Resumen

El presente proyecto final de carrera contiene toda la información necesaria para el diseño, fabricación y montaje de un brazo móvil que sostendrá una cámara CCD. Siendo ésta uno de los detectores para la línea de luz BL-29 del sincrotrón ALBA dedicada a espectroscopía y refractometría.

El desarrollo de la fase de diseño se apoya en las especificaciones presentadas por el cliente. En las especificaciones se exige un dispositivo que sea compatible con la cámara de ultra alto vacío existente en la línea. El soporte obligatoriamente ha de coexistir con los demás dispositivos instalados, teniendo en cuenta el espacio necesario para la instalación de futuros dispositivos adicionales.

Para cumplir las altas exigencias en cuanto a resolución y estabilidad se han de aplicar soluciones tecnológicamente avanzadas, así como dispositivos de control para asegurar el cumplimiento de las especificaciones en todo el rango de movimiento del dispositivo.

Por último, cabe destacar que algunas partes están sometidas a ultra alto vacío (UHV). Para el diseño de estas piezas se han tenido en cuenta todos los condicionantes propios de los trabajos en UHV respecto a compatibilidad de materiales, procesos de fabricación y aplicación de soluciones.
ÍNDICE

RESUMEN 1

ÍNDICE 3

1. GLOSARIO 7

2. PREFACIO 9

2.1. Luz Sincrotrón. Aceleradores de partículas 9

2.1.1. ¿Qué es la luz sincrotrón? 9

2.1.2. Acelerador de partículas. Descripción 9

2.1.3. Línea de luz 29. Beamline for resonant absorption and scattering (BOREAS). Descripción 13

2.2. Motivación 17

3. INTRODUCCIÓN 18

3.1. Objetivos del proyecto 18

3.2. Alcance del proyecto 18

4. CÁMARA CCD (DETECTOR) 19

4.1. Información general 19

4.2. Conexiones Eléctricas 20

4.3. Conexiones de refrigeración 21

5. ESPECIFICACIONES DEL PROYECTO 23

5.1. Estación final (MARES). Contexto 23

5.2. Observaciones generales 24

5.3. Restricciones geométricas 25

5.4. Brazo del detector. Restricciones y detalles 25

5.5. Brida exterior y conexiones necesarias 26

5.6. Soporte para la cámara CCD (caja de conexiones) 27

5.7. Pantalla protectora 27

5.8. “Beam stopper” 27

6. SOLUCIÓN CONCEPTUAL 28

6.1. Soporte (elementos fuera de UHV). Diseño 31

6.1.1. Sistema Motriz. Selección 32

6.1.2. Elementos a fabricar. Diseño 38

6.2. Brazo-detector (elementos dentro de UHV). Diseño 41
6.2.1. Materiales. ..41
6.2.2. Elementos a fabricar..43
6.2.3. Selección del fuelle..44

7. CÁLCULOS CON ELEMENTOS FINITOS Y RESULTADOS.
 SOLUCIÓN CONCEPTUAL. ...48
7.1. Condiciones de contorno y contactos. ...48
7.2. Resultados..51

8. DISEÑO DETALLADO. ..55
8.1. Elementos fuera de UHV..55
 8.1.1. Soporte principal..55
 8.1.2. Soporte intermedio...58
 8.1.3. Ensamblaje general...59
8.2. Elementos dentro de UHV..60
 8.2.1. Tubo de vacío...60
 8.2.2. Pantalla protectora...61
 8.2.3. Ensamblaje general...65

9. DIMENSIONES PRINCIPALES DEL SOPORTE PARA LA CÁMARA
 CCD. ..66

10. DIMENSIONES GENERALES DE LA INTEGRACIÓN DEL SOPORTE
 EN MARES. ..68

11. MONTAJE Y MANTENIMIENTO. ..70
 11.1. Plan de montaje...70
 11.2. Mantenimiento..72

12. CÁLCULO CON ELEMENTOS FINITOS Y RESULTADOS. DISEÑO
 DETALLADO. ..75
 12.1. Resultados...76

13. PLANIFICACIÓN Y PRESUPUESTO DEL PROYECTO.78

14. IMPACTO AMBIENTAL. ..80

15. HOJA DE DATOS TÉCNICOS. ...81

CONCLUSIONES ...83

AGRADECIMIENTOS ...85
BIBLIOGRAFÍA..87
Referencias bibliográficas ...87
Bibliografía complementaria ...87
ANEXO A. PRESUPUESTO. ...90
ANEXO B. CÁLCULOS. ...95
ANEXO C. PLANOS. ..96
1. Glosario

- **UHV**: Abreviatura de la palabra inglesa ultra high vacuum (ultra alto vacío).

- **Bake-out**: Proceso utilizado para conseguir llegar a niveles de ultra alto vacío, mediante el cual, además de estar constantemente capturando moléculas del recinto con las bombas iónicas, se calienta el recinto a una temperatura variable entre 120-250 °C, según el tipo de bake-out que se esté haciendo, de modo que las moléculas existentes aumentan su velocidad y por lo tanto la probabilidad de que éstas sean capturadas por las bombas iónicas de vacío.

- **Endstation**: Parte de las diferentes líneas de luz del sincrotrón ALBA donde se realizan los diversos experimentos con luz sincrotrón.

- **LS**: Abreviatura de Luz sincrotrón: Radiación emitida por una partícula cargada acelerada que emite cuando esta se mueve a velocidades relativistas.

- **BL**: Abreviatura de la palabra inglesa Beam Line, Las Beam Line son cada uno de los laboratorios de investigación que forman el sincrotrón ALBA.

- **CCD**: Abreviatura de la palabra inglesa 'charge-coupled device'.

- **BOREAS**: Abreviatura de las palabras inglesas ‘Beamline for resonant absorption and scattering’ y nombre del laboratorio de luz número 29 del sincrotrón ALBA.

- **MARES**: Abreviatura de las palabras inglesas ‘Magnetic resonant scattering’ y nombre de la segunda endstation de BOREAS.

- **Linac**: Dispositivo generador de electrones para ser acelerados.

- **Rotary**: Elemento con movimiento circular integrado en MARES encargado de integrar los detectores.

- **Feedthrough**: Dispositivo comercial que se utiliza para integrar conexiones eléctricas en UHV.
• **Fiducialización**: Referenciar la parte sensible o eje de un componente a referencias externas que servirán más tarde para alinear el componente y conseguir que su parte sensible o eje, se sitúen en su posición nominal.

• **Criomanipulador**: Elemento perteneciente a MARES que permite introducir la muestra en el interior del crioimán HTS colocado en el centro de la cámara de UHV.
2. Prefacio

En este apartado se explica qué es, cómo se hace y para que se utiliza la luz sincrotrón, las partes de un acelerador de partículas y una breve explicación de la correspondiente “línea de luz” (Beam Line) en la que se ha instalado el dispositivo para controlar el posicionamiento de una cámara CCD.

2.1. Luz Sincrotrón. Aceleradores de partículas

2.1.1. Qué es la luz sincrotrón?

Se llama luz sincrotrón (LS) a la luz que emiten las partículas cargadas que se mueven a velocidades relativistas cuando siguen trayectorias curvas. Esta luz, de alta energía e intensidad, altamente focalizada y que además está linealmente polarizada, se utiliza usualmente para el estudio de la materia, en aplicaciones industriales o de investigación de carácter físico, química, biológico, farmacéutico o médico.

El instrumento básico para producir LS es un acelerador circular de partículas (electrones, en el caso del sincrotrón de Barcelona).

2.1.2. Acelerador de partículas. Descripción

Breve descripción de la máquina

Se pueden distinguir dos redes de imanes principales en un acelerador de partículas. En el caso de fuentes de luz sincrotrón modernas, se separan dos funciones principales “aceleración” y “almacenaje” (Propulsor o booster y anillo de almacenamiento o Storage Ring) en dos anillos diferentes. Las partículas se aceleran en el primer anillo, hasta llegar a un máximo de energía (energía irradiada = energía suministrada). Entonces se extraen del anillo propulsor y pasan por el anillo de almacenamiento. Aquí pueden girar durante horas o bien días, depende del diseño de la máquina. La red de imanes se compone, como ya se ha mencionado, por dos sub-redes, y como nota característica, todo el circuito de generación, aceleración y almacenamiento de partículas se realiza a través de cámaras de ultra vacío, (10⁻⁹ mbar). A continuación se explican los elementos más importantes.
- **Booster**: Es el anillo de aceleración. Es un círculo de imanes curvados dipolares donde desemboca el generador principal de partículas (**Linac**) para que éstas sean aceleradas. El booster, desemboca en la línea de transferencia que lleva las partículas aceleradas al anillo de almacenamiento (Storage Ring).

Fig. 2.1. Esquema de las redes de anillos del sincrotrón ALBA
• **Storage Ring:** Es el anillo donde se almacenan las partículas aceleradas. Como en el booster, los electrones circulan dentro de un medio en vacío formado por un anillo de cámaras y sistemas de bombeo de ultra vacío, y son conducidas en trayectorias circulares por los siguientes elementos:

 o **Dipolos:** Son imanes formados con un cierto radio de curvatura. Su misión es provocar a los electrones una trayectoria curva para poder extraer radiación en forma de abanico.

 ![Fig. 2.2. Imagen de un dipolo colocado en el Booster (anillo aceleración)](image)

 o **Imanes ópticos:** Son imanes cuadrupolares o sextupolares. Su misión es guiar los electrones en su trayectoria, focalizándolos en el espacio transversal y longitudinal.

 ![Fig. 2.3. Imagen de un imán cuadrupolo y un sextupolo respectivamente](image)
El anillo de almacenamiento, no es completamente circular, sino que tiene forma poligonal. Los dipolos son de geometría curva, pero las secciones destinadas a dispositivos de inserción y a los imanes focalizadores, son rectas. Como elementos importantes se encuentran además:

- **Cavidades de radiofrecuencia**: Tienen la misión de proporcionar campo eléctrico en las partículas aceleradas para compensar las pérdidas de energía a causa de la radiación emitida. Se colocan en el anillo de almacenamiento y en el Linac.
Front End: Formados por un conjunto de dispositivos que canalizan la radiación emitida y la conducen a las líneas experimentales (Beam Lines). Éstas, son un conjunto de instrumentos que adaptan la luz sincrotrón para poder utilizarlas en cada uno de los diferentes experimentos.

El conjunto de líneas experimentales forman el área experimental, la zona física donde se desarrollan las actividades de investigación.

Descripción

La línea de luz de rayos X blandos de polarización variable donde se ha realizado el proyecto está dedicada a las investigaciones de polarización espectroscópica de materiales. Los principales campos de interés son los siguientes: materiales magnéticos, óxidos, ferro eléctricos o materiales poliméricos para dispositivos de micro y nanotecnología, usualmente en campos de spin trónica y almacenamiento de información.

La línea de luz está equipada con dos vanguardistas detectores (end-station), un imán de altos campos vectoriales (HECTOR) para métodos de absorción y un refractómetro de ultra alto vacío (MARES) para enfoques de difracción y reflexión. Ambos permiten estudios espectroscópicos bajo altos campos magnéticos (desde 2 hasta 6 Teslas) y muestrear a temperaturas entre 1,5 y 340 K.
Parte Óptica

En la siguiente figura 2.7, se muestra un esquemático de los componentes ópticos de BOREAS.

Fig. 2.7. Esquema de la parte óptica de la línea de luz

En resumen la línea de luz consta de tres secciones:

1) La primera sección se compone de espejos planos y toroidales (PM y TM, respectivamente, véase figura 2.7). Su función es la de absorber la mayor parte de potencia calorífica del haz entregado desde la fuente y preparar el haz para el monocromador, centrándose en el plano vertical (que es el plano dispersivo del monocromador) en la rendija de entrada.

2) La segunda sección consta del monocromador: este se basa en el espaciado de líneas variables (VLS) de rejillas planas (PGs), que trabajan en ángulo fijo (175° en combinación con el espejo esférico SM1 o 177° en combinación con el espejo esférico SM2). El monocromador está equipado con dos ranuras de entrada y salida las cuales dispersan en el plano vertical.
3) La tercera sección permite la reorientación óptica, y consta de dos espejos flexibles dispuestos en una geometría Kirkpatrick-Baez, donde el primer espejo (PE1) está focalizando verticalmente, mientras que el segundo espejo (PE2) se focaliza en horizontal. Este sistema permite enfocar el haz a cualquiera de las dos estaciones experimentales.

