
 

 

 

 

  

 

Title: Statistical Methods for Parameter Fine-Tuning of 

Metaheuristics 

Author: Laura Calvet Liñán 

Advisor: Carles Serrat i Piè  

Co-Advisor: Ángel Alejandro Juan Pérez 

Department: Applied Mathematics I, UPC - BarcelonaTECH 

Academic year: 2013/2014 

Interuniversity Master 

 in Statistics and 

Operations Research 



 

  



 

Facultat de Matemàtiques i Estadística 

Universitat Politècnica de Catalunya 

 

 

Master’s Degree Thesis  

 

 

Statistical Methods for Parameter 

Fine-Tuning of Metaheuristics 

 

Laura Calvet Liñán 

 

 

 

Advisor: Carles Serrat i Piè 

Department of Applied Mathematics I, UPC-BarcelonaTECH 

 

Co-Advisor: Ángel Alejandro Juan Pérez 

Computer Science Department at the Open University of Catalonia (UOC) 



  



Acknowledgements 

I would like to express my deep gratitude to everyone who has helped me to complete this 

master’s degree thesis.  

My special thanks to Dr. Ángel Alejandro Juan Pérez for agreeing to be my co-advisor and for 

his unflagging encouragement, insights and patience. I wish to thank Dr. Carles Serrat, my 

advisor, for his support, constant guidance and empathy, also for his willingness to spend time 

correcting this project and sharing his knowledge. I am highly indebted to them both for 

teaching me, providing me with valuable material, helping me to define my academic interests 

and introducing me to the challenging and rewarding world of research.   

My grateful appreciations are extended to the members of the Open University of Catalonia 

that I have had the pleasure to meet during my internship, the development of this master’s 

degree thesis and other enriching activities. I am particularly grateful to Daniel Córdoba 

Higueras for assisting me with some computational issues.         

Finally, my sincerest thanks go to my family for giving me the opportunity to study and 

believing in me.    



 
 

 

Abstract 

Metaheuristics are an approximate method widely used to solve many hard optimization 

problems in a multitude of fields. They depend on a variable number of parameters. Despite 

the fact that they are usually capable of finding good solutions within a reasonable time, the 

difficulty in selecting appropriate values for their parameters causes a loss of efficiency, as it 

normally requires much time, skills and experience. This master degree’s thesis provides a 

survey of the main approaches developed in the last decade to tackle the problem of choosing 

a good set of parameter values, called the Parameter Setting Problem, and compares them 

from a methodological point of view focusing on the statistical procedures used so far by the 

scientific community. This analysis is accompanied by a proposal of a general methodology. 

The results of applying it to fine-tuning the parameters of a hybrid algorithm, which combines 

Biased Randomization with the Iterated Local Search metaheuristic, for solving the Multi-depot 

Vehicle Routing Problem are also reported. The computational experiment shows promising 

results and the need / suitability of further investigations based on a wider range of statistical 

learning techniques. Along these same lines, different suggestions for future work are 

described. In addition, this work highlights the importance of statistics in operations research 

giving a real-world example. 

 

Keywords: Parameter Fine-tuning of Metaheuristics, Design of Experiments, Regression 

Models, Multi-Objective Optimization 
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1. Introduction 

1.1 Motivation 

Mathematical optimization is an extensive collection of methods and algorithms for solving a 

huge variety of problems. Nowadays, it plays an essential role in different research areas: 

management of portfolios (finance), development of balanced diets, location of facilities, DNA 

sequences assembly, among others. Its use has been boosted in the last decades by the 

increasing availability of computing power.  

The most desirable characteristics of an optimization method are efficiency (being able to 

quickly find a satisfactory solution) and manageability (being easy to adapt to similar 

problems).  

Unfortunately, some of the most relevant problems are particularly difficult to solve because 

they require too much computer memory and/or time. In these cases, heuristics (from Greek, 

means “find” or “discover”) offer experience-based techniques that implement strategies for 

obtaining a sufficiently good solution in a short amount of time. For instance, the most 

fundamental heuristic is trial and error. Although they do not provide any theoretical 

guarantee, their use has been widely spread among scientists due to its success.  

However, the application of heuristics presents two major drawbacks: they are problem-

dependent and their development is very laborious.  

As a consequence, in the last 30 years, a new set of procedures has been created, 

metaheuristics (‘meta’ means “upper level methodology”). Birattari (2005) defines them as 

general algorithmic templates that can be easily adapted to solve the most different 

optimization problems. Boussaïd et al. (2013) list their characteristics: they are nature-inspired 

(based on some principles like physics or biology), include stochastic components and have 

several parameters that need to be chosen.  

The problem of selecting good settings for the parameters of metaheuristics is called the 

Parameter Setting Problem (PSP). Solving it is an arduous task, Montero et al. (2014) 

summarize the main difficulties: it is time consuming, the best parameter values set depends 

on the problem at hand and the parameters can be interrelated. Adenso-Díaz et al. (2006) 

state that there is anecdotal evidence that about 90% of the time dedicated to designing and 

testing a new heuristic or metaheuristic is consumed by fine-tuning parameters. According to 

Eiben et al. (1999), during the first decades of metaheuristics research, many scientists based 

their choices on tuning the parameters “by hand”, experimenting with different values and 

selecting the ones related with the best outputs. Also there were others practitioners that 

used “parameter setting by analogy”, it consists on taking the settings that have been proved 

successful for “similar” problems.  

At the present time there are two main approaches to tackle this problem. The first one, so-

called Parameter Tuning, is based on selecting proper values before running the algorithm and 

keep them constant during the execution of it. The other one, Parameter Control, allows the 
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parameters to change or adapt. Each approach has its advantages and disadvantages, so there 

is no consensus about the best one. Due to their different characteristics, it could be possible 

that the most adequate depended on the specific problem to solve, the chosen metaheuristic, 

the available time and the skills of the researcher.  

Even studying each approach separately, it can be observed that there are many different 

methodologies applied to tackle the PSP. Some of these procedures opt for employing 

statistical tools. Design of experiments and regression model have much relevance. 

In summary, selecting appropriately values for the parameters of metaheuristics is an 

indispensable and important step, but it is, for the time being, a hard and tedious activity for 

the scientific community. On the other hand, solving satisfactorily the problem can result in a 

better performance of the metaheuristics. 

1.2 Objectives of this Master’s Degree Thesis 

This project has four main purposes:  

- Identifying and comparing the most relevant approaches to analyze the PSP 

Despite being relatively new, this research is very varied. Therefore, an important aim 

will be to describe which the principal approaches are, characterize and differentiate 

them, and determine why there is no one that protrudes above all. 

- Reviewing the major contributions of the scientific community  

The most referenced papers will be indicated and examined. They will be classified 

according to the statistical methods that employ. The most fundamental tools will be 

briefly explained.  

- Putting forward a methodology 

The principal objective of this master’s degree thesis is to develop an efficient, 

complete and easily adaptable procedure based on statistical techniques, 

incorporating and combining the best insights of other authors and of our own. 

- Applying this methodology to a specific problem and analyse the outputs.  

In order to assess the quality of the methodology, some experiments will be carried 

out. The performance measures and some conclusions will be reported.  

1.3 Structure of the document 

Beyond this introduction, the master’s degree thesis is organized in the following manner: 

Chapter 2 presents some basic concepts. It is structured in three sections. The first is dedicated 

to metaheuristics; it contains a definition, a classification and an explanation of the most 

important ones. The second exposes the Parameter Setting Problem, gathers the former ideas 

or ways in which this problem was encompassed in the past, outlines the different approaches 

and compares them. The third section offers a short redaction of Regression Models, Design of 

Experiments and Multi-Objective Optimization, techniques that will be the principal 

components of the proposed methodology.   
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A wide review of the most fruitful research grouped by approach and statistical tools is 

provided in Chapter 3.  

In order to illustrate the differences between the approaches listed in Chapter 2 and the 

techniques employed by researchers considered in Chapter 3, three papers, one per approach, 

are selected and summarized in Chapter 4. 

Chapter 5 proposes a detailed methodology to solve the Parameter Setting Problem. It is a 

general procedure which requires some flexibility to enable its adaptation to a specific 

metaheuristic.   

A computational experiment performed to test the methodology is described in Chapter 6. 

Concretely, it includes a simplified explanation of the Multi-Depot Vehicle Routing Problem. It 

is the problem that is solved by the selected algorithm, which is based on the Iterated Local 

Search metaheuristic. The project associated to this algorithm is also introduced. The 

experiment is commented step by step and the results are discussed. 

Finally, Chapter 7 collects some conclusions regarding the review, the existing methodology, 

and the experiment. Moreover, some suggestions for further research are made, all focusing 

on expanding our experiment and introducing other statistical techniques in the solving of the 

Parameter Setting Problem.         
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2. Basic concepts 

2.1 Metaheuristics 

Metaheuristics represent a family of algorithms designed to solve a wide range of hard and 

complex optimization problems1 without having to deeply adapt them to each problem. 

Although they do not guarantee optimal solutions, they may provide sufficiently good 

solutions in a reasonable time. 

In the last decades, there have been multiple applications of metaheuristics in a large number 

of areas. Talbi (2009) highlights some of them: 

 Engineering design, topology optimization and structural optimization in electronics 

and VLSI, aerodynamics, fluid dynamics, telecommunications, automotive, and 

robotics. 

 Machine learning and data mining in bioinformatics and computational biology, and 

finance. 

 System modeling, simulation and identification in chemistry, physics, and biology; 

control, signal, and image processing. 

 Planning in routing problems, robot planning, scheduling and production problems, 

logistics and transportation, supply chain management, environment, and so on. 

2.1.1 Classification 

Many classification criteria have been used to differentiate metaheuristics. The most 

important are: 

 Memory usage versus memoryless methods. 

 Iterative versus greedy. An iterative metaheuristic is built from one (or more) 

complete solution and it is transformed at each iteration. Nonetheless, a greedy 

algorithm starts from an empty solution and as the execution proceeds, it is being built 

progressively. 

 Deterministic versus stochastic. A deterministic metaheuristic makes deterministic 

decisions, consequently, using the same initial solution will lead to the same final 

solution. Whereas in stochastic metaheuristics, one could obtain different solutions 

from the same initial one.  

 Single-solution based search versus population-based search. Single-solution based 

metaheuristics transform a single solution during their execution. While in population-

based metaheuristics, a group of solutions is considered. The first group is exploitation 

oriented, they intensify the search in local regions. In contrast, population-based 

metaheuristics are exploration oriented, they allow a better diversification. 

                                                
1
 They are called NP-hard (Non-deterministic Polynomial-time hard) in computational complexity theory. 

Sequencing, scheduling, assignment, location, grouping, routing and covering problems are some 
examples of NP-hard problems.  
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Nowadays, a growing trend is to combine different algorithms to solve a specific problem using 

the best characteristics of each one in different moments and/or for different subtasks of the 

problem. These procedures, so-called hybrid metaheuristics, include different combinations of 

a metaheuristic and: other metaheuristics, exact methods from mathematical programming, 

constraint programming and machine learning and data mining techniques.     

