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Abstract 

In this thesis, a Query by Singing/Humming (QbSH) system has been developed. A 
QbSH system tries to retrieve information of a song given a melody recorded by the user. 

The system compares human queries with melodies extracted from audio files. A pitch 
extraction algorithm has been used to obtain the melodies for both queries and database 
songs. The preprocessing of the signals turned out to be crucial, and has been deeply 
studied. The matching step used Dynamic Time Warping, which computes a distance 
between two signals absorbing tempo variations. Several databases have been built to 
assess the system. Finally, a complete Graphic User Interface has been programmed to 
allow the user to analyze the system step by step. 

In the end, this thesis contains a thorough experience through the creation of the system 
which, obtaining competitive results, provides a solid basis for further development. 
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Resum 

En aquesta tesi s’ha desenvolupat un sistema de Query by Singing/Humming (QbSH). 
Aquests sistemes tracten de recuperar informació d’una cançó donada una melodia 
gravada per l’usuari. 

El sistema compara gravacions humanes amb melodies extretes d’arxius d’àudio. S’ha 
fet servir un algoritme d’extracció del pitch per obtindre les melodies de la gravació i de 
les cançons de la base de dades. El preprocessat dels senyals ha resultat ser crucial, i 
ha estat estudiat en profunditat. Per la classificació s’ha utilitzat Dynamic Time Warping, 
que calcula la distància entre dos senyals absorbint variacions temporals. Diverses 
bases de dades s’han construït per avaluar el sistema. Finalment, s’ha programat una 
completa interfície gràfica per permetre a l’usuari analitzar el sistema pas per pas. 

Així, aquesta tesi conté una experiència completa de la creació del sistema que, obtenint 
resultats competitius, proporciona una base sòlida per futurs desenvolupaments. 
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Resumen 

En esta tesis se ha desarrollado un sistema de Query by Singing/Humming (QbSH). 
Estos sistemas tratan de recuperar información de una canción dada una melodía 
grabada por el usuario. 

El sistema compara grabaciones humanas con melodías extraídas de archivos de audio. 
Se ha utilizado un algoritmo de extracción del pitch para obtener las melodías de la 
grabación y de las canciones de la base de datos. El preprocesado de las señales ha 
resultado ser crucial, y ha sido estudiado en profundidad. Para la clasificación se ha 
utilizado Dynamic Time Warping, que calcula la distancia entre dos señales absorbiendo 
variaciones temporales. Diversas bases de datos se han construido para evaluar el 
sistema. Finalmente, se ha programado una completa interfaz gráfica para permitir al 
usuario analizar el sistema paso por paso. 

Así, esta tesis contiene una experiencia completa de la creación del sistema que, 
obteniendo resultados competitivos, proporciona una base sólida para futuros desarrollos. 
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1. Introduction 

 

The situation of someone having a melody on his or her mind and not being able to find 
which song it belongs to is, for sure, familiar for everyone. In this thesis, the wide problem 
of building a complete Query by Singing/Humming (QbSH) system has been dealt with.  

This project has been developed during 5 months. Given the scope of the project, and 

since it is a final thesis, a complete previous scheduling has been vital. 

In following sections, a thorough planning of the whole work is detailed. 

 

1.1. Statement of purpose 

 

The project is carried out at the Departament de Teoria del Senyal i Comunicacions 

(TSC) at the Universitat Politècnica de Catalunya (UPC) in Barcelona, Spain. 

The purpose of this project is to experiment with different techniques in the field of the 

Music Information Retrieval (MIR) and to build a complete functional prototype of a Query 

by Singing/Humming system. 

The project main goals are: 

1.  Studying different methods used in a Music Information Retrieval (MIR) 

application. 

2. Learning about the different state-of-the-art techniques for a Query by 

Singing/Humming system. 

 3.  Building a complete functional Query by Singing/Humming prototype. 

4. Experimenting with new options for a Query by Singing/Humming system. 

Proposing new techniques to improve the performance of the baseline system. 

5. Compiling a database and building an experimental framework to assess the 

different proposals and for further research. 

 

1.2. Requirements and specifications 

 

System requirements: 

-   The software should retrieve a list with the most similar songs, given a query (in           

this case, a short segment of a hummed or sung musical piece). 

-   The performance and behavior of the system should be good, in general terms. 

-   The software should run normally and smoothly. 
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-   The software should give room for innovation and further improvements. 

-   The project should provide a developed framework for future research. 

 

System specifications: 

-   The MRR (weighted recognition rate) should be in the range of the state-of-the-

art methods (50-70%). 

-   The system should be able to retrieve the results list within 15 seconds for a mid-

size database. 

-   The database should contain a large number of songs (over 200). 

 

1.3. Methods and procedures 

 

This thesis develops a project from its beginning, pretending to be usable for future 

research by providing a baseline system and a Graphic User Interface as a tool to 

analyze the behaviour of the system. 

The main software used for the development is Matlab R2011b. However, an external 

algorithm (Salamon & Gómez, 2012) has been used in the pitch extraction step. This 

algorithm is further explained in the third chapter of this thesis. Therefore, and taking into 

account that the algorithm is available as a VAMP plug-in, an external software, Sonic 

Annotator (Cannam, O. Jewell, Rhodes, Sandler, & d'Inverno, 2010), has been needed to 

use the plug-in. 

 

1.4. Workplan and Gantt diagram 

 

Work Packages: 

 

Project: Query by Humming WP ref: 1 

Major constituent: study of the topic Sheet 1 of 1 

Short description: initial study of the main state-of-the-art 

techniques applied in the Query by Humming tasks. 

 

 

 

 

Planned start date: 

01/02/2014 

Planned end date:18/02/2014 

Start event: T1 

End event: T2 
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Internal task T1: information gathering. 

 

Internal task T2: reading and definition of the project. 

Deliverables: 

Oral report, 

summary of 

the main 

methods. 

Dates: 

Weekly 

 

 

Project: Query by Humming WP ref: 2 

Major constituent: baseline system Sheet 1 of 1 

Short description: creation of a baseline functional 

system. 

 

 

 

 

 

Planned start date: 

18/02/2014 

Planned end date: 

21/05/2014 

Start event: T1 

End event: T4 

Internal task T1: feature extraction. Obtainment of the 

pitch sequences. 

 

Internal task T2: classification. Distances among the 

query and the templates of each song in the database. 

 

Internal task T3: integration. Construction of a thorough 

system in the Matlab environment. 

 

Internal task T4: evaluation. Database, metrics and 

results. Study of the current legal framework for the 

database creation. 