XMCD endstation: Imán Héctor

Esta estación consiste en un crio imán compatible con el UHV, el sistema está equipado con tres bobinas superconductoras que permiten campos magnéticos máximos de 6 Teslas (en el plano horizontal a lo largo de la dirección del haz, con una velocidad de barrido de 2 T/min) y 2 T (en el plano horizontal perpendicular a la dirección del haz y en plano vertical, con una velocidad de barrido de 0,6 T/min). El funcionamiento simultáneo de las tres bobinas permitirá crear una esfera de 2 T con una velocidad de barrido de 0,4 T/min.

Fig. 2.8. Imagen del imán Hector
Scattering endstation: Magnetic resonant scattering (MARES)

La endstation MARES es una estación final multicomponente muy compleja que se encuentra actualmente en desarrollo y no estará disponible para los experimentos de los usuarios hasta finales del 2014. Algunos de los componentes ya se han adquirido, como el criomanipulador, el imán de UHV, el porta muestras, el refractómetro y la cámara. Algunos componentes más se recibirán en los próximos meses. Además los brazos de los detectores, uno de ellos objeto de este proyecto, están en las últimas fases de diseño actualmente.

![Imagen de la end station MARES](image-url)
2.2. Motivación

Como se ha expuesto anteriormente, la estación final MARES está en proceso de construcción. La realización de este proyecto se basa en la realización y desarrollo de la estación final. El objeto de este proyecto es uno de los detectores que se posicionarán en la cámara de UHV que constituye la propia estación final.

Es por tanto de gran importancia tener en cuenta los posibles objetos que se instalarán en dicha estación final para evitar las colisiones con ellos aunque no sean objeto de este proyecto. Además será necesario reservar el espacio suficiente y tener la cautela de pensar en el resto de detectores que se llegarán a instalar cuando el desarrollo de la estación finalice.

También se ha de tener en cuenta que aunque no forme parte del campo de la ingeniería, el desarrollo del proyecto de ingeniería confluirá en un proyecto de investigación científica. Dicho proyecto de investigación científica, a cargo del científico de la línea de luz, es la motivación principal de este proyecto de ingeniería.
3. Introducción

Este proyecto se basa en la integración de un detector CCD en una cámara de UHV. Este detector deberá ir montado en un soporte (objeto de este proyecto) que posea unas características mecánicas que vendrán dadas por las especificaciones del científico encargado.

3.1. Objetivos del proyecto

El objetivo de este proyecto es llevar acabo el diseño de un soporte mecánico para una cámara CCD. Dicho soporte deberá cumplir las especificaciones citadas en el apartado 5 de este documento.

El soporte debe ser muy rígido para así minimizar las deformaciones bajo las cargas que produzca el UHV. En estas condiciones de contorno es necesario realizar movimientos de alta resolución y precisión.

3.2. Alcance del proyecto

El proyecto se inicia con el estudio del posicionamiento del brazo respecto el espacio disponible en la cámara de UHV MARES. A partir de aquí se desarrolla una primera solución conceptual. Dicha solución se completa con un documento de especificaciones para realizar una simulación en Ansys con las correspondientes condiciones de contorno y cargas previamente calculadas. En caso de que el resultado no fuese el esperado se realizarán las correspondientes iteraciones hasta que se consiga una solución conceptual que cumpla con los requerimientos mecánicos especificados.

Definida la solución conceptual se ha realizado un primer presupuesto aproximado que deberá ser aprobado por el correspondiente científico de línea de luz.

Con el presupuesto aprobado, se pasa al diseño detallado del proyecto a partir del cual, se crean todos los planos necesarios para la fabricación de las diferentes piezas.

Durante la creación de los planos se realiza una última simulación con elementos finitos del CAD detallado y se confecciona el presupuesto definitivo.
4. Cámara CCD (Detector).

Un chip CCD se basa en un circuito integrado que contiene un número determinado de condensadores enlazados o acoplados. Bajo el control de un circuito interno, cada condensador puede transferir su carga eléctrica a uno a varios de los condensadores que estén a su lado en el circuito impreso. En este caso la cámara CCD escogida utiliza un chip e2v basado en la tecnología CCD42-40.

4.1. Información general.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Requerimiento</th>
<th>Propuesta XCAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de pixels</td>
<td>2k x 2k</td>
<td>2048 x 2052</td>
</tr>
<tr>
<td>Área</td>
<td>27.6 x 27.6 mm² o más</td>
<td>27.6 x 27.2</td>
</tr>
<tr>
<td>Dimensión pixel</td>
<td>13.5 µm cuadrado o menos</td>
<td>13.5 µm</td>
</tr>
<tr>
<td>capacidad</td>
<td>100.000 e⁻ o más</td>
<td>> 100.000 e⁻</td>
</tr>
<tr>
<td>Rango dinámico</td>
<td>20.000:1 o mejor</td>
<td>100.000:<5 e⁻</td>
</tr>
<tr>
<td>Máxima velocidad</td>
<td>1 MHz</td>
<td>200 kHz o 1MHz a través de 2 nodos</td>
</tr>
<tr>
<td>Convertidor analógico -digital</td>
<td>16 Bit</td>
<td>16 bit o 14 bit</td>
</tr>
<tr>
<td>Control</td>
<td>Linux o Windows</td>
<td>Windows</td>
</tr>
<tr>
<td>Interfaz con Hadware</td>
<td>Link cámara o gigE</td>
<td>USB2 o Link Cámara</td>
</tr>
<tr>
<td>Rango espectral</td>
<td>100 – 4000 eV</td>
<td>100 – 4000 eV</td>
</tr>
<tr>
<td>Nodos de salida</td>
<td>2, 4</td>
<td>2</td>
</tr>
<tr>
<td>Ruido en lectura de salida</td>
<td>< 5 e⁻/pixel</td>
<td>< 5 e⁻/pixel</td>
</tr>
<tr>
<td>Tolerancia Magnética</td>
<td>100 Gauss</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.1. Información general del chip CCD.
4.2. Conexiones Eléctricas.

La cámara CCD consta de tres cables eléctricos independientes, dos de ellos de señal y uno de control.

Los dos de señal son dos cables RG178 que tienen un conector MCX en la parte posterior de la cámara CCD (parte en presión atmosférica) que se convierten en dos conectores BNC que se conectarán a la parte frontal de la caja de control de la CCD. Además de los cables de señal, la cámara CCD tiene un cable de control que se conecta al chip de la CCD con un conector Micro D de 31 pines, que se convierte en un conector SUB-D de 25 pines al llegar a la parte frontal de la caja de control. Véase figura 4.2.

Tanto los diámetros de los cables como el tamaño de los conectores son muy importantes para este proyecto y se ha de tener en cuenta cuando se diseñen los elementos mecánicos del soporte puesto que los cables deberán introducirse a través de ellos.

Fig. 4.2. Esquema de situación de los terminales eléctricos de la cámara CCD.
4.3. Conexiones de refrigeración.

Para conseguir un correcto funcionamiento de la cámara CCD el chip de ésta debe encontrarse a una temperatura de 23 ºC. Aunque los rayos X de la beam line no incidirán directamente sobre la cámara, la temperatura que podría alcanzar ésta es superior a la temperatura de correcto funcionamiento. Es por esta razón que se necesita refrigeración en el sistema.

Para refrigerar la cámara CCD ésta lleva instalados dos conectores VCR en la parte posterior de la cámara. Estos se conectarán a dos codos de 90º VCR y dos mangueras que se acoplarán a dos pasamuros instalados en la base principal del soporte. Véase figura 4.3.

Fig. 4.3. Terminales para la refrigeración de la CCD.
La manguera utilizada es una manguera Swagelok de PTFE serie T. La tabla 4.1 muestra las principales características de la manguera seleccionada.

<table>
<thead>
<tr>
<th>Dimensión (Pulgadas)</th>
<th>Temperatura (°C)</th>
<th>Min. Radio dinámico (mm)</th>
<th>Conexiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>-53 - 230</td>
<td>50,8</td>
<td>VCR Hembra</td>
</tr>
</tbody>
</table>

Tabla 4.1. Principales características de la manguera de refrigeración.

Se ha seleccionado este tipo de manguera ya que soporta la temperatura de bakeout (véase glosario) de la cámara de vacío y tanto el radio dinámico como estático son inferiores a los radios que se encuentran en la geometría del soporte y de la cadena porta cables utilizada.
5. Especificaciones del proyecto.

El soporte debe proporcionar la fijación al detector y el recorrido necesario para el cableado. Además incorporará las interfaces necesarias para la brida de vacío (feedthrough) y una fijación en la brida del rotary (parte móvil giratoria perteneciente a MARES).

5.1. Estación final (MARES). Contexto

La siguiente figura 5.1 muestra la estación final (MARES) encima de la cual está montado el detector giratorio multi-brida (rotary) que incorpora seis bridas de doble lado DN100CF.

Los elementos internos de la estación final (MARES) y el diseño general del soporte para la cámara CCD están dibujados en la siguiente figura 5.2.
Observaciones generales

El soporte deberá ser instalado en una de las seis bridas localizadas en el rotary de la cámara de UHV de la estación final (MARES). Deberá cumplir los siguientes requisitos:

1. Todos los soportes deben ser capaces de ser levantados un par de centímetros por encima del nivel del haz. Además debe ser capaz de no bloquear el haz cuando otro detector trabaje.
2. Para el movimiento vertical explicado en el primer punto se consideran necesarios la instalación de finales de carrera, *encoders* en la parte móvil y una buena resolución.
3. El detector en una posición vertical dada, se puede mover a causa del movimiento giratorio provocado por el rotary, por lo que puede colisionar con otros equipos fijos introducidos en la cámara. El imán, paredes y las diferentes herramientas montadas en las bridas laterales deben evitarse, confirmar en CAD.
4. El soporte deberá ser compatible con UHV y deberá soportar temperaturas de bakeout como mínimo de 100-120 ºC.
5. El soporte deberá ser fabricado con materiales no magnéticos (aluminio, titanio, aceros no magnéticos y plásticos, todos ellos deben ser compatibles con UHV).
6. Una cosa muy importante a tener en cuenta al diseñar el soporte debe ser su estabilidad frente a vibraciones y la detección de ruido eléctrico.

Fig. 5.2. Elementos internos pertenecientes a MARES.
5.3. **Restricciones geométricas**

El detector estará rodeado de UHV por la pared interior de la cámara al igual que el imán central, otros detectores y cualquier componente montado en el lado de las bridas de la cámara UHV.

Dentro de la cámara UHV, cualquier componente del soporte podrá estar girando con respecto a cualquier elemento fijo externo, y por lo tanto de la misma manera con respecto a los elementos montados en el centro de la brida. Las restricciones vendrán definidas por el hecho de evitar la colisión de estos elementos.

Cuando el detector esté en su posición más elevada puede interferir con equipamiento colocado en las bridas oblicuas, por ejemplo evaporadores. Esto hace deseable que el detector, los cables y las conexiones de agua estén en un recinto para que en caso de una colisión eventual no se dañen (el detector viene incorporado en una brida por lo que lateralmente es sólido).

5.4. **Brazo del detector. Restricciones y detalles**

Brazo de soporte

El brazo de soporte deberá incluir:

- Movimiento vertical
- Motor
- *Encoder*
- Finales de carrera
- Soporte para cables
- Conectores de agua, soporte para ellos, conexiones para alimentar la cámara CCD, así como conectores exteriores para UHV (*feedthrough*)

Movimiento vertical, rangos y resolución

El detector es necesario que tenga un movimiento vertical por las siguientes razones:
• Será necesario que se aparte de la trayectoria del haz cuando el detector no
trabaje o trabajen otros detectores.

• Será necesario para realizar un escáner con el detector como parte de los
derivantes experimentos.

Mientras que la primera necesidad no requiere un movimiento de precisión. Para el
segundo si será necesario un buen control del detector.

El rango del movimiento vertical deberá ser lo más grande que permita la geometría de la
cámara de UHV y evitando las colisiones que se puedan producir en el exterior con
movimiento giratorio del criomanipulador.