 

2.1.2 Description of the most basic and implemented metaheuristics 

 A brief explanation of the characteristics of the main metaheuristics is presented. It will be 

useful to better explain the problem that this project addresses and the different proposals 

offered by the scientific community. 

o Single-solution based metaheuristics 

1. Simulated Annealing 

It is inspired by annealing in metallurgy, a technique involving heating and controlled cooling 

of a material to increase the size of its crystals.  

In a similar way, the objective function of a problem is minimized by introducing a 

temperature measure T, which is a controllable parameter. The algorithm starts generating a 

base solution and initializing T. In each iteration, a solution is randomly selected in the 

neighbourhood of the current solution. If the chosen one improves the objective result, it 

replaces the current solution. Otherwise, it can also be accepted with a probability that 

depends on T. The temperature T is decreased during the search process.   

The most critical parameters are: the starting temperature, the reduction function of this 

temperature (known as cooling schedule) and the number of iterations.  

2. Tabu Search  

It tries to mimic the human memory processes. 

There are several memory structures:  

- Short-term. A tabu list records the last solutions (or some attributes of them) and forbids 

these solutions (or solutions containing one of these attributes) from being selected again. The 

length of this list is an important parameter that will concentrate the search process on small 

or larger areas. 

- Intermediate-term, so-called aspiration criteria. It can be employed to bias moves towards 

promising areas. 

- Long-term. It can be introduced to encourage broader exploration. 

 

 

 

 



 
11 

 

 

3. GRASP method 

GRASP (Greedy Randomized Adaptive Search Procedure) is a multi-start algorithm.  

In each iteration, there are two steps. In the first one, so-called construction, a feasible 

solution is built using a randomized greedy heuristic. At each iteration of the heuristic, a list of 

candidate elements is formed. The element to be added to the partial solution is randomly 

chosen among the best candidates. The list of the best candidates is known as restricted 

candidate list. It can be limited either by the number of elements or by their quality. The 

second strategy is the most used; they both have parameters to be tuned. In the second step, 

a local search procedure is run with the previous solution as the initial one. After a given 

number of iterations, the procedure is stopped and the best solution found is returned. 

4. Variable Neighbourhood Search 

It consists in the exploration of dynamically changing neighbourhoods for a given solution.  

Initially, a set of neighbourhood structures is defined. Afterwards, an initial solution is 

generated. Then a cycle of three steps starts: a) shaking, b) local search and c) move. In the 

shaking step, a solution is randomly selected in the neighbourhood of the current solution. 

The selected solution is used to apply a local search procedure to generate another solution. If 

this last solution is better than the first one, we update it and the cycle starts again in the 

initial neighbourhood. In the opposite case, the algorithm moves to the next neighbourhood 

and the cycle starts there.  

This metaheuristics can be designed without parameters. 

5. Guided Local Search 

This metaheuristic dynamically changes the objective function optimized by a local search, 

according to the found local optima.  

A set of features is defined; each one represents a characteristic of a solution. A cost and a 

penalty are associated with each feature. The penalties are initialized to zero and they are 

updated when a local optimum is reached. The augmented objective function of a solution is 

calculated as the objective function plus the sum of the penalties related to the features of the 

solution multiplied by a parameter. 

Large values of this parameter diversify the search and small values intensify it.    

6. Iterated Local Search 

It starts randomly choosing a solution. Subsequently a local search is applied to get a new 

solution. Then a loop is initiated until some stopping criterion is satisfied. In the loop, the 

current solution is perturbed and a new local search is employed to get another solution. If 

some previously defined acceptance criterion is satisfied, this new solution will be considered 
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as the current one. The extreme criteria are accepting only improving solutions or anyone. 

Finally, the algorithm returns the best found solution.  

This acceptance criterion enables controlling the trade-off between intensification and 

diversification.   

o Population-based metaheuristics 

1. Evolutionary computation 

This is a wide group that includes algorithms inspired by the Darwinian principles of nature’s 

capability to evolve living beings well adapted. They simulate the evolution of individuals by 

means of processes of selection, recombination and mutation; which allow getting better 

individuals or solutions.   

There are several iterations (generations) where a set of candidate solutions (population) is 

capable of reproducing and receives pressure that causes natural selection (survival of the 

fittest). The new individuals are created via combination of different individuals 

(recombination). The offspring can have mutations, which boosts diversity. Then, the fitness of 

the resulting solutions is calculated and a selection strategy is employed to decide which ones 

will be maintained into the next generation.  

These metaheuristics can have a large number of parameters: crossover and mutation rates, 

crossover and mutation operators, fitness function, etc.  

2. Swarm intelligence 

This term also covers many procedures. They include a population of agents interacting locally 

with one another and with their environment. These agents are capable to jointly perform 

complex tasks.  

The most popular algorithms are: ant colony optimization, particle swarm optimization and 

bee colony optimization-based algorithms.  

For instance, the first one is based on the ants’ behaviour. When starting to look for food, 

these insects search randomly in the area surrounding their nest. While moving, they deposit a 

chemical pheromone trail in order to mark favourable path to guide other ants. Consequently, 

the shortest path between the nest and the food source will finally attract more ants as it will 

present a higher concentration of pheromone. The ants’ decision of which path should they 

follow is influenced by the amount of pheromone, which is formally expressed by an equation 

expressing a probability that contains some parameters.      

2.2 Parameter Setting Problem 

2.2.1 Definition 

As it has been seen, most metaheuristics include parameters to be tuned. However, the 

problem of studying the best setting for them had not been intensively studied until this 
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century. In the past, the first authors that tried to shed light on this problem elaborated some 

guidelines for the practitioners. They recommended some specific values for the parameters 

based on their own experiments; metaheuristics were seen as robust problems solvers that 

exhibit approximately the same performance over a range of problems (see Eiben et al. 

(1999)). It was usual reusing the parameters utilized by other scientists who had faced similar 

problems. In general, the procedure used to set the parameter values was not reported. 

Gradually, the scientific community became convinced that each problem requires a proper fit 

of its parameters. Over recent years there has been an increasing concern in this subject and 

authors, nowadays, tend to follow a methodological procedure and to publish it.  

The formal definition of the problem proposed by Ries (2009) is introduced. Let there be an 

algorithm 𝐴 with 𝑘 parameters, each having a domain  𝜃𝑗  (𝑗 = 1,… , 𝑘), and let  𝜃 be a vector 

of specific values for each parameter in the parameter space Θ. The Parameter Setting 

Problem consists in, for a specific problem instance, finding a set of optimal parameter values 

𝜃∗ ϵ Θ  such that: 

 ∀ 𝜃 ϵ Θ:  𝜃∗ ≻ 𝜃   (1) 

 

2.2.2 Approaches 

The research dedicated to analyze this problem can be classified into two main approaches: 

Parameter Control Strategies and Parameter Tuning Strategies. In the remainder of the 

section, the main differences and a relatively new approach will be introduced. 

- Parameter Control Strategies (PCS) 

These strategies aim for an instance-specific fine-tuning of the parameters. This is done by 

changing the basic algorithm introducing mechanisms to control and adapt the parameter 

values.  

As the execution of a metaheuristic proceeds, it receives information that tries to employ to 

adapt the parameter values and find a better solution regarding the one that would obtain by 

keeping the parameter values unchanged.  

One disadvantage is the complication of modifying the algorithm that can lead to increment 

the computational time needed. 

- Parameter Tuning Strategies (PTS) 

If it can be assumed that there is a fixed robust set of parameter values that provides the best 

possible results, once found, it can be used to solve a particular instance and even different 

instances of the same problem. In other words, the practitioners who follow these strategies 

obtain a set of parameter values that they do not change during the execution of the algorithm 

when solving one instance and reuse to apply to other instances. 

In general, researchers select several representative instances and study which parameter 

values works better and use them later to solve other instances.  
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Although it is not necessary to change the algorithm, finding the adequate set can be a difficult 

and time consuming task requiring statistical methods.  

 

- Instance-specific Parameter Tuning Strategies (IPTS) 

This approach aims to combine the best of the previous strategies: the instance-specific 

tailoring of the metaheuristic parameters (as in the PCS) and the simplicity of executing the 

algorithm with a fixed set of parameter values (as in the PTS).  

The methodology consists in developing an algorithm (independent of the main one) able to 

extract relevant information from the characteristics of an instance and use it to return a 

recommended set of parameter values to solve the instance. The algorithm needs a training 

phase.  

2.2.3 Approach selection 

It is complicated to choose just one approach, as the three have different and interesting 

features.  

 The PTS are a good option for robust algorithms and the unique that does not require 

developing a new algorithm or modifying the main one, but researchers have to 

master statistical techniques. They are the easiest and fastest to use once an 

appropriate set of parameter values is found. 

 The PCS are an alternative when there is no knowledge about the robustness of the 

algorithm or if there are evidences of the lack of it. They require coding skills. 

 The IPTS have several advantages: when the metaheuristic is not robust, they produce 

better solutions than the PTS, and they also incorporate knowledge from a sample of 

different instances (the ones used during the training phase) while the PCS have 

information from just one and have to repeat this entire knowledge gathering for each 

instance, so need much computational time. However, it also presents some important 

disadvantages: there are not many references yet and it can be difficult to collect 

information about the characteristics of the instances (they have to be easily 

measureable and summarize the differences between instances that explain the 

different optimal sets of parameter values for each one). Moreover, it requires 

statistical learning skills. 

2.3 Statistical and optimization techniques  

In this section, some popular statistical and optimization techniques will be briefly introduced. 

These concepts are frequently employed by researchers to select parameter values for 

metaheuristics. Besides, they will be the cornerstone of the proposed methodology.     
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2.3.1 Regression Models 

In general, researchers need to analyze data in depth to better understand the problem they 

are facing or to propose a procedure to tackle it. If they work with correlated variables, it is 

usually interesting to model and explore their relationship. 

 

 

- Introduction 

Regression analysis is a statistical procedure that data analysts employ when there is a single 

variable 𝑦 that depends on 𝑘 independent variables 𝑥1 , … , 𝑥𝑘 . Sometimes, the analyst will 

know exactly the manner in which the selected variables are related, that is, 𝑦 = 𝜙 𝑥1 , … , 𝑥𝑘 . 

However, it is usual that the exact model remains unknown and, in that case, he will have to 

choose a function to approximate 𝜙.     

- The fitted model 

The most basic function represents the linear regression model: 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑘𝑥𝑘  +  𝜀                                                                                               (2)           

The parameters 𝛽0 , … , 𝛽𝑘  are called regression coefficients. The parameter  𝛽𝑗  (1 ≤ 𝑗 ≤ 𝑘) 

represents the expected change in response per unit change in 𝑥𝑗  when all the remaining 

independent variables are held constant. 𝜀 is an error term.  

