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ABSTRACT 

 
In recent years, there has been an increasing interest in "Internet of Things ". The future sensor 

networks are envisioned as comprising heterogeneous devices assisting to a large range of 

applications. Enabling small wireless sensors as easy to access as web servers is increasingly 

gaining attraction in our day to day lives. At this time, the development of the Constrained 

Application Protocol (CoAP) combining with 6LowPAN has made it possible to provide 

wireless sensor nodes with web service functionalities. 

 

This thesis is aimed at evaluation of the performance of an HTTP/TCP and CoAP/ UDP [23]  

network protocols over IEEE 802.15.4 communication protocol based on Contiki 2.7 and sensor 

nodes Zolertia Z1[16]. WSN architecture consists of a Server, RPL Border Router, and Client. 

As our implementation targets real deployment, we faced some issues regarding different 

technologies, supported protocols, suitable hardware selection and also environment obstacles. 

 

The  evaluation  was  carried  out  on  the  basis  of  Transmissions  delay  and  Response  time.   

All experiments were conducted considering a client querying an embedded server to discovery 

of “Hello-World” resource hosted by a constrained serve.  The response time was calculated for 

the case where the server was at different distances with different transaction length. 

 

The  test  and  experimental  results  have  shown  that  CoAP/UDP  work  properly  rather  than  

HTTP/TCP, based on IEEE 802.15.4, since the CoAP/UDP protocol have a poor effect on the 

current WSNs bandwidth and it could enhance network performance like packet reception ratio, 

throughput and could save more energy   
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CHAPTER 1 

 INTRODUCTION 
 

The Internet of Things is a case which always has been interested for scholars and developers to 

work on it. The reason is that, Internet of Things is a simple idea of connecting all identified 

objects through wireless connection, that they could communicate with each other and be able to 

identify themselves to other devices [1]. By this term we can say, it’s a reality that allows to 

connect people to their possessions, and also it provides connectivity among those possessions, 

in ways that will save us time and effort and enable things to be smart and work automatically. 

The IoT goal is not just being connected in terms of computers, tablets and smart phones, but 

you can imagine a world where everything is connected together with a intelligent 

communication among them. 

 

In this scenario a Thing can be everything from cell phones, washing machines, headphones, 

lamps or also can be a person with a heart monitor implant, a farm animal with a biochip 

transponder or any other natural or man-made object. It is predictable that IoT will encompass 

every aspect of our lives that it would be provided by the intelligence of the embedded devices. 

We can easily guess how much data will be generated! IoT tries to make our life easier and safer 

by processing the gathered data into useful actions and controlling the connected objects. As a 

simple and basic example: when you are shopping, you are connected to your refrigerator and it 

informs you about its content and the products expiration date. Or for example you have this 

chance to save money by shifting your electricity use to cheaper off-peak hours. 

 

So by IoT we can make better decision since we have more information, and we can save more 

time, energy and money. Monitoring our possessions and controlling them is another advantage 

of IoT in our life. 

It’s clear that each IoT device needs to utilize an IP address as a unique identifier In order to 

connect and integrate with the internet and automatically transfer data over a network. Internet of 

Things (IoT) will change the world, perhaps more profoundly than today’s human-centric 

Internet. As huge volumes of data are being generated, determining the more feasible 

architecture and the most efficient network protocols used by WSN in term of saving more 

energy in a secure way would be some important issues. 

 

Wireless Sensor Networks (WSNs) have been recognized as very important elements of IoT 

which are enabled by three trends: 

●  Cheaper computation (Moore’s Law) 

●  Compact sensing (MEMS sensors) 

●  Wireless networking (low-power radios) 
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Since it is a new term, there are not much prior work can be used with WSNs, so one of the big 

issues would be finding out new compatible solutions in all area of the system. Significant work 

and careful analysis required to implement WSN because of the inherit WSN constraints. 

Protocols defined for WSN must be designed in a way to achieve low energy consumption and 

low latency for reliable data communications with efficient node placement because of the 

constraints on sensor nodes such as energy, memory, computational speed and communications 

bandwidth. 

 

WSNs establish a cheap sensory infrastructure to internet-connected devices distributed in 

different scales, from several to tens of thousands of sensor nodes with computing capability. 

This flexibility causes any next descendant of Internet-enabled portable object to interact easily 

with the “Things” and create a new IoT. 

 

Small nodes with low power and low memory equipped one or more sensors in addition to a 

microcontroller, wireless transceiver, antenna, a processor and a power supplier are thought to 

transfer small payload such as temperature, air pollution, humidity, etc. "Sleep" mode and duty 

cycling mechanism are two mechanisms that could be applied to change the state of sensor from 

"On" to "Idle" or "Sleep" mode in order to turn on the sensor when it has some operation to do  

 

New technology has developed in order to implement WSN applications. 6LoWPAN [2] 

standard, has defined by IETF to transmit IPv6 packets through computationally constraint 

networks. In order to integration IP of WSNs, sensor nodes implement the TCP/IP stack (or a 

compatible set of protocols such as 6LoWPAN [2] in 802.15.4 [18] networks), so there are direct 

connectivity between sensors and internet hosts.  

 

Some of WSN examples could be Structural Health Monitoring [6], networked control, signal 

processing, air pollution monitoring, etc. Some of WSN application are inexpensive tool for 

measurements or monitoring of diverse phenomena [3], collecting data from vehicles and send 

them to the web portal [4], Water quality monitoring [5]. 

 

Standard based protocol stack for Wireless Sensor Networks includes 6LoWPAN, 

IEEE802.15.4e [18], RPL and CoAP for the management of layer-related procedures. 

 

A typical wireless sensor network is shown in Figure 1.1. Low power sensor nodes are used to 

monitor physical and environmental conditions. Then, the measurements can be transmitted from 

server node to another one through certain route and arrive at a Border router/gateway in the 

WSN or end users. The Border router in Figure 1.1 is usually a node powered by wire or a base 

station which may communicate with the data collection center or end-users via the Internet or 

any type of wireless network (like WiFi, mesh networks, cellular networks, WiMAX, etc.) 
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Figure 1.1 Architecture of a typical WSN 

 

1.1 MOTIVATION AND PROBLEM STATEMENT 
In WSNs the overhead imposed at the different network layers are very important in term of 

energy consumption due to the power limitation in wireless sensor nodes. Sensor nodes will cost 

much more energy for transmitting one data packet rather than processing data by itself. So 

Communication in sensor networks is based on very short packets to reduce the communication 

overhead.  

 

Regard to this issue the WSN designers and researcher try to find out the best way of using all 

WSN protocols in order to optimize power consumption and increase the network performance 

at all levels of the protocol stack. 

 

A sensor node will lose more energy for transmitting one data packet than processing data by 

itself. Furthermore, In order to reduce the transmission power consumption in sensor nodes, they 

have to be small in size and memory.  

 

The retransmission energy consumption caused by network congestion, unstable channel 

environment or noise, makes nodes to run out of energy sooner and it’s not always feasible to 

recharge them or replace the batteries easily. Therefore, the network lifetime of wireless sensor 

networks is affected by energy efficiency. As energy is a vital issue for WSNs, saving energy for 

the sensor nodes and making them alive as long as possible have become more and more 

important. 

 

In this thesis we research the most feasible WSN network protocols to transfer data transactions 
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between a sensor client and a sensor server with low overhead and energy consumption in a 

real hardware and operating system.  

 

1.2 THESIS OBJECTIVE  
The main objective of this work is to integrate some of the proposals from the literature and 

standardization bodies in a real hardware and test it in order to build an architecture that can be 

integrated in a real WSN, an IEEE 802.15.4-based WSN testbed. 

 

The main challenge is to define a system architecture that can be cheaply and easily deployed by 

users and application developers, with low programmable effort, that works and can be used for 

obtaining data from the sensor nodes from an outside source of the sensor network. In addition, 

we aim to examine the behavior of a real hardware while testing it in different environments. 

 

 

1.3 THESIS STRUCTURE 
Chapter 2 contains literature review of the wireless sensor networks, including wireless sensor 

nodes Zolertia Z1, communication protocol – IEEE 802.15.4. Section 3 is designed to explain the 

system architecture with applying dissimilar decisions in order to examine the functionality of 

system in the real hardware. Section 4 presents the different scenarios used for the experiments. 

Chapter 5 presents the experiments and the results. Finally chapter 6 concludes the thesis. 
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CHAPTER 2 

FUNDAMENTALS OF WIRELESS SENSOR 

NETWORKS 
 

 

2.1 WIRELESS SENSOR NETWORKS 
This chapter briefly presents all the protocol stacks needed to implement the system architecture 

and WSN nodes. A number of researchers and scholars have been interested to work on Wireless 

sensor networks (WSNs) especially in the case of wireless communication board for the past few 

years. A WSN scales can vary from a few to a large number of sensor nodes. In WSN, sensor 

node is one of the principal components which include a transceiver, antenna, microcontroller, 

memory, power source and one or more sensors such as temperature sensor and humidity sensor. 

We used Zolertia Z1 [16] sensor nodes in this project which includes CC2420 transceiver [13], 

IEEE 802.15.4 compliant [17] protocol. Further, an operating system is an important part that 

allows applications to be efficiently implemented and makes the sensor node work.  

 

In this project the Contiki [10] operating system implemented the protocols runs on every node. 

Contiki OS is developed by SICS (Swedish Institute of Computer Science) and is a small, open 

source operating system designed for wireless sensor networks. In this chapter, wireless sensor 

nodes are introduced first. After that, all the protocol stacks used in implementing the system 

architecture will be described. Finally, Contiki OS is described. 

 

 

2.1.1 CHARACTERISTICS OF WSN 
The following is a briefly description of WSN characteristics: 

1) Node mobility: 

It makes the network links to be formed dynamically, that more nodes can join to the network 

easily or disjoin when they move out of the range. 

 

2) Unattended operation:  

Ability of reconfiguration the network by the nodes without any human intervention 

 

3) Dynamic Network Topology:  

It is important to Re-deployment the network topology in case of failure of the node, failure of 

radio links, or arrival of some mobile obstacles 
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4) Limited power:  

In some environment it is not easy to charge energy regularly [27]. They may, probably, be. So, 

energy consumption is a major issue, and should be optimized at three stages, node 

communication, sensing and processing to reduce the energy consumption.  

 

5) Large scale of deployment  

The large scale of WSN from hundreds or thousands of nodes and some environmental 

parameters like noise, dispersion, interface and available bandwidth, affects on the connection 

quality and may causes some disconnection between the nodes even in tiny networks [28]. 

 Some advantages of WSN are listed in the table 2.1 [29] 

 

 
 

Advantages Disadvantages 

No need the fixed infrastructure to set up the 

network 

Less secure 

Could be set up in the non-reachable places Lower speed 

Low cost implementation More complex to configure than a wired 

network 

Flexible if there is ad hoc situation when 

additional workstation is required 

Easily affected by surroundings (walls, 

microwave, large distances due to signal 

attenuation.. 

