<TITULACIÓ>
TREBALL DE FI DE DE GRAU

<T Tol del treball>
PROCEDIMIENTO DE RECICLAJE Y PUNTO VERDE
ARTICULO EN INGLES

Projectista/es: xiaohan yang
Director/s: Francesc de Paula Jordana i Riba
Convocatòria: 10/02/2013
Recycling

Reuse + Recycling = Waste Reduction
Index

1. Identification ...3
2. Origins ..4
3. Recycling consumer waste ...5
4. Recycling industrial waste ..7
 4.1 E-waste ..8
 4.2 Plastic recycling ..8
 4.3 Physical Recycling ...8
5. Recycling Construction and Demolition waste9
 5.1 Identification ...9
 5.2 Composition of the waste of construction and demolition..11
6. Process of construction recycling13
 6.1 Consideration ..13
 6.2 Process ...14
7. Construction waste reuse ..19
 7.1 Technical barriers ...20
 7.2 Logistical barriers ...20
 7.3 Cost ...21
 7.4 Reusing structural steel ..21
8. Reusing existing buildings (ejemplo)23
1. Identification:

Recycling is a process to change (waste) materials into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution (from incineration) and water pollution (from landfilling) by reducing the need for "conventional" waste disposal, and lower greenhouse gas emissions as compared to plastic production. Recycling is a key component of modern waste reduction and is the third component of the "Reduce, Reuse and Recycle" waste hierarchy.

There are some ISO standards related to recycling such as ISO 15270:2008 for plastics waste and ISO 14001:2004 for environmental management control of recycling practice.

Recyclable materials include many kinds of glass, paper, metal, plastic, textiles, and electronics. Although similar in effect, the composting or other reuse of biodegradable waste—such as food or garden waste—is considered recycling. Materials to be recycled are either brought to a collection center or picked up from the curbside, then sorted, cleaned, and reproessed into new materials bound for manufacturing.
In the strictest sense, recycling of a material would produce a fresh supply of the same material—e.g., used office paper would be converted into new office paper, or used foamed polystyrene into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (e.g., paperboard) instead. Another form of recycling is the salvage of certain materials from complex products, either due to their intrinsic value (e.g., lead from car batteries, or gold from computer components), or due to their hazardous nature (e.g., removal and reuse of mercury from various items). Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with virgin production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling. Proponents of recycling dispute each of these claims, and the validity of arguments from both sides has led to enduring controversy.

2. Origins (since 1914):

Recycling has been a common practice for most of human history, with recorded advocates as far back as Plato in 400 BC. During periods when resources were scarce, archaeological studies of ancient waste dumps show less household waste (such as ash, broken tools and pottery) implying more waste was being recycled in the absence of new material.

In pre-industrial times, there is evidence of scrap bronze and other metals being collected in Europe and melted down for perpetual reuse. In Britain dust and ash from wood and coal fires was collected by 'dustmen' and downcycled as a base material used in brick making. The main driver for these types of recycling was the economic advantage of obtaining recycled feedstock instead of acquiring virgin material, as well as a lack of public waste removal in ever more densely populated areas. In 1813, Benjamin Law developed the process of turning rags into 'shoddy' and 'mungo' wool in Batley, Yorkshire. This material combined recycled fibres with virgin wool. The West Yorkshire shoddy industry in towns such as Batley and Dewsbury, lasted from the early 19th century to at least 1914.
3. Recycling consumer waste (Way to recycling):

3.1. Collection

A three-sided bin at a railway station in Germany, intended to separate paper (left) and plastic wrappings (right) from other waste (back)

A number of different systems have been implemented to collect recyclates from the general waste stream. These systems lie along the spectrum of trade-off between public convenience and government ease and expense. The three main categories of collection are "drop-off centres," "buy-back centres," and "curbside collection".

3.2. Drop-off centres

Drop-off centres require the waste producer to carry the recyclates to a central location, either an installed or mobile collection station or the reprocessing plant itself. They are the easiest type of collection to establish, but suffer from low and unpredictable throughput.

3.3. Buy-back centres

Buy-back centres differ in that the cleaned recyclates are purchased, thus providing a clear incentive for use and creating a stable supply. The post-processed material can then be sold on, hopefully creating a profit. Unfortunately, government subsidies are necessary to make buy-back centres a viable enterprise, as according to the United States' National Waste & Recycling Association, it costs on average US$50 to process a ton of material, which can only be resold for US$30.

