

Strategy2D: Turn-based Strategy Video

Game Engine for Mobile Devices

Author: Javier Calvo Villazón

Supervisor: Lluís Solano Albajés

November 2014

 2

 3

TABLE OF CONTENTS

1. INTRODUCTION .. 9

2. OBJECTIVES ... 10

3. CONTEXT .. 11

3.1 Users .. 11

3.2 Players .. 11

3.3 Game Engines ... 12

3.3.1 The Game Engine Scene .. 12

3.3.2 Game Engines Today ... 16

3.4 Turn-based Strategy Video Games ... 18

3.4.1 Turn-based Tactics ... 19

3.4.2 Tactical Role Playing Games ... 20

3.4.3 World Strategy ... 22

4. THE DEVELOPMENT FRAMEWORK ... 24

4.1 Framework Choice ... 24

4.2 Cocos2d-x .. 25

4.2.1 Audio .. 26

4.2.2 User Input ... 27

4.2.3 Graphics .. 29

4.2.4 Setting up the environment .. 37

5. THE ENGINE ... 40

5.1 Engine Structure Overview ... 40

5.2 The Strategy2D Module .. 41

5.2.1 Usage .. 42

5.2.2 Implementation ... 42

5.3 View Layer ... 46

5.3.1 LayerMap .. 47

5.3.2 ButtonAbility ... 58

5.3.3 ButtonRecruit ... 59

5.3.4 Platform mobility .. 61

5.4 Domain Layer ... 65

5.4.1 ActionManager and the Game Flow ... 66

5.4.2 Configurable Elements .. 78

 4

5.4.3 ControllerGame .. 96

5.4.4 Path Finding .. 98

5.4.5 Callbacks .. 113

5.4.6 Artificial Intelligence .. 122

5.4.7 Internet Connection and Multiplayer .. 122

6. USAGE EXAMPLE ... 123

6.1 Starting .. 123

6.2 Terrain Configuration .. 124

6.3 Team Configuration .. 129

6.4 BaseUnit Configuration ... 130

6.4.1 Abilities Configuration ... 133

6.4.2 Adding BaseUnits to the System .. 140

6.5 BaseBuilding Configuration ... 140

6.6 Path Finding Configuration .. 143

6.7 Turn Handling... 144

6.8 Running the Game ... 146

7. PLANNING AND COSTS .. 148

7.1 Planning .. 148

7.2 Costs ... 152

7.2.1 Human Resources .. 152

7.2.2 Tools .. 153

7.3 Development with the Engine ... 154

8. CONCLUSION .. 155

8.1 Work for the future ... 156

9. Bibliography .. 158

 5

TABLE OF FIGURES

Figure 1: Quake Logo ..13

Figure 2: Unreal Engine Logo ..13

Figure 3: Maniac Mansion, the first video game to use SCUMM14

Figure 4: Planescape Torment, one of the Role Playing Games developed using the

Infinity Engine ...15

Figure 5: RPG Maker ...15

Figure 6: Unity Logo ..16

Figure 7: The Unreal Engine 4 editor ...17

Figure 8: Crysis 3, using the CryEngine 3 ...17

Figure 9: Corona SDK Logo ..18

Figure 10: Chess Board ..18

Figure 11: Advance Wars, one of the main exponents of TBS Games19

Figure 12: FIre Emblem: Path of Radiance ..20

Figure 13: Tactics Ogre ..21

Figure 14: Wasteland 2 ..21

Figure 15: X-COM: Enemy Within ..22

Figure 16: Civilization V ..23

Figure 17: Cocos2d-x Logo ...25

Figure 18: Cocos2d-x Layout Overview ..26

Figure 19: OpenAL Logo ..26

Figure 20: OpenGL Logo ..29

Figure 21: Cocos2d-x Coordinate System ...30

Figure 22: Alpha Blending enables the presence of semi-transparent objects on-

screen ...32

Figure 23: Cocos2d-x Action Class Diagram ..34

Figure 24: Cocos2d-x Project Folder Layout ...38

Figure 25: Strategy2D class diagram ...41

Figure 26: The system can get the currently running Strategy2D instance from any

part of the code ...43

Figure 27: Dangling Pointer concept ..45

Figure 28: View Layer class diagram ...46

 6

Figure 29: The pan movement ..49

Figure 30: Pinch and Pan movements ...50

Figure 31: Tap selection ..50

Figure 32: Structure of the iOS specific code inside Cocos2d-x51

Figure 33: Example in which the screen's bounding box fits inside the map55

Figure 34: Example in which the screen's bounding box doesn't fit inside the map

 ...55

Figure 35: Sample of an Ability Selection Menu, composed by ButtonAbility59

Figure 36: Sample of Recruit Selection Menu, composed by ButtonRecruit60

Figure 37: Another sample of a Recruit Selection Menu, this time showing

unaffordable items ..61

Figure 38: An example of bad scaling, in which the original proportions of the

sprite are broken ..62

Figure 39: A sample of a map being displayed on an iPhone 4s using landscape

configuration ...63

Figure 40: A sample of the same map being displayed on an iPhone 4s using

portrait configuration ..63

Figure 41: A sample of a bad scaling of the map, which would happen in case we

tried to show the same content regardless of the proportions64

Figure 42: Domain Layer diagram...65

Figure 43: Normal map layout ..66

Figure 44: The player taps on a Unit to select it ..67

Figure 45: The system displays the positions the selected Unit can move to67

Figure 46: The player taps at the position he wants to move the Unit68

Figure 47: The system displays the Ability Selection Menu ..68

Figure 48: The user selects the Ability he wants the Unit to perform69

Figure 49: The system shows the positions at which the Ability can be targeted ..69

Figure 50: The player selects the target position for the Ability70

Figure 51: The Ability is performed ...71

Figure 52: A normal map layout ..71

Figure 53: The player taps at a Building to select it ...72

Figure 54: The system shows the Recruit Selection Menu, composed by

ButtonRecruit ..72

 7

Figure 55: The player selects a BaseUnit to recruit ..73

Figure 56: The Unit is recruited at the Building's position ...74

Figure 57: Handle Touch flow chart ...75

Figure 58: Ability Button Selected flow chart ...76

Figure 59: Recruit Button Selected flow chart ...77

Figure 60: Game Map concept ...78

Figure 61: Terrain, Building and Unit sprites examples ...79

Figure 62: The order of the rendering must be: Terrain, Building and Unit79

Figure 63: Examples of terrains ...81

Figure 64: Unit class diagram..83

Figure 65: Example of two different sprites associated to different Teams for the

same BaseUnit ...86

Figure 66: Chess movement for a King, implemented with the engine87

Figure 67: Chess movement for a Horse, implemented with the engine87

Figure 68: Chess movements for a Queen, implemented with the engine88

Figure 69: Chess movements for a Bishop, implemented with the engine88

Figure 70: Building class diagram ...91

Figure 71: Example of affordable and unaffordable buttons for recruiting a Unit 92

Figure 72: Example of two different sprites associated to different Teams for the

same BaseBuilding ..93

Figure 73: Path Finding concept ..98

Figure 74: A weighted graph, used to represent Path Finding problems99

Figure 75: A picture of X-Com: Enemy Within, a turn-based strategy video game in

which path finding plays a major role .. 100

Figure 76: Path Finding Map layout .. 103

Figure 77: Path Finding 1... 104

Figure 78: Path Finding 2... 105

Figure 79: Path Finding 3... 106

Figure 80: Path Finding 4... 107

Figure 81: Path Finding available positions ... 108

Figure 82: Shortest path from any of the positions in range to the Unit 109

Figure 83: the User selects a position in range ... 110

 8

Figure 84: The algorithm moves through the positions following the shortest path

storing the values .. 110

Figure 85: The algorithm completes the path back to the selected Unit 111

Figure 86: Shortest path from the Unit to the selected position 112

Figure 87: Sprite for grassland terrains ... 124

Figure 88: Sprite for wood terrains ... 125

Figure 89: Sprite for mountain terrains ... 125

Figure 90: Sprites for water animation .. 126

Figure 91: A map generated with the defined terrains .. 128

Figure 92: Sprite representation for soldier Units (for red and blue team) 131

Figure 93: Sprite representation for tank Units.. 131

Figure 94: Sprite representation for plane Units ... 132

Figure 95: Sprite representation for ship Units .. 133

Figure 96: Button Sprites for the Attack Ability (unpressed and pressed) 134

Figure 97: Sprite representation for barracks Building .. 141

Figure 98: Sprite representation for Harbour Building ... 142

Figure 99: In-game capture of the demo ... 147

Figure 100: Gantt chart of the project development ... 151

file:///C:/Users/Angel/Downloads/PFC%20Document%20-%20correccion%20v1.04.docx%23_Toc403594049

 9

1. INTRODUCTION

Over the last decades, video games have grown up to the point of becoming one of

the biggest entertainment industries. They have come a long way from being a

niche product, targeted mostly at children and presenting themselves as a new

kind of toy, to what they represent now; a product all kinds of people can enjoy

and be appealed to, regardless of their age and background.

The irruption of smartphones has played a major role in this trend, making them

available in platforms with much larger audiences and allowing people to play

their games while they travel replacing game focused consoles.

However, the majority of successful titles launched in mobile devices have been

targeted at casual players, who do not have much experience with video games,

and, in consequence, tend to have simplified mechanics. While this is a nice

approach for the development of games for these platforms, it is also true that

now that these players have lost their initial fear to video games and joined the

gaming community, they might also want to find new types of games that bring

new concepts and represent different challenges. This is a great opportunity for

providing these newcomers with more traditional video games that can offer a

different level of complexity and diversity. And also to appeal those old players

that no longer have enough time for playing as they used to.

All of this, of course, taking into account the limitations of mobile devices and

their specific features.

In this scenario, we can see that turn-based strategy games, which are perfectly fit

to touch controls and do not require immediate response by the player, represent

one of the most interesting genres to adapt to mobile devices.

 10

2. OBJECTIVES

The main objective of the project is to design and implement a development

framework for the creation of two-dimensional turn-based strategy games for the

current generation of mobile devices.

With this objective in mind and looking into the current situation of game engines,

it has also been possible to perform an analysis of what are the main

requirements the engine must meet.

 Make sure that it provides the required features for the development of

games that follow the typical structure in the turn-based strategy genre: A

two-dimensional grid map in which units and buildings pertaining to

different factions interact with one another in order to accomplish an

objective.

 Given the previous structure, make it highly configurable; providing

developers with the needed tools to innovate by adding new features,

gameplay mechanics, visuals and new content: simplifying the process and

ensuring that the development workload is reduced, especially in graphics,

control and management handling.

 Be multi-platform so that the games created with it can reach as many

users. It has been established that the engine must be at least fully

compatible with the two dominant mobile platforms: Android and iOS

smartphones and tablets.

 Acquiring knowledge of game engine design and development techniques

to ensure the accomplishment of the previous objectives.

 11

3. CONTEXT

It is important to define the roles of the actors that will take part in the project’s

life cycle, as to provide an explanation that avoids confusions and

misunderstandings before entering the following chapters.

There will be two main types of actors involved:

3.1 Users

They are the game developers that will use the engine to create their strategy

games and the main users of the project.

As it will be explained later, the development framework chosen is Cocos2d-x,

based on the C++ programming language. For this reason, these users must have

certain knowledge of this language. Having knowledge on Cocos2d-x would also

be helpful, especially for handling sprites, animations and reproducing sound

effects, although the framework is very accessible and will not be an obstacle for

newcomers.

3.2 Players

They are the people who will play the games developed with the engine and the

final target of the game developers. They will also be final users of the engine, but

since they will not directly interact with most of its layers and to differentiate

them from the game developers I will refer to them as players.

 12

3.3 Game Engines

Game Engines are software development frameworks specifically designed for the

development of video games. They were born to free developers from having to

repeat parts of the creation process several times and to offer a stable, adaptable

and robust tool that can give an abstraction from some of the most platform

dependent procedures and core mechanics.

These engines are mostly built by delivering an interface that provides the

developers with a data-driven method of development, which does not require

the typical algorithmic approach and which, if well structured, can provide a

much easier usage without giving up a huge amount of possibilities for the

development.

Some engines are designed only to offer a very specialized tool that handles one

specific part of the games that will be developed. That is the case of some of the

most popular engines, which normally handle Graphics by controlling the

rendering phase or Physics, managing the way different objects interact with each

other.

Others, however, are designed with a much more specific purpose, offering a solid

yet adaptable tool for the development of games that will share most of their core

mechanics.

This last will be the case of Strategy2d, which will offer a development tool for the

creation of games pertaining to the same genre.

3.3.1 The Game Engine Scene

With this purpose in mind, it was very important to take a look at the scene to get

ideas on how game engines are designed and how they offer their users the tools

needed for the creation process.

In the past, only companies with big budgets were able to produce their games

and release them with a publisher. For this reason, engines were usually bought

to other companies that were specialized in its development; such was the case of

some of the most important engines of that time:

 13

Figure 1: Quake Logo

The Quake Engine, developed by Id Software was one of the first game engines to

be used by companies other than their creator. It was originally conceived for the

development of the video game Quake, but was later used by other developers

such as Valve for the creation of Half-Life.

Figure 2: Unreal Engine Logo

The Unreal Engine, developed by Epic Games, was originally created for the

development of the video game Unreal. Through its first third iterations (the

fourth one has been recently released and is still in beta phase) it has become the

most used video game engine in history, featuring in more than a hundred games.

 14

Another option was the development of internal engines designed specifically for

the development of games within the same company. Some of these were

developed for a single game to help through its development or to offer a tool for

the creation of similar instances or games pertaining to that same genre.

A very early example for this last option would be SCUMM (Script Creation Utility

for Maniac Mansion), which offered a development framework for Graphic

Adventures and was originally conceived for the sole development of Maniac

Mansion, although it was later used for all of the Graphic Adventures created by

LucasArts (such as The Secret of Monkey Island, Day Of The Tentacle, Sam and Max

or Indiana Jones and the Fate of Atlantis).

Figure 3: Maniac Mansion, the first video game to use SCUMM

A different example can be found in the Infinity Engine, created by Bioware for the

development of the Role-Playing Game Baldur’s Gate, which was later used by

other Isometric RPGs such as Planescape: Torment, Icewind Dale or Baldur’s Gate

II.

 15

Figure 4: Planescape Torment, one of the Role Playing Games developed using the Infinity Engine

Finally, a very interesting example of genre-targeted video game engine can be

found in RPG Maker, a series of programs designed for the development of Role

Playing Games that were very popular between non-professional developers,

empowering them to design and publish their own games. Some examples are

Eternal Eden or To the Moon, which won several awards and became commercial

successes.

Figure 5: RPG Maker

 16

3.3.2 Game Engines Today

With the boom of indie game development, a new model for open game engines

has become widely popular. Some of them are plainly open-source and are

sustained thanks to the donations of their users while others have updated their

business models to adapt to this new market of indie developers.

Also, due to the arrival of the wide variety of platforms for mobile devices, it has

become very important for these engines to be cross-platform and fully

compatible with their characteristics.

The main example of this is Unity 3D, which offers a built-in interface for the

development as well as a scalable and portable framework based on the purchase

of extensions and subscriptions.

Figure 6: Unity Logo

Another example is the recently released Unreal Engine 4, which has adapted its

business model from previous iterations to a subscription plan similar to the one

offered by Unity 3D, although offering direct access to its subscribers to the source

code and allowing them to make their own plugins and extensions for selling

them to other subscribers.

 17

Figure 7: The Unreal Engine 4 editor

The CryEngine, developed by Crytek, has also proved to be one of the most

technologically advanced game engines in the market, counting with some of the

most graphically powerful games of all time, such as the Crysis series, Ryse: Son of

Rome, Star Citizen or Evolve.

Figure 8: Crysis 3, using the CryEngine 3

Corona SDK, by Corona Labs, also offers a subscription model for a very portable

engine that supports development for Android, Windows Phone and iOS devices

using the Lua scripting language.

 18

Figure 9: Corona SDK Logo

A final example is Cocos2d-x, the one chosen for the development of the project,

which will be explained in detail in the Framework section of this document.

3.4 Turn-based Strategy Video Games

Turn-based strategy games (often called TBS Games) are strategy games where

players take actions in turns when playing, so that not all of them can play

simultaneously and they can take more time to plan their next move.

Their main inspiration lies in classic board games such as chess, although with the

flow of time they have also taken elements from more modern games such as

Risk, Diplomacy, Gettysburg or Warhammer, and also from Role Playing Games

such as Dungeons and Dragons.

Figure 10: Chess Board

 19

There are many variations among turn-based strategy games; some of them are

more centered in battle and do not focus on other aspects of gameplay, while

others offer a much wider approach.

All of them have served as reference in order to design an engine that offers

enough tools to develop games with all these mechanics.

3.4.1 Turn-based Tactics

When starting the project, the main focus was to be able to reproduce battle

focused games, and for that reason I looked into the gameplay mechanics of this

subgenre. In it, the player is able to select units that pertain to her team and

deploy them through the map in order to attack and destroy the enemy’s units.

One of the most important games in this genre and the one that served as main

inspiration was Advance Wars, by Intelligent Systems (Nintendo).

Figure 11: Advance Wars, one of the main exponents of TBS Games

In it, every unit counts with a limited range of movement each turn and can only

perform one skill. Buildings are used to produce new troops, consuming

resources for it, making them essential to recruit new units.

 20

3.4.2 Tactical Role Playing Games

Among the battle centered games, there are some that present Role Playing

Mechanics in which units are able to grow their power and learn new skills and

abilities. For this reason the engine was opened, making it more configurable so

that these characteristics could also be developed.

This subgenre, with the name of Tactical Role-playing Games, was born as a

mixture of both RPGs and Turn-based Strategy Games in the early 80s, with the

release of Ultima III.

As it happens for Role Playing Games, there are two main flows in terms of design,

Japanese RPGs and Western RPGs.

Japanese games usually have a great separation between battles and main game

flow, which runs in parallel and has completely different mechanics.

One of the main series in the subgenre is also developed by Intelligent Systems:

Fire Emblem.

Figure 12: FIre Emblem: Path of Radiance

In it, units have unique personality and stand by the player through the whole

adventure, unless they die in battle.

 21

Other very successful examples of the subgenre are Final Fantasy Tactics or

Tactics Ogre.

