cargas térmicas.

A la hora de hacer el dimensionado para ACS se asume que el caudal de ACS instantáneo es el mismo para todos los meses, por lo que en el cálculo de la demanda energética sólo variará la temperatura del agua proveniente de la red. Por el contrario, en el caso del dimensionado para calefacción hay muchos factores que afectan, llegando a ser durante algunos meses las cargas térmicas positivas, es decir, no sería necesario encender la calefacción.
3.4. Programas de cálculo

El cálculo de la demanda de ACS y las cargas térmicas se puede hacer manualmente a través del proceso que se ha explicado anteriormente, apoyándose en el CTE; pero también existen varios programas que calculan las cargas térmicas de la vivienda. Estos programas tienen los datos geográficos y climatológicos de la mayoría de capitales de provincia españolas, y si el local a estudiar no se encuentra en una capital de provincia, igual que el CTE, calculan sus características climatológicas en función del desnivel que tiene respecto a ésta. Además de los datos climatológicos tienen en sus librerías internas todas las características de los materiales recogidas en el CTE.

Estos programas agilizan y facilitan el cálculo ya que en vez de buscar entre diferentes tablas y documentos del CTE, muestran los diferentes materiales y sus características. En el caso de los cerramientos que acostumbran a estar formados por capas de materiales distintos, algunos programas permiten añadir las capas de los distintos materiales incluyendo el grosor de cada una, facilitando y agilizando de esta manera el cálculo final.
4. Calentador

El calentador o caldera es un elemento que se utiliza para elevar la temperatura del agua. Para conseguirlo puede partirse de combustibles muy variados como pueden ser: electricidad, gas natural o energía solar, entre muchos otros. Hay varias maneras de clasificar los calentadores, pero las dos más representativas son la clasificación en función del medio de obtención de la energía y la clasificación en función del trato que hacen del agua.

4.1. Calentadores en función del medio de obtención de energía

Los calentadores se pueden clasificar en dos grandes grupos si se toma como característica determinante el medio de obtención de energía utilizado: los calentadores eléctricos y los calentadores de otros combustibles. La distinción de estos dos grupos es curiosa ya que en uno solo hay un tipo de calentador, el eléctrico, y en el otro están los calentadores que usan cualquier otro tipo de combustible; esto es debido a que la tecnología de los calentadores eléctricos es muy distinta al resto.

Los dos tipos de calentador más típicos en los edificios de viviendas son los calentadores de gas y los calentadores eléctricos. El hecho de cambiar el combustible y en consecuencia la tecnología hace que el rango de potencia útil y el rendimiento energético sean distintos. Los calentadores eléctricos tienen una eficiencia energética alta, pero un rango de potencias útil bajo; y el resto de calentadores tienen una eficiencia energética menor, pero la potencia útil máxima es mayor.

4.1.1. Calentador eléctrico

El calentador eléctrico, tal y como indica su nombre, obtiene la energía de la electricidad. Las partes principales de este tipo de calentador son: el depósito o calderín, la resistencia y la entrada y salida de agua. Para el buen funcionamiento de este aparato es necesario que el depósito siempre esté lleno de agua y que el agua esté a una cierta presión.

La tecnología que utiliza es bastante simple, cuando el calentador se enciende empieza a pasar electricidad a través de la resistencia, que está situada en la parte inferior del calderín, y ésta se calienta, calentado así el agua de la parte inferior del depósito. El agua al calentarse sube y al darse este movimiento continuo va calentándose todo el agua del depósito. Una vez
el agua está a la temperatura indicada para el uso se abren la entrada y la salida de agua para asegurar que el depósito esté siempre lleno; cuando la temperatura del agua baja demasiado debido al paso de agua, la entrada y salida se cierran y vuelve a empezar el proceso. En la imagen que hay a continuación puede verse el funcionamiento de este tipo de calentador durante el ciclo de calentamiento.

![Imagen de funcionamiento de calentador eléctrico](image)

Figura 4.1 Calentador eléctrico

Fuente: www.construmatica.com

4.1.2. Calentador de gas

El calentador de gas obtiene la energía de la combustión de un gas. La tecnología de este tipo de calentador es más complicada que la del calentador eléctrico, sin dejar de ser sencilla. Los gases utilizados pueden ser muy variados, como gas natural, propano, butano, etc. El tipo de combustible utilizado depende de la zona en la que esté situado. En zonas urbanas el uso del gas natural como combustible es el más extendido; en cambio en zonas rurales es más común encontrar calentadores de propano o butano, entre otros.

Las partes principales de un calentador de gas son: el cortatiro o campana de humos, el cuerpo de caldeo o serpentín, el quemador, el cuerpo de agua, la entrada y salida de agua y el cuerpo de gas. Todos los calentadores tienen la misma estructura, lo único que cambiará en función del combustible es la forma y cantidad de quemadores.

La tecnología de este calentador es sencilla: cuando existe la necesidad de agua caliente empieza a entrar agua al calentador, el volumen de ésta es regulado por el cuerpo de agua, y pasa por el cuerpo de caldeo. El serpentín es un tubo, normalmente de cobre, que rodea el
Diseño de una instalación de cogeneración mediante un Motor Stirling

quemador y el cuerpo de caldeo, asegurando así una transferencia de calor máxima entre el aire de la combustión y el agua. La cantidad de gas quemada en el quemador se regula a través del cuerpo de gas. La última parte que interviene es el cortatiro, una pieza metálica situada en la parte superior de la caldera que recoge los gases de la combustión redirigiéndolos hacia la salida de evacuación de gases.

En la imagen que hay a continuación, Fig. 4.2, pueden verse claramente la mayoría de los elementos comentados anteriormente, los que no aparecen son el cuerpo de agua y el cuerpo de gas, que se situarían en la tubería de entrada de agua y gas, respectivamente.

Figura 4.2 Calentador de gas

Fuente: http://fontaneriallambias.blogspot.com.es/

4.2. Calentadores en función del trato que hacen del agua

Si se clasifica a los calentadores en función del trato que hacen del agua hay tres grandes grupos:

- Calentador con acumulador
- Calentador de flujo
- Caldera

4.2.1. Calentador con acumulador

El calentador con acumulador se caracteriza por tener un depósito acumulador en el que mantiene el agua a la temperatura caliente de consumo. Para su dimensionado debe tenerse en cuenta el consumo máximo que podrá haber en el local, para que no haya periodos en los
que debido al gran uso de agua que se hace, deje de salir agua caliente mientras el depósito vuelve a la temperatura de uso.

Éste tipo de calentador tiene como ventaja el hecho de que tarda muy poco tiempo en salir agua caliente desde que empieza a correr, ya que el depósito siempre se mantiene a la temperatura de consumo; pero tiene como gran desventaja el gran consumo de energía que hace, ya que para mantener el depósito siempre a la temperatura debe ir encendiéndose cada vez que el termostato detecta que el agua está por debajo de lo deseado. Generalmente este tipo de calentador es eléctrico, pudiendo utilizarse también en las instalaciones en las que se utiliza energía solar.

4.2.2. Calentador de flujo

A diferencia del calentador con acumulador, el calentador de flujo es un aparato que se mantiene apagado hasta que el medidor de caudal que tiene integrado detecta circulación de agua; entonces se enciende hasta calentar el agua a la temperatura de consumo. Este funcionamiento hace que el consumo de combustible de este tipo de calentadores sea muy inferior a la de los calentadores con acumulador, ya que solo se enciende y consume combustible cuando es necesario el uso de agua caliente. Éste tipo de calentador suele utilizar gas como combustible.

Para el dimensionado de este tipo de calentadores debe tenerse en cuenta el consumo máximo puntual que podrá tener la vivienda, pudiendo así calentar el caudal máximo necesario a la temperatura de consumo. Del caudal necesario de consumo dependerá la potencia máxima del calentador y su tamaño, cuanta mayor sea la potencia mayor deberá ser el calentador para que haya mayor superficie de intercambio de calor entre el aire y el agua.

4.2.3. Caldera

Las calderas son más eficientes que los dos tipos de calentador descritos anteriormente, utilizan todo tipo de combustibles, sólidos, líquidos y gaseosos, y se pueden utilizar en los ámbitos más diversos. Normalmente las calderas se utilizan para fines industriales y comerciales, pero también puede justificarse su uso en viviendas si la zona en la que están situadas tiene unas estaciones muy marcadas.
La caldera tiene un funcionamiento similar al del calentador de flujo, el combustible es quemado en el hogar y los gases calientes traspasan la energía a unos intercambiadores. El fluido que pasa por el interior de estos intercambiadores es el que marca la distinción entre los dos grandes grupos: acuotubulares y pirotubulares.

En las calderas acuotubulares los intercambiadores contienen agua en su interior y están situados alrededor del flujo de aire en forma de anillos, de manera que el aire pasa por el centro y atraviesa los intercambiadores enfriándose y saliendo por el extremo opuesto a la entrada. En la imagen que se ve a continuación, Fig. 4.3, puede verse la situación de los intercambiadores y el flujo de aire.

![Figura 4.3 Caldera acuotubular](www.youtube.com)

En las calderas pirotubulares, a diferencia de las anteriores, el aire es el fluido que circula por dentro de los intercambiadores y el agua es la que circula por el interior del cuerpo de la caldera. Igual que en todas las calderas, el combustible es quemado en el hogar y los gases son empujados al interior de los tubos; estos tubos hacen entre uno y cuatro pasos por el interior del cuerpo de la caldera para asegurar que hay una transferencia de calor máxima entre los gases y el agua. El diseño más extendido a nivel mundial es el de tres pasos debido a su gran rendimiento. En la imagen que se ve a continuación, Fig. 4.4, hay un ejemplo de caldera pirotubular.

![Figura 4.4 Caldera pirotubular](http://www.empresaeficiente.com)
4.3. Eficiencia energética del calentador

Uno de los datos más importantes que caracteriza un calentador es su eficiencia energética. Para poder calcularla hay que conocer las especificaciones de diseño, los materiales y las dimensiones específicas del calentador.

Para éste proyecto en particular se deberán conocer las propiedades del calentador, siendo la más la temperatura de los gases de salida la más importante. Estos gases proporcionaran el calor al motor Stirling.

4.3.1. Estudio termodinámico

El estudio termodinámico de un calentador se hace mediante un balance de energía y éste solo puede hacerse en el caso de que el calentador no sea eléctrico, es decir, que utilice combustible, independientemente del tipo de combustible.

En el balance se establece como igualdad principal que el calor entrante debe ser igual al saliente [9]. Para poder realizar los cálculos de ambos calores deberán conocerse: la temperatura de referencia, ambiente, el balance de masa y el PCI del combustible.

4.3.1.1 Calor entrante

El calor entrante será el proveniente de la combustión del combustible, para conocerlo bastará con saber cuál es el PCI del combustible

\[Q_{\text{entrante}} = \text{PCI} \cdot m_{\text{comb}} \]

(Eq. 4.1)

4.3.1.2 Calor saliente

El cálculo del calor saliente es más complejo que el del calor entrante ya que hay más factores que afectan.

\[Q_{\text{saliente}} = Q_{\text{FLUIDO}} + Q_{\text{PERDIDAS}} \]

(Eq. 4.2)
Q_{FLUIDO} corresponde al calor que es transferido del gas proveniente del hogar al agua, éste se calcula a través de la expresión siguiente, en la que m corresponde al flujo mágico del fluido a la salida, Cp al calor específico y T_{salida} a la temperatura:

$$Q_{FLUIDO} = m \cdot c_p \cdot T_{f,salida}$$ \hspace{1cm} (Eq. 4.3)

$Q_{PÉRDIDAS}$ de la ecuación del calor saliente corresponde a las pérdidas del calentador, éstas son debidas a los humos calientes que abandonan el calentador, los inquemados de combustible y la transmisión de calor a través de las paredes. El cálculo de las pérdidas puede verse en la ecuación siguiente:

$$Q_{PÉRDIDAS} = Q_{HUMOS} + Q_{INQUEMADOS} + Q_{PAREDES}$$ \hspace{1cm} (Eq. 4.4)

Q_{HUMOS} corresponde al calor perdido por los humos, éste está directamente relacionado con la temperatura a la que los humos serán expulsados al exterior del calentador. Para este cálculo es necesario conocer la masa de humos, su calor específico, aunque puede utilizarse el del aire seco, y la temperatura de salida de los gases.

$$Q_{HUMOS} = m_{gases} \cdot c_{p,gases} \cdot (T_{gases} - T_{ambiente})$$ \hspace{1cm} (Eq. 4.5)

$Q_{INQUEMADOS}$ corresponde a las pérdidas de calor que se dan por no realizarse una combustión perfecta, por lo que el calor entrante real no será exactamente correspondiente al PCI sino que será inferior. Hay dos tipos de inquemados: sólidos y gaseosos. La fórmula de las pérdidas por inquemados corresponde a la siguiente:

$$Q_{INQUEMADOS} = P_i \cdot PCI$$ \hspace{1cm} (Eq. 4.6)

$$P_i = P_{is} + P_{CO} + P_{H_2} + P_{CH} \% del PCI$$ \hspace{1cm} (Eq. 4.7)

Los inquemados sólidos, P_{is}, se miden por el índice de Bacharach, éste índice mide la opacidad de los humos gracias a unas placas que van de blanco, uno, a negro, 9. En función del índice que se obtenga, con la tabla B.9 puede conocerse el porcentaje de pérdidas que PCI que corresponde a cada índice de Bacharach para inquemados sólidos.

En el caso de los inquemados gaseosos se distinguen tres gases: monóxido de carbono, CO, hidrocarburos, CH, e hidrógeno, H₂. Igual que con los inquemados sólidos las pérdidas de inquemados gaseosos se miden como porcentaje del PCI.
Las pérdidas por inquemados del CO se producen debido a que no todo el carbono contenido en el combustible se transforma en dióxido de carbono. Normalmente se miden las partes por millón, ppm, de CO existentes en los humos, y las pérdidas correspondientes se calculan de la siguiente manera, donde O_2 corresponde al porcentaje de oxígeno en los gases y CO a las ppm de CO que hay en el combustible:

\[
P_{CO} = \frac{21}{21-O_2} \cdot \left(\frac{CO}{3100} \right)
\]
(Eq. 4.8)

Las pérdidas por hidrocarburos inquemados dependen de las partes por millón de hidrocarburos y del porcentaje de oxígeno que haya en los gases. Normalmente se asume que las ppm de CH, expresadas como CH en la fórmula, son iguales a las de CO ya que éstas se miden en todos los casos y las de CH no. La fórmula para el cálculo de las perdidas por inquemados es la siguiente:

\[
P_{CH} = \frac{21}{21-O_2} \cdot \left(\frac{CH}{1000} \right)
\]
(Eq. 4.9)

Para las últimas pérdidas por inquemados, que son las de H$_2$, se asume que son iguales a las del CO, ya que a menudo las partes por millón de H$_2$ no se miden, mientras que las de CO sí.

El último término de la ecuación para el cálculo del calor saliente de la caldera es el calor perdido por convección a través de las paredes, para calcularlo puede utilizarse la ecuación siguiente para cada una de las paredes. Para el cálculo se necesita conocer el área de la pared estudiada, el coeficiente de transmisión, h_e, que engloba los efectos de convección y radiación, y la temperatura de la pared exterior:

\[
Q_{Paredes} = A \cdot h_e \cdot (T_{pared exterior} - T_{ambiente})
\]
(Eq. 4.10)

4.3.1.3 Eficiencia energética

Una vez conocidos todos los térmicos del balance energético del calentador, puede calcularse su eficiencia energética.

\[
\eta = \frac{Q_{entrante} - Q_{perdidas}}{Q_{entrante}} \cdot 100 \%
\]
(Eq. 4.11)
4.3.2. **Ficha de características técnicas**

A menudo es difícil poder calcular la eficiencia energética de los calentadores, ya que hay que conocer muchos datos específicos y los fabricantes mantienen cierto secretismo alrededor de sus diseños y materiales exactos.

A pesar de eso hay una forma de conocer la eficiencia. Como consecuencia de la conciencia ambiental que está tomando la sociedad actual, hoy en día muchos de los fabricantes de calentadores y calderas utilizan como reclamo comercial sus altas eficiencias, por ello en la mayoría de productos la eficiencia energética a medio y a pleno funcionamiento aparecen en su ficha de características técnicas.

Una vez conocida la eficiencia podrá conocerse que parte de la potencia nominal queda en forma de gases calientes, esto se consigue a través de la fórmula siguiente:

\[Q_{HUMO S} = P \cdot (1 - \text{Eficiencia}) \]
(Eq. 4.12)

4.3.3. **Cálculo de la temperatura**

Utilizando las ecuaciones Eq. 4.5 y Eq. 4.12 puede obtenerse la temperatura. En caso que no se tenga como dato el caudal mánico de los gases habrá que utilizar la fórmula estequiométrica para el combustible utilizado.

\[\text{Combustible + exceso · aire} \rightarrow CO_2 + H_2O + \text{exceso · N}_2 \]
(Eq. 4.13)

Una vez conocidos los moles de cada elemento puede calcularse, a través de la masa molar, el flujo mánico de cada elemento.

\[\dot{m}_{gases} = \dot{m}_{CO_2} + \dot{m}_{H_2O} + \dot{m}_{N_2} \]
(Eq. 4.14)

Con esta masa conocida se tendrán todos los datos necesarios para poder calcular la temperatura de los gases a la salida del calentador.

\[T_{gases} = \frac{Q_{HUMO S}}{\dot{m}_{gases} \cdot c_p_{gases}} + T_{ambiente} \]
(Eq. 4.15)
5. Motor Stirling

En el ámbito de este proyecto el motor Stirling es el elemento clave que permite la conversión de la energía térmica en energía eléctrica. Entre todos los motores térmicos existentes se ha elegido el motor Stirling por dos motivos: por su alto rendimiento, y por el hecho de que es un motor de combustión externa, de manera que además de no tener que hacer ninguna modificación a la caldera para poder obtener energía de ella, se aprovecha una energía ya existente que de otra manera sería desaprovechada. Para poder hacer el cálculo deberán conocerse las propiedades del aire a la salida de la caldera.