3.4. Curbside collection

Curbside collection encompasses many subtly different systems, which differ mostly on where in the process the recyclates are sorted and cleaned. The main categories are mixed waste collection, commingled recyclables and source separation. A waste collection vehicle generally picks up the waste. A recycling truck collecting the contents of a recycling bin in Canberra, Australia
3.5. Distributed Recycling

For some waste materials such as plastic, recent technical devices called recyclebots enable a form of distributed recycling. Preliminary life-cycle analysis (LCA) indicates that such distributed recycling of HDPE to make filament of 3-D printers in rural regions is energetically favorable to either using virgin resin or conventional recycling processes because of reductions in transportation energy.

3.6. Sorting

Early sorting of recyclable materials: glass and plastic bottles in Poland
A recycling point in New Byth, Scotland, with separate containers for paper, plastics and differently colored glass.

Once commingled recyclates are collected and delivered to a central collection facility, the different types of materials must be sorted. This is done in a series of stages, many of which involve automated processes such that a truckload of material can be fully sorted in less than an hour. Some plants can now sort the materials automatically, known as single-stream recycling. In plants a variety of materials are sorted such as paper, different types of plastics, glass, metals, food scraps, and most types of batteries. A 30 percent increase in recycling rates has been seen in the areas where these plants exist.

Initially, the commingled recyclates are removed from the collection vehicle and placed on a conveyor belt spread out in a single layer. Large pieces of corrugated fiberboard and plastic bags are removed by hand at this stage, as they can cause later machinery to jam.

Next, automated machinery separates the recyclates by weight, splitting lighter paper and plastic from heavier glass and metal. Cardboard is removed from the mixed paper, and the most common types of plastic, PET (#1) and HDPE (#2), are collected. This separation is usually done by hand, but has become automated in some sorting centers: a spectroscopic scanner is used to differentiate between different types of paper and plastic based on the absorbed wavelengths, and subsequently divert each material into the proper collection channel.

Strong magnets are used to separate out ferrous metals, such as iron, steel, and tin-plated steel cans ("tin cans"). Nonferrous metals are ejected by magnetic eddy currents in which a rotating magnetic field induces an electric current around the aluminium cans, which in turn creates a magnetic eddy current inside the cans. This magnetic eddy current is repulsed by a large magnetic field, and the cans are ejected from the rest of the recyclate stream.
4. Recycling industrial waste:

Although many government programs are concentrated on recycling at home, a large portion of waste is generated by industry. The focus of many recycling programs done by industry is the cost-effectiveness of recycling. The ubiquitous nature of cardboard packaging makes cardboard a commonly recycled waste product by companies that deal heavily in packaged goods, like retail stores, warehouses, and distributors of goods. Other industries deal in niche or specialized products, depending on the nature of the waste materials that are present.

The glass, lumber, wood pulp, and paper manufacturers all deal directly in commonly recycled materials. However, old rubber tires may be collected and recycled by independent tire dealers for a profit.

Levels of metals recycling are generally low. In 2010, the International Resource Panel, hosted by the United Nations Environment Programme (UNEP) published reports on metal stocks that exist within society and their recycling rates. The Panel reported that the increase in the use of metals during the 20th and into the 21st century has led to a substantial shift in metal stocks from below ground to use in applications within society above ground. For example, the in-use stock of copper in the USA grew from 73 to 238 kg per capita between 1932 and 1999.

The report authors observed that, as metals are inherently recyclable, the metals stocks in society can serve as huge mines above ground (the term "urban mining" has been coined with this idea in mind). However, they found that the recycling rates of many metals are very low. The report warned that the recycling rates of some rare metals used in applications such as mobile phones, battery packs for hybrid cars and fuel cells, are so low that unless future end-of-life recycling rates are dramatically stepped up these critical metals will become unavailable for use in modern technology.

Aerial photo of a ship recycling facility in Chittagong, Bangladesh

The military recycles some metals. The U.S. Navy’s Ship Disposal Program uses ship breaking to reclaim the steel of old vessels. Ships may also be sunk to create an artificial reef. Uranium is a very dense metal that has qualities superior to lead and titanium for many military and industrial uses. The uranium left over from processing it into nuclear weapons and fuel for nuclear reactors is called depleted uranium, and it is used by all branches of the U.S. military use for armour-piercing shells and shielding.
The construction industry may recycle concrete and old road surface pavement, selling their waste materials for profit.