<table>
<thead>
<tr>
<th>Movimiento</th>
<th>Rango</th>
<th>Resolución</th>
<th>Manual/motorizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>Tan largo como sea posible.</td>
<td>De 50 a 100 micrómetros deseados</td>
<td>Motorizado, encoder en la parte móvil.</td>
</tr>
</tbody>
</table>

| Tabla. 5.1. Resumen de las especificaciones mecánicas |

El movimiento vertical se puede obtener mediante actuadores externos, motores en vacío o
incluso opciones tales como actuadores acoplados magnéticamente pueden ser una
posible solución. Puesto que el campo magnético de dispersión estará en la gama de entre
20-50 gauss en el nivel de la brida del detector es probable que no sea lo suficientemente
grande como para estorbar a los dispositivos de alimentación del movimiento.

5.5. **Brida exterior y conexiones necesarias**

La brida instalada en UHV necesitará *feedthroughs* para las diferentes conexiones de señal
y agua.

El número de cables de señal, cualquier multipin o conectores estándar vendrán detallados
por el diseño del detector CCD. De la misma manera, también estarán detallados los cables
o feedthroughs mecánicos que sean necesarios poner para realizar el movimiento vertical como el actuador necesario para proteger la pantalla del detector.

5.6. Soporte para la cámara CCD (caja de conexiones)

La cámara CCD requiere una caja grande, no demasiado pesada para la electrónica. Hay una limitación para la longitud del cable desde la brida donde está colocado el detector hasta la caja principal. Contra más grande sea esta distancia mayor será el ruido eléctrico producido. El límite está alrededor de 2 a 3 metros. Por esta razón, la caja electrónica debe estar colocada relativamente cerca.

5.7. Pantalla protectora

Será necesaria la instalación de una pantalla protectora en UHV además de una mecánica para moverla (ya sea manualmente desde fuera o probablemente tendrá que incorporar un pequeño motor, ya sea dentro o fuera de UHV). Esta pantalla servirá de protector para el detector CCD cuando no esté en uso. Además incorporará una pantalla de fósforo, un beam stopper y permitir el funcionamiento de la CCD. Su tamaño debe ser optimizado para no crear nuevas restricciones fronterizas adicionales.

5.8. “Beam stopper”

Se trata de un elemento que se monta por la brida inferior dentro de la cámara de dispersión y se utiliza para interceptar el haz y detenerlo, por lo que es necesario que el detector no colisione con él.

5.9. Especificaciones técnicas.

- Todos los cálculos deberán tener como mínimo un coeficiente de seguridad de dos puntos.

- Minimizar las deformaciones del soporte.

- Las frecuencias propias del sistema deberán encontrarse por encima de 30 Hz, puesto que las vibraciones naturales del suelo se encuentran entre 20 y 30 Hz.
6. Solución conceptual

El proyecto se ha comenzado con el estudio del posicionamiento del soporte respecto el espacio disponible en la cámara de UHV. El soporte estructural que sostendrá el detector y permitirá el movimiento se ha situado en una de las seis bridas dobles pertenecientes al elemento giratorio (rotary) de MARES. En el centro de este elemento se encuentra el criomaneuverador, este elemento contiene diferentes partes móviles con las que se ha de evitar la colisión entre el soporte y éstas. Otro elemento importante con el que se han de evitar las colisiones es el Beam Stopper instalado en el interior de MARES. Además se ha de intentar que el detector CCD quede detrás de este dispositivo puesto que la cámara CCD obtendrá una mejor resolución cuanto más alejada esté de la muestra.

Para evitar la colisión con los elementos pertenecientes al criomaneuverador se han tomado las dimensiones más restrictivas de éste y se ha diseñado en CAD un volumen de restricciones, véase Figura. 6.1. Por lo tanto de cara al diseño conceptual del proyecto, la primera premisa ha sido evitar este elemento de contorno.

![Diag Ramos 1.1 MARES con criomaneuverador y con volumen de restricciones](context.img_url)

En una primera opción se ha considerado diseñar todo el mecanismo en el interior del agujero de la brida DN100CF perteneciente al rotary. El problema está en que la brida DN100CF está situada muy cerca del criomaneuverador y ha resultado muy complicado evitar...
las colisiones con elementos externos, además de conseguir un movimiento vertical muy limitado por el espacio disponible en el exterior.

Finalmente, se ha decidido situar la parte móvil del detector en el exterior. Con esta decisión se consigue cumplir todas las especificaciones del proyecto. Además se obtiene un rango de movimiento que aprovecha todo el espacio vertical del que se dispone en la cámara de UHV (MARES).

El proyecto se ha dividido en dos partes, véase Fig. 6.2, el brazo detector, formado por los elementos que están dentro de UHV y el soporte, formado por los elementos que se encuentran fuera de UHV.

El desplazamiento en el interior de la cámara se ha considerado lo más largo posible con un desarrollo total de 155 mm (-45 mm / +110 mm, con respecto a la posición de la trayectoria del haz). En todas estas posiciones se ha evitado la colisión con cualquier elemento interno. Además, se ha mantenido el detector unos centímetros por encima de la trayectoria del haz cuando éste se encuentra en la posición más elevada tal y como se especificaba.

Fig. 6.2. Solución conceptual final del proyecto.
6.1. Soporte (elementos fuera de UHV). Diseño

El soporte se ha diseñado a partir de nueve elementos, véase figura 6.3:

1. Dos Guias Scheneeburger BM W 15 con cuatro carros tipo F.
4. Motor paso a paso Phytron ZSS 57 con reducción 100:1 de tres etapas.
5. Soporte para el motor.
7. Soporte intermedio.
8. Tubo.
9. Acoplamiento entre el motor y el husillo.

Fig. 6.3. Elementos del soporte
6.1.1. **Sistema Motriz. Selección**

El sistema motriz del conjunto consta tal y como muestra la figura 6.4 de seis elementos.

![Diagrama del sistema motriz](image)

Fig. 6.4. Sistema motriz

Guias Scheneeburger.

La marca de las guías que se ha seleccionado fue recomendada por el director del proyecto dentro de la empresa. Dentro de los diferentes modelos que ofrece esta marca se ha seleccionado las de tipo BM W 15 ya que es el modelo más compacto en cuanto al tamaño.

![Esquema de la disposición de las guías](image)

Fig. 6.5. Esquema de la disposición de las guías.
En la figura 6.6 se muestra el esquema de fuerzas del sistema. Con él se ha podido calcular la fuerza que actúa en cada uno de los carros. Los resultados que se han obtenido resolviendo el siguiente sistema de ecuaciones se han utilizado para comprobar la viabilidad del modelo escogido tanto de las guías como de los carros.

\[\frac{F_1 \cdot l_1}{2} = F_1 \cdot l_1 + F_2 \cdot l_2 \]

(Ec. 6.1)

\[\frac{l_1}{l_2} = 2.5 \iff \frac{F_2}{F_1} = 2.5 \]

(Ec. 6.2)

<table>
<thead>
<tr>
<th></th>
<th>Resultado (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{Carro, sup})</td>
<td>1445.4</td>
</tr>
<tr>
<td>(F_{Carro, inf})</td>
<td>3613.6</td>
</tr>
</tbody>
</table>

Tabla 6.1. Fuerzas aplicadas en los carros.
Puesto que el sistema se traslada, se ha considerado para calcular el coeficiente de seguridad la capacidad a carga dinámica del sistema de guías con un valor de 9000 N, lo que implica un coeficiente de seguridad de 2,5.

Husillo precargado THK.

![Imagen de un husillo de precisión THK.](image)

El modelo seleccionado es el modelo precargado con bolas sobredimensionadas de THK, EBB 2005-3. Este tipo de precarga obliga al fabricante a una fabricación más precisa del eje para evitar que se encalle, lo que permite una mayor precisión en el movimiento.

La fuerza que tiene que soportar el husillo es directamente la generada por la existencia de elementos en UHV con un valor de 2197,1 N, véase Anexo B apartado B.2. No obstante no se ha elegido el husillo por la carga, sino por una cuestión de dimensiones (equilibrado con el resto de medidas del diseño). Además de las dimensiones, también se ha de tener en cuenta la rigidez para que disminuya la deformación del sistema cuanto éste se encuentre bajo las cargas de vacío.

Finalmente, el husillo seleccionado tiene una capacidad de carga dinámica de 10600 N, lo que implica un coeficiente de seguridad de 4,24.

Acoplamiento.

El acoplamiento flexible seleccionado para la unión del motor con el husillo se trata de un acoplamiento Ruland MBC 25-12-10-A. Se ha seleccionado este modelo puesto que el eje del motor es de 10 mm y el del husillo de 12 mm y me permite acoplar los ejes sin exigencias de alineamiento.
Soporte para rodamientos SKF FLRBU1.

<table>
<thead>
<tr>
<th>Flanged bearing unit designation</th>
<th>C_x</th>
<th>C_{xx}</th>
<th>Number of bearings</th>
<th>Maximum preload torque *</th>
<th>Axial rigidity</th>
<th>Tilt rigidity</th>
<th>Designation</th>
<th>Hook spanner</th>
<th>Tightening torque (Nm)</th>
<th>Grub screw</th>
<th>Size</th>
<th>Max. tightening torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLRBU1</td>
<td>13.3</td>
<td>14.7</td>
<td>2</td>
<td>7201 BEGBP</td>
<td>0.10</td>
<td>150</td>
<td>KMT 1</td>
<td>HN 3</td>
<td>10</td>
<td>M5</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6.8. Principales características del modelo de SKF FLRBU1.

Para el soporte de los rodamientos ha sido seleccionado el modelo FLRBU1 de SKF con una rigidez de 150 N/μm. Se ha seleccionado éste porque comparado con el modelo recomendado por el fabricante THK (modelo BK17 con una rigidez de 125 N/μm) para el husillo seleccionado, el de SKF tiene una mayor rigidez. Consiguiendo de esta manera una mayor rigidez del conjunto que contribuirá a reducir las deformaciones del sistema.

Motor paso a paso.

Para este proyecto una de las condiciones más importantes es garantizar un preciso posicionamiento del detector. Es por esta razón, que el tipo de motor seleccionado ha sido un motor paso a paso.

En este caso, el sincrotron Alba utiliza habitualmente la marca Phytron y por razones de recambios y para poder utilizar controladores ya existentes, se ha optado por esta opción.

El desarrollo de todos los cálculos referentes al motor se puede encontrar en el Anexo B.5.

Alba utiliza para las diferentes aplicaciones controladores que generan entre 3000 y 4000 pasos·s$^{-1}$, considerando que los motores Phytron requieren 200 pasos-vuelta$^{-1}$ se obtiene una velocidad angular de aproximadamente 1000 rpm.

Para esta aplicación no se seleccionará el motor a partir del par nominal y con la ayuda de las diferentes gráficas de motor par-velocidad de giro. En este caso, se ha tenido en cuenta que en caso de fallo eléctrico el motor debe tener un par de detención suficiente para que el detector no caiga.
Teniendo en cuenta el espacio disponible no se puede seleccionar un motor con un diámetro mayor a 60 mm. Esto implica que se han tenido que descartar los motores grandes de la marca. Dentro de los motores pequeños del modelo ZSS se ha seleccionado el más grande, el ZSS 57, véase Fig. 6.9.

Como se puede observar en la figura 6.9, el modelo ZSS 57 tiene un par de detención de 0,05 Nm. Puesto que nuestro par resistente es de 2,49 Nm se ha optado por una reducción de tres etapas con un ratio de reducción de 100:1. De esta manera se ha obtenido un par resistente de 0,0249 Nm inferior al par de detención que genera el motor. Lo que implica un factor de seguridad de 2.

En conclusión, el motor seleccionado a ha sido un motor paso a paso Phytron modelo ZSS 57 con una reducción 100:1 de tres etapas.

Fig. 6.9. Imagen del cuadro de características de los motores Phytron modelo ZSS.
A 1000 rpm se obtiene un par de aproximadamente 0,4 Nm, es decir, con un funcionamiento correcto sin fallos eléctricos se ha diseñado con un coeficiente de seguridad de 8,5.

Con este modelo seleccionado se obtienen las siguientes características del sistema recogidas en la tabla 6.2 y detalladas en el Anexo B.5:

<table>
<thead>
<tr>
<th>Características</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Par de detención (ZSS 75) (Nm)</td>
<td>0,05</td>
</tr>
<tr>
<td>Par Resistente (Nm)</td>
<td>0,0249</td>
</tr>
<tr>
<td>Resolución Lineal (micras)</td>
<td>0,25</td>
</tr>
<tr>
<td>Resolución Lineal (micras·min⁻¹)</td>
<td>50</td>
</tr>
<tr>
<td>Velocidad (mm·s⁻¹)</td>
<td>0,83</td>
</tr>
<tr>
<td>Tiempo para 155 mm (s)</td>
<td>186</td>
</tr>
</tbody>
</table>

Tabla 6.2. Resumen de las características del sistema.
El hecho de seleccionar el motor mediante el par de detención ha implicado una reductora que ha producido una disminución de la resolución y un incremento del tiempo de recorrido. Se han buscado otras opciones como instalar un freno y seleccionar el motor a partir del par nominal poder reducir el ratio de reducción. Pero está el problema del espacio disponible, que no nos permite incorporar ningún otro elemento.