5.1. Breve historia

El motor Stirling fue patentado por Robert Stirling, en el año 1816, éste era un motor de aire caliente que simplificaba las máquinas de vapor ya que era un motor que no necesitaba caldera. La idea del diseño de éste motor surgió debido a que las calderas, a pesar de ser muy utilizadas, eran muy costosas, ineficientes y peligrosas. A pesar de las ventajas que tenía el motor Stirling frente a las máquinas de vapor, nunca llegaron a ser muy conocidos.

Durante el siglo XX el motor Stirling fue utilizado en pequeños electrodomésticos, como por ejemplo ventiladores de mesa en los que con un mechero se accionaba el motor. A partir de la década de los 60 la empresa Philips empezó a investigar este tipo de motores. En las décadas posteriores se intensificó el estudio de este tipo de motor, debido a la crisis energética y a la necesidad de obtener energía por métodos alternativos a los combustibles fósiles; durante la primera crisis energética se llegaron a diseñarse coches que utilizaban este motor.

El fin de la crisis del petróleo hizo que se abandonaran las investigaciones de este tipo motor. Hoy en día debido a la escasez de combustibles fósiles se está estudiando el uso de generadores de energía alternativos, por ello las energías renovables y máquinas con ciclos tipo Stirling o que no necesariamente utilicen combustibles fósiles están tomando relevancia.

En la imagen que se ve a continuación, Fig. 5.1, puede verse una imagen de un modelo de coche cuyo motor era un motor tipo Stirling.
5.2. Descripción del motor

5.2.1. Funcionamiento

El motor Stirling funciona aprovechando los cambios volumétricos del fluido de trabajo que son consecuencia de los cambios de temperatura. Éste motor consta de dos zonas ampliamente diferenciadas: la zona caliente y la zona fría.

Para entender el funcionamiento de este ciclo se hará uso de unos diagramas de un motor Stirling tipo Beta. En el primer diagrama, Fig. 5.2, puede observarse que el aire se encuentra en la zona caliente. En esta situación el pistón está comprimiendo parcialmente el aire y el desplazador está comprimiendo la zona fría. Al calentar el aire que se encuentra en la zona caliente aumentará la presión del recipiente.

Figura 5.1 Vehículo con motor Stirling

Fuente: http://tecmotor.wordpress.com/

5.2. Diagrama 1

En el segundo diagrama se puede ver que debido al aumento de la presión el pistón se ha movido hasta el punto con volumen máximo de la cámara. El aire se ha movido parcialmente de la zona caliente a la zona fría, aumentando su volumen y provocando el movimiento del desplazador.

![Figura 5.3 Diagrama 2](http://example.com)

Fuente: Wikipedia

El movimiento continúa en el diagrama 3, en el que el pistón está en el punto más cercano al volante; el desplazador continúa su movimiento, haciendo que el aire se desplace de la zona caliente a la zona fría.

![Figura 5.4 Diagrama 3](http://example.com)

Fuente: Wikipedia

El último punto de funcionamiento del motor corresponde al Diagrama 4, en el que se ve cómo a consecuencia de los movimientos anteriores, el volante de inercia es quien empuja el pistón al punto en que el volumen de la cámara es mínimo.

![Figura 5.5 Diagrama 4](http://example.com)

Fuente: Wikipedia
5.2.2. Configuraciones

El motor Stirling tiene dos zonas claramente diferenciadas: la zona caliente y la fría, y tiene dos componentes básicos: el pistón y el desplazador. Lo que distingue las diferentes configuraciones es la situación de las dos zonas y del pistón y el desplazador, en caso de que tengan ambos componentes.

5.2.2.1 Alfa

En la configuración alfa la zona caliente y la zona fría se encuentran en cilindros distintos unidos por el regenerador. Este tipo de configuración tiene dos pistones, uno por cilindro y desfasados 90° entre sí, pero a cambio no tiene desplazador. El cilindro que se encuentra en la zona caliente se calienta gracias a la fuente de energía y el cilindro de la zona fría pierde calor gracias al sistema de refrigeración, que puede ser por aire o por agua. En la Figura 5.6 puede verse un ejemplo de motor Stirling con configuración alfa.

![Figura 5.6 Motor Stirling, configuración alfa](Fuente: Wikipedia)

5.2.2.2 Beta

La configuración beta, a diferencia de la alfa, tiene un solo cilindro en el que se encuentran el pistón y el desplazador. El movimiento del aire de la zona caliente a la zona fría, y al revés, es posible gracias a la holgura que existe entre el desplazador y el cilindro. Al encontrarse ambos en el mismo cilindro dejan un espacio muerto muy reducido y en consecuencia la potencia específica de esta configuración es más elevada que la de las otras. A pesar de tener eso a favor, esta configuración también tiene un punto en contra, y este es su fabricación. La fabricación de este tipo de configuración es complicada y requiere un alto nivel de precisión.
A menudo la configuración beta utiliza un mecanismo rómbico para la transformación del movimiento lineal en circular. Este mecanismo es complicado y encarece considerablemente el coste de fabricación del motor, pero es muy utilizado debido al hecho que su configuración anula las fuerzas de empuje lateral que pueden sufrir el pistón y el desplazador, asegurando así su buen funcionamiento y alargando su vida útil. En la imagen que se ve a continuación puede verse un ejemplo de este mecanismo.

Como consecuencia de sus ventajas y del hecho de que su vida útil puede alargarse más que la de otras configuraciones, para este proyecto se ha decidido utilizar este tipo de configuración.

5.2.2.3 Gamma

La configuración gamma es un derivado de la configuración beta, pero simplificada. Esta configuración consta de dos cilindros conectados entre sí, en uno se encuentra el pistón y en el otro el desplazador. A parte del número de cilindros tiene otra gran diferencia con respecto a la configuración beta, y ésta es la potencia específica. En el caso de la configuración gamma la potencia específica es inferior, esto es consecuencia del volumen muerto que existe entre los dos cilindros; éste puede verse en la imagen que hay a continuación en forma de la unión que hay entre los cilindros.
5.2.3. Componentes del motor

En la imagen que se ve a continuación, Fig. 5.10, pueden verse las partes que componen un motor Stirling.

5.2.3.1 Cilindro

Como se ha comentado anteriormente el número de cilindros depende de la configuración del motor. El diseño del cilindro depende de varios factores como pueden ser el gas que vaya a haber en el interior, la presión y la configuración que se vaya a utilizar. Habrá que tener en cuenta las configuraciones alfa y gamma tienen dos cilindros, y la configuración beta tiene...
solo uno. En este o estos cilindros se encuentran la mayor parte de los elementos del motor, estos son: la zona caliente, la zona fría, el pistón, el desplazador y el regenerador, aunque este último no se encuentra en el interior del cilindro en todos los casos.

5.2.3.2 Zona caliente y zona fría

La zona caliente es la parte del cilindro en la que sucede la absorción de calor, esta zona normalmente está sometida a temperaturas muy elevadas. En función de la configuración, igual que sucede con la zona fría, se encontrará en el único cilindro o en un cilindro independiente. En oposición a la zona caliente, en la zona fría es en la que se da la cesión de calor, la cesión de calor se da a través del sistema de refrigeración, éste puede ser por aire o por agua.

5.2.3.3 Sistema de refrigeración

El sistema de refrigeración es un elemento clave en el motor Stirling, es el responsable de mantener la diferencia de temperaturas entre los dos focos. El sistema de refrigeración puede categorizarse por dos vías: si es refrigeración por aire o agua, y si es refrigeración natural o forzada. La elección de las características del sistema dependerá del uso que se vaya a hacer el motor y de la potencia.

La refrigeración por aire se utiliza en motores lentos debido a su baja eficiencia. La refrigeración se hace convección a través de un sistema de aletas que rodea el cilindro. Este tipo de motor puede presentar problemas en aplicaciones a altas velocidades, ya que las aletas no disipan suficientemente rápido el calor y acaban calentándose, calentando la zona fría del cilindro y reduciendo la velocidad del motor.

La refrigeración por agua tiene una eficiencia mucho mayor que la refrigeración por aire, pudiéndose utilizar en un rango mucho más amplio de motores. La refrigeración es posible gracias a una camisa metálica que rodea la zona fría del cilindro por la que pasa el agua o el líquido refrigerante, y con el que se produce la transferencia de calor. Es recomendable que la dirección del flujo de calor vaya al contrario que el flujo de aire, es decir, que la entrada de agua esté en el extremo del cilindro y que la salida de agua coincida con la zona más cercana a la zona caliente; ya que de esta manera la variación de la densidad del agua al calentarse y las diferencias de temperatura entre el gas y el líquido en cada punto ayudan a mejorar el rendimiento.
5.2.3.4 Desplazador

En el interior del cilindro también se encuentra el desplazador, elemento que permite esta compresión y expansión del gas del cilindro. A pesar de que no todas las configuraciones tienen desplazador, es un elemento importante en el ciclo, ya que permite el paso del aire entre las diferentes zonas del cilindro, esto es posible ya que el desplazador deja una cierta holgura entre sus paredes y las del cilindro. Esta holgura deberá ser suficiente para permitir el paso de aire, pero mínima para minimizar el volumen muerto que esto genera; un valor adecuado para el diseño de la holgura del desplazador es entre el 1 y el 2% del diámetro del cilindro.

Una característica muy importante del regenerador es que deben tener un coeficiente de transmisión térmica muy bajo, para que no absorban el calor que hace funcionar el motor ya que en este caso el desplazador estará en contacto con la zona fría y la caliente a la vez. Una manera de conseguirlo es haciendo un desplazador de madera, en otros casos se pone un aislante entre las partes del desplazador en contacto con las dos zonas.

5.2.3.5 Pistón

El pistón se encuentra en la parte más alejada de la zona caliente, es decir, en la parte más cercana al volante. El pistón es uno de los elementos que genera la compresión y expansión a causa del movimiento lineal y oscilante que hace gracias al volante de inercia. A causa de que el gas solo realiza trabajo durante la expansión es importante que tenga un peso muy bajo, por ello uno de los materiales que se utiliza para fabricarlos es el aluminio. El uso de aluminio en la fabricación de pistones tiene un punto en contra y este es el alto coeficiente de transferencia que tiene, pero hay algo que mitiga su desventaja en el caso de los motores beta y gamma, y esto es el hecho de que el pistón está en contacto con la zona fría del cilindro, por lo que el cilindro a la larga no se calentará tanto.

5.2.3.6 Regenerador

El regenerador un elemento muy particular que enfriá y calienta el aire en función de la dirección que tenga el flujo del aire, es decir, el regenerador constituye un intercambiador de calor reversible. Existen dos tipos de regeneradores: externo e interno. Se considera un regenerador interno aquel que se encuentra en el interior del cilindro, en cambio el
regenerador externo es uno situado en el exterior. Un ejemplo de regenerador interior es el que se da en los motores de configuración Beta, éste se sitúa en el espacio muerto existente a causa de la holgura que hay entre el desplazador y el cilindro, puede verse en la Figura 6.9.

Un ejemplo de regenerador exterior puede darse en una configuración alfa en la conexión entre los dos cilindros, como puede verse en la Figura 5.7.

5.2.3.7 Volante

El último elemento a considerar es el volante de inercia, este elemento ayuda a mantener el movimiento del motor Stirling de forma estable. El volante está unido al pistón y al desplazador, que están desfasados 90°, y es la parte que aporta la energía para que pueda producirse la compresión del gas.

5.3. Estudio termodinámico

5.3.1. Ciclo termodinámico ideal

El ciclo termodinámico ideal de un motor Stirling es independiente de la configuración del mismo, y está formado por dos evoluciones isotérmicas y dos a volumen constante, estos últimos son los procesos en los que se da la absorción y cesión de calor. El ciclo de Stirling es el ciclo con un mayor rendimiento teórico después del de Carnot [10].

Figura 5.11 Diagramas P-V y T-S de un motor Stirling

Fuente: Fundamentos de la termodinámica técnica

El estado 1, el inicial, es el punto de funcionamiento en el que todo el aire está en la zona fría, punto en el cual el sistema tiene un volumen máximo, situándose el pistón en la parte más cercana y el desplazador en la más lejana del volante, corresponde a la Figura 5.3.
El proceso 1-2 corresponde a una compresión isotérmica, en este proceso es en el que se da la cesión de calor. El pistón pasa de la posición más cercana al volante a la más alejada de este. El calor cedido y el trabajo generado en este proceso son los siguientes:

\[Q_{1-2} = R \cdot T_1 \cdot \ln \left(\frac{V_2}{V_1} \right) \]
\[W_{1-2} = P_1 \cdot V_1 \cdot \ln \left(\frac{V_2}{V_1} \right) \]
(Eq. 5.1)
(Eq. 5.2)

El proceso 2-3 corresponde a una aportación de calor a volumen constante, en la que el elemento que se mueve es el desplazador, por lo que el aire se mueve de la zona fría a la zona caliente. Durante este movimiento el regenerador cede el calor que almacena al gas. En este proceso no se genera trabajo y la ecuación de calor es la siguiente:

\[Q_{2-3} = c_v \cdot (T_3 - T_2) \]
(Eq. 5.3)

El proceso 3-4 corresponde a una expansión isotérmica en la que el elemento que se mueve es el pistón, desde la zona de volumen mínimo a la zona de volumen máximo de la cámara. Es en este proceso en el que el gas absorbe calor en la zona caliente. Las ecuaciones de calor y trabajo son las siguientes:

\[Q_{3-4} = R \cdot T_3 \cdot \ln \left(\frac{V_4}{V_3} \right) \]
\[W_{3-4} = P_3 \cdot V_3 \cdot \ln \left(\frac{V_4}{V_3} \right) \]
(Eq. 5.4)
(Eq. 5.5)

El proceso 4-1 corresponde a una extracción de calor a volumen constante, en este proceso el desplazador se mueve dejando la zona caliente con un volumen máximo. Durante este proceso el gas cede el calor al regenerador. Al no cambiar el volumen de la cámara el trabajo de este proceso es nulo. El calor cedido al regenerador durante este proceso corresponde a la siguiente ecuación:

\[Q_{4-1} = c_v \cdot (T_1 - T_4) \]
(Eq. 5.6)

Una vez definidos todos los procesos puede estudiarse el rendimiento térmico del mismo:
Con este último cálculo puede verse que el rendimiento del ciclo Stirling ideal coincide con el rendimiento de Carnot.

5.3.2. Ciclo termodinámico real

En la realidad los procesos isotérmicos e isocóricos no son exactamente ideales, por lo que el ciclo que sigue un motor Stirling en la realidad no es igual al de la Figura 5.11. Uno de los principales motivos por los que los procesos isotérmicos es la transferencia de calor en los diferentes puntos: las zonas caliente y fría, y el regenerador. El regenerador absorbe y cede calor al gas, pero no lo hace de forma ideal, por lo que la temperatura de la zona caliente nunca suficientemente caliente, y con la fría. Otro factor que afecta al ciclo es el hecho de que el diseño nunca es exacto y el movimiento de las partes a grandes velocidades nunca es perfecto. En la figura que se ve a continuación, Fig. 5.12, puede verse como el proceso es más elíptico que el ideal.

Figura 5.12 Diagrama del trabajo indicado

5.3.2.1 Parámetros que afectan al ciclo real

Hay dos parámetros que afectan de forma muy representativa al ciclo termodinámico. Como hemos visto en la ecuación Eq. 5.8, el rendimiento del ciclo termodinámico depende
directamente de la diferencia de temperaturas. Por lo que el primer parámetro a considerar es exactamente este, τ, la diferencia de temperaturas.

$$\tau = \frac{T_c}{T_h}$$ \hspace{1cm} (Eq. 5.9)

Este parámetro se encontrará entre 0 y 1, siendo 0 el punto en que el rendimiento térmico es del 100%. En cambio cuando sea 1 corresponderá al caso en que las temperaturas son iguales con lo que el rendimiento del ciclo sería nulo. La diferencia de temperaturas afecta de manera significativa a la forma del ciclo ya que cuanto mayor sea la diferencia de temperaturas más se parecerá al ciclo ideal; y cuanto menor sea, más delgado será. En la imagen a continuación, Fig. 5.13, puede verse un ejemplo, dónde $\tau_1 > \tau_2$.

![Figura 5.13 Ciclos teóricos con distintas diferencias de temperaturas](image)

Fuente: [14]

El segundo parámetro que afecta al ciclo es la velocidad a la que se desarrolla, éste parámetro está muy relacionado con la relación de temperaturas. Cuánto más alta es la velocidad menor es el tiempo que tarda en producirse el ciclo, por ello, menor tiempo hay para que el gas pase de la temperatura de la zona caliente a la temperatura de la zona fría y al revés. Como el tiempo para el cambio de temperaturas es más reducido, hay más posibilidades de que el gas no llegue a la temperatura caliente o fría, por lo que la relación de temperaturas aumenta, acercándose a 1, y como consecuencia se reduce el rendimiento del motor.

5.4. Parámetros de diseño

Para este proyecto, como se ha comentado anteriormente, se ha decidido utilizar un motor Stirling beta rombico. Para este tipo de motor hay varios parámetros principales para el diseño que afectan a la potencia indicada.
El primero de ellos es τ definido en la ecuación Eq. 5.9; el siguiente parámetro es la relación de compresión, k, que corresponde a la relación de volúmenes entre las dos zonas.

\[k = \frac{V_c}{V_e} \]
(Eq. 5.10)

El tercer parámetro a tener en cuenta es α, que corresponde al ángulo de desfase entre el pistón y el desplazador, y por último X que corresponde a la relación entre el volumen muerto y el de la zona caliente.

\[X = \frac{V_M}{V_e} \]
(Eq. 5.11)

Para estos cuatro parámetros no existe una relación de valores óptima, pero independientemente cada uno de ellos tiene un rango óptimo. Para τ y para X, cuanto menor sea su valor mayor será la potencia indicada; en cambio para la relación de compresión su valor óptimo se encuentra entre 1.5 y 2.5, ya que en el caso de darse valores demasiado altos mayor sería la potencia indicada, pero a cambio se incrementan las pérdidas mecánicas; por último para el ángulo de desfase en este tipo de motor el rango de valores óptimo se encuentra entre 90° y 115°.