 

Deliverables: 

Oral reports, 

written draft. 

Dates: 

Weekly, May 

21st. 
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Project: Query by Humming WP ref: 3 

Major constituent: enhancement Sheet 1 of 1 

Short description: improvements of the system and 

Graphic User Interface. 

 

 

 

 

Planned start date: 

22/05/2014 

Planned end date: 

20/06/2014 

Start event: T1 

End event: T3 

Internal task T1: technical improvements. 

 

Internal task T2: evaluation and database improvements. 

Testing alternative options. 

 

Internal task T3: Graphic User Interface. Creation of a 

user-friendly environment as a showcase of the 

developed technology. 

 

Deliverables: 

Oral reports, 

written draft. 

Dates: 

Weekly, June 

20th. 

 

Project: Query by Humming WP ref: 4 

Major constituent: documentation Sheet 1 of 1 

Short description: writing and correction of every 

document to be delivered. 

 

 

 

 

Planned start date: 

05/03/2014 

Planned end date: 11/07/2014 

Start event: T1 

End event: T3 

Internal task T1: Project proposal and Work Packages. 

 

Internal task T2: Project Critical Review. 

 

Internal task T3: Final Report. 

 

Deliverables: 

Proposal, 

PCR, FR 

Dates: 

March 14th 

(Proposal), 

April 30th 

(PCR), July 

11th (FR). 
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Milestones: 

 

WP# Task# Short title Milestone / 

deliverable 

Date (week) 

1 T1,T2 Definition of the project 28/02/2014 4 

2 T1,T2,T3 Baseline system 15/04/2014 15 

2,3 T4(2),T2(3) Database and evaluation 30/05/2014 17 

3 T1,T2 Improvements 20/06/2014 20 

3 T3 Graphic User Interface 10/06/2014 19 

4 T1 Project Proposal 14/03/2014 6 

4 T2 PCR 30/04/2014 13 

4 T3 FR 11/07/2014 23 

Table 1: Project milestones 

 

Updated time plan (Gantt Diagram): 

 

 

 

Figure 1: Tasks and Gantt Diagram 
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1.5. Incidences 

 

Some changes have been made from the initial planning. The improvements have been 

mainly focused in building a more practical interface instead of testing a higher number of 

possible preprocessing filters (which is already very high). 

Such a change is due to a delay in the preprocessing and matching stages. The output of 

the pitch extraction algorithm required more processing than expected in order to be 

suitable for the matching step. This overlapped the baseline system and enhancements 

work packages and reduced the time for improvements. However, the user interface has 

been added more functionalities, and alternative tests, such as query vs. query, have 

been executed as well.  

 

2. State of the art of Query by Singing/Humming systems 

 

As QbSH is a quite recent topic with no universally accepted solution, the proposed 

solutions vary drastically. The general idea is to extract features of the user query, and 

match them with the reference signals of the song database. Different approaches are 

proposed for reference signals, feature extraction, matching, and even assessment of the 

system. 

In this section, most methods applied in these steps are reviewed. 

 

2.1. Reference signals 

 

When developing a QbSH system, the first big decision to be made is the choice of the 

reference signals, that is to say, the signals from which the database is built. Namely 

audio files, MIDI files or queries can be used to form the database of the system. 

 

2.1.1. Audio files 

 

Audio files are the typical music files that almost everyone these days has on his or her 

computer, smartphone, music player or other electronic devices. These files contain 

audio signals, the real music codified digitally. There are many different audio file 

extensions depending on the compression, the quality, etc. 

When using these files, the melody is extracted from the raw mix of musical instruments 

that we find in every typical song. Therefore, the melody extraction process comes out as 

a tough task, since every musical instrument or sound in the song is mixed in the 

frequency spectrum with the main melody, hindering the identification of the latter. 

However, obtaining this kind of files is completely automatic, allowing the database to 

grow easier and faster, unlike the MIDI files. 
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Many works with audio files have been done, some of them being (Phiwma & 

Sanguansat, 2010), (Ito, Kosugi, Makino, & Ito, 2010), (Jain, Jain, Patil, & Basu, 2011), 

(Song, Park, Yang, Jang, & Lee, 2013), (Jang, Song, Shin, Park, Jang, & Lee, 2011), 

(Rocamora, Cancela, & Pardo, 2013) and (Salamon, Serrà, & Gómez, 2013). 

 

2.1.2. MIDI 

 

MIDI (Musical Instrument Digital Interface) is a standard protocol of music description and 

communication which is widely used by most electronic musical instruments and 

computers. 

With MIDI protocol, each musical feature of a note (value, duration, tone, effects...) is 

represented with numbers. Therefore, MIDI files do not contain an audio signal, but 

contain digital information to be able to reproduce each note instead. 

Inside a MIDI file, information of the different musical instruments is stored in separated 

tracks. As a consequence, the main melody (generally the vocal part) is contained in just 

one track. When used in a QbSH system, the goal is to identify the MIDI track containing 

the main melody, and then extract it. 

The predominant representations of songs are studio or live recordings, and MIDI files 

cannot be automatically derived from audio files. Manual human work is required to 

create a MIDI file, that is to say, somebody has to transcribe the music into MIDI. 

Therefore, the biggest limitation for MIDI is that the process is not automatic at all; the 

first step for the database creation requires a big human effort.  

Most research is based on databases built over MIDI files, such as (Antonelli, Rizzi, & del 

Vescovo, 2010), (Li, Han, Shi, & Li, 2010), (Tsai & Tu, An Efficient Query-by-

Singing/Humming System Based on Fast Fourier Transforms of Note Sequences, 2012), 

(Song, Park, Yang, Jang, & Lee, 2013), (Guo, Wang, Yin, Liu, & Guo, 2012), (Dong & Qi, 

2010), (Kotsifakos, Papapetrou, Hollmén, Gunopulos, Athitsos, & Kollios, 2012), (Guo, 

Wang, Liu, & Guo, 2013) and (Tsai, Tu, & Ma, 2012). 

 

2.1.3. Queries 

 

Finally, short recordings sung by different people can be used to form the database. The 

variety of singers can strengthen the reliability of the database. Moreover, the melody 

extraction process is the same both in the database creation step and in the comparison 

with the query step.  

On the other hand, building a good database would require plenty of recordings. As hiring 

some users to sing every song in the database several times seems unfeasible, the idea 

with this method would be to train the database with the recordings coming from every 

user of the system. For instance, the system would implicitly validate whether the results 

presented to the user are correct or not, and then the query would be used to train the 

database. 
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Most research is focused on systems using MIDI or audio files, but some commercial 

systems using queries as databases are available, as Midomi1. 