Some industries, like the renewable energy industry and solar photovoltaic technology in particular, are being proactive in setting up recycling policies even before there is considerable volume to their waste streams, anticipating future demand during their rapid growth.

Recycling of plastics is more difficult, as most programs can't reach the necessary level of quality. Recycling of PVC often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material. A new approach which allows an equal level of quality is the Vinyloop process.

4.1 E-Waste

E-waste is a growing problem, accounting for 20-50 million metric tons of global waste per year according to the EPA. Many recyclers do not recycle e-waste or do not do so responsibly. The e-Stewards certification was created to ensure recyclers are held to the highest standards for environmental responsibility and to give consumers an easy way to identify responsible recyclers. e-Cycle, LLC, was the first mobile recycling company to be e-Stewards certified.

4.2 Plastic recycling

Plastic recycling is the process of recovering scrap or waste plastic and reprocessing the material into useful products, sometimes completely different in form from their original state. For instance, this could mean melting down soft drink bottles and then casting them as plastic chairs and tables.[24]

Physical Recycling

4.3 Physical Recycling

Some plastics are remelted to form new plastic objects, for example PET water bottles can be converted into clothing grade polyester. A disadvantage of this type of recycling is that in each use and recycling cycle the molecular weight of the polymer can change further and the levels of unwanted substances in the plastic can increase.
5 Recycling Construction and Demolition waste:

Construction waste consists of unwanted material produced directly or incidentally by the construction or industries. This includes building materials such as insulation, nails, electrical wiring, and rebar, as well as waste originating from site preparation such as dredging materials, tree stumps, and rubble. Construction waste may contain lead, asbestos, or other hazardous substances.

Much building waste is made up of materials such as bricks, concrete and wood damaged or unused for various reasons during construction. Observational research has shown that this can be as high as 10 to 15% of the materials that go into a building, a much higher percentage than the 2.5-5% usually assumed by quantity surveyors and the construction industry. Since considerable variability exists between construction sites, there is much opportunity for reducing this waste.

Certain components of construction waste such as plasterboard are hazardous once landfilled. Plasterboard is broken down in landfill conditions releasing hydrogen sulfide, a toxic gas.

There is the potential to recycle many elements of construction waste. Often roll-off containers are used to transport the waste. Rubble can be crushed and reused in construction projects. Waste wood can also be recovered and recycled.

Government or local authorities often make rules about how much waste should be sorted before it is hauled away to landfills or other waste treatment facilities. Some hazardous materials may not be moved, before the authorities have ascertained that safety guidelines and restrictions have been followed. Among their concerns would be the proper handling and disposal of such toxic elements as lead, asbestos or radioactive materials.
Demolition waste is waste debris from destruction of a building. The debris varies from insulation, electrical wiring, rebar, wood, concrete, and bricks. It also may contain lead, asbestos or different hazardous materials.

Certain components of demolition waste such as plasterboard are hazardous once landfilled. Plasterboard is broken down in landfill conditions releasing hydrogen sulfide.

There is the potential to recycle many elements of demolition waste. Often roll-off containers are used to transport the waste. Rubble can be crushed and reused in construction projects. Waste wood can also be recovered and recycled.

Government or local authorities often make rules about how much waste should be sorted before it is hauled away to landfills or other waste treatment facilities. Some hazardous materials may not be moved, or demolition begun, before the authorities have ascertained that safety guidelines and restrictions have been followed. Among their concerns would be the proper handling and disposal of such toxic elements as lead, asbestos or radioactive materials.

Three Construction & Demolition Waste Pathways
5.2 Composition of the waste of construction and demolition:

![Home Building Construction Waste](image)

- **By Weight:**
 - Wood: 42%
 - Drywall: 26%
 - Masonry: 11%
 - Other: 15%
 - Metal: 2%
 - Cardboard: 4%

- **By Volume:**
 - Wood: 24%
 - Cardboard: 38%
 - Drywall: 11%
 - Other: 22%
 - Masonry: 1%

![Average Composition of C&D](image)

- Wood: 27.4%
- Asphalt/Concrete/Brick/Dirt: 23.3%
- Drywall: 13.4%
- Roofing: 12%
- Metal: 8.8%
- Cardboard/Paper: 2.7%
- Plastics: 0.5%
- Miscellaneous: 11.9%
Composition of the waste of year 2010

National Average Rate 2000 - 2011 (USA):
6 Process of construction recycling

6.1 Consideration:

Most construction waste goes into landfills, increasing the burden on landfill loading and operation. Waste from sources such as solvents or chemically treated wood can result in soil and water pollution.