Table 2.1: WSN advantage and disadvantage 

 

A Wireless Sensor Network structure is shown in Figure 2.1 
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Figure 2.1: WSN structure 

 

 

 

2.2 WIRELESS SENSOR NODES ARCHITECTURE 
A sensor node, as a most important feature in WSN is a resource-constrained device with the 

communication capability, sensing and limiting data processing.  Architecture of a sensor node 

involves four layers: a Processing Unit, a Power Unit, one or more Sensing Units and/or 

Actuating Units, and a Transceiver that they are shown in the figure 2.2. 

 

Sensor nodes are often deployed in hostile environments or over large geographical areas, to 

monitor physical or environmental conditions, from indoor to outdoor. 

Due to the application’s and customer’s requirements, sensor nodes tend to be designed to focus 

on lower energy consumption and easier development process for a given wireless 

communication range and area. Nowadays, sensor nodes are categorized in two different kinds 

[9]. One is ordinary sensor or non-sink nodes which are used to sense and monitor different 

physical phenomena like temperature, humidity etc, collect them. The other one known as a sink 

(gateway) node (gateway) uses radio communication to collect the data gathered by ordinary 

sensor and also it connects sensor networks to the external world.  Sinks normally are more 

powerful than the ordinary nodes in terms of processing power, available storage and available 

energy. Some small data processing are done by ordinary sensors but high end processing is 

performed at sink nodes. 

 

 In this thesis project, ordinary sensor nodes are used to send the collected data to the external 

network through the sink node. Up to now, there exist a lot of sensor nodes designed and 

manufactured by different companies. A list of available sensor nodes can be found here [9]. In 

our project, we choose Zolertia Z1 sensor nodes. A detailed introduction to the Z1 sensor 
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platform is given in the following subsection. 

 

 
Figure 2.2: Architecture of Wireless Sensor Node 

 

 

2.2.1 ZOLERTIA Z1 
Z1 sensor nodes are produced by a Spanish company, Zolertia, which is located in Barcelona, 

Spain. A Z1 sensor node [16] (shown in Figure 2.3) is a low power WSN module that is designed 

as a general purpose development platform for WSN developers, researchers, enthusiasts and 

hobbyists. It is designed to maximum backwards compatibility with the successful Tmote-like 

family motes while improving the performance and maximum flexibility and expandability with 

regards to any combination of power supplies, sensors and connectors. The two most employed 

open source operating systems/ stacks by the WSN community, like TinyOS 2.x [11] and Contiki 

[10] are supported by Z1 sensor. 
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Figure 2.3: Wireless Sensor Node -Zolertia Z1 

 

 

The Z1 includes the well known CC2420 transceiver, IEEE 802.15.4 and Zigbee compliant, 

which operates at 2.4GHz with an effective data rate of 250Kbps. Its core architecture is based 

upon the MSP430+CC2420 family of microcontrollers and radio transceivers by Texas 

Instruments.  Z1 uses the MSP430F2xxx microcontroller unit (MCU) instead of the 

MSP430F1xxx, as is customary among other motes, like Crossbow's TelosB, Moteiv's Tmote, 

and alike. The inner changes between F2xxx and F1xxx devices lead to some Contiki functions 

available for Tmote sensor nodes are not portable to the Z1 sensor nodes that we are using [16]. 

In the following subsections, the Z1 sensor node will be introduced and described in the context 

of the present project. 

 

 

2.2.1.1 Z1 SUMMARY FEATURES 
A Z1 sensor node is equipped with the low power microcontroller which is MSP430F2617 made 

by Texas Instruments [12]. A Z1 involves of a powerful 16bit RISC CPU @16MHz clock speed, 

builtin clock factory calibration, 8KB RAM and a 92KB Flash memory. It also includes a 

CC2420 transceiver from Texas Instruments/Chipcon [13], which is IEEE 802.15.4 compliant 

and operates at 2.4GHz with an effective data rate of 250Kbps. The hardware selection of Z1 

guarantees the maximum efficiency and robustness with low energy cost [16]. 

 

Z1 has two builtin sensors, one accelerometer sensor and one temperature sensor. The ADXL345 

[14] is a small, thin, low power, 3axis accelerometer with high resolution (13bit) measurement at 

up to ± g. Digital output data is formatted as 16bit twos complement and 16 is accessible through 

either a SPI (3 or 4wire) or I2C digital interface.  

The TMP102 [15] is ideal for extended temperature measurement in a variety of communication, 

computer, consumer, environmental, industrial, and instrumentation applications. The device is 

specified for operation over a temperature range of -40° to +125°. In addition to the built-in 

sensors, Z1 also supports up to four external sensors. There exist a full range of pins available for 
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connecting with phidgets (physical widgets) and many kinds of sensors from the third-party in an 

easy way.   

 

Z1 mote comes with an integrated ceramic antenna from Yageo/Phycomp connected to the 

CC2420 through the C62 capacitor. Optionally, an external antenna can be connected via a u.FL 

connector. The CC2420 [14] is a low-cost single chip with 2.4 GHz IEEE 802.15.4 compliant RF 

transceiver which, designed for low power and low voltage wireless applications. The CC2420 

provides extensive hardware support for packet handling, data buffering, burst transmissions, 

data encryption, data authentication, clear channel assessment, link quality indication and packet 

timing information [14]. More basic features of CC2420 are presented below. 

 

● CC2420  Key Features: 

○ True single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver with baseband 

modem and MAC support 

● DSSS baseband modem with 2 MChips/s and 250 kbps effective data rate. 

● Suitable for both RFD and FFD operation 

● Low current consumption (RX: 18.8 mA, TX: 17.4 mA) 

● Low supply voltage (2.1 – 3.6 V) with integrated voltage regulator 

● Low supply voltage (1.6 – 2.0 V) with external voltage regulator 

● Programmable output power 

● No external RF switch / filter needed 

● I/Q low-IF receiver 

● I/Q direct upconversion transmitter 

● Very few external components 

● 128(RX) + 128(TX) byte data buffering 

● Digital RSSI / LQI support 

● Hardware MAC encryption (AES-128) 

 

To summarize some principal characteristics of the Z1 are listed in Table 2.2. 

 

 
Table 2. 2: Zolertia Z1 parameters 

 

A unique global standard definition needed for the objects to could communicate with each other 
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through the Internet despite of depend less on their technologies and capabilities. So the basic 

standardization bodies have developed standards for the Internet of Things and IP protocol stack 

for Low-Power, Reliable Wireless Sensor Networks have defined that could be seen in Figure 

2.4. The different layers are explained in the following sections. 

 

 
Figure 2.4: IP protocol stack for Low_Power, Reliable WSN 

 

 

 

2.3 IEEE 802.15.4 - COMMUNICATIONS PROTOCOL 
IEEE 802.15.4 is a standard which specifies the physical layer and media access control for low-

rate wireless personal area network (LR-WPANs). It is defined by the IEEE 802.15 working 

group in 2003 [17]. IEEE standard 802.15.4 aims to operate within a short range (i.e. 10 meters), 

with very low transmission rate of 250Kbit/s and with a reasonable battery life rather than other 

approaches, such as WI-FI, which offers more bandwidth and requires more power.  

 

 IEEE 802.15.4 specifications operate on several bands such as: 

 16 channels in the 2.4 GHZ, 10 channels in the 915GHZ and 1 channel in the 868GHZ. 

Table 2.3 shows the data rate and modulation-related parameters in different frequency bands 
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Table 2.3: Frequency bands and data rates 

 

 

The  IEEE 802.15.4  packet consist of the 64-bit IEEE address or a short 16-bit address that is 

located in the destination and source addressing mode field, so the size of the packet could be 

different regarding to the address size. 

 

Figure 2.5 shows the general packet frame structure of IEEE 802.15.4. 

 

 
Figure 2.5: IEEE 802.15.4 General packet frame format 

 

The frame control field defines the type of the frame (i.e. data, acknowledgement or other type) 

and the addressing used (16 bit or 64 bit). The sequence number is an increasing counter of the 
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frames transmitted by the node. The addressing fields contain the source and destination 

addresses. The following fields are the frame payload followed by the frame check sequence 

which ends the frame. 

 

The two subsections below are dedicated to the main functions of physical (PHY) layer and 

media access control (MAC) layer 

 

2.3.1 PHYSICAL LAYER 
Physical layer is the initial layer in the OSI reference model used worldwide. The 

implementation of this layer is often termed PHY. Some special characteristics of WSN create a 

number of significant differences in comparison with traditional wireless network. The main 

different features of WSN make the transmission at shorter distances, lower data rates and node 

power constraints.  

 

The physical layer requirements used in Wireless Sensor Networks differ based on the particular 

scenarios usage. The physical layer is an important network stack layer to reduce energy 

dissipation by finding the optimal transmit (relay) distance and transmit power for a given 

modulation scheme and a given channel model, in order to maximize network lifetime. 

 

The physical layer consists of the basic network hardware transmission technologies of a 

network. The data transmission service provided by physical layer (PHY) enables accessibility to 

every layer management function and maintains a database of information on related personal 

area networks. The physical RF transceiver performs channel selection, energy and signal 

management functions which are managed by PHY. 

 

 2.3.2 MAC LAYER 
Wireless networks must avoid collisions to ensure packets reach their destination. 

The Physical Layer uses Multiple Access with Collision Avoidance (CSMA-CA) to detect 

whether or not another radio is transmitting and employ a method to avoid collisions.  In this 

algorithm the MAC rst listens for energy or modulated data on the air. If none is detected, it can 

transmit immediately. If the channel is not clear the algorithm applies random wait times (backo 

s) before retrying the transmissions. Power management is another functionality of MAC layer 

that allows radio devices to be turn off most of the time in order to save more energy. Contiki OS 

uses ContikiMAC [17] mechanism to achieve this call. The mechanism is described in 

subsection 2.10. 

 

2.4 6LOWPAN ADAPTATION LAYER 
 6LoWPAN [19] [20] provides a means of carrying packet data in the form of IPv6 over IEEE 
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802.15.4 networks. Some sensor network protocols have non-IP network layer protocol such as 

ZigBee, where TCP/IP protocol is not used. However, future WSNs consisting of thousands of 

nodes and these networks may be connected to others via the internet. Hence, IPv6 over 

LoWPAN (6LoWPAN) is defined by Internet Engineering Task Force (IETF) [19] as a 

technique to apply TCP/IP into WSN [20]. 

 

Using the fact that IANA is going to run out of IPv4 addresses, and with the possible explosion 

of devices with allocated IP addresses, 6LoWPAN starts by using IPv6 as the basic IP format. 

 The 6LoWPAN group within the IETF has then defined the encapsulation and compression 

mechanisms and also provides the wireless sensor network (WSN) node with IP communication 

capabilities by introducing an adaptation layer that enables efficient IPv6 communication over 

IEEE 802.15.4 LoWPAN links since IPv6 requires support of packet sizes much larger than the 

largest IEEE 802.15.4 frame size. The MTU size for IPv6 packets over IEEE 802.15.4 is 1280 

octets which were set to keep transmissions short and thereby reduce power consumption. 

However, a full IPv6 packet does not fit in an IEEE 802.15.4 frame. 