The model equation can be rewritten in terms of observations as  

 𝑦𝑖 = 𝛽0 +  𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 + 𝜀𝑖               𝑖 = 1,… , 𝑛                                                                       (3) 

The parameters are estimated by the method of least squares, which minimizes the sum of the 

squares of the errors. The least squares function is 

  𝐿 =  𝜀𝑖
2𝑛

𝑖=1 =   (𝑦𝑖 − 𝛽0 −  𝛽𝑗𝑥𝑖𝑗 )𝑘
𝑗=1

2𝑛
𝑖=1                                                                        (4) 

Once the parameters are estimated, the fitted values can be calculated as 

              𝑦 𝑖  = 𝛽 0 +   𝛽 𝑗
𝑘
𝑗=1 𝑥𝑖𝑗                      𝑖 = 1,… , 𝑛                                                                      (5) 

The differences between the observations and their corresponding fitted values are called 

residuals, it can be noted as 

 𝑒𝑖 = 𝑦𝑖 − 𝑦 𝑖                                          𝑖 = 1,… , 𝑛                                                                      (6) 

- Assumptions and model adequacy checking 

The model errors are assumed to be normally and independently distributed random variables 

with mean 0 and variance 𝜎2. This implies that 
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 𝑦𝑖  ~ 𝑁(𝜇𝑖 , 𝜎
2)                                (7) 

where 𝜇𝑖  is the expected value of 𝑦𝑖 , and that the observations are mutually independent. 

As the errors are unobserved, a residual analysis is usually performed to verify the hypothesis 

of the model. It can also be useful to suggest model improvements, propose alternatives 

models and detect atypical observations. There are many graphical tools to assess this 

diagnosis, the most basic are: 

 

 Residuals versus fitted values 

 Normal probability plot of residuals 

 Residuals versus explanatory variables (considered or not in the model) 

- Goodness of fit 

There are several measures to rate the goodness of fit of one model. The prime one is the 

coefficient of multiple determination. It indicates the amount of reduction in the variability of 

𝑦 obtained by using the regressor variables 𝑥1 , … , 𝑥𝑘  in the model. It is calculated as 

 𝑅2 = 1 −
 (𝑦𝑖−𝑦 𝑖)

2𝑛
𝑖=1

 (𝑦𝑖−𝑦  )
2𝑛

𝑖=1

                                                                                                                 (8) 

where 𝑦  represents the mean response. 

𝑅2 is not a good tool to compare nested models as adding a variable to the model will always 

increase 𝑅2, regardless of whether the additional variable is statistically significant. For this 

reason, statisticians developed an adjusted 𝑅2 statistic defined as 

              𝑅𝑎𝑑𝑗
2 = 1 −  

𝑛−1

𝑛−𝑘−1
 (1 − 𝑅2)                                                                                                 (9) 

Another inconvenient of 𝑅2 is the possibility for models that have large values of 𝑅2 to yield 

poor predictions (problem of overfitting). A properly measure to detect this problem is an 

approximate 𝑅2 for prediction, given by 

𝑅𝑝𝑟𝑒𝑑
2 = 1 −

 (𝑦𝑖−𝑦 (𝑖))2𝑛
𝑖=1

 (𝑦𝑖−𝑦  )
2𝑛

𝑖=1

                                                                                                       (10) 

where 𝑦 (𝑖) represents the prediction of the observation 𝑖 calculated from a model with 𝑛 − 1 

observations, all but 𝑖. 

- Hypothesis testing in multiple regression 

 Test for significance of regression 

This is a technique to determine if a linear relationship exists between 𝑦 and 𝑥1 , … , 𝑥𝑘 . The 

hypotheses are: 

 𝐻0: 𝛽1 = ⋯ =  𝛽𝑘 = 0                                                                                                                                      

 𝐻1: 𝛽𝑗 ≠ 0 for at least one 𝑗                                                                                                  (11) 
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The test procedure for 𝐻0 is to compute 

 𝐹0 =
 (𝑦𝑖−𝑦 )2𝑛
𝑖=1 𝑘 

 (𝑦𝑖−𝑦 𝑖)
2𝑛

𝑖=1 (𝑛−𝑘−1) 
                                                                                                        (12) 

and to reject the null hypothesis (𝐻0) if 𝐹0 exceeds 𝐹𝛼,𝑘,𝑛−𝑘−1. 2 

 

 Tests on individual regression coefficients 

The hypotheses for any individual regression coefficient are: 

 𝐻0: 𝛽𝑗 = 0                                                                                                                                                            

 𝐻1: 𝛽𝑗 ≠ 0                                                                                                                                  (13) 

The test statistic is 

              𝑡0 =  
𝛽 𝑗

𝑠𝑒(𝛽 𝑗 )
                                                                                                                                 (14) 

where 𝑠𝑒 represents the standard error. The null hypothesis is rejected if  𝑡0 > 𝑡𝛼
2

,𝑛−𝑘−1. 3 

- Other models 

The measures of goodness of fit and the residual analysis can suggest the suitability of 

contemplating more complex models. For instance, models with quadratic terms 

 𝑦 = 𝛽0 +  𝛽𝑗𝑥𝑗
𝑘
𝑗=1  

+  𝛽𝑗𝑗 𝑥𝑗
2𝑘

𝑗=1 +   𝛽𝑗𝑙 𝑥𝑗
 𝑥𝑙

 𝑘
𝑙=𝑗+1

𝑘−1
𝑗=1  +  𝜀                                    (15) 

can be adequate. 

2.3.2 Design of Experiments 

- Introduction 

Experimenting is an essential part of the scientific method. It enables scientists and engineers 

to discover or confirm something about a process or system. Montgomery (2007) defines an 

experiment as a test or series of tests in which purposeful changes are made to the input 

variables of a process or a system so that researchers may observe and identify the reasons for 

changes that may be observed in the output response.  

A suitable experimental design is indispensable to obtain conclusions in an efficient and 

reliable way. Since experiments involve data that are subject to experimental errors, statistical 

methods are the only objective approach to analysis. 

                                                
2
 It is the 100(1 −  𝛼 ) percentile of the 𝐹 distribution with 𝑘, 𝑛 − 𝑘 − 1 degrees of freedom. 

3
 It is the 100(1 − 

𝛼

2
 ) percentile of the 𝑡 distribution with 𝑛 − 𝑘 − 1 degrees of freedom 
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The features of the faced problem and the available resources determine the best design to 

apply. The most important characteristic to account for is the objective. The main kinds of 

objectives are: 

1. Determining which variables are most influential on the response variables. 

2. Determining where to set some controllable process variables so that the response 

variable is almost always near the desired nominal value. 

3. Determining where to set the process variables so that variability in the response 

variable is small.  

4. Determining where to set the process variables so that the effects of some 

uncontrollable variables are minimized.  

There are three basic principles of experimental design: 

a. Randomization. The allocation of the experimental material and the order in which the 

individual runs of the experiment are to be performed need to be randomly 

determined. This is done because statistical methods require observations to be 

independently distributed random variables and randomization usually makes this 

assumption valid.  

b. Replication or independent repeat of each factor combination. Replication allows 

obtaining an estimate of the experimental error. A second advantage is that if the 

sample mean is used to estimate the true mean response for one of the factor levels in 

the experiment, having independent repetitions permits to precise the estimate of this 

parameter.   

c. Blocking. It is a technique employed to reduce the variability transmitted from 

nuisance factors, in which the experimenter is not interested.  

- Basic approaches 

There is one strategy of experimentation widely used called the best-guess approach. It 

consists on selecting a combination of factors based on the experimenter criteria, test them 

and use these results to decide the next step to take. 

Another important strategy is known as the one-factor-at-a-time approach. This procedure 

recommends selecting a baseline set of levels, then successively varying each factor over its 

range with the other factors held constant at the baseline level. The principal disadvantage is 

that it fails to consider any possible interaction between the factors.  

In the following subsections, other approaches, more elaborated and efficient, are 

commented.  

- The Factorial Design 

In a Factorial Design, all possible combinations of the levels of the factors are investigated. For 

instance, if there are 𝑎 levels of factor A and 𝑏 levels of factor B, each replica includes 𝑎 · 𝑏 

treatment combinations.  
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A special case of the general Factorial Design commonly applied in research work is the 2k 

Factorial Design. It analyzes an experiment with 𝑘 factors, each at only two levels. This design 

provides the smallest number of runs with which 𝑘 factors can be studied in a Factorial Design. 

This characteristic makes it extremely useful in the early stages of experimental work, when 

many factors are likely to be investigated. When using this design, the experimenter assumes 

that the response is approximately linear over the range of the factor levels chosen.   

 

 

 The 22 Design 

A representation of this design is shown in Figure 2.1. By convention, the effect of a factor is 

denoted by a capital Latin letter, so “A” refers to the effect of factor A, “B” refers to the effect 

of factor B and “AB” refers to the effect of the interaction between A and B. The low and high 

levels of A and B are denoted by “-” and “+”, respectively. The four treatment combinations 

are represented by lowercase letters. The low (high) level of any factor in a treatment 

combination is denoted by the absence (presence) of the corresponding letter. (1) is used to 

denote both factors at the low level.  

 
Figure 2.1. Representation of a 2

2
 Design. 

 Calculating effects 

The effect of a factor, also called main effect, is defined as the change in response produced by 

a change in the level of the factor. The interaction AB is the average difference between the 

effect of A at the high level of B and the effect of A at the low level of B.  

The easiest way to estimate effects is using a table of treatments and effects (Table 2.1). It 

provides the scheme to calculate contrasts. The steps to construct the table are: 

1. List the treatments in the first column. 

2. Fill the second one with positive signs. 

3. Write “+” in the columns of main effects if the level of the correspondent factor in that 

treatment is high, otherwise write “-”. 

4. Complete the columns of interactions by multiplying the columns of the individual 

factors.  
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Treatment\Effects I A B AB 

(1) + - - + 

𝑎 + + - - 

𝑏 + - + - 

𝑎𝑏 + + + + 
Table 2.1. Treatments and effects for a 2

2
 Design. 

The contrasts are obtained from the columns: 

 ContrastA = − 1 + 𝑎 − 𝑏 + 𝑎𝑏                                                                                                                       

 ContrastB = − 1 − 𝑎 + 𝑏 + 𝑎𝑏 

 ContrastAB =  1 − 𝑎 − 𝑏 + 𝑎𝑏          (16) 

As there are 4𝑛 observations in 𝑛 replicates, the contrasts are the mean of 4𝑛/2 observations 

less the mean of the other 4𝑛/2. In order to calculate the effects, each contrast expression is 

divided by 2𝑛. For instance: 

 𝐴𝐵 =
 1 −𝑎−𝑏+𝑎𝑏

2𝑛
                                                                                                                      (17) 

 Regression model 

The regression model associated to this design is: 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝜀                                                                                 (18) 

where 𝑥1and 𝑥2 are coded variables that represent the different levels of each factor. 𝑥1is -1 

(1) if the level of the factor A is low (high), and, similarly, 𝑥2 represents the factor B. The 

relationship between the natural and the coded variables is: 

              𝑥1 =  
𝐹𝑎𝑐𝑡𝑜𝑟  𝐴−(𝐹𝑎𝑐𝑡𝑜𝑟  𝐴𝑕𝑖𝑔𝑕− 𝐹𝑎𝑐𝑡𝑜𝑟  𝐴𝑙𝑜𝑤 )

(𝐹𝑎𝑐𝑡𝑜𝑟  𝐴𝑕𝑖𝑔𝑕− 𝐹𝑎𝑐𝑡𝑜𝑟  𝐴𝑙𝑜𝑤 ) 2 
                                                                              (19) 

 The 23 Design 

This design of 8 treatment combinations can be displayed as a cube (Figure 2.2). 