A parte de estos parámetros existen otros relacionados con el dimensionamiento de las partes, éstos no están medidos por fórmulas sino que tienen rangos de valor óptimos. Estos parámetros corresponden al dimensionamiento del desplazador, del pistón y del cilindro.

Para el desplazador habrá que dimensionar la longitud y la holgura entre éste y el cilindro. La longitud del desplazador se recomienda que sea de 1 a 3 veces el diámetro del cilindro; y se recomienda que la holgura esté entre el 1 y el 2% del diámetro del cilindro. A la hora de dimensionar el desplazador es importante que su peso no sea demasiado elevado, por ello a menudo se diseñan desplazadores vacíos en su interior. Otro parámetro a tener en cuenta y que es muy importante en el desplazador es el material del que esté construido, ya que tiene que ser un material capaz de soportar altas temperaturas en la zona que está en contacto con la zona caliente y en cambio temperaturas frías en la zona en contacto con la zona fría.

El pistón debe tener una holgura con respecto al cilindro menor que la del desplazador, ya que el juego entre el pistón y el cilindro implica pérdida de fluido de trabajo. Es por eso por lo que la recomendación con respecto a este juego es que sea de 0.03 mm. En cambio para su longitud es recomendable que sea de la mitad a las tres cuartas partes del diámetro del
cilindro. Además de lo comentado anteriormente hay que considerar si el motor trabaja con el fluido a presión ambiente o si está presurizado, ya que en el caso de que el motor esté presurizado hay que añadir segmentos que eviten la pérdida de fluido en el interior del motor.

5.5. Proceso de cálculo

El cálculo del motor Stirling Beta de mecanismo rómbico debe hacerse desde dos perspectivas: el mecanismo y la termodinámica. En el estudio del mecanismo deben establecerse las dimensiones de las diferentes partes que componen el mecanismo. En cambio en el estudio termodinámico se calculará la potencia que puede extraerse del mecanismo conociendo las temperaturas a las que funciona y los parámetros dimensionales de éste.

5.5.1. Proceso para el cálculo del mecanismo

El esquema para el diseño y posterior cálculo del mecanismo de un motor Stirling Beta tipo rómbico es el siguiente:

![Esquema del motor Stirling Beta](image_url)

*Figura 5.14 Esquema de un motor Stirling beta de mecanismo rómbico

Fuente: Elaboración propia*
La idea de este cálculo es conocer los volúmenes de la zona caliente, fría y el total; y las posiciones del pistón y el desplazador para todas las posibles posiciones.

Para el cálculo del mecanismo se utilizará un sistema de ecuaciones para el que solo definiendo la longitud de la carrera, L_c, y dos parámetros de definición del mecanismo, z y ρ, se obtendrán todos los valores.

El parámetro z se calcula a través de la ecuación siguiente:

$$ z = \frac{L}{R_m} \quad (\text{Eq. 5.12}) $$

En la ecuación anterior L corresponde a la longitud de la biela del pistón y R_m corresponde al radio de la manivela. En cambio el parámetro ρ se calcula con la ecuación siguiente:

$$ \rho = \frac{D_p - E}{2R_m} \quad (\text{Eq. 5.13}) $$

En esta ecuación D_p corresponde al diámetro del pistón y E a la longitud entre el vástago del pistón y el extremo central de la biela.

El siguiente parámetro a calcular es el radio de la manivela, éste depende de la longitud de la carrera y los dos parámetros calculados, z y ρ. Los dos ángulos α_1 y α_2 corresponden a las posiciones máxima y mínima del pistón.

$$ R_m = \frac{L_c}{\sqrt{z^2 - (\rho - \sin(\alpha_2))^2 + \cos(\alpha_2) - \sqrt{z^2 - (\rho - \sin(\alpha_1))^2 - \cos(\alpha_1)}}} \quad (\text{Eq. 5.14}) $$

Una vez conocido el radio de la manivela, R_m, la longitud del espacio muerto en la zona fría, $emin$, y las longitudes del vástago del pistón, Lvp, y del pistón en sí, Lp, puede calcularse la longitud del vástago del desplazador.

$$ Lvd = emin + Lvp + Lp + 2 \cdot Rm \cdot \sqrt{z^2 - (\rho - \sin(\beta_2))^2} \quad (\text{Eq. 5.15}) $$

Antes de poder calcular las posiciones del desplazador y el pistón hay que calcular el parámetro a, donde D_p es el diámetro primitivo de los engranajes.

$$ a = \frac{D_p}{2} - E \quad (\text{Eq. 5.16}) $$
A continuación se encuentran las ecuaciones que corresponden al cálculo de las posiciones del pistón y el desplazador en función del ángulo del radio de la manivela i, XP1 corresponde al pistón y XP2 al desplazador; y la ecuación que establece la distancia entre ellas, XPD.

\[
XP1 = \sqrt{L^2 - (a - Rm \cdot \sin(i))^2} + Rm \cdot \cos(i) + Lvp \quad (Eq. 5.17)
\]

\[
XP2 = \sqrt{L^2 - (a - Rm \cdot \sin(i))^2} + Rm \cdot \cos(i) + Lvd \quad (Eq. 5.18)
\]

\[
XPD = XP2 - XP1 - Lp \quad (Eq. 5.19)
\]

Al tener los datos de las posiciones se hace posible calcular los volúmenes correspondientes a cada zona, caliente y fría y el volumen total. En las ecuaciones que se ven a continuación Ve corresponde al volumen de la zona caliente, Vc al volumen de la zona fría y Vr al volumen muerto del regenerador.

\[
Ve = (XP2_{\text{max}} - XP2 + e) \cdot \frac{\pi \cdot B^2}{4} \quad (Eq. 5.20)
\]

\[
Vc = (XP2 - XP1 - Lp) \cdot \frac{\pi \cdot B^2}{4} \quad (Eq. 5.21)
\]

\[
V_{Total \ instanteo} = Ve + Vc + Vr \quad (Eq. 5.22)
\]

Una vez calculado el volumen, puede encontrarse el ángulo en el cuál éste toma sus valores máximo y mínimo, y con estos valores puede conocerse la relación de compresión, k.

\[
k = \frac{V_{Total \ inst max}}{V_{Total \ inst min}} \quad (Eq. 5.23)
\]

Además de los parámetros de posición también es interesante calcular los parámetros de velocidad de ambas partes.

\[
VeLP = \frac{w \cdot (a - Rm \cdot \sin(i)) \cdot Rm \cdot \cos(i)}{\sqrt{L^2 - (a - Rm \cdot \sin(i))^2 - w \cdot Rm \cdot \sin(i)}} \quad (Eq. 5.24)
\]

\[
VeLD = \frac{-w \cdot (a - Rm \cdot \sin(i)) \cdot Rm \cdot \cos(i)}{\sqrt{L^2 - (a - Rm \cdot \sin(i))^2 - w \cdot Rm \cdot \sin(i)}} \quad (Eq. 5.25)
\]
Es necesario hacer previamente el cálculo de los parámetros dimensionales del motor, ya que para el cálculo termodinámico posterior se necesitaran algunos de los valores calculados con las ecuaciones anteriores.

Para hacer el cálculo de los parámetros dimensionales se ha utilizado Mathcad, el desarrollo del procedimiento y los valores obtenidos pueden encontrarse en el Anexo A.2.

5.5.2. Proceso para el cálculo termodinámico

5.5.2.1 Cálculo del foco caliente

En el caso del foco caliente hay que calcular dos calores distintos, el calor que entra a través de la tapa y el calor que entra a través de las paredes. En cada uno de los casos hay que tener en cuenta dos componentes: la convección.

\[Q_e = Q_{tapa} + Q_{pared} \] \hspace{1cm} (Eq. 5.26)

Para la tapa \(R_{cond} \) corresponde a la resistencia por conducción y \(R_{conv} \) corresponde a la resistencia por convección. El procedimiento para obtener el calor es el siguiente

\[Q_{tapa} = \frac{T_{ext, \ tapa} - T_{inta, \ tapa}}{R_{cond}} = \frac{T_{inta, \ tapa} - T_{zona \ caliente}}{R_{conv, \ int}} \] \hspace{1cm} (Eq. 5.27)

\[Q_{tapa} = A_{inta, \ tapa} \cdot h_{zona \ caliente} \cdot (T_{inta, \ tapa} - T_{zona \ caliente}) \] \hspace{1cm} (Eq. 5.28)

Para la pared los cálculos son los siguientes:

\[Q_{pared} = \frac{T_{ext, \ pared} - T_{inta, \ pared}}{R_{cond}} = \frac{T_{inta, \ pared} - T_{zona \ caliente}}{R_{conv}} \] \hspace{1cm} (Eq. 5.29)

\[Q_{pared} = A_{pared} \cdot h_{zona \ caliente} \cdot (T_{inta, \ pared} - T_{zona \ caliente}) \] \hspace{1cm} (Eq. 5.30)

5.5.2.2 Cálculo del foco frío

El foco frío puede tener varias configuraciones en función del método de refrigeración que se elija, una configuración con o sin aletas.

Para una configuración sin aletas el calor disipado se obtiene gracias a la siguiente fórmula:

\[Q_c = \frac{T_{text} - T_{zona \ fria}}{R_{conv, \ ext} + R_{cond} + R_{conv, \ int}} \] \hspace{1cm} (Eq. 5.31)

En el caso que la zona fría esté refrigerada por aletas hay que añadir la resistencia de las aletas a la fórmula anterior.
\[Q_c = \frac{T_{\text{ext}} - T_{\text{zona fría}}}{R_{\text{conv,ext}} + R_{\text{cond}} + R_{\text{base}} + R_{\text{ás}} + R_{\text{inter}} / 2} \]
(Eq. 5.32)

5.5.2.3 Cálculo del motor

Para el cálculo termodinámico del motor Stirling se utiliza la metodología de Schmidt. Para poder aplicar esta metodología hay que hacer una serie de suposiciones. Las suposiciones son las siguientes [11]:

- No hay pérdidas de presión en los intercambios de calor
- No hay diferencias de presión en el interior del mecanismo.
- El proceso de expansión y compresión son isotérmicos
- El gas es considerado ideal en las condiciones de trabajo.
- La regeneración es ideal.
- El volumen muerto en la zona caliente mantiene la temperatura Te y el volumen muerto de la zona fría mantiene la temperatura Tc.
- La temperatura del gas en el regenerador está en función de las temperaturas del calentador y del enfriador.
- El volumen de la zona caliente y fría varían en forma sinusoidal.
- Las celdas \(K_s, R_b \) y \(H_s \) se considerarán adiabáticas.

En la figura siguiente, Fig. 5.15, se puede ver el análisis de un motor Stirling isotérmico ideal.

![Figura 5.15 Análisis isotérmico de un motor Stirling](image)

Fuente: [11]
Las partes del motor de izquierda a derecha son:

- Espacio de compresión C_s
- Enfriador K_s
- Regenerador R_s
- Calentador H_s
- Espacio de expansión E_s

Las ecuaciones que modelizan este motor definen la presión, masa, volumen y temperatura de las cinco zonas comentadas anteriormente [12]. Todas las ecuaciones y valores el motor dependen del ángulo del radio de la manivela i.

De acuerdo con el primer supuesto no habrá pérdidas, por lo que la masa de gas dentro del motor será constante.

$$M = mc + mk + mr + mh + me \tag{Eq. 5.33}$$

Aplicando la ecuación de estado de los gases ideales se puede obtener la presión total del mecanismo. Y la ecuación para gases ideales siguiente:

$$P = \frac{M \cdot R}{V_c, V_k, V_r, V_h, V_e} \tag{Eq. 5.34}$$

$$\frac{dm}{m} = \frac{dP}{P} - \frac{dT}{T} \tag{Eq. 5.35}$$

A partir de este punto el análisis termodinámico se hará independientemente para cada celda. Las celdas adiabáticas K_s, R_s y H_s tendrán un volumen constante, por lo que:

$$dV = 0 \tag{Eq. 5.36}$$

$$dW = 0 \tag{Eq. 5.37}$$

La ecuación de conservación de la energía será:

$$c_p \cdot (m_{entrante} - \dot{m}_{saliente}) \cdot T = cv \cdot d(m \cdot T) \tag{Eq. 5.38}$$

Aplicando la ecuación de los gases ideales a la igualdad anterior se obtiene la ecuación siguiente, que se utilizará para obtener los diferenciales de masa de las celdas K_s, R_s y H_s:
Para las celdas correspondientes a la zona de expansión y la de compresión las ecuaciones de conservación de la energía y de masa son las siguientes:

\[
dQ + cp \cdot \dot{m}_i \cdot T_i = dW + cv \cdot d(m \cdot T) \tag{Eq. 5.40}
\]

\[
m \cdot T = \frac{p \cdot V}{R} \tag{Eq. 5.41}
\]

La ecuación para calcular el diferencial de masa dependerá del signo del flujo de masa.

Si \(\dot{m}_i > 0 \)

\[
\dot{m}_i = dm \tag{Eq. 5.42}
\]

Si no

\[
\dot{m}_i = -dm \tag{Eq. 5.43}
\]

Resolviendo se tiene la ecuación siguiente:

\[
dm = \frac{P \cdot \dot{V} + V \cdot \frac{dP}{R}}{R \cdot T_i} \cdot \frac{dV}{\omega \cdot cp \cdot \omega \cdot T_i} \tag{Eq. 5.44}
\]

Aplicando la ecuación anterior, Eq. 5.44, podemos obtener el diferencial de masa en las zonas de compresión y expansión. Dónde Tck corresponde a la temperatura del aire que va de la celda Ks a la Cs; The a la temperatura del aire que va de la celda Hs a la Es, y dQc y dQe corresponden a los diferenciales de calor de las celdas Cs y Es.

\[
dmc = \frac{P \cdot \dot{V} + V \cdot \frac{dP}{R}}{R \cdot T_{ck}} - \frac{dQc}{\omega \cdot cp \cdot T_{ck}} \tag{Eq. 5.45}
\]

\[
dme = \frac{P \cdot \dot{V} + V \cdot \frac{dP}{R}}{R \cdot T_{he}} - \frac{dQe}{\omega \cdot cp \cdot T_{he}} \tag{Eq. 5.46}
\]

El volumen de las celdas Cs y Es del motor corresponde a las mismas ecuaciones calculadas para el mecanismo anteriormente, es decir, las ecuaciones Eq. 5.20 y Eq. 5.21. Los
volúmenes de las celdas, K_s, R_s y H_s son constantes por lo que su diferencial es nulo; el diferencial de las celdas C_s y E_s corresponde a las siguientes ecuaciones.

$$dV_c(i) = \left[\frac{(a-Rm\sin(i))Rm\cos(i)}{\sqrt{L^2-(a-Rm\sin(i))^2}} + Rm \cdot \sin(i) \right] \cdot \frac{\pi B^2}{4}$$

(Eq. 5.47)

$$dV_e(i) = \left[-2 \cdot (a-Rm\sin(i))Rm\cos(i) \right] \cdot \frac{\pi B^2}{4}$$

(Eq. 5.48)

Para poder evaluar las ecuaciones Eq. 5.45 y Eq. 5.46 hay que calcular también dQ_c y dQ_e.

De la ecuación para los gases ideales, Eq. 5.35, se pueden obtener los diferenciales de temperatura para las celdas C_s y E_s.

$$dT_c = T_c \cdot \left(\frac{dP}{P} + \frac{dV_c}{V_c} + \frac{dm_c}{m_c} \right)$$

(Eq. 5.49)

$$dT_e = T_e \cdot \left(\frac{dP}{P} + \frac{dV_e}{V_e} + \frac{dm_e}{m_e} \right)$$

(Eq. 5.50)

Los últimos datos a calcular son los trabajos en cada celda y el trabajo total.

$$dW_c = P \cdot dV_c$$

(Eq. 5.51)

$$dW_e = P \cdot dV_e$$

(Eq. 5.52)

$$dW = dW_c + dW_e$$

(Eq. 5.53)

$$W = \frac{\int_0^2 W \cdot di}{i}$$

(Eq. 5.54)

El trabajo en el eje se calcula mediante las ecuaciones siguientes.

$$W_- = \hat{\phi} (P - P_o) \cdot dV$$

(Eq. 5.55)

$$W_s = E \cdot W - \left(\frac{1}{E} - E \right) \cdot W_-$$

(Eq. 5.56)

Por último se pueden calcular las potencias indicada y del eje.

$$L_i = W \cdot \frac{N}{60}$$

(Eq. 5.57)

$$L_s = W_s \cdot \frac{N}{60}$$

(Eq. 5.58)

5.5.2.4 Resolución ecuaciones diferenciales

Para resolver las ecuaciones diferenciales descritas anteriormente se ha utilizado el método de resolución de ecuaciones diferenciales de Runge-Kutta de cuarto orden [14]. Éste método
hace una evaluación de la función en varios puntos para de esta manera conocer la pendiente en los diferentes puntos para así obtener un valor con un menor error.

\[
T_c = T_c + \frac{1}{6} h \cdot (k_{11} + 2k_{12} + 2k_{13} + k_{14})
\] \hspace{1cm} (Eq. 5.59)

\[
T_e = T_e + \frac{1}{6} h \cdot (k_{21} + 2k_{22} + 2k_{23} + k_{24})
\] \hspace{1cm} (Eq. 5.60)

Las \(k \) de las ecuaciones anteriores corresponden a las pendientes en los puntos del intervalo, y se calculan como el producto de la pendiente de las funciones calculadas y el intervalo \(h \).

\[
k_{1i} = dT_c \cdot h
\] \hspace{1cm} (Eq. 5.61)

\[
k_{2i} = dT_e \cdot h
\] \hspace{1cm} (Eq. 5.62)

Como se observa en las ecuaciones Eq. 5.59 y Eq. 5.60 la \(i \) toma cuatro valores, estos valores corresponden a las iteraciones de este método. En cada iteración se obtendrá un valor distinto de \(dT_c \) y \(dT_e \), ya que para cada iteración los valores del ángulo, \(T_e \) y \(T_c \) se hacen variar en función del llamado intervalo del método, \(h \).