6.1.2. **Elementos a fabricar. Diseño**

Soporte estructural.

![Fig. 6.11. Imágenes del soporte estructural.](image)

El soporte estructural es uno de los elementos más importantes en el diseño del soporte para el detector CCD. Puesto que debe sostener todo el sistema motriz (guías, husillo y motor) y ser lo suficientemente rígido como para soportar las cargas provocadas por el UHV.

Las dimensiones generales del soporte son 268x350x182 y ha sido fabricado con aluminio 7075 ya que es un buen aluminio estructural. Estas dimensiones vienen dadas por la especificación más importante del proyecto. El detector no debe colisionar con ningún elemento externo perteneciente al criomanipulador, o lo que es lo mismo, el soporte estructural debe evitar por completo la colisión con el volumen de restricciones explicado anteriormente. Véase Fig. 6.12.
La distancia entre el centro de la brida perteneciente al rotary y el husillo es de 177,7 mm. Esta es la distancia justa para poder instalar el motor sin que colisione con ningún elemento. Finalmente, el soporte se unirá mediante dieciséis tornillos de métrica ocho a la tapa del rotary.

Soporte intermedio.

Fig. 6.12. Soporte integrado en MARES junto con el volumen de restricciones.

Fig. 6.13. Soporte intermedio que sostiene la parte en UHV.
El soporte intermedio es otro elemento muy importante para el proyecto desde un punto de vista estructural. Está unido al soporte principal mediante los carros de las guías, a la tuerca del husillo y al tubo que une las partes de UHV con las de presión atmosférica.

Las dimensiones de este soporte vienen dadas por las condiciones de contorno con el criomanipulador, véase figura 6.12. El soporte intermedio debe ser lo más ancho y alto posible para conseguir una mayor rigidez y disminuir las deformaciones. En esta pieza las deformaciones son especialmente importantes puesto que un pequeño ángulo de deformación en este soporte implica uno mayor en el centro del detector.

Se ha fabricado en acero 316L porque con este material resistirá mejor las deformaciones que con el aluminio, aunque implique un mayor peso. Esto se debe a que el módulo elástico del acero es bastante mayor que el de las aleaciones de aluminio.

Tubo.

El tubo es el elemento que une la parte de UHV con la parte que está a presión atmosférica y se ha fabricado en acero 316 L.

Tiene un diámetro exterior de 90 mm. La elección de esta dimensión viene dada por el diámetro interior del fuelle, elemento que permite el movimiento y crea la estanqueidad del UHV. El diámetro interior es de 55 mm y es el suficiente para poder pasar el conector eléctrico más grande que tiene el detector CCD, un conector SUB-D de 25 pines.

Una de las especificaciones técnicas impuestas por el encargado de supervisar el proyecto en CELLS era que las vibraciones mecánicas deben estar por encima de 30 Hz. Es por esta razón que el diámetro exterior es lo más grande posible y el interior lo más pequeño posible. Ya que la rigidez de este elemento ha sido clave para conseguir cumplir con la anterior especificación técnica.

6.2.1. Materiales.

Antes de explicar cada uno de los elementos que forma el brazo-detector quería hacer un inciso para justificar el uso de los materiales seleccionados en los elementos que se encuentran dentro de UHV.

Hay muchos tipos de aceros y aluminios y cada uno de ellos compuestos por diferentes elementos como el carbono, el cromo, silicio etc. Cada uno de estos elementos se rige por una curva de presión de vapor que está en función de la temperatura y la presión de trabajo.

El UHV se encuentra a 10^{-9} mbar. Lo que implica que hay que vigilar los materiales que se utilizan ya que alguno de los elementos que los componen podrían llegar a un estado de sublimación.

Además este proyecto tiene un añadido, y es que, delante del detector habrá un imán en funcionamiento, lo que implica que los materiales seleccionados deben ser no magnéticos.

Por estas dos razones los materiales con los que se fabricarán todos los elementos del brazo-detector son acero 316L y aluminio 6063 ya que cumple ambas restricciones. Véase figura 6.14, donde se muestran los puntos de sublimación de algunos de los elementos por los que están formados estos materiales.
Fig. 6.14. Gráfico presión – temperatura para diferentes elementos.
6.2.2. **Elementos a fabricar.**

El brazo-detector está compuesto por tres elementos, véase figura 6.15:

1. Brida reductora DN100CF – DN63CF.
2. Tubo de vacío.
3. Interfaz para la cámara CCD.

Fig. 6.15. Elementos del brazo-detector.

El material para fabricar el tubo de vacío es acero 316 L ya que está formado por cuatro partes diferentes unidas entre sí mediante soldadura. La primera parte de este tubo es una brida DN63CF que se ha unido mediante soldadura a un codo de 90° no estándar, que se une a una brida DN40CF mediante una reducción y otro codo de 90°.

En medio de este tubo se puede observar dos puertos con dosbridas ciegas DN40CF. Cada uno de los puertos se utiliza para conectar cualquier componente eléctrico o mecánico del interior de MARES.
Por último se ha diseñado tanto una cartela como una pieza de unión entre el tubo de vacío y el interfaz del detector que aportan rigidez y estabilidad al sistema disminuyendo la deformación y aumentando las frecuencias propias de resonancia.

La longitud vertical del tubo es de 214 mm. Esto permite evitar la colisión con la cámara de UHV cuando está en ambos extremos del rango de movimiento. En cuanto a la longitud horizontal es de 321 mm, lo que permite la instalación del beam stopper en unos de los puertos inferiores de MARES sin colisionar con él cuando el rotary gire. Véase especificación 5.8.

En cuanto a los diámetros, el diámetro crítico respecto a los conectores eléctricos es el diámetro interno del tubo que conecta a la brida DN40CF. Este diámetro es de 35 mm que permite el paso tanto del conector eléctrico micro D de 31 pines del detector como de las mangueras de refrigeración.

A este tubo se le conectan dos elementos. Una brida reductora DN100CF-DN63CF que conecta el tubo de vacío con los elementos de fuera de UHV y el interfaz del detector CCD. El interfaz está compuesto por dos puertos soldados entre sí. Una brida DN100CF que sujeta la cámara CCD y una brida DN40CF que conecta el interfaz con el tubo de vacío. Ambas piezas fabricadas con acero 316L.

6.2.3. Selección del fuelle

Un fuelle, también conocido por su nomenclatura inglesa bellows, es el dispositivo utilizado para unir dos sistemas independientes, permitiendo que entre ellos se dé un movimiento relativo de uno sobre el otro. Además, en nuestro caso, el fuelle o bellows se utiliza como barrera de separación entre el vacío y la atmósfera. De esta forma, nos permite transferir movimiento desde la zona a presión atmosférica hasta la zona que se encuentra en condiciones de UHV, y a la vez nos sirve de interfaz de separación.

Existen básicamente dos tipos de fuelles, los hidroformados o “hidroformed” y los “edge welded” o soldados por el borde; ambos reciben su nombre de su proceso de fabricación. Sin embargo, mientras los primeros son fuelles muy rígidos y soportan muy bien pequeñas deformaciones angulares, los segundos son más elásticos y soportan mejor las deformaciones lineales.
Se va a utilizar la marca suiza “COMVAT” como proveedora de las membranas de los fuelles. Estos fuelles se hacen a medida y por tanto, sus características deben quedar perfectamente definidas, según las hojas de datos que nos presta el fabricante, y para ello, se deben dejar claros los siguientes conceptos:

- **Diámetro interior (ID):** Es el diámetro máximo que tendrá el interior del fuelle en su rango normal de funcionamiento, y por lo tanto, será el límite exterior de los dispositivos que vayamos a introducir en él.

- **Diámetro exterior (OD):** Es el diámetro exterior máximo que tendrá la membrana en servicio, se debe tener en cuenta para visualizar las colisiones con otros objetos.

- **Longitud comprimida (lc):** es la mínima longitud en dirección axial que podrá tener cada una de las convoluciones del bellows. Es importante para calcular la posición en uno de los extremos del recorrido.

- **Longitud libre (lf):** Es la longitud que tendrá cada convolución del fuelle en ausencia de fuerzas distintas de la gravedad y colocado este con el eje vertical.

- **Elongación axial (z):** Es la máxima elongación que podrá soportar cada una de las convoluciones de la membrana.

- **Espesor (t):** Es el espesor de la lámina de material con la que está conformado el fuelle.

- **Área efectiva (EA):** Es el área calculada que ocupa cada una de las convoluciones del fuelle.

- **Constante elástica (SRCz):** Es la constante elástica del muelle (K) que se genera por efecto de compresión del muelle.

La especificación básica que ha de cumplir la membrana es que sea apta para el movimiento que se le va a imponer en las condiciones de uso del fabricante. De este modo se conseguirá que esté trabajando tal y como se ha diseñado para asegurar la vida que el fabricante indica.

Por otro lado, ha de cumplir las características de materiales y tamaño que nos permitan, por un lado introducir el fuelle en el vacío, teniendo en cuenta la desgasificación; y por otro lado, se ha de tener en cuenta que esta membrana va a ir sujeta por uno de sus extremos.
a una de las bridas DN100CF que están disponibles en la tapa del rotary, y por tanto sus medidas deben coincidir.

En la tabla 6.3 proporcionada por el fabricante muestra las características de los diferentes fuelles a elegir.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>94</td>
<td>2.756</td>
<td>3.701</td>
<td>0.55</td>
<td>2.35</td>
<td>2.65</td>
<td>0.15</td>
<td>54.70</td>
<td>85.00</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>2.953</td>
<td>3.937</td>
<td>0.60</td>
<td>2.40</td>
<td>2.90</td>
<td>0.15</td>
<td>82.20</td>
<td>95.00</td>
<td>4</td>
</tr>
<tr>
<td>77.5</td>
<td>120</td>
<td>3.051</td>
<td>4.724</td>
<td>0.75</td>
<td>3.50</td>
<td>3.60</td>
<td>0.2</td>
<td>91.20</td>
<td>85.00</td>
<td>5</td>
</tr>
<tr>
<td>80</td>
<td>108</td>
<td>3.150</td>
<td>4.252</td>
<td>0.55</td>
<td>2.25</td>
<td>2.50</td>
<td>0.15</td>
<td>74.90</td>
<td>80.00</td>
<td>5</td>
</tr>
<tr>
<td>82</td>
<td>125</td>
<td>3.228</td>
<td>4.921</td>
<td>0.75</td>
<td>3.70</td>
<td>3.80</td>
<td>0.2</td>
<td>89.90</td>
<td>80.00</td>
<td>5</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
<td>3.543</td>
<td>4.331</td>
<td>0.50</td>
<td>1.45</td>
<td>1.40</td>
<td>0.15</td>
<td>80.40</td>
<td>145.00</td>
<td>5</td>
</tr>
<tr>
<td>90</td>
<td>120</td>
<td>3.543</td>
<td>4.724</td>
<td>0.50</td>
<td>2.80</td>
<td>2.80</td>
<td>0.15</td>
<td>80.50</td>
<td>70.00</td>
<td>5</td>
</tr>
<tr>
<td>90.5</td>
<td>135</td>
<td>3.563</td>
<td>5.315</td>
<td>0.70</td>
<td>4.20</td>
<td>4.20</td>
<td>0.2</td>
<td>105.10</td>
<td>80.00</td>
<td>5</td>
</tr>
<tr>
<td>92</td>
<td>149</td>
<td>3.622</td>
<td>5.686</td>
<td>0.85</td>
<td>4.75</td>
<td>4.60</td>
<td>0.25</td>
<td>122.00</td>
<td>95.00</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>3.937</td>
<td>5.996</td>
<td>0.66</td>
<td>2.20</td>
<td>2.50</td>
<td>0.2</td>
<td>129.30</td>
<td>66.00</td>
<td>5</td>
</tr>
<tr>
<td>102</td>
<td>128</td>
<td>4.016</td>
<td>5.039</td>
<td>0.50</td>
<td>1.50</td>
<td>1.90</td>
<td>0.15</td>
<td>106.00</td>
<td>145.00</td>
<td>5</td>
</tr>
<tr>
<td>102</td>
<td>132</td>
<td>4.016</td>
<td>5.197</td>
<td>0.50</td>
<td>2.50</td>
<td>3.10</td>
<td>0.15</td>
<td>110.70</td>
<td>75.00</td>
<td>5</td>
</tr>
<tr>
<td>102.5</td>
<td>150</td>
<td>4.035</td>
<td>5.995</td>
<td>0.50</td>
<td>4.40</td>
<td>4.60</td>
<td>0.25</td>
<td>131.40</td>
<td>135.00</td>
<td>5</td>
</tr>
</tbody>
</table>

Tabla 6.3. Características de los diferentes fuelles a elegir.