 

2.2. Feature extraction 

 

The feature extraction step is also very important for a QbSH system. Although most 

systems use the pitch sequence as the main feature, there are several proposals using 

different features. However, most features are based on the same principle: the evolution 

of the signal on the frequency domain. 

 

2.2.1. Fundamental frequency and pitch 

 

The fundamental frequency (often noted as f0) is defined as the greatest common divisor 

of the harmonics in a particular segment of a signal, that is, in its spectrum. Nevertheless, 

a more perceptual feature is used in the vast majority of QbSH systems: the pitch 

sequence. 

The aim is to find the frequency representation of the main melody of a song. In other 

words, the main melody is represented as the evolution of a single frequency value, 

which could be easily identified with the song if heard. 

This feature could be said to be the physical representation of the melody of the song. 

However, the melody extraction process done with typical pitch extraction algorithms is 

not a simple step. Its reliability depends a lot on the type of signal being used, and there 

is still a lot of research to be done on this step. 

Most pitch extraction algorithms are based on harmonics searching and weighting, and 

use some complex techniques on the process. 

Usually, a logarithmic scale is used to represent the sequence due to the relationship 

among the musical notes and the physical frequency values. This is the same scale used 

in the MIDI note sequence (see next point). 

 

2.2.2. MIDI note sequence 

 

A track containing the main melody in a MIDI note sequence is a very similar feature to a 

pitch sequence. In fact, it can be obtained as a transformation of the pitch sequence. If 

the pitch sequence could be considered as the physical representation of a melody, the 

MIDI note sequence could be said to be a musical representation of the melody. 

Therefore, its behaviour and usage does not differ much from the pitch sequence case. It 

is just a different representation. 

 

                                                
1
 Midomi – Soundhound (www.midomi.com) 

www.midomi.com
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2.2.3. Fast Fourier Transform 

 

Some systems (Tsai, Tu, & Ma, 2012) try to avoid the direct temporal sequence 

comparison in the matching step. To do so, the note sequences are transformed into Fast 

Fourier Transform (FFT) vectors. In this way, the problem of matching variable-length 

sequences is solved, and the matching is faster than with other methods, as simple 

Euclidean distances can be applied. 

However, although results are often good, this method loses the capacity of absorbing 

tempo variations in the matching step as other methods do. In the end, it is a trade-off 

situation among better results and faster performance. 

 

2.3. Matching 

 

The matching process finds the likelihood between the query and each song in the 

database. Therefore, this step aims at computing a numeric value to represent this 

similarity. 

Most QbSH systems these days use Dynamic Time Warping, although some others opt 

for training-based classifiers or simple distances. 

 

2.3.1. Dynamic Time Warping 

 

In time series analysis, the Dynamic Time Warping algorithm is used to measure the 

resemblance between two sequences which may vary in time or speed. 

The DTW algorithm is widely extended among almost every QbSH system. The main 

reason for that is the fact that is a very flexible and useful algorithm: it can absorb the 

most typical imperfections on humans trying to sing a song, being tempo differences the 

most common error. 

 

2.3.2. Support Vector Machines and Artificial Neural Networks 

 

Support Vector Machines (SVM) is one of the most used and best-performing classifiers. 

As a result, some researchers have tried to apply it for a QbSH system (Phiwma & 

Sanguansat, 2010).  

However, it has some limitations. The main one is the fact that the features to be 

classified must have the same dimension. This is a big drawback, since it is difficult to 

represent the temporal dynamics with a fixed length vector of features. 

A system has been developed with SVM. Firstly, it used DTW to compute the distance 

between the query and each template in the database, and then used this distance vector 

as the non-variable size vector for the SVM classifier. Consequently, the database cannot 
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be easily broadened, since the dimension would also change and the SVM classifier 

would have to be trained again. 

In the same paper, Artificial Neural Networks (ANN) are used in the same way as the 

SVM in a QbSH system, but the results turn out to be worse. Thus, in case of using non-

variable size features with this classifiers, SVM is still a better option to use. 

 

2.3.3. Simple distances 

 

Although the general procedure in this step is rather simple, it is only used when the 

signals to be compared have the same size, that is to say, when the resulting features 

are the FFT of each signal, as in (Tsai, Tu, & Ma, 2012). 

The maths behind this step are quite typical, since it consists in computing the Euclidean 

distance (or some similar variation) between the values in the FFT vector. Although the 

combination of FFT features and distance computation on the matching step turns out to 

be very light computationally, its performance is not the best for a QbSH system. 

 

2.4. Assessment 

 

An assessment step is required to quantify the performance of the QbSH system. Mean 

Reciprocal Rank is the most extended metric, together with top lists. These two metrics 

assess almost every QbSH system currently. 

 

2.4.1. Mean Reciprocal Rank 

 

The Mean Reciprocal Rank (MRR) is a great measure of the performance of a QbSH 

system, since provides a weighted result for the evaluation of a set of queries. The 

formula to compute the MRR is: 

     
 

 
 

 

     

 

   

 

 

Where N is the number of queries evaluated, and the rank is the position of the correct 

result in the sorted list. Almost every QbSH system uses this formula to assess the 

general behaviour of the system. Therefore, a perfect system would provide MRR equal 

to 1, while a system with MRR equal to 0 would have failed the search for every single 

query in the test set. 
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2.4.2. Top-X list 

 

Few QbSH systems use this assessment method. The aim is just to list the first X results, 
being Top-3, Top-5 and Top-10 the most typical lists. Then, the system counts the 
number of queries with a correct result returned on the first X positions of the list, so there 
is no weighting at all, unlike the MRR case. 

Being all the different approaches explained, the next section gives a deeper view into 
the final choices for the QbSH system built in this thesis. 

 

3. Methodology / project development: 

 

The aim of this project is to create a completely functional QbSH system. Through the 
following points, the creation of the baseline system is reported. First, the reference 
signals are chosen; then, the features are extracted and preprocessed; finally, the signal 
is matched with other signals stored in a database. The assessment of the system, 
however, will be explained in section 4. 

 

3.1. Basic block diagram of the system 

 

The graphic shows the main stages of the QbSH system (Fig. 2). The pitch is extracted 

from the queries. The preprocessing stage enhances the signal for the matching stage, 

and then the results are retrieved in the end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATABASE 

Songs 

 

Pitch extraction 

 

Preprocessing 

 

QUERY 

PITCH EXTRACTION 

PREPROCESSING 

MATCHING 

RESULTS 

Figure 2: Basic block diagram 
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3.2. Signal choice and acquisition 

 

As is explained in the second chapter of this thesis, a QbSH system can work with three 

different file types: MIDI files, audio files, or query recordings. The main advantages and 

drawbacks are also explained in the second chapter. This is a crucial choice as it 

influences on the flexibility and performance of the system. 