Para la primera iteración los valores son los originales; en el caso de la segunda y la tercera se utilizan las ecuaciones siguientes, en las que se obtiene valores en el punto medio del intervalo, \(h \):

\[
T_c = T_c + \frac{k_{1i}}{2}
\] \hspace{1cm} (Eq. 5.63)

\[
T_e = T_e + \frac{k_{2i}}{2}
\] \hspace{1cm} (Eq. 5.64)

\[
\theta = \theta + \frac{h}{2}
\] \hspace{1cm} (Eq. 5.65)

Por último, para la cuarta iteración se obtienen los valores en el extremo del intervalo.

\[
T_c = T_c + k_{13}
\] \hspace{1cm} (Eq. 5.66)

\[
T_e = T_e + k_{23}
\] \hspace{1cm} (Eq. 5.67)

\[
\theta = \theta + h
\] \hspace{1cm} (Eq. 5.68)
6. Transformación de la energía

Para transformar la energía cinética obtenida en forma de velocidad en el eje en energía eléctrica se necesita un generador eléctrico, y para poder acumular esta energía y utilizarla cuando sea necesaria deberá acoplarse una batería al generador.

6.1. Generador

Hay dos grandes grupos de generadores: los síncronos y los asíncronos. Para el uso que se va a hacer del generador en este proyecto los generadores asíncronos quedan descartados ya que tienen unas velocidades de funcionamiento muy superiores a las que se van a dar.

En el caso de los generadores síncronos hay de varios tipos, pero para el rango de velocidades y potencias solo se estudiarán los generadores síncronos de imanes permanentes. Estos generadores tienen un bajo mantenimiento, un bajo peso y a su vez un volumen reducido. Se distinguen en función del material del que están hechos sus imanes permanentes, los materiales más importantes son: el alnico, la ferrita, el neodimio-hierro-boro y el samario-cobalto.

La elección del material dependerá de las características a las que vaya a estar sometido. Los imanes de alnico destacan por su resistencia a elevadas temperaturas, los imanes de ferrita son muy utilizados por su relación calidad/precio, los imanes de neodimio-boro-hierro, también llamados NdFeB destacan por sus características mecánicas, las mejores existentes en la actualidad, pero a cambio tienen poca resistencia a temperaturas elevadas; por último los imanes de samario-cobalto destacan por sus características magnéticas, quienes permiten reducir sus medidas.
Figura 6.1 Potencia de un generador de imanes de NdFeB o imanes de ferrita en función de la velocidad de funcionamiento.

Fuente: [15]

Como se puede observar en la figura anterior, Fig. 6.1, el generador de imanes permanentes de NdFeB da unas potencias más elevadas para un menor rango de velocidad. Las potencias que aparecen en el eje son simplemente informativas, un generador de imanes de neodimio puede llegar a generar potencias mucho mayores, de hasta 1MW.

Figura 6.2 Eficiencia de un generador de imanes de NdFeB o imanes de ferrita en función de la velocidad de funcionamiento

Fuente: [15]
En la figura anterior, Fig. 6.2, puede verse la eficiencia del generador de imanes de Neodimio-Boro-Hierro tiene una eficiencia muy superior al generador de imanes de ferrita independientemente de la velocidad a la que se haga el movimiento. Otro hecho a destacar relacionado con la eficiencia es que cuanto mayor potencia tiene el generador mayor es su eficiencia a la misma velocidad, es decir, un generador de 1MW puede alcanzar eficiencias alrededor del 97% a velocidades medias, mientras que un generador como el de la imagen, que correspondería a un generador de unos 100W puede alcanzar solo eficiencias de hasta el 70%.

6.2. Batería

Debido al hecho de que la energía que se obtenga del motor y del generador no tiene por qué ser utilizada en el momento en que es generada, a la salida del generador deberá acoplarse una batería. Para calcular la batería a utilizar deben tenerse en cuenta cuatro parámetros. El primer parámetro a considerar es el voltaje de salida de la batería, el segundo parámetro a considerar es la energía que puede subministrar, que depende de su capacidad y voltaje; el tercer parámetro a tener en cuenta es la capacidad, que corresponde a una medida que relaciona la intensidad y el tiempo de la batería en carga y descarga. Por último debe conocerse la auto-descarga, que corresponde al porcentaje de la carga que se pierde; este porcentaje es muy dependiente de los materiales que formen la batería. Por ejemplo las baterías con Níquel tienen unas auto-descargas de entre el 10 y el 30%.

6.3. Transformador

Como se ha visto en la descripción de la batería, esta tendrá un cierto voltaje de salida. El voltaje de salida dependerá de la potencia que se vaya a entregar a la batería y de las dimensiones de la misma. Por ello habrá que tener en cuenta que en ciertos casos existe la posibilidad de tener que utilizar un transformador que lleve la tensión del voltaje de salida al voltaje de la red para así poder subministrar electricidad a los aparatos.
7. Caso práctico

Para ejemplificar la metodología explicada en los puntos anteriores se ha elegido un ediﬁcio y se han hecho todos los pasos para calcular: el cálculo de las necesidades energéticas, el cálculo del calentador y por último el cálculo del motor Stirling.

Para este ejemplo se ha elegido un local situado en Balaguer, una localidad de la provincia de Lérida. El local es una vivienda unifamiliar situada en una zona aislada, es decir, todas sus paredes están expuestas. El domicilio tiene dos plantas y tiene unas dimensiones de 204m². En el anexo C puede verse una imagen, Fig. C.1, en la que ﬁgura la distribución espacial de las plantas de la vivienda.

7.1. Cálculo de las necesidades energéticas

7.1.1. Cálculo de las necesidades de agua caliente sanitaria

En el apartado 3.1 se han explicado dos procedimientos para calcular las necesidades de ACS, el elegido es el segundo ya que se tiene en cuenta los elementos que consumen ACS además del tipo de vivienda y las personas que la habitan. Los datos necesarios para este cálculo son el caudal instantáneo de ACS para cada tipo de aparato y el número de aparatos de cada tipo. El volumen obtenido aplicando el coeficiente de simultaneidad, $K_p = 0,21$, es de $1,21 \frac{l}{min}$.

Una vez conocido el caudal de ACS necesario para el dimensionado deberán calcularse las necesidades energéticas, para ello hay que tener en cuenta las propiedades del agua y la temperatura de la red T_{red}. Utilizando todos los datos disponibles se obtienen los resultados siguientes:

<table>
<thead>
<tr>
<th></th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{acs} (kW)</td>
<td>4,74</td>
<td>4,65</td>
<td>4,48</td>
<td>4,31</td>
<td>4,22</td>
<td>4,14</td>
</tr>
<tr>
<td>Julio</td>
<td>4,05</td>
<td>4,14</td>
<td>4,22</td>
<td>4,31</td>
<td>4,48</td>
<td>4,74</td>
</tr>
</tbody>
</table>

Tabla 7.1 Necesidades energéticas para ACS

Fuente: Elaboración propia
La variación en la energía necesaria se debe a las diferencias en la temperatura de la red a lo largo del año, entre 5°C y 13°C.

7.1.2. Cálculo de las necesidades de calefacción

Para el cálculo de la calefacción se utilizará la metodología explicada a lo largo del apartado 3.2. A lo largo del cálculo se deben tener en cuenta todas las características de la envolvente del edificio, es decir, los materiales de los que está compuesto y el grosor de todos ellos.

7.1.2.1 Cálculo de la carga térmica a través de los cristales

El cálculo de la carga térmica a través de los cristales tiene dos componentes principales: la carga de transmisión y la de radiación. En el ámbito de estudio de este caso hay que hacer el dimensionado de la instalación para el momento más desfavorable, por lo que solo hay que tener en cuenta las cargas térmicas que salen y no las que entran, es decir, solo habrá que considerar la carga de transmisión.

$$Q_{vr} = 0 \, kW$$

Conociendo el área total de los cristales de la vivienda, los coeficientes de transmisión del marco y los cristales y añadiendo el coeficiente corrector de se obtienen los datos siguientes:

<table>
<thead>
<tr>
<th></th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{vt} (kW)</td>
<td>2,41</td>
<td>2,46</td>
<td>2,17</td>
<td>1,63</td>
<td>1,40</td>
<td>0,86</td>
</tr>
<tr>
<td>Julio</td>
<td>0,23</td>
<td>0,42</td>
<td>0,87</td>
<td>1,52</td>
<td>2,23</td>
<td>2,61</td>
</tr>
</tbody>
</table>

Tabla 7.2 Carga térmica saliente a través de las ventanas

Fuente: Elaboración propia

7.1.2.2 Carga térmica a través de las paredes y cubiertas exteriores

La carga térmica a través de las paredes y cubiertas exteriores se calcula conociendo los coeficientes de transmisión y la superficie de cada uno de los elementos a estudiar [4], [6].
Las paredes del edificio de estudio son de doble hoja no ventilada con un aislamiento de Poliestireno Expandido (EPS) de 10mm; y la cubierta inclinada con un forjado unidireccional y también 10mm de aislante.

<table>
<thead>
<tr>
<th>Qstr (kW)</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9,98</td>
<td>10,19</td>
<td>8,99</td>
<td>6,74</td>
<td>5,80</td>
<td>3,55</td>
</tr>
<tr>
<td>Julio</td>
<td>0,94</td>
<td>1,72</td>
<td>3,61</td>
<td>6,32</td>
<td>9,25</td>
<td>10,82</td>
</tr>
</tbody>
</table>

Tabla 7.3 Carga térmica a través de las paredes y cubiertas exteriores

Fuente: Elaboración propia

7.1.2.3 Cálculo de la carga debida a las infiltraciones de aire

Para poder calcular la carga térmica causada por las infiltraciones de aire exterior deberán conocerse las habitaciones de cada tipo de las que se estipulan en la Tabla B.8 [7], sus ocupantes y sus metros cuadrados, además de conocer las propiedades del aire. Los datos obtenidos son los siguientes:

<table>
<thead>
<tr>
<th>Qsi (kW)</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,1</td>
<td>7,3</td>
<td>6,4</td>
<td>4,8</td>
<td>4,1</td>
<td>2,5</td>
</tr>
<tr>
<td>Julio</td>
<td>0,7</td>
<td>1,2</td>
<td>2,6</td>
<td>4,5</td>
<td>6,6</td>
<td>7,7</td>
</tr>
</tbody>
</table>

Tabla 7.4 Carga debida a las infiltraciones de aire

Fuente: Elaboración propia

7.1.2.4 Cálculo del factor de intermitencia

El factor de intermitencia, I, se ha calculado suponiendo que para los meses de más frío sólo se apaga la calefacción durante las horas centrales del día. Siendo I=0,13 durante estos meses.

7.1.3. Cálculo total

Teniendo en cuenta todos los factores calculados anteriormente se puede calcular el total de energía calorífica necesaria para dar servicio de ACS y para contrarrestar las cargas térmicas. El total de energía necesaria será el siguiente:
Conociendo estos datos se podrá determinar la potencia mínima que deberá subministrar la caldera. La potencia necesaria del calentador corresponderá a la demanda de energía calorífica mensual más alta a lo largo del año, ésta se da en el mes de diciembre por lo que deberá utilizarse una caldera que pueda dar servicio como mínimo a 28,52 kW.

7.2. Cálculo del calentador

Para conocer la eficiencia energética del calentador como se ha comentado en el apartado 4.3 pueden utilizarse dos métodos: el cálculo termodinámico y la ficha del fabricante. En este proyecto se ha decidido optar por la segunda vía ya que hay muchos datos que no están disponibles para el cálculo.

El calentador elegido es un calentador de flujo de la marca Junkers con una potencia nominal máxima de 30.5kW. Este calentador tiene una eficiencia energética de entre el 78 y el 88%, en función del uso respecto a la carga nominal que se le dé. Las características del calentador se pueden ver en la tabla que hay a continuación.

<table>
<thead>
<tr>
<th>Qcaldera (KW)</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26,68</td>
<td>27,05</td>
<td>24,24</td>
<td>17,48</td>
<td>15,56</td>
<td>11,08</td>
</tr>
<tr>
<td>Julio</td>
<td>5,89</td>
<td>7,51</td>
<td>11,27</td>
<td>18,21</td>
<td>24,81</td>
<td>28,52</td>
</tr>
<tr>
<td>Agosto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septiembre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octubre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noviembre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diciembre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 7.5 Energía calorífica necesaria

Fuente: Elaboración propia
<table>
<thead>
<tr>
<th>Modelo</th>
<th>WTD 18Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad en litros</td>
<td>18</td>
</tr>
<tr>
<td>Potencia (kW)</td>
<td>7,9-30,5</td>
</tr>
<tr>
<td>Caudal (l/min)</td>
<td>2,5-18</td>
</tr>
<tr>
<td>Eficiencia al 100% de la carga nominal</td>
<td>88,4</td>
</tr>
<tr>
<td>Eficiencia al 30% de la carga nominal</td>
<td>78</td>
</tr>
<tr>
<td>Dimensiones (Alto x Ancho x Fondo, en mm)</td>
<td>655 x 425 x 220</td>
</tr>
<tr>
<td>Ø evacuación de gases (mm)</td>
<td>130</td>
</tr>
</tbody>
</table>

Tabla 7.6 Características del modelo WTD 18kg de Junkers

Fuente: [16]

Una vez conocida la eficiencia y el funcionamiento del calentador puede calcularse la temperatura de los gases. El cálculo se hace a través de las Eq. 4.12 a Eq. 4.15.

Se hará el cálculo de la temperatura de los gases en los dos casos extremos, para un uso al 30% y al 100% de la carga nominal, para ambos casos la metodología es la misma. Utilizando la composición del combustible se podrá conocer la composición de los gases a la salida del calentador, gracias a las masas molares podrá obtenerse el caudal másico de los componentes que existen como productos de la reacción.

Para un funcionamiento al 30% de capacidad:

\[Q_{HUMOS} = P \cdot (1 - Eficiencia) \]

\[Q_{HUMOS} = 1.55kW \]

\[T_{gases} = \frac{Q_{HUMOS}}{m_{gases} \cdot C_{p_{gases}}} + T_{ambiente} \]

\[T_{gases} = 370K \]

Para un funcionamiento al 100% de capacidad:

\[Q_{HUMOS} = P \cdot (1 - Eficiencia) \]

\[Q_{HUMOS} = 3.66kW \]
La metodología utilizada para obtener los resultados anteriores puede encontrarse en el Anexo A.1

7.3. Cálculo del motor Stirling

Para el cálculo del motor Stirling, como se ha comentado en el apartado 5.5, habrá que calcular por separado las medidas del mecanismo y la potencia obtenida. En el caso de este ejemplo práctico el tamaño del motor no se ha tomado como medida crítica ya que la vivienda utilizada dispone del espacio suficiente para poder ubicar un motor de grandes dimensiones.

7.3.1. Cálculo del mecanismo

Para hacer el cálculo del mecanismo se han tomado como datos algunas medidas, entre ellas las dimensiones del pistón y el desplazador, Lp y Ld respectivamente; y la longitud de carrera, Lc. Con ellas se ha calculado cuáles serán las posiciones del pistón y el desplazador en función del ángulo y se han calculado las dimensiones de la zona caliente y la zona fría en función del ángulo.

En la figura siguiente, Fig. 7.1, puede observarse la gráfica que muestra la evolución de la posiciones del pistón, XP1, y desplazador, XP2, y la evolución de la distancia entre ambos, XPD, en función del ángulo de la manivela.
Como puede verse en la gráfica las posiciones del pistón y el desplazador oscilan de forma sinusoidal, con un cierto desfase entre ellas. La posición del desplazador, XP2, oscila entre 31.3cm y 61.3cm y la posición del pistón, XP1, oscila entre 19.6cm y 49.6cm. Esta oscilación corresponde a la carrera del motor. La referencia tomada para el cálculo de estas variables corresponde a la posición de los centros de los engranajes del mecanismo rómbico.

En la figura que hay a continuación, Fig. 7.2, puede observarse la evolución de los volúmenes de la zona caliente, Ve, y fría del mecanismo, Vc; y el volumen total del mecanismo, Vinst; en función del ángulo de la manivela.
Igual que las posiciones del pistón y el desplazador los volúmenes de la zona caliente, \(V_e \), y la zona fría, \(V_c \), varían de forma sinusoidal. El volumen máximo del motor es cercano a los \(5 \text{dm}^3 \).

En la figura que se ve a continuación, Fig 7.3, puede verse el diseño del motor Stirling con las dimensiones obtenidas en el cálculo del mecanismo. Como puede verse el diámetro de los engranajes es considerablemente grande, esto de debido a la longitud de la carrera. El punto en el centro del engranaje izquierdo corresponde a la conexión del engranaje al eje del generador.

![Fig. 7.3 Motor Stirling con dimensiones](image_url)

Fuente: Elaboración propia

La metodología utilizada para obtener los resultados descritos en este apartado puede encontrarse en el Anexo A.2.
7.3.2. Cálculo termodinámico

El cálculo termodinámico del motor se ha hecho a través de un programa en Mathcad utilizando el proceso explicado en el apartado 5.5.2, el programa puede encontrarse en el Anexo A.3

7.3.2.1 Calentador funcionando 100% de la capacidad nominal

Los valores obtenidos en este apartado corresponden a una situación en que el calentador está funcionando a máxima potencia

Para hacer el cálculo termodinámico se han tenido que tomar como datos los parámetros dimensionales calculados en el apartado 7.3.1. A parte de estos parámetros se han tomado como datos la temperatura ambiente, la temperatura de la zona caliente y la velocidad del motor. La temperatura de la zona caliente corresponde a la temperatura de los gases que se ha calculado anteriormente en el apartado 7.2.

En la figura que se ve a continuación, Fig. 7.4, puede verse la evolución de la presión del gas en el interior del mecanismo en función del ángulo de la manivela respecto a la vertical. Puede verse que la presión varía de forma sinusoidal. Los puntos en que la presión es máxima y mínima corresponden a 16° y 220°, estos son los puntos en que el pistón se encuentra en la posición más lejana y más cercana al volante, respectivamente.