 

The specification number for 6LoWPAN is RFC 4944 with the problem statement document 

being referred to as RFC 4919. [19] 

 

 

2.4.1 HEADER COMPRESSION 
802.15.4 Protocol has a maximal available payload size of 127 bytes. As seen in Figure 2.3 from 

the 127 bytes of the frame, 25 bytes are required for the MAC header, 40 bytes for the IPv6 

header and 8 bytes for the UDP Header resulting only 54 bytes available for Payload that can be 

used from the application. Note that if encryption is to be added the available payload decreases 

further. 

 

The maximum packet length of IEEE 802.15.4 is 127 Bytes. As seen in Figure 2.3  21 bytes of 

that is occupied by MAC header, 8 bytes by UDP header, 40 bytes by IPv6 header and more or 

less 53 bytes for the payload in full UDP/IPv6 (64-bit addressing) that is shown in Figure 2.6. In 

case of using TCP it consumes 20 bytes and the payload header would be 41 bytes. This numbers 

tell us that header compression mechanisms are needed for 6LoWPAN to be more efficient. 

Besides that, adding encryption to the available payload will decrease the payload size further. 

Actually any header fields that can be calculated from the context will be elided by header 

compression mechanism and it send the remaining fields unmodified. as a simple example it can 

remove the Version field in the IPv6 header since it has always the same value as 6. As we can 

obtain the address information from the MAC header it could be removed. 

 

Figure 2.4 Minimal UDP/IPv6LoWPAN shows the increasing in Payload size to 108 bytes by 

IPv6 compression header mechanism. 
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Figure 2.6: IEEE802.15.4 frame format 

 

2.4.2 FRAGMENTATION 
Fragmentation [30] is a 6LoWPAN capability that provides the transmission of IPv6 large packet 

that exceeds the maximum frame size of the link layer by dividing them to some smaller 

fragments and sending to the destination by order. Fragmentation mechanism has brings some 

overhead to the packets that these extra information will be removed in the receiver by de-

fragmentation mechanism and the fragmented packets will be combined and delivered to the 

destination as a total package. 

 

The 6LoWPAN packet structure of the fragmented packets is shown in Figure 2.7. It is used 

when the payload is too large to transmit by a single IEEE 802.15.4 frame. Each fragment 

involves a fixed-size fragment header. The remaining space of the link-layer frame is iteratively 

filled with the IPv6 packet content. [30]. In this mechanism the first fragment  (FRAG1 ) is 

responsible of carrying the end-to-end routing information and the remaining fragments 

(FRAGN) to the FRAG1 will be correlated in the destination node in order to derive IP-based 

routing or processing decisions for these fragments. 

 
Figure 2.7: 6LoWPAN packet structure of the fragmented packet 
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2.5 IPV6/RPL NETWORK LAYER 

2.5.1 IPV6 
Nowadays all kind of objects and devices like wireless sensors try to communicate with each 

other through the internet [31]. In order to achieve to this goal its necessary to use IPv6 as a new 

version of the Internet Protocol which expands the address size from 32 bits to 128 bits. IPv6 has 

the capability of implementing the fragmentation mechanism at the at the endpoints instead of at 

the intermediate routers that is significantly simplifies the router and increases the performance. 

Some of the main mechanisms defined by IPv6 are Neighbor Discovery (ND), duplicate address 

detection (DAD), router discovery and Stateless address auto configuration (SAA). 

 

IPv6 header format is shown in figure 2.8. Some of the main fields are: 

Version: This represents the IP version number. This field’s value is 6 for IPv6 

Payload length: This is the length of IPv6 payload in octets which is a 16-bit unsigned integer. 

Next header: This identifies the type of header immediately following the IPv6 header. 

Hop limit: This specifies the maximum number of hops that a packet may take before it is 

discarded. 

Source address: This is the IPv6 address of the originator of the packet. 

Destination address: This is the IPv6 address of the intended recipients of the packet. 

 

 

 
Figure 2.8: IPv6hedear format 

 

 

2.5.2 RPL (ROUTING PROTOCOL FOR LOW POWER AND LOSSY 

NETWORKS) 
Designing energy efficient protocols is the most important issue in Wireless Sensor Network 



17 

 

 

 

(WSN) because of limitation in power and also in memory etc. And such networks are often tries 

to consume energy as less as possible. The IETF ROLL working 

   group has defined the IPv6 Routing Protocol for Low power and Lossy Networks (RPL) in 

order to overcome routing issues in LLNs. In order to achieve to this goal RPL uses some 

metrics such as latency, reliability, battery left on the sensor to compute the "best" path from a 

"leaf" node to a "root" node. 

 

 There are four types of control messages used by RPL protocol in order to maintenance the 

topology and exchanging the information that are briefly explained below:  

DODAG: Destination Oriented Directed Acyclic Graph which is routed at a single destination 

and constructed by RPL in order to avoid any cycle in the connected nodes. The logical topology 

of the network will be defined by his graph. 

 

DIO: DODAG information Object message is sent periodically by the root node down to the leaf 

nodes to form and maintain the DODAG graph. 

 

DAO: DODAG Destination Advertisement Object is sent from nodes to their parents to inform 

their presence. 

 

DIS: DODAG Information Solicitation message is used by nodes to enforce other nodes in the 

network to send DIO messages. For example a newly joined node can send a DIS message to its 

parent to enforce it to send back a DIO message. The other option is to wait for the periodically 

generated DIO message. 

 

Rank: The Rank value of a node indicates its position with respect to the DODAG root. 

 

 

DODAG CONSTRUCTION PROCESS 

Nodes periodically advertise DIO messages that contain information of the graph. 

In receiving such a message, a node decides whether it will join the graph or not. This decision is 

based on constrain that it sets to achieve the goal of having a minimized path cost toward the 

DODAG root node. 

 

Nodes that join the graph are able to advertise a DIS message in order to receive back a DIO 

message. The result of this procedure is a DODAG graph with upward routes towards the 

DODAG root. 

 

Figure 2.9 shows an example of a physical topology with the corresponding logical topology 

(DODAG graph). 
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Figure 2.9: RPL example :Physical and Logical Topology of a network 

 

 

 

2.6 UDP 
User Datagram Protocol (UDP) [32] provides a procedure for application programs to send 

messages (datagram) to other hosts on the IP network without any prior communication set up. 

UDP provides no guarantees to the Upper Layer Protocol for message delivery, ordering or 

duplicate detection. The main reason of UDP is its simplicity and low overhead that cause UDP 

to be much faster than TCP. 

 

UDP source header format is shown in Figure 2.10.  Sending process and the receiving process 

are identified by the port number. The port number of sending process is set when it is needed. 

TCP and UDP use the destination port number to demultiplex incoming data from IP. The length 

of the UDP header is in bytes and the encapsulated data. Checksum is followed by the data are to 

be sent. 

 

 
Figure 2.10: UDP source header format 

 

2.7 RESTFUL ARCHITECTURE 
REST stands for Representational State Transfer [21]. It relies on a stateless, client-server, 

cacheable communications protocol, and in virtually all cases, the HTTP protocol [22] is used. 
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REST is an architecture style for designing networked applications. It uses HTTP rather than 

using complex mechanisms such as CORBA, RPC or SOAP to connect between machines. 

The World Wide Web itself is based on HTTP, can be viewed as a REST-based architecture. 

Resources are key abstraction of information in REST and they identified by uniform resource 

identifiers (URIs) that they get a unique, global ID and could be manipulated through their 

representations. 

 

It is a collection of resources, with three defined aspects: 1) The "verbs" of the service are strictly 

those defined by the HTTP methods HEAD, GET, PUT, POST, and DELETE, 2) The 

"verbs" are used to act upon resources, and 3) resources are addressable using URLs Get requests 

to retrieve a resource ,PUT is used to create or update a resource with a known URI while POST 

is used to transfer the resource into a new state, and Delete data. 

 

Having stateless communication between the client and the server means that the two entities can 

begin a communication without passing any session state. Each request from the clients must 

contain all the necessary information, so that the server understands the request and generates the 

corresponding response if any. 

 

The main reason of using REST in IoT is the fact that it is more lightweight and. IP based 

networking in LLNs could enable the use of standard web service architectures without using 

application gateways. As a consequence, smart objects will not only be integrated with the 

internet but also with the Web. This integration is defined as the Web of Things (WoT). The 

advantage of the WoT is that smart object applications can be built on top Representational State 

Transfer (REST) architectures. REST architectures allow applications to rely on loosely coupled 

services which can be shared and reused. 

 

2.8 CoAP 
The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for using 

with constrained nodes and constrained (e.g., low-power, lossy) networks. [23] 

 

The limitations of the HTTP in the WoT applications on constrained devices with 8-bit 

microcontrollers and small amounts of ROM and RAM caused the Internet Engineering Task 

Force (IETF) to introduce the Constrained Application Protocol (CoAP) a web transfer protocol 

optimized for the constrained power and processing capabilities of WoT smart objects. The idea 

of Constrained RESTful Environments (CoRE) working group was to realize the REST 

architecture in a suitable form for the most constrained nodes and networks. 

 

The currently available IP based application protocols such as HTTP, FTP, SOAP, etc. are not 

appropriate for 802.15.4 based networks, since 802.15.4 has a maximum frame size of 127 bytes. 

Besides, the WSN links are bandwidth constraint that these application protocols should consider 
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limitation. CoAP intends to avoid any complexity by running over UDP instead of TCP that has 

complexity in congestion control. Each GET request will be assigned by a unique Transaction ID 

to identify for retransmission purposes in order to be reliable. 

 

Using CoAP limits the use of fragmentation and sparing constrained networks, like 6LoWPAN, 

to execute expensive fragmentation of IPv6 packets. 

 

CoAP easily interfaces with HTTP for integration with the existing Web while meeting 

specialized requirements such as multicast support, very low overhead, and simplicity for 

constrained environments and M2M applications. 

 

CoAP intends to keep message overhead small and bring Web-like service over low-power / 

loosy network, like 802.15.4, etc. The communication between HTTP devices and CoAP end 

points is via intermediary proxy that can translate from CoAP to HTTP and vice versa. 

There are four type of messages used by CoAP to d to establish a message exchange between 

client and server:[33] 

 

● Confirmable (CON) messages always carry a request or response and require an 

Acknowledgment. 

● Non-Confirmable (NON) messages are used for regularly repeated messages and do not 

require an Acknowledgment (e.g. subscriptions of reading a sensor). 

● Acknowledgment (ACK) messages acknowledge CON messages and must carry a 

response or be empty. 

● Reset (RST) messages are sent in case a CON message is not received properly or some 

context is missing. 

 

A CoAP message carries the request or response or would be empty CoAP Codes is the registry 

to maintain the value of Code field in CoAP header. For example 0 indicates an empty message 

and   1-31 Indicates a request message. CoAP messages are encoded in a simple binary format. A 

message consists of a fixed-sized CoAP Header followed by options in Type-Length-Value 

(TLV) format and a payload. Datagram length determines the length of the payload and when 

bound to the User Datagram Protocol (UDP) (the standard case), it must fit within a single 

datagram. 

 

2.8.1. CoAP FEATURES 
CoAP has the following main features [23]: 

 

 Constrained web protocol fulfilling M2M requirements. 