In this system, the database is created from audio files. This decision has been motivated 

by several factors. First of all, audio files are the easiest file types to obtain among the 

three possibilities. Therefore, audio files allow a faster and wider update of the database, 

which seems very important these days, since plenty of songs are daily released. 

Moreover, systems using audio files are known to obtain the lowest performance, but 

they also have much research to be done, so it seemed an interesting option. 

As a result, creating a database ends being a task of song selection and procurement. 

The database creation is reviewed in the assessment chapter of this thesis. 

Now, the real acquisition process is done for the query, not for the database signals, 

provided that audio files are being used to build the database. In this system, an audio 

fragment with a sample frequency of 44100 Hz and 16 bits for sample coding is recorded 

using a simple laptop microphone.  

 

3.3. Pitch extraction algorithm 

 

Once the query has been recorded, the next step is to extract the pitch, that is, the 

sequence of frequency values that define the melody of the recording. This step is also 

applied in the melody extraction step to create the database (Fig. 3). 

 

 

Figure 3: Pitch extraction system (Salamon, Gómez, Ellis, & Richard, 2014) 

 

In this project, a recent pitch extraction algorithm for polyphonic signals has been used. 

This algorithm, which has one of the best performances for polyphonic signals, was 
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developed by the Music Technology Group in Universitat Pompeu Fabra (Salamon & 

Gómez, 2012), and is available as a vamp plugin2. 

 

3.3.1. Algorithm overview 

 

This pitch extraction algorithm belongs to the group of algorithms known as salience-

based methods, which derive an estimation of pitch salience over time and then apply 

tracking or transition rules to extract the main melody line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complete block diagram of the system is shown above (Fig. 4). First, the algorithm 

applies an equal-loudness filter to the signal in order to emulate the behavior of the 

human ear, and performs a spectral analysis and correction. Then, the salience function 

is represented (Fig. 5).  

                                                
2
 MELODIA vamp plug-in: http://mtg.upf.edu/technologies/melodia 

Figure 4: Block diagram of the pitch extraction algorithm (Salamon & Gómez, 2012) 

http://mtg.upf.edu/technologies/melodia
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Figure 5: Example of output of the salience function (Salamon, Gómez, Ellis, & Richard, 2014) 

 

The peaks of this function are considered as potential candidates for the melody, so 

these peaks are properly processed, by means of peak filtering and peak streaming steps, 

in order to extract the most likely pitch contour. To do so, several features of each 

potential pitch contour are computed (pitch mean, pitch deviation, contour mean salience, 

contour salience deviation, length, etc).  

Depending on the computed values for these features, the algorithm decides whether the 

sequence belongs to the main melody to be extracted or belongs to a non-principal 

melodic sequence (for example, harmonics of the real melodic sequence). 

Moreover, an iterative melody selection stage is also applied. In this stage, the melody 

contour is refined by applying some additional steps, such as voicing detection and 

removing octave errors and pitch outliers, which are very common. However, not all the 

errors are automatically removed, so some additional steps are required in the 

preprocessing stage to improve the signal. 

In the end, a sequence of frequencies representing the extracted melody line (the output 

of the pitch extraction algorithm step) becomes the signal to work with in the following 

steps. 

The following plot shows the output of the pitch extraction algorithm (Fig. 6), which is 

used within the following points to show the evolution of the signal through the 

preprocessing step. 
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Figure 6: Example of output from the pitch extraction algorithm 

 

The performance of the algorithm depends on the signal on which we are applying the 

extraction. For music files with a heavy presence of the main melody and soft chords of 

light instruments, the algorithm behaves quite well. This usually happens with soft jazz 

and most acoustic songs, for instance. However, in rock songs, where the instrumental 

load is bigger and more varied, the spectrum becomes very impure, and the algorithm 

has serious troubles to obtain a good representation of the melodies. The most common 

errors in this case are skipping notes, selecting wrong notes and selecting wrong octaves. 

The latter is the only one which can be partially fixed in the preprocessing stage. 

In the end, the results obtained by the system depend markedly on the resemblance 

among the extracted melodies and the real melodies of the songs, provided that the pitch 

extraction process in the query signal is reasonably accurate. Therefore, the type of 

music (more precisely, the instrumental load of the song) determines the goodness of the 

melody extraction process and, consequently, has a great impact on the overall 

performance of the system. 

 

3.3.2. Alternatives for melody extraction of the query 

 

It is important to remark that this pitch extraction algorithm has been specially designed 

for polyphonic signals, that is, several sounds being played simultaneously (different 

notes of the same instrument, different instruments playing their own line, etc.). However, 

the system uses the same algorithm for the query recordings, which contain a 

monophonic sequence sung/hummed by a human voice. 

The main reason for that is the overall performance of the system. With this algorithm, 

few notes of the queries can be neglected in the extraction process. As a consequence, 

an alternative algorithm to extract the query pitch sequence has been tested. In this 

system, the alternative algorithm is based on the well-known RAPT (Talkin, 1995), which 
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is a pitch extraction algorithm commonly used in voice processing works. The pitch 

extraction process with the RAPT algorithm is more complete, detecting every note, than 

with the MELODIA plug-in. However, the resulting pitch sequence seems to be more 

inaccurate in general terms, worsening the overall performance of the system.  

Therefore, the final implementation of the system uses the MELODIA vamp plug-in for 

both query pitch extraction and database creation. 

 

3.4. Preprocessing 

 

The preprocessing stage consists in transforming the extracted pitch sequence in order to 

prepare the signal for the matching step. This block allows many different possibilities 

and combinations, and is crucial for the final performance of the system. In this system, 

many different alternatives have been proposed and tested. 

One of the most important features in music is the well-timed combination of notes and 

pauses. In the extracted pitch sequences, the pauses (silence) are represented with a 

frequency equal to zero. If a user tries to guess a song, the pauses among notes will 

certainly be as important as the notes themselves. Therefore, it seemed logical to 

maintain the timing of the pitch sequence by keeping the zero frequencies. However, 

results turned out to be better when silence has been removed in almost every case. 

The plot (Fig. 7) shows the previous signal (Fig. 6) once the silence removal step has 

been applied. 