Se puede ver que existen diversas medidas que cumplen todos nuestros requisitos de diseño. En nuestro caso, nos interesa que en diámetro interno sea el mayor posible, por lo que nos ceñimos a las 4 últimas líneas de la tabla.

Una vez se ha filtrado una parte de las membranas disponibles, se va a calcular, con ayuda de una hoja de cálculo, las diferentes propiedades que nos ofrece cada configuración, una vez hecho esto, estaremos en condiciones de escoger la membrana.

Finamente y aunque cualquiera de los fuelles preseleccionado cumple con las especificaciones se ha decidido instalar el fuelle con las características marcadas en rojo en la tabla 6.3 por las siguientes razones:

- La longitud comprimida es la mínima, lo que nos facilita la tarea de apartar del plano de trabajo el soporte cuando éste no se esté usando.
- La elongación máxima es la más parecida a la proyectada, lo que hace aprovechar mejor el material.
- Los diámetros interior y exterior son los que mejor se ajustan a las necesidades.

Una vez seleccionado el fuelle se pueden calcular las dimensiones principales. Estas dimensiones han sido de gran utilidad entre otras cosas para el cálculo de la fuerza que ejerce el UHV en el sistema. El cálculo de estas dimensiones se explica detalladamente en el Anexo B.2.1.

A continuación se muestra la tabla resumen con los resultados obtenidos de las principales características del fuelle, número de convoluciones, longitud comprimida, longitud libre y longitud extendida respectivamente.

<table>
<thead>
<tr>
<th>N</th>
<th>LC (mm)</th>
<th>LF (mm)</th>
<th>LE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>29,8</td>
<td>143,1</td>
<td>184,8</td>
</tr>
</tbody>
</table>

Tabla. 6.4. Características principales del fuelle seleccionado.
7. Cálculos con elementos finitos y resultados.

Solución conceptual.

Con el fin de simplificar en este apartado se muestra la última de las ocho iteraciones que se han realizado para conseguir la solución conceptual idónea para este proyecto.

La simulación ha sido realizada por Liudmila Nikitina, calculista de CELLS, con la ayuda del programa Ansys.

7.1. Condiciones de contorno y contactos.

Antes de comenzar la simulación se ha preparado un informe donde se explican a la calculista los tipos de contactos, tipos de materiales y cálculos, tanto de la fuerza de vacío como de las rigideces del sistema.

Tanto los cálculos de la fuerza como los de la rigidez se encuentran en el anexo B de cálculos de este proyecto, las siguientes tablas 7.1 y 7.2 muestran los resultados tanto de los cálculos de la fuerza como de la rigidez respectivamente.

<table>
<thead>
<tr>
<th></th>
<th>(F_T) (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacío</td>
<td>2197,1</td>
</tr>
</tbody>
</table>

Tabla 7.1. Resumen del cálculo de la fuerza de vacío
Tabla 7.2. Resumen de la rigidez de los diferentes elementos mecánicos

<table>
<thead>
<tr>
<th>Elemento Mecánico</th>
<th>Rigidez (N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuerca del husillo</td>
<td>$2,10 \cdot 10^8$</td>
</tr>
<tr>
<td>eje</td>
<td>$2,50 \cdot 10^8$</td>
</tr>
<tr>
<td>Soporte rodamientos</td>
<td>$1,5 \cdot 10^8$</td>
</tr>
<tr>
<td>Total</td>
<td>$0,61 \cdot 10^6$</td>
</tr>
<tr>
<td>guías</td>
<td>$1,75 \cdot 10^8$</td>
</tr>
</tbody>
</table>

En cuanto a las condiciones de contacto se ha considerado un deslizamiento entre las guías y los carros y se ha restringido la separación entre ambos tal y como se observa en la figura 7.1. En cuanto al resto de los contactos se ha considerado uniones fijas.

Fig. 7.1. Condiciones de contacto entre guías y carros.
Otro de los parámetros que se han introducido para poder realizar la simulación son los valores de las rigideces y de los materiales.

En este caso la calculista utiliza dos métodos diferentes. El conjunto tuerca, eje y soporte de rodamientos los sustituye por un muelle de constante elástica igual a la suma en serie de la rigidez de los tres elementos anteriores. O a los elementos que contienen rigidez les añade un material creado por ella, los cuales tienen la misma rigidez que la calculada.

La figura 7.2 muestra el segundo caso, donde cada uno de los materiales con rigidez ha sido sustituido por un “soft material” creado por la calculista para simular la rigidez de los diferentes elementos.

Fig. 7.2. Materiales utilizados en la simulación.

Por último, queda colocar las cargas del sistema, que en este caso son simplemente la gravedad y la fuerza de vacío repartida en la brida reductora DN100CF-DN63CF. Véase Figura 7.3.
7.2. Resultados

Análisis Estático.

Los resultados bajo las cargas de vacío muestran un estrés máximo en la parte de la tuerca del husillo de 16 MPa. Este valor se puede considerar correcto puesto que el límite elástico para el acero 316L es de 210 MPa. Lo que corresponde a un factor de seguridad de 13,1.

En lo que se refiere a la deformación, la máxima aparece en la parte inferior del detector. El valor de esta deformación es de 0,11 mm lo que implica un ángulo de deformación en el detector de 164,2 µrad. Este valor no solo se puede considerar aceptable porque se encuentra dentro del intervalo del error de montaje mecánico, sino que además es corregible, ya que es la deformación fija que se producirá al aplicar las cargas de vacío. Véase figura 7.4.
Existe una deformación variable, no controlable, que es la que se produce con la variación de la presión atmosférica. A continuación se muestra en el gráfico 7.1 la variación del ángulo en el detector frente a la variación de la presión atmosférica, considerando esta variación un ±5% de la presión nominal 1 atm.

![Gráfico Presión - Deformación](image)

Gráfico. 7.1. Variación del ángulo (μrad) en el detector en función de la presión

Con la ayuda del gráfico se puede observar que la máxima deformación no controlable en el detector es de 15,6 μrad.

Esta deformación es consecuencia del momento que crea la fuerza de vacío sobre los carros. Este momento provoca una pequeña deformación (0,056 mm) en el soporte intermedio que se convierte en la máxima deformación a causa de la longitud del soporte. Véase figura 7.5.

![Fig. 7.4. De izquierda a derecha, mapa de estrés con un máximo de 16 MPa y mapa de deformaciones con un máximo de 0,11 mm.](image)
Para el análisis dinámico de la estructura se ha tenido en cuenta que según una de las especificaciones técnicas del proyecto, las frecuencias propias de vibración del detector deben estar por encima de los 30 Hz. Ya que las vibraciones transmitidas por el suelo se encuentran entre 20 y 30 Hz.

La tabla 7.3 muestra el resultado de las frecuencias propias de resonancia calculadas en el detector.

<table>
<thead>
<tr>
<th>Modo de resonancia</th>
<th>Frecuencia (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34,6</td>
</tr>
<tr>
<td>2</td>
<td>54,3</td>
</tr>
<tr>
<td>3</td>
<td>108,2</td>
</tr>
<tr>
<td>4</td>
<td>132,6</td>
</tr>
<tr>
<td>5</td>
<td>218,3</td>
</tr>
</tbody>
</table>

Tabla 7.3. Resultados del estudio dinámico del sistema.
Con los resultados anteriores se muestra que el primer modo de resonancia está por encima de los 30 Hz. Con éste resultado se ha conseguido un coeficiente de Seguridad de 1,15.

La figura 7.6 muestra la imagen de la deformación del primer modo de resonancia. En ella se puede observar que en el movimiento producido por el primer modo de resonancia la deformación se origina el tubo que une los elementos de UHV con los de presión atmosférica. Para conseguir incrementar el valor del primer modo sería necesario incrementar el diámetro exterior o disminuir el interior del tubo. Puesto que en ambos casos incrementaría la rigidez del tubo. El problema está en que tal y como se ha explicado, el tubo tiene el máximo diámetro exterior que se puede introducir en el fuelle y el mínimo interior para permitir el paso de los conectores eléctricos.

![Fig. 7.6. Deformación originada por el primer modo de resonancia.](image)

Por último añadir una nota a la figura 7.6. La solución consiste en una deformada escalada por un factor arbitrario. Las magnitudes reales de las deformaciones y las magnitudes derivadas, tales como tensiones, carecen de sentido.

Sólo los valores relativos de dichas cantidades a lo largo del modelo deben considerarse significativas.
8. Diseño detallado.

Una vez se ha aprobado la solución conceptual por el cliente se procede a realizar el diseño detallado de la solución conceptual aprobada.

Este diseño consiste en crear nuevas piezas para instalar diferentes elementos detallados en las especificaciones, como por ejemplo finales de carrera, encoder, pantalla protectora, beam stopper, pantalla de fósforo entre otros. Además de modificar la geometría de la solución conceptual para su correcta fabricación y montaje e integrar los nuevos elementos.

8.1. Elementos fuera de UHV.

8.1.1. Soporte principal.

El soporte principal es una de las piezas más importantes desde un punto de vista estructural. Es el encargado de integrar, aparte del soporte intermedio y el sistema motriz, los nuevos elementos como son los soportes para los finales de carrera, finales de carrera, cubierta trasera, chapa de conectores, pasamuros para la manguera de refrigeración, regla del encoder y el soporte fijo de la cadena para los cables. Véase figura 8.1.

Fig. 8.1. Vista explosionada de los nuevos elementos integrados en el soporte principal.
Para la fabricación del soporte principal se ha decidido separarlo en cuatro piezas: dos cartelas, la base y una parte trasera. La parte posterior es la encargada de alojar el sistema motriz además de aguantar el soporte fijo de la cadena, la cubierta trasera con la caja de control del detector y una chapa para los conectores eléctricos. Las uniones se basan en uniones atornilladas además de disponer de orificios para la colocación de pines que aseguren la correcta posición relativa entre cada una de las piezas del soporte principal.

Se ha decidido colocar la caja de control detrás de la cubierta trasera puesto que el cable de control del detector debe de estar entre los dos y tres metros de longitud tal y como se detallaba en la especificación 5.6.

La siguiente figura 8.2 muestra la colocación de los finales de carrera Euchner en las dos posiciones extremas del detector. Uno de los aparatos está fijado en la pieza que soporta el motor mientras que para el otro se ha diseñado una nueva pieza que se fija al soporte principal. El final de carrera inferior se activa mediante un saliente en el soporte intermedio mientras que el superior se activa con el contacto de la parte superior del soporte intermedio.

Fig. 8.2. Disposición de los finales de carrera.

En lo referente a la selección de la cadena Igus se ha tenido en cuenta el radio mínimo de curvatura de los cables eléctricos y de la manguera para la refrigeración. Para asegurar el
recorrido del cableado ha sido necesario sujetar la cadena a una parte móvil del soporte (soporte intermedio) y a otra fija (soporte principal) para ello se han diseñado dos nuevas piezas, véase figura 8.4.

La importancia de la cadena no es solo mantener un cierto orden en el cableado sino la de evitar el efecto triboeléctrico. Este efecto consiste en la generación de ruido debido a la perdida de electrones que quedan cargados en el aislante del cable.

En cuanto a los cables eléctricos, además de los concretados en el apartado 4.2 de este documento para el detector. Se han de tener en cuenta los cables del motor, encoder, finales de carrera del soporte y los de un motor piezo eléctrico (Smaract) instalado en UHV.

Los conectores del detector CCD serán conectados directamente a la caja de control de éste. Para los demás conectores se ha diseñado una chapa de conectores donde poder montarlos, véase figura 8.3.

Fig. 8.3. Diseño detallado de la chapa de conectores.
8.1.2. Soporte intermedio.