Figure 13: Tactics Ogre

In the case of Western RPGs, however, there is not so much separation between

the battle phase and the game itself. It is the case of games like the original Fallout

or Arcanum, in which their turn-based battles are performed in the same

scenarios where the rest of the gameplay takes place.

The most recent example is Wasteland 2, sequel to the 1988 classic.

Figure 14: Wasteland 2

 22

3.4.3 World Strategy

This last subgenre is the one composed by those games in which battle is not

necessarily the main focus, and strategy can lie in different aspects of the

gameplay, such as the economy or the relationship with other factions.

One recent example would be the last iteration on the X-COM series, in which the

player takes control of anti-alien agency that has to protect the different countries

of the world from an alien invasion while handling the budget and taking

decisions in order to save as many people as possible.

Figure 15: X-COM: Enemy Within

Perhaps the best example for the subgenre would be the Civilization series, in

which players take the role of the leader of a nation and must guide it from its

foundation through history managing the gathering of resources, the construction

of cities and buildings, the investigation of new technologies, the relationships

with the rest of the factions in the game and military conflicts.

 23

Figure 16: Civilization V

The conclusion of the analysis of this last subgenre was that it would not suppose

too much an effort to include additional tools for controlling the economy of the

factions in the game, so tools for handling these aspects were added.

 24

4. THE DEVELOPMENT FRAMEWORK

4.1 Framework Choice

Since one of the project’s main objectives was to offer a highly portable and

scalable engine, we needed a multiplatform framework that allowed developers

to design their games for different mobile devices.

With this in mind, I searched for graphic engines that could take care of the

graphic elements and that allowed the development for multiple platforms,

mainly iOS and Android.

At the time this research was conducted Unreal Engine 4 had not been released

yet, so after gathering information I ended up with three main engines that

fulfilled the objectives: Unity3D, Corona SDK and Cocos2d-x, all of them

exportable to iOS and Android.

While all of them represented good options, I decided that in order to provide

users with as many configurable possibilities, it was a very important

requirement to have full control over how the framework handled the different

events and the possibility of adding layers on top of it. In this regard, both

Unity3D and Corona SDK have closed environments, with many of their features

being totally opaque to the user and providing only an interface based on

scripting languages (C# and Javascript for Unity3D and Lua for Corona).

Cocos2d-x, in contraposition, is an open-source project and, as such, includes all

of its source code so that users can see how it works internally and gives them the

possibility of modifying it. Also, since it is based on C++, it offers a much wider

control over the flow of the program, which translates into more possibilities to

personalize it and more efficiency, having no scripting but pure native code.

Another criterion was the payment: While Cocos2d-x is totally free and open to

development, all the others have subscription models in which users must pay in

order to have access to all of their features. So in order to offer a more accessible

engine that required no subscriptions of any kind for any of its components,

Cocos2d-x was the most appropriate framework.

 25

Finally, a major factor for the decision was the graphics focus. Unity3D and Unreal

Engine are both centered on 3D graphics and, for this reason, users must use

workarounds in order to configure pure 2D games; Cocos2d-x, instead, is totally

centered on two-dimensional graphics and all of its interface is prepared for

treating this type of games.

For these reasons I ended up with the decision of using Cocos2d-x for the

development of the project.

4.2 Cocos2d-x

Cocos2d-X is an open source game development framework written in C++ that

can be used to build from games to apps and any type of cross platform programs

that need a GUI (Graphical User Interface).

Figure 17: Cocos2d-x Logo

It allows multi-platform development and represents the most important

development framework for 2D video games, with more than 400,000 developers

using it.

It has a lot of components that allow the creation of all types of video games, such

as physics or storage libraries, but our focus will be on describing the most

 26

important features required for turn based strategy games. But first should give

an overview of its general structure:

Figure 18: Cocos2d-x Layout Overview

4.2.1 Audio

Audio and Sound Effects represent a very important part of any kind of video

game, and so is the case for turn based strategy games.

The approach followed by Cocos2d-x is simple and intuitive: it contains a direct

wrapper for the OpenAL audio library, which can reproduce all kinds of sound

effects with multiple channels and three-dimensional positional audio.

Figure 19: OpenAL Logo

This wrapper receives the name of CocosDenshion, and it provides with a

singleton class that can be commanded to reproduce a sound effect at any time

during the game flow by just passing the name of the audio file. Of course, these

sound effects can be played just once or in a loop.

 27

A code example for playing a sound effect would be the following:

CocosDenshion::SimpleAudioEngine::getInstance()->playEffect(“sound.wav”);

In which “sound.wav” is the file containing the audio file. The fact that different

platforms cannot reproduce the same audio formats must be considered, so users

must use a fully compatible format (such as wav) or set a different file for each

target device.

4.2.2 User Input

The way the user input is handled is the most basic part of any video game, since

by definition a video game requires the interaction of the player. In the particular

case of this project, targeted at mobile devices, this interaction must be performed

through the touch controls.

For this purpose, Cocos2d-x offers the possibility of defining callbacks for the

following actions of the user:

 Touches Started

 Touches Moved

 Touches Ended

To do so, it allows you to wrap between the hardware detection of the user

interaction and your defined callbacks by providing a Director singleton class

which contains an Event Dispatcher that can add listeners for them and to which

you can link your functions. These listeners have a priority parameter, which tells

Cocos2d-X what is the order in which the callback functions should be called.

Each one of these wrappers pass to your callback an array of the touches made by

the user on the device screen that correspond to the action of the function’s name,

which provide information about the current location of the touches and, for

touches that had already been started, also about its previous locations.

 28

These callbacks can be defined in the context of a Node class, which will be

explained later, and implemented to affect the state of the graphic and domain

elements of the game.

A code example for the definition of these callbacks would be the following:

MyNode* node = MyNode::create();

cocos2d::EventListenerTouchAllAtOnce* listener = cocos2d::EventListenerTouchAllAtOnce::

 create();

listener->onTouchesBegan = CC_CALLBACK_2(MyNode::onTouchesBegan, node);

listener->onTouchesBegan = CC_CALLBACK_2(MyNode::onTouchesEnded, node);

listener->onTouchesMoved = CC_CALLBACK_2(MyNode::onTouchesMoved, node);

cocos2d::EventDispatcher* ed = cocos2d::Director::getInstance()->getEventDispatcher();

ed->addEventListenerWithSceneGraphPriority(listener, node);

In which the MyNode class would have the following defined functions:

void onTouchesBegan(std::vector<cocos2d::Touch*> touches, cocos2d::Event* event);

void onTouchesEnded(std::vector<cocos2d::Touch*> touches, cocos2d::Event* event);

void onTouchesMoved(std::vector<cocos2d::Touch*> touches, cocos2d::Event* event);

 29

4.2.3 Graphics

Cocos2d-x offers an abstraction layer over OpenGL ES (Embedded Systems) while,

at the same time, it gives access to some of their features directly if it is needed. It

has also support for compiling and linking GLSL shaders with the different

renderable objects in your scene.

Figure 20: OpenGL Logo

Through this abstraction, it provides a very simple and adaptable way for

configuring the scene that appears on the screen, which is mainly based on the

coordinates system, the creation of scenes and the defined Node class and its

variants.

4.2.3.1 Coordinate System

Cocos2d-x provides a representation of the screen coordinates taking into

account the device’s orientation (landscape or portrait). It internally handles the

device’s both horizontal and vertical sizes, which can be consulted at any time via

the Director class, as in the example:

cocos2d::Size size = cocos2d::Director::getInstance()->getVisibleSize();

 30

The Size class contains a width and a height value that allows you to abstract from

the device’s orientation and adapt your graphics to the screen dimensions in

order to support multiple resolutions.

It must be taken into account that in this coordinate system, the origin (0, 0)

represents the bottom left corner of the device and so the X-axis grows to the

right and Y grows up.

Figure 21: Cocos2d-x Coordinate System

It also supports negative values for the positions of the elements on screen, which

allows to easily implement scroll. These positions are represented with the Point

class, which simply has an X and Y coordinates.

4.2.3.2 Scenes

Scenes are the representation of independent executions within the framework.

Only one Scene can be running at a time, and it is there where all Nodes are

stored. They are managed through the Director class, which has an internal stack

of Scenes. When the push function is called, the running Scene is stored in

memory and paused, while the new one takes control. Later, when the pop

function is called, the Scene that is now on top of the stack resumes its execution

exactly from the point where it left.

This structure allows the creation of multiple screens or stages and even the

addition of multiple games within the same application.

 31

4.2.3.3 The Cocos2d-x Node Class

A scene in Cocos2d-x is composed by Nodes, which are the base graphic

representation for any element. Each of them can have other nodes as children

identified with a unique identifier, which allows the creation of complex scenes by

implementing structured hierarchies.

This way, the transformations applied to the parent Node affect all of its children

proportionally in a recursive way.

It is especially useful in the particular case of this project for implementing the

scroll and the zoom features by setting a parent Node that contains all the

elements on the board.

Also, the positions of all the children are relative to their parent Node, so a (0,0)

position inside another Node refers to the center of such Node, which makes it

possible to maintain coherence between them.

Attributes

The most important attributes of the class, in addition to the unique identifier,

are:

 Position: The X and Y coordinates in which it is located (for Nodes with a

parent these are relative to its parent, and for others directly to the

device).

 Size: The original size of the Node in terms of width and height.

 Scale: two values that refer to the proportional size of the Node in both

width and height respect its original size.

 Bounding Box: The Bounding Box that contains the Sprite with its current

dimensions (taking into account the original size and the scale factor

applied).

 32

 Rotation: The angle in degrees to which the Node is rotated (clockwise).

 Visible: a Boolean value that tells whether the Node will be drawn into the

scene or not.

 Z Order: The depth of the Node, when two or more Nodes share the same

space in the screen, one must be drawn on top of the other. This attribute

gives a three-dimensional component to Nodes and determines the order

in which they are rendered. It is also used for computing the final color

when transparencies (Alpha Values) are used, determining the order for

mixing the colors in the right way and order in the Alpha Blending process.

Figure 22: Alpha Blending enables the presence of semi-transparent objects on-screen

 33

Actions

All nodes can run actions, which are then handled by an ActionManager class that

executes them according to the parameters set.

These actions refer to transformations and other special features that need to be

performed with precise timing and in a certain order. Some of them are

performed instantly while others require a certain interval of time. They can also

be set to be finite and finish after one execution or to be performed indefinably

until they are removed or the game exits. They have a unique identifier that helps

checking if they have finished or change some of their paremeters.

These are some interesting examples of the many possible actions:

 MoveTo: which moves the Node into a certain position in a given time,

interpolating the movement between frames at the required speed.

 ScaleTo: which scales the Node up to a certain scale proportionally

according to the set time.

 RotateTo: which rotates the Node until a certain degree interpolating the

rotation to the given time.

 Flip: which flips the Node in the set specified axis.

 RemoveSelf: which removes the Node at the given time.

And this is the diagram for all the Actions within the framework:

 34

Figure 23: Cocos2d-x Action Class Diagram

 35

All of them can be added to Sequences that will perform them in order and won’t

let one be executed until the previous one has finished. Here is a code example for

this:

cocos2d::Sequence* seq = cocos2d::Sequence::create(MoveTo::create(duration, position),

 ScaleTo::create(duration_scale, scale),

 RemoveSelf::create(),

 NULL);

seq->setId(1);

node->runAction(seq);

In which we create a Sequence that will first move the Node to the position in a

certain time set by the duration parameter, then after reaching that position scale

it with another duration and finally remove it.

4.2.3.4 Node Subclasses

The Node class provides a base for other drawable objects that have more specific

ways to be rendered. There are several of them, from GUI elements to direct game

elements, but these are the most important and useful ones in the context of the

project:

Layer

It allows to directly set the color of the Node with RGBA (Red, Green, Blue, Alpha)

values. Also, they have another extension with the name of LayerGradient that

allows the creation of Layers in which the color of its pixels vary according to

their position by interpolating the given colors for the edges.

In the project, layers are used to contain the map elements and also to display

with a special color the reachable positions for a movement.

 36

Sprite

It is used to assign a two-dimensional image or an animation composed by several

images to the Node. This way it is possible to personalize the elements that

appear on the scene as one wants by providing assets.

The loader supports all standard formats for the images and automatically detects

them, without requiring a special action for each one of them.

In the project, sprites are used to represent all the game elements that form the

map.

An example for implementing the read operation of a Sprite would be the

following:

cocos2d::Sprite* sprite = cocos2d::Sprite::create(“sprite.png”);

sprite->setId(1);

sprite->setPosition(10, 10);

myLayer->addChild(sprite);

In which we add a sprite with the “sprite.png” image to the layer myLayer into the

position [10,10], having the number 1 as identifier, which will help us later to

easily get it.

Button

They are the Cocos2d-x implementation of UI buttons. They can be assigned a

callback function for any time they are touched by the player. In this callback

functions they provide information about the type of touch, which can be a touch

that begins, a touch that ends or a touch that has moved.

 37

4.2.4 Setting up the environment

For setting the development framework, the first step is to download Cocos2d-x

from its website: http://www.cocos2d-x.org and select to download the C++

version (there is a different one set up for JavaScript and html-5).

Once downloaded, it just requires installing the recently added cocos console, a

terminal application that will allow to create, compile and run the Cocos2d-x

projects.

For this, the next step is to move through the computer file system with the

terminal up to the cocos2d-x folder and then run setup.py, which will install it in

the system. Once installed, to create a new project the following command line

must be entered:

cocos new nameProject –p com.nameCompany.nameProject –l cpp –d pathProject

In which nameProject is the name of the project about to be created,

nameCompany the name of the organization, pathProject the location of the folder

in which the project will be generated and com.nameCompany.nameProject the

package name for Android, in case the project is built for this platform.

If everything goes well you will the following message will be displayed:

Running command: new

> Copy template into pathProject

> Copying cocos2d-x files...
> Rename project from ‘HelloCpp’ to nameProject

> Replace the project name from ‘HelloCpp’ to ‘MyGame’

> Replace the project package name from ‘org.cocos2dx.hellocpp’ to

‘com.nameCompany.nameProject’

Afterwards, in the path set a project with the following structure will be

generated:

http://www.cocos2d-x.org/

 38

Figure 24: Cocos2d-x Project Folder Layout

Where the Classes folder will contain the developer’s source files, Resources the

materials needed by the project, cocos2d all the source files needed by cocos2d

itself and the proj folders the necessary files to generate the project for each

platform.

Note that being open source, the cocos2d source files can be modified if needed

and allow the developer to see exactly how the framework works, but they

constitute the source code and altering them has some risk.

 proj.win32: a vcxproj and the rest of configuration files for a visual studio

project that already contains the cocos2d source files and the classes

inside the Classes folder.

 proj.linux: a main.cpp file for starting an application in Linux Operating

Systems.

 proj.ios_mac: An Xcode project already configured. To deploy your projects

into an ios device you need to do so through the xcode program.

 proj.android: The necessary files to export the project to an Android

device. For doing the following environment variables setup is needed:

- NDK_TOOLCHAIN_VERSION: Version of NDK

- NDK_ROOT: Path to developer’s android-ndk folder

- ANDROID_SDK_ROOT: Path to Android SDK

 39

- ANT_ROOT: The path to the Apache Ant application, for generating the

apk file.

To compile the code the developer needs to configure the

AndroidManifest.xml, Android.mk and Application.mk just as it would be

done with a normal Android project and then run build_native.py. Once it

has been successfully compiled, must run ant with the debug or release

option to generate the apk file that will be installed in the device.

 40

5. THE ENGINE

For the design of the engine, I have followed the Model View Controller

Architecture; creating two differentiated layers that control the different elements

and interact with each other.

However, since some of the elements of the design are also accessible by the game

developers and require their configuration, I have also divided the structure of

the project into logic layers that have a better representation of their role and that

make using the engine easier to understand.

5.1 Engine Structure Overview

 Strategy2D: An instance of the engine, it defines the configurations for a

game and contains all the other elements of the structure.

 View: It manages the graphic elements and the user interactions with the

device. The main class for this layer is LayerMap, a Cocos2d-x Layer

subclass.

 Domain: It manages the state of the game and its different elements. The

main classes of this layer are ActionManagerStrategy2D, which handles the

user’s actions and provides an interface between the View and the Domain;

and ControllerGame, which handles all the configurable elements of the

system. However, the core of its implementation lies in the callbacks: User-

defined functions that are called when special events take place during the

game. These callbacks allow users to take any actions and affect the game

elements in any way they want in these key moments of the gameplay.

 41

5.2 The Strategy2D Module

It is the main class of the system and handles the connection between the

different layers of the engine while providing users with the necessary interfaces

to set up and configure the execution.

It contains an instance of LayerMap, ActionManagerStrategy2D and

ControllerGame and is constructed with the number of rows and columns of the

map.

Figure 25: Strategy2D class diagram

Each Strategy2D instance refers to a different configuration of the engine which

runs independently, although can be easily combined with other executions

(either other Strategy2D executions or any other kind of game running under the

Cocos2d-x framework).

These different executions are handled using the Cocos2d-x Director class, which,

as explained, provides with a Scene handler that can move through different

contexts and establish where the current execution lies.

 42

5.2.1 Usage

There are two types of usage for the Strategy2D class, depending on the execution

state. On the one hand, users need to create Strategy2D instances to specify their

general parameters and configure them as they please and then start their

execution by running such instances. On the other hand, it is also used in the

callbacks that they define and that run during the execution time. This way they

are provided with an interface that allows them to get information and apply new

configurations.

5.2.2 Implementation

In order to provide these possibilities, however, it was needed to implement the

class with some specific features.

In order to allow accessing the class through any point of the execution and

especially in the user-defined callbacks, users needed a static method that

provided them with the running instance of the module. However, since I wanted

to allow the execution and configuration of multiple Strategy2D instances

simultaneously, I could not just define the class as singleton in order to make it

accessible from any point.

So in order to implement it, I created a static stack of Strategy2D references that

stored the executing instances and provided a static function called getInstance()

to get the running one, which is at the top of the stack.

For doing this, whenever an instance is started by calling the run() method, the

stack automatically adds the reference to this instance on the top its stack.

 43

Figure 26: The system can get the currently running Strategy2D instance from any part of the code

Each instance of Strategy2D runs a Cocos2d-x Scene as well, which later controls

the execution of the game.