![Fig. 7.4 Evolución de la presión del gas](image)

Fuente: Elaboración propia

En la figura que hay a continuación, Fig. 7.5, puede verse el diagrama P-V del motor. Puede observarse el que ciclo es muy delgado, esto es debido a la diferencia de temperaturas, ya que cuanto menor sea la diferencia de temperaturas más delgado será el ciclo, y por tanto menos trabajo se producirá.
El dato más importante obtenido del cálculo termodinámico es la potencia que se puede obtener del ciclo. Con los parámetros utilizados el ciclo generará una potencia útil de 416W.

7.3.2.2 Calentador funcionando al 30% de la capacidad nominal

Para hacer este cálculo se han cambiado los valores de la temperatura del foco caliente y el parámetro τ, la diferencia de temperaturas. El gráfico que muestra la evolución de la presión en función del ángulo de la manivela tiene la misma forma que la Fig. 7.3

El diagrama P-V, en cambio, sí que varía de forma sustancial. Al disminuir la diferencia de temperaturas el ciclo del diagrama P-V se estrecha todavía más. Puede verse en la figura a continuación.
En este caso la potencia obtenida es significativamente menor, esto es consecuencia del hecho de haber disminuido la relación de temperaturas. Con los parámetros utilizados el ciclo generará una potencia útil de 5W.

Dado el resultado obtenido para la potencia útil del motor, no se considerarán estas condiciones para la generación, ya que al ser la potencia obtenida tan baja el rendimiento de la conversión de energía a través del generador sería muy bajo, convirtiendo la energía eléctrica obtenida en casi nula.

7.3.3. Contrastación de resultados

Para asegurar el buen funcionamiento del programa diseñado se ha comparado con un estudio publicado en la revista *Energy Conversion and Management* [17]. Para hacerlo se han cambiado los datos dimensionales, temperaturas y la velocidad del motor en el programa de Mathcad que puede encontrarse en el anexo A.3.

Los resultados obtenidos en el diagrama P-V son muy similares, pueden verse en las figuras, Fig. 7.7 y Fig. 7.8, a continuación. La diferencia que se ve entre ellos es debido a ciertos parámetros dimensionales que no estaban explicitados en el estudio y se han tomado unos valores que fueran dimensionalmente coherentes con el resto del mecanismo.

![Figura 7.7 Diagrama de un motor Stirling Rómbico](image)

Fuente: [17]
El otro resultado que se ha comparado es la potencia obtenida. En el caso del estudio la potencia máxima obtenida a 500rpm corresponde a 266W, y en el caso del programa de Mathcad se ha obtenido una potencia de 243W.

Con unos resultados considerablemente similares como los que se han encontrado, se puede considerar que el programa de Mathcad hace una simulación válida del funcionamiento de un motor Stirling de mecanismo rómbico.

7.4. Transformación de la energía

7.4.1. Generador

El generador deberá dimensionarse para las condiciones que tengan unas solicitudes más elevadas. El generador elegido para acoplar al eje del motor es un M-20 [18], un generador de imanes permanentes de neodimio de 390W de potencia nominal y 488W de potencia máxima. Tiene una velocidad de rotación óptima de 420rpm, muy similar a la que tendrá el motor Stirling que se va a utilizar, y puede alcanzar eficiencias superiores al 95%. Otros aspectos positivos a la hora de decidirse por este generador son su bajo peso, el poco ruido que genera y sus dimensiones.

Considerando unas condiciones de funcionamiento del calentador al 100%, teniendo en cuenta la potencia obtenida del motor del apartado 7.3.2.1; y el hecho de que al funcionar con una potencia inferior del generador se obtiene un rendimiento menor, cercano al 95% se obtendrían 395W de energía eléctrica.
7.4.2. **Batería**

La batería a utilizar deberá elegirse conociendo la necesidad que se tendrá en términos de intensidad. Para saberlo deberá convertirse la potencia en intensidad. La ecuación a utilizar será la siguiente:

\[I(A) = \frac{P(W)}{V(V)} \]

Los datos de la potencia y el voltaje pueden obtenerse del apartado anterior. El generador tendrá un voltaje de salida de 12V de corriente alterna trifásica, y una potencia de salida de 395W; por lo que la intensidad necesaria en la batería será de 23.7A.

Las especificaciones técnicas de la batería que cumple con todos los requisitos comentados en el párrafo anterior, pueden verse en la Tabla 7.7 a continuación:

<table>
<thead>
<tr>
<th></th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperios / Hora</td>
<td>Entre 0Ah – 50Ah</td>
</tr>
<tr>
<td>Capacidad media de la batería</td>
<td>24Ah</td>
</tr>
<tr>
<td>Medidas de la batería</td>
<td>Largo x Ancho x Alto (175x166x125mm)</td>
</tr>
<tr>
<td>Peso de la batería</td>
<td>8,6 Kg</td>
</tr>
<tr>
<td>Pérdidas de la batería</td>
<td>2% mensual</td>
</tr>
</tbody>
</table>

Tabla 7.7 Especificaciones técnicas de la batería AGM 12V 24Ah Vision

Fuente: [19]

En esta tabla puede verse el porcentaje de auto-descarga, gracias al cual se podrá saber qué cantidad de la energía aportada a la batería podrá ser utilizada finalmente. Haciendo el cálculo se puede saber que finalmente a la salida de la batería se obtendrá una potencia de 387W.

7.4.3. **Transformador**

En la Tabla 7.7 del apartado anterior puede verse que el voltaje de salida de la batería será 12V. Como consecuencia será necesario añadir un transformador entre la batería y los aparatos a los que vaya a subministrar electricidad, para así elevar el voltaje de 12V a los 220V de la red. Además de los voltajes extremos habrá que tener en cuenta la potencia máxima que se le va a exigir, que son los 387W que se acumulan en la batería.
Se ha buscado un transformador que cumpliera con las especificaciones necesarias y que además no tuviera unas dimensiones demasiado grandes. Los datos del transformador elegido pueden verse en la Tabla 7.8.

<table>
<thead>
<tr>
<th>Voltaje de entrada</th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje de salida</td>
<td>200V±10% AC</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>50Hz</td>
</tr>
<tr>
<td>Eficiencia de carga óptima</td>
<td>>95%</td>
</tr>
<tr>
<td>Tamaño</td>
<td>Largo x ancho x alto (280x440x520)</td>
</tr>
<tr>
<td>Potencia máxima de salida</td>
<td>500W</td>
</tr>
</tbody>
</table>

Tabla 7.8 Especificaciones técnicas del transformador Wellsee 12V-500W

Fuente: [20]

Considerando que la eficiencia en la carga a la que va a ser usado estará alrededor del 95% la potencia que podrá obtenerse después del transformador será de 360W.

7.5. Cálculo final

Una vez conocida la potencia que podrá obtenerse de la batería, podrá conocerse cuantas bombillas podrán alumbrarse con esa potencia. Para que la aplicación de este mecanismo sea lo más útil posible se recomienda utilizar bombillas de bajo consumo, ya que en este caso con menos potencia podrán alumbrarse más bombillas. Las bombillas de bajo consumo tienen una potencia nominal entre 8 y 25W, por lo que con la potencia nominal que obtenida podrán alumbrarse entre 14 y 45 bombillas.

La vivienda utilizada como ejemplo tiene instaladas 40 bombillas, como puede verse en la Figura C.2, por lo que si todas las bombillas de la casa tuvieran potencias cercanas a los 8W habría épocas del año en las que podría abastecer la electricidad necesaria para el alumbrado de la casa solo con el aprovechamiento de la energía saliente del calentador.

En el caso de que no se pudieran alumbrar todas las bombillas debido a su alto vataje, la instalación permitiría igualmente el ahorro de cierta parte de la energía consumida para la
iluminación de la vivienda; implicando un ahorro económico y energético para los dueños de la vivienda.

7.6. Montaje de la instalación

Una vez se conocen las dimensiones de los distintos elementos que conforman la instalación puede hacerse una estimación de su ubicación en el montaje y finalmente pueden conocerse las dimensiones totales de la instalación.

La zona caliente del motor Stirling iría situada en la parte superior del calentador, en el interior del conducto de los gases calientes. De esta manera la zona caliente del motor estaría en contacto directo con los gases. Como se puede ver en la Figura 7.3 uno de los engranajes del mecanismo rómbico del motor Stirling está conectado a un generador eléctrico. El generador está conectado a una batería que almacenará la energía, y ésta a su vez está conectada a un generador que modificará el voltaje de salida de la batería para hacerlo igual que el de la red eléctrica.

Figura 7.9 Esquema del montaje de la instalación
Fuente: Elaboración propia
8. Planificación del proyecto

En el diagrama de Gantt, Fig. 8.1, que se ve a continuación puede verse la planificación del proyecto. En él se pueden ver las diferentes tareas que hay que llevar a cabo para poder llevar a cabo este proyecto. La duración que se ha dado a cada tarea consiste en una estimación hecha en base al tiempo que se ha tardado en llevar a cabo cada tarea.

La primera tarea consiste en crear el proceso de diseño de la instalación y tiene una duración de 12 semanas. Una vez esta tarea se ha finalizado puede empezarse con la siguiente que consiste en estudiar la vivienda en la que se va a colocar la instalación de cogeneración, esta tarea dura 2 semanas. Una vez conocido el proceso de diseño y se ha estudiado la vivienda; puede calcularse la instalación que hay que construir para poder ubicarla en la vivienda, esta tarea toma 4 semanas para desarrollarse en su totalidad.

Una vez dimensionada la instalación a construir se puede empezar a proceder a la construcción y la compra de los distintos elementos que componen la instalación. La última tarea antes de poder dar por funcional la instalación es la colocar los distintos elementos y hacer las conexiones necesarias para poder poner la instalación en marcha.

La duración total del proyecto desde el inicio de la creación del proceso de diseño hasta su final ubicación y puesta en marcha tiene una duración total de 5 semanas, aproximadamente 6 meses.

![Diagrama de Gantt del proyecto](image)

Figura 8.1 Diagrama de Gantt del proyecto

Fuente: Elaboración propia
9. **Análisis económico**

En el aspecto económico este proyecto puede enfocarse desde tres puntos de vista distintos: individuos con alta conciencia ambiental, grupos de personas que deciden hacerlo por motivos económicos y como plan de negocio de una empresa.

Previaemente debe considerarse que como todo proyecto de desarrollo, la definición, diseño y análisis del proyecto comportan unos elevados costes iniciales. Estos costes pueden más adelante materializarse en un bajo coste de ejecución. Esta idea es equiparable a un diseño único de un alto coste para ser aplicado a una producción en serie.

En el caso que aplica a este proyecto habrá que considerar dos costes principales: el coste del proyecto y el coste de la implementación. Además de estos dos costes deberá considerarse el ahorro mensual ya que será éste el que definirá el tiempo de retorno y la rentabilidad de la inversión.

9.1. Ahorro mensual

El cálculo del ahorro mensual en electricidad de la vivienda depende directamente de la generación de electricidad por parte del motor; y esta generación depende a su vez de las necesidades energéticas de la vivienda. En los meses en los que apenas sea necesario encender el calentador se obtendrán potencias muy bajas; en cambio en los meses de invierno en los que el calentador es muy necesario se obtendrán potencias relativamente altas.

El cálculo de la potencia generada por el motor dependerá de las condiciones y del tiempo de funcionamiento del calentador. El tiempo de funcionamiento dependerá del mes del año, en los meses más fríos el calentador se utilizará para el ACS y también para calefacción durante gran parte de las horas del día; en cambio en verano solo se utilizará para ACS.

<table>
<thead>
<tr>
<th>kWh/mes</th>
<th>Enero</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Abril</th>
<th>Mayo</th>
<th>Junio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>267,9</td>
<td>211,7</td>
<td>178,6</td>
<td>93,3</td>
<td>38,5</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>223,2</td>
<td>248,4</td>
<td>267,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9.1 Ahorro energético mensual

Fuente: Elaboración propia
Una vez se conoce la energía ahorrada cada mes hay que multiplicarla por el precio del kWh y se obtendrá el ahorro económico anual. Hecho el cálculo se obtiene un ahorro de 243€ al año.

9.2. Coste del proyecto

En el presupuesto del proyecto se incluirán las distintas partidas que han hecho posible la consecución de este proyecto de fin de carrera. En el apartado anterior puede verse el diagrama de Gantt del proyecto, Fig. 8.1, en el que se especifican las distintas etapas del proyecto y la duración en semanas de las mismas. El tiempo dedicado a cada concepto se medirá en semanas, considerando que cada semana consta de 40 horas.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Coste</th>
<th>Número de horas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creación del proceso de diseño de la instalación</td>
<td>40 €/hora</td>
<td>480</td>
<td>19.200 €</td>
</tr>
<tr>
<td>Estudio de la vivienda</td>
<td>25 €/hora</td>
<td>120</td>
<td>3.000 €</td>
</tr>
<tr>
<td>Cálculo de la vivienda</td>
<td>25 €/hora</td>
<td>80</td>
<td>2.000 €</td>
</tr>
<tr>
<td>Redacción</td>
<td>20 €/hora</td>
<td>160</td>
<td>3.200 €</td>
</tr>
<tr>
<td>Licencia Mathcad</td>
<td>150 €</td>
<td>-</td>
<td>150 €</td>
</tr>
<tr>
<td>Hardware</td>
<td>300 €</td>
<td>-</td>
<td>300 €</td>
</tr>
<tr>
<td>TOTAL</td>
<td>840</td>
<td></td>
<td>27.850 €</td>
</tr>
</tbody>
</table>

Tabla 9.2 Coste de recursos humanos del proyecto
Fuente: Elaboración propia

9.3. Coste de implementación

Para hacer un análisis del coste de la implementación lo primero que habrá que hacer es calcular el precio de los diferentes elementos que se van a utilizar. En el caso de esta instalación son el motor Stirling, el generador, la batería y el inversor. No se considera el precio
del calentador, porque antes de hacer la instalación la casa ya dispone de calentador para ACS y calefacción.

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Coste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Stirling</td>
<td>800 €</td>
</tr>
<tr>
<td>Generador Modelo M-20</td>
<td>200 €</td>
</tr>
<tr>
<td>Batería AGM 12V 24Ah</td>
<td>55 €</td>
</tr>
<tr>
<td>Inversor 12V- 500W</td>
<td>120 €</td>
</tr>
<tr>
<td>Coste de instalación</td>
<td>320 €</td>
</tr>
<tr>
<td>Total</td>
<td>1.495 €</td>
</tr>
</tbody>
</table>

Tabla 9.3 Coste de los elementos de la instalación
Fuente: Elaboración propia

9.4. Modelos de aplicación

9.4.1. Vivienda única

En el caso que se aplicara esta instalación en una única vivienda, ésta tendría que absorber ambos costes: el de desarrollo del proyecto y el de la implementación. Lo que implicaría un total de 29.345 €. Teniendo en cuenta que el ahorro es de 231 € anuales, implicaría un plazo de recuperación muy superior a los 15 años.

9.4.2. Grupo de viviendas

Si se toma como ámbito de aplicación un grupo de viviendas, se puede calcular cual es el número mínimo de viviendas para que el retorno de la inversión, o payback, se encuentre en un periodo situado alrededor de los 10 años. Teniendo en cuenta un tipo de interés del 5% y sin tener en cuenta los posibles aumentos en el coste de la electricidad, el número de viviendas en las que debería hacerse la instalación es de 40.
9.4.3. Plan de negocio empresarial

Se analizará el caso en el que una empresa decidiera asumir los costes de este proyecto para hacer un desarrollo empresarial. La empresa desearía que sus clientes recuperaran la inversión en un plazo inferior a 10 años, tomando esto en consideración el precio a aplicar sería de 2.000€.

Lo primero que habrá que conocer es el número mínimo de instalaciones que deben venderse para poder obtener un margen bruto superior a cero. Para poder calcularlo habrá que conseguir que el importe de las ventas sea igual o superior a la suma del coste de proyecto más los costes de implantación. El cálculo puede verse en la ecuación siguiente:

\[27.850 + 1.495 \cdot ventas = 2000 \cdot ventas \]

(Eq. 9.1)

De la ecuación anterior, Eq. 9.1, se obtiene un número mínimo de ventas de 55 instalaciones.

Si se estima un plan de ventas de 200 instalaciones, el coste del proyecto debe distribuirse entre las 200 instalaciones, como repercusión unitaria del proyecto. En el plan comercial debería insistir en el hecho de que no se han tenido en cuenta las variaciones en el precio de la electricidad y en que el tipo de interés aplicado es muy superior a la rentabilidad de los depósitos bancarios actuales. En el plan de empresa estimado el resultado sería el siguiente:

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Precio unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venta de equipos</td>
<td>2.000 €</td>
<td>400.000 €</td>
</tr>
<tr>
<td>Coste de la instalación</td>
<td>1.495 €</td>
<td>299.000 €</td>
</tr>
<tr>
<td>Repercusión unitaria del proyecto</td>
<td>139,25 €</td>
<td>27.850 €</td>
</tr>
<tr>
<td>Margen Bruto</td>
<td>365,75 €</td>
<td>73.150 €</td>
</tr>
</tbody>
</table>

Tabla 9.3 Plan de negocio para 200 instalaciones
Fuente: Elaboración propia
10. Análisis del impacto ambiental

En este proyecto es muy importante valorar el impacto ambiental, ya que además de ser un proyecto de diseño de una instalación, se pretende también ayudar al medio ambiente con su implantación.

10.1. Aprovechamiento de una energía existente

El motivo que afecta de forma más significativa al medio ambiente es el hecho de que no se utilizan combustibles para el funcionamiento de la instalación. Se aprovecha una energía ya existente para el funcionamiento del motor, de manera que ambientalmente el balance energético de la instalación es positivo. Con esto se consigue que una instalación que lo único que hacía originalmente era consumir combustibles fósiles, ahora también genere electricidad.