 

Figure 7: Pitch sequence after applying silence removal 
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Now, the signal has many little peaks, so the next preprocessing step pretends to 

smoothen the sequence. To do so, two types of filter have been tested: an average filter, 

which substitute a sample by the average value of the surrounding samples, and a 

median filter, which changes the value of a sample by the value in the middle of a sorted 

list of the surrounding samples (Fig. 8).  

When this filters are applied over a signal including silence (which was intended to be 

removed after this step), some low frequencies appear where silences used to be. Then, 

the remaining zeros were deleted, but as these low frequencies were still present, they 

were padded to zero and an interpolation was performed to create a more continuous 

signal. However, in the final version of the system this step is omitted, as the silence 

removal is performed firstly obtaining better results. 

Visually, the differences between using an average filter and using a median filter are not 

very noticeable. However, median filters outperformed average filters in most cases. Also, 

different sizes for the filters have been tested to find the optimum value. 

 

 

Figure 8: Comparison between average and median filters over the same signal 

 

Once most irregularities have been removed, the following step helps to decrease the 

computational load of the system, especially in the matching stage. A downsampling 

function is performed to reduce significantly the number of samples of the signal. Unlike 

in voice, frequencies (notes) in music are quite stable. Therefore, a sample each 100 

miliseconds (with 50 miliseconds of overlapping) is enough to represent the sequence 

accurately. Thus, 20 frequency samples per second are stored. This step returns a signal 

with one sample for each seventeen samples in the original signal. 

As some irregularities are still present in the signal, it makes no sense to choose just one 

sample to be taken into account, since an outlier could be picked. Therefore, three 

downsampling methods involving all the samples have been tested: average, median and 

mode filters. For each window, one of these filters is applied over all the windowed 

samples (checking whether it is a voiced or unvoiced frame), and the result is kept as the 

downsampled signal. When tested under identical conditions, the averaged 

downsampling has provided the best results. 
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Figure 9: Comparison among downsampling methods 

 

As can be seen in the graphics above (Fig. 9), this step also smoothens the signal.  

The next step deals with the scale of the signal: the sequence is mapped from frequency 

values to MIDI note values. This is a very important step: in the frequency domain, raising 

an octave means doubling the frequency, which means using a non-linear scale. By 

converting the frequencies to MIDI values (Fig. 10), the step among notes is normalized, 

which is important in next steps. The formula to map frequency values into MIDI notes is 

the following: 

                 
 

   
  

 

A logarithmic function is used to balance the exponential behavior of the notes 

represented in the frequency domain. 
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Figure 10: MIDI note representation of the signal 

After the mapping, a short median filter is performed to further smoothen the signal. 

The final step in the preprocessing stage is, probably, the most important one. If two 

different users are asked to sing a famous song, they will be very likely to sing in different 

tonalities, that is, starting the sequence in different notes. And what is more, these notes 

can also be different to the original note in the recorded song (Fig. 11). One of the most 

important problems to solve in a QbSH system is how to compare melodies when sung in 

different tonalities.  

 

Figure 11: Same extract sung on different keys 
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A first approach suggested that removing the mean value of a sequence should eliminate 

key differences, but that would only be true for song segments containing the same 

musical phrase with good tune and without errors and outliers, and it is known that the 

system does not accomplish these features. Besides, the pitch sequence of the songs is 

extracted thoroughly instead of splitting them into phrases. 

In this system, the input signal is transformed into a differences signal (Fig. 12). Thus, in 

a sequence of MIDI notes without silences, a new filter is applied to compute the 

differences between a sample and the previous one. This allows the signal to be 

independent of the key in which has been sung. Moreover, this step improves the quality 

of the signal by correcting some errors. As note differences of more than 12 MIDI notes 

(an octave) are very uncommon, the difference is computed in modulus 12. Therefore, 

most octave errors dragged from the extraction process are corrected in this step. 

 

Figure 12: Final signal entering the matching stage 

When the system was under development and the option of working with silences was 

being tested, a similar last step was performed. However, the fact that the difference 

values in the transitions silence-note and note-silence was different depending on the key 

had to be taken into account, so a standard penalty was established for these transitions. 

Nevertheless, this option was finally rejected, as stated before, due to its lower 

performance. 

 

3.5. Matching: Dynamic Time Warping 

 

The final step in the system is the matching, that is, the comparison among the query and 

every song in the database to find the closest results. The Dynamic Time Warping (DTW) 

algorithm is performed to obtain the distances. 
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The DTW algorithm is very useful for a QbSH system, since it allows a comparison 

between two signals with time variations (Fig. 13), which is the case of a query sung by 

two different users: they will probably not sing at the same exact tempo, and that will also 

happen, as seen before, with the key. 

 

Figure 13: Euclidean Matching vs DTW Matching 

 

The basic idea of the algorithm is computing the path relating the samples of the two 

signals being compared which has minimum cost. This cost is computed by adding the 

differences between the values of the two samples being compared in a certain point of 

the path. Therefore, what is being made is, in the end, some sort of mapping between the 

two signals being compared. Depending on the application, different path patterns can be 

allowed.  

An interesting point to remark is the fact that the basic DTW algorithms usually try to 

match the two signals from start to end. In this system, that idea is useless, since trying to 

match a 10-seconds-length query with a complete song, which can last for several 

minutes, makes no sense. For example, if a query contains the chorus of a song, the 

algorithm should allow the matching process to start from the chorus of the song, 

avoiding the initial part of the song. 

Thus, the algorithm has been modified to allow the start and end samples of the query to 

be matched from any starting point in the song. Therefore, the DTW algorithm is 

implemented with this formula: 

 

DTW  
                 

                       

                       
 

                                         

  

 

Where       is the set of values of the accumulated cost matrix   belonging to allowed 

positions in the previous path step, and          is the cost function related to the 

samples   and   of the matched vectors,   and  , respectively. The basic DTW 

configuration is shown in the following plot (Fig. 14). For this configuration, for example, 

and using the previous notation,                                        . 
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Figure 14: Basic DTW configuration 

In order to respect the temporal arrangement of query and templates, the path should be 

constrained. This is done limiting the values of   and  , as they are forced to increase in 

each step of the algorithm. This features can also be seen in figure 14. However, this 

option had an important drawback: it allowed horizontal and vertical paths. As a 

consequence, unreal mappings showed up, especially when matching pitch sequences 

with silences (frequency = 0). Figure 15 shows an example of these kind of paths. 

 

Figure 15: Example of path with basic DTW configuration 

 

As can be seen, there are several vertical and horizontal segments in the path. It makes 

no sense, since the algorithm is matching a single sample from one of the signals with a 

lot of samples from the other signal.  

In order to fix this, the allowed paths were changed to the ones in the figure 16.  