Therefore, for running an instance of Strategy2D, the run function first pushes the

current instance into the stack and then calls the Director’s pushScene method

with the instance’s Scene, this way Cocos2d-x takes control over it and makes the

context switch. Also, since a single instance cannot be run more than once at the

same time, so I also do a control with the Boolean variable running, which tells

whether a Strategy2D is running or not.

This is the code for the run function, which of course is not static and needs an

instance to be called:

 44

bool Strategy2D::run()

{

 bool success = false;

 if (!running)

 {

 strategy2D_instances.push(this);

 controller_game->initGame();

 scene = cocos2d::Scene::create();

 scene->addChild(layer_map);

 cocos2d::Director::getInstance()->pushScene(scene);

 success = true;

 }

 return success;
}

It is not necessary to delete the Scene instance, since the Cocos2d-x Director takes

its ownership removes it from memory when the popScene method is called. This

is the code for the stop method, which stops the execution of the currently

running instance (if it is a Strategy2D Scene):

void Strategy2D::stop()

{

 if (!strategy2D_instances.empty() && Director::getInstance()->getRunningScene() ==

 strategy2D_instances.top()->getScene())

 {

 strategy2D_instances.pop();

 Director::getInstance()->popScene();

 }

}

Finally, when the Director changes the running Scene and switches context, the

local variables of the previous context are destroyed and lost, so they cannot be

referenced from this new context; this causes the stack references to be Dangling

Pointers:

 45

Figure 27: Dangling Pointer concept

For this reason, the Strategy2D instances that are stored in the stack need to be

accessible from any context.

To prevent this, the system must not allow the normal declaration of Strategy2D

variables and only allow their allocation in a context free environment. This is

done by making the constructor of the class a private method that cannot be

accessed from the outside and, instead, providing a static instance generator that

returns a pointer to the new instance.

private:

 Strategy2D(const long &nrows, const long &ncolumns);

 ...

Public:

 static Strategy2D* create(const long &nrows, const long &ncolumns);

 ...

And the implementation of the create method:

Strategy2D* Strategy2D::create(const long &nrows, const long &ncolumns)

{

 return new Strategy2D(nrows, ncolumns);

}

 46

5.3 View Layer

This is the layer that controls the graphics and handles the user-input. It has been

designed according to the Cocos2d-x framework, using the tools provided by the

graphics engine and its user-input libraries. In addition, I have tried to provide an

adaptable environment that relies on Cocos2d-x features and that can be totally

configured and expanded by the user, as it has been explained in the Development

Framework section.

Figure 28: View Layer class diagram

 47

5.3.1 LayerMap

This class is the representation of the game map and all of its specific features and

functions. It is a Cocos2d-x Layer subclass and internally contains the Cocos2d-x

representations for all the game elements as children.

It handles the creation, movement and destruction of all the graphic

representations of the game and the user’s interactions, making the required

transformations for the scroll and zoom of the map and passing its actions to the

ActionManagerStrategy2D, which processes them and determines how these

affect the domain layer.

It is composed by:

 Background Layer:

It contains the background Sprite that is rendered when there is nothing to be

displayed on a part of the screen, either because there are no graphical elements

or because they have a transparent component. The Sprite is set by the user and is

scaled to exactly fit on the screen of the device.

 Map Layer:

It contains the Game Elements that are part of the game board, including Units,

Buildings, Terrains, UI elements such as the reachable positions indicators and any

elements that the user wants to add to the game map. The scrolling and zooming

transformations are applied to this layer.

 48

 Other Elements:

The buttons used to display the selectable abilities or units to be recruited (which

I will further explain in the following section) must be shown on top of the map

and cannot be affected by the scroll or zoom, since their position and size must

remain invariable. For this reason, they are added to LayerMap as independent

Node children.

Also, users have access to the addChild function, which will allow them to add any

element, not only as children of LayerMap but also for any of the Sub Layers, in

case they want the same transformations to be applied on them.

Attributes

In addition to the Sub Layers, it also contains some configurable parameters that

are used to handle the graphics or to provide the user with important

information.

 Num Columns: The number of columns of the map.

 Num Rows: The number of rows of the map.

 Zoom Rows: The current zoom of the map in terms of the number of visible

rows on the screen. This abstraction of the zoom from the number of

visible pixels allows the user to set the zoom that he wants to be displayed

regardless of the screen size of the device on which the game will be

played.

 Max Zoom Rows: The maximum number of rows that can be visible on the

screen when zooming out. Therefore, the minimum zoom of the map.

 Min Zoom Rows: The minimum number of rows that can be visible on the

screen when zooming in. Therefore, the maximum zoom of the map.

 49

 Limit View To Map: A Boolean value that tells if the player can scroll

outside of the map’s bounding box.

 Screen Size: It tells what is the size of the screen on which the game is

being played. Knowing it the user can establish specific features depending

on the resolution of the device and adapt his or her animations and visuals.

User Input Handling

The user has the following possibilities regarding the controls inside the map:

 Scroll: Moving through the map to change the visible contents in the

screen. It is performed when the player pans with one single finger (or

touch):

Figure 29: The pan movement

 Zoom: Changing the scale of the map in order to adapt the size of the

visible parts of the screen to his desires. The user can either zoom in (make

content bigger in order to see it with a higher detail) or zoom out (make

content smaller in order to fit more elements inside the screen and have a

more general view of the map). It is performed when the player pinches or

zooms with two or more fingers:

 50

Figure 30: Pinch and Pan movements

 Selection: Selecting a Game Element (Unit or Building) in order to perform

actions with them, or selecting a position to move them or to set it as

target of an Ability. It is performed when the player taps a valid position

inside the map:

Figure 31: Tap selection

In order to allow the player to zoom, multi-touch must be enabled on the device;

this is automatically done when building the project for android devices (and is

controlled thanks to the AndroidManifest file, but for iOS development multi-touch

must be enabled in AppController’s didFinishLaunchingWithOptions function,

adding one line into the source code:

...

_viewController.wantsFullScreenLayout = YES;

_viewController.view = eaglView;

[eaglView setMultipleTouchEnabled:YES]; //this line of code

...

 51

Notice that this code pertains to the Objective C language, but Cocos2d-x

automatically provides you with access to the iOs wrapper (with the following

files: main.m, AppController.mm and RootViewController.mm) inside the iOs folder.

Figure 32: Structure of the iOS specific code inside Cocos2d-x

To implement the handling I programmed callbacks for all the multi-touch

functions of Cocos2d-x and specified the following variables:

 Number of Touches: The number of started touches on the device that

haven’t still ended. When there is only one touch the player is scrolling,

when there are more he or she is zooming in or out.

 Id Selection Touch: The id of the first touch in the device (only valid if no

more touches are started, since it is used for knowing when the player is

trying to tap for selecting a Game Element or a position in the map).

This is the code in the callbacks that handle it:

void LayerMap::onTouchesBegan(std::vector<cocos2d::Touch*> touches)

{

 number_of_touches += touches.size();

 if (number_of_touches == 1)

 {

 id_selection_touch = touches[0]->getID();

 }

 else

 {

 id_selection_touch = INVALID_ID;

 }

 52

}

At first we store the total number of started touches. When there is more than one

touch being performed at the same time, the invalid id of the touch tells us that

the player is not trying to perform a tap.

void LayerMap::onTouchesMoved(std::vector<cocos2d::Touch*> touches)

{

 if (number_of_touches == 1 && !touch_lock)

 {

 //the player is scrolling

 manageScroll(touches[0]);

 }

 else if (number_of_touches >= 2 && touches.size >= 2)

 {

 //the user is zooming

 manageZoom(touches[0], touches[1]);

 touch_lock = true;

 }

}

When the player moves his or her fingers across the screen, we detect how many

touches have been started with the number_of_touches variable.

If there are two or more fingers moving at the same time, we know that the player

wants to zoom, so we handle it with the manageZoom function and set the

touch_lock so that a selection cannot be performed while this zooming keeps

going on.

Otherwise, if there is single touch (touch_lock = false), then the action is scrolling,

so we handle it with the manageScroll method.

void LayerMap::onTouchesEnded(std::vector<cocos2d::Touch*> touches)

{

 number_of_touches -= touches.size();

 if (number_of_touches <= 0)

 {

 number_of_touches = 0;

 touch_lock = false;

 }

 if (touches.size() == 1 && !touch_lock)

 {

 Touch* touch = touches[0];

 if (touch->getID() == id_selection_touch)

 53

 {

 manageAction(touch);

 }

 }

}

When all the touches that the player had started end, we reestablish the value of

the touch_lock variable and ensure that the number_of_touches is zero.

If only one single touch has ended and there was no zooming being performed,

then we know the player was performing a tap and we handle it with the

manageAction function.

These are the management functions that handle the specific actions:

 Manage Scroll:

void LayerMap::manageScroll(Touch* touch)

{

 cocos2d::Node* layer_map = getChildByTag(ID_LAYER_MAP);

 double total_distance = touch->getStartLocationInView().getDistance(

 touch->getLocationInView());

 if (total_distance >= distance_no_selection)

 {

 //if the player has moved too much his finger he does not want to select

 id_selection_touch = INVALID_ID;

 }

 double distance_x = touch->getPreviousLocationInView().x -

 touch->getLocationInView();

 double distance_y = touch->getLocationInView().y –

 touch->getPreviousLocationInView().y;

 double prev_pox_x = layer_map->getPositionX();

 double prev_pos_y = layer_map->getPositionY();

 double new_pox_x = prev_pos_x – distance_x;

 double new_pos_y = prev_pos_y – distance_y;

 cocos2d::Rect screen_rect (0, 0, screen_size.width, screen_size.height);

 layer_map->setPositionX(new_pos_x);

 if (limit_view_to_map && !rectContainsRect(layer_map->getBoundingBox(),screen_rect))

 {

 54

 //we revert the movement in the x axis

 layer_map->setPositionX(prev_pos_x);

 }

 layer_map->setPositionY(new_pos_y);

 if (limit_view_to_map && !rectContainsRect(layer_map->getBoundingBox(),screen_rect))

 {

 //we revert the movement in the y axis

 layer_map->setPositionY(prev_pos_y);

 }

}

At first, we check the total distance the finger has covered while touching the

screen and if it is longer that distance_no_selection (which has been set to 15

pixels by observation, although can be set any other value by the user), we decide

that then the player just wants to scroll and does not want to select a single

position to perform and action, so we invalidate the id_selection_touch to disable

selection.

Afterwards, we compute the distance scrolled in the last callback and compute the

new position for the layer.

If the user has decided to limit the view to the map, we must check if the screen

doesn’t contain any space that doesn’t pertain to this layer and, if this is the case,

revert the movement in any of the axis that causes this problem.

We do this using an inverse approximation, checking if the Bounding Box of

LayerMap contains the Bounding Box of the screen by using the rectContainsRect

function, which internally checks if both the bottom left and top right points of the

screen are contained in the LayerMap’s Bounding Box:

bool rectContainsRect(const cocos2d::Rect& container, const cocos2d::Rect& contained)

{

 cocos2d::Point bottom_left (contained.getMinX(), contained.getMinY());

 cocos2d::Point top_right (contained.getMaxX(), contained.getMaxY());

 bool contains = (container.containsPoint(bottom_left) &&

 container.containsPoint(top_right));

 return contains;

}

 55

Figure 33: Example in which the screen's bounding box fits inside the map

Figure 34: Example in which the screen's bounding box doesn't fit inside the map

 56

 Manage Zoom:

void LayerMap::manageZoom(cocos2d::Touch* touch1, cocos2d::Touch* touch2)

{

 cocos2d::Node* layer_map = getChildByTag(ID_LAYER_MAP);

 // get current and previous positions of the touches

 cocos2d::Point curr_pos_touch1 = Director::getInstance()->convertToGL

 (touch1->getLocationInView());

 cocos2d::Point curr_pos_touch2 = Director::getInstance()->convertToGL

 (touch2->getLocationInView());

 cocos2d::Point prev_pos_touch1 = Director::getInstance()->convertToGL

 (touch1->getPreviousLocationInView());

 cocos2d::Point prev_pos_touch2 = Director::getInstance()->converToGL

 (touch2->getPreviousLocationInView());

 cocos2d::Point curr_pos_layer = curr_pos_touch1.getMidPoint(curr_pos_touch2);

 // calculate new scale

 double prev_scale = layer_map->getScale();

 double curr_scale = prev_scale * (curr_pos_touch1.getDistance(curr_pos_touch2) /

 prev_pos_touch1.getDistance(prev_pos_touch2));

 if (min_scale != INVALID_SCALE && (curr_scale < min_scale))

 {

 curr_scale = min_scale;

 }

 else if (max_scale != INVALID_SCALE && (curr_scale > max_scale))

 {

 curr_scale = max_scale;

 }

 layer_map->setScale(curr_scale);

 // if the scale has been changed -> fix position accordingly

 if (curr_scale != prev_scale)

 {

 Point real_curr_pos_layer = layer_map->convertToNodeSpace(curr_pos_layer);

 double delta_x = real_curr_pos_layer.x * layer_map->getContentSize.width() *

 curr_scale – prev_scale;

 double delta_y = real_curr_pos_layer.y * layer_map->getContentSize.height() *

 curr_scale – prev_scale;

 layer_map->setPosition(layer_map->getPositionX() – delta_x,

 layer_map->getPositionY() – delta_y);

 }

}

 57

We compute the new scale for the layer by getting the amount of pixels moved for

the two touches (getting the distance between the current position and the

previous one) and making this scale proportional to the current scale.

Once we have this scale value, we check that it fits between the limits established

by the user for the maximum and minimum number of visible columns. If it is

bigger than this maximum, then we set it to have the maximum value. This same

operation is performed in case it is lower than the minimum.

Once we have applied this new scale, we also have to move the layer in order to

adapt the center of the screen to the point between the two fingers, which is done

by computing the delta values for the offset in the positions.

 Selection:

void LayerMap::manageAction(cocos2d::Touch* touch)

{

 cocos2d::Node* layer_map = getChildByTag(ID_LAYER_MAP);

 //the position is relative to the original size of the layer (without scale)

 Point position_in_layer = layer_map->convertToNodeSpace(

 cocos2d::Director::getInstance()->convertToGL(touch->getLocationInView()));

 //this is the original size without any scale

 cocos2d::Size layer_size (layer_map->getContentSize());

 bool inside_layer_x = (position_in_layer.x >= 0 &&

 position_in_layer.x <= layer_size.width);

 bool inside_layer_y = (position_in_layer.y >= 0 &&

 position_in_layer.y <= layer_size.height);

 bool inside_layer = inside_layer_x && inside_layer_y;

 if (inside_layer)

 {

 int pos_x = position_in_layer.x / (layer_size.width / n_columns);

 int pos_y = position_in_layer.y / (layer_size.height / n_rows);

 pos_y = flipPosition(pos_y, n_rows);

 Strategy2D::getInstance()->getActionManager()->handleTouch(Position(pos_x,

 pos_y));

 }

}

 58

At first we get the position of the touch inside the Layer that contains the map in

terms of the original size. Also, we get this original size from the Layer with the

getContentSize method.

Then, we do a check to see if the touch fits inside the Layer’s dimensions (because

if the view is not limited to the map the player can also touch in empty space). If

this is the case, then we need to discretize this touch in terms of the number of

columns and rows in which the Layer is divided.

For the case of the Y coordinate, we also need to flip it since Cocos2d-x’s

coordinate system considers that the Y-axis starts at the bottom while we

consider it to begin at the top:

double LayerMap::flipPosition(const double& pos, const double& number_of_positions)

{

 return (number_of_positions – 1 – pos);

}

Finally, we call the handleTouch function of the ActionManager, which knows

what is the current state of the game and will be able to decide what are the

intentions of the player (if he or she is selecting a Unit or Building, a position to

move them, etc) and how these will affect the game state.

5.3.2 ButtonAbility

It is the implementation of a button that contains the required information of Unit

Ability.

They are used when the player has selected a Unit and wants to perform an ability

with it. The system then checks for the Abilities available for the Unit and displays

them as multiple UI Buttons, each one assigned to one of these Abilities, so that the

player can select the one he wants.

They are implemented as a subclass of a Cocos2d-x Button and have an additional

parameter that contains the name of the Ability to which it is assigned.

 59

Figure 35: Sample of an Ability Selection Menu, composed by ButtonAbility

Each Ability has an associated Sprite for the Button, set by the user, who can

choose to display any kind of image or text. They are positioned in the location of

the screen specified by the user and having the desired size in proportion to the

screen.

The callback for the touch event is implemented within the context of the

LayerMap, which detects what is the ability name stored in the button and passes

this information to the ActionManager, who interacts with ControllerGame to get

the range of the selected ability, which is later displayed.

5.3.3 ButtonRecruit

They are used for recruiting Units when a recruitment Building is selected. They

display the array of possible Units to be recruited by the selected Building. They

are also implemented as a subclass of a Cocos2d-x Button and have an associated

Sprite.

 60

Figure 36: Sample of Recruit Selection Menu, composed by ButtonRecruit

They have two additional parameters: One, the name of the BaseUnit they

represent and the other, a Boolean value that tells if the Unit can be recruited by

the team, which is associated to a function that allows the user to configure an

economic system for his or her game. This way, the user can set different Sprites

for the case when the Unit can be recruited or the opposite. He can also use the

Sprite to show the cost of each type of Unit.

 61

Figure 37: Another sample of a Recruit Selection Menu, this time showing unaffordable items

5.3.4 Platform mobility

Since one of the main objectives of the project is to offer a high mobility of the

engine between different platforms and devices, a special effort of the

development has gone into making all of the elements compatible and completely

scalable.

Cocos2d-x provides an abstraction layer from the hardware in terms of rendering

and user-input handling, but the scale of the graphics needs to be handled

accordingly to the size of the screen of the device, without making wrong scales

that would crush the original proportions of the Sprites.

 62

Figure 38: An example of bad scaling, in which the original proportions of the sprite are broken

For this reason, as I have explained in the LayerMap section, I decided to use the

number of visible columns for the zoom as an abstraction to compute the size of

each Sprite in the map. Whenever the user changes the zoom value, the engine

automatically scales the sizes of the whole map to fit the screen size of the device

using the following function to compute the new scale:

Double scaleForZoom(const double& visible_columns)

{

 //width in pixels for each tile so that the screen fits exactly visible_columns

 double tile_width_to_fit = screen_size.width / visible_columns);

 //width in pixels for the whole map so that the screen fits exactly visible columnns

 double map_width_to_fit = num_columns * tile_width_to_fit;

 double scale = map_width_to_fit / map_layer->getContentSize().width;

 return scale;

}

Also, since the number of visible_columns is a floating-point value, it accepts any

kind of configuration without ugly scaling jumps.