10.2. Generación de energía limpia

La generación de electricidad a través de la instalación de cogeneración consigue que la vivienda en la que se instala pueda evitar consumir energía de la red. Esto a parte de generar un ahorro energético para la vivienda, genera también una disminución, por pequeña que sea, de la energía que necesitan obtener de la red.

Una sola vivienda utilizando esta instalación no sería representativa, pero si el uso de este tipo de instalación se extendiera podría ahorrarase mucha energía. De esta manera se evitaría que en otros tipos de centrales se generara electricidad a través de combustibles fósiles, es decir, con la aplicación de esta instalación se disminuiría el consumo de combustibles fósiles por parte de las centrales eléctricas.

10.3. Motor limpio

La elección del motor Stirling, frente a otros motores, hace que la generación de energía sea más limpia. Al ser un motor de combustión externa no es utiliza necesariamente combustible para hacerlo funcionar. En este caso no se genera una combustión para hacer funcionar el motor, es cierto indirectamente el motor utiliza unos gases que han sido quemados, pero la cuestión es que no han sido quemados expresamente, si no que han cumplido su función en otro elemento y sus pérdidas en forma de gases calientes son reaprovechados por el motor.
10.4. Aprovechamiento de una energía existente

Como consecuencia del rendimiento imperfecto del calentador de la vivienda aproximadamente un 20% de la energía de combustible consumida se pierde a través de la temperatura de salida de los humos. La instalación utilizada genera electricidad aprovechando esta energía ya existente, que de otra manera sería expulsada al aire y se desaprovecharía.

10.5. Reducción de la contaminación térmica

Utilizar la temperatura caliente de los gases de salida del calentador para calentar el foco caliente del motor Stirling se consigue reducir la temperatura de salida de estos gases. Una temperatura de gases inferior ayuda a reducir la contaminación térmica que se hace al medio ambiente.

Esta contaminación, sobre todo en zonas altamente pobladas, genera un aumento en la temperatura de la zona. Este aumento de la temperatura afecta a la flora y a la fauna, que a menudo muere o migra para poder vivir en un hábitat natural que se adecua más a sus necesidades.
Conclusiones

A lo largo de las páginas anteriores se ha conseguido cumplir con los objetivos del proyecto. Se ha creado un proceso para diseñar una instalación de cogeneración mediante un motor Stirling y aplicarlo a una vivienda. Todo esto consiguiendo generar electricidad utilizando una electricidad residual de otro proceso.

Se han calculado las tres etapas comentadas en apartados anteriores: las necesidades energéticas de la vivienda, el calor sobrante del calentador y la potencia eléctrica que puede obtenerse del motor Stirling. Este resultado obtenido del diseño de la instalación se contrastado con resultados publicados en artículos de revistas internacionales, respaldando la validez del cálculo llevado a cabo en este proyecto.

Además de conseguir cumplir con los objetivos del proyecto se ha demostrado la viabilidad de la aplicación de la instalación. Se ha llevado a cabo el cálculo de la instalación en una vivienda en la que ha podido obtenerse suficiente energía eléctrica para abastecer el alumbrado de la vivienda aprovechando la energía perdida en el calentador.

Líneas futuras de actuación

Para proyectos futuros relacionados con este tema podría plantearse la construcción y la puesta en marcha de la instalación. De esta manera podrían contrastarse los resultados teóricos obtenidos con los resultados obtenidos del funcionamiento real del motor.

Otra línea de actuación sería la construcción de la instalación y su ubicación en una vivienda real. Haciendo un seguimiento durante ciertos meses podría comprobarse cuanta electricidad ahorra la vivienda, y comparando los valores obtenidos con los teóricos podría saberse el valor ahorrado realmente por la familia. Un estudio de la implantación de esta instalación a gran escala podría servir para calcular el ahorro de producción de electricidad y de combustibles fósiles por parte de las centrales de producción eléctrica.

Una última línea de actuación sería el estudio de la implantación de esta instalación en zonas geográficas con una limitada cobertura de la red eléctrica. Esto permitiría que el calor generado por instalaciones que utilizan combustibles fósiles pudiera ser aprovechado para la generación de energía eléctrica.
Agradecimientos

En estas breves líneas me gustaría agradecer a todas las personas que han hecho posible que llegara hasta aquí. Tanto académicamente como personalmente.

En primer lugar, quiero dar las gracias a Ernesto Gutiérrez, mi tutor por ayudarme y aconsejarme, por encima de todo por conseguir que me apasionara con este proyecto y con la idea de su desarrollo. Gracias por soportar mis innumerables dudas.

En segundo lugar, gracias a mi familia que a pesar de no poder ayudarme en los temas técnicos me han ayudado en los otros ámbitos del proyecto. Además de por esta ayuda quiero agradecerles que hayan estado ahí para apoyarme en los momentos más difíciles a lo largo de estos meses.

Y por último muchas gracias a todos esos amigos que me han ayudado con temas técnicos, a los que me han ayudado a sobrellevar los momentos duros a lo largo del proyecto y a los que han entendido que estuviera desaparecida durante este tiempo.

Muchas gracias a todos.
Bibliografía

Referencias bibliográficas

[1] CTE Documento Básico HE Ahorro de Energía

[2] Instituto de diversificación de la energía www.idae.es

[3] CTE Documento Básico HSE: Salubridad

[4] CTE Cálculo de Parámetros característicos de la envolvente

[5] CTE Catálogo de elementos constructivos
http://www.codigotecnico.org/web/galerias/archivos/CAT-EC-v06.3_marzo_10.pdf

[7] Características de los aislantes
http://www.five.es/descargas/archivos/P1_portada.pdf

[9] Calderas www.academia.edu

http://www.nmri.go.jp/eng/kihirata/stirling/schmidt/schmidt_e.pdf

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040171934.pdf

[15] SANCHEZ, Teodoro. Evaluación y caracterización de un aerogenerador de 100W

[16] Calentador elegido para el proyecto de la marca Junkers
http://www.junkers.es/usuario_final/productos/catalogo_usuario/producto_3136

[19] Batería elegida para el proyecto de la marca AGM
https://autosolar.es/baterias/bateria-12v/Batería-AGM-12V-24Ah-VISION_precio

[20] Inversor elegido para el proyecto de la marca Wellsee

[21] ALVAREZ FLOREZ, Jesús Andrés; CALLEJON AGRAMUNT, Ismael; Máquinas térmicas motoras volumen 2. Ediciones UPC 2002

Bibliografía complementaria

- http://ingemecanica.com/tutorialsemanal/tutorialn255.html
- www.stirlingengine.com
- http://www.nmri.go.jp/eng/khirata/stirling/index_e.html
- http://www.bekkoame.ne.jp/~khirata/
- http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1159&context=mesp
- http://salesianospamplona.info/maquinas/
- http://volodesigns-sterlingproject.blogspot.co.uk/
A. Cálculos del motor Stirling

A.1 Cálculo de la temperatura de los gases de salida

Cálculo para el funcionamiento al 100%

\[Q_{agua} := \frac{18}{m} \]

\[\text{Potencia} := 30.5 \text{ kW} \]

\[PC_{IGN} := \frac{39.9 \text{ kW}}{\text{kg}} \]

\[\text{kg}_{gasnat} := \frac{\text{Potencia}}{PC_{IGN}} \]

\[\text{kg}_{gasnat} = 0.764 \text{ kg} \]

\[\text{massa}_{molar} := \left[0.912 \cdot (12 + 4) + 0.074 \cdot (24 + 6) + 0.008 \cdot (36 + 8) + 0.001 \cdot (48 + 10) \right] \text{kg} \]

\[\text{massa}_{molar} = 17.22 \text{ kg} \]

\[\text{mols} := \frac{\text{kg}_{gasnat}}{\text{massa}_{molar}} \]

\[\text{mols} = 0.044 \]

\[\text{mols}_{CO2} := (0.912 + 2 \cdot 0.074 + 3 \cdot 0.008 + 4 \cdot 0.001) \cdot \text{mols} \]

\[\text{Q}_{CO2} := \text{mols}_{CO2} \cdot 0.04 \text{ kg} \]

\[\text{mols}_{H2O} := \frac{(0.912 \cdot 4 + 0.074 \cdot 6 + 0.008 \cdot 8 + 0.001 \cdot 10)}{2} \cdot \text{mols} \]

\[\text{Q}_{H2O} := \text{mols}_{H2O} \cdot 0.01 \text{ kg} \]

\[a := \frac{\frac{5}{2} \cdot (0.912 \cdot 4 + 0.074 \cdot 6 + 0.008 \cdot 8 + 0.001 \cdot 10)}{0.21} \]

\[\text{mols}_{N2} := a \cdot 0.78 \]

\[\text{Q}_{N2} := \text{mols}_{N2} \cdot 0.02 \text{ kg} \]

\[\text{Q}_{gases} := \text{Q}_{CO2} + \text{Q}_{H2O} + \text{Q}_{N2} \]

\[\text{Q}_{gases} = 0.052 \text{ kg} \]
Cálculo para el funcionamiento al 30%

\[Q_{\text{agua}} := \frac{2.5}{m} \]

\[\text{Potencia} := 7 \text{kW} \]

\[\text{PCI}_{\text{GN}} := \frac{39.9 \text{kW}}{\text{kg}} \]

\[\text{kg}_\text{gasnat} := \frac{\text{Potencia}}{\text{PCI}_{\text{GN}}} \]

\[\text{kg}_\text{gasnat} = 0.175 \text{kg} \]

\[\text{massa}_\text{molar} := \left[0.912 \cdot (12 + 4) + 0.074 \cdot (24 + 6) + 0.008 \cdot (36 + 8) + 0.001 \cdot (48 + 10)\right] \text{kg} \]

\[\text{massa}_\text{molar} = 17.222 \text{kg} \]

\[\text{mol}_s := \frac{\text{kg}_\text{gasnat}}{\text{massa}_\text{molar}} \]

\[\text{mol}_s = 0.01 \]

\[\text{mol}_s_{\text{CO}_2} := (0.912 + 2 \cdot 0.074 + 3 \cdot 0.008 + 4 \cdot 0.001) \cdot \text{mol}_s \]

\[Q_{\text{CO}_2} := \text{mol}_s_{\text{CO}_2} \cdot \frac{0.044}{s} \]

\[\text{mol}_s_{\text{H}_2\text{O}} := \frac{(0.912 \times 4 + 0.074 \times 6 + 0.008 \times 8 + 0.001 \times 10)}{2} \cdot \text{mol}_s \]

\[Q_{\text{H}_2\text{O}} := \text{mol}_s_{\text{H}_2\text{O}} \cdot \frac{0.016}{s} \]

\[a := \frac{\frac{5}{2} \cdot (0.912 \times 4 + 0.074 \times 6 + 0.008 \times 8 + 0.001 \times 10)}{0.21} \cdot \text{mol}_s \]

\[\text{mol}_s_{\text{N}_2} := a \cdot 0.75 \]

\[Q_{\text{N}_2} := \text{mol}_s_{\text{N}_2} \cdot \frac{0.028}{s} \]

\[Q_{\text{gases}} := Q_{\text{CO}_2} + Q_{\text{H}_2\text{O}} + Q_{\text{N}_2} \]

\[Q_{\text{gases}} = 0.012 \text{kg} \cdot \text{s}^{-1} \]
A.2 Programa de cálculo del mecanismo rómbico

Cálculo de un motor Stirling Rómbico

En este fichero se pretende hacer el cálculo mecánico y termodinámico de un motor Stirling rómbico

Rhombic

Longitud de carrera

\[L_c := 0.3 \text{m} \]

Parámetro L/R del mecanismo rómbico

\[z=2.5 \]

Parámetro del mecanismo rómbico

\[\rho := 0.9\ell \]

Diametro primitivo de los engranages

\[D_p := 0.5\text{m} \]

Diámetro del cilindro del motor

\[B := 0.1 \text{m} \]

Longitud del despazador

\[L_d := 2.5\text{E} \]

Longitud del vástago del pistón

\[L_{vp} := 0.1\text{m} \]

Longitud del pistón

\[L_p := 0.5\text{E} \]

RPM del mecanismo

\[V_r := \frac{\pi \left[B^2 - (0.01\cdot B)^2 \right] \cdot L_d}{4} = 1963 \text{L} \]

Volumen del regenerador
e=0.001m
Longitud del espacio muerto de la zona caliente

emin := 0.001m

Distancia de acercamiento mínima entre el pistón y el desplazador

Datos Calculados

Velocidad angular del motor

\[w := \frac{\pi \cdot N}{30} \]

Radio de la manivela

\[Rm := \frac{Lc}{\sqrt{z^2 - (\rho - \sin(0.2778))^2 + \cos(0.2778)} - \sqrt{z^2 - (\rho - \sin(3.8361))^2 + \cos(3.8361)}} = 0.125 \text{ m} \]

Longitud de la biela del pistón

\[L = z \cdot Rm \]

\[E := \frac{Dpe}{2} - \rho \cdot Rm = 0.13 \text{ m} \]

\[a := \left(\frac{Dpe}{2} \right) - E = 0.12 \text{ m} \]

Longitud del vástago con referencia igual al pistón

\[Lvd := emin + Lvp + Lp + Rm \cdot \sqrt{\frac{2}{z^2 - \left(\rho - \sin \left(\frac{\pi \cdot 74}{180} \right) \right)^2}} = 0.4 \text{ m} \]

Longitud del vástago del desplazador des de su base

\[Lvd_{base} := emin + Lvp + Lp + 2Rm \cdot \sqrt{\frac{2}{z^2 - \left(\rho - \sin \left(\frac{\pi \cdot 74}{180} \right) \right)^2}} = 0.649 \text{ m} \]

Cálculos

Angulo que hace a XP1 Máximo

\[a\parallel := \frac{\pi}{2} - \arccos \left(\frac{a}{L + Rm} \right) = 18.66^\circ \text{ deg} \]
Angulo que hace a XP1 Mínimo
\[
\alpha_2 := \frac{3\cdot \pi}{2} - \cos\left(\frac{a}{L - R_m}\right) = 253.74\text{\, deg}
\]

Angulo que hace a XP2 Mínimo
\[
\beta_2 := \frac{\pi}{2} + \cos\left(\frac{a}{L + R_m}\right) = 161.337\text{\, deg}
\]

\[
X_{P1\text{max}} = \sqrt{L^2 - (a - R_m \cdot \sin(\alpha_2))^2} + R_m \cdot \cos(\alpha_2) + L_{vp} = 0.454\text{\, m}
\]

\[
X_{P1\text{min}} = \sqrt{L^2 - (a - R_m \cdot \sin(\beta_2))^2} + R_m \cdot \cos(\beta_2) + L_{vp} = 0.135\text{\, m}
\]

\[
X_{P2\text{max}} = R_m \cdot \cos(\beta_1) + L_{vd\text{ base}} - \sqrt{L^2 - (a - R_m \cdot \sin(\beta_1))^2} = 0.614\text{\, m}
\]

\[
X_{P2\text{min}} = R_m \cdot \cos(\beta_2) + L_{vd\text{ base}} - \sqrt{L^2 - (a - R_m \cdot \sin(\beta_2))^2} = 0.295\text{\, m}
\]

Angulo de desfasaje
\[
\text{Desfasaje} := \frac{(\alpha_2 - \beta_1 + 2\cdot \pi)}{\pi}
\]

\[
i := 0 \ldots 360
\]

\[
X_{P1(i)} := \sqrt{L^2 - (a - R_m \cdot \sin(i \cdot \frac{\pi}{180}))^2} + R_m \cdot \cos(i \cdot \frac{\pi}{180}) + L_{vp}
\]

\[
V_{eiP(i)} := \frac{\omega \cdot (a - R_m \cdot \sin(i \cdot \frac{\pi}{180})) \cdot R_m \cdot \cos(i \cdot \frac{\pi}{180})}{\sqrt{L^2 - (a - R_m \cdot \sin(i \cdot \frac{\pi}{180}))^2}} - \omega \cdot R_m \cdot \sin(i \cdot \frac{\pi}{180})
\]

\[
X_{P2(i)} := \sqrt{L^2 - (a - R_m \cdot \sin(i \cdot \frac{\pi}{180}))^2} + R_m \cdot \cos(i \cdot \frac{\pi}{180}) + L_{vd\text{ base}}
\]

\[
V_{eiD(i)} := \frac{-\omega \cdot (a - R_m \cdot \sin(i \cdot \frac{\pi}{180})) \cdot R_m \cdot \cos(i \cdot \frac{\pi}{180})}{\sqrt{L^2 - (a - R_m \cdot \sin(i \cdot \frac{\pi}{180}))^2}} - \omega \cdot R_m \cdot \sin(i \cdot \frac{\pi}{180})
\]

\[
X_{PD(i)} = X_{P2(i)} - X_{P1(i)} - L_p
\]
\[V_e(i) = (XP2_{max} - XP2(i) + \epsilon) \cdot \frac{\pi \cdot B^2}{4} \]
\[V_c(i) = (XP2(i) - XP1(i) + Lp) \cdot \frac{\pi \cdot B^2}{4} \]
\[V_{ins}(i) = V_e(i) + V_c(i) + V_t \]
\[(V_{e_m} \ V_{c_m} \ V_{ins_m}) := \]
\[\text{angulo} \leftarrow 0 \]
\[n \leftarrow 360 \]
\[\text{while} \ \text{angulo} < n \]
\[V_{e_{angulo}, 0} \leftarrow (XP2_{max} - XP2(\text{angulo}) + \epsilon) \cdot \frac{\pi \cdot B^2}{4} \]
\[V_{c_{angulo}, 0} \leftarrow (XP2(\text{angulo}) - XP1(\text{angulo}) - Lp) \cdot \frac{\pi \cdot B^2}{4} \]
\[V_{ins_{angulo}, 0} \leftarrow V_e(\text{angulo}) + V_c(\text{angulo}) + V_t \]
\[\text{angulo} \leftarrow \text{angulo} + 1 \]
\[(V_{e_m} \ V_{c_m} \ V_{ins_m}) \]

\[V_r = V_{e_{m, 0}} + V_{c_{m, 0}} + V_t \]

\[\text{XPD1} := \]
\[\text{angulo} \leftarrow 0 \]
\[\text{XPD1} \leftarrow \text{XPD}(0) \]
\[V_{tota\text{min}} \leftarrow V_{ins_{m, 0}} \]
\[V_{tota\text{max}} \leftarrow V_{ins_{m, 0}} \]
\[\text{while} \ \text{angulo} < 359 \]
\[\text{if} \ \text{XPD1} < \text{XPD}(\text{angulo}) \]
\[\text{XPD1} \leftarrow \text{XPD}(\text{angulo}) \]
\[\text{if} \ \text{XPD1} > \text{XPD}(\text{angulo}) \]
\[\text{angulo} \leftarrow \text{angulo} + 1 \]
\[\text{XPD1} \]
Figura A.1 Posición del pistón, desplazador y su diferencia
Fuente: Producción propia