 

 

 

 

 

Figure 16: Second DTW path configuration 
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In this way, having only diagonal paths avoided mapping a single sample with many 

others. As can be seen, the path was able to grow at double, half, or exactly the same 

speed amongst the length of the signals. But these paths also had a problem: they could 

skip samples in columns or rows, that is to say, some of the samples of the signals were 

ignored if the related cost had been too high. This turned out to be an inadvisable option, 

since most of times the skipped samples were the peaks of the signals, which contain 

very important information of the note changes. 

Finally, an alternative option has been used (Fig. 17). It allows vertical and horizontal 

moves within a single sample step, but forces the full path to grow diagonally. 

 

 

 

 

  

 

Figure 17: Final DTW path configuration 

 

As this configuration avoids paths from skipping samples and, at the same time, lets 

paths grow diagonally, it provided the best performance with a noticeable difference. A 

path (which grows diagonally) and cost function plots can be seen (Fig. 18).  

 

Figure 18: Path and cost evolution from the matching of the same signals 

 

Therefore, using this algorithm with the previous path setting, the matching stage is done, 

and the baseline system is completed. 

From the viewpoint of the computational load, this stage demands the biggest effort. The 

Matlab programming language is quite intuitive and easy to program, but it is not very 

efficient. To solve that, a basic DTW implementation written in C code has been used as 

base code. Then, it has been modified until reaching the final result, and compiled as a C 
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code inside Matlab environment. This made the execution time between 20 and 30 times 

faster. 

In this chapter, the construction of the baseline system has been reviewed. In the next 

one, the performance of the system is properly assessed. 

 

4. Results 

 

Once the system is built, several tests can be executed to assess the performance of the 

complete program. The tests comprise different types of evaluation, including different 

metrics and different databases. 

Firstly, the creation of the databases, which have been used to assess the system, is 

explained. Next, the metrics for the evaluation of the system are reviewed. Finally, the 

results of the system tested under different conditions are discussed. 

 

4.1. Database creation 

 

Three different databases have been built to test the system. The first two are created by 

collecting audio signals, while the third consists in a set of queries obtained from the 

MIREX3 contest site. 

 

4.1.1. The Beatles database 

 

The first one, which has been used for most tests, is a 58-song database containing 4 

hours of music, formed by the greatest hits from the English band The Beatles. This type 

of music is quite melodic, and the instrumental load is normally not excessive, allowing a 

reasonably good pitch extraction process. However, The Beatles used many vocal 

harmonies within their songs, which made the extraction process more inaccurate. For 

this database, 28 queries have been recorded, some of them belonging to the same 

songs. 

 

4.1.2. The mixed songs database 

 

On the other hand, the second database is a bigger one, more focused on recreating the 

conditions for the system to be used as a real application. It contains 200 songs, making 

almost 20 hours of music, mixing a wide range of genres (rock, metal, pop, electronic, 

latin, etc). In this case, 22 queries were recorded for the testing process. This database, 

though, has been only used to assess the final performance with the best-case setting. 

                                                
3
 MIREX 2013: http://www.music-ir.org/mirex/wiki/2013:Query_by_Singing/Humming 

http://www.music-ir.org/mirex/wiki/2013:Query_by_Singing/Humming
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4.1.3. Query database 

 

Finally, a third database has been used for a completely different test, the Roger Jang’s 

MIR-QBSH corpus4. In this case, the database is also formed by queries. Therefore, this 

would be a query vs. query test, which would allow for the system not only to be 

compared against other systems, but also to be tested under the particular context of 

having a database composed of different reference signals. 

The database contains 4431 queries, which are divided in a train database (2391 

queries) and a test database (2040 queries). The metrics for this particular test are 

copied from the MIREX contest, in order for the system to be compared. 

 

4.2. Assessment metrics 

 

The assessment of the system depends on the type of test performed. For a single query, 

the top-10 list is returned, that is, the 10 results with minimum distance (cost) in the 

matching process. For the evaluation of a complete set of queries, the Mean Reciprocal 

Rank (MRR), already reviewed in the second chapter, is computed instead: 

     
 

 
 

 

     

 

   

 

 

4.3. Experimental evaluation in the query vs. audio framework 

 

The following table presents some of the most important results. All the tests containing 
changes in every particular parameter can be checked in the appendix section at the end 
of the document. 

As can be seen (Table 2), the tests including silences are not as good as the ones in 
which the silence removal step has been applied. This is especially true for The Beatles 
database, where the MRR increases from 0’19 to 0’45 or from 0’13 to 0’52, depending on 
the DTW configuration. 

Moreover, under these conditions, the third and definitive DTW path mode, which avoided 
sample skipping, outperforms the second mode, increasing from 0’45 using the second 
DTW path mode (Fig. 16) to 0’52 in the final DTW path mode (Fig. 17). 

The last two rows of the table show the results with the 200 varied songs database. The 
Beatles database obtains a higher MRR (0’52) than the 200 varied songs database (0’25). 
This is, in fact, totally logical, since the latter database is around 4 times bigger, and the 
music style of the first one allows for a more accurate melody extraction step. 

 

                                                
4
 Roger Jang’s MIR-QBSH corpus: http://mirlab.org/dataSet/public/MIR-QBSH-corpus.rar 

http://mirlab.org/dataSet/public/MIR-QBSH-corpus.rar
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Parameters Database MRR 

Silences + Second DTW 
path mode 

The Beatles 0.19 

Silence removal + Second 
DTW path mode 

The Beatles 0.45 

Silences + Third DTW path 
mode 

The Beatles 0.13 

Silence removal + Third 
DTW path mode 

The Beatles 0.52 

Silences + Third DTW path 
mode 

200 varied songs 0.23 

Silence removal + Third 
DTW path mode 

200 varied songs 0.25 

Table 2: Representative results of the assessment of the system 

 

The interpretation of the results is reasonably open. It could be said, for the best-
performing case with The Beatles database, that every song is recognized in the second 
position of the sorted list in average. Another interpretation could be that half of the songs 
are perfectly recognized in the first position of the sorted list, while the other half is 
recognized in the lower positions of the list.  

The truth is that the behaviour for each query varies: some of them return the valid result 
on the first position, some of them somewhere around the middle positions, and others 
are not correctly identified. The same case could be stated with the 200 varied songs 
database, but returning the valid result in fourth position in average or recognising 
perfectly one of each four queries. 

It is also important to remark that the assessment of the system is an approximation. The 
number of queries for each database is low, so the significance of these tests is not very 
high. 