An example of a configuration would be the following, in which we set the number

of visible columns to 7 and test the game executing it both with landscape and

portrait orientation:

 63

Figure 39: A sample of a map being displayed on an iPhone 4s using landscape configuration

Figure 40: A sample of the same map being displayed on an iPhone 4s using portrait configuration

 64

Figure 41: A sample of a bad scaling of the map, which would happen in case we tried to show the

same content regardless of the proportions

This configuration allows the user to set up the visibility of the map so that there

are no deformations and is equivalent in all devices. Also, he or she can even

configure different zooms taking into account the size of the device’s screen.

Thanks to this structure we also keep total compatibility between the touch

controls in all platforms, since all the touch handling is performed in terms of

Layer proportions (as seen in the user-input section).

 }

 65

5.4 Domain Layer

I will start by explaining what is the normal flow of the game, taking into account

the available control scheme in mobile devices, without any buttons and limited

to their touch screen.

Later, I will define what are the elements that compose the games and explain

how the ControllerGame class contains and handles them.

One previous consideration is that the users will be able to modify the state of

these game elements and reestablish their configurations through the defined

callbacks, which will grant them access to these elements, as I will explain in the

following sections.

Figure 42: Domain Layer diagram

 66

5.4.1 ActionManager and the Game Flow

Whenever the user wants to perform an action with its Units or Buildings, these

actions must be handled in order to affect the system in the intended way so that

it responds accordingly.

To manage the effects of these actions, we have defined a class named

ActionManager that handles them and ensures that the player acts in the intended

way and following a certain order.

This defines the normal Game Flow by which the player is able to control his or

her Units and Buildings:

5.4.1.1 Unit Action Flow

 Units and Buildings are positioned across the map:

Figure 43: Normal map layout

 The player taps the screen at a certain position, occupied by the Unit he or

she wants to select:

 67

Figure 44: The player taps on a Unit to select it

 The system computes the possible movements for the selected Unit and

displays which are the reachable positions by showing a special layer on

top of them (in this case with a transparent white color):

Figure 45: The system displays the positions the selected Unit can move to

 68

 The player selects one of the reachable positions for moving the Unit:

Figure 46: The player taps at the position he wants to move the Unit

 The Unit moves to the position through the shortest path and the Ability

Selection menu is displayed:

Figure 47: The system displays the Ability Selection Menu

 69

 The player selects one of the available Abilities by touching the associated

button:

Figure 48: The user selects the Ability he wants the Unit to perform

 The system computes which are the positions that can be targeted by the

selected Unit and Ability and displays them again with a special layer:

Figure 49: The system shows the positions at which the Ability can be targeted

 70

 The player selects one of the reachable positions to perform the Ability:

Figure 50: The player selects the target position for the Ability

 The Ability is then performed and the Unit is unselected (in this case the

“push” Ability pushes the target Unit into the opposite direction. Also, the

user has decided in this case that Units can only perform one action per

turn blacks, so the selected Unit is blacked out to indicate that it has

already performed its action).

 71

Figure 51: The Ability is performed

5.4.1.2 Building Action Flow

 Units and Buildings are positioned across the map:

Figure 52: A normal map layout

 72

 The player tap at the screen at a certain position, occupied by a Building:

Figure 53: The player taps at a Building to select it

 The system loads which are the possible recruitments for the selected

Building, and if it can recruit any type of Unit, then the recruit selection

menu is displayed

Figure 54: The system shows the Recruit Selection Menu, composed by ButtonRecruit

 73

 The player selects one of the possible recruitments:

Figure 55: The player selects a BaseUnit to recruit

 If the selected recruitment is affordable by the Team, then the Unit is

added to the map in the Building’s position (in this case, as for the Unit

Action Flow, the user has considered that a newly recruited Unit cannot

move in the same turn it is recruited, so it also blacks it out).

 74

Figure 56: The Unit is recruited at the Building's position

The is just the normal flow, since the player can also cancel some of his or her

actions and move back to the prior state, as you will see in the flow charts of the

following section.

5.4.1.3 The ActionManager class

To control the previously defined flow, it is necessary to have a special class that

provides with an interface between the View Layer and the Domain Layer and

that is able to handle the user-input directly obtained by the View Layer.

By keeping an internal state of the player’s actions, this class decides what is the

action the player wants to perform and how these actions affect the Domain

Layer.

The View Layer provides it with a simple action performed by the player, which it

handles. This action can be a single touch on the map, the pressing of an

AbilityButton or the pressing of a RecruitButton.

 75

All of these are connected, since AbilityButtons are only displayed when the player

has previously moved a Unit and RecruitButtons when he or she has selected a

Building.

These are the flow diagrams for these different cases:

Figure 57: Handle Touch flow chart

 76

This way, the system detects what is the action the player is trying to perform

when selecting a position in the map and reacts accordingly, moving a Unit or

performing an Ability when needed and displaying the right menus and visual

indicators.

Figure 58: Ability Button Selected flow chart

When the player selects an Ability from the menu, ActionManager stores its name

for performing it then when the player selects a position (as seen in the previous

diagram). Additionally, it also computes which are the positions in range for the

selected Unit and Ability and displays it for the player.

If the player selects the Wait Ability, then the Unit is simply unselected (remaining

at the position to which the player has moved it in the previous action).

However, if the pressed button is not an Ability but instead the cancel button, the

previous movement is undone so that the player can start from the beginning.

 77

Figure 59: Recruit Button Selected flow chart

When the player selects a recruitment from the menu, ActionManager checks if it

is affordable by the selected Unit’s team by calling the user-defined function that

decides it. If this is the case, then it handles how the purchase affects the Team

and adds a Unit at the selected Building’s position with the selected BaseUnit as

template. Either if this is the case or the player has selected the cancel option, it

deselects the Building and removes the menu from the screen.

If the selected recruitment is not affordable then nothing happens, so the system

keeps waiting for the player to select a valid option.

 78

5.4.2 Configurable Elements

They represent the elements to which the user has direct access and that he can

define and modify during the course of the game.

5.4.2.1 Game Map

It is the representation of the two-dimensional board in which the game takes

place; it is formed by a certain number of positions (defined by their vertical and

horizontal alignment) in which the different kinds of Game Elements can be

placed.

Figure 60: Game Map concept

In each position the following Game Elements can be found:

 Terrain

 Building

 Unit

 79

There must be a Terrain associated to each one of the positions of the map, while

the presence of Units or Buildings is not mandatory, since Units can move through

them and Buildings can be created and removed from the map, as I will explain in

the following sections.

In terms of visibility, the Terrain must always remain behind, while Buildings

must be on top of Terrains and Units must be on top of both Terrains and Buildings

(if they are present).

For example, in a case with this Terrain, Building and Unit occupying the same

position:

Figure 61: Terrain, Building and Unit sprites examples

The result should be:

Figure 62: The order of the rendering must be: Terrain, Building and Unit

To achieve this, for each position the order for the rendering of the sprites must

be: Terrain, Building and Unit.

This is controlled by setting the value for the depth attribute (cocos2d-x Z-Order)

of the sprite of each one of them.

 80

5.4.2.2 Teams

Teams represent associations of Controllable Elements (Units and Buildings) that

compete one against each other. They can be either controlled by the player or by

the computer, for which the user must set an Artificial Intelligence algorithm that

controls it .

Each Team has configurable attributes, which the player can access, define or

modify at any time in any of the callbacks. This includes the definition of

resources and anything related to its members.

Although the player manages them, they are not considered Game Elements since

they are abstract representations and cannot be directly controlled; despite the

fact the player indirectly does it by controlling their members.

Attributes

 name: The name of the Team, used as identifier within the system.

 units: The list of Units that form the Team.

 buildings: The list of Buildings that form the Team.

 color_enabled: It tells if the user wants the system to apply a color mask to

the graphic representations of the members of the Team.

 color_elements: The color mask that is applied to the sprites of the Team’s

members (if it is enabled).

 color_movement_layer: The color of the layer that indicates the positions

that are reachable for a member of the Team in a turn movement.

 turn_end: A Boolean value that tells if the Team has finished its movement

in the current turn.

 81

 AI_controlled: A Boolean value that tells if the Team is controlled by the

Artificial Intelligence or, in contraposition, controlled by a player. If it is

controlled by the Artificial Intelligence, then ControllerGame will control

the actions of its members.

5.4.2.3 Game Elements

They are the representation of the individual entities that form the game. They

have a unique identifier and a position inside the game map, as well as a graphic

representation set by an instance of a Cocos2d-x Sprite class.

All of them have configurable attributes that can be set by the user thanks to their

inheritance from the AttributeElement class, which defines a mapping of attribute

name to value.

The final player can directly control some of them during the game, while some

others cannot be controlled, which is the case of the terrains.

5.4.2.3.1 Terrains

They define each of the tiles that occupy a position in the game map, with their

own traits, attributes and ways to affect the gameplay.

The user can access their public functions to configure them as they want and to

make them react to the actions of the rest of game elements during the game

course.

Figure 63: Examples of terrains

 82

5.4.2.3.2 Controllable Elements

These are the game elements the player and the Artificial Intelligence will be able

to control directly; they always pertain to a Team and have their own attributes

that allow them to be extensively configured by the user (inherited from

AttributeElement).

They have the following specific attributes:

 Team: A direct reference to the Team where they pertain.

 Blocking Actions: Since they can be controlled by an AI, the system needs

to know which are the animations that need to be performed by Cocos2d-x.

This allows the rest of Controllable Elements to start performing their

actions only when the previous Element has finished theirs.

This is also used when using the kill function for the ControllableElement,

which will not remove it from the system instantly but wait for any of the

added actions to be finished (this allows, for example, to perform death

animations and wait for the attacking Element to finish its animations).

This Blocking Actions attribute is simply a list of Cocos2d-x Actions, which

the user can fill with those animations that need to be finished before the

turn of the Element ends. When trying to decide if a certain Element

controlled by the AI has finished its actions, ControllerGame will check if all

the Cocos2d-x Actions referred in this list have finished their execution.

They are configured using a Base that defines their starting configuration when

they are created and added to the game. This way the user can define templates

for Element Types and later populate the game with actual instances.

There are two types of Controllable Elements: Units and Buildings.

 83

5.4.2.3.2.1 Units

They move through the map and can perform abilities over the rest of Game

Elements in the game. In most games they are the representation of the Game

Elements that fight against each other. The structure of their implementation is

the following:

Figure 64: Unit class diagram

They are defined by a BaseUnit, which serves as a template for their creation and

gives them their original attributes and graphic representation.

Since a Unit and a BaseUnit basically represent the same concept, with the

exception that Units can be controlled and must contain information about their

position and identifier, they both get their shared implementation from a parent

class named UnitElement.

UnitElement

It contains the implementation of the shared attributes of Units and BaseUnits,

which are the following:

 84

 All user defined attributes that come from their inheritance from the

AttributeElement class.

 Movement Points: The number of points a Unit has to move through map

positions. This parameter is used for defining the range of movements for a

Unit in a single turn, computed by the Path Finding algorithm.

 Movement Speed: The speed for the animations of their movement

through the map in terms of number of positions per second.

 Can capture: A Boolean value that indicates if a Unit can capture Buildings

or not.

 Abilities: The array of Abilities of the Unit, which will be explained later.

 Sprite: The graphic representation of the Unit in the map.

 Movement Blocks: A Boolean value that tells if the movement of a Unit

should block the rest of Units from starting their actions. This is done with

the same purpose as ControllableElement’s Blocking Actions, but in this

case the movement is directly controlled by the engine so it is the one who

knows whether the movement has ended or not.

 85

Unit

In addition to the attributes that come from their inheritance from UnitElement,

they are also Controllable Elements and are included in the map, for this reason

they also inherit from ControllableElements and, because of this, they have an id

that identifies them in the game, an assigned Team and a position in the map.

Finally, they also contain a direct reference to their BaseUnit template, which tells

what is their type and grants access to their original attributes.

Each turn, the player can move them through the map and perform abilities with

them. For this reason, they can also contain ActionUnits that define what their

actions will be for the current turn (they are formed by a position for movement,

an Ability reference and a target position for the ability). These can be used when

these Units are controlled by an Artificial Intelligence (to perform the actions

when the right moment comes) and, for example, for having direct access to the

players decisions and send them through the Internet to have an online

multiplayer game.

BaseUnit

They define the original template of the Unit instances and, in some sense, their

type of Unit. To be identified within the system, they have a unique name that is

defined by the user when he or she creates them.

Also, since these are not meant to be unique for each Unit but be a definition for

all Units that come from the same BaseUnit, they have two additional parameters:

 Sprites for Teams: A map from Team names to Sprites that defines what is

the Sprite to be displayed for a Unit taking into account its Team. This

allows the easy configuration of different Sprites for Units that pertain to

the same type so that they can be distinguished.

An example would be the following, in which we have two Teams that fight

each other and where we want each one of them to have a different color

code (one yellow and the other green):

 86

Figure 65: Example of two different sprites associated to different Teams for the same BaseUnit

By configuring it, the Engine will automatically detect what is the Team of

the Unit and display the Sprite associated to that Team for the BaseUnit:

Team team_green(“Green”);

Team team_yellow(“Yellow”);

BaseUnit base_tank(“Tank”);

cocos2d::Sprite* sprite_tank_gr = cocos2d::Sprite::create(“tank_green.png”);

cocos2d::Sprite* sprite_tank_yell = cocos2d::Sprite::create(“tank_yellow.png”);

base_tank.setSpriteForTeam(“Green”, sprite_tank_gr);

base_tank.setSpriteForTeam(“Yellow”, sprite_tank_yell);

 Possible Movements: A vector that defines what are the possible

movements of a Unit in terms of moving up and down from their starting

position. An example for this could be the definition of vectors that allow

only moving to positions that are up, down, left or right ([1,0], [-1,0], [0,1],

[0, -1]), which is the default setting, or enabling also diagonal movement

([-1,0], [-1,1], [-1,-1], [0,1], [0,-1], [1,0], [1,1], [1,-1] }:

 87

Figure 66: Chess movement for a King, implemented with the engine

But allowing to configure it allows far more possibilities such as the

following (implementing a chess game with the engine):

- Horse movements using the following vector:

{ [2,1], [2,-1], [-2,1], [-2,-1], [1,2], [1,-2], [-1,2], [-1,-2] }

Figure 67: Chess movement for a Horse, implemented with the engine

 88

- Queen movements using the following vector:

{ [-1,0], [-1,1], [-1,-1], [0,1], [0,-1], [1,0], [1,1], [1,-1]}

Figure 68: Chess movements for a Queen, implemented with the engine

- Bishop movements using the following vector:

{ [1,1], [1,-1], [-1,1], [-1,-1] }

Figure 69: Chess movements for a Bishop, implemented with the engine

 89

Implementation

To create a Unit, the user needs to provide the engine with the name of that

BaseUnit that will define it and serve as template, the name of the Team this Unit

will pertain to and that position in the map it will occupy. These names for the

BaseUnit and the team must be already added into the system. An example for it

would be the following:

BaseUnit base(“Tank”);

strategy->addBaseUnit(base);

Team team(“Team1”);

strategy->addTeam(team);

strategy->addUnit(row, column, “Tank”, “Team1”);

When this happens, the engine gets the instance of the BaseUnit and Team

associated to this names and checks their presence in the system. If all goes well,

then the Unit constructor will handle the creation of this new Unit taking into

account the configuration of the BaseUnit, as follows:

Unit::Unit(long id, BaseUnit* base, Team* team)

: ControllableElement(id),

 UnitElement(*base->clone(team->getName()))

{

 ControllableElement::setTeam(team);

 this->base = base;

}

As it can be seen, the UnitElement part of the Unit instance is created by

generating a clone of the BaseUnit passed by parameter. However, in this case the

function is virtual and ends up calling the clone function defined in BaseUnit

before, which will ensure that the right Sprite is set for the Unit taking into

account the Team for the Unit:

 90

UnitElement* BaseUnit::clone(const std::string& name_team)

{

 cocos2d::Sprite* sprite_team = getSpriteForTeam(name_team);

 UnitElement* unit_element = new UnitElement(*this);//this copies all the attributes

 if (sprite_team != NULL) //a Sprite has been defined for the team

 {

 cocos2d::Sprite* sprite = Utils::copySprite(sprite_team);

 unit_element->setSprite(sprite);

 }

 return unit_element;

}

Where the copy constructor for UnitElement is called and does the following:

UnitElement::UnitElement(const UnitElement &obj)

{

 setMovementPoints(obj.getMovementPoints());

 setCanCapture(obj.getCanCapture());

 setAttributes(obj.getAttributes());

 setAbilities(obj.getAbilities());

 if (obj.getSprite() != NULL)

 {

 sprite = Utils::copySprite(obj.getSprite());

 }

 else

 {

 sprite = NULL;

 }

}

So the Unit gets exactly the same attributes as the ones defined for the BaseUnit

and a specific Sprite if it has been defined for its Team (otherwise it will get the

normal Sprite defined for the BaseUnit).

Also, the copySprite function gets the texture associated to the source Sprite and

creates a new copy for it (doing it recursively to get all of its children too).

 91

5.4.2.3.2.2 Buildings

Figure 70: Building class diagram

As happens with Units, Buildings come defined by a BuildingElement class. This

class ensures that most of the attributes are shared between the Building and

BaseBuilding classes.

BuildingElement

As for Units, it contains the definition and implementation of the shared parts

between BaseBuilding and Building:

 All user defined attributes that come from their inheritance from the

AttributeElement class.

 Capture enabled: A Boolean value that indicates if Units can capture this

Building or not.

 Catalogue: The list of BaseUnits that can be recruited from this Building,

always that the function of cost provided by the user tells that it is

affordable.

 92

Each BaseUnit is associated to a button that will be displayed when the

Building is selected, having a configurable texture for both when they are

affordable and not affordable.

If the Building doesn’t have any element inside its catalogue, then it won’t

display any menu when selected.