 UDP [RFC0768] binding with optional reliability supporting unicast and multicast 

requests. 
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 Asynchronous message exchanges. 

 Low header overhead and parsing complexity. 

 URI and Content-type support. 

 Simple proxy and caching capabilities. 

 A stateless HTTP mapping, allowing proxies to be built providing 

 Access to CoAP resources via HTTP in a uniform way or for HTTP 

 Simple interfaces to be realized alternatively over CoAP. 

 Security binding to Datagram Transport Layer Security (DTLS) 

[RFC6347]. 

 

Now a day, tiny embedded devices are directly connected to the Internet over IP rather than 

using barcodes and RFID. So as most Internet applications today use web services, Internet of 

Things (IoT) would be the best promising applications of CoAP. 

 

 

2.8.2 CoAP IMPLEMENTATIONS 

Californium (Cf) , Erbium (Er) , and Copper (Cu) [44] are three implementations of CoAP 

developed at the Institute for Pervasive Computing, ETH Zurich:  

 

Californium (Cf) is an Unconstrained CoAP implementation that is written in Java and focuses 

on scalability and usability. It implemented for 

● IoT cloud services 

● Stronger IoT devices (Java SE Embedded or special JVMs) 

Using Californium makes users to work easily with CoAP without knowing the details of CoAP 

in order to provide an intuitive, easy-to-use framework to interact with CoAP endpoints or 

provide specific services. So, users do not need to know the internals like message 

retransmissions, block-wise transfers and observation handling in details. 

 Californium is based on a layered architecture, extending the two-layer approach described in 

the CoAP draft [23]. This allows an isolated implementation of different aspects such as message 

retransmission, transactions, and block-wise transfers specified by CoAP over several levels. The 

Cf architectural design of is explained in the lab report [24]. 

 

Erbium (Er) is a low-power REST Engine for Contiki that was developed together with SISC 

and makes low-power systems to communicate efficiently and easily with the Internet [25]. 

Therefore, this implementation is specialized for constrained environments as it is designed to 

run on small amounts of memory and low-power Central Processing Units (CPUs) or 

Microcontroller Units (MCUs). 
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Copper (Cu) is a CoAP protocol handler for Mozilla Firefox, used for Browsing and 

bookmarking of CoAP URIs and Interaction with resource like RESTClient or Poster. It treats 

tiny devices like normal RESTful Web services. 

it is designed for unconstrained environments as Cf. Its ability to render a number of different 

content types such as JSON or the CoRE Link Format makes it a useful testing tool for 

application as well as protocol development[26]. 

 

 

The interaction model of CoAP is similar to the client/server model of HTTP. However, 

machine-to-machine interactions typically result in a CoAP implementation acting in both client 

and server roles.  A CoAP request is sent by a client to perform an action (GET, POST, PUT, 

and DELETE) on a resource (identified by a URI) on a server.  The server then sends back a 

response with a response code; this response may contain a resource representation. 

Unlike HTTP, CoAP interaction is asynchronous over UDP. Coap reliability is handled in the 

application layer, using a massage layer (with exponential back-off). CoAP defines four types of 

messages: 

 

Confirmable (CON), NonConfirmable (NON), Acknowledgement (ACK) and Reset (RST), 

method codes and response codes included in some of these messages and requests or responses 

are carried by them.  Requests can be carried in Confirmable and Non-confirmable messages, 

and responses can be carried in these as well as piggy-backed [] in Acknowledgement messages. 

The request/response interactions using Method and Response codes (see Figure 11).  CoAP is 

however a single protocol, with messaging and request/response just features of the CoAP 

header. 

 

 
Figure 2.11: Abstract layering of CoAP 
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2.8.3 MESSAGE LAYER MODEL 
Figure 2.12 shows an example of reliable CoAP transmission message. Client starts to open the 

reliable session by sending the in a CON message with the message ID (0x8c56), to the server. 

Once the server get the request, prepares the response and carries it in a ACK message using the 

same message ID in order to detect any duplication. In this way Client will not retransmit the 

request when it receives the ACK message.  In case the server could not prepare the proper 

response to the client will send Reset message (RST) instead of an Acknowledgement (ACK). 

 
Figure 2.12: CoAP reliable message transmission 

 

In some situations such as sending of single measurement data from a sensor in a frequent rate, it 

is not necessary to send a Confirmable message, and a message could be marked as “Non-

confirmable” carrying the same message ID. Figure 2.13 below is such an example. 

 
Figure 2.13: Unreliable message Transport 

 

2.8.4 REQUEST/RESPONSE LAYER MODEL 

CoAP uses three different models in order to carry the response message that is explained as 

following: 

1) Piggy-backed: In this case regardless to the request type(CON or NON) client will 

received the response ACK with confirmable message immediately that means the ACK 

involves the response message in successful case, and in failure case it involves the 
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failure response code, shown in figure 2.14. 

 

 
Figure 2.14: The successful and failure response results of GET method 

 

 

 

2) Separate response:  The server will send an empty ACK when it cannot answer 

immediately to the CON type message in order to avoid client to resend the request. Once 

server is ready to answer the client, will send a CON to the client and receive the 

confirmable message with ACK from the client to initiate the message transmission 

again.  (Figure. 2.15). 

 

 
Figure 2.15: GET request with a separate response 

 

 

3) Non confirmable request and response: In this case request and response would be sent in 

Non confirmable and NON type message respectively (Figure 2.16). 
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Figure 2.16: Non confirmable request and response 

 

 

The message format of CoAP is based on the exchange of messages over UDP that is in binary 

form that it can be seen in Figure 2.17.  

 In this figure “Version” (Ver), indicates the CoAP version number that is a 2-bit unsigned 

integer data-type.The message type (“Confirmable” =“0”, “Non-confirmable” =“1”,  

“Acknowledgement” =“2” or “Reset”= “3”) is defined by “Type” (T) field.  Token length (TKL) 

specifies the length of the Token field. Code specifies where the message takes a request (1-31) 

or a response (64-191) or is empty (0). In more details,  for example  code 1 signifies that the 

message is a GET request and code 2  is a POST request while codes 69 and 128 are both 

responses translated to "2.05 Content" and "4.00 Bad Request" respectively. Message ID is a 16-

bit unsigned integer and is used for duplicate detection as mentioned above. 

 

 

The Token value is used to associate requests and responses in a significant way. Options could 

specify the maximum age of a resource in seconds, the Internet media type identify the body of 

message, indicates the Internet host of a resource, the transport layer port number of the resource 

and more. Finally, the payload of a request is typically a representation of a resource while the 

payload of a response is the result of the requested action. 
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Figure 2.17: CoAP message Format 

 

 

2.8.5 URI SCHEME 
CoAP URI is used to identify and locate the CoAP resources.  Here's an example of a CoAP 

URI: 

coap://[fe80::c30c:0000:0000:0002]:5683/HelloWorld 

 

Here, “[fe80::c30c:0000:0000:0002]” is the host IPv6 address, “5683” the default UDP port 

number used for CoAP resources and “HelloWorld” the resource representation asked by client 

to obtain. 

 

 

2.8.6 BLOCKWISE TRANSFER  
As we explained before CoAP is thought for transferring data through small constrained devices 

in term of memory and power, hence payload size must be reasonable to ensure it fits in a CoAP 

packet and could be sent without fragmentation. So the payload is considered to be as small as 

possible, but in some cases such as firmware updates it needs to transfer large amount of data. 

Block transfer is a CoAP capability applied to the payload to overcome this issue in the 

application layer by dividing the response to some block options automatically without 

involvement of the handler. The advantage of using block options could be as the following: 

 

● No conversation state is needed between the client and server (stateless communication). 

● Transfer of packets that are larger than what can be handled in lower layers (link-layer) 

● Can be performed in smaller blocks. 

● The transfer of each block is acknowledged, enabling retransmission if required. 

● Both client and server side have a say in the block size that actually will be used. 

● The resulting exchanges are easy to understand using packet analyzer tools o erring better 

debugging. 

 

Blockwise transfer [45] could be start either by client or server.  “Block1” and “Block2” are 
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introduced by CoAP that appertained to the request payload and to the response payload 

respectively. 

A block transfer option is constructed of three parts shown in figure 2.18. The first field (NUM) 

indicates the block sequence number that “0” means it is the first block of this message. The M 

flag indicates the number of blocks are followed, M=0 means this is the last block of the 

message. The maximum size of this block defines in SZX field that is calculated using the 

formula Size = 2 ^ (Exp + 4). For example the SXZ=2 corresponds to a block size value of 64 

bytes that the payload would be divided to 64 bytes and distributed to some blocks needed to 

transfer whole data. Note that the Block options support only a power of two block sizes from 16 

to 1024 bytes.  

 

 

Bytes=4 0 2 

NUM M SXZ 

Figure 2.18: Block transfer option 

 

 

 

 

 

2.9 CONTIKI OPERATING SYSTEM 
The fast growth of WSN applications in recent years to monitor physical or environmental 

conditions, such as temperature, sound, pressure, etc it brings the necessitate to improve the 

developments of wireless sensor network application. Since WSNs contain hundreds or 

thousands of cheap and small sensor devices and low power wireless communication, it is 

important to be able to dynamically download code into the network. So middleware and simple 

operating systems for Wireless Sensor Network application are essentially needed. 

 

Depend on the application requirements that have to be fulfilled the hardware and software 

chosen for the particular application could be different.  For example a microcontroller as a CPU 

used by hardware, is not very powerful because the main focus of those motes. So the operating 

systems such as Windows or Linux or operating systems for powerful embedded systems like 

smart phones could not be run on the sensor motes. One of the most critical software that we 

have to select for the application is Operating System. There are a lot of operating systems 

developed for sensor nodes. Two of the most known sensor node operating systems are 

Contiki[34] and TinyOS [36]. 

 

In this project we used Contiki, a lightweight operating system developed at the Swedish 
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Institute of Computer Science by Dunkels et al. [35]. It supports for dynamic loading and 

replacement of individual programs and services. It has possibility of multi-threading atop of an 

event driven kernel. A typical Contiki configuration needs 2 kilobytes of RAM and 40 kilobytes 

of ROM. 

 

2.9.1 CONTIKI STRUCTURE 
Contiki is an open source Operating System written in the C programming language. 

The main system parts are: kernel, libraries, program loader, and a set of processes. 

 

Contiki provides micro IP and Rime communication stacks: 

Micro IP is a small RFC-compliant TCP/IP stacks called uIP which provides Internet 

communication abilities to Contiki while Rime is a lightweight communication stack developed 

especially for low-power radios. 

  

Rime is a set of communication means, e.g. unicast, broadcast, trickle that used when bandwidth 

is at a premium or where the full IPv6 networking stack is overkill. Rime can send a message to 

all neighbors or to a specified neighbor, as well as more complex mechanisms such as network 

flooding and address-free multi-hop semi-reliable scalable data collection.  

 

Contiki supports TCP/IP networking using uIP TCP/IP stack which provides TCP, UDP, IP, and 

ARP protocols. 