El soporte intermedio ha sido diseñado en dos piezas unidas entre sí mediante dos pines de ocho milímetros de diámetro y seis tornillos de métrica ocho con el fin de reducir coste y simplificar el proceso de fabricado.

El diseño de este elemento no solo es importante a nivel estructural. Además, al ser la única parte móvil fuera de ultra alto vacío es el encargado de diferentes funciones. Integrar el elemento de control de posicionamiento del detector, el encoder, sostener la chapa encargada de la fiducialización del soporte y de nexo de unión entre el tubo y el sistema motriz. Véase figura 8.4.

Para el correcto posicionamiento del encoder se ha diseñado una pieza que se integra en el soporte intermedio. Este elemento sitúa la banda de lectura del encoder a los milímetros especificados por el fabricante respecto de la regla del encoder y la marca de referencia enganchadas al soporte principal.

Fig. 8.4. Diseño detallado del soporte intermedio con los nuevos elementos integrados.
En encoder seleccionado es un encoder de sistema lineal tonic T100x RGSZ, la siguiente tabla 8.1 muestra las principales características.

<table>
<thead>
<tr>
<th>Output (Resolución)</th>
<th>Máxima Velocidad</th>
<th>Compatibilidad vacío</th>
</tr>
</thead>
<tbody>
<tr>
<td>(µm)</td>
<td>(m·s⁻¹)</td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td>10</td>
<td>No</td>
</tr>
</tbody>
</table>

Tabla. 8.1. Principales características del encoder seleccionado.

8.1.3. Ensamblaje general.

Finalmente y para terminar con los elementos que se han instalado fuera de UHV. Se muestra en la figura 8.5 una vista explosionada del conjunto de estas piezas donde se puede intuir la posición de cada una de ellas en el montaje general.

Fig. 8.5. Vista explosionada de los elementos que se encuentran fuera de UHV.
8.2. Elementos dentro de UHV.

8.2.1. Tubo de vacío.

Con el fin de facilitar el mantenimiento del tubo de vacío se ha decidido separar el tubo diseñado en la solución conceptual en tres partes: un codo de 90° no estándar al que se le integran dos puertos laterales y una cartela, una brida cónica reductora y un codo estándar de 90°.

Uno de los puertos laterales se utiliza para colocar un feedthrough con un conector SUB-D de 15 pines para conectar la Smaract (el dispositivo Smaract se explica en el siguiente punto). En cuanto al otro puerto de momento no tiene uso pero se ha considerado como un futuro interfaz mecánico o eléctrico. Respecto a la cartela, tiene una función puramente estructural aportando rigidez al sistema. Tanto la cartela como los puertos laterales se han soldado al codo no estándar.

La segunda y la tercera componente del tubo de vacío es una brida cónica reductora estándar y un codo de 90° estándar, respectivamente. Estos dos elementos se unen entre sí mediante tornillos, juntas de cobre que aseguran la estanqueidad y pines que aseguran una correcta y única posición relativa entre el detector CCD y el soporte principal. Véase figura 8.6.

Fig. 8.6. Vista explosionada del conjunto de elementos que forman el tubo de vacío.
Una cosa muy importante cuando se diseñan piezas para vacío o en este caso UHV, es conseguir evitar por completo que quede confinado aire en alguna cavidad. Por ejemplo entre los agujeros de los tornillos pasantes y el tornillo. En éste caso queda libre un pequeño hueco entre la cabeza del tornillo y la arandela con la tuerca donde puede quedar confinado el aire.

Para evitar esto se realizan pequeños taladros en cada uno de los agujeros pasantes de la pieza que se encuentre en UHV, véase figura 8.7.

![Fig. 8.7. Corte de la brida reductora donde se observa el detalle de los agujeros de ventilación.](image)

Para evitar que el aire quede atrapado en un agujero utilizado para un tornillo ciego se utilizan tornillos venteados. Estos son tornillos comunes con un taladro pasante en su eje central.

Además de estos detalles, también se ha de tener en cuenta que las piezas en UHV no se pueden unir con elementos del mismo material ya que al realizar el bakeout pueden llegar a soldarse. Es por esta razón que las tuercas tienen un recubrimiento, en este caso, de plata.

Finalmente ha sido necesaria una limpieza mediante ultrasonidos para conseguir una superficie limpia y mejorar la desgasificación y favorecer, de esta manera, la creación de vacío en la cámara.

8.2.2. Pantalla protectora.

Una de las especificaciones del cliente es el diseño de una pantalla protectora que debe tener un movimiento relativo e independiente del movimiento vertical que tiene el soporte.
Esta pantalla se ha diseñado para que cumpla cuatro funciones, pantalla protectora, pantalla de fósforo, beam stopper y cámara CCD. Las funciones principales de la pantalla son la utilización del chip del detector CCD y la de proteger a éste cuando el detector no se esté utilizando. A parte de éstas, en la pantalla se ha instalado una pantalla de fósforo que habrá el abanico de experimentos con el chip CCD. Por último y para justificar en parte el alto coste de la Smaract, se ha instalado un beam stopper que puede sustituir al beam stopper que se ha decidido instalar en unos de los puertos inferiores de MARES.

La dificultad de este diseño radica en encontrar un motor no magnético y compatible con el ultra alto vacío. La solución a este problema se halla en los motores piezoeléctricos Smaract. El fabricante de estos motores ofrece la posibilidad de fabricarlos compatibles con alto vacío y con materiales no magnéticos, es decir, con materiales cerámicos.

El hecho de que el motor Smaract deba ser de cerámica para cumplir el requisito de no magnetismo incrementaba mucho el precio del aparato, llegando a duplicarlo, puesto que se complica el proceso de fabricación al utilizar cerámicas. Con el fin de evitar este incremento en el presupuesto, se ha tenido en cuenta que las smaract tienen una tolerancia magnética entre 100 y 150 Gauss. Esto implica que entre estos valores de campos magnéticos y por debajo de ellos el motor trabaja perfectamente.

Con esta nueva información se comprobó cual era el campo magnético en el detector provocado por el imán HTS colocado en el centro de MARES. Se pudo observar que el campo magnético en el detector es mucho menor de 100 gauss. Por lo tanto para el sistema motriz de la pantalla protectora se ha seleccionado una Smaract SLC 24150 compatible con ultra alto vacío pero fabricada con materiales magnéticos. Para el correcto posicionamiento de la Smaract se ha diseñado una pieza fijada a la brida del detector CCD aprovechando sus propios tornillos para evitar el mecanizado de la brida del detector. La Smaract se ha fijado mediante tornillos venteados a esta pieza. Véase figura 8.8.
Las características principales de este motor vienen resumidas en la siguiente tabla 8.2.

<table>
<thead>
<tr>
<th>Velocidad (mm/s)</th>
<th>Tiempo de cierre (s)</th>
<th>Dimensiones (mm)</th>
<th>Peso (g)</th>
<th>desplazamiento (mm)</th>
<th>Temperatura De Bakeout (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10,3</td>
<td>150x24x10,5</td>
<td>180</td>
<td>±51,5</td>
<td>180</td>
</tr>
</tbody>
</table>

Tabla 8.2. Características del motor Smaract.

La figura 8.9 muestra dos de los cuatro posibles funcionamientos de la pantalla con la ayuda de la Smaract. Con el fin de que ninguna parte de la pantalla sobresalga de la brida del detector cuando éste no se utilice y no estorbe a los diferentes elementos internos instalados en MARES. La pantalla se utiliza como pantalla protectora en los 0 mm de recorrido de la Smaract. Véase la primera imagen de la figura 8.9.

Con un recorrido positivo en el eje X de 41,5 mm la cámara CCD recibe la señal a través de una pantalla de fósforo. Véase la segunda imagen de la figura 8.9.

La tabla 8.3 recoge las principales características de la pantalla de fósforo seleccionada.
Pág. 64

<table>
<thead>
<tr>
<th>Potencia máxima (Watt/cm²)</th>
<th>Potencia mínima (Watt/cm²)</th>
<th>Temperatura de bakeout (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5×10^{-5}</td>
<td>350</td>
</tr>
</tbody>
</table>

Tabla. 8.3. Resumen de las principales características de la pantalla de fósforo utilizada.

Además, con recorridos negativos de 36,5 mm y 51,5 mm, respecto la posición inicial. La pantalla actúa como beam stopper y chip CCD respectivamente. Véase la primera y la segunda imagen de la figura 8.10.

Fig. 8.9. Pantalla protectora, 0 mm de recorrido. 41,5 mm pantalla de fósforo.

Fig. 8.10. Beam stopper, -36,5 mm de recorrido. -51,5 mm Camara CCD.
8.2.3. **Ensamblaje general.**

Finalmente y para terminar con los elementos que se han instalado dentro de UHV, se muestra en la Figura 8.11 un vista explosionada del conjunto de estas piezas donde se puede intuir la posición de cada una de ellas en el montaje general.

Fig. 8.11. Vista explosionada del conjunto de elementos que se encuentran en UHV.
9. Dimensiones principales del soporte para la cámara CCD.

Para conseguir una correcta instalación del soporte dentro de MARES, es necesario realizar una fiducialización. Esto consiste en referenciar el eje de la parte sensible (detector) a referencias externas que sirvan más tarde para alinear el detector y conseguir que el eje se encuentre en su posición nominal.

Para ello, es necesario el montaje completo del soporte fuera de la cámara de vacío. A continuación y con la ayuda del láser traker y un nivel óptico es necesario registrar mediante un programa informático las medidas más importantes del detector.

Con estas medidas y las de MARES introducidas en el programa se ha podido referenciar el eje del detector a referencias externas, en este caso MARES. Consiguiendo de esta forma un gran nivel de posicionamiento del detector respecto a su posición nominal.

El inconveniente de este proceso es la cantidad de juntas de cobre que se han instalado. El problema reside en que las juntas se deforman plásticamente una vez apretadas con llave dinamométrica. Por lo tanto, cuando se monte el detector en MARES y se cambien las juntas, el montaje no quedará perfectamente igual que en el momento de la fiducialización. Esto se debe a que las nuevas juntas no se deformarán exactamente igual. Por lo que se considera especialmente importante que después de la fiducialización el soporte se desmonte lo mínimo posible para su instalación en MARES.

En la figura 9.1 se muestran las principales dimensiones del soporte con todos los elementos ensamblados.
Fig. 9.1. Dimensiones generales del Soporte para la CCD.
10. Dimensiones generales de la integración del soporte en MARES.

El objetivo del proyecto no ha sido tan solo el diseño de un soporte para una cámara CCD. Además era necesaria la integración de este soporte en la End Station MARES de la línea de luz BOREAS y asegurar su correcto funcionamiento en el interior de ésta. En las figuras 10.1 y 10.2 se puede observar el detector instalado en MARES en cada una de las tres posiciones críticas del soporte. La primera imagen muestra el detector en la posición más alta de la cámara de UHV. Como se puede observar en esta imagen y en la figura 10.2 se ha cumplido con la especificación que indicaba maximizar el desplazamiento en el espacio interior de MARES.

Otras medidas importantes son la distancia entre el imán y el detector ya que el científico obtiene una mejor resolución con la cámara CCD a medida que ésta se encuentra más alejada de la muestra. En consecuencia, el detector se ha diseñado para estar lo más alejado posible optimizando el recorrido y evitando las bridas inferiores de MARES por donde se instalará en un futuro un Beam Stopper.
Fig. 10.1. Dimensiones generales de la integración en MARES, Posición más elevada 110 mm y posición de trabajo respecto del haz.

Fig. 10.2. Dimensiones generales de la integración en MARES, Posición más baja -45 mm respecto del haz.
11. Montaje y Mantenimiento.

A continuación se explica paso a paso cómo instalar el soporte en la cámara de ultra alto vacío de BOREAS. Además, se explican los diferentes tipos de mantenimiento que serán necesarios realizarle al soporte para su correcto funcionamiento.

11.1. Plan de montaje.

Para la correcta instalación del soporte será necesario montar el soporte en tres sub-ensamblajes diferentes y de manera independiente. El primero de estos sub-ensamblajes es la parte superior del soporte, formado por el soporte principal, soporte intermedio y sistema motriz, véase figura 11.1.

![Fig. 11.1. Primer sub-ensamblaje del montaje general.](image)

El segundo de los sub-ensamblajes es una parte intermedia del detector formado por el fuelle, el tubo de unión y la brida reductora. Por último ha sido necesario ensamblar la parte inferior del soporte formada por el tubo de vacío y la interfaz de la cámara CCD. Véase figura 11.2.
Una vez montados los sub-ensamblaje el siguiente paso ha sido sujetar el primer ensamblaje al rotary perteneciente a MARES mediante dieciséis tornillos de métrica ocho.