 

Figure 2.2. Representation of a 2
3
 Design. 

The table of treatments and effects is shown in Table 2.2.  
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Treatment\Effects I A B AB C AC BC ABC 

(1) + - - + - + + - 

𝑎 + + - - - - + + 

𝑏 + - + - - + - + 

𝑎𝑏 + + + + - - - - 

𝑐 + - - + + - - + 

𝑎𝑐 + + - - + + - - 

𝑏𝑐 + - + - + - + - 

𝑎𝑏𝑐 + + + + + + + + 
Table 2.2. Treatments and effects for a 2

3
 Design. 

 

 

 The 2k Design 

The previous design can be automatically generalized for more factors. For an effect AB...K, the 

contrast can be obtained by developing the right-hand side of: 

 ContrastAB ...K  =  𝑎 ± 1  𝑏 ± 1 … (𝑘 ± 1)                                                                       (20) 

The sign in each set of parentheses is negative if the factor is included in the effect and 

positive if the factor is not included. When finished expanding the equation, “1” is replaced by 

(1). For instance, in a 25 design, the contrast for ABCD would be 

 ContrastABCD =  𝑎 − 1  𝑏 − 1  𝑐 − 1  𝑑 − 1  𝑒 + 1 = 𝑎𝑏𝑐𝑑𝑒 + 𝑐𝑑𝑒 + 𝑏𝑑𝑒 +

𝑎𝑑𝑒 + 𝑏𝑐𝑒 + 𝑎𝑐𝑒 + 𝑎𝑏𝑒 + 𝑒 + 𝑎𝑏𝑐𝑑 + 𝑐𝑑 + 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 + 𝑎𝑐 + 𝑎𝑏 +  1 − 𝑎 −

𝑏 − 𝑐 − 𝑎𝑏𝑐 − 𝑑 − 𝑎𝑏𝑑 − 𝑎𝑐𝑑 − 𝑏𝑐𝑑 − 𝑎𝑒 − 𝑏𝑒 − 𝑐𝑒 − 𝑎𝑏𝑐𝑒 − 𝑑𝑒 − 𝑎𝑏𝑑𝑒 − 𝑎𝑐𝑑𝑒 −

𝑏𝑐𝑑𝑒                                                                                                                                            (21) 

 A single replicate of the 2k Design 

The 2k Design consists of 𝑛2𝑘  observations with 𝑛2𝑘−1  degrees of freedom. 𝑘 degrees of 

freedom are associated to main effects,  
𝑘
2
  to two-factor interactions,  

𝑘
3
  to three-factor 

interactions and so on.  

For even a moderate number of factors, the total number of treatments is large. Sometimes, 

running several replicates can be infeasible. However, if the experimenter chooses an 

unreplicated design, there is no internal estimate of error.  

 Linearity 

As it has been commented, the 2k Design assumes linearity in the factor effects. Nevertheless, 

introducing interaction terms to a first-order model, the resulting model 

𝑦 = 𝛽0 +  𝛽𝑗𝑥𝑗
𝑘
𝑗=1  

+   𝛽𝑗𝑙 𝑥𝑗
 𝑥𝑙

 𝑘
𝑙=𝑗+1

𝑘−1
𝑗=1  +  𝜀                                                              (22) 

is capable of representing some curvature in the response function. In some cases, a more 

complex model as 
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 𝑦 = 𝛽0 +  𝛽𝑗𝑥𝑗
𝑘
𝑗=1  

+  𝛽𝑗𝑗 𝑥𝑗
2𝑘

𝑗=1 +   𝛽𝑗𝑙 𝑥𝑗
 𝑥𝑙

 𝑘
𝑙=𝑗+1

𝑘−1
𝑗=1  +  𝜀                                    (23) 

can be needed. To estimate these new parameters, the experimenter can add center points to 

the 2k Design. This procedure incorporates 𝑛𝑐  replicates run at the points 𝑥𝑖 = 0  𝑖 = 1,… , 𝑘 .  

- Two-Level Fractional Factorial Design 

As the number of factors in a 2k Factorial Design increases, the number of runs also does. On 

the other hand, the experimenter usually has a limited amount of resources and the runs are 

expensive in economic and/or computational terms. For example, an unreplicated 25 Design 

requires 32 runs. But only 5 of the 31 degrees of freedom of this design are related to main 

effects; 10 correspond to two-factor interactions. The remaining 16 degrees of freedom are 

associated with higher interactions.    

The basic idea of the Two-Level Fractional Factorial Design is that if some interactions can be 

supposed to have negligible effects, information about the others can be obtained by running 

only a fraction of the complete factorial experiment.  

The success of this design stems from three facts: 

1. The sparsity of effects principle. It means that the analyzed process is likely to be 

driven mainly by some of the main effects and low-order interactions. 

2. The projection property. Fractional Factorial Designs can be projected into stronger 

designs in the subset of significant factors.  

3. Sequential experimentation. The runs of several Fractional Factorials Designs can be 

assembled sequentially. 

These designs are classified in three groups: 

1. Resolution III Designs: designs in which no main effect is aliased with any other main 

effect. In other words, all main effects can be individually estimated. 

2. Resolution IV Designs: designs in which no main effect is aliased with any other main 

effect or with any two-factor interaction. 

3. Resolution V Designs: designs in which no main effect or two-factor interaction is 

aliased with any other main effect or two-factor interaction.   

 

 The one-half fraction of the 2k Design or 2k-1 Design 

A factor or a set of them is called generator of a particular fraction if it divides a given full 2k 

Factorial Design. For example, from a 23 Factorial Design, an experimenter could fractionate 

the number of runs by selecting only the treatment combinations that had a “+” in the 𝐴𝐵𝐶 

column. 𝐴𝐵𝐶 would be its generator. Designers would call  

 𝐼 = 𝐴𝐵𝐶                                                                                                                                     (24) 

the defining relation of the design. This relation is used to determine the aliases. In the case of 

the main effect 𝐴, multiplying it by the defining relation yields the aliases of 𝐴 
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 𝐴𝐼 = 𝐴𝐴𝐵𝐶 = 𝐴2𝐵𝐶 → 𝐴 = 𝐵𝐶                                                                                          (25) 

So when the experimenter was estimating 𝐴, he would be really estimating 𝐴 + 𝐵𝐶. 

If, later on, the experimenter wanted to estimate only 𝐴, he could run the observations of the 

other one-half fraction (corresponding to the defining relation 𝐼 = −𝐴𝐵𝐶). He would obtain 

the estimate of 𝐴 − 𝐵𝐶 and combining the two estimates, he could get 𝐴. 

As for the projection property, Figure 2.3 shows the projection of a 23-1 Design into three 22 

Designs. 

 

Figure 2.3. Projection of a 2
3-1

 Design into three 2
2
 Designs. 

 The general 2k-p Fractional Factorial Design 

This design requires the selection of 𝑝 independent generators. Each effect has 2𝑝−1 aliases. 

Researchers should choose the generators in such a way that effects of potential interest were 

not aliased with each other. The 2k-p Design projects into either a full Factorial or a Fractional 

Factorial in any subset of 𝑟 ≤ 𝑘 − 𝑝 of the original factors.  

- The Central Composite Design 

This is the main class of design for fitting a second-order model. It consists of a 2k Factorial or 

Fractional Factorial of resolution V design with 𝑛𝐹 runs, 2𝑘 axial runs and 𝑛𝑐  center runs. A 

representation for 𝑘 = 2 and 𝑘 = 3 is shown in Figure 2.4. This design has two parameters: 

the distance of the axial runs from the design center (𝛼) and the number of center points.  

 
Figure 2.4. Central Composite Designs for two and three factors, respectively. 
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An important property of the designs for fitting a second-order model is rotatability. It means 

that the variance of the predicted response is the same at all points 𝑥 that are at the same 

distance from the design center (provided 𝑥 is in the analyzed region). That is to say, the 

variance of predicted response is constant on spheres. A Central Composite Design is made 

rotatable by the choice of 𝛼 . Montgomery (2007) suggests setting 𝛼 = 𝑛𝐹
1/4 . He also 

recommends executing three to five center runs.   

 

 

 Sequential experimentation 

A practical approach when the experimenter does not know which model will properly fit the 

relationship between his variables consists of: 

1. Applying a 2k Factorial (or Fractional Factorial) Design 

2. Analyzing the goodness of fit.  

3. If there are evidences of lack of fit, introduce the additional runs needed to obtain a 

Central Composite Design. 

 

 Testing for lack of fit 

In order to detail the techniques currently utilized by the scientific community to test for lack 

of fit, it is necessary to introduce some concepts of Analysis of Variance (ANOVA). It will be 

done by describing the procedure for a design with 2 factors.  

o Basic description of ANOVA 

ANOVA is a set of statistical methods to study the differences between means of several 

groups.  

Suppose there is a response variable 𝑦 that is thought to depend on two factors: 𝐴 (with 

𝑎 levels) and 𝐵 (with 𝑏). Let 𝑦𝑖𝑗𝑘  denote the result of a test where 𝑖 (𝑗) represent a specific 

level of the factor 𝐴 (𝐵) and 𝑘 is the replication number. Consider the following notations: 

𝑦𝑖 .. =    𝑦𝑖𝑗𝑘                        𝑦 𝑖.. =
𝑦𝑖..

𝑏𝑛
𝑛
𝑘=1                 𝑖 = 1,… , 𝑎𝑏

𝑗=1                                      (26) 

𝑦.𝑗 . =    𝑦𝑖𝑗𝑘                        𝑦 .𝑗 . =
𝑦 .𝑗 .

𝑎𝑛
𝑛
𝑘=1                 𝑗 = 1,… , 𝑏𝑎

𝑖=1                                     (27) 

𝑦𝑖𝑗 . =   𝑦𝑖𝑗𝑘                                 𝑦 𝑖𝑗 . =
𝑦𝑖𝑗 .