Figura A.2 Volumen de la zona caliente, zona fría y volumen total del motor
Fuente: Producción propia
A.3 Programa de cálculo del análisis termodinámico

\(z := 2.5 \)

\(\rho := 0.96 \)

\(e := 0.002 \quad \text{Longitud de espacio muerto en la zona caliente} \)

\(\varepsilon := 0.001 \quad \text{Longitud de espacio muerto en la espacío frío} \)

\(L_{vp} := 0.1 \quad \text{Longitud del vástago del pistón} \)

\(B := 0.1 \)

\(C_p := 103 \)°F \(\quad \text{Cp y Cv del aire} \)

\(C_v := 716 \)

\(k := \frac{C_p}{C_v} \)

\(R := 287 \)

\(T_{amb} := 297 \quad \text{Temperatura ambiente} \)

\(L_c := 0.3 \)

\(L_{d} := 2.5 \cdot B \quad \text{Longitud del desplazador} \)

\(L_p := 0.5 \cdot B \quad \text{Longitud del pistón} \)

\(N := 40 \)°C

\(P_{med} := 1 \cdot 10^6 \)

\(\tau_0 := 0.7 \)

\(V_m := \frac{L_d \cdot \pi \cdot \left(B^2 - 0.01B^2\right)}{4} \)

\(T_b := 297 \)

\(T_{se} := 425 \)

\(T_{we} := 425 \)

\(T_h := 422 \)

\(T_k := \tau_0 \cdot T_h \)

\(T_{ck} := T_k \)

\(T_{he} := T_h \)
Diseño de una instalación de cogeneración mediante un Motor Stirling

Datos Calculados

\[R_m := \sqrt{z^2 - \rho \sin(0.277\phi) + \cos(0.277\phi) - \sqrt{z^2 - \rho \sin(3.836\phi)^2 - \cos(3.836\phi)}} \]

\[L := R_m \cdot z \]

\[a := R_m \cdot \rho \]

\[L_{vd} := \text{emin} + \text{Lvp} + \text{Lp} + 2 \cdot R_m \cdot \sqrt{z^2 - \rho \sin\left(\frac{74\pi}{180}\right)^2} \]

\[\text{As} := \frac{\pi \cdot B^2}{4} \]

\[w := \frac{\pi \cdot N}{30} \]

\[V_1 := \frac{\pi \cdot B^2}{4} \cdot L_c \]

\[V_r := V_m \]

\[V_h := 0 \]

\[V_k := 0 \]

Calculos

\[\beta_1 := \frac{3 \cdot \pi}{2} + \cos\left[\frac{a}{(L - R_m)}\right] \]

\[\beta_2 := \frac{\pi}{2} + \cos\left[\frac{a}{(L - R_m)}\right] \]

\[\text{XP2max} = \sqrt{L^2 - (a - R_m \cdot \sin(\beta_1))^2 + R_m \cdot \cos(\beta_1) + L_v} \]

\[\text{XP2min} = \sqrt{L^2 - (a - R_m \cdot \sin(\beta_2))^2 + R_m \cdot \cos(\beta_2) + L_v} \]
etapa := 0.0025
espesorCu := 0.007
Dextinox := 0.1014
Kinox := 14.8
Kcu := 401

\[
\begin{align*}
\text{dmc}_1 & := \text{paso} \\
\text{dme}_1 & := \text{pasos} \leftarrow 1 \\
\text{fTe} & := 0 \ldots 360 \\
\text{fTc} & := \text{Tc} \\
\text{fVe} & := \text{VelP} \\
\text{Sp} & := \frac{2 \times N \times Lc}{60} \\
\text{Vel} & := 2.28 \times \text{Sp} \\
V & := V1 \\
\end{align*}
\]

\[
\begin{align*}
\text{I_RK}(i, \text{pasos}) & := \text{i} \quad \text{if} \quad \text{pasos} = 1 \\
\text{I_RK}(i, \text{pasos}) & := \text{i} + \frac{hk}{2} \quad \text{if} \quad \text{pasos} = 2 \\
\text{I_RK}(i, \text{pasos}) & := \text{i} + \frac{hk}{2} \quad \text{if} \quad \text{pasos} = 3 \\
\text{I_RK}(i, \text{pasos}) & := \text{i} + \frac{hk}{2} \quad \text{if} \quad \text{pasos} = 4 \\
\text{VelP}(i, \text{pasos}) & := \frac{w \left(a - Rm \times \sin \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right) \right)^2 - Rm \times \cos \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right)}{\sqrt{\left(a - Rm \times \sin \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right) \right)^2 - w \times Rm \times \sin \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right)}} \\
\text{Sp} & := \frac{2 \times N \times Lc}{60} \\
\text{vel} & := 2.28 \times \text{Sp} \\
V & := V1 \\
\text{fP1}(i, \text{pasos}) & := Rm \times \cos \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right) + \sqrt{L^2 - \left(a - Rm \times \sin \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right) \right)^2} + Lvp \\
\text{fP2}(i, \text{pasos}) & := Rm \times \cos \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right) - \sqrt{L^2 - \left(a - Rm \times \sin \left(\text{I_RK}(i, \text{pasos}) \times \frac{\pi}{180} \right) \right)^2} + Lvd \\
\text{fVe}(i, \text{pasos}) & := (X \times P_{\text{max}} - \text{fP2}(i, \text{pasos}) + \varepsilon) \times \frac{\pi \times D^2}{4} \\
\end{align*}
\]
Diseño de una instalación de cogeneración mediante un Motor Stirling

\[N_c (i, \text{pasos}) = \frac{\pi \cdot B^2}{4} \cdot (0 \cdot P_2 (i, \text{pasos}) - 0 \cdot P_1 (i, \text{pasos}) - L_p) \]

\[N_{tins} (i, \text{pasos}) = N_e (i, \text{pasos}) + N_c (i, \text{pasos}) + V_r + V_h + V_k \]

\[T_r \leftarrow \frac{\left(T_h - T_k \right)}{\ln \left(\frac{T_h}{T_k} \right)} \]

\[RV_1 \leftarrow \frac{N_c (28,1)}{f_{Tc} (28,1)} + \frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h} + \frac{N_e (28,1)}{f_{Te} (28,1)} \]

\[RV_2 \leftarrow \frac{N_c (253,1)}{f_{Tc} (253,1)} + \frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h} + \frac{N_e (253,1)}{f_{Te} (253,1)} \]

\[m \leftarrow \frac{P_{med} \cdot RV_1 \cdot RV_2}{R} \]

\[P_a (i, \text{pasos}) \leftarrow m \cdot R \cdot T \]

\[f_{dVe} (i, \text{pasos}) \leftarrow \frac{\left(2 \cdot a - R_m \cdot \sin \left(i \cdot R_K (i, \text{pasos}) \frac{\pi}{180} \right) \right) \cdot R_m \cdot \cos \left(i \cdot R_K (i, \text{pasos}) \frac{\pi}{180} \right)}{R_m \cdot \sin \left(i \cdot R_K (i, \text{pasos}) \frac{\pi}{180} \right)} \]

\[f_{dVc} (i, \text{pasos}) \]

\[dV_{inst} (i, \text{pasos}) \leftarrow f_{dVe} (i, \text{pasos}) + f_{dVc} (i, \text{pasos}) \]

\[P (i, \text{pasos}) \leftarrow \frac{N_c (i, \text{pasos})}{f_{Tc} (i, \text{pasos})} + \frac{V_k}{T_k} + \frac{V_r}{T_r} + \frac{V_h}{T_h} + \frac{N_e (i, \text{pasos})}{f_{Te} (i, \text{pasos})} \]

\[f_{mc} (i, \text{pasos}) \leftarrow \frac{P (i, \text{pasos}) - f_{Vc} (i, \text{pasos})}{R \cdot f_{Tc} (i, \text{pasos})} \]

\[f_{mk} (i, \text{pasos}) \leftarrow \frac{P (i, \text{pasos}) - V_k}{R \cdot T_k} \]

\[f_{mr} (i, \text{pasos}) \leftarrow \frac{P (i, \text{pasos}) - V_r}{R \cdot T_r} \]

\[f_{mh} (i, \text{pasos}) \leftarrow \frac{P (i, \text{pasos}) - V_h}{R \cdot T_h} \]

\[f_{me} (i, \text{pasos}) \leftarrow \frac{P (i, \text{pasos}) - f_{Vc} (i, \text{pasos})}{R \cdot f_{Te} (i, \text{pasos})} \]

\[f_{hc} (i, \text{pasos}) \leftarrow 1.67 \cdot B^{0.2} \cdot f_{mc} (i, \text{pasos})^{0.8} \cdot f_{Tc} (i, \text{pasos})^{0.21478} \cdot \left(\frac{\text{vel}}{N_c (i, \text{pasos})} \right)^{0.8} \]

\[f_{he} (i, \text{pasos}) \leftarrow 1.67 \cdot B^{0.2} \cdot f_{me} (i, \text{pasos})^{0.8} \cdot f_{Te} (i, \text{pasos})^{0.21478} \cdot \left(\frac{\text{vel}}{N_e (i, \text{pasos})} \right)^{0.8} \]

\[f_{h1} (i, \text{pasos}) \leftarrow XP_2 \max - XP_2 (i, \text{pasos}) + e \]

\[f_{h2} (i, \text{pasos}) \leftarrow XP_2 (i, \text{pasos}) - XP_1 (i, \text{pasos}) - L_p \]
mck(i, pasos) ← dmc(i, pasos)
mkr(i, pasos) ← mck(i, pasos) - dmc(i, pasos)
mhe(i, pasos) ← dme(i, pasos)
mth(i, pasos) ← mhe(i, pasos) + dmc(i, pasos)

dGr(i, pasos) ← \frac{Vr \cdot dP(i, pasos) \cdot Cv}{R} - C_p \cdot (T_k - mkr(i, pasos) - Th \cdot mth(i, pasos))

dWc(i, pasos) ← P(i, pasos) - 6\cdot dVc(i, pasos)
dWe(i, pasos) ← P(i, pasos) - 6\cdot dVe(i, pasos)
dW(i, pasos) ← dWc(i, pasos) + dWe(i, pasos)

for i e 0..360:
 mck_{i+1} ← mck(i, pasos)
 mhe_{i+1} ← mhe(i, pasos)

 Tk ← Tc(i + 1, pasos) if mck_{i+1} > 0
 Tk ← Tc(i + 1, pasos) - tao if mck_{i+1} ≤ 0

 Th ← \frac{Tc(i + 1, pasos)}{tao} if mhe_{i+1} > 0
 Th ← Tc(i + 1, pasos) if mhe_{i+1} < 0

 Tck ← Tk

 The ← Th

if pasos ← 1:
 k11(i) ← hk \cdot Tc(i, 1) \cdot \frac{\pi}{180}
 k21(i) ← hk \cdot Tc(i, 1) \cdot \frac{\pi}{180}
 n ← 0

while n < 360:
 Tc_{1,n,0} ← Tc(n, pasos)
 Tfe_{1,n,0} ← Tfe(n, pasos)
 Pz_{1,n,0} ← Pz(n, pasos)
 Tr_{1,n,0} ← Tr
 P_{1,n,0} ← P(n, pasos)
 fVins_{1,n,0} ← fVins(n, pasos)
 dWinst_{1,n,0} ← dWinst(n, pasos)
 m_{1,n,0} ← m
 dmc_{1,n,0} ← dmc(n, pasos)
 dme_{1,n,0} ← dme(n, pasos)
 dW_{1,n,0} ← dW(n, pasos)
 dQc_{1,n,0} ← dQc(n, pasos)
 dQr_{1,n,0} ← dQr(n, pasos)
 dQe_{1,n,0} ← dQe(n, pasos)

 n ← n + 1
\[
\begin{align*}
\{ & P_{a_1}, \\
& T_{r_1}, \\
& P_{r_1}, \\
& fV_{r_1}, \\
& dV_{f_1}, \\
& m_{r_1}, \\
& dmc_{1}, \\
& dme_{1}, \\
& dW_{1}, \\
& dQc_{1}, \\
& dQr_{1}, \\
& dQe_{1}, \\
& Fc_{1}, \\
& Fc_{c_1} \}
\end{align*}
\]

if \(\text{pasos} \leftarrow 2\)

\[K_{12}(i) \leftarrow \frac{hk \cdot dTc(i, 2) \cdot \pi}{180}\]

\[K_{22}(i) \leftarrow \frac{hk \cdot dTe(i, 2) \cdot \pi}{180}\]

if \(\text{pasos} \leftarrow 3\)

\[K_{13}(i) \leftarrow \frac{hk \cdot dTc(i, 3) \cdot \pi}{180}\]

\[K_{23}(i) \leftarrow \frac{hk \cdot dTe(i, 3) \cdot \pi}{180}\]

if \(\text{pasos} \leftarrow 4\)

\[K_{14}(i) \leftarrow \frac{hk \cdot dTc(i, 4) \cdot \pi}{180}\]

\[K_{24}(i) \leftarrow \frac{hk \cdot dTe(i, 4) \cdot \pi}{180}\]

if \(\text{pasos} \leftarrow 1\)

\[l_{RK}(i, \text{pasos}) \leftarrow i\]

\[fTc(i, \text{pasos}) \leftarrow Tc\]

\[fTe(i, \text{pasos}) \leftarrow Te\]

if \(\text{pasos} \leftarrow 2\)

\[l_{RK}(i, \text{pasos}) \leftarrow i + \frac{hk}{2}\]

\[fTc(i, \text{pasos}) \leftarrow fTc(i, 1) + \frac{K_{11}(i)}{2}\]

\[fTe(i, \text{pasos}) \leftarrow fTe(i, 1) + \frac{K_{21}(i)}{2}\]

if \(\text{pasos} \leftarrow 3\)

\[l_{RK}(i, \text{pasos}) \leftarrow i + \frac{hk}{2}\]

\[fTc(i, \text{pasos}) \leftarrow fTc(i, 2) + \frac{K_{12}(i)}{2}\]
Diseño de una instalación de cogeneración mediante un Motor Stirling

\[
\begin{align*}
&f(i, \text{pasos}) \leftarrow f(i, 2) + \frac{K_22(i)}{2} \\
&\text{if pasos} \leftarrow i \\
&i_{\text{RK}}(i, \text{pasos}) \leftarrow i + h_k \\
&f_C(i, \text{pasos}) \leftarrow f_C(i, 2) + K_{13}(i) \\
&f_T(i, \text{pasos}) \leftarrow f_T(i, 2) + K_{23}(i) \\
&\text{pasos} \leftarrow \text{pasos} + 1 \\
\end{align*}
\]

\[
\begin{align*}
n &\leftarrow 0 \\
\text{for } n \in 0 \ldots 360, \\
&T_c_{1n} \leftarrow T_c + \frac{1}{6} \cdot (K_{11}(n) + 2 \cdot K_{12}(n) + 2 \cdot K_{13}(n) + K_{14}(n)) \\
&T_e_{1n} \leftarrow T_e + \frac{1}{6} \cdot (K_{21}(n) + 2 \cdot K_{22}(n) + 2 \cdot K_{23}(n) + K_{24}(n)) \\
\end{align*}
\]

\[
\begin{align*}
&\text{fthc}_1, \\
&\text{fhe}_1, \\
&\text{fPa}_1, \\
&T_c_1, \\
&P_1, \\
&\text{fVinst}_1, \\
&\text{dVinst}_1, \\
&m_1, \\
&\text{dmc}_1, \\
&\text{dme}_1, \\
&\text{dW}_1, \\
&\text{dQc}_1, \\
&\text{dQe}_1, \\
&T_c_1, \\
&T_e_1, \\
&\text{fVinst}_1, \\
\end{align*}
\]

\[
\begin{align*}
\text{dW}_{\text{inst}}(i) &\leftarrow \text{dW}_1 \\
\text{dmc}_1(i) &\leftarrow \text{dmc}_1 \\
\text{dQc}(i) &\leftarrow \text{dQc}_1 \\
\text{dme}_1(i) &\leftarrow \text{dme}_1 \\
\text{dQe}(i) &\leftarrow \text{dQe}_1 \\
\text{Vinst}(i) &\leftarrow \text{fVinst}_1 \\
\text{dQr}(i) &\leftarrow \text{dQr}_1 \\
\text{P}(i) &\leftarrow P_1 \\
\text{m}_{\text{inst}}(i) &\leftarrow m_1 \\
&T_{c1}(i) &\leftarrow T_c_1 \\
&T_{e1}(i) &\leftarrow T_e_1 \\
\text{fhe}(i) &\leftarrow \text{fhe}_1 \\
\text{fhe}_1(i) &\leftarrow \text{fhe}_1 \\
\end{align*}
\]
Figura A.3 Masa de gas
Fuente: Elaboración propia

Figura A.4 Presión del gas en el interior del motor
Fuente: Elaboración propia

Figura A.5 Temperatura del foco frío
Fuente: Elaboración propia
Figura A.6 Temperatura del foco caliente
Fuente: Elaboración propia

Figura A.7 Masas salientes del foco frío y caliente
Fuente: Elaboración propia

Figura A.8 Diagrama presión volumen del motor
Fuente: Elaboración propia
Figura A.8 Coeficientes de convección en la zona caliente y fría
Fuente: Elaboración propia