 

4.4. Experimental evaluation in the query vs. query framework 

 

The alternative query vs. query test has been performed by dividing a query dataset 
provided by the MIREX contest. The dataset, containing 4431 queries, has been split in 
testing and training databases. 

This test has been assessed with a different metric. For each query, a point is scored for 
each valid result among the top-10 list. Thus, a query can get a maximum of 10 points on 
its evaluation and a minimum of 0 points. The average value containing the results of 
every test query has been computed, being 8’21 the result. Compared to other MIREX5 

                                                
5
 http://nema.lis.illinois.edu/nema_out/mirex2013/results/qbsh/qbsh_task2_jang/summary.html 

http://nema.lis.illinois.edu/nema_out/mirex2013/results/qbsh/qbsh_task2_jang/summary.html
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systems, it is the third best result, being 9’52 the score of the best-performing system 
(Table 3).  

Algorithm Raw Count 

BS1 8.9142 

MR1 9.5235 

YJ1 7.0034 

YJ2 6.8358 

Tested system 8.21 

Table 3: MIREX 2013 QbSH (subtask2) results compared with the tested system 

In addition, the MRR has also been computed for this test to ease comparisons with the 
query vs. audio system. The MRR in this case has been 0’66, which is quite higher than 
the best query vs. audio case.  

This result reflects one important thing: the query vs. audio systems have to improve in 
many ways to be used as commercial products, especially in the pitch extraction stage, 
whereas the query vs. query test proved to be the best-performing system. 

As for the execution time, the results are fairly good. The evaluation of a normal query 
(around 10 seconds of length) takes just a few seconds (less than 10 seconds with the 
largest database), making this feature of the system suitable for future applications. 
However, for bigger databases, optimization techniques should be analyzed in order to 
decrease the search time. 

 

5. Graphic User Interface 

 

In this section, a basic review of the accessibility of the system is discussed.  

In order to provide the system with higher usability and with analysis tools, a Graphic 

User Interface (GUI) has been created. The procedure is very simple: a query can be 

selected or recorded. Once the pitch has been automatically extracted, the query can be 

played or plotted. Also, a synthetic playback of the extracted pitch can be heard. Finally, 

the query can be evaluated against a database, which can also be selected. 

Once the results have been computed, the top-10 list is shown. Each result stores the 

part of the song with which the query has been related, and can also be played in both 

real and synthetic forms, or plotted in the same way as the query.  

The plots offer the chance to graphically analyze the evolution of the signals through the 

preprocessing stage (Fig. 19). Moreover, up to 10 simultaneous results (that is, every 

result in the top-10 retrieved list) can be plotted simultaneously. Some plotting tools, as 

zoom and point selection, are also available. 

http://nema.lis.illinois.edu/nema_out/mirex2013/results/qbsh/qbsh_task2_jang/yui-dt1-href-Algorithm
http://nema.lis.illinois.edu/nema_out/mirex2013/results/qbsh/qbsh_task2_jang/yui-dt1-href-RawCount
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Figure 19: GUI showing plots and preprocessing options 

 

Another type of graphic that can be displayed is the DTW path and cost function for the 

selected result (Fig. 20). This option can be particularly useful when the user wants to 

analyze the behaviour of the matching algorithm. 

 

 

Figure 20: GUI showing path and cost options 
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6. Budget 

 

This project has been completely developed using a computer and some software, so the 
main cost to be taken into account is the salary of the project developer and supervisor. 

Furthermore, a Matlab license is also required, as the project has been mainly developed 
under a Matlab environment, and the amortization of the computer has been taken into 
account as well. 

 

Item Quantity Price Cost 

Supervisor (wage) 46 hours 25 €/hour 1150 € 

Junior engineer 
(wage) 

690 hours 8 €/hour 5520 € 

Matlab (student 
version) 

1 license 124 €/license 124 € 

Computer 
(amortization) 

1 5.2 €/week 120 € 

                                                                        TOTAL 6914 € 

Table 4: Estimation of the total cost of the project 
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7. Conclusions and future development: 

 

In this thesis, the main operation of a QbSH system has been analyzed. Different system 

configurations have been tested and compared. 

The system has used audio files as reference signals, although some tests with queries 

have been made. These files have been processed to build different databases for the 

program. 

A state-of-the-art pitch extraction algorithm for polyphonic signals has been used in the 

feature extraction step. Many preprocessing techniques have been tried and analyzed to 

prepare the signal for the matching stage. Based on experimental results, silence 

removal, downsampling and difference computation steps improved the performance of 

the system in a very noticeable way. 

The well-known Dynamic Time Warping has been used to compute the similarity among 

the query signal and the songs in the database. Different alternatives have been studied 

and assessed, being the third one (forcing diagonal paths and avoiding sample skipping) 

the best-performing option.  

Finally, in order to make the system user-friendly, a complete Graphic User Interface has 

been developed, allowing the user not only to execute the algorithm but to analyze the 

whole process. This can be useful for further research in the field. 

Two audio databases have been collected, one based on The Beatles greatest hits, and 

the other reuniting songs from different music styles. Moreover, a query database has 

been used for some additional tests. 

The obtained results are promising, achieving a MRR of 0’52 in The Beatles database 

and 0’25 in the 200 varied songs database. Furthermore, the third best result is achieved 

when the query vs. query test in the MIREX contest is run. The MRR in this last case is 

0’66, outperforming the query vs. audio test. 

The execution time is reasonably low, although there is clearly a lot of room for 

improvements in every stage of the system. Bearing this in mind, a baseline system has 

been set up, which is completely functional and allows for changes and enhancements. 

Query by Singing/Humming is still a relatively young topic with much research to be done. 

At the moment, query vs. audio might be the worst-performing type of system but, in the 

future, it could allow for the automation of the whole process, since audio files do not 

require any kind of human work either in the obtaining of the signal or in the feature 

extraction.  
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Appendix I: full results 

 

This appendix contains the results from most performed tests. Most of them refer to 

modifications on the baseline system with the baseline preprocessing: first median filter, 

average filter, silence detection and interpolation, downsampling, MIDI mapping and 

second median filter. Note that (dtw2) and (dtw3) make reference to the second and third 

DTW path options, respectively. 