Una vez colocada la parte superior del soporte en el rotary, éste se elevará. A continuación se instalará el fuelle en una de las seis bridas DN100CF que contiene el rotary en su cara inferior. Para finalizar este segundo paso, se atornillará el tubo de unión al soporte intermedio. Véase figura 11.3.
En el momento en el que el segundo paso haya finalizado, el rotary se colocará de nuevo en MARES. Finalmente por uno de los puertos laterales de MARES de 250 mm de diámetro se introducirá el tercer sub-ensamblaje. Finalmente se unirá el tubo de vacío a la brida reductora mediante seis tornillos de métrica seis.

Para terminar con esta primera instalación, se instalará el cableado, la cadena y los elementos auxiliares de control de posición, como finales de carrera, encoder etc.

11.2. Mantenimiento.

Una vez se haya realizado el primer montaje del soporte y conectados todos los aparatos electrónicos para su funcionamiento. Se ha de tener en cuenta el futuro mantenimiento que se le debe realizar a éste.

Con el fin de facilitar el montaje del soporte en el mantenimiento respecto al primero montaje. Se decidió en la etapa de diseño detallado dividir el tubo de vacío en dos partes, véase Figura 11.4. De esta manera, la parte a extraer del soporte por la brida DN250CF perteneciente a MARES sería mucho más pequeña y por lo tanto más cómoda tanto de desmontar como de volver a montar. Además de tener las uniones del tubo mucho más cercanas al puerto facilitando la tarea de mantenimiento.

Desmontando esta parte del soporte se consigue revisar la parte más importante del soporte, la cámara CCD, tanto sus conectores eléctricos como los de refrigeración.

Fig. 11.4. Montaje del detector en caso de necesitar mantenimiento.
Aunque se haya facilitado el desmontaje de la cámara CCD para garantizar su mantenimiento. Se ha de tener en cuenta que cada vez que se quiera desmontar, el vacío de la cámara se perderá. Esto puede implicar una perdida muy grande de horas de funcionamiento de la estación MARES. Es por esta razón que el tubo de vacío tiene suficiente diámetro interior no solo para los cables y mangueras. Además dispone de espacio para poder introducir un endoscopio y hacer una primera revisión sin la necesidad de desmontar el soporte.

En cuanto al mantenimiento de los demás componentes, motor, guías, husillo, etc., resulta mucho más fácil realizarlo, engrases, recambios, etc. Puesto que se encuentran en el exterior de la cámara de vacío y son fácilmente accesibles.

Por último teniendo en cuenta que se ha integrado el soporte en una cámara de vacío y que para el correcto funcionamiento de ésta es necesario alcanzar la presión correspondiente a UHV. Es necesario en caso de no conseguirlo, tener a disposición los dispositivos de detección de fugas necesarios para conseguir repararlas.

Cuando no conseguimos la presión final esperada en un sistema de vacío y siempre que tengamos una válvula de aislamiento entre la bomba y la cámara, se debe proceder de la siguiente manera:

- Comprobar que el sensor de presión funcione correctamente.
- Colocar el sensor en la boca de aspiración de la bomba y comprobar que llega a la presión de vacío adecuado.
- Hacer el vacío al sistema, cerrar la válvula y comprobar el aumento de presión durante un tiempo aproximado de treinta minutos.

Si hay fuga, se debe rociar con alcohol cada una de las uniones y soldaduras. Cuando se produzca una variación de presión en el sensor de medición, nos indicará el punto de fuga.

Si se demuestra que hay fuga y nos encontramos delante de un sistema de alto vacío, será necesario adaptar la conexión del detector de fugas entre la bomba rotativa y la cámara.

A continuación, se comenzará a realizar el vacío al sistema hasta llegar a una presión inferior a 25 mbar. Llegados a este nivel se conecta el detector de fugas y con una botella de Helio se comienza a rociar de arriba abajo las uniones y soldaduras. Véase Figura 11.4.
Para los sistemas de UHV, se conecta el espectrómetro de masa a una de las bridas de la cámara de UHV y se le realiza el vacío a la cámara. Si la presión registrada es superior a 10^{-4} mbar, se rocía con alcohol las uniones y soldaduras. Si se produce una variación en la medida del sensor, es indicador del punto de fuga.

Si por lo contrario la presión es superior a 10^{-4} mbar, se pone en funcionamiento el espectrómetro y se realiza un espectro de gases residuales. Si se sigue la relación entre el agua y el nitrógeno a una presión de $5 \cdot 10^{-6}$ mbar, se pueden tomar, como aproximados los siguientes valores de fugas, véase tabla 11.1.

<table>
<thead>
<tr>
<th>Valor de la fuga (mbar·l·s⁻¹)</th>
<th>Relación H₂O / N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0,35 \cdot 10^{-4}$</td>
<td>43</td>
</tr>
<tr>
<td>$1 \cdot 10^{-4}$</td>
<td>27</td>
</tr>
<tr>
<td>$8,0 \cdot 10^{-4}$</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabla. 11.1. Valores aproximados de fuga.

A causa de las modificaciones que han sido realizadas en la solución conceptual aprobada para llevar a cabo el diseño detallado. Se ha de realizar una última comprobación con elementos finitos de las nuevas geometrías de algunas de las piezas.

Para ello se ha de simplificar el modelo para facilitar el trabajo a la calculista tal y como muestra la figura 12.1.

Fig. 12.1. Simplificación necesaria para realizar el último cálculo con elementos finitos.

Los contactos y las condiciones de contornos son los mismos que los explicados en el apartado 7.1 de este documento.
12.1. Resultados.

Análisis Estático

Los resultados bajo las cargas de vacío muestran un estrés máximo en la parte de la tuerca del husillo de 26,5 MPa. Este valor se puede considerar correcto puesto que el límite elástico para el acero 316L es de 210 MPa. Lo que corresponde a un factor de seguridad de 7,9.

En lo referente a la deformación máxima, ésta se puede observar en la parte media del soporte, justo en la brida reductora con un valor de 0,098 mm. Véase Figura 12.2.

Por otra parte desde un punto de vista de este proyecto es más interesante la deformación producida en el detector. El valor de ésta en este caso tiene un valor de 0,087 mm. Está deformación es equivalente a un ángulo en el detector de un valor de 129,9 μrad. Nuevamente este resultado está dentro del error de montaje mecánico y además de ser corregible es inferior a los resultados obtenidos en la simulación conceptual explicada en el apartado 7 de este documento. Véase figura 12.2.

![Mapa de estrés mecánico y de máximas deformaciones respectivamente.](image)

De nuevo cabe remarcar que existe una deformación variable, no controlable, que es la que se produce con la variación de la presión atmosférica. A continuación se muestra en el gráfico 12.1 la variación del ángulo en el detector frente a la variación de la presión atmosférica, considerando esta variación un ±5% de la presión nominal 1 atm.
Con la ayuda del gráfico se puede observar que la máxima deformación no controlable en el detector es de 12,4 μrad.

Análisis dinámico

Tal y como se explicó en el apartado 7.2 de este documento, las frecuencias propias del detector deben estar por encima de los 30 Hz. Ya que las vibraciones transmitidas por el suelo se encuentran entre 20 y 30 Hz.

La tabla 12.1 muestra el resultado de las frecuencias propias del soporte.

<table>
<thead>
<tr>
<th>Modo de resonancia</th>
<th>Frecuencia (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34,95</td>
</tr>
<tr>
<td>2</td>
<td>57,25</td>
</tr>
<tr>
<td>3</td>
<td>106,11</td>
</tr>
</tbody>
</table>

Tabla 12.1. Resultados del estudio dinámico del sistema.

En los resultados anteriores se muestra que el primer modo de resonancia está por encima de los 30 Hz cumpliendo con la especificación técnica de análisis dinámico. Aunque tan solo se ha conseguido un coeficiente de Seguridad de 1,17.
13. Planificación y presupuesto del proyecto.

En este capítulo se ha analizado brevemente el presupuesto del proyecto.

Para completar el presupuesto ha sido necesario ponerse en contacto con una gran variedad de empresas, tanto para los elementos estándar como para las piezas mecanizadas.

La mayoría de las piezas diseñadas en este proyecto y que se encuentran fuera de vacío se basan en piezas mecanizadas y chapa doblada. Las piezas críticas han sido enviadas a mecanizar a un taller de confianza de CELLS, mientras que el resto de las piezas han sido repartidas por diferentes talleres teniendo en cuenta el precio de la oferta.

En cuanto a las piezas de UHV no son muchas las empresas que fabriquen este tipo de elementos y la empresa seleccionada has sido por una cuestión puramente monetaria.

En la tabla 13.1 se muestra un resumen de las principales partidas del presupuesto. Para concretar en cada una de las diferentes partidas y otra información acerca del presupuesto, véase anexo A.

<table>
<thead>
<tr>
<th>Costes de recursos de ingeniería €</th>
<th>52.800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costes piezas estándar €</td>
<td>10894,65</td>
</tr>
<tr>
<td>Coste piezas fabricadas €</td>
<td>6850,18</td>
</tr>
<tr>
<td>Total €</td>
<td>70.544,83</td>
</tr>
<tr>
<td>Cámaras CCD €</td>
<td>30.000</td>
</tr>
<tr>
<td>Total €</td>
<td>100.544,83</td>
</tr>
</tbody>
</table>

Tabla 13.1. Partidas más importantes del presupuesto.

Para conseguir tener tanto una idea general como más concreta de todas las etapas del proyecto se ha realizado un diagrama de Gantt.

La siguiente figura 13.1 muestra el diagrama de Ganttt del soporte para la cámara CCD.
Figura 13.1. Gantt del soporte para el detector CCD.

En lo referente al impacto ambiental cabe decir que hay dos posibles focos de contaminación, en la fase de fabricación de cada una de las piezas y en la fase de desmantelamiento.

En la fase de fabricación es en la que más se puede llegar a contaminar el medio ambiente ya que se producen diferentes residuos, aunque cabe decir que son fácilmente tratables y reciclables.

La totalidad de las piezas son piezas metálicas, concretamente acero inoxidable y aluminio. Por lo tanto, el principal residuo que se ha obtenido han sido los recortes de los propios metales al fabricar cada una de las piezas en las operaciones de corte. Además de los recortes, también se obtiene la viruta producida en las operaciones de mecanizado. Por lo tanto será necesario separar según el material utilizado para el posterior reciclado o reutilización.

Otros residuos que se desprenden del proceso de fabricación son los aceites y grasas que se utilizan en la maquinaria, así como las taladrinas que se utilizan en las operaciones de corte y mecanizado.

En la mayoría de los casos los aceites y grasas de la maquinaria acaban quemándose por fricción. Si no es así, es necesario guardar el líquido en un recipiente estanco para su posterior tratamiento en una planta especializada. Respecto a la taladrina, la mayoría de ésta también se consume por fricción. Si no es así, será necesario realizarle el mismo tratamiento que a los diferentes aceites, guardarlo y llevarlo a una planta especializada para su tratamiento.

El último elemento perjudicial para el medio ambiente en el proceso de fabricación son los ácidos o soluciones para la limpieza de los diferentes compuestos. Estos fluidos son altamente tóxicos y será necesario su tratamiento en una planta especializada.

En cuanto al desmantelamiento del soporte habrá que tener en cuenta el material con el que está fabricada cada una de las piezas y separarlo para su posterior reciclado o reutilización.
15. Hoja de datos técnicos.

A continuación se muestra los rasgos técnicos más importantes del soporte para la cámara CCD.