 

Contiki Libraries 

The convenience libraries prepared by Contiki to manage the memory and linked list operations 

are explained briefly. 

Timer library to set, reset and restart timers, also it checks the timer expiration.  The application 

is not done automatically. 

Memory block management provides set of functions for managing a set of memory blocks of 

fixed size. 

Linked list library provides a set of functions for manipulating linked lists. 

In order to reduce consuming of energy, Contiki uses sleep mode instead of using power saving, 

while scheduler will be in charge of energy saving by putting any specific peripheral hardware, 

CPU and Microcontroller inside of sleep mode where there is no more queue.[34] 
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Chapter 3 System architecture 
 

3.1 Hardware 
As we explained in section 2, sensor node is one of the most important elements in WSN since 

Wireless Sensor Networks consist of hundreds to thousands of sensor nodes to sense or measure 

physical data of the area to be monitored. Researchers always have been trying to find the best 

and significant way to decrease the power consumption of the sensor nodes while increasing of 

efficiency of this important element because high consumption is a crucial issue towards to the 

sensor nodes. Still there is lack of diversity of sensor nodes to support this area. 

Wireless sensor networks are used and designed according to the specific application. Therefore 

the selection of required motes will be based on the application requirements’. Zolertia and 

Waspmote are two different available sensor nodes that will be presented in the next subsection.   

 

3.1.1 Waspmote sensor node 
Waspmote (Figure 3.1) is an open source wireless sensor platform launched by Libelium in 

November 2009 [37]. 

 

It is included of six connectors that enable sensor probes to be attached to the platform easily. 

There are more than 60 sensors available for Waspmote. Humidity, temperature, vehicle 

detection, radiation, current, liquid and luminosity are some examples of Waspmote sensors. 

 

 
Figure 3.1: Waspmote sensor 
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Libelium tries to save battery when it is not transmitting data by using the sleep features and 

cyclic waking up. It uses Over The Air Programming (OTAP) [41] in order to upgrade the 

firmware wirelessly. Waspmote hardware includes an ATmega1281 Microcontroller with 14 

MHz frequency, a 8KB SRAM, 4KB of EEPROM and 28KB of Flash Memory. It also accepts 

SD Cards up to 2GB. XBee communication module (Figure 3.2) is used for Waspmote to 

exchange the messages which offers the IEEE 802.15.4 connectivity in the 2.4GHz ISM band. 

Node discovery and Duplicated packet detection are other functionalities provided by this mote.  

 

Waspmote wireless interfaces are as follow: 

3G, GPRS, 868 and 900MHz are used for long range, ZigBee, 802.15.4 and WiFi for medium 

range and RFID, NFC and Bluetooth 4.0 for short range. 

 

 

3.1.1.1 Waspmote Gateway 

Waspmote Gateway will be used to gather the data collected by Waspmote sensors and store into 

the receiving equipment which can be a PC with Linux, Windows or Mac OS, or any device 

compatible with standard USB connectivity. The gateway offers a USB A plug connector, so the 

receiving device must have a USB A receptacle. Waspmote Gateway is shown in figure 3.2. 

 

 
Figure 3.2: Waspmote Gateway 

3.1.2 Z1 Zolertia 
Z1 [16] (Figure 3.3) sensor node that is explained in section 2, supports WSN protocols such as 

2.4GHz IEEE 802.15.4, 6LowPAN compliant and ZigBee™ ready and Contiki OS which is our 

selected sensor node for this project. 
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Figure 3.3: Wireless Sensore Node- Zolertia Z1 

 

 

3.2 Challenges 
Lack of robustness of protocols at all WSN levels make it difficult to be adopted really easy in 

the real-word and may make some challenges. 

 

Up to now not so many related researches have been focused on implementing CoAP and HTTP 

in the networks using Z1 motes that are based on IEEE 802.15.4 and Contiki. Sometimes the 

problems we met were not presented before. Thus, it often took a lot of time to locate the 

problems, figure out the causes and work out the solutions.  

 

The most important challenges that we encountered in order to carry on in this project, are listed 

in below. 

 

 

3.2.1 Simulation VS. Real World Testing 

In order to make up both practical and theoretical context to be significant in a real world, I carry 

on my project on a systematic and capable method. However when working with real-world 

experiments or deployments, many new issues arise.  

There are many experiments and researches focused on implementing of simulation mode such 

as [42], but in simulation mode there is no any impact of real environment such as noises that are 

made by different sources or physical obstacles. Furthermore, simulation results are typically not 

reliable to operational networks due to the variety of different technologies used in a Wireless 

Sensor Network leading to very inconsistent network structures. For example the most frequent 

issue that I faced through carrying of this project was inability of battery energy power towards 

to the transmitting data across of devices in terms of long distance while in simulation mode, we 
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do not encounter with these kinds of issues. So the simulation is normally simple and convenient 

and the results may not be accurate for system evaluation. 

 

3.2.2 Selection of the hardware 
List of the specifications of the Z1 and Waspmote nodes is shown in table 3.1.  

 

 
Table 3. 1: Z1 and Waspmote specification 

As a result Z1 seems like a fairly good hardware in implementation of our project objectives, 

because it is more energy efficient rather than Waspmote, and it comes out as the best available 

option which has the ability to support a wide range of WSN network applications, also it is 

IEEE 802.1.5.4 compliant. In Addition Z1 is designed based on a well-established platform to 

run that it is supported by Contiki OS and is easier to run rather than Waspmote, since there is no 

operating system running on Waspmote's microcontroller, just the bootloader which allows 

uploading the code through the USB. 

 

 

However the limitation of the Z1 memory size and processor’s capacity could be evaluated as an 

important issue towards to the running of applications. This issue sometimes leads to insufficient 

storage of some essential information that does not allow us to implement some applications on 

that mote. Therefore we had to disable some functionality of some applications to solve this 

issue. For example, first, the idea was to run Radio Duty Cycle [38] mechanism in our project to 

save more energy, but due to the Z1 memory limitations (8Kb ram) we could not run that 

mechanism because RDC requires [43] additional program and RAM to store neighbor 

information. And we had to disable RDC in border-router/project-conf.h in Contiki to prevent 

any overload in the system.  
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Another most important issue was the limitation of msp430-gcc 4.4.5 compiler in the current 

12.04 LTS Instant Contiki for compiling the programs over the 64kb. As my project data 

exceeded of 64kb and the compiler in Contiki does not support data regions above the 64kb, I 

have limited the resources from Contiki on the Z1 mote in order to avoid the risk of stack 

overflows.  

 

3.2.3 Selection of the Operating System 
As described in section 2, Contiki [34] and TinyOS [39] are two well-known operating systems 

developed for sensor nodes.  

 

TinyOS is an open source project developed by the University of California in Berkeley which 

supports quite a few sensor node hardware platforms that runs on different microcontroller 

including the ATMEL AVR family of 8-bit microcontrollers, the Texas Instruments MSP430 

family of 16-bit microcontrollers, different generations of ARM cores and etc. 

The programming language of TinyOS is NesC, a “dialect” of the C programming language [39]. 

 

Table 3.2 shows some of contiki and TinyOS specifications. 

 

 
Table 3.2: Comparison between TinyOS and Contiki OS 
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As presented before both operating systems fulfill the requirements we need for our project, 

although, Contiki is really especial as an OS in the communication protocol support. It offers 

IPv4 and IPv6, and a lightweight layered protocol stack called the rime stack which is explained 

in section 2.9.1. 

 

By comparing of Contiki and TinyOS in terms of special features and also advantages of Contiki 

OS over the TinyOS that will be explained below, Contiki was our preferred Operating System 

for this project. 

 

Concurrency: TinyOS only uses event-driven kernel in order to accomplish the concurrency 

requirements whilst Contiki uses different libraries to perform multithreading on top of event-

driven kernel [34].  

Flexibility: Both operating systems are flexible to handle different types of applications. Contiki 

can dynamically replace only the changed programs of the application, while an application 

using TinyOS has to be replaced completely, including the operating system. So Contiki would 

be the better option in case when the node software has to be updated often in a big WSN. [34] 

Some of the issues we faced in regard to use Contiki OS are described as follow: 

First, lack of good documentation or paper on Contiki OS yet, could take a very long time to fix 

the simple issues. 

 

Second, Contiki does not include the most updated MSPGCC4 compiler needed to compile the 

z1 applications all, hence in order to run some codes on Z1 we have to program the drivers that is 

not so easy. 

 

 

3.3 System architecture 
Our system architecture assumes a WSN testbed that consists of three layers: One or more 

clients, a server, and a WSN testbed that illustrates the real world implementation of a RESTful 

WSN. So our WEB architecture is based on client-server model. In order to demonstrate the 

benefits of CoAP, we ran two simple experiments with the Contiki Operating System: the first 

one using CoAP over 6LoWPAN and the second one using HTTP over 6LoWPAN. 

 

 Figure 3.4 shows our testbed network. WSN client (HTTP or CoAP) queries the resources to 

WSN server (HTTP or CoAP) by issuing a Restful (GET/PUT/POST/DELETE) request through 

internet. In comparison with normal web services the resources asked by client would be 

different with respect to the data that could be measured by the server such as humidity, 

temperature, small packages, etc.  
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Figure 3.4: Testbed network. HTTP and CoAP 

The HTTP and CoAP clients are located in a PC while the servers are embedded in a sensor. 

 

The whole testbed services are usually implemented centrally as server-side software, and client-

side software provides only the user interface to access those services. Sensor nodes acting as 

source and sink node.  

 

Figure 3.5 shows our general system layout. WSN Client sends a query to the WSN Server nodes 

respectively to get their data using sensor node IPv6 address. A brief description of each module 

and an example of use is described below. 
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Figure 3.5: The complete architecture 

 

3.3.1 RPL Border Router 
 Once the server got the request will answer back to the client through an additional element of 

the system called gateway (RPL-Border-Router), that acts as a bridge between sensor nodes and 

clients to forward the IPv6 packets received from a WSN Client to a WSN server by using 

Tunslip tool from Contiki to create a SLIP tunnel between a USB serial port and a virtual 

network interface. The received packet from USB port will be forwarded to the server node. 

 

In this scenario RPL Border Router that is shown in Figure 3.5 is our Gateway that it periodically 

checks if more nodes joined or left the network to calculate the best route to forward the packet 

to its destination. 

 

 

3.3.2 CoAP and HTTP Server 
A CoAP or HTTP endpoint acts as a WSN server which a given resource resides or is to be 

created. Each resource defined by a name and has a handler function which is called by the 

REST (GET/PUT/POST/DELETE) query to serve the request. As an example "helloworld" in 

figure 3.5 is a resource that would be handled by "helloworld_handler" function which is called 

when a web service request is received for "helloworld" resource. 
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3.3.3 CoAP and HTTP Client 
CoAP or HTTP clients are outside of the network and must be connected to the sensor nodes 

from outside of network through Internet to ask the server about the resources offered by it. To 

enable resource discovery an IP address and port number need to be standardized. 

 

  IANA has assigned the port number 5683 and the service name "CoAP", in accordance with 

[40] whilst HTTP uses port 8080. 

 

The Client just creates and sends a request to the server via RPL Border Router and receives the 

response with the content and the response code. 