Some materials can be recycled directly into the same product for re-use. Others can be reconstituted into other usable products. Unfortunately, recycling that requires reprocessing is not usually economically feasible unless a facility using recycled resources is located near the material source. Many construction waste materials that are still usable can be donated to non-profit organizations. This keeps the material out of the landfill and supports a good cause.

The most important step for recycling of construction waste is on-site separation. Initially, this will take some extra effort and training of construction personnel. Once separation habits are established, on-site separation can be done at little or no additional cost.

The initial step in a construction waste reduction strategy is good planning. Design should be based on standard sizes and materials should be ordered accurately. Additionally, using high quality materials such as engineered products reduces rejects. This approach can reduce the amount of material needing to be recycled and bolster profitability and economy for the builder and customer.
Technology:

Technology is quickly developing for recycling of materials into reconstituted building materials. (See sections on reconstituted materials.) However, few new technologies are available locally. Recycling of many waste materials that can be reused requires only some additional effort and coordination with a salvage company or non-profit organization.

Supplies:

There are salvage companies and non-profit organizations in the Austin area that can recycle some of the construction waste generated on site.

Cost:

There is some additional cost involved in recycling construction material waste until an established procedure is developed. Cost savings can be realized with donations to non-profit organizations that specialize in construction waste recycling resulting in tax deductions. Cost savings are also realized through the efficient design and use of materials minimizing waste. However, transportation costs and the lack of local companies using recycled resources make recycling of many materials that are not directly reusable too expensive to be feasible at the present time.

6.2 Process

6.2.1. What to Recycle

Before recycling construction waste, identify who will accept it. This is important in designating type of waste to separate, and in making arrangements for drop-off or delivery of materials. In Austin, materials that can be recycled include:

- Appliances and fixtures
- Brush and Trees
- Cardboard and Paper
- Lumber and Plywood (in reusable form)
- Masonry (in reusable form or as fill)
- Metals
- Plastics – numbered containers, bags and sheeting
- Roofing (in reusable form)
- Windows and Doors
6.2.2 Materials Separation

Containers for material recycling must be set up on site and clearly labeled. Construction personnel must be trained in material sorting policy, and bins must be monitored periodically to prevent waste mixing as a result of crews or passersby throwing trash into the bins.

Some materials will require bins or storage that protect from rain. Other bins may be locked to prevent tampering.

6.2.3 Recycling and Waste Minimization Guidelines

(The following information is adapted from the Environmental Building News, Nov/Dec 1992)

6.2.3.1 Lumber

Optimize building dimensions to correspond to standard lumber dimensions. Modify framing details to optimize lumber use and reduce waste and inform framing contractor of your plan. Develop detailed framing layouts to avoid waste when ordering lumber. Store lumber on level blocking under cover to minimize warping, twisting and waste.

Set aside lumber and plywood/OSB cut-offs that can be used later as fire blocking, spacers in header construction, etc. In remodeling, evaluate whether salvaging used lumber is possible. Save small wood scraps to use as kindling for clients or crew members (no treated wood).

Larger pieces of leftover lumber (6’ or more in length) can be donated to Habitat for Humanity.

Save clean sawdust for use in compost piles or around gardens. Avoid sawdust that might contain painted or treated wood. This should be bagged separately. Untreated bagged sawdust may be donated to Austin Community Gardens.
6.2.3.2 Drywall

Order drywall in optimal dimensions to minimize cut-off waste. Drywall is available in different lengths, and designed dimensions should correspond to standard sizes.

Large drywall scraps can be set aside during hanging for use as filler pieces in areas such as closets.

Technology exists, although it is not available in Austin at this time, for recycling drywall into textured wall sprays, acoustical coatings, gypsum stucco, fire barriers, or agricultural products. Large pieces of drywall (full to half sheets) can be donated to Habitat for Humanity

Reuse joint compound buckets for tool or material storage by clients or crews.

6.2.3.3 Masonry

Estimate masonry material needs carefully to avoid waste. During construction, collect, stack and cover brick and other masonry materials to prevent soiling or loss.