<table>
<thead>
<tr>
<th>Requerido</th>
<th>calculado</th>
</tr>
</thead>
</table>

Dimensiones principales:
- Dimensiones del soporte [mm]: 1230x536x368
- Recorrido [mm]: 155 (-45 / +110)

Dimensiones del soporte principal:
- Soporte principal [mm]: 434x290x187

Dimensiones del tubo:
- Diámetro externo [mm]: 90
- Diámetro interno [mm]: 55
- Dimensión Vertical [mm]: 350

Dimensiones del tubo de vacío:
- Diámetro exterior [mm]: 41
- Diámetro interior [mm]: 38
- Dimensión horizontal [mm]: 321
- Dimensión Vertical [mm]: 214

Pesos:
- Soporte intermedio [kg]: 22,1
- Tubo [kg]: 11
- Elementos de vacío [kg]: 13,8
- Total [kg]: 46,9
<table>
<thead>
<tr>
<th>Requerido</th>
<th>Calculado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conexiones:</td>
<td></td>
</tr>
<tr>
<td>Smaract:</td>
<td>Feedthrough, DB15</td>
</tr>
<tr>
<td>Cámara CCD:</td>
<td>2 MCX y MicroD 31 PINES</td>
</tr>
<tr>
<td>Refrigeración:</td>
<td>2, VCR (1/4")</td>
</tr>
<tr>
<td>Características del motor paso a paso:</td>
<td></td>
</tr>
<tr>
<td>Ratio de reducción:</td>
<td>100:1</td>
</tr>
<tr>
<td>Resolución lineal (μm):</td>
<td>50 to 100</td>
</tr>
<tr>
<td>Resolución lineal (μm/rev):</td>
<td>50</td>
</tr>
<tr>
<td>Velocidad lineal (mm/s):</td>
<td>0.83</td>
</tr>
<tr>
<td>Tiempo para recorrer 155 mm (s):</td>
<td>186</td>
</tr>
<tr>
<td>Estrés mecánico:</td>
<td></td>
</tr>
<tr>
<td>Máximo estrés mecánico [MPa]:</td>
<td>CS=2</td>
</tr>
<tr>
<td>Deformación:</td>
<td></td>
</tr>
<tr>
<td>Máxima deformación [mm]:</td>
<td>0.087</td>
</tr>
<tr>
<td>Angulo equivalente [μrad]:</td>
<td>69.9</td>
</tr>
<tr>
<td>Modos de vibración (MV):</td>
<td></td>
</tr>
<tr>
<td>1º MV [Hz]:</td>
<td>30</td>
</tr>
<tr>
<td>2º MV [Hz]:</td>
<td>30</td>
</tr>
<tr>
<td>3º MV [Hz]:</td>
<td>30</td>
</tr>
</tbody>
</table>

CS=26.5, CS=8.3
Conclusiones

La compresión del problema físico que se plantea ha sido el primer paso para entender la necesidad de este mecanismo de alta precisión con piezas fabricadas bajo tolerancias poco generosas.

Respecto al diseño estructural, se ha llegado a un buen dimensionamiento que cumpla con el rango de deformaciones permitido. En cuanto al estrés mecánico, ningún elemento mecánico muestra un problema de fatiga. Por último, en lo referente a las vibraciones mecánicas todo y que cumple con las especificaciones técnicas impuestas por el director del proyecto en CELLS. El primer modo de resonancia del sistema debería ser más elevado para obtener un mayor coeficiente de Seguridad.

Una vez montado como cualquier prototipo será necesario evaluar la repetitividad del sistema así como el resto de características dinámicas calculadas y observar si es necesaria alguna mejora. Esto debe ser así puesto que uno de los objetivos es estandarizar esta estructura para el resto de los soportes de los detectores que serán diseñados en un futuro para MARES.
Agradecimientos

Este proyecto final de carrera significa el final de una etapa, el logro de una meta, y el comienzo de nuevas metas y objetivos.

En primer lugar, me gustaría dar las gracias tanto a mi director de proyecto final de carrera el Sr. Alejandro Crisol como al jefe de sección transversal en CELLS, el Sr. Carles Colldelram, por las enseñanzas recibidas, resolver todas mis dudas, compartir conmigo su experiencia profesional, la buena y constante dirección del proyecto, el buen trato recibido durante este año y sus votos de confianza en mí.

Agradezco a otros profesionales de la casa, involucrados en el proyecto, en especial a Ms. Liudmila Nikitina, Ms. Marta Ilonch y al Sr. Jon Ladrera tanto por los cálculos de elementos finitos como por el control de calidad de las piezas y fiducialización del sistema. Al resto de mis compañeros que aunque no hayan estado involucrados siempre se han mostrado interesado y dispuestos a ayudarme cuando ha sido necesario y han conseguido, todos ellos, que mi estancia en CELLS durante este periodo sea inmejorable.

Por último, pero no menos importante, gracias a Jordi Martínez ponente de mi proyecto, por su control en el proyecto y sus consejos respecto a éste.

Gracias a todos ustedes!
Bibliografía

En el presente proyecto ninguna fuente bibliográfica es referenciada explícitamente a lo largo del texto. En este apartado se expondrá toda la bibliografía que se ha usado como referencia en la parte teórica del desarrollo del proyecto. En la parte práctica la toma de decisiones de actuación ha estado potenciada por la intuición y por la ayuda del director del proyecto, y por tanto, no ha lugar ninguna referencia bibliográfica.

Referencias bibliográficas

Bibliografía complementaria

Debido a la naturaleza del presente proyecto, no existen normativas de obligado cumplimiento, por lo que la normativa aplicada tiene como misión seguir la política de la empresa, de normalizar todos los elementos posibles.

- Norma UNE 21144-1-1: Cables eléctricos. Cálculo de la intensidad admisible. Parte 1: Ecuaciones de intensidad admisible (factor de carga 100%) y cálculo de pérdidas. Sección 1: Generalidades.

- Norma ISO 404, Steel and steel products – General technical delivery requirements.

- Norma ISO 1829, Selection of tolerance zones for general purposes.

- Norma ISO 2692, Technical drawings; geometrical tolerancing; maximum material principle.

- Norma ISO/TR 5460, Technical drawings; Geometrical tolerancing; Tolerancing of form, orientation, location and run-out; Verification principles and methods; Guidelines.

Anexo A. Presupuesto.

En el siguiente anexo se muestra las partidas detalladas del presupuesto explicado en el apartado 13 de este documento.

A.1. Piezas estándar.

A continuación se muestra la partida detalla de las piezas estándar pertenecientes al proyecto.

En cuanto a la toma de decisiones respecto a la selección de estos productos y tal y como se ha ido explicando a lo largo de este documento. La principal razón de las marcas seleccionadas ha sido la confianza que tiene CELLS en estos productos ya que han sido testados y ensayados en otros proyectos creados por la empresa. Véase Tabla A.1.
Tabla A1. Partida detallada de los componentes estandar que forman el proyecto

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>Referencia</th>
<th>Marca</th>
<th>Precio €</th>
<th>Total €</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Juntas de cobre 63, 100, 40CF</td>
<td>CCG63, CCG100, CCG40</td>
<td>MDC</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>1</td>
<td>Pantalla de fósforo</td>
<td>PHOS-UP22GL-C7X7-R1500 (UHV)</td>
<td>Kimbalphysics</td>
<td>286,9</td>
<td>286,9</td>
</tr>
<tr>
<td>1</td>
<td>Tornillería</td>
<td>Maranges</td>
<td>37,58</td>
<td>37,58</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Feedthrough</td>
<td>210-d15-c40</td>
<td>Allectra</td>
<td>353,3</td>
<td>353,3</td>
</tr>
<tr>
<td>1</td>
<td>Fuelle</td>
<td>C165888</td>
<td>Comvat</td>
<td>1337</td>
<td>1337</td>
</tr>
<tr>
<td>1</td>
<td>Husillo</td>
<td>EBB 2005-3 RR G0 +356LC3</td>
<td>THK</td>
<td>862,4</td>
<td>862,4</td>
</tr>
<tr>
<td>1</td>
<td>Soporte rodamientos</td>
<td>FLRBU 1</td>
<td>SKF</td>
<td>236,7</td>
<td>236,7</td>
</tr>
<tr>
<td>2</td>
<td>Guías BM15</td>
<td>BM S 15-ND-G0-KC-RI-0350-CN</td>
<td>Schneeberger</td>
<td>37,4</td>
<td>74,8</td>
</tr>
<tr>
<td>4</td>
<td>Carros BM</td>
<td>BM W 15-F.G0-V3-RI-CN-0500-CN</td>
<td>Schneeberger</td>
<td>44,3</td>
<td>177,2</td>
</tr>
<tr>
<td>1</td>
<td>Smaract SLC-24 H 50 + conector</td>
<td>SLC-24150-S-UHVE / ALL-COL-15</td>
<td>Smaract</td>
<td>3740</td>
<td>3740</td>
</tr>
<tr>
<td>1</td>
<td>Modulo sensor</td>
<td>SDC-1S-ES-STS15-TAB</td>
<td>Smaract</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>1</td>
<td>Sistema de control</td>
<td>SDC-2CC-EUR-MOD</td>
<td>Smaract</td>
<td>1140</td>
<td>1140</td>
</tr>
<tr>
<td>1</td>
<td>Encoder</td>
<td>T1000-30 A</td>
<td>Renishaw</td>
<td>379,6</td>
<td>379,6</td>
</tr>
<tr>
<td>1</td>
<td>Interfaz Encoder</td>
<td>TI0200 A 1 A</td>
<td>Renishaw</td>
<td>373</td>
<td>373</td>
</tr>
<tr>
<td>1</td>
<td>Regla RGSZ20-S</td>
<td>A-9420-0010</td>
<td>Renishaw</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>1</td>
<td>Marca de referencia + End clamp</td>
<td>A-9653-0201 / A-9523-4027</td>
<td>Renishaw</td>
<td>28,44</td>
<td>28,44</td>
</tr>
<tr>
<td>2</td>
<td>Final de carrera</td>
<td>EGM12-1200C1791</td>
<td>Euchner</td>
<td>112,3</td>
<td>224,52</td>
</tr>
<tr>
<td>1</td>
<td>Motor paso a paso</td>
<td>ZSS57.20002.5-GPL52/100/SPA</td>
<td>Phytron</td>
<td>1136</td>
<td>1136</td>
</tr>
<tr>
<td>1</td>
<td>Acoplamiento</td>
<td>MCB25-12-10-A</td>
<td>Ruland</td>
<td>48,83</td>
<td>48,83</td>
</tr>
<tr>
<td>1</td>
<td>Cadena</td>
<td>10.0.50.075.0</td>
<td>Igus</td>
<td>27,81</td>
<td>27,81</td>
</tr>
<tr>
<td>2</td>
<td>Manguera</td>
<td>SS-TH4-RF4RF4-235CM</td>
<td>Swagelok</td>
<td>160,5</td>
<td>321,04</td>
</tr>
<tr>
<td>2</td>
<td>Codos</td>
<td>SS-4-VCR-9</td>
<td>Swagelok</td>
<td>25,83</td>
<td>51,66</td>
</tr>
<tr>
<td>2</td>
<td>Passamuros</td>
<td>SS-4-VCR-61</td>
<td>Swagelok</td>
<td>24,75</td>
<td>49,5</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>10.894,65</td>
<td></td>
</tr>
</tbody>
</table>
A.2. Piezas fabricadas.

En lo referente a la selección de los talleres que han fabricado las diferentes piezas. Se ha decidido en base a dos criterios, las piezas críticas con tolerancias geométricas más restrictivas han sido mecanizadas por un taller de confianza de la empresa y el resto de las piezas has sido una decisión económica. Véase Tabla A.2 y Tabla A.3.
| Descripción | Tabla A.2. Partida detallada de los componentes fabricados que forman el proyecto. |
| Cantidad | TOTAL
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>71,94</td>
<td>Soporte Encoder</td>
</tr>
<tr>
<td>292,3</td>
<td>Soporte cadena fijo</td>
</tr>
<tr>
<td>130,8</td>
<td>Soporte pasamuros</td>
</tr>
<tr>
<td>76,68</td>
<td>Soporte movil cadena</td>
</tr>
<tr>
<td>68,25</td>
<td>Soporte final carrera</td>
</tr>
<tr>
<td>39,3</td>
<td>Soporte cable final carrera</td>
</tr>
<tr>
<td>166,9</td>
<td>Chapa Frentera</td>
</tr>
<tr>
<td>14,6</td>
<td>Chapa Arrementeo</td>
</tr>
<tr>
<td>40,5</td>
<td>Chapa de conexiones</td>
</tr>
<tr>
<td>4,7</td>
<td>Soporte cable Encoder</td>
</tr>
<tr>
<td>166,5</td>
<td>Soporte Motor</td>
</tr>
</tbody>
</table>

Tabla A.3. Partida detallada de los componentes fabricados que forman el proyecto.
Anexo B. Cálculos.

El siguiente anexo se encuentra en un documento a parte de este escrito.
Anexo C. Planos.

El siguiente anexo se encuentra en un documento a parte de este escrito.