Figure 71: Example of affordable and unaffordable buttons for recruiting a Unit

 Sprite: The graphic representation of the Building in the map.

Building

As for Units, in addition to the attributes that come from their inheritance from

BuildingElement, they are also Controllable Elements and have an id, an assigned

Team and a position in the map. They also contain a direct reference to their

BaseBuilding template, which tells their type and grants access to their original

attributes.

At the beginning of each turn the player can set their actions (like providing

resources to the Team). Although Buildings cannot move nor deal Abilities, when

they have a Catalogue they can recruit those Units that are affordable by the Team.

As Units, they contain ActionBuildings that tell if they perform any recruitment at

the current turn. These are used by the Artificial Intelligence and can also be used

by the user to know exactly what are the actions the player has selected (this can

be especially interesting, as an example, for sending data to other devices in a

multiplayer game).

 93

BaseBuilding

They define the original template of the Building instances and, in some sense,

their type. To be identified within the system, they have a unique name that is

defined by the user when he or she creates them.

They only have one additional parameter:

 Sprites Teams: The same map from team name to Sprite that defines what

is the Sprite to be displayed for it taking into account its Team.

One example would be the following, in which we have two Teams that

fight each other and where we want each one of them to have a different

color code (one red and the other green):

Figure 72: Example of two different sprites associated to different Teams for the same BaseBuilding

Implementation

Their implementation for handling the BaseBuilding templates is almost the same

as for Units; and the only difference lies in the copy constructor, which in this case

copies the Building specific parameters:

BuildingElement::BuildingElement(const BuildingElement &obj)

{

 setCaptureEnabled(obj.getCaptureEnabled());

 setCatalogue(obj.getCatalogue());

 if (obj.getSprite() != NULL)

 {

 sprite = Utils::copySprite(obj.getSprite());

 94

 }

 else

 {

 sprite = NULL;

 }

}

Also, a new class has been defined for each BaseUnit that they can recruit. This

class is called CatalogueElement:

Class CatalogueElement

{

 public:

 std::string button_sprite_affordable;

 std::string button_sprite_affordable_pressed;

 std::string button_sprite_unaffordable;

 std::string button_sprite_unaffordable_pressed;

}

Finally, each BuildingElement then contains a map of CatalogueElements:

std::map<std::string, CatalogueElement> catalogue; //string = BaseUnit name

5.4.2.4 Abilities

They are the possible actions that Units can take along with their movement. The

player, when selecting an Ability with a Unit, must set which is the target position

from the available range. They can affect both the dealer Unit as well as other

Units and Terrains.

Each BaseUnit contains a map of Abilities, which are identified by their name.

An Ability contains the following attributes:

 Min Range: The minimum distance at which the Ability can be performed.

 Max Range: The maximum distance at which the Ability can be performed.

 95

 On Allies: A Boolean value that tells if the Ability can be performed with a

Terrain occupied by allied Units as target (an example would be a healing

Ability to help allies in battle).

 On Enemies: A Boolean value that tells if the Ability can be performed with

a Terrain occupied by enemy Units as target.

 On Empty Terrains: A Boolean value that tells if the Ability can be

performed on a Terrain with no Units on it.

 Button Sprite and Button Pressed Sprite: The name of the Sprites to be

applied over the ButtonAbility associated to the Ability.

An Ability is essentially defined by its dealAbility function, which defines what are

the effects of the Ability’s execution. This function is totally configured by the user,

who can decide all the details of its implementation. The system ensures that it

receives the following parameters:

 Dealer Unit: The Unit that is dealing the Ability.

 Receiver Unit: The Unit that is the main target of the Ability (that who

occupies the target position, if there is any).

 Dealer Terrain: The Terrain at which the Dealer Unit is located.

 Receiver Terrain: The Terrain located at the selected target position.

Users can then define what are the effects for any of the Game Elements and, in

case they want to affect any other Element, they can also use the Strategy2D

module to gain access to any of them.

Also, since Abilities are configurable per Unit, this allows them to learn new ones.

This way the user can implement RPG mechanics such as leveling up in which

Units get new Abilities.

 96

5.4.3 ControllerGame

The main class of the Domain Layer, it directly contains the instances of all the

elements defined in the previous section.

In order to be able to access any of them at any time, they are structured in map

containers that use the unique identifiers (or names) as primary key. These

containers are implemented as templates that can store any type of elements (one

for those Elements that use a primary key of number type and one for those that

use one of type string).

This is the implementation for the string primary key container (the

implementation is almost the same for both):

Template<class T>

class ContainerLongId

{

private:

 std::map<std::string,T> elements;

public:

 bool addElement(T element)

 {

 bool success = false;

 if (!elementExists(element->getName())

 {

 success = true;

 elements[element->getName()] = element;

 }

 }

 T getElement(const std::string& name_element)

 {

 T element = NULL;

 if (elementExists(name_element))

 {

 element = elements[name_element];

 }

 return element;

 }

 97

 bool elementExists(const std::string& name_element)

 {

 typename map<string,T>::iterator it_exists = elements.find(name_element);

 return (it_exists != elements.end());

 }

 bool removeElement(const std::string& name_element)

 {

 elements.erase(name_element);

 return true;

 }

 std::map<std::string,T>& getElements()

 {

 return elements;

 }

 long size()

 {

 return elements.size();

 }

};

So ControllerGame contains the following definitions:

ContainerStringId <BaseUnit*> base_units;

ContainerLongId <Unit*> units;

ContainerStringId <BaseBuilding*> base_buildings;

ContainerLongId <Building*> buildings;

ContainerStringId <Team*> teams;

It also provides all the necessary interfaces for modifying the state of the system.

Normally, these functions require the passing of specific parameters but also of

the identifiers of the involved Game Elements to be able to obtain their instances.

All the interactions between the ActionManager and the domain are performed

through this class’ interfaces, but it is also available for its usage by the user in any

of the callback definitions.

For removing Controllable Elements from the system, the user can either remove

them directly by removing their instance or, if she prefers it, remove them

 98

whenever their blocking actions are finished. For this, when the user calls the kill

method in a Unit or Building, it adds this element to a list of future removals and,

in every update, it checks whether their blocking cocos2d-x Actions have finished.

If this is the case, then that is the time for removing them from the system.

This is especially useful for synchronizing the removal of Units with the end of the

attacking animation.

Finally, it also handles the turn passing, updating the current_team variable, which

can be consulted and modified by the user at any time (so that he or she can

control how turns are handled).

Also, for AI-controlled Teams it ensures that their actions are performed in the

right order and synchronizes their movements (one action cannot start until all

the blocking cocos2d-x Actions of the previous one have been finished).

5.4.4 Path Finding

The term Path Finding refers to the search of the shortest route between two

points in a map. It represents one of the most important computing problems due

to its usage in artificial intelligence.

It is also one of the most important mechanics in any strategy video game and

especially on those that are turn-based.

Figure 73: Path Finding concept

 99

It has an entire field of research in computing due to the importance it can have in

lots of contexts and to the effects it can have in the efficiency of a program. Most

of this research is based on graph theory and especially on the Breadth-First

Search (BFS) and Depth-First Search (DFS) search algorithms.

Figure 74: A weighted graph, used to represent Path Finding problems

5.4.4.1 Dijkstra’s Algorithm

One of the most well known algorithms to be applied in path finding is Dijkstra’s

Algorithm, which can solve the shortest past problem for a graph without any

negative edge path costs.

It starts at the initial node, which in our context represents the starting position,

and computes the cost of moving from that node to any of its neighbors (those

connected to it by an edge). The costs for every accessible node are stored and

afterwards we visit that with the minimum cost. The procedure is then repeated

for this node and for all the following using the same scheme, only now setting the

cost of the neighbor nodes as the sum of the cost of the current one and their

actual cost. All this taking into account that only previously unseen nodes can be

added and storing all of them within the same pool, in order to get the global

minimum cost.

A typical approach for computing the algorithm is the use of a priority queue that

automatically sorts the nodes in terms of their cost of visiting.

 100

5.4.4.2 Path Finding within the engine

In the context of a turn-based strategy game, however, the approach is a little bit

different from usual, since what must be searched is not only the path from one

position to another, but the path for all the positions that can be reached within a

single turn, taking into account the Unit’s movement range.

Figure 75: A picture of X-Com: Enemy Within, a turn-based strategy video game in which path finding

plays a major role

For the implementation, we define the PositionPath class, which contains the x

and y coordinates along with the associated cost of movement.

We also define its < comparison operator in order to be able to sort them inside of

a priority queue:

Class PositionPath

{

public:

 long x;

 long y;

 double cost;

 PositionPath()

 : x(INVALID_POS)

 , y(INVALID_POS)

 , cost(-1)

 {

 }

 101

 PositionPath(const long& x_in, const long& y_in, const double& cost_in)

 : x(x_in)

 , y(y_in)

 , cost(cost_in)

 {

 }

 bool operator <(const PositionPath& pos2) const

 {

 //flipped = lower cost better

 return (cost > pos2.cost);

 }

};

Once we have defined this class, we have the actual path finding function, which

returns the reachable positions both as a matrix of PositionPath that will tell what

is the path from any reachable position to the selected Unit and will have invalid

values for unreachable positions and as a plain list that will directly tell which

they are.

bool MapGame::pathFinding(Unit* unit, Team* team_unit,

 vector<vector<PositionPath> > &reachable, list<PositionPath> &list_reachable)

{

 //at start all positions are unreachable (see PositionPath default constructor)

 reachable = vector<vector<PositionPath> > (rows, vector<PositionPath> (columns));

 PositionPath pos (unit->getPosX(), unit->getPosY(), 0);

 reachable[pos.y][pos.x] = PositionPath(pos);

 vector<pair<long, long> > possible_movements = unit->getBaseUnit()->

 getPossibleMovements();

 list_reachable.push_back(pos);

 priority_queue<PositionPath> queue;

 queue.push(pos);

 while (!queue.empty())

 {

 PositionPath current_pos = queue.top();

 queue.pop();

 for(int I = 0; i < possible_movements.size(); ++i)

 {

 //we evaluate all the candidate positions available for the Unit

 Position candidate_pos (current_pos.x + possible_movements[i].first,

 current_pos.y + possible_movements[i].second);

 102

 if(validPosition(candidate_pos) && reachable[candidate_pos.y][candidate_pos.x]

 == -1 && !occupied(candidate_pos))

 {

 Terrain* candidate_terrain = getTerrain(candidate_pos);

 double cost;

 Terrain* prev_terrain= getTerrain(Position(current_pos.x,current_pos.y);

 CCASSRT((ref != NULL && moveTo != NULL), “You must define a movement

 Function,use Srategy2D::setMovementFunction(cocos2d::Ref*,

 FUNCTION_MOVEMENT(bool moveTo(Unit*, Terrain*, Terrain*, double&))”);

 bool can_move = (ref->*moveTo)(unit, candidate_terrain, prev_terrain, cost);

 double total_cost = cost + current_pos.cost;

 if (can_move && unit->getMovementPoints() >= total_cost)

 {

 PositionPath pos_path(candidate_pos.x, candidate_pox.y, total_cost);

 PositionPath pos_path_from(current_pos.x, current_pos.y, total_cost);

 reachable[candidate_pos.y][candidate_pos.x] = pos_path_from;

 queue.push(pos_path);

 if (display_over_units || getUnit(candidate_pos) == -1)

 {

 //add pos only if its not occupied (even if the unit can move through it)

 list_reachable.push_back(pos_path);

 }

 }

 }

 }

 }

 return true;

}

In this implementation of the algorithm, we start with an empty priority queue

that stores the accessible positions sorted in terms of their cost (with a minor cost

representing a higher priority). At the beginning, we insert the initial position into

the queue and start a loop that will only end when the queue is empty.

Each iteration, we set the position at the top of the queue as the current position

and remove it from the queue.

Then we check which of the positions that are in range from this current position

are reachable by the unit using the cost function (which computes the cost of

moving from one position to another taking into account both the terrain and the

Unit), the possible movements of the Unit (defined in its BaseUnit, as explained in

the Unit section) and the movement parameters (which tell if a Unit can move

 103

through positions already occupied either by Units of the same team or enemy

units).

Those positions whose cost added to the cost to reach the current position is

lower than the Unit’s action points will be added to the queue and sorted with that

total cost. Also, we will store that to reach that new position, the shortest path

comes from the current position, this will ensure that later we will already have

the shortest path for every reachable position, since each one will contain a

reference to the position from which the shortest path comes except for the

starting position, which will have a token value to indicate that no other

movement is required.

Finally, only positions that are not occupied will be displayed unless the user has

set the display_over_units options, in which case they will be shown as reachable

but the player won’t be able to move the Unit on to them.

The algorithm will only stop when the unit can’t reach any new positions with the

cost function provided by the user.

An example would be the following, in which we have this map situation:

Figure 76: Path Finding Map layout

 104

And where the tank Unit has been selected. It cannot move through water

Terrains or positions already taken by enemy units (as is the plane). Also, the Unit

has been set so that it can only make four possible moves from a position: up,

down, left or right.

The tank has been given a total of 40 movement points per turn, and the cost

function, for the case of a Unit of this type that wants to enter a grass Terrain sets

the cost at 10 points. For the case of water Terrains it simply doesn’t allow the

movement.

For the following example we will arrange the map’s positions by indicating its

column and its row, following the format [column, row].

Figure 77: Path Finding 1

We start at the selected Unit’s position, which is [4,3] and set for it the token value

[-1,-1] to indicate that this is the starting position itself. The current position is

also marked in the image with dark blue.

The Unit, for now, has all its 40 movement points. Following the scheme of the

neighborhood vector (the possible movements of the Unit), we try to expand to

 105

the positions that are left, right, above or below of the current one. For each one

we check the cost function, which in case of the up position (marked in red)

doesn’t allow the movement and for the rest of them sets a cost of 10 (and so they

are added to the queue, as the light blue color over them indicates).

For the three possible movements we store that the position from which the

shortest path comes from is the current one, [4,3].

Figure 78: Path Finding 2

We then remove the previous position from the priority queue (marked in black)

and move to the next one, which is [5,3] (though the three of them have equal

cost). The positions that now are in the priority queue are marked in white.

We expand to its neighbors, with the exception of [4,3], which has already been

added to the queue or visited and so is avoided. The cost returned by the function

is also of 10, which added to the previous 10 from the current position gives us a

total cost of 20 for the movement, a cost still affordable.

 106

Figure 79: Path Finding 3

We also remove the [5,3] position from the queue (marked in black) and repeat

the process for the current position [4,4], which doesn’t add the [5,4] position

because it is already in the queue nor [4,3] because it has been processed and

adds the other two with a cost of 20.

 107

Figure 80: Path Finding 4

In this case, we cannot propagate any position, since the two possibilities that

haven’t been already covered cannot be reached. For the case of the one above, it

is a water terrain and the function disallows the movement. For the case of the left

one, the movement parameters are now configured to disable Units to move

through positions occupied by enemies.

This same process is repeated until the priority queue is empty, which happens

when no other positions can be added either because there are no neighbors or

because the function returns a cost higher than the movement points of the unit.

At the end, the available positions are marked with a special color so that the

player knows who they are and can easily decide to which he will send the

selected unit.

 108

Figure 81: Path Finding available positions

In this case, are marked with a semi-transparent white layer, although the user

can select the color that better fits him.

Internally, as explained, the system stores for each position the coordinates of the

position from which the shortest path comes, except for the initial one, which

stores the invalid value that serves as token.

 109

Figure 82: Shortest path from any of the positions in range to the Unit

Then, when the player selects a position for the Unit to move to, the system just

has to loop looking into the positions for the previous one until it reaches the

token. Inverting the order of the visited positions provides the shortest path for

the unit.

For example, if the player selected the position at the [6,5] coordinates:

 110

Figure 83: the User selects a position in range

The value stored at the [6,5] position (marked in red) tells us that the shortest

path comes from the [6,4] position.

Figure 84: The algorithm moves through the positions following the shortest path storing the values

 111

For the [6,4] position it tells us that it comes from the [6,3] position. If we repeat

the process we keep getting the positions that form the shortest path, until we get

the [-1,-1] token position.

Figure 85: The algorithm completes the path back to the selected Unit

 112

When we reach the invalid position we stop the procedure. At the end we have

visited the following positions: [6,5], [6,4], [6,3], [5,3], [4,3].

Since we know that the last found is the original position of the unit, we remove it

from the array and invert the vector. Then we have that the path the unit must

follow to reach its objective is: [5,3], [6,3], [6,4], [6,5].

Figure 86: Shortest path from the Unit to the selected position

Finally, the Unit must move through the defined path until it reaches its

destination. For this process, we take the movement time per position defined by

the user, and moves through them at the right speed.

Also, when a change in the Unit’s horizontal orientation is detected, the Unit is

flipped over the horizontal axis to make it face the right direction of the

movement.

 113

5.4.5 Callbacks

As explained in the previous sections, many of the configurations of the engine

rely on the user’s implementation and setting of some callback functions that will

tell the system what are the acts that must take place in any situation.

There are a lot of callbacks to be defined; some of them are mandatory in order to

have some features in the game while others are just defined to help the user in

key moments of the gameplay.

These are the different callbacks that the user can define for the game:

 Movement function:

It determines whether a Unit can move into a position or not. In case it can, then it

also provides with the cost of such movement. The user must define it order to

allow Units to move around the map.

As explained, it is used in the Path Finding function to determine which positions

the selected Unit can reach and to determine the shortest path to any of them.

It returns a Boolean value that tells if the movement is possible and takes the

following parameters:

- Unit: The Unit for which the movement is being checked.

- Terrain: The Terrain of the target position.

- Previous Terrain: The Terrain from which the shortest path comes.

- Cost: An output value for the cost of the movement.

And the following definition:

bool movementFunction(Unit* unit, Terrain* terrain, Terrain* previous_terrain,

 double& cost);

 114

 Deal Ability function:

It determines the effects that an Ability has when performed. In order to allow the

player deal these Abilities, the user must have defined its associated callback.

It returns a Boolean value that tells if the Ability has been successfully performed,

if the result is “false” then the system brings back the Ability selection menu.

It takes the following parameters:

- Dealer: The Unit who is dealing the Ability.

- Receiver: The Unit at the position targeted by the Ability (if there is no Unit, then

this a null reference).