𝑛
𝑛
𝑘=1                𝑖 = 1,… , 𝑎         𝑗 = 1,… , 𝑏        (28) 

𝑦... =     𝑦𝑖𝑗𝑘                𝑦 ... =
𝑦...

𝑎𝑏𝑛
𝑛
𝑘=1

 

𝑏
𝑗=1                         𝑎

𝑖=1                                                (29) 

 

Then, the measure of variability called total corrected sum of squares (𝑆𝑆𝑇) may be written as: 

    𝑦𝑖𝑗𝑘 − 𝑦 … 
2

= 𝑏𝑛  𝑦 𝑖.. − 𝑦 … 
2𝑎

𝑖=1 + 𝑎𝑛  𝑦 .𝑗 . − 𝑦 … 
2𝑏

𝑗=1 +𝑛
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1   

          𝑛  (𝑦 𝑖𝑗 . − 𝑦 𝑖.. − 𝑦 .𝑗 . − 𝑦 ...)
2𝑏

𝑗=1
𝑎
𝑖=1 +    (𝑦𝑖𝑗𝑘 − 𝑦 𝑖𝑗 .)

2𝑛
𝑘=1

𝑏
𝑗=1

𝑎
𝑖=1                        (30) 
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In the previous expression, the total sum of squares has been partitioned into a sum of squares 

(SS) due to factor 𝐴, a sum of squares due to factor 𝐵, a sum of squares due to the interaction 

between 𝐴 and 𝐵, and a sum of squares due to error. Expressed symbolically, 

   

𝑆𝑆𝑇 = 𝑆𝑆𝐴 +  𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 +  𝑆𝑆𝐸                                                                                         (31) 

A sum of squares divided by its degrees of freedom is a mean square (MS).  

 

In this case, three hypothesis tests can be formulated: one for each main effect and one for 

the interaction. For instance, the hypothesis regarding factor 𝐴 are: 

 𝐻0: there are no differences due to factor 𝐴 

 𝐻1: there are differences due to factor 𝐴 

If the null hypotheses are true, then 𝑀𝑆𝐴, 𝑀𝑆𝐵, 𝑀𝑆𝐴𝐵  and 𝑀𝑆𝐸 , all estimate 𝜎2. Furthermore, 

the ratios 𝑀𝑆𝐴 𝑀𝑆𝐸 , 𝑀𝑆𝐵 𝑀𝑆𝐸  and 𝑀𝑆𝐴𝐵 𝑀𝑆𝐸  are distributed as 𝐹  with 𝑎 − 1, 𝑏 − 1 and 

(𝑎 − 1)(𝑏 − 1)  numerator degrees of freedom, respectively, and 𝑎𝑏(𝑛 − 1)  denominator 

degrees of freedom. The correspondent critical regions are the upper tail of the 𝐹distributions.  

ANOVA table summarizes the procedure (Table 2.3). 

Source of 
variation 

Sum of 
squares 

Degrees of 
freedom 

Mean square 𝐹0 

Factor 𝐴  𝑆𝑆𝐴 𝑎 − 1 𝑀𝑆𝐴 = 𝑆𝑆𝐴/(𝑎 − 1)  𝑀𝑆𝐴/𝑀𝑆𝐸 

Factor 𝐵 𝑆𝑆𝐵 𝑏 − 1 𝑀𝑆𝐵 = 𝑆𝑆𝐵/(𝑏 − 1) 𝑀𝑆𝐵/𝑀𝑆𝐸 

𝐴𝐵 Interaction  𝑆𝑆𝐴𝐵  (𝑎 − 1)(𝑏 − 1) 𝑀𝑆𝐴𝐵 = 𝑆𝑆𝐴𝐵/[(𝑎 − 1)(𝑏 − 1)] 𝑀𝑆𝐴𝐵/𝑀𝑆𝐸 
Error 𝑆𝑆𝐸 𝑎𝑏(𝑛 − 1) 𝑀𝑆𝐸 = 𝑆𝑆𝐸/[𝑎𝑏(𝑛 − 1)]  

Total 𝑆𝑆𝑇 𝑎𝑏𝑛 − 1   
Table 2.3. Table ANOVA for a replicated 2

2
 Design. 

This analysis is usually implemented with programmes as R or Minitab. It requires assumptions 

of normality, independence and homogeneity of variance.   

o ANOVA in testing for lack of fit 

Once the basic partitioning of the total sum of squares for the first-order model has been 

done,  

  𝑆𝑆𝑇  = 𝑆𝑆𝐴 +  𝑆𝑆𝐵 +  𝑆𝑆𝐸                                                                                                     (32) 

the sum of squares due to error can be partitioned into a sum of squares due to the 

interaction, a sum of squares due to pure quadratic and a sum of squares due to pure error.  In 

order to do that, the experimenter needs to augment the 2k Design by 𝑛𝑐  center points.  

Regarding to the interaction, a lack-of-fit statistic can be built dividing the sum of squares due 

to interaction by an estimation of error. It can be used to reject the hypothesis about the lack 
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of differences due to interaction. If the effect was (not) negligible, one would observe a small 

(big) value.  

If there is a quadratic curvature in the response function, it can be estimated as the difference 

between the average response of the points in the factorial portion of the design (𝑦 𝐹) and the 

average response of the center points (𝑦 𝐶). If 𝛽11  and 𝛽22  are the coefficients of the pure 

quadratic terms 𝑥1
2 and 𝑥2

2, then 𝑦 𝐹 − 𝑦 𝐶  is an estimate of 𝛽11  + 𝛽22. The sum of squares 

associated with the null hypothesis 

 𝐻0: 𝛽11 +  𝛽22 = 0                                                                                                                        (33) 

can be calculated as  

 𝑆𝑆(𝑃𝑢𝑟𝑒  𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 ) =  
𝑛𝐹𝑛𝐶(𝑦 𝐹−𝑦 𝐶)2

𝑛𝐹+𝑛𝐶
                                                                                              (34) 

The statistic is calculated by dividing this sum of squares by an estimate of the error. As before, 

a big value would indicate lack of fit related to quadratic terms.      

To illustrate the procedure, the table for a replicated 22 Design is shown in Table 2.4. 

Source of variation Sum of 
squares 

Degrees of 
freedom 

Mean square 𝐹0 

Factor 𝐴  𝑆𝑆𝐴 𝑎 − 1 𝑀𝑆𝐴 = 𝑆𝑆𝐴/(𝑎 − 1) 𝑀𝑆𝐴/𝑀𝑆𝐸 
Factor 𝐵 𝑆𝑆𝐵 𝑏 − 1 𝑀𝑆𝐵 = 𝑆𝑆𝐵/(𝑏 − 1) 𝑀𝑆𝐵/𝑀𝑆𝐸 

Error 𝑆𝑆𝐸 𝑎𝑏(𝑛 − 1)   

       (Interaction) 𝑆𝑆(𝐼) 1 𝑀𝑆(𝐼) = 𝑆𝑆(𝐼)/1 𝑀𝑆(𝐼)/𝑀𝑆(𝑃𝐸) 

       (Pure quadratic) 𝑆𝑆(𝑃𝑄) 1 𝑀𝑆(𝑃𝑄) = 𝑆𝑆(𝑃𝑄)/1 𝑀𝑆(𝑃𝑄)/𝑀𝑆(𝑃𝐸) 

       (Pure error) 𝑆𝑆(𝑃𝐸) 𝑎𝑏 𝑛 − 1 − 2 𝑀𝑆 𝑃𝐸 = 𝑆𝑆 𝑃𝐸 /[𝑎𝑏 𝑛 − 1 − 2]  

Total 𝑆𝑆𝑇 𝑎𝑏𝑛 − 1   
Table 2.4. Table ANOVA for a replicated 2

2
 Design. Partitioning of the sum of squares due to error 

into a sum of squares due to interaction, a sum of squares due to pure quadratic and a sum of 

squares due to pure error. 

More information about regression analysis and design of experiments can be found in 

Montgomery (2007) and Myers and Montgomery (2012).  

2.3.3 Multi-Objective Optimization 

In many optimization problems, there are several important objectives that should be 

considered. They are known as multiple-objective optimization problems and can be 

formulated as follows: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑥   𝐹 𝑥 = [𝐹1 𝑥 , 𝐹2 𝑥 ,… , 𝐹𝑘(𝑥)]𝑇  

                        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔𝑗  𝑥 ≤ 0                  𝑗 = 1,… ,𝑚                                                                                                        

  𝑕𝑙 𝑥 = 0                   𝑙 = 1,… , 𝑒                                                            (35) 
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where 𝑘 is the number of objective functions, 𝑚 is the number of inequality constraints and 𝑒 

is the number of equality constraints. 𝑥 ∈ ℝ𝑛  is a vector of decision variables, where 𝑛 

represents the number of independent variables 𝑥𝑖 . 𝐹 𝑥 ∈  ℝ𝑘  is a vector of objective 

functions 𝐹𝑖 𝑥 :ℝ𝑛 → ℝ1.  

A common approach to solve these problems detailed in Caramia et al. (2008) is the weighted-

sum or scalarization method. It minimizes a positively weighted sum of the objectives. In 

mathematical terms: 

 

 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝑥

  𝛾𝑖𝐹𝑖(𝑥)𝑘
𝑖=1  

                        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

   𝛾𝑖 = 1𝑘
𝑖=1  

                             𝑔𝑗  𝑥 ≤ 0                  𝑗 = 1,… ,𝑚                                                                                                        

  𝑕𝑙 𝑥 = 0                   𝑙 = 1,… , 𝑒                                                                                        

  𝛾𝑖  ≥ 0                         𝑖 = 1,… , 𝑛                                                                              (36) 

If the objective functions are measured in different units, transforming data is a good idea. It 

facilitates the use and interpretation of results. There are several approaches in the literature 

to transform functions. Marler et al. (2004) highlight a robust one known as normalization, 

which propose the following transformation:   

 𝐹𝑖
𝑡𝑟𝑎𝑛𝑠   𝑥 =  

𝐹𝑖 𝑥  − 𝐹𝑖
0

𝐹𝑖
𝑚𝑎𝑥  − 𝐹𝑖

0 , 𝐹𝑖
0 > 0                                                                                          (37) 

where  

              𝐹𝑖
0 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  

𝑥
  {𝐹𝑖(𝑥)|𝑥 ∈ ℝ𝑛}                                                                                       (38) 

and  

 𝐹𝑖
𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  

1≤𝑗  ≤𝑘
  𝐹𝑖 𝑥𝑗

∗              (39) 

where 𝑥𝑗
∗ is the point that minimizes the 𝑗th objective function.    
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3. Literature review 

Many authors have carried out investigations to solve the Parameter Setting Problem over the 

last few decades. In this section, the main references are presented. It is interesting to 

highlight the huge variety of methods analyzed in this reduced list.  

 

3.1 Parameter Tuning Strategies 

One of the most referenced proposals was written by Xu et al. (1998), they elaborated a tree 

growing and pruning method based on statistical tests, specifically, the Friedman and 

Wilcoxon tests, to compare the performance of runs executed with different parameter 

values. 