Parameters Database MRR 

Differences (dtw2) The Beatles 0.1456 

Differences + silence removal 

(dtw2) 
The Beatles 0.2109 

Mean subtraction (dtw2) The Beatles 0.1380 

Mean subtraction + silence 

removal (dtw2) 
The Beatles 0.2132 

Differences (dtw3) The Beatles 0.0652 

Differences + silence removal 

(dtw3) 
The Beatles 0.2035 

Differences + no median filter 

(dtw2) 
The Beatles 0.0927 

Differences + no median filter 

(dtw3) 
The Beatles 0.11 

Differences + silence removal + 

no median filter (dtw2) 
The Beatles 0.1012 

Differences + silence removal + 

no median filter (dtw3) 
The Beatles 0.0959 

Differences + no interpolation  

(dtw2) 
The Beatles 0.1541 

Differences + no interpolation  

(dtw3) 
The Beatles 0.0891 

Differences + silence removal + 

no interpolation (dtw2) 
The Beatles 0.0841 

Differences + silence removal + 

no interpolation (dtw3) 
The Beatles 0.0974 



 

 51 

Differences + no average filter  

(dtw2) 
The Beatles 0.1949 

Differences + no average filter  

(dtw3) 
The Beatles 0.1329 

Differences + silence removal + 

no average filter (dtw2) 
The Beatles 0.1692 

Differences + silence removal + 

no average filter (dtw3) 
The Beatles 0.3160 

Differences + median filter start 

(50) + median filter end (10) 

(dtw2) 

The Beatles 0.19 

Differences + median filter start 

(50) + median filter end (10) 

(dtw3) 

The Beatles 0.1307 

Differences + silence removal + 

median filter start (50) + median 

filter end (10) (dtw2) 

The Beatles 0.1961 

Differences + silence removal + 

median filter start (50) + median 

filter end (10) (dtw3) 

The Beatles 0.3086 

Differences + median + average 

(dtw2) 
The Beatles 0.1052 

Differences + median + average 

(dtw3) 
The Beatles 0.1003 

Differences + silence removal + 

median + average (dtw2) 
The Beatles 0.2269 

Differences + silence removal + 

median + average (dtw3) 
The Beatles 0.2533 

Baseline + single octave 

mapping (dtw2) 
The Beatles 0.1376 

Baseline + single octave 

mapping (dtw3) 
The Beatles 0.1268 

Table 5: Additional results (I) 
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Now, the following results are computed over the same baseline system but removing the 
silence in every case just after the pitch detection instead of after the smoothing filters. 

Parameters Database MRR 

Differences (dtw2) The Beatles 0.4496 

Differences (dtw3) The Beatles 0.4951 

Differences + no interpolation 

(dtw2) 
The Beatles 0.4493 

Differences + no interpolation 

(dtw3) 
The Beatles 0.4950 

Differences + double median 

(dtw2) 
The Beatles 0.4452 

Differences + double median 

(dtw3) 
The Beatles 0.5177 

Differences + average + median 

(dtw2) 
The Beatles 0.4445 

Differences + average + median 

(dtw3) 
The Beatles 0.5128 

Differences + no median (dtw2) The Beatles 0.2937 

Differences + no median (dtw3) The Beatles 0.2859 

Differences + average instead of 

second median (dtw2) 
The Beatles 0.3820 

Differences + average instead of 

second median (dtw3) 
The Beatles 0.3799 

Differences + window size 

change in filters (10 to 5) (dtw2) 

 

The Beatles 0.3218 

Differences + window size 

change in filters (10 to 5) (dtw3) 
The Beatles 0.3598 

Optimizing filter sizes: avg10 to 

avg8 (dtw3) 
The Beatles 0.5161 

Optimizing filter sizes: avg10 to 

avg6 (dtw3) 
The Beatles 0.5161 
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Optimizing filter sizes: avg10 to 

med6 (dtw3) 
The Beatles 0.5179 

Optimizing filter sizes: avg10 to 

med6 + dwnsmplmean to 

dwnsmplmode (dtw3) 

The Beatles 0.3648 

Best case with silence 200 varied songs 0.2281 

Best case + silence removal 200 varied songs 0.2521 

Table 6: Additional results (II) 

 

Peak integration tests, made to avoid note changes during several samples. Tests 
applied over the best-performing case: 

Parameters Database MRR 

Peakint (th=0.1) The Beatles 0.3048 

Peakint (th=0.1) + peakcl The Beatles 0.2966 

Peakint (th=0.2) The Beatles 0.2561 

Peakint (th=0.05) The Beatles 0.2249 

Peakint (th=0.001) The Beatles 0.2713 

Table 7: Additional results (III) 

 

Comparison among different downsampling methods: 

Parameters Database MRR 

Mean downsample (dtw3) The Beatles 0.5139 

Mean downsample (dtw2) The Beatles 0.444 

Mode downsample (dtw3) The Beatles 0.3532 

Mode downsample (dtw2) The Beatles 0.2809 

Median downsample (dtw3) The Beatles 0.3603 

Median downsample (dtw2) The Beatles 0.3246 

Silence removal + median 

downsample (dtw3) 
The Beatles 0.3807 
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Silence removal + median 

downsample (dtw2) 
The Beatles 0.302 

Table 8: Additional results (IV) 

 

Comparison among different window lengths on the downsampling process: 

Parameters Database MRR 

Window 0.06 seconds The Beatles 0.4 

Window 0.09 seconds The Beatles 0.4248 

Window 0.09 seconds The Beatles 0.5139 

Window 0.11 seconds The Beatles 0.4635 

Window 0.15 seconds The Beatles 0.4808 

Window 0.2 seconds The Beatles 0.4004 

Table 9: Additional results (V) 

 

Best case with RAPT for query pitch extraction: 

Parameters Database MRR 

Best case + RAPT (query) The Beatles 0.39 

Best case + RAPT (query) 200 varied songs 0.09 

Table 10: Additional results (VI) 

 

Query vs. query results, with best case configuration: 

Test Result 

MRR 0.6563 

Average number of correct queries in first 

10 results 
8.2 

Percentage of queries retrieving a correct 

song in first 10 results 
90.33% 

Table 11: Additional results (VII) 
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Appendix II: code download 

The Matlab code of the system is available for download6. The RAR file contains the 

basic folder structure with Matlab .m files. 

Note that the databases are not included and that paths and folders should be adjusted in 

order for the code to work. Recommended only to check out the functions individually. 

  

                                                
6
 Matlab code: http://goo.gl/J26pgC 

http://goo.gl/J26pgC
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Glossary 

 

QbSH: Query by Singing/Humming 

MIDI: Music Instrument Digital Interface 

DTW: Dynamic Time Warping 

MRR: Mean Reciprocal Rank 

GUI: Graphic User Interface 

FFT: Fast Fourier Transform 

SVM: Support Vector Machines 

ANN: Artificial Neural Networks 

RAPT: Robust Algorithm for Pitch Tracking 

MIREX: Music Information Retrieval Evaluation eXchange 