An example of CoAP request is explained below. 

 

CoAP Client sends a request to the RPL Border Router module that seems like: 

 

coap://[aaaa::c30c:0000:0000:009f]:5683/hello 

 

Where "[aaaa::c30c::009f]" is the IPv6 address of the CoAP server, 5683 the CoAP port number 

and "resource" the name of the resource as defined in the CoAP Server handler of that resource. 

The RPL Border Router receives the request and forwards it to the CoAP server. Once the server 

receives the request, prepares the proper response involves the content and CoAP response code 

that would be “4.04 Not Found” in case it cannot find the resource and "2.05 Content" in case the 

resources exists. CoAP server forwards the response to the RPL border router which further 

forwards it to the CoAP client.  
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Chapter 4 

4 Experimental environment 
 

 

4.1 Software tools 

4.1.1 Copper plug-in 
The Copper (Cu) CoAP [44] user-agent for Firefox installs a handler for the 'coap' URI scheme 

and allows users to browse and interact with Internet of Things devices. Basically, Copper 

enables CoAP URIs to be simple entered into the address bar of the browser, thus extending the 

browser to behave like a CoAP Client. Using of Copper simplifies the debugging procedure 

where the work implementation can be controlled properly in a significant way. 

 

The Figure 4.1 shows Copper plug-in user interface. In order to make a request for a resource 

located in the CoAP Server sensor node, the URI needs to be written as follow: 

 

”coap://[aaaa:c30c::0002]:5683/resource” 

Note that the”aaaa:c30c::0002” is the CoAP Server address, ”5683” is the default configuration 

port for CoAP while ”/resource” is the name of the requested resource. 

 

 
Figure 4.1: Copper Plug-in Interface 

As it can be seen from figure 4.1 Client uses use the buttons  GET,  POST,  PUT, 

and  DELETE to interact the resources hosted by a CoAP server. The resources are located 

on the left and will be displayed after issuing a discovery request to the sensor node. The 
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responses will be displayed in the browser. For example “Light/photosynthetic: 190” in the 

figure 4.1. Also, the copper plug-in shows the RTT (Round Trip Time) required between the 

request and the response (RTT=80 ms in this example). In addition, the type of the message can 

be configured (Confirmable or NON-Confirmable) as well as the block size in case in which the 

resource is a Blockwise resource. 

 

Copper defined 'Behavior' menu to further customize the requests and their handling.  

In case the response is larger than would fit in the buffer can repeat the request with a suitable 

value for the Block Option [44]. The size of each block could be set in the 'Behavior' menu in 

order to distribute the whole response to some blocks of size X. We can assign 16, 32, 64 or 

128… 1024 Bytes to the X value. 

 

 

4.1.2 Wireshark 
Wireshark [47] is a network packet analyzer that tries to observe the messages exchanged 

between executing protocol entities which is an open source software project, and is released 

under the GNU General Public License (GPL). 

 

We used Wireshark to analyze the network protocols such as HTTP, TCP, UDP, CoAP and IP. 

Figure 4.2 is an example of using Wireshark in our project which shows the layers in the TCP/IP 

network model of a packet. 

 

 
Figure 4.2: Wireshark tool 
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4.2 Scenarios 
This chapter focuses on the implementation of experimental setup in an IEEE 802.15.4-based 

Wireless Sensor Network (WSN) to evaluate and analyze the performance of HTTP/TCP and 

CoAP/UDP network protocol stack in embedded devices. Contiki-2.7 OS was the operating 

system used for our implementations. 

 

Different scenarios have been created in order to develop experiments about the used protocols. 

They are explained in the following subsections. For each value, the experiment was repeated 10 

times and the results have been extracted from the average of these repetitions. 

 

In order to compare the CoAP/UDP performance with HTTP/TCP performance in WSN two 

scenarios are categorized that each one explained in the following subsections 

 

 

● CoAP/UDP scenario 

● HTTP/TCP scenario 

 

Figure 4.3 shows the real environment used for our tests. The architecture of laboratory and the 

different places with distances are shown in Figure 4.4. In this scenario the RPL Border Router 

(Gateway) was placed in the first place (Orange star) and the server was placed in three different 

places shown with yellow stars. The justification of these scenarios was to choose a fist scenario 

without looses and with the client and server very near, and the second and third scenarios in 

which the client and server are in different rooms with a line of sight and with a non-line of sight 

and obstacles. 

 

The distances between the Border Router and the Servers are shown in the figure 4.4 and are 

approximative. It is not so important the distance as the fact of having line of sight and non-line 

of sight conditions since the typical deployment scenarios are those ones in which the client and 

the RPL border router are near in distance (several meters) but with obstacles, e.g a balcony, a 

wall, a room with furniture, etc. 
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Figure 4.3: Real laboratory environment 

 

 

 

 
Figure 4.4: Architecture of laboratory 

 

A general purpose implementation of COAP and HTTP was to see the transmission delay of 

these two protocols in delivering the responses in the system presented in figure 3.5.  

 

4.2.1 CoAP scenario 
The principal goal of this experiment is to deepen the understanding of the advantages of 

CoAP/UDP rather than HTTP/TCP in WSN. 
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In this scenario we analyzes the CoAP performance by calculating the transmission delay and 

network layer overheads on  the Wireless Sensor Network using different transaction  sizes of 1, 

50, 100 and 150 bytes. 

 

 

4.2.1.1 CoAP implementation 

Regarding to CoAP scenario, a COAP server supported in the Contiki OS has been installed in a 

Z1 node and a RPL border router also supported  by Contiki has been installed in a second Z1 

node. 

 

A CoAP-client is running on a PC under Linux OS using Copper plug-in in order to retrieve the 

‘resources’ hosted by a CoAP server by sending RESTFull requests with “GET “method to 

retrieve resources from WSN nodes. 

 

CoAP uses the datagram-oriented UDP transport protocol to exchange messages. In our 

experiments CoAP use Piggy-backing [23] to carry the response in the acknowledgment message 

since the result was immediately available. 

 

 

CoAP Client uses Copper plug-in in order to issue the request using server's IPv6 and send it to 

the RPL Border Router. The RPL Border Router will forward the IPv6 packets received from a 

CoAP Client to a CoAP server. A vice-versa procedure was then followed in order that the CoAP 

Client receives the CoAP response with the Hello-world on an ACK message. Figure 4.5 shows 

the response sent by server to CoAP client. 

 

We repeated this experiment with different transactions. The resources are abstractions 

controlled by the server and identified by a Universal Resource Identifier (URI). Figure 4.5 

shows how to send the get request using copper plug-in.  

 

Coap URL would be like following: 

coap://[aaaa::c30c:0000:0000:009f]:5683/hello 

 

● “[aaaa::c30c:0000:0000:009f]”  is our server IPv6 address. 

● “5683“ is the port number used by CoAP  

● “hello“ is the resource name. 

 

As mentioned previously, different transaction sizes have been issued: 1, 50, 100, 150, 500 and 

1000 bytes have been requested by the CoAP client.  
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As CoAP is designed to transfer small data like temperature, humidity, etc. In the experiments, 

there is no problem in using CoAP with transactions smaller than 64 bytes, due to the size of the 

payload. Remember that IEEE 802.15.4 has a maximum packet size of 128 bytes and uses 

payloads near 100 bytes. Taking into account the 6LowPAN headers, the CoAP payload resulted 

in sizes lower than 64 bytes. On the other hand transactions of sizes larger than 64 bytes will 

need the Blockwise mechanism [45] explained in subsection 4.2.2. More details of Blokwise 

transfer can be seen in subsection 2.8.6. 

 

 

 
Figure 4.5: Copper plug-in URI, Server resources and CoAP response 

 

 

In order to illustrate how a transaction works, Figure 4.6 shows an example of retrieving a 50 

byte transaction captured by Wireshark. Different network layers of transferring data in CoAP 

are shown in this figure. 

 

As it can be seen from the picture, CoAP client starts the session by sending a 74 Byte 

Confirmable (CON) messages to carry a get request to the CoAP server. The CoAP server 

received the “GET” at time “1395831386.1930” and answered back to the CoAP client. (Blue 

line in the picture) 

 

CoAP client received the CoAP Acknowledgment (ACK) messages with a 2.05 Content type 

message (Orange line in the picture). We define the Transmission delay as the total time 

measured from the time the CoAP Client issued the request until the time it received the 

response. In this example the delay would be: Transmission delay= 386.315-386.193=122 ms. 

 

We point out that the Z1 server sensor that issues the data has not enough resources in terms of 

memory to install a network analyzer such as wireshark or similar. Thus, the captures are done in 
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the client that requests these data. The client is installed in a PC that has the resources to install 

the wireshark packet analyzer. 

 

The overheads of network layers captured by wireshark are shown in the middle of the picture. 

Since wireshark catches the packets from Border Router to CoAP client so we couldn't catch the 

6lowpan header. The message content has been shown in the bottom of the figure 4.6. 

 

 

 
Figure 3.6: Network layers in CoAP 

 

CoAP/UDP exchanging data is shown in Figure 4.7. CoAP server got the request at time 6.193s 

and CoAP client got the answer at time 6.315. 

 

 
Figure 4.7: CoAP/UDP exchanging data 
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4.2.2 Coap Block-wise implementation 
CoAP does not work very well with 6lowpan fragmentation in order to send larger data [48]. It is 

explained in more detail in section 5.1. CoAP uses Blockwise for transferring multiple blocks of 

information from a resource representation in multiple request-response pairs. [45] 

 

CoAP is based on datagram transports, which limits the maximum size of resource 

representations (64 KB) that can be transferred. [23] Block-wise transfer is a mechanism defined 

by CoAP in order to split large data into blocks for sending and reassemble the blocks on the 

application layer upon receipt. 

 

The scenario of sending the request and getting the response is the same of previous experiment. 

The only difference is that the client sends a GET request containing Block option, indicating 

block number and desired block size. In return, the server sends a response containing the 

requested block number and size. The transaction repeats until the client obtains the whole 

resource. If a response generated by a resource handler exceeds the client’s requested block size, 

the server automatically divides the response and transfer it in several blocks.  

 

In this experiment we used Chunks resource handle in order to transfer different Chuck Sizes 

which exceeds 64byte. Chuck Size is actually the size of the requested resource. We changed this 

parameter by editing the resource in the CoAP server. Additionally, in the copper plug-in we set 

the block size to 16 Bytes. That means the whole message would be divided into blocks of length 

16 bytes. So the number of blocks needed to transfer a message of size 128 bytes, is equal to 8. 

 

In order to illustrate how Blockwise works, an example of Blockwise transfer with chunk size 

equal to 100 bytes is presented in figure 4.8. 