A different strategy was suggested by Park et al. (1997), they applied a nonlinear response 

surface optimization method based on a simplex design as a procedure without much human 

intervention. 

Ramos et al. (2005) made use of logistic regression to model the relationship between the 

probability of obtaining an optimal result and two parameters to tune. Bartz-Beielstein et al. 

(2004) also applied regression analysis, they built a method consisted of a tree based 

regression, which outstands for its simplicity and easiness to interpret. Moreover, it does not 

require any assumption regarding the distribution of the response variable.  

Another common procedure is using a metaheuristic to choose the parameters of other one. 

In this case, logically, it is needed to select a priori the values of the first metaheuristic. It was 

performed, for example, by Tewolde et al. (2009).    

Undoubtedly, the most widespread technique is a combination of statistical methods: design 

of experiments, analysis of variance and regression models (see Parsons et al. (2013), 

Gunawan et al. (2011), Coy et al. (2000) or Kim et al. (1996)). Using these techniques, Ridge et 

al. (2007) put forward a method to combine two response surface models (based on solution 

quality and elapsed time) with desirability functions. They used a minimum run resolution V 

Circumscribed Central Composite Design. In this same group, an interesting investigation was 

performed by Pongcharoen et al. (2006), who employed a one-ninth Fractional Factorial 

Design embedded within a full Latin Square. From a statistical and theoretical point of view, 

the most remarkable paper is one presented by Czarn et al. (2004); the authors brought up the 

issues of blocking to analyze the variation due to seeds, test individual parameters and 

interactions, power analysis, etc.  

3.2 Parameter Control Strategies 

Eiben et al. (1999) provided a classification of the different methods for setting parameter 

values valid for any metaheuristic. Their second objective was surveying several forms of 

control studied by the evolutionary computation community. They compared PTS and PCS, 

backing the second ones, reasoning that a run of an evolutionary algorithm is an intrinsically 

dynamic, adaptive process: “It is intuitively obvious that different values of parameters might 
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be optimal at different stages”. However, they also highlighted the learning cost involved in 

the main control mechanisms and questioned whether it is worthwhile. They concluded that 

the literature needed to be increased and focused on, among several items, analysis of 

interactions between parameters.  

To deeper into this issue, the book of Lobo et al. (2007) is recommended. It contains several 

chapters written by renowned authors about parameter setting in evolutionary algorithms. It 

shows the different approaches during the last 30 years, definitions, classifications, 

applications, etc.    

 

3.3 Instance-specific Parameter Tuning Strategies 

The most noteworthy work came from the thesis of Ries (2009) which relaunched these 

strategies. She proposed a multi-objective parameter tuning (to maximize solution quality 

while minimizing computational time) based on fuzzy logic to solve the Travelling Salesman 

Problem in two case studies, one employing a Guided Local Search and the other using a 

Genetic Algorithm. 

Previously, Hutter et al. (2006) had proposed employing machine learning techniques to build 

models to predict the runtime of search algorithms to solve hard combinatorial problems. 

Specifically, their approach consisted in learning a function that took as input both features of 

an instance and parameter configuration of an algorithm, and returned sufficient statistics to 

estimate the runtime of the algorithm. They used this function to predict which parameter 

settings would result in the lowest run-time for a given instance. The authors uphold their 

strategy by indicating that the reactive approach4 is less general since the implementation is 

typically tightly coupled to a specific algorithm.  

Pavón et al. (2009) developed a methodology to tune the parameters of a genetic algorithm 

for solving the Root Identification Problem. Each problem instance was dealt with a specific 

Bayesian network and case-based reasoning was used as the framework integrator for the 

different instances from the same problem. As a result, they designed a mechanism that 

recommended a parameter configuration according to the characteristics of the problem 

instance at hand and past experience of similar instances.     

In the same direction, an important contribution was made by Dobslaw (2010), who 

introduced the idea of working with an artificial neural network and, after a phase of training, 

use it as an oracle; in other words, requesting for recommended parameters values while 

submitting the instance and its characteristics as inputs. 

  

                                                
4
 Called PCS in this master’s degree thesis. 
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4. Existing methodology 

In order to illustrate the differences between approaches and study in more detail the state of 

the art, in this Chapter three methodologies are described. They are representative of each 

approach and are constantly referenced.   

 

4.1 Parameter Tuning Strategies 

Selected paper: 

Coy, S. P., Golden, B. L., Runger, G. C. and Wasil, E.A. 2000. Using Experimental Design to Find 

Effective Parameter Settings for Heuristics. Journal of Heuristics, 7, 77-97. 

In this paper, the authors explain their proposal based on statistical design of experiments 

and gradient descent. They apply their procedure to solve 19 Capacity-constrained and 15 

Capacity-constrained and Route-length-constrained Vehicle Routing Problems. Two vehicle 

routing heuristics are implemented. Altogether, they perform four experiments. 

Their procedure has four steps: 

- Step 1. Select a representative subset of problems to analyze from the entire set of 

problems. 

For instance, Figure 4.1 shows the selection of problems for the first experiment (first local 

search heuristic and set of 19 Capacity-constrained Vehicle Routing Problem). 

 
Figure 4.1. Scatterplots of the subset of Vehicle Routing Problems. Adapted from Coy et al. 

(2000). Demand of each customer is represented on the vertical axis and its location on the other 

two axes. 

- Step 2. Select the starting level of each parameter, the range over which each parameter will 

be varied, and the amount to change each parameter.  

This can rely on the scientific experiences or a pilot study.   
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- Step 3. Select good parameter settings for each problem in the analysis set using design of 

experiments. 

For the first experiment, they choose a 26-1 Fractional Factorial Experimental Design with 5 

replications. Once the executions according to the design are run, a linear estimate of the 

response surface is used to determine how to set the parameter values (see Table 4.1). They 

find the path of steepest descent on the response surface. The taken steps are indicated in 

Table 4.2. 

 
Table 4.1. Linear estimate of the response surface (first experiment). Adapted from Coy et al. 

(2000). All models are significant at the 0.01 level. A zero indicates that the parameter is not 

significant at the 0.05 level. 

 
Table 4.2. Steps of the path of steepest descent on the response surface (first experiment). 

Adapted from Coy et al. (2000). 

Step 4. Combine the settings obtained in Step 3 to obtain high-quality parameter values.  

They average the results. 

The authors conclude that the obtained results confirm the effectiveness in terms of solution 

quality of their methodology. 
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4.2 Parameter Control Strategies 

Selected paper: 

Lessmann, S., Caserta, M. and Arango, I.M. 2011. Tuning metaheuristics: A data mining based 

approach for particle swarm optimization. Expert Systems with Applications, 38, 12826-12838. 

Most metaheuristics are iterative algorithms: given an initial solution, neighbouring solutions 

are evaluated and used to improve the present one. With the data obtained as the execution 

of the metaheuristic proceeds, the authors propose to construct a prediction model capable of 

estimating suitable parameter values for a subsequent iteration by means of regression. 

Before using an estimated model, it is needed to analyze if it shows high forecasting accuracy. 

Lessman et al. consider several methods for regression: 

- MLR: linear regression model. It is vulnerable to overfitting in high-dimensional settings. 

- SWMLR: stepwise linear regression model. It overcomes problems of overfitting. 

These two models assume an additive and linear relationship between attributes and targets. 

- LSSVM: least-square support vector machine. It augments the objective of MLR by 

incorporating a ridge-penalty to prevent overfitting. It can accommodate kernel functions that 

facilitate nonlinear regression models to be built. 

- REGFOR: random regression forests. This type of model constructs a large number of 

regression trees and averages their predictions to form a forecast.  

- Naïve approach: it always considers an identical setting for each parameter.   

They apply a Particle Swarm Optimization for solving the Water Supply Network Planning 

Problem. In this metaheuristic, each particle (or bird) has three associated vectors that form 

the particle’s signature: a position vector that represents a potential solution, the flying 

velocity vector and the best position vector. The velocity depends on the differences between 

the best position ever reached by the particle or the position of the leader of the swarm and 

the actual position of the particle. The researchers focus on two parameters that weight these 

differences in the equation used to calculate the new particles’ velocity (𝑐1 and 𝑐2). They also 

analyze a parameter that will have influence on the exploration and exploitation capacities of 

the particles (𝑉𝑚𝑎𝑥𝑓𝑎𝑐𝑡𝑜𝑟 ). 

The architecture of the proposed system to determine the parameters is illustrated in Figure 

4.2. There is an initialization phase with 𝐼 cycles; for each one the information of each particle 

(signature) and the parameters used is stored. Later on, the data from successful moves is 

used to build 3 regression models, one per parameter. The following cycle employs them to 

decide the parameters to use and once all particles have moved, the algorithm appends the 

data from successful moves to update the fitted models. This is done for all the subsequent 

cycles.  

Table 4.3 shows the results in terms of R2 for predicting PSO parameters using all available 

data. It indicates that the results of LSSVM and REGFOR are better (their R2 values are around 

0.5 for 𝑐2 and 𝑉𝑚𝑎𝑥𝑓𝑎𝑐𝑡𝑜𝑟 ). The authors conclude that these methods appear to be a viable 

approach.   
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Figure 4.2. Architecture of the system proposed to tackle the Parameter Setting Problem in 

Lessmann et al. (2001). 

 
Table 4.3. Contrasting of alternative forecasting methods in terms of R

2
. Adapted from Lessmann 

et al. (2011). 
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A mixed-model analysis of covariance is considered to study whether observed differences 

across regression models, PSO parameters and dataset sizes are statistically significant. The 

dependent variable is an integrated measure of model performance (𝐼𝑀𝑃) constructed by the 

authors. Table 4.4 confirms the difference of the performance between the methods of 

regression model. 

 
Table 4.4. Results of the mixed-model ANCOVA. Adapted from Lessmann et al. (2011). 

Afterwards, a learning curve analysis is undertaken. Figure 4.3 contains the output for the 

regressions of the parameter 𝑐1 . The IMP statistic measures the relative performance of a 

forecasting model compared to the best model. This plot reveals that REGFOR provides highest 

forecasting accuracy on average and is the least sensitive towards dataset size. The conclusions 

for the study of the others parameters are similar, although, for the 𝑐2 the model that gives the 

best results is the LSSVM-radial. The second is REGFOR. They repeat the analysis in terms of the 

mean absolute percentage error (MAPE) to provide a clearer view on the absolute importance 

of dataset size (Figure 4.4).  

 
Figure 4.3. Forecasting accuracy in terms of the 
performance measure IMP for 𝑐1. Adapted from 

Lessman et al. (2011). 