Salvage usable bricks, blocks, slate shingles, tile and other masonry materials from remodeling and construction. Store for future jobs or divert to salvage operations.

Check to see if your masonry supplier will accept the return of materials in good condition. Clean concrete chunks, old brick, broken blocks, and other masonry rubble can be buried on-site during foundation back-filling.

Good quality used concrete (also known as urbanite) can also be used as brick or block for landscaping walls and foundations for small buildings.

Garden wall made from urbanite (recycled concrete)

Garden wall made from urbanite (recycled concrete), courtesy of Ray Cirino
6.2.3.4 Metals and Appliances

During remodeling, separate metal radiators, grates, piping, aluminum siding, and old appliances for salvage or recycling. Consider a front yard sale of usable items during the construction process.

During construction, separate metals for recycling, including copper piping, wire and flashing; aluminum siding, flashing and guttering; iron and steel banding from bundles, nails and fasteners, galvanized flashing and roofing, and rebar; and lead chimney flashing. It is critical to keep lead out of landfills because it could leach into groundwater.

The Ecology Action Diversion Center at the city landfill will accept all metals and appliances.

6.2.3.5 Cardboard and Paper

Avoid excessively packaged materials and supplies. However, be sure packaging is adequate to prevent damage and waste; separate cardboard waste, bundle, and store in a dry place. Recycle through Ecology Action; minimize the number of blueprints and reproductions necessary during the design and construction process.

6.2.3.6 Insulation

Install left-over insulation in interior wall cavities or on top of installed attic insulation if it can not be used on another job.

6.2.3.7 Asphalt Roofing

Left over bundled shingles can be donated; technology exists, although it is not available in Austin at this time, to recycle asphalt roofing into road paving or patching material.
6.2.3.8 Plastic and Vinyl

Minimize waste of vinyl siding, flooring and countertop materials by ordering only quantity needed; trash bags and plastic sheeting can be recycled through Ecology Action.

6.2.3.9 Paints, Stains, Solvents and Sealants

Donate unused portions to Habitat for Humanity ReStore. They accept any quantity of white latex paint and full gallons of other paints.

Save unused portions for your next job; any other unused materials should be taken to a hazardous waste collection facility. (Note that the City of Austin operates a household hazardous waste collection facility.)

6.2.3.10 Miscellaneous

Branches and trees from brush clearing can be stored separately and chipped at the city’s landfill facility, or a chipper can be used on site to create landscaping mulch.

Old nickel cadmium batteries from portable power tools should be disposed of at a hazardous waste collection facility.

Cabinets, light fixtures, bathtubs, sinks, mortar mix, hardware, nails, screws and plumbing fittings and supplies are all accepted by Habitat for Humanity.
7. Construction waste reuse:

As distinct from recycling, reuse of construction products involves their reuse with little or no reprocessing. Reuse offers even greater environmental advantage than recycling since there is no (or few) environmental impacts associated reprocessing. For example, reusing a steel beam in its existing form is better than remelting it and rolling a new steel beam, i.e. the energy used to remelt the beam is saved.

As with recycling, some construction products and systems are more amenable to reuse than others and therefore designers should be encouraged to think about not only how their buildings can be easily and effectively constructed but also how they can be efficiently deconstructed. This is a new discipline for most designers.

Although complete buildings and different elements of steel buildings can be reused, here we focus on structural building elements.

Already some industries such as the agricultural sector (where aesthetics are generally of less concern than other sectors) commonly reuse steel structures and cladding components. In addition, salvage of construction materials has been undertaken for many years albeit it a relatively small and specialist scale. Common categories of salvaged construction products include:
Architectural salvage
Cobbles, slates, flagstones
Bricks
Reclaimed timber
Reclaimed flooring
Structural steel
Steel portal frames
Railway sleepers.

Sourcing reclaimed construction products has been enhanced via the use of the internet and the ability to easily search for specific products.

A case study showcasing the reuse of steel at the Honda central receiving building can be accessed here.