 

In this example the confirmable message to carry the GET request is 82 bytes. Blockwise 

mechanism sends a GET request per each block of message. So as a result it needs 14 packets (7 

GET request packets and 7 Blocks of response) in order to transfer a message of size 100 with 

block size equal to 16 bytes. All packets captured by Wireshark are shown in figure 4.8. 
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Figure 4.8: Blockwise transfer, exchanging 100 bytes transaction using Chunks recourse 

 

Figure 4.9 shows the CoAP packets exchanged using Blockwise transfer mechanism.The whole 

transaction is divided to some 2.05 content type messages and there is a Get message for each 

block that it seems there are some separated transactions to transfer. In this test the Transmission 

delay is defined as the difference time between the first GET request sent and the last 2.05 

content type message received. In the example shown this one is: Transmission delay=759.6534-

759.1726=480 ms. 

 

 

 

Figure 4.9: Blockwise transfer message exchange 
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4.2.3 HTTP scenario 
The same scenario (motes and environment) as CoAP implementation was created in this 

experiment. 

 

Figure 4.10 presented the experimental setup, consists of a testbed of two Z1 motes and a 

desktop computer running Ubuntu Linux.  A HTTP server supported by the Contiki OS was 

installed in a Z1 sensor node and a RPL border router was installed in a second Z1 sensor node 

which is connected to the IP network. The Border Router sends and receives packets to and from 

the Linux PC by using Serial Line IP (SLIP). The communication between the sensors was over 

IEEE 802.15.4 protocol. 

 

Regarding to this experiment, HTTP client and server was running under Contiki 2.7 operating 

system. HTTP client used curl (CurlHttpClient) command which is an object oriented                                                               

wrapper of PHP cURL extension to send a GET request to the HTTP server through border 

router in order to retrieve the data. 

 

The request would appear as follows:  

 

curl -H "User-Agent: curl" aaaa::c30c:0:0:009f:8080/helloworld 

 

“User Agent” field to fool the server into thinking you're one of those browsers. 

“aaaa::c30c:0:0:009f” is the server IP address. We specified the port number in the URL with a 

colon and a number immediately following the host name. Here doing HTTP to port 8080 and 

finally the resource name used in this experiment is specified after port number called 

helloworld. 

 

Once the Border router receives this GET request from HTTP client, will forward the request to 

the HTTP server over IEEE 802.15.4 and the HTTP server sends back the response to the client . 

 

HTTP protocol is built upon TCP/IP. TCP uses three-way handshake to initialize and end a 

connection, that means, the client must send a SYN and receive an ACK for it from the 

server.[20] 

The following figure 4.11 was obtained from a Wireshark shows the TCP/IP and HTTP packets 

of transmitting a 100 byte transaction. The normal TCP connection establishment and 

termination, detailing the different stats through which the client and server pass could be seen 

from the Figure 4.12. The Client sent the SYN to establish the connection. Server got the SYN at 

time 8.118, and then sent back the SYN/ACK. Once the server got the ACK, client sent the GET 

request to the server to start the packet transmission.  
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The Transmission Delay is defined as the time the client initiates the 3WHS mechanism until the 

client closes the connection issuing a FIN/ACK segment. TCP employs fast retransmit in a large 

window size to enhance its performance and link utilization. 

 

As illustrated in following captures shown, the server initiated the close at time 9.947 by sending 

FIN packet to the client and finally the session were closed at 10.001, so the delay in this 

experiment was calculated as follows: Transmission delay=10.001-8.118= 1.883 seconds. 

 

 
Figure 4.10: HTTP transferring data architecture in WSN 

 

 

 

 

Figure 4.11: TCP connection with the timestampts 

The initial SYN (packet 82) start at time 8.118.The first TCP header is 40 bytes long. The rest 

TCP header lengths are 20 bytes 



49 

 

 

 

 

 
 

 

Figure 4.12:TCP3-way handshake 

 

Client starts to establish the connection at time 8.118, and sent the GET request at time 8.271. 

Server initiated close at time 9.947 and finally the session were closed at 10.001, so the delay is 

equal to 1.883 s 

 

Due to the IEEE 802.15.4's standard packet size equal to 127 octets consisting of a 40 byte IPv6 

header, 20 bytes TCP header, the available space for data payload is furthermore reduced and 

very few bytes are left for data. So the whole 100 bytes of transaction couldn't be sent in one 

packet and it distributed in 2 packets (HTTP/TCP packets in Figure 4.13). Last part of 

transaction is highlighted in the picture with orange color as Hyper Text Transfer Protocol. In 

this figure 37 bytes of the message is transferred in packet number 112 and totally 17 packets 

needed to transfer a 100 bytes data over TCP/IP. 
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Figur 4.13: Hyper Text Transfer Protocol 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 

 

Chapter 5 

5 Experimental results 
 

 

5.1 CoAP scenario 
In the following, experiments on packet reception delay for the different scenarios and for 

several packet sizes are implemented using CoAP application layer based on IEEE 802.15.4 

communication protocol. 

 

Table 5.1 shows a few results taken to evaluate the transmission delay by increasing the distance 

between server mote and border router with different transaction sizes on the CoAP server. The 

total number of bytes transmitted shows the size of the transaction during a retrieval of a 

resource. In this table, scenarios 1, 2 and 3 are those ones shown in the Figure 4.4. Figure 5.1 

represents the diagram results.  

 

 

 

places Transmission 

delay for 

1 byte 

 transaction 

 (sec) 

 

Transmission 

delay for 

50 bytes 

transaction 

(sec) 

Transmission  

delay for 

100 bytes 

transaction 

(sec) 

Transmission 

delay for 

150 bytes 

transaction  

(sec) 

 

Transmission 

delay for 

500 bytes 

transaction  

(sec) 

 

Transmission 

delay for 

1000 bytes 

transaction  

(sec) 

 

1 

2 

3 

      0.169  

      0.167  

          0.377  

   

0.176 

0.311 

0.296 

1.508 

1.763 

1.186 

1.694 

3.277 

8.794 

11.796 

Not 

 received 

19.484 

NOT 

received 

Table 5.1: Communication timing requirements for transferring data over CoAP/UDP based on 

802.15.4 

 

As an example the transmission delay of the smallest transaction of 1 Byte in the first scenario 

that is the closest distance to the border router, was around 0.169 sec. Note that this is the total 

time the requests/responses needed to travel along the whole system ( RPL Border Router and 

CoAP Server). By increasing the size of transaction to 50 bytes it can be observed that the delay 

was almost the same equal to 0.176 sec that means the delay caused by distance is not too much 

for small packets that it could be seen in figure 5.1 (Red and Green line). 
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It can be understood by the Figure 5.1 and Table 5.1 that the different scenarios does not have 

too much effect in the delay for small packet sizes. The reason is that CoAP protocol uses only 

one packet to transfer the transaction up to 64 bytes since the packet size of IEEE 802.15.4 is 

only 128 bytes, part of the packet size is utilized for layers overhead, so it needs only one packet 

for the GET request and one packet for the response. Without losses, therefore, there is no 

significant difference in the time required to transfer the transactions lower than 50 Bytes.  

 

By increasing the transaction size the response generated by a resource handler exceeds the 

client’s requested block size and causes the response to be divided into some blocks using simple 

stop-and-wait mechanism called “Blockwise transfers” [45]. Thus for transfers larger than 50 

bytes the Block-wise mechanism comes into action.  

 

The results show that the penalty of Blockwise transfers in terms of transmission delay is quite 

high in comparison with lower transfer sizes. As it is explained in previous chapter, using 

Blockwise transfer needs additional GET request packets (one packet per each block of data) to 

transfer whole transaction, so the amount of delay straightly depends on the number of 

transmitted frames. As it can be seen from the picture there is significant difference between the 

transmission delay of transactions with size 100 bytes and 150 bytes. The total number of blocks 

needed for transferring a transaction of 100 and 150 bytes with block size equal to 16 bytes 

without any noise and retransmission packets are 14 and 20 frames respectively. It means that in 

case of transaction of 100 bytes there are  7 GET requests of size 81 and 7 response messages 

which are carried in the resulting Acknowledgement (ACK) messages of size 88 bytes that is 

called a piggy-backed [23] response. 

 

 Another point that should be taking into account is the significant delay time of sending a 150 

byte transaction from third place with more environmental obstacles. Interference and channel 

noise that occurs during transmission causes more delay in large data packets than smaller 

packets and forces CoAP retransmissions. Furthermore we did not have any problem in order to 

received the large data using blockwise transaction in the first scenario since CoAP Blockwise 

mechanism divided the data to some small blocks and transfers each part as a single transaction, 

waits to receive the ACK and sends the next GET message to request the next part of the 

message whiles in the second and third scenarios the client couldn’t received the requested 

resource due to the retransmission loss caused by environmental obstacles and channel noises.  

 

 CoAP Blockwise is used to increase reliability using CoAP confirmable (CON) and 

acknowledge messages in large data transaction in the application layer instead of using 

6LoWPAN fragmentation. In case of failure of a single packet causes only the retransmission of 

the relative request in Blockwise transfer while the fragmented packets of 6LoWPAN would be 

sent in a unique CoAP request/response transaction, therefore the ACK would be sent when all 

the fragments have been received.  Since the number of retransmitted packets its effect on 
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reliability and delay transmission, we used Blockwise transfer for carrying the large data since it 

has less retransmitted packet. The only issue we faced was higher traffic generated in the 

network by Blockwise transfer due to the transmission of a CoAP ACK for each block. 

 

Our experiments confirm that CoAP request/response cycles are most efficient when each 

message fits into a single 802.15.4 frame and CoAP is not suitable for sending large sums of 

data.  

 

 
Figure 5.1: CoAP transmission delay vs. distance with different transaction sizes 

 

 

5.2 HTTP scenario  
Like CoAP scenario, experiments on packet reception delay against distances with different 

transaction sizes are made over HTTP/TCP application layer based on 802.15.4 communication 

protocol. We evaluated and measured the transmission delay by increasing the distance between 

border router that was located in the first place in Figure 4.4 and HTTP server by putting it in 

places 1, 2 and 3 for our experiments. Table 5.2 and Figure 5.2 present the results taken to 

evaluate the transmission delay 
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Table 5. 2: Communication timing requirements for data transferring over HTTP/TCP based on 

802.15.4 

 

 

 
Figure 5.2: HTTP transmission delay in different locations 

 

As it can be seen from the experimental results, there was not a significant difference in 

transmission delay obtained from transaction of size 1 and 50 bytes since they don't need more 

than 1 single HTTP packet to exchange through the network. The number of HTTP packets 

needs to exchange 50 and 100 bytes are shown in Figure 5.3 and 5.4 that are 2 and 4 HTTP 

packets respectively. 

# places Transaction 

Delay (sec) for  

1 byte  

 

Transaction 

Delay (sec) for  50 

bytes  

 

  Transaction 

Delay (sec) for 100 

bytes 

 

Transaction 

Delay (sec) for 150 

bytes 

 

Transaction 

more than 150 

bytes 

1 

2 

3 

 0.378 

0.490 

1.808     

0.366 

0.700 

1.551 

0.777 

0.643 

8.165  

0.802 

0.907 

21.021 

 

NOT received 
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The most important result found out from the Table 5.2 is the delay time for transmission 150 

bytes transaction in the third scenario. We faced some retransmissions in this experiment due to 

the decreasing in Wireless signal strength by increasing the distance between devices, 

furthermore there were additional interference from environmental sources such as stairs, 

elevator, columns, etc. that block radio waves. It is described in more detail in the next section. 