- Terrain Dealer: The Terrain at which the dealer Unit stands, this can be useful in

order to have terrain bonus for the Units (a Unit who is in an elevated terrain has

advantage over one that is not, for example).

- Terrain Receiver: The Terrain at the targeted position.

In case the user wants to have more information about the positions then he or

she has the possibility of getting the Strategy2D instance and asking for more

information through ControllerGame.

The function has the following definition:

bool dealAbility(Unit* dealer, Unit* receiver, Terrain* terrain_dealer,

 Terrain* terrain_receiver);

 Turn Start Function:

It determines the actions to be performed when a Team starts a turn, and the

engine calls it every time a new Team starts its turn. By default it does nothing, so

there’s no need for the user to define it unless he or she wants to do anything

special at that moment.

 115

It is the most convenient function for defining the Artificial Intelligence’s

decisions by setting the desired actions of the turn for the Units and Buildings of

the Team.

It only takes the Team that is starting the turn as parameter and has the following

definition:

void turnStartFunction(Team* team);

 Turn End Function:

It determines the actions to be performed whenever a Team ends its turn. It also

does nothing by default.

In case the user wants to develop an online multiplayer game, it is a good place to

send any other players what are the actions that the Team has selected for the

current turn, since all Units and Buildings have their associated ActionTurns

(whether they are controlled by an AI or by a player).

It has the same definition as Turn Start:

void TurnEndFunction(Team* team);

 Unit Selected Function:

It is called whenever a player selects a Unit. It determines what happens in this

case and return a Boolean value that tells if the player can select the Unit.

By default nothing is done and it returns true, but the player can set any code that

he or she wants.

It should be used for telling the system if the Unit can be selected taking into

account any kind of parameter (Some examples might be checking if the Team of

the Unit is not controlled by the AI, the Team of the Unit is the one that is

 116

currently moving or a more complex one in which we check at the attributes of

the Unit to see if it is not paralyzed for this turn).

A typical usage for this (seen in other games of the genre) would be to change the

brightness of the Sprite of the Unit to make it more visible and to start an

animation.

It only takes the Unit itself as parameter and has the following definition:

bool unitSelectedFunction(Unit* unit);

 Unit Deselected Function:

It is called whenever the player deselects a Unit, whether because he or she has

cancelled the selection or because the action has been performed. Its original

conception is to provide a function in which undo the actions taken in the

selection function (for example, putting back the normal color of the Sprite or

setting its normal animation).

It has the following definition:

void unitDeselectedFunction(Unit* unit);

 Unit Action Ended Function:

It is called when a Unit has successfully performed an action in the turn (a

movement and an Ability). In case of online multiplayer, it is probably the best

place to send what the performed action was, if the user wants to synchronize

every action of the Controllable Elements individually and not all the Team

members’ at the same time (otherwise Turn End would be a better place).

It has the following definition:

void unitActionEndedFunction(Unit* unit);

 117

 Building Selected Function:

It is the equivalent to the Unit Selected Function but for Units, with the same

purposes and a very similar definition:

bool buildingSelectedFunction(Building* building);

 Building Deselected Function:

It is the same as for Units, with this definition:

void buildingDeselectedFunction(Building* building);

 Building Action Ended Function:

The same as for Units, only this time for a Building:

void buildingActionEnded(Building* building);

 Unit Added Function:

This function is called whenever a new Unit is added to the map. By default the

function does nothing, so it is up to the user to configure it as he or she pleases.

Originally, I added it because Cocos2d-x had a limitation regarding animations:

Although Sprites can be cloned by recursively searching for the textures of the

Sprite (which is done by the copySprite function in Utils when setting the Sprite for

a Unit based on the Sprite of its BaseUnit), there is no way to obtain all the

Cocos2d-x Actions of the given sprite without knowing their tags. This made it

impossible to set idle animations for the Unit’s sprites.

After thinking of ways in which the player would tell the system the tags for the

animations of the Unit, I finally decided to create this function in which he or she

could do anything with the Sprite when the Unit was added.

 118

Also, this way the user is given more control over how Units are added to the map,

allowing him or her to do things like setting special entry animations or tweaking

some of their attributes depending on their position or Team.

Finally, I made the decision of also providing the user with the Building that was

recruiting the Unit (only in case the Unit was added by recruiting it from the

Building). This allows to set specific features for the Unit regarding if it has been

recruited from a specific Building. One example would be to set it as “already

moved” when recruited to avoid the player from moving them in the same turn

they are added.

It has the following definition:

void unitAddedFunction(Unit* unit, Building* building);

 Building Added Function:

This is the equivalent for Buildings of the Unit Added function. In this case, since a

Building cannot be recruited, it only takes the Building itself as parameter, in

contraposition to the one for Units:

void buildingAddedFunction(Building* building);

 Team Can Buy Function:

This function determines, for Team and a BaseUnit, if the given Team can recruit a

Unit based on the provided base (by returning a Boolean value). Here the user can

check for any attribute both of the Team and the BaseUnit.

An example would be to check for a “price” attribute inside the BaseUnit and

compare it to a “funds” attribute inside the Team. If the price is lower than the

funds, then the Team can buy it.

 119

It has the following definition:

bool buildingCanBuyFunction(Team* team, BaseUnit* base_unit);

 Team Buy Function:

Here the user should set what are the effects for a Team who buys a Unit. For the

previous example, the user should subtract from the Team’s funds the BaseUnit’s

price. It also returns a value just in case anything went wrong and has the

following definition:

bool buildingBuyFunction(Team* team, BaseUnit* base_unit);

 Update Function:

This function is called every time a new frame is rendered. It allows the user to

make any checks and perform any actions without having to wait for certain

actions to take place.

An example for this would an asynchronous Internet connection in which he or

she needs to check whether the game has received a new message or not.

It has the following definition:

void updateFunction();

5.4.5.2 Implementation

To implement these callback settings, I have developed an API that allows the

user to pass functions as parameters for the engine, so that it can store them and

call them at the adequate time.

 120

Also, since it is very useful to store a state over the course of the game and even

be able to consult any user-defined variable, it also allows these functions to be

static and non-static members of a class. For the case of non-static functions, the

user should pass an object instance to call the method.

A condition for this object passing is that it inherits from the cocos2d Ref class,

according to the system of callbacks of cocos2d-x.

For doing this, the engine contains function variables as well as object instances to

call them; an example would be the following (for the Unit Added function, which,

as most functions, can be found in ControllerGame):

cocos2d::Ref* ref_functionUnitAdded;

FUNCTION_UNIT_ADDED functionUnitAdded;

To call these functions, it provides wrappers that execute them. These wrappers

must take as arguments the actual parameters to be passed to the function:

void executeFunctionUnitAdded(Unit* new_unit, Building* building)

{

 (ref_functionUnitAdded->*functionUnitAdded) (new_unit, building);

}

For this particular case, for example, ControllerGame ensures that it is called every

time a new Unit is added to the game, either passing the Building when the Unit is

added because of a recruitment, or passing a NULL value when it’s not.

In order to set them, there are setter functions that take both the caller object and

the function as parameter:

void setFunctionUnitAdded(cocos2d::Ref* ref, FUNCTION_UNI_ADDED newFunction)

{

 ref_functionUnitAdded = ref;

 functionUnitAdded = newFunction;

}

 121

5.4.5.3 Usage

In order to set a function as callback, the user must use the defined setter

functions available at the Strategy2D class. As explained before, the object that

contains the function as member must be a cocos2d Ref subclass.

To help making the casts (which would take not only the return type and

parameter types, but also the type of the class that has it as member), there are

type definitions in Utils for each possible callback function:

typedef (cocos2d::Ref::*FUNCTION_MOVEMENT) (Unit* unit, Terrain* terrain,

 Terrain* prev_terrain, double &cost);

typedef (cocos2d::Ref::*FUNCTION_CAN_BUY) (Team* team, BaseUnit* base_unit);

typedef (cocos2d::Ref::*FUNCTION_BUY) (Team* team, BaseUnit* base_unit);

...

For setting the function, the user should pass both the object and the function as

parameter, as follows:

Strategy->setMovementFunction(this, FUNCTION_MOVEMENT(&MyClass::movement));

Which should be defined as a member function in the class:

bool MyClass::movement(Unit* unit,Terrain* terrain,Terrain* prev_terrain,double& cost);

As long as the function does not use any internal attribute of the object class, the

user can also pass a NULL value for the object. If they are used, however, then

there are risks of having problems of memory corruption.

 122

5.4.6 Artificial Intelligence

Strategy2D allows the user to configure the Artificial Intelligence for any AI

Controlled Team of the game in any of the defined callbacks, adapting the game to

any kind of circumstance. In order to do this, he or she must take advantage of the

many consulting and setting functions defined in ControllerGame, which can be

accessed from the Strategy2D instance at any point of the execution.

Then, by using the addActionTurn function (both for Units and Buildings), the

system will be able to know what are the desired actions for this Controllable

Elements to be performed at the current turn (These actions are cleared up when

a new Team takes control of the turn). ControllerGame will finally take care of the

set actions and make the Units and Buildings perform theirs in the set order,

synchronizing them by using their Blocking Actions (defined in the Unit and

Building section) to know when their movements have come to an end.

5.4.7 Internet Connection and Multiplayer

It is also up to the player to configure how the game connects to the Internet. For

this, he or she can use any of the callback functions (especially Turn Ended and

Action Ended, as explained in the callbacks section), where there is freedom to

use any kind of Internet connection library (Cocos2d-x itself provides with some

network interfaces such as HttpClient or SocketIO).

To synchronize the movements between the different devices that would be

playing the same online game, he or she can use the ActionTurn attributes that are

stored for ControllableElements.

The user also has the possibility of configuring multiplayer games locally, using

the same tablet (as if the tablet itself were the board) and is able to set any

number of Teams either controlled by players or by the AI.

 123

6. USAGE EXAMPLE

In order to see how the Engine is used to create a game and to show the array of

possibilities that it offers to the user, there is no better way than developing a

demo that puts its elements to test and explaining how every feature is

configured.

In this example I will develop a game that will confront a two Teams, one

controlled by a player and the other by the Artificial Intelligence, who will fight

for controlling the map and wiping out the Units of their rivals.

It will have an economy system related to the ownership of Buildings and the

recruitment of new Units.

In addition, there will be several Unit types, each with their own attributes and

Abilities.

6.1 Starting

For starting, we will need to include the Strategy2D header file, which will grant

us access to the Strategy2D module, with all its functions and object types.

#include “Strategy2D.h”

Once we include this file we can declare a Strategy2D instance and call the create

method, in this case we will declare also two variables for the number of rows and

columns of the map:

long num_rows = 20;

long num_columns = 20;
Strategy2D* strategy = Strategy2D::create(num_rows, num_columns);

In addition, we set the starting, maximum and minimum zooms in the game in

terms of number of visible columns and we limit the view to the map:

strategy->setZoom(7, 2, 10); //starting, minimum and maximum number of visible columns

 124

strategy->setLimitViewToMap(true);

And provide the engine with the path of the default Wait and Cancel Sprites:

strategy->setCancelSpritesNames(“ui/button_cancel.png”,“ui/button_cancel_pressed.png”);

Strategy->setWaitSpritesNames(“ui/button_wait.png”,“ui/button_wait_pressed.png”);

6.2 Terrain Configuration

We will need to configure the map and provide the engine with the required

sprites. For this we first must decide the types of Terrains there will be in the

game:

 Grassland: A Terrain covered by grass and a few trees, all kinds of land and

air Units will be able to move through it.

Figure 87: Sprite for grassland terrains

 Wood: A Terrain covered by extensions of trees, all kinds of land and air

Units will be able to move through it but with a bigger cost than for

Grassland.

 125

Figure 88: Sprite for wood terrains

 Mountain: A Terrain with high elevations, only air Units will be able to

move through it.

Figure 89: Sprite for mountain terrains

 Water: Both for seas and lakes. Air and water Units will be able to move

trough them. In this particular case we will animate the sprite with a

Cocos2d-x SpriteFrame using a composition of several images that will be

displayed in an endless loop.

 126

Figure 90: Sprites for water animation

Once we have the materials for setting up the graphics, we need to create the logic

map that will represent its structure. For this we need to create two matrixes, one

containing the Sprite for each tile and the other containing the definition of the

Terrains located at every position.

In this case, we will generate a random map inside a function and call the

Strategy2D setter:

vector<vector<Sprite*> > map_sprites(num_rows, vector<Sprite*> (num_columns));

vector<vector<Terrain> > terrains(num_rows, vector<Terrain> (num_columns));

generateMap(map_sprites, terrains);

tile_size = 900; //the width in pixels of each sprite

strategy->setTerrainsWithSpriteAssociation(terrains, map_sprites, tile_size);

In which the generateMap function creates a random map with the distribution of

Terrains. For every position the probability of it being grassland Terrain is of

32.5%, wood Terrain also of 32.5%, mountain Terrain of a 10% and water Terrain

of a 25%.

To configure we do the following for every case:

 Grassland:

Sprite* sprite = Sprite::create(“terrains/grass.png”);

Terrain terrain;

terrain.setAttribute(“cost_soldier”, 1);

terrain.setAttribute(“cost_tank”, 1);

 127

terrain.setAttribute(“cost_plane”, 1);

terrain.setAttribute(“cost_ship”, -1);

 Wood:

Sprite* sprite = Sprite::create(“terrains/wood.png”);

Terrain terrain;

terrain.setAttribute(“cost_soldier”, 2);

terrain.setAttribute(“cost_tank”, 2);

terrain.setAttribute(“cost_plane”, 1);

terrain.setAttribute(“cost_ship”, -1);

 Mountain:

Sprite* sprite = Sprite::create(“terrains/mountain.png”);

Terrain terrain;

terrain.setAttribute(“cost_soldier”, -1);

terrain.setAttribute(“cost_tank”, -1);

terrain.setAttribute(“cost_plane”, 1); //only planes can move through them

terrain.setAttribute(“cost_ship”, -1);

 Water:

Sprite* sprite = Sprite::create(“terrains/water_anim/water_anim10.png”);

//we create the animation:

string name = “terrains/water_anim/water_anim”;

Vector<SpriteFrame*> animFrames(11);

for (int i = 0; I < animFrames.size(); ++i)

{

 std::stringstream ss;

 ss << i;

 Rect rect (0, 0, 900, 900); //the size of each sprite that composes the animation

 SpriteFrame* sf = SpriteFrame::create(name + ss.str(), rect);

 animFrames.pushBack(sf);
}

 128

double time_lapse = 0.05f; //the lapse between each frame

Animate* anim = Animate::create(Animation::createWithSpriteFrames(sf, time_lapse);

//we make the sprite run the animation in an infinite loop:

sprite->runAction(RepeatForever::create(anim);

//terrain configuration:

terrain.setAttribute(“cost_soldier”, -1);

terrain.setAttribute(“cost_tank”, -1);

terrain.setAttribute(“cost_plane”, 1);

terrain.setAttribute(“cost_ship”, 1); //only planes and ships can move through them

After building the map we have a result like the following (in real time the water

is animated):

Figure 91: A map generated with the defined terrains

 129

6.3 Team Configuration

Once we have configured the Terrains, we must add one or more teams to the

game in order to have them battle and compete for victory.

In this case, we will configure two Teams represented by a different color. Each

one will have two attributes named “funds” and “fuel” that will serve as resources

for building new Units and making one of them controlled by the player and the

other by the Artificial Intelligence.

We start with the user controlled Team, that will be represented by the red color.

It will have 150 of funds and 50 of fuel and its layer for displaying the reachable

positions both for movement and Abilities will have a semi-transparent red color:

Team team_red(“red”);

team_red.setAttribute(“funds”, 150);

team_red.setAttribute(“fuel”, 50);

Color4B color (255, 50, 50, 80); //RGBA

team_red.setColorMovementLayer(color);

team_red.setColorAbilityRangeLayer(color);

team_red.setAIControlled(false);

Later, we also configure the AI controlled Team, since it will not be controlled by a

player, there is no need to set any color for the reachable positions. For parity

reasons, we will give it the same resources.

Team team_blue(“blue”);

team_blue.setAttribute(“funds”, 150);

team_blue.setAttribute(“fuel”, 50);

team_blue.setAIControlled(true);

Finally, we add them to the system with the following calls (we must take into

consideration that the order when we add them will determine the order of the

turns):

strategy->addTeam(team_red);

strategy->addTeam(team_blue);

 130

6.4 BaseUnit Configuration

In this chapter we will first explain which will be the types of Units available in the

game and how we configure their attributes. Later, we will also explain what will

be their Abilities and how to allow configure them so that Units can use them.

For every Unit we will configure these attributes:

- hp: Health Points, when they reach 0 the Unit disappears from the map.

- strength: The maximum amount of damage a Unit can perform with an attack.

- resistance: The maximum amount of damage that can be absorbed by a Unit

without lowering their hp.

We will have the following types of Units in the game:

 Soldiers:

They are the most basic units in the game, being able to only move through land

Terrains and having a low range of attack. Although they have much strength or

resistance, they are the online Units that can capture or build Buildings.

They are configured using the following code:

BaseUnit base_soldier(“soldier”);

base_soldier.setAttribute(“hp”, 40);

base_soldier.setAttribute(“resistance”, 10);

base_soldier.setAttribute(“strength”, 20);

base_soldier.setAttribute(“cost_fuel”, 0);

base_soldier.setAttribute(“cost_funds”, 10);

base_soldier.setCanCapture(true);

base_soldier.setMovementPoints(4);

//we configure two sprites for the two teams

Sprite* sprite_soldier_red = Sprite::create(“units/soldier_red.png”);

Sprite* sprite_soldier_blue = Sprite::create(“units/soldier_blue.png”);

base_soldier.setSpriteForTeam(“red”, sprite_soldier_red);

base_soldier.setSpriteForTeam(“red”,sprite_soldier_blue);

 131

Figure 92: Sprite representation for soldier Units (for red and blue team)

 Tanks:

They are much more powerful and resistant than soldiers, but also have a limited

range of attack. They can only move through land Terrains as well.