Figura A.10 Volumen instantáneo del motor
Fuente: Elaboración propia
\[
\begin{bmatrix}
w1 \\
x1 \\
y1 \\
z1 \\
dTc_1 \\
dTe_1 \\
dhc_1 \\
dhe_1
\end{bmatrix}
= \begin{array}{l}
i \leftarrow 0..360 \\
n \leftarrow 1 \\
w1_{n,0} \leftarrow 0 \\
x1_{n,0} \leftarrow 0 \\
y1_{n,0} \leftarrow 0 \\
z1_{n,0} \leftarrow 0 \\
dTc_{1n,0} \leftarrow 0 \\
dTe_{1n,0} \leftarrow 0 \\
dhc_{1n,0} \leftarrow 0 \\
dhe_{1n,0} \leftarrow 0 \\
\text{while } n < 180 \\
w1_{n,0} \leftarrow 2 \frac{hk}{3} dW_{\text{inst}}(2n) + w1_{n-1,0} \\
x1_{n,0} \leftarrow 2 \frac{hk}{3} dQc(2n) + x1_{n-1,0} \\
y1_{n,0} \leftarrow 2 \frac{hk}{3} dQe(2n) + y1_{n-1,0} \\
z1_{n,0} \leftarrow 2 \frac{hk}{3} dQr(2n) + z1_{n-1,0} \\
dTc_{1n,0} \leftarrow 2 \frac{hk}{3} Tc1(2n) + dTc_{1n-1,0} \\
dTe_{1n,0} \leftarrow 2 \frac{hk}{3} Te1(2n) + dTe_{1n-1,0} \\
dhc_{1n,0} \leftarrow 2 \frac{hk}{3} hc1(2n) + dhc_{1n-1,0} \\
dhe_{1n,0} \leftarrow 2 \frac{hk}{3} he1(2n) + dhe_{1n-1,0} \\
n \leftarrow n + 1
\end{array}
\]
\[
\begin{align*}
\text{while } n < 180 \\
&\quad w2_n,0 \leftarrow 4 \cdot \frac{hk}{3} \cdot dW_{\text{inst}}(2n-1) + w2_{n-1,0} \\
&\quad x2_n,0 \leftarrow 4 \cdot \frac{hk}{3} \cdot dGc(2n-1) + x2_{n-1,0} \\
&\quad y2_n,0 \leftarrow 4 \cdot \frac{hk}{3} \cdot dGe(2n-1) + y2_{n-1,0} \\
&\quad z2_n,0 \leftarrow 4 \cdot \frac{hk}{3} \cdot dGr(2n-1) + z2_{n-1,0} \\
&\quad dTc_{2n,0} \leftarrow 4 \cdot \frac{hk}{3} \cdot Tc1(2n-1) + dTc_{2n-1,0} \\
&\quad dTe_{2n,0} \leftarrow 4 \cdot \frac{hk}{3} \cdot Te1(2n-1) + dTe_{2n-1,0} \\
&\quad dhc_{2n,0} \leftarrow 4 \cdot \frac{hk}{3} \cdot hc1(2n-1) + dhc_{2n-1,0} \\
&\quad dhe_{2n,0} \leftarrow 4 \cdot \frac{hk}{3} \cdot he1(2n-1) + dhe_{2n-1,0} \\
&\quad n \leftarrow n + 1
\end{align*}
\]
\[
W = \left[\frac{h_c}{3} (dW_{inst} + dW_{inst}^{(359)}) + w_{1179,0} + w_{2179,0} \right] - \frac{\pi}{180}
\]

\[L_i = W \cdot N_0 \cdot 0.105 \times 1.324 \times 10^3\]

\[Q_{ctotal} = \frac{h_c}{3} \cdot (dQ_c(1) + x_{1179,0} + x_{2179,0}) \cdot \frac{\pi}{180} = 4.952\]

\[Q_{etotal} = \frac{h_c}{3} \cdot (dQ_e(1) + y_{1179,0} + y_{2179,0}) \cdot \frac{\pi}{180} = 13.717\]

\[Q_{rtotal} = \frac{h_c}{3} \cdot (dQ_r(1) + z_{1179,0} + z_{2179,0}) \cdot \frac{\pi}{180} = -0.678\]

\[p_{hc} = \frac{h_c}{3} \cdot \left(\frac{hc_{1(1)} + dhc_{1179,0} + dhc_{2179,0}}{360} \right) = 19.793\]

\[p_{he} = \frac{h_e}{3} \cdot \left(\frac{he_{1(1)} + dhe_{1179,0} + dhe_{2179,0}}{360} \right) = 16.064\]

\[p_{Tc} = \frac{h_{Tc}}{3} \cdot \left(\frac{Tc_{1(1)} + dTc_{1179,0} + dTc_{2179,0}}{360} \right) = 98.193\]

\[p_{Te} = \frac{h_{Te}}{3} \cdot \left(\frac{Te_{1(1)} + dTe_{1179,0} + dTe_{2179,0}}{360} \right) = 140.277\]

\[V_{min} = V_{inst(13)} = 2.482 \times 10^{-3}\]

\[V_{max} = V_{inst(219)} = 4.836 \times 10^{-3}\]

\[a_2 = 219\]

\[b_2 = 13\]

\[
\begin{pmatrix}
a_1 \\
b_1
\end{pmatrix}
= \begin{cases}
1 & \text{if } P_{-1n} \geq P_{med} \\
(n + 1) & \text{if } P_{-1n+1} < P_{med} \\

n & \text{if } P_{-1n+1} \geq P_{med} \\
(n + 1) & \text{if } P_{-1n} < P_{med}
\end{cases}
\]

\[
M1_{sign} = \frac{(a_2 - a_1)}{2}
\]

\[
(M1) = \begin{cases}
M1 & \text{if } M1_{sign} < 0 \\
M1_{sign} & \text{if } M1_{sign} \geq 0
\end{cases}
\]
\[
\begin{align*}
\begin{pmatrix}
FW_1 \\
FW_2
\end{pmatrix} & \overset{\text{FW_1}}{\Rightarrow}
\begin{aligned}
FW_1 & \leftarrow 0 \\
FW_2 & \leftarrow 0 \\
n & \leftarrow 1 \\
\text{while } & n < M1 - 1 \\
n_a1 & \leftarrow (n + a1 - 360) \text{ if } (n + a1) > 360 \\
n_a1 & \leftarrow (n + a1) \text{ if } (n + a1) < 360 \\
n_a2 & \leftarrow (n - 1 + a1 - 360) \text{ if } n - 1 + a1 \geq 360 \\
n_a2 & \leftarrow (n - 1 + a1) \text{ if } (n - 1 + a1) < 360 \\
FW_1 & \leftarrow 2 \frac{hk}{3} (dW_{inst}(n_a1) - Pmed \cdot dfVinst_{1n_a1}) + FW_1 \\
FW_2 & \leftarrow 4 \frac{hk}{3} (dW_{inst}(n_a2) - Pmed \cdot dfVinst_{1n_a2}) + FW_2 \\
n & \leftarrow n + 1
\end{aligned}
\end{align*}
\]

\[
\begin{pmatrix}
FW_1 \\
FW_2
\end{pmatrix} \overset{\text{FW_2}}{\Rightarrow}
\begin{align*}
M2_{\text{sign}} & \overset{\text{M2sign}}{=} \frac{b2 + 360 - b1}{2} \\
(M2) & \overset{\text{(M2)}}{=} \\
M2 & \leftarrow -M2_{\text{sign}} \text{ if } M2_{\text{sign}} < 0 \\
M2 & \leftarrow M2_{\text{sign}} \text{ if } M2_{\text{sign}} \geq 0
\end{align*}
\]

\[
\begin{align*}
\begin{pmatrix}
FW_1 \\
FW_2
\end{pmatrix} & \overset{\text{FW_1}}{\Rightarrow}
\begin{aligned}
FW_1 & \leftarrow 0 \\
FW_2 & \leftarrow 0 \\
n & \leftarrow 1 \\
\text{while } & n < M2 - 1 \\
n_b1 & \leftarrow (n + b1 - 360) \text{ if } n + b1 \geq 360 \\
n_b1 & \leftarrow (n + b1) \text{ if } (n + b1) < 360 \\
n_b2 & \leftarrow (n - 1 + b1 - 360) \text{ if } n - 1 + b1 \geq 360 \\
n_b2 & \leftarrow (n - 1 + b1) \text{ if } (n - 1 + b1) < 360 \\
FW_1 & \leftarrow 2 \frac{hk}{3} (dW_{inst}(n_b1) - Pmed \cdot dfVinst_{1n_b1}) + FW_1 \\
FW_2 & \leftarrow 4 \frac{hk}{3} (dW_{inst}(n_b2) - Pmed \cdot dfVinst_{1n_b2}) + FW_2 \\
n & \leftarrow n + 1
\end{aligned}
\end{align*}
\]
\[W_1 := \left[\frac{h}{3} \left[dW_{\text{inst}(a1)} + dW_{\text{inst}(a2)} - P_{\text{med}} \cdot \left(dV_{\text{inst}_1 a1} + dV_{\text{inst}_1 a2} \right) \right] + FW_1 + FW_2 \right] \cdot \frac{\pi}{180} \]

\[W_2 := \left[\frac{h}{3} \left[dW_{\text{inst}(b1)} + dW_{\text{inst}(b2)} - P_{\text{med}} \cdot \left(dV_{\text{inst}_1 b1} + dV_{\text{inst}_1 b2} \right) \right] + FW_{-1} + FW_{-2} \right] \cdot \frac{\pi}{180} \]

\[FW_{\text{sign}} = W_1 + W_2 = -34.032 \]

\[(FW) = \begin{cases} FW & \text{if } FW_{\text{sign}} < 0 \\ FW & \text{if } FW_{\text{sign}} \geq 0 \end{cases} \]

\[E := 0.8 \]

\[nm := E - \left(\frac{1}{E - E} \right) \frac{FW}{W} = 0.314 \]

\[Peje := L_i \cdot nm = 415.689 \]
B. Tablas

<table>
<thead>
<tr>
<th>Criterio de demanda</th>
<th>Litros ACS/día a 60º C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viviendas unifamiliares</td>
<td>30</td>
</tr>
<tr>
<td>Viviendas multifamiliares</td>
<td>22</td>
</tr>
<tr>
<td>Hospitales y clínicas</td>
<td>55</td>
</tr>
<tr>
<td>Hotel ****</td>
<td>70</td>
</tr>
<tr>
<td>Hotel ***</td>
<td>55</td>
</tr>
<tr>
<td>Hotel/Hostal **</td>
<td>40</td>
</tr>
<tr>
<td>Hostal/Pensión *</td>
<td>35</td>
</tr>
<tr>
<td>Residencia (ancianos, estudiantes, etc)</td>
<td>55</td>
</tr>
<tr>
<td>Vestuarios/Duchas colectivas</td>
<td>15</td>
</tr>
<tr>
<td>Escuelas</td>
<td>3</td>
</tr>
<tr>
<td>Cuarteles</td>
<td>20</td>
</tr>
<tr>
<td>Fábricas y telares</td>
<td>15</td>
</tr>
<tr>
<td>Administrativos</td>
<td>3</td>
</tr>
<tr>
<td>Gimnasios</td>
<td>20 a 25</td>
</tr>
<tr>
<td>Lavanderías</td>
<td>3 a 5</td>
</tr>
<tr>
<td>Restaurantes</td>
<td>5 a 10</td>
</tr>
<tr>
<td>Cafeterías</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) Los litros de ACS/día a 60ºC de la tabla se han calculado a partir de la tabla 1 (Consumo unitario diario medio) de la norma UNE 34002.2005 “Instalaciones solares térmicas para producción de agua caliente sanitaria: cálculo de la demanda energética”.

Tabla B.1 Consumo de ACS a 60º según CTE

Fuente: [1]

<table>
<thead>
<tr>
<th>Tipo de aparato</th>
<th>Caudal instantáneo mínimo de agua fría [dm³/s]</th>
<th>Caudal instantáneo mínimo de ACS [dm³/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavamanos</td>
<td>0,05</td>
<td>0,03</td>
</tr>
<tr>
<td>Lavabo</td>
<td>0,10</td>
<td>0,065</td>
</tr>
<tr>
<td>Ducha</td>
<td>0,20</td>
<td>0,10</td>
</tr>
<tr>
<td>Bañera de 1,40 m o más</td>
<td>0,30</td>
<td>0,20</td>
</tr>
<tr>
<td>Bañera de menos de 1,40 m</td>
<td>0,20</td>
<td>0,15</td>
</tr>
<tr>
<td>Bidé</td>
<td>0,10</td>
<td>0,065</td>
</tr>
<tr>
<td>Inodoro con cisterna</td>
<td>0,10</td>
<td>-</td>
</tr>
<tr>
<td>Inodoro con flujo</td>
<td>1,25</td>
<td>-</td>
</tr>
<tr>
<td>Urinarios con grifo temporizado</td>
<td>0,15</td>
<td>-</td>
</tr>
<tr>
<td>Urinarios con cisterna (o/u)</td>
<td>0,04</td>
<td>-</td>
</tr>
<tr>
<td>Fregadero doméstico</td>
<td>0,20</td>
<td>0,10</td>
</tr>
<tr>
<td>Fregadero no doméstico</td>
<td>0,30</td>
<td>0,20</td>
</tr>
<tr>
<td>Lavavajillas doméstico</td>
<td>0,15</td>
<td>0,10</td>
</tr>
<tr>
<td>Lavavajillas industrial (20 servicios)</td>
<td>0,25</td>
<td>0,20</td>
</tr>
<tr>
<td>Lavavajillas</td>
<td>0,20</td>
<td>0,10</td>
</tr>
<tr>
<td>Lavadora</td>
<td>0,20</td>
<td>0,15</td>
</tr>
<tr>
<td>Lavadora doméstica</td>
<td>0,20</td>
<td>0,15</td>
</tr>
<tr>
<td>Lavadora industrial (6 kg)</td>
<td>0,60</td>
<td>0,40</td>
</tr>
<tr>
<td>Grifo aislado</td>
<td>0,15</td>
<td>0,10</td>
</tr>
<tr>
<td>Grifo garaje</td>
<td>0,20</td>
<td>-</td>
</tr>
<tr>
<td>Vertedor</td>
<td>0,20</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla B.2 Caudal instantáneo mínimo en función del tipo de aparato

Fuente: [3]
Tabla B.3 Temperatura media del agua por provincias

Fuente: [2]

![Tabla B.3](image)

Tabla B.4 Valores del factor sombra para retranqueos

Fuente: [3]

![Tabla B.4](image)
Tabla B.5 Valores de coeficientes de transmisión y g

Fuente: [4]

<table>
<thead>
<tr>
<th>Composición</th>
<th>Vidrios normales</th>
<th>1 Vidrio normal + 1 vidrio de baja emisividad (β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Espesor (mm)</td>
<td>g_L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vidrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sencillo</td>
<td>4</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Vidrio								
Laminar	3+3	0.80	6.8	5.8	-	-	-	-
	4+4	0.77	6.7	5.6	-	-	-	-
	5+5	0.75	6.6	5.5	-	-	-	-
	6+6	0.74	6.5	5.4	-	-	-	-
	8+8	0.70	6.3	5.3	-	-	-	-
	10+10	0.70	6.2	5.2	-	-	-	-

Unidades de								
vidrio								
aislante	4-4(4-4-10)	0.76	3.6	3.3	3.0	2.7	2.6	2.6
	4-6(4-4-10)		3.4	3.0	2.7	2.3	2.5	2.1
	4-12(4-4-10)		3.4	2.8	2.6	2.0	2.4	1.8
	4-15(4-4-10)		3.4	2.7	2.6	1.8	2.4	1.6
	4-20(4-4-10)		3.3	2.7	2.5	1.8	2.3	1.6

Unidades de								
vidrio								
aislante	con vidrio							
laminar	4-4(3+3...10+10)		3.4	2.8	2.9	2.7	2.6	2.5
	4-6(3+3...10+10)		3.4	2.7	2.6	2.3	2.4	2.1
	4-12(3+3...10+10)		3.4	2.7	2.6	2.3	2.4	2.1
	4-15(3+3...10+10)		3.3	2.7	2.5	1.8	2.3	1.6
	4-20(3+3...10+10)		3.3	2.7	2.5	1.8	2.3	1.6

Tabla B.6 Valores de α

Fuente: [3]
Tabla B.7 Valores $U_{H,V}$ de los marcos

Fuente: [4]

<table>
<thead>
<tr>
<th>Producto</th>
<th>HE ρ</th>
<th>$U_{H,V}$ (W/m2·K) vertical</th>
<th>$U_{H,V}$ (W/m2·K) horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metálico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td>5,7</td>
<td>7,2</td>
</tr>
<tr>
<td>Con rotura de puente térmico entre 4 y 12 mm</td>
<td></td>
<td>4</td>
<td>4,5</td>
</tr>
<tr>
<td>Con rotura de puente térmico > 12 mm</td>
<td></td>
<td>3,2</td>
<td>3,5</td>
</tr>
<tr>
<td>Madera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madera de densidad media alta</td>
<td>700</td>
<td>2,2</td>
<td>2,4</td>
</tr>
<tr>
<td>Madera de densidad media baja</td>
<td>500</td>
<td>2</td>
<td>2,1</td>
</tr>
<tr>
<td>PVC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC (dos cámaras)</td>
<td></td>
<td>2,2</td>
<td>2,4</td>
</tr>
<tr>
<td>PVC (tres cámaras)</td>
<td></td>
<td>1,8</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Tabla B.8 Caudales de ventilación mínimos exigidos

Fuente: [2]

Tabla B.9 Índice de Bacharach

Fuente: [9]
C. Vivienda a estudiar

En la imagen a continuación, Fig. C.1, puede verse la distribución de las plantas de la vivienda a estudiar.
En la imagen a continuación, Fig. C.2, puede verse la situación de las bombillas en las distintas habitaciones de la vivienda.

Figura C.2 Distribución de las luces en la vivienda
Fuente: Elaboración propia