 

In order to illustrate how HTTP/TCP based on 802.15.4 protocol divides the transaction to some 

small packets, an example of transferring 150 bytes transaction gathered by Wireshark 

represented in Figure 5.3. The 3 packets of an HTTP message are shown in the picture. 

 

 

 
 

 

Figure 5.3: HTTP packets of exchanging 50bytes transaction 

 

 

 

5.3 Network layers overhead 
Table 5.3 shows the total number of bytes transmitted at each layer. TCP based HTTP has the 

highest number of bytes transmitted at each layer since it sends several other TCP messages. 

Also Delayed ACK optimization implemented in most of the TCP/IP stacks has a negative effect 

for our domain due to small request and response size. 
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Network layer HTTP/TCP 

(Bytes) 

CoAP/UDP 

(Bytes) 

Application layer 

Link Layer, IPv6 

Network layer,  

Transport layer, 802.15.4 

81 

40 

20 

25 

4 

40 

8 

25 

Table 5.3: Network layer overhead. HTTP/TCP vs. CoAP/UDP 

 

5.4 CoAP VS. HTTP 
After comparing tables 5.1 and table 5.2 we figure out some results regards to the CoAP and 

HTTP application layer in term of delay time. 

 

The transmission delays for transaction of size 1 and 50 bytes in different distances from border 

router implemented over HTTP obviously show the highest number of retrieval time and bytes 

transmitted, since Each HTTP/TCP uses Three-Way Handshake included additional packets such 

as TCP-SYN, TCP-SYN-ACK and TCP-ACK messages that could be seen from figure 4.13. In 

contrast CoAP over UDP based protocols uses Piggy-Backed with only 2 messages to retrieve 

data (GET and ACK) (figure 4.7). 

 

 

The most interesting result is referred to the transferring a transaction of 100 bytes. According to 

these experiment CoAP/UDP used Blockwise transfer and HTTP/TCP used TCP fast retransmit 

in order to send the large transaction. In order to illustrate the CoAP/UDP and HTTP/TCP data 

exchange mechanism Figure 5.4 shows an example of both protocols captured by Wireshark 

tool. In the CoAP example, 100 bytes of data divided to the 7 ACK blocks with a GET request 

packet per each block, so in this case we needed 14 packets in order to send our transaction 

(according to the block size of 16 bytes and 802.15.4 MTU). Whereas in HTTP scenario we have 

some additional TCP messages such as SYN, ACK, FIN, etc. plus fragmented transaction that in 

this example there are 3 fragmented packets (according to the 802.15.4 MTU and TCP header 

sizes).  In total it needs 17 packets to transfer the data. Regards to the small block size in CoAP, 

more packets needed to transfer the big data over CoAP . Therefore the time needed to transfer a 

100 byte transaction over CoAP/UDP is higher than HTTP/TCP in the first and second places. 

As a result we can reduce the number of packets and the transmission delay time needed to 

transfer a transaction by setting a bigger block size. However the 802.15.4 MTU must be taken 

into account. 

 

We have to notice that the average packet losses tested using the ping command was of zero in 

the network. So the fading and shadowing effects have no significant influence on network 

performance in those cases.  
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 CoAP /UDP Packets                                            HTTP/TCP Packets 

 

Figure 5.4:CoAP and HTTP large data transferring 

 

  

One of the interesting results is regarded to the transmission of large data by increasing the 

distance between server and border router. In this test the server was in a place with average 

packet loss equal to 7.6 % due to the environmental obstacles. In this test a 100  byte transaction 

took around 8 and 21 seconds to receive to the client respectively over HTTP while it took 

around 1 and 8 seconds over CoAP (Table 5.4). By looking to the Wireshark result in Figure 5.5 

it has been observed the impact of fading and shadowing on network performance and get some 

retransmissions packets that can reduce the effective throughput.  

 

Losses in HTTP/TCP required more time for retransmitting the entire transaction rather than 

CoAP/UDP, as the TCP retransmission mechanism (slow start, exponential back-off, timeouts 

multiple of 500 ms, etc) produce larger transaction delays than the simple CoAP retransmission 

mechanism; see the results of Table 5.2.  

 

Another important result was that HTTP client did not receive the transaction bigger than 150 

bytes. In the first scenario we did not have any environmental effects on the system as both 

Server and Border router were closed to each other, but the problem that we faced during this 

experiment was related to the low-power resource-constrained sensor nodes that are normally 

equipped with kilobytes of RAM which might be not enough for storing large data for 

processing. As the HTTP/TCP mechanism uses the fast retransmit mechanism to transfer the 

large data and sends the packets continuously the low-power microcontroller is not capable to 
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handle and process the large amount of data.   

 

 

 

   
A: CoAP retransmission free                                              B: HTTP retransmission 

Figure 5.5: Fading effect on HTTP and CoAP 

 
 

Transaction size Delay time over CoAP/UDP 

 

Delay time over HTTP/TCP 

 

1 

50 

100 

0.377   

0.296  

1.186 

1.808  

1.551 

8.165 

Table 5. 4: Comparing CoAP and HTTP transmission delay in term of transaction size 

 

Places Delay time over CoAP of 50 

bytes transaction 

Delay time over HTTP of  

50 bytes transaction 

1 

2 

3 

0.176 

0.311 

0.296 

0.366 

0.700 

1.551 

Table 5. 5: Comparing CoAP and HTTP transmission delay in term of distance 
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5.5 Qualitative Results 
One of the objectives of the master thesis has been the integration of a Hw platform like Z1 

Zolertia nodes with an operating system like Contiki implementing a developing protocol stack 

like CoAP. Here, we outline the difficulties encounter in the integration of such platform.  

 

a) We point out first the difficulty in working with a platform under development. The 

CoAP/UDP protocol stack with 6LowPAN over IEEE 802.15.4 used in the experiments 

was not fully tested at the beginning of the Master Thesis. Part of the master thesis 

consisted in making that this platform worked. 

b) Due to the lack of some Z1 drivers in Contiki, some results could not be achieved.  In 

addition Contiki does not include the most updated MSPGCC4 compiler needed to 

compile the z1 applications all, hence in order to run some codes on Z1 we should have 

to program the drivers that is not so easy. 

c) Z1 memory constrained and processor’s capacity could be evaluated as an important 

issue towards to the running of applications that we couldn’t implement some 

applications on the mote due to the insufficient storage. Therefore we had to disable or 

configure some functionality of some applications such as Radio Duty Cycle to solve this 

issue.  

d) Another most important issue was the limitation of msp430-gcc 4.4.5 compiler in the 

current 12.04 LTS Instant Contiki for compiling the programs over the 64kB. As my 

project data exceeded of 64kB and the compiler in Contiki does not support data regions 

above the 64kB, I have limited the resources from Contiki on the Z1 mote in order to 

avoid the risk of stack overflows.  
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Chapter 6 

Conclusions and Future Work 
 

 

6.1 Conclusions 
In this thesis we present how to embed RESTful Web services into WSNs. In particular, the 

purpose of this project is to evaluate and analyze the network protocols in IoT provided by 

CoAP/UDP and HTTP/TCP based on IEEE 802.15.4 protocol. All the solutions considered in 

this project are discussed and evaluated in a real Contiki based 6LoWPAN network using some 

Z1 sensor nodes. 

 

We measured the latency experienced by a client when retrieving information from a server 

where HTTP/TCP has been compared with CoAP/UDP in order to evaluate the performance of a 

significant protocol in terms of efficient energy consumption and transmission delay.  

Regarding to CoAP scenario we run er-example-server.c found in contiki/examples/er-rest-

example as a CoAP server and rpl-border-router.c found in contiki/ examples/ ipv6/ rpl-border-

router as a border router on two Z1 sensors. CoAP-client is running on a PC under Linux OS 

using Copper plug-in in order to retrieve the 'resources' hosted by a CoAP server by sending 

RESTFull requests with “GET” method to retrieve resources from WSN nodes. In our 

experiments CoAP use Piggy-backed [23] to carry the response in the acknowledgment message 

since the result was immediately available. 

 

Regarding to HTTP experiment, HTTP client and server was running under Contiki 2.7 

operating system. HTTP client used curl (CurlHttpClient) command which is an object oriented 

wrapper of PHP cURL extension to send a GET request to the HTTP server through border 

router in order to retrieve the data. Unlike HTTP based protocols, CoAP operates over UDP and 

employs a simple retransmission mechanism instead of using complex congestion control as used 

in standard TCP.  

 

The results of the analysis suggest that: 

CoAP protocol works better in transferring small transaction as it just needs 2 packets to transfer 

the data whereas HTTP needs 14 packets in the same case because of using TCP three way 

handshaking. In addition in case of sending large data, both protocols divide the message to 

some blocks and add one extra packet per each segment. So the number of packets using by 

CoAP/UDP and HTTP/TCP increases significantly. CoAP uses Blockwise transfer [23] while 

HTTP uses the TCP three-way-handshake messages and just divided the transaction to some 

smaller packets, so they are not suitable to transfer large data as it consume more energy and 

generate more traffic. 
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In case of exchanging large data from long distance the CoAP provides the better performance. 

We faced some retransmissions in this experiment due to the decreasing in Wireless signal 

strength by increasing the distance between devices. Losses in HTTP/TCP required more time 

for retransmitting the entire transaction rather than CoAP/UDP, as the TCP retransmission 

mechanism (slow start, exponential back-off, timeouts multiple of 500 ms, etc) produce larger 

transaction delays than the simple CoAP retransmission mechanism. 

 

As a consequence the lower communication overhead of the CoAP protocol due to using lower 

number of messages when retrieving resources and the simpler hardware requirements caused 

CoAP/UDP based protocols perform better for constrained networks compared to HTTP based 

resource retrievals. 

 

 

6.2 Summary conclusion 
As a summary conclusion we can state that CoAP/UDP works well with IEEE802.15.4 since the 

MTU is small, something that penalizes the HTTP/TCP transactions. However, in a MAC with 

larger MTU at high rates, like WiFI IEEE802.11 family, with a MTU of 1500 Bytes, a HTTP 

transaction can be done with one packet at larger distances. Thus, it could provide a good 

solution for using the HTTP/TCP stack. The development of the LowPower WiFi seems to point 

in this direction: a MAC optimized to consume low energy but compatible with the HTTP/TCP 

stack instead of the current IEEE 802.15.4 low power MAC for sensors that has to optimize the 

application layer (CoAP instead of HTTP).  

 

6.3 Future Work 
One of the most important advantages of working on this project was, I could join to Zolertia 

Company located in Barcelona. I could carry on the project in both theoretical and practical 

framework where all tests have been done in a real world. IN addition I could work into a 

company where I could develop myself in terms of new knowledge and skills related to my study 

plan. Furthermore I have been familiar with a modern full-stack operating system designed for 

ARM Cortex-M-based MCUs called mBED [46] which is an open-source OS. The idea is to 

create an mBED_enabled platform of our own that is supported within the mbed platforms 

database and tools. We can implement our project on free mbed Online Compiler and mbed 

Developer Platform that provides us apply new ideas due the change of new technology.      
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