BaseUnit base_tank (“tank”);

base_tank.setAttribute(“hp”, 100);

base_tank.setAttribute(“resistance”, 50);
base_tank.setAttribute(“strength”, 30);

base_tank.setAttribute(“cost_fuel”, 10);

base_tank.setAttribute(“cost_funds”, 20);

base_tank.setMovementPoints(5);

Sprite* sprite_tank_red = Sprite::create(“units/tank_red.png”);

Sprite* sprite_tank_blue = Sprite::create(“units/tank_blue.png”);

base_tank.setSpriteForTeam(“red”, sprite_tank_red);

base_tank.setSpriteForTeam(“blue”, sprite_tank_blue);

Figure 93: Sprite representation for tank Units

 132

 Planes:

They have a much wider range of movement and can move through all kinds of

Terrains. They also have a lot of strength but, in exchange, they are not very

resistant to attacks.

BasePlane base_plane (“plane”);

base_plane.setAttribute(“hp”, 60);

base_plane.setAttribute(“resistance”, 20);
base_plane.setAttribute(“strength”, 35);

base_plane.setAttribute(“cost_fuel”, 30);

base_plane.setAttribute(“cost_funds”, 20);

base_plane.setMovementPoints(5);

//we also set their speed to 8 tiles per second in order to make them look faster to

the eye as well:

base_plane.setMovementSpeed(8);

Sprite* sprite_plane_red = Sprite::create(“units/plane_red.png”);

Sprite* sprite_plane_blue = Sprite::create(“units/plane_blue.png”);

base_plane.setSpriteForTeam(“red”, sprite_plane_red);

base_plane.setSpriteForTeam(“blue”, sprite_plane_blue);

Figure 94: Sprite representation for plane Units

 Ships:

Although they can only move through water and are the slower Units, they also

have the highest range and firepower. They can attack their enemies from the sea

and even have an Ability to destroy land Terrains in order to open their path.

 133

BaseShip base_plane (“ship”);

base_ship.setAttribute(“hp”, 140);

base_ship.setAttribute(“resistance”, 60);
base_ship.setAttribute(“strength”, 40);

base_ship.setAttribute(“cost_fuel”, 40);

base_ship.setAttribute(“cost_funds”, 40);

base_ship.setMovementPoints(3);

//we also set their speed to 3 tiles per second in order to make them look slower to

the eye as well:

base_ship.setMovementSpeed(3);

Sprite* sprite_ship_red = Sprite::create(“units/ship_red.png”);

Sprite* sprite_ship_blue = Sprite::create(“units/ship_blue.png”);

base_ship.setSpriteForTeam(“red”, sprite_ship_red);

base_ship.setSpriteForTeam(“blue”, sprite_ship_blue);

Figure 95: Sprite representation for ship Units

6.4.1 Abilities Configuration

There are the following Abilities within the game:

 Attack:

All the types of Units can perform it and can only be dealt to Units that are in

contiguous positions:

Ability attack (“attack”);

attack.setButtonSprites(ui/button_attack.png”, “ui/button_attack_pressed.png”);

 134

attack.setRange(1, 1); //minimum range = maximum range = 1 (only contiguous positions)

attack.setOnEnemies(true);

attack.setOnAllies(false); //disable attacks on allies

attack.setOnEmptyTerrains(false); //disable attacks on Terrains with no Units

attack.setDealAbilityFunction(this, FUNCTION_DEAL_ABILITY(&AppDelegate::attack));

base_soldier.addAbility(attack);

base_tank.addAbility(attack);

base_plane.addAbility(attack);

base_ship.addAbility(attack);

Figure 96: Button Sprites for the Attack Ability (unpressed and pressed)

In which the attack function does the following:

bool AppDelegate::attack(Unit* dealer, Unit* receiver, terrain* terrain_dealer,

 Terrain* terrain_receiver)

{

 double strength_dealer = dealer->getAttribute(“strength”);

 long resistance_receiver = receiver->getAttribute(“resistance”);

 long damage_absorved = rand() % resitance_receiver;

 double damage = strength_dealer – damage_absorved;

 if (damage > 0)

 {

 dealDamage(receiver, damage);

 }

 return true;

}

And dealDamage is a function used by all Abilities that deal any damage:

void AppDelegate::dealDamage(Unit* unit, const double& damage)

{

 double remaining_hp = unit->getAttribute(“hp”) – damage;

 unit->setAttribute(“hp”, remaining_hp);

 Sprite* sprite = unit->getSprite();

 if (remaining_hp <= 0)

 135

 {

 //no more hp

 FadeOut* fade_out = FadeOut::create(1); // the unit will fade out for 1 second

 sprite->runAction(fade_out);

 //the unit won’t be removed until the animation ends

 unit->addBlockingAction(fade_out);

 unit->kill(); //the system will remove it when the blocking action ends

 }

 else

 {

 //we display a label with the % of health (as in advance wars)

 Label* label = dynamic_cast<Label*> (sprite->getChildByTag(TAG_LABEL_HP_UNIT));

 if (label != NULL)

 {

 //we get the original health from the BaseUnit

 double prop_hp = remaining_hp / unit->getBaseUnit()->getAttribute(“hp”);

 long hp_label = prop_hp * 10;

 if (hp_label == 0)

 {

 hp_label = 1;

 }

 stringstream ss;

 ss << hp_label;

 label->setString(ss.str();

 }

 }

}

 Build Barracks:

An Ability to buy a Barracks Building in the occupied position. Only soldiers are

able to perform it.

Ability build_barracks (“build_barracks”);

build_barracks.setButtonSprites(“ui/button_barracks.png”,

 “ui/button_barracks_pressed.png”);

build_barracks.setRange(0, 0); //only the same position

build_barracks.setOnEnemies(false);

build_barracks.setOnAllies(true); //the Unit itself occupies the position

build_barracks.setDealAbilityFunction(this, FUNCTION_DEAL_ABILITY(

 &AppDelegate::buildBarracks));

base_soldier.addAbility(build_barracks);

 136

With the following function definition:

bool AppDelegate::buildBarracks(Unit* dealer, Unit* receiver, Terrain* terrain_dealer,

 Terrain* terrain_receiver)

{

 return buildBuildingAtPos(“barracks”, dealer->getPos(), dealer->getTeam());

}

bool AppDelegate::buildBuildingAtPos(const std::string &name, const Position& pos,

 Team* team)

{

 ControllerGame* controller_game = Strategy2D::getInstance()->getControllerGame();

 BaseUnit* base = controller_game->getBaseBuilding(name);

 double cost_fuel = base->getAttribute(“cost_fuel”);

 double cost_funds = base->getAttribute(“cost_funds”);

 double remaining_fuel = team->getAttribute(“fuel”) – cost_fuel;

 double remaining_funds = team->getAttribute(“funds”) – cost_funds;

 if (remaining_fuel >= 0 && remaining_funds >= 0)

 {

 team->setAttribute(“fuel”, remaining_fuel);

 team->setAttribute(“funds”, remaining_funds);

 controller_game->addBuilding(pos, “barracks”, team->getName());

 return true;

 }

 return false;

}

 Build Harbour:

The same Ability as Build Barracks, but this time for Harbours. It is configured

almost exactly like Build Barracks but instead of passing “barracks” as parameter

for the buildBuilding function we pass “harbour”.

 137

 Bombard:

An Ability for ships with which they can shoot at long ranges and destroy the

Terrains, leaving water at their place and drowning any land Unit that was

occupying that position. With it ships can open their way through the land.

Ability bombard (“bombard”);

bombard.setButtonSprites(ui/button_bombard.png”, “ui/button_bombard_pressed.png”);

bombard.setRange(2, 4);

bombard.setOnEnemies(true);

bombard.setOnAllies(false);

bombard.setOnEmptyTerrains(true); // by default is false

bombard.setDealAbilityFunction(this, FUNCTION_DEAL_ABILITY(&AppDelegate::bombard));

base_ship.addAbility(bombard);

bool AppDelegate::bombard(Unit* dealer, Unit* receiver, Terrain* terrain_receiver,

 Terrain* terrain_dealer)

{

 setWaterAttributes(terrain_receiver); //change costs attributes and sprite animation

 if (receiver != NULL && receiver->getBaseUnit()->getName() != “plane”)

 {

 receiver->kill();

 }

 return true;

}

 Board and Deploy:

A set of two Abilities that allow ships to take one Unit from land and transport it

across the sea. With it, Units can cross water to reach other Terrains.

Since a ship can only take one Unit at a time, it loses the Ability while transporting

it, but gains the Deploy, which allows the ship to deploy the transported Unit on a

piece of land.

Ability board (“board”);

board.setButtonSprites(ui/button_board.png”, “ui/button_board_pressed.png”);

board.setRange(1, 1); //only for units in contiguous positions

board.setOnEnemies(false);

board.setOnAllies(true);

board.setOnEmptyTerrains(false);

 138

board.setDealAbilityFunction(this, FUNCTION_DEAL_ABILITY(&AppDelegate::board));

base_ship.addAbility(board);

bool AppDelegate::board(Unit* dealer, Unit* receiver, Terrain* terrain_dealer,

 Terrain* terrain_receiver)

{

 if (receiver != NULL)

 {

 string base = receiver->getBaseUnit()->getName();

 if (base == “soldier” || base == “tank”)

 {

 Vector<FiniteTimeAction*> movements;

 //we animate the Unit to move to the ship

 movements.pushBack(MoveTo::create(0.25, dealer->getSprite->getPosition()));

 //when it reaches the position we make it invisible (it is inside the ship)

 movements.pushBack(ToggleVisibility::create());

 Sequence* seq = Sequence::create(movements);

 receiver->getSprite()->runAction(seq);

 dealer->addBlockingAction(seq);

 //we set an invalid position for the unit

 receiver->setPosition(INVALID_POSITION);

 //we store the id of the unit for later putting deploying it

 dealer->setAttribute(“id_unit”, receiver->getId());

 //the ship can only have one Unit on it, so no ore boards

 dealer->removeAbility(“board”);

 //we add the deploy Ability

 Ability deploy(“deploy”);

 deploy.setRange(1,1);

 deploy.OnAllies(false);

 deploy.setOnEnemies(false);

 deploy.setOnEmptyTerrains(true);

 deploy.setDealAbilityFunction(this,

 FUNCTION_DEAL_ABILITY(&AppDelegate::deploy));

 dealer->addAbility(deploy);

 }

 return true;

 }

}

bool AppDelegate::deploy(Unit* dealer, Unit* receiver, Terrain* terrain_dealer,

 Terrain* terrain_receiver)

{

 ControllerGame* controller_game = Strategy2D::getInstance()->getControllerGame();

 139

 Unit* boarded_unit = controller_game->getUnit(dealer->getAttribute(“id_unit”));

 strinstream ss;

 ss << “cost” << boarded_unit->getBaseUnit()->getName();

 //if the Unit can move to the Terrain

 if (terrain_receiver->getAttribute(ss.str()) != -1)

 {

 boarded_unit->setPos(terrain_receiver->getPos());

 Sprite* sprite = boarded_unit->getSprite();

 //we must set the sprite originally at the ship’s position to show the movement

 animation towards the land

 sprite->setPosition(dealer->getSprite()->getPosition());

 Vector<FiniteTimeAction*> movements;

 movements.pushBack(ToggleVisibility::create());

 movements.pushBack(MoveTo::create(0.25,

 terrain_receiver->getSprite89->getPosition());

 Sequence* seq = Sequence::create(movments);

 sprite->runAction(seq);

 dealer->addBlockingAction(seq);

 dealer->removeAbility(“deploy”);

 //we add the board Ability

 Ability board (“board”);

 board.setButtonSprites(ui/button_board.png”, “ui/button_board_pressed.png”);

 board.setRange(1, 1); //only for units in contiguous positions

 board.setOnEnemies(false);

 board.setOnAllies(true);

 board.setOnEmptyTerrains(false);

 board.setDealAbilityFunction(this, FUNCTION_DEAL_ABILITY(&AppDelegate::board));

 dealer->addAbility(board);

 return true;

 }

 return false;

}

 140

6.4.2 Adding BaseUnits to the System

Finally, in order to be able to access this BaseUnits in the engine and create Units

using them as template, we need to add them to Strategy2D:

strategy->addBaseUnit(base_soldier);

strategy->addBaseUnit(base_tank);

strategy->addBaseUnit(base_plane);

strategy->addBaseUnit(base_plane);

6.5 BaseBuilding Configuration

The configuration for Buildings is very similar to the one for Units. The only

difference lies in the fact that Buildings do not have Abilities but are able to recruit

Units instead.

We will have the following types of Buildings:

 Barracks:

The Recruitment Building for land and air Units. It is configured with the

following code:

BaseBuilding base_barracks(“barracks”);

Sprite* sprite_barracks_red = Sprite::create(“buildings/barracks_red.png”);

Sprite* sprite_barracks_blue = Sprite::create(“buildings/barracks_blue.png”);

base_barracks.setSpriteForTeam(“red”, sprite_barracks_red);

base_barracks.setSpriteForTeam(“blue”, sprite_barracks_blue);

//we add the unit types so that they can be recruited with these type of buildings

base_barracks.addBaseUnitToCatalogue(“soldier”, “ui/recruit_soldier_button.png”,

“ui/recruit_soldier_button_pressed.png”, “ui/recruit_soldier_button_unaffordable.png”,

“ui/recruit_soldier_button_pressed_unaffordable.png”);

base_barracks.addBaseUnitToCatalogue(“tank”, “ui/recruit_tank_button.png”,

“ui/recruit_tank_button_pressed.png”, “ui/recruit_tank_button_unaffordable.png”,

“ui/recruit_tank_button_pressed_unaffordable.png”);

 141

base_barracks.addBaseUnitToCatalogue(“plane”, “ui/recruit_plane_button.png”,

“ui/recruit_plane_button_pressed.png”, “ui/recruit_plane_button_unaffordable.png”,

“ui/recruit_plane_button_pressed_unaffordable.png”);

Figure 97: Sprite representation for barracks Building

 Harbour:

The Recruitment Building for bringing water Units to the game, in this case just

ships:

BaseBuilding base_harbour(“harbour”);

Sprite* sprite_harbour_red = Sprite::create(“buildings/harbour_red.png”);

Sprite* sprite_harbour_blue = Sprite::create(“buildings/harbour_blue.png”);

base_harbour.setSpriteForTeam(“red”, sprite_harbour_red);

base_harbour.setSpriteForTeam(“blue”, sprite_harbour_blue);

//we add the ship type so that they can be recruited with these type of buildings

base_harbour.addBaseUnitToCatalogue(“ship”, “ui/recruit_ship_button.png”,

“ui/recruit_ship_button_pressed.png”, “ui/recruit_ship_button_unaffordable.png”,

“ui/recruit_ship_button_pressed_unaffordable.png”);

 142

Figure 98: Sprite representation for Harbour Building

Then, we add them to the system with these calls to Strategy2D:

strategy->addBaseBuilding(base_barracks);

strategy->addBaseBuilding(base_harbour);

Following this configuration, we also must define the buy function callbacks, in

order to set when a Team can recruit a Unit and how this affects the team. In this

case we will directly use the cost attributes, in a very similar way to the function

for building Buildings:

strategy->setFunctionCanBuy(this, FUNCTION_CAN_BUY(&AppDelegate::canBuy));

strategy->setFunctionBuy(this, FUNCTION_BUY(&AppDelegate::buy));

bool AppDelegate::canBuy(Team* team, BaseUnit* base_unit)

{

 double cost_fuel = base_unit->getAttribute(“cost_fuel”);

 double cost_funds = base_unit->getAttribute(“cost_funds”);

 double remaining_fuel = team->getAttribute(“fuel”) – cost_fuel;

 double remaining_funds = team->getAttribute(“funds”) – cost_funds;

 return (remaining_fuel >= 0 && remaining_funds >= 0);

}

 143

bool AppDelegate::buy(Team* team, BaseUnit* base_unit)

{

 double cost_fuel = base_unit->getAttribute(“cost_fuel”);

 double cost_funds = base_unit->getAttribute(“cost_funds”);

 team->setAttribute(“fuel”, team->getAttribute(“fuel”) – cost_fuel);

 team->setAttribute(“funds”, team->getAttribute(“funds”) – cost_funds);

 return true;

}

6.6 Path Finding Configuration

Taking into account the configuration that we have set for Buildings and Units,

when trying to determine whether a Unit can move through a Terrain and at what

cost, we just need to check the cost attribute for the name of its BaseUnit. This is

the code of the movement function:

bool AppDelegate::moveTo(Unit* unit, Terrain* terrain, Terrain* previous_terrain,

 double & cost)

{

 bool can_move = false;

 cost = terrain->getAttribute(“cost_” + unit->getBaseUnit()->getName());

 if (cost > 0)

 {

 can_move = true;

 }

 return can_move;

}

To set this function so that the engine uses it when computing the path finding we

use the following line of code:

strategy->setMovementFunction(this, FUNCTION_MOVEMENT(&AppDelegate::moveTo));

 144

6.7 Turn Handling

In order to set the gameplay, we must ensure that only the Units that pertain to

the Team in command of the turn can be selected and moved. Also, we must limit

their movements so that they can only perform one action each turn. For this, we

will use a set of callback functions:

bool AppDelegate::unitSelected(Unit* unit)

{

 //if it hasn’t moved and pertains to the current team, which is not the AI

 if (unit->getAttribute(“moved”) == false && unit->getTeam() ==

 Strategy2D::getInstance()->getControllerGame->getTeamCurrentTurn() &&

 !unit->getTeam()->getAIControlled())

 {

 return true;

 }

 return false;

}

void AppDelegate::unitMovementEnded(Unit* unit)

{

 //we mark it as moved so that it can’t be selected again

 unit->setAttribute(“moved”, true);

}

And the same code for the Building functions. Then, at the turn start we start them

all as not moved:

void AppDelegate::turnStart(Team* team)

{

 map<long, Building*>::iterator it = team->getBuildings().begin();

 for (; it != team->getBuildings().end(); ++it)

 {

 it->second->setAttribute(“moved”, false);

 }

 map<long, Unit*>::iterator it = team->getUnits().begin();

 for (; it != team->getUnits().end(); ++it)

 {

 it->second->setAttribute(“moved”, false);

 }

 if (team->getAIControlled())

 {

 handleAI(team);

 }

 145

 else

 {

 startMenus(team);

 }

}

If the Team is controlled by the AI we must set what will be the actions for its

members, which is done in the handleAI function.