Figure 4.4. Forecasting accuracy in terms of 
the mean absolute percentage error (MAPE) 
for 𝑐1. Adapted from Lessman et al. (2011). 
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4.3 Instance-specific Parameter Tuning Strategies 

Selected paper: 

Ries, J., Beullens, P. and Salt, D. 2012. Instance-specific multi-objective parameter tuning based 

on fuzzy logic. European Journal of Operational Research, 218, 305-315.    

The authors propose a two-step methodology to select the parameter values for the 

metaheuristic Guided Local Search applied to the Symmetric Travelling Salesman Problem.  

They choose the following instance characteristics to assess their relation with the 

performance of the metaheuristic: size of instance (number of cities) (𝑛), distance metric (𝑠), 

level of clustering (𝑐) and shape of the overall area in which the vertices are distributed (𝑟). 

The algorithm-specific parameters considered are: 

- 𝛼 (0 < 𝛼 < 1) defining the amount of penalisation applied to long edges 

- Neighbour list size 𝑁𝐿(0 < 𝑁𝐿 < 1), a percentage reducing the number of considered 

instance vertices within the Local Search method 

- Number of iterations 𝐼𝑇(0 < 𝐼𝑇 ≤ 240000) 

Firstly, a statistical analysis is performed. The researchers set up a full Factorial Design with 7 

factors (Table 4.5). There are 192 classes of combinations. For each class, 6 instances are 

created with a random instance generator. This generator takes the instance characteristics as 

inputs. Then, each instance is solved with respect to the combination of algorithm-specific 

parameter assigned. Once the solution quality and computational time are noted, a multiple 

regression analysis is conducted for each one of the dependent variables (solution quality and 

computational time). ANOVA results confirm the predictive power of the fitted models (Table 

4.6). They study the statistical significance of the main and the two-way interaction effects.    

 
Table 4.5. Description of the full Factorial Design employed to tackle the Travelling Salesman 

Problem. Adapted from Ries et al. (2012). 

 
Table 4.6. ANOVA results for the model on the solution quality. Adapted from Ries et al. (2012). 
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The second step is based on fuzzy logic. It is a rule-based approach that allows partial set-

membership. The instance based-information and decision maker preferences (𝑝(0 ≤ 𝑝 ≤ 1), 

where 𝑝 = 0 represents the aim of focusing on the best possible quality, and 𝑝 = 1 the desire 

to look for a reasonable solution in the shortest time possible) are mapped on membership 

sets which are described by linguistic terms as “very small”, “small”, etc. Relationships 

between inputs and outputs are captured in a fuzzy logic system. Rules take the following basic 

form: 

 𝐼𝐹 𝑖𝑛𝑝𝑢𝑡1 𝐴𝑁𝐷 𝑖𝑛𝑝𝑢𝑡2 𝐴𝑁𝐷 . . . 𝐴𝑁𝐷 𝑖𝑛𝑝𝑢𝑡𝑖  𝑇𝐻𝐸𝑁 𝑖𝑛𝑝𝑢𝑡𝑘  =  𝑙𝑎𝑟𝑔𝑒                       (37) 

Table 4.7 shows the complete rule-base, which represents the insights proportioned by the 

previous statistical analysis. So for a new instance, one should observe the characteristics of it 

and look for the adequate row in the first 4 columns and write down the parameter values to 

use depending on his preferences.  

Table 4.7. Rule-base for the fuzzy system. Adapted from Ries et al. (2012). 

The researchers concluded that their approach is consistently faster than a traditional non-

instance-specific parameter tuning strategy without significantly affecting solution quality.   
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5. Proposed methodology 

5.1 Introduction 

The proposed methodology to solve the Parameter Setting Problem is inspired by Monteiro et 

al. (2013). These researchers applied several concepts of design of experiments as factorial 

designs, response surface methodology and desirability functions, to choose the parameter 

values of a hybrid algorithm employed to work out the Capacitated Vehicle Routing Problem. 

Their proposal follows the parameter tuning approach. 

As an extension of the previous work, this master’s degree thesis aims to provide more 

evidences about the adequacy of using statistical techniques to solve the Parameter Setting 

Problem. Furthermore, our work presents a general methodology (including validation) and 

some contributions in the basic procedure. They can be summarized as:  

1) Sequential experimentation. A Factorial Design will be implemented and, only if 

the corresponding fitted model shows lack of fit, a second-order Design will be 

applied. So the numbers of runs will be reduced.  

2) An exhaustive analysis of the results.   

3) Taking account of computational time. Although our methodology is focused on 

objective solutions, the computational time required to find them will also be 

considered.   

The rest of this chapter is structured in two sections, the first one proposes a procedure for 

parameter fine-tuning of metaheuristics and the second establishes a general methodology 

which introduces some instructions to validate the selected set of parameter values and 

analyze the results that it provides.   

5.2 Methodology to choose parameter values of a metaheuristic 

A 6-step procedure based on statistical methods is described herein. It is assumed that the 

experimenter has defined a problem and has chosen the metaheuristic that will employ to 

tackle it. Among the family of potential problem instances, he has to decide whether it is 

worthwhile concentrating on all or only on a group of them with a set of specific 

characteristics. This is an important point because if the analyzed instances are homogeneous, 

it will be easier finding a good set of parameter values for all of them. The term ‘good set’ will 

be more precisely described later. In particular, the practitioner needs to select a number of 

benchmark instances to solve. If he wanted to study a heterogeneous group of instances, it 

would be recommendable to split it into homogeneous subgroups and implement the 

procedure on each one.  

The first step involves choosing a subset of the benchmark instances. Obviously, it has to be 

representative regarding the main features because the experimenter, based on it, will extract 

information to identify a good set of parameter values for the subset and this set will be used 

to solve all the benchmark instances. In this step, it is assumed that similar instances will have 

a similar (or equal) optimum set of parameter values.  
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Afterwards, the second step requires selecting the range over which each parameter can be 

set. Some experience or knowledge about the problem and the metaheuristic is essential for 

that. If needed, one pilot study can be carried out to assess the performance of the problem 

for different parameter values. The ranges should be large enough to cover the set of values 

that can give the best objective solution with a high probability. On the other hand, a smaller 

range would allow the experimenter to describe more accurately, with the same resources, 

the relationship between the parameter values and the objective solution.  

For each instance of the subset, the third, fourth and fifth steps are implemented as follows.     

The third step consists of designing an experiment. Initially a Factorial Design at two levels of 

resolution V is studied (see section 2.3.2 for more details). Each metaheuristic parameter is 

considered a factor and the extreme values of its range define its high and low levels. 

According to this design, the algorithm is executed once for each combination of factors. The 

computational time and the objective solution of all runs are stored.  

Afterwards, in the fourth step, two regression models (introduced in section 2.3.1), one for 

the computational time and another for the objective solution, are fitted on the factors (called 

variables in this context). In case of being required, for example if there were non-significant 

variables, a posteriori power analysis5 would be performed. Based on these outputs, it could 

be necessary going back to the third step and modifying the design for building a stronger 

one6. Then, the goodness of fit of each model is calculated. It could be indispensable changing 

the design by adding some center runs to estimate interactions and some axial runs to 

estimate quadratic terms (it would be a Central Composite Design). Before continuing, the 

models assumptions should be checked. If they were violated, further actions as transforming 

the variables should be taken.     

In order to obtain the parameter values, in the fifth step a bi-objective optimization (defined 

in section 2.3.3) is performed with the two normalized estimating regression functions by 

using the weighted-sum method. 

Finally, the sixth step is averaging the parameter values of each instance. It is expected that 

this mean value will provide a good set of parameter values for solving all the benchmark 

instances.    

A summary of the procedure is outlined in Figure 5.1.      

                                                
5
 The power of a statistical test is the probability that it correctly rejects the null hypothesis when the 

null hypothesis is false. In the case of multiple regression, one can analyze the following test: 
 𝐻0: 𝑅2 = 0  
 𝐻1: 𝑅2 > 0 
where 𝑅2  is the coefficient of determination.  In other terms, this test studies whether there are enough 
evidences on the data to reject the hypothesis that the independent variables do not explain the 
variability of the response variable. Consequently, a power analysis will give us the probability of 
rejecting the null hypothesis, which depends on the sample size, the confidence level and the effect size 
considered.  
6
 A stronger design is one with more runs, and accordingly, with more power. For instance, a stronger 

design would be an unreplicated complete or replicated Factorial Design. 



 
41 

 

 
Figure 5.1. Outline of the procedure for parameter fine-tuning. 

 

5.3 General methodology 

An extended proceeding is described below in order to validate the obtained set of parameter 

values and analyze the results provided by it.  

Initially, a set of parameter values 𝜃  is chosen as has been exposed in the precedent section.  

Later on, each benchmark instance of the subset used to select 𝜃  is solved with it and with 

different sets of parameter values 𝜃𝑖 , 𝑖 = 1,… ,𝒩, (equally spaced, randomly selected or 

relatively close to 𝜃  according to the Euclidean distance). To assess the performance of 𝜃  in a 

specific instance regarding the other sets, the associated overall objective results7  are 

analyzed. Given a decision level parameter 𝑝1  (0 < 𝑝1 < 1), if the proportion of overall 

objective results below the one provided by 𝜃  is lower8 than it, 𝜃  is considered a good set of 

parameter values for that benchmark instance. Once the experimenter has examined all the 

benchmark instances of the subset, he can reckon the proportion of them in which 𝜃  has been 

classified as a good set. 𝜃  is validated by comparing this proportion with a predefined 

parameter 𝑝2 (0 < 𝑝2 < 1); if the proportion is upper, then the experimenter has enough 

evidence of the quality of 𝜃  to go on to test it with other instances in the next step.        

If  𝜃  was not validated, the process should be readjusted and restarted. This readjustment can 

be done in several ways, some decisions that can be contemplated are: check for the 

homogeneity of the benchmark instances, increase the number of instances in the chosen 

subset, adapt the ranges, build a stronger design, etc. The best strategy is problem dependent. 

As a consequence, the choice of one should be based primarily on the opinion of the 

experimenter, who will have acquired valuable knowledge from the previous steps.      

Once a set of parameter values has been labelled as valid, it is applied for solving the other 

benchmark instances. To examine the effectiveness of the procedure, if possible, the overall 

objective solutions (one per instance) should be compared with others reported in the 

                                                
7
 The term ‘overall objective result’ refers to the weighted sum of the analyzed variables (objective 

solution and computational time), once they have been standardized.  
8
 For a minimization problem.  

6. Average the parameter values

5.  Obtain adequate parameter values for the metaheuristic

4. Perform a regression analysis 

3. Apply an experimental design 
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1. Choose a subset of benchmark instancies
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literature by performing a t-test for paired samples9. The level of confidence (1 − 𝛼) usually 

recommended is 0.95. If the means did not differ significantly, it could be classified as a 

satisfactory outcome as the proposed methodology, automated and generalizable to other 

problems, would have been proof to be competitive. If the results were unsatisfactory, the 

procedure should be modified and reinitiated.  