7.1 Technical barriers:

Lack of standardization of components
- Ensuring and warranting the performance of reused components
- Lack of detailed knowledge of the product’s properties and in-use history (this may be important, for example, if the component has been subject to fatigue loading)
- Quality assurance of reused products
- Robustness of products in the deconstruction process, i.e. many lighter products do not survive the deconstruction process intact
- Practicalities of economic deconstruction including deconstructing composite components

7.2 Logistical barriers:

- Assured availability of supply
- Demolition programmes are too short to enable contractors to deconstruct buildings
- Sufficient storage space for recovered product
- Deconstruction as opposed to demolition has significant impacts on the health and safety precautions required
7.3 Cost:

- Lack of commercial drivers for reuse
 Cost of storage, cataloguing, refurbished products, etc.
- Cost of testing to verify and guarantee properties
 Client expectation that ‘second-hand’ products should be cheaper than new ones
- Additional cost of deconstruction over (faster) demolition (as opposed to demolition which is generally undertaken using remote machinery)

7.4 Reusing structural steel:

Steel buildings and steel construction products are highly and intrinsically demountable. This potential is illustrated by the large number of temporary works systems that use steel components, e.g. scaffolding, formwork, sheet piles, etc. Provided that attention is paid to eventual deconstruction at the design stage, there is no reason why nearly all of the steel building stock should not be regarded as a vast ‘warehouse of parts’ for future use in new applications.

Steel can be reused at both the product and the building level. Already some industries, such as the agricultural sector, commonly reuse steel structures and cladding components.

Many steel construction products and components are highly re-usable including:

- Piles (sheet and bearing piles)
- Structural members including hollow sections
- Light gauge product such as purlins and rails.

The process is straightforward; for example, deconstructed sections are inspected to verify their dimensional properties; tested to confirm their strength properties and the section is then shot or sand blasted to remove any coatings and refabricated and primed to the requirements of the new project. This will usually involve cutting the ends of the beams and columns to the required length.
There is, however, significant scope for increasing reuse of steel construction products and work is underway within the sector to promote and facilitate this. The proportion of recovered products that are reused will increase as design for deconstruction is better understood and a stronger market for reusable steel construction products is stimulated. The ability of the steel construction sector to facilitate these advantageous processes has been enhanced by the standardisation of components and connections.

At the building systems level, modular construction offer the greatest opportunities for reuse. Modules or pods can be deconstructed from the building and refurbished and reused on the same or an alternative building.

At a much larger scale, complete steel buildings can be reused. An example is the British Pavilion at the Seville Expo in 1993. This innovative, energy efficient steel building was designed to be reused after the Expo.

Research carried out by the Steel Construction Institute has estimated that there is around 100 million tonnes of steel in buildings and infrastructure in the UK. This ‘stock’ of steel is an important and valuable material reuse that will be reclaimed and either reused or recycled in the future.

![Reuse of the steel](image-url)
8. Reusing existing buildings (ejemplo)

The Ningbo Museum

The museum is designed by architect Wang Shu, who in 2012 won the Pritzker Architecture Prize. The concept of museum design is a combination of mountain, water and ocean, as the East China Sea has played an important role in the history of Ningbo. Features of Jiangnan residences are integrated into the museum design by decorations made from old tiles and bamboo. Ningbo Museum won the Lu Ban Prize in 2009, the top architecture prize in China.

The outer wall decoration of Ningbo Museum is made in two ways. Some walls are decorated by millions of tiles collected in local areas. This sort of decoration itself was a common way of building an economical house in old days in Ningbo when cements are not introduced. Other walls are decorated with cement-covered bamboos. It is reported that Ningbo Museum was the first museum built with large number of used materials. Ningbo Tengtou Pavilion in Shanghai World Expo also employed the similar decoration.
adam kalkin created this shipping container that opens up into an entire house. the structure is operated with a hydraulic system, that transforms from a rectangular shipping container to a full apartment at the touch of a button. the open structure contains six rooms spread across the container’s floor and walls.

on one wall there is a double bed and bathroom complete with a full size bathtub. in the middle, there is a kitchenette and dinning table complete with a chandelier overhead. to complete the home, the doors of the container are lined with a library full of books. on the other wall there is a living area with a sofa and side tables. the home was originally exhibited at art basel miami in 2005. the home, clearly demonstrates how the technologies of wider industry can be used to create dynamic architectural conceits.
IT PAYS TO RECYCLE

Help your organization. Help the environment. When you drop off your recyclable paper in a Paper Retriever bin, your organization gets paid. These funds can then be used for many great things like new playground equipment, library books, field trips, teacher training programs and much more. The Paper Retriever program is fun and easy. Just look for the green and yellow bin and put your paper in!