In order to display some information about the resources and provide a way for

the player to end its turn we configure some menus (in here we suppose that they

are already created and added to the Layer, though when configuring it the user

must set which will be their positions):

void AppDelegate::startMenus(Team* team)

{

 LayerMap* layer_map = Strategy2D::getInstance()->getLayerMap();

 Label* label_fuel = layer_map->getChildByTag(LABEL_FUEL);

 std::stringstream ss;

 ss << “Fuel: “ << team->getAttribute(“fuel”);

 label_fuel->setString(ss.str());

 Label* label_funds = layer_map->getChildByTag(LABEL_FUNDS);

 ss.clear();

 ss << “Funds: “ << team->getAttribute(“funds”);

 label_funds->setString(ss.str());

 //we set as visible and enabled the button for passing turn (the AI can’t):

 Button* button_end_turn = layer_map->getChildByTag(BUTTON_END_TURN);

 button_end_turn->setVisible(true);

 button_end_turn->setEnabled(true);

}

Where the button for passing turn has the following callback function (configured

using the normal Cocos2d-x Button API):

 146

void AppDelegate::endTurnTouched(Button* sender, TouchEventType type)
{
 if (type == TOUCH_EVENT_ENDED)
 {
 Strategy2D::getInstance()->getControllerGame()->getTeamCurrentTurn()->endTurn();

 //we disable the button, if the team is not controlled by the AI

 //it will be set again

 sender->setEnabled(false);

 sender->setVisible(false);

 }
}

6.8 Running the Game

Finally, we must set where the actual instances of the Units and Buildings will be

placed. In this case we provide the Teams with two soldiers, one plane and a

barracks Building at each corner of the map:

strategy->addUnit(1, 3, “soldier”, “red”); //row, column, BaseUnit and Team

strategy->addUnit(2, 2, “soldier”, “red”);

strategy->addUnit(3, 3, “plane”, “red”);

strategy->addBuilding(2, 2, “barracks”, “red”);

strategy->addUnit(19, 17, “soldier”, “blue”);

strategy->addUnit(18, 18, “soldier”, “blue”);

strategy->addUnit(17, 17, “plane”, “blue”);

strategy->addBuilding(18, 18, “barracks”, “blue”);

Finally, we must call the run function in order to start Strategy2D:

strategy->run();

With this, we will be able to run the game on any Android or iOS device. Which

will look like the following screenshot:

 147

Figure 99: In-game capture of the demo

 148

7. PLANNING AND COSTS

7.1 Planning

In order to achieve the objectives of the project, I needed to establish a

development process that allowed me to combine my formal job with the creation

of the engine. For this reason, I organized myself for being able to work on the

project on those available moments.

Video games, with their focus on user experience, require an approach in which

all new features developed need to be tested and evaluated immediately. This

method generates an iterative process in which every new feature is tested

against all the different parts of the project and adapted to fit in the most natural

way.

Developing an engine shares some similarities and, since it is a tool for the

creation of video games, the best way for testing it is thinking in possible ways of

using it and applying them to see the effects.

Through the development of the different stages of the project, while adapting the

different modules to fulfill the objectives, I also kept testing all the newly included

features in order to see how they adapted to the whole project. Applying real-life

cases in which I implemented new mechanics in order to see if the engine allowed

their implementation in the intended way and checking for any bugs or

discordances in the interface.

To be able to organize the process, I divided the development into the following

sections:

 Vision and Setup:

Before starting the development, I first needed to look into the project’s

objectives to organize how the project would be developed. I looked for games

belonging to the turn-based strategy genre, tested them checking their features

and thought of ways for enabling their implementation in the engine. Finally, I

 149

also thought on what would be the tools that I would use and decided for

Cocos2d-x.

 Cocos2d-x Learning:

In order to be able to develop the project, I first needed to familiarize myself with

the Cocos2d-x framework and test whether it would allow me to develop the

engine I had thought of. This led me to develop a range of simple games in order

to test all the capabilities of the framework, which gave a much wider view of

what Cocos2d-x was and the functionalities it offered.

 View Development:

Since it was vital to be able to visualize the effects the modifications of the Domain

on the screen in order to test any feature, I first centered on having a working

View Layer that would allow me to have a tangible product early on the

development and also make the testing process easier.

 Domain Development:

The Domain is the core of the engine, so while developing the View Layer I also

started developing the different modules that composed it according to the vision

and the design previously decided for the project. When I had a working View

Layer I was able to quickly test any of the new features added to the Domain.

Development was a very iterative process and sometimes depended on the

deployment of demo builds that implemented new mechanics, which triggered

the need for new features or presented problems that needed to adapt some of

the modules.

 150

 Demo Development

While designing and implementing the Domain Layer, I also created several

demos that tested the features added. This way, whenever a new feature was

implemented I was able to see how it was being used from a user perspective and,

when playing with it on the device, to see it also as a player.

This section also implied finding, adapting and creating art for the game, which is

also one of the main contents of video game development.

 Documentation:

While developing the other sections, I also kept writing the documentation of the

project

Some of the sections were developed in parallel following an agile approach, but

this was the specific time dedicated to each one of them:

Sections Hours

Vision and Setup 25

Cocos2d-x Learning 60

View Development 120

Domain Development 340

Demo Development 155

Documentation 90

Total 790

The project development took place from January 2014 up to the ends of October

2014. Below we have the Gantt chart for the development:

151

Figure 100: Gantt chart of the project development

151

7.2 Costs

Once we know what was the job performed during the development of the

project, we can make an evaluation of its costs. For this, we must count both the

human resources and the tools employed:

7.2.1 Human Resources

With the exception of the Demo Development, all other sections were performed

as an engineer, but for this last, there was also a big workload in making and

adapting the art to the demos and designing the features. For this reason, I will

consider that a third of the time employed on this section was spent in the role of

game designer (51 hours).

I have considered that the salary per hour of an engineer is of 30 €, and for a

junior game designer of 20 €.

Taking this into account we have the following costs:

Sections Hours Cost/Hour Cost

Vision and Setup 25 30 750 €

Cocos2d-x Learning 60 30 1,800 €

View Development 120 30 3,600 €

Domain Development 340 30 10,200 €

Demo Development (Engineer) 104 30 3,120 €

Demo Development (Designer) 51 20 1,020 €

Documentation 90 30 2,700 €

Total 23,190 €

 153

7.2.2 Tools

The following tools and materials haven been used through the development:

Tools Cost

Work Station (iMac 27’’) 1,384 €

iOS Testing Device (iPad mini) 349 €

Android Testing Device (Xiaomi 2s) 219 €

Apple Developer Certificate (1 year) 80 €

Total 3,032 €

However, since the development of the project has taken 11 months, we will take

into account the amortizations for one year of development:

 The Work Station has a service life of 5 years, this gives a cost of 276.8 €

for one year.

 An iPad also has a service life of 5 years, which gives us a cost of 69.8 € for

one year.

 A Xiaomi 2s device has a service life of around 3 years (taking into account

statistical data on android mobile devices), this gives a cost of 73 € for one

year.

Taking this into account we have the following costs:

Materials Cost

Work Station (iMac 27’’) 276.8 €

iOS Testing Device (iPad mini) 69.8 €

Android Testing Device (Xiaomi 2s) 73 €

Apple Developer Certificate (1 year) 80 €

Total 499.6 €

 154

With this, we have that the final cost of the project would result from the addition

of the human resources cost plus the cost of the tools and resources, which makes

a total cost of 23,190 € + 499.6 € = 23,689 €, which considering that the project

was developed during 11 months, gives us a cost of 2,153 € per month.

7.3 Development with the Engine

When using the engine, a developer frees himself from most of the programming

job related to the creation of the video game.

For this reason, we can consider that the job directly related to coding would be

almost negligible in most cases, taking just a matter of weeks to fully program the

necessary callbacks and configurations. However, we should add a prior period of

time for familiarization with the tools that the engine provides.

By using the engine, most of the workload for the development of a game

belonging to the genre would lie in the design and art, making it much easier to

develop them in shorter periods of time and hence reducing their cost.

 155

8. CONCLUSION

With the development of this project I have learned the main difficulties that

come with the development of a game engine, which is not just a program, but a

tool that must deliver a friendly and simple environment for its users and, at the

same time, give them the possibility of skipping the boundaries of the established

so that they can focus on improving the contents and innovating.

In order to do this, it is primordial to set a balance between those parts that are

totally controlled by the engine and those that are up to the users to configure in

their own way.

With this in mind, I have been forced to think in terms of usability and adaptation,

looking for the best programming practices and adopting the most adequate

programming patterns to fulfill the goals. By doing this, my knowledge over

software design has substantially increased and with it, I have discovered many

new possibilities that the C++ language offers to achieve different goals.

Cocos2d-x has allowed me to directly provide the user with a great API for

handling the graphics, sounds and animations of the elements in the game. With it,

users can configure the visuals of all the elements and establish their animations

and sound effects in association to the action they are performing.

In addition, the engine is totally portable between the different target platforms

and I have been able to play games developed with it without any notable

difference in Android, iOS, Windows and Mac, and it is also compatible with Linux.

Since Cocos2d-x is an always expanding and updating framework, I have always

been using the latest version available on their website, updating any time a new

version was released.

Although the global experience of working with Cocos2d-x has been very positive,

one of the main problems of the framework is its lack of stable documentation

that is maintained and updated at the same speed as the source code. This

problem is partially attenuated by a very active community of developers, who

share their ideas and code on the platform forums, often helping with any

problems and questions other users may have.

 156

I started the project using Cocos2d-x.2.2, which at the time was the latest revision,

and have ended up using Cocos2d-x.3.2. Although 2.x versions offered

compatibility with Blackberry and Marmalade, the newest ones do not. I have

used some of the new features of 3.x, but it would be pretty easy to adapt the

engine back to these older versions to enable this compatibility. But once again

these were not the target platforms and I did not have the means to test the

engine on them.

Strategy2D offers an adaptable framework that can be configured to reproduce

almost any kind of game pertaining to the turn-based strategy genre with around

400 public functions distributed over the 26 different modules that compose the

engine, in addition to all of the Cocos2d-x framework functions.

It is very easy and fast to develop a normal strategy game but, at the same time, it

allows the user to go deeper into the development and adapt the callbacks to

develop a more complex type of game.

8.1 Work for the future

While the project has fulfilled all the goals of the project, there are parts of it that

could be improved or changed in order to offer the user a much more intuitive

and user friendly layout.

Another important enhancement would be to provide the users with more control

schemes and offer them the means to configure them, since by now there is only

one game flow that establishes a preset of interactions between the user and the

device.

Although the engine gives the users total control over the callbacks, it would also

be a nice improvement to offer a wide range of presets that would make this

configuration much easier.

Despite the project was established as the development of an engine for turn-

based games, it would also be possible to adapt it to a real-time gameplay without

having to make any change into its core and by just making some adjustments

into the control schemes and how the AI is handled.

 157

It would also be a good idea to adapt the engine in order to support 3d graphics.

With cocos2d-x now starting to feature 3d assets, an adaptation to them would be

pretty simple. Another option would be to port it into a different development

framework more centered on three-dimensional graphics. Either way, this could

be achieved by changing only the View Layer of the engine, and not have any

major effects on its core.

Finally, another possibility would be the adaptation of the engine in order to run

real-time strategy games as well as turn-based, this would only require small

changes in how the turns are handled and in the control scheme for the player.

 158

9. Bibliography

‘The rebirth of turn-based strategy games’, CNN

http://edition.cnn.com/2012/07/23/tech/gaming-gadgets/rebirth-turn-based-

strategy-games/

Game Engine, Wikipedia

http://en.wikipedia.org/wiki/Game_engine

Quake Engine, Wikipedia

http://en.wikipedia.org/wiki/Quake_engine

Unreal Engine, Wikipedia

http://en.wikipedia.org/wiki/Unreal_Engine

SCUMM, Wikipedia

http://en.wikipedia.org/wiki/SCUMM

Maniac Mansion, Wikipedia

http://en.wikipedia.org/wiki/Maniac_Mansion

Infinity Engine, Wikipedia

http://en.wikipedia.org/wiki/Infinity_Engine

Planescape Torment, Wikipedia

http://en.wikipedia.org/wiki/Planescape:_Torment

RPG Maker, Enterbrain

http://www.rpgmakerweb.com/

Unity3d, Unity Technologies

http://unity3d.com/

http://edition.cnn.com/2012/07/23/tech/gaming-gadgets/rebirth-turn-based-strategy-games/
http://edition.cnn.com/2012/07/23/tech/gaming-gadgets/rebirth-turn-based-strategy-games/
http://en.wikipedia.org/wiki/Game_engine
http://en.wikipedia.org/wiki/Quake_engine
http://en.wikipedia.org/wiki/Unreal_Engine
http://en.wikipedia.org/wiki/SCUMM
http://en.wikipedia.org/wiki/Maniac_Mansion
http://en.wikipedia.org/wiki/Infinity_Engine
http://en.wikipedia.org/wiki/Planescape:_Torment
http://www.rpgmakerweb.com/
http://unity3d.com/

 159

Unreal Engine 4, Epic Games

https://www.unrealengine.com/

CryEngine, Crytek

http://www.crytek.com/cryengine

Corona SDK, Corona Labs

http://coronalabs.com/products/corona-sdk/

List of Game Engines, Wikipedia

http://en.wikipedia.org/wiki/List_of_game_engines

Turn-based Strategy, Wikipedia

http://en.wikipedia.org/wiki/Turn-based_strategy

Wargaming, Wikipedia

http://en.wikipedia.org/wiki/Wargaming

Turn-based Tactics, Wikipedia

http://en.wikipedia.org/wiki/Turn-based_tactics

Advance Wars, Wikipedia

http://en.wikipedia.org/wiki/Advance_Wars

Tactical Role-Playing Game, Wikipedia

http://en.wikipedia.org/wiki/Tactical_role-playing_game

Fire Emblem, Wikipedia

http://en.wikipedia.org/wiki/Fire_Emblem

Tactics Ogre, Wikipedia

http://en.wikipedia.org/wiki/Tactics_Ogre:_Let_Us_Cling_Together

https://www.unrealengine.com/
http://www.crytek.com/cryengine
http://coronalabs.com/products/corona-sdk/
http://en.wikipedia.org/wiki/List_of_game_engines
http://en.wikipedia.org/wiki/Turn-based_strategy
http://en.wikipedia.org/wiki/Wargaming
http://en.wikipedia.org/wiki/Turn-based_tactics
http://en.wikipedia.org/wiki/Advance_Wars
http://en.wikipedia.org/wiki/Tactical_role-playing_game
http://en.wikipedia.org/wiki/Fire_Emblem
http://en.wikipedia.org/wiki/Tactics_Ogre:_Let_Us_Cling_Together

 160

Wasteland 2, Wikipedia

http://en.wikipedia.org/wiki/Wasteland_2

X-COM Series, Wikipedia

http://en.wikipedia.org/wiki/X-COM

Civilization Series, Wikipedia

http://en.wikipedia.org/wiki/Civilization_(series)

The best 2D Game Engines, Slant

http://www.slant.co/topics/341/~what-are-the-best-2d-game-engines

Amazon offered $600 million for Cocos2d-x, Pocket Gamer

http://www.pocketgamer.biz/asia/news/59204/amazon-offered-us-600-

million-for-cocos2d-x-says-chukong-ceo/

Cocos2d-x, Chukong Technologies

http://www.cocos2d-x.org/

Cocos2d-x Wiki, Chukong Technologies

http://www.cocos2d-x.org/wiki

OpenAL, Wikipedia

http://en.wikipedia.org/wiki/OpenAL

OpenAL, openal.org

http://www.openal.org/

OpenGL, Wikipedia

http://en.wikipedia.org/wiki/OpenGL

OpenGL, Khronos Group

https://www.opengl.org/

http://en.wikipedia.org/wiki/Wasteland_2
http://en.wikipedia.org/wiki/X-COM
http://en.wikipedia.org/wiki/Civilization_(series
http://www.slant.co/topics/341/~what-are-the-best-2d-game-engines
http://www.pocketgamer.biz/asia/news/59204/amazon-offered-us-600-million-for-cocos2d-x-says-chukong-ceo/
http://www.pocketgamer.biz/asia/news/59204/amazon-offered-us-600-million-for-cocos2d-x-says-chukong-ceo/
http://www.cocos2d-x.org/
http://www.cocos2d-x.org/wiki
http://en.wikipedia.org/wiki/OpenAL
http://www.openal.org/
http://en.wikipedia.org/wiki/OpenGL
https://www.opengl.org/

 161

OpenGL ES, Wikipedia

http://en.wikipedia.org/wiki/OpenGL_ES

OpenGL ES, Khronos Group

https://www.khronos.org/opengles/

Cocos2d-x Online API Reference, Chukong Technologies

http://www.cocos2d-x.org/reference/native-cpp/V3.3rc0/index.html

Stack Overflow

http://stackoverflow.com/

Alphat Blending, Wikipedia

http://en.wikipedia.org/wiki/Alpha_compositing

Dangling Pointer, Wikipedia

http://en.wikipedia.org/wiki/Dangling_pointer

Object Slicing in C++, GeeksForGeeks

http://www.geeksforgeeks.org/object-slicing-in-c/

Path Finding, Wikipedia

http://en.wikipedia.org/wiki/Pathfinding

Dijkstra’s Algorithm, Wikipedia

http://en.wikipedia.org/wiki/Dijkstra's_algorithm

Path Finding Demystified, Gabriel Gambetta

http://gabrielgambetta.com/path1.html

C++ FAQ, Bjarne Stroustrup

http://www.stroustrup.com/C++11FAQ.html

http://en.wikipedia.org/wiki/OpenGL_ES
https://www.khronos.org/opengles/
http://www.cocos2d-x.org/reference/native-cpp/V3.3rc0/index.html
http://stackoverflow.com/
http://en.wikipedia.org/wiki/Alpha_compositing
http://en.wikipedia.org/wiki/Dangling_pointer
http://www.geeksforgeeks.org/object-slicing-in-c/
http://en.wikipedia.org/wiki/Pathfinding
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://gabrielgambetta.com/path1.html
http://www.stroustrup.com/C++11FAQ.html

 162

The C++ Language (Fourth Edition), Bjarne Stroustrup

Addison-Wesley Professional (May 2013)

Game Engine Architecture, Jason Gregory

A K Peters / CRC Press (June 2009)