It is useful to note that, since the available resources are usually limited, the possible 

readjustments should be also limited (the limit is denoted as 𝒦). Consequently, this process 

could end without a satisfactory set of parameter values. In this case, the set which provided 

on average the best overall objective results would be accepted.         

A scheme of the proposed methodology is shown in Figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
9
 It is a location test used when comparing two sets of measurements to assess whether their 

population means differ. It assumes that the differences between pairs are normally distributed.  
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Figure 5.2. Flowchart representing the proposed methodology. 

Set the parameter values of the procedure (𝒩, 𝒦, α, 𝑝1, 𝑝2) 
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6. Experimental results and data validation 

In order to test the efficiency of the proposed methodology, a hybrid algorithm for solving the 

Multi-Depot Vehicle Routing Problem (which will be described in the following section) has 

been chosen. The algorithm was developed for a previous project carried out by the 

Distributed, Parallel and Collaborative Systems research group of the Open University of 

Catalonia. The title of the paper describing it is “Combining Biased Randomization with 

Iterated Local Search for Solving the Multi-depot Vehicle Routing Problem” (Juan et al. 

(2014)).  

In the first section of this chapter, the problem and the algorithm are introduced, the following 

section describes the experiment, and the last one provides the results.   

6.1 Description of the problem and the project 

1. The Multi-Depot Vehicle Routing Problem (MDVRP) with a limited number of identical 

vehicles per depot 

This problem is an interesting variant of the well-known Capacitated Vehicle Routing Problem 

(CVRP), which consists in planning routes to service a number of customers with a 

homogeneous fleet of vehicles that has a maximum capacity. The main objective of the CVRP is 

to find a feasible solution that minimizes the total transportation cost. 

The MDVRP integrates an allocation problem, in which the customers are assigned to one 

depot, with several CVRPs, one per depot. In the tackled case, there is also a maximum 

number of vehicles associated to each depot. Figure 6.1 shows the common representation of 

a solution for this problem.    

 

 

Figure 6.1. Graphical solution of a MDVRP with 4 depots (squares) and 96 customers (circles). 
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2.  The project 

- The algorithm 

Initially, a priority list of potentially eligible customers (nodes) is computed for each depot. 

The lists are sorted according to a distance-based criterion which is depot-dependent. Then, 

they are randomized through a geometric distribution and are used to allocate customers to 

depots.  

Once a depots-nodes allocation map is designed, an initial solution is obtained by individually 

solving each routing problem using a version of the Clarke & Wright’s Savings (CWS) 

heuristic10. In short, the CWS technique starts building an initial solution in which each route 

include just one customer. Afterwards, the heuristic considers the possibility of merging two 

routes if the total cost is reduced. This operation is repeated in order to find a good (and 

feasible) solution, so-called base solution. For this project, a biased-randomized version was 

developed; while the original version seeks always the best possible merging, this one lists and 

sorts all the options, and apply a biased randomization using a geometric distribution to select 

one. Therefore, multiple solutions can be obtained.       

In the next phase, an Iterated Local Search procedure is implemented. The base solution is 

perturbed by reallocating a concrete percentage of customers and computing a new solution. 

The base solution is updated if the new solution is better. If this last one is also better than the 

best solution found so far, it is improved by means of a fast local search process, and then the 

base and best solutions are updated with the values of the obtained solution. On the other 

hand, if the solution after the perturbation is worse than the current one, an acceptance 

criterion is contemplated and, consequently, the current base can be modified. This phase 

ends after a fixed number of iterations. During the procedure, the top best solutions are stored 

as promising solutions.  

Finally, each one of these top solutions is improved with a post-optimization process.  

- Parameters of the algorithm 

There are three parameters to be tuned in this algorithm: 

 𝑏𝑀: the parameter of the geometric distribution employed to assign nodes to depots. 

 𝑏𝑅: the parameter of the geometric distribution used to select edges (or mergers) in 

the CWS heuristic. 

 𝑝∗: the percentage of nodes that are reallocated in the ILS phase, when perturbing the 

base solution.   

Because of its definitions, these parameters only take values between 0 and 1.  

- Benchmark instances 

33 MDVRP benchmark instances were solved. Table 6.1 lists their identification name and 

some basic features: number of customers, vehicles available at each depot, number of 

                                                
10

 The description of this heuristic can be read in Clarke et al. (1964).  
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depots, maximum route length allowed, vehicles maximum capacity and mean distance 

between nodes. 

Table 6.1. List and description of the benchmark instances. 

                                                
11

 Some instances do not have a restriction about the maximum route length allowed. In order to 
implement the algorithm and apply some statistical techniques, a sufficiently large value was assigned 
when needed (5000).   

Instance # nodes # vehicles per depot # depots Max. route length
11

 Capacity Mean distance 

p01 50 4 4 ∞ 80 29.45 

p02 50 2 4 ∞ 160 29.45 

p03 75 3 5 ∞ 140 35.92 

p04 100 8 2                                  ∞ 100 43.48 

p05 100 5 2 ∞ 200 43.48 

p06 100 6 3 ∞ 100 43.48 

p07 100 4 4 ∞ 100 43.48 

p08 249 14 2 310 500 116.69 

p09 249 12 3 310 500 116.69 

p10 249 8 4 310 500 116.69 

p11 249 6 5 310 500 116.69 

p12 80 5 2 ∞ 60 78.96 

p13 80 5 2 200 60 78.96 

p14 80 5 2 180 60 78.96 

p15 160 5 4 ∞ 60 97.21 

p16 160 5 4 200 60 97.21 

p17 160 5 4 180 60 97.21 

p18 240 5 6 ∞ 60 143.17 

p19 240 5 6 200 60 143.17 

p20 240 5 6 180 60 143.17 

p21 360 5 9 ∞ 60 176.25 

p22 360 5 9 200 60 176.25 

p23 360 5 9 180 60 176.25 

pr01 48 1 4 500 200 47.50 

pr02 96 2 4 480 195 57.55 

pr03 144 3 4 460 190 76.97 

pr04 192 4 4 440 185 81.35 

pr05 240 5 4 420 180 94.94 

pr06 288 6 4 400 175 117.17 

pr07 72 1 6 500 200 60.30 

pr08 144 2 6 475 190 72.35 

pr09 216 3 6 450 180 97.58 

pr10 288 4 6 425 170 116.35 
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The principal reasons to choose these characteristics are that they are informative, useful to 

differentiate subgroups, easy to obtain/calculate and usually employed in the literature.  

Other features could have been selected. For instance, Coy et al. (2000) analyze, when solving 

the CVRP, the distribution of customers (it is classified as random or symmetric), the 

distribution of demand (random or clustered) and the location of the depot. Ries et al. (2009) 

studies a measure of clustering for the Travelling Salesman Problem.    

6.2 Description of the experiment 

0.1 Technical details 

The statistical analysis has been performed with R (version 2.15.0), a freely available language 

and environment for statistical computing and graphics. It is widely used among statisticians 

and other scientists. It is an implementation of/ influenced by S, a statistical interpreted 

language. R supports procedural and object-oriented programming. Compared with other 

popular statistical software, this one presents two major advantages: it is extensible through 

functions and extensions, and it has a very active community which creates and shares 

packages (including helping manuals), solves doubts, organizes conferences and courses, etc.   

Concretely, the following packages have been used:  

- rsm (Lenth (2009)): it provides several functions to facilitate classical response-

surface methods.  

- cluster: it includes cluster analysis methods.  

- scatterplot3d: it helps to visualize data in 3 dimensions.  

The G*Power program12 (Faul et al. (2009)) has been employed to do the power analysis. This 

software was developed by researchers of the Universität Düsseldorf (Germany) to compute 

statistical power analyses for many different t tests, F tests, χ2 tests, z tests and some exact 

tests. It is free, user-friendly (it is easy to use and there are many tutorials), based on one of 

the most referenced books of this topic, Cohen (1988), and has been used in several research 

(for instance, in Czarn et al. (2004)).  

In this project, we have focused our analysis on the F test for multiple regression13.    

0.2 Fitness landscape analysis     

Before starting to implement our methodology, it is worthwhile to study the search space and 

the objective function of our problem. As it has been commented before, the parameter 

values range between 0 and 1. Figures 6.2 and 6.3 illustrate the fitness landscape for two 

instances, using a specific seed, a fixed value for the third parameter14 and running the 

algorithm for 11 equally spaced values (ranging from 0 to 1) of the first parameter and 11 of 

the second one. The selected instances, p03 and p09, are one of the easiest (requires less 

                                                
12

 It can be downloaded from: http://www.gpower.hhu.de/ 
13

 This test indicates whether the parameters explain a positive percentage of the variability of a 
response variable. 
14

 As it will be explained later, we will focus our study on the first two parameters.  

http://www.gpower.hhu.de/
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computational time to be solved) and the most difficult instances, respectively. It can be 

concluded that these instances have rugged fitness landscapes.  

  

1. Selection of a representative subset of instances 

This first step was performed by using the Partitioning Around Medoids15 (PAM) algorithm. 

The introduced input was the data in Table 6.1 standardized. The results were 𝑘 clusters of 

homogeneous instances and one medoid for each cluster. These medoids made up the subset 

of instances. Accordingly, each cluster of instances was represented by one instance, 

independently of the cluster size.    

o Value of 𝑘 

Table 6.2 shows the relation between the number of groups and the average silhouette16, a 

distance-based measure. Usually, one is interested in maximizing the average silhouette 

without having a high number of clusters, which would difficult the interpretation and, in our 

case, would suppose to analyze many groups. Taking into account these considerations, a 

recommended value for 𝑘 is 4. The obtained clusters with 4 groups are displayed in Table 6.3.   

 

 

 

                                                
15

The PAM algorithm is a 𝑘-medoids clustering method that starts from an initial set of 𝑘 medoids and 
iteratively replaces one of them by one of the non-medoids if it improves the total distance of the 
resulting clustering. In this analysis, the Euclidean distance is used.  
An excellent book of statistical learning, including clustering methods, has been written by Hastie et al. 
(2009). 
16

 In mathematical terms, the silhouette of an object 𝑖 is: 

 𝑠 𝑖 =  
𝑏 𝑖 −𝑎(𝑖)

max ⁡(𝑏 𝑖 ,𝑎 𝑖 )
 

where, 𝑎(𝑖) is the mean distance between 𝑖 and the objects from the same cluster, and 𝑏(𝑖) is the mean 
distance between 𝑖 and the objects from other clusters.  

Figure 6.2. Surface plot of the objective solution 
(total cost) versus 𝑏𝑀 and 𝑏𝑅 for the instance p03. 

 

Figure 6.3. Surface plot of the objective solution 
(total cost) versus 𝑏𝑀 and 𝑏𝑅 for the instance p09. 
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 Table 6.2. Analysis of the number of clusters to include in the PAM algorithm. 

 
 
 
 

 
 
 
 

Table 6.3. Clustering of the benchmark instances. 

 

2. Selection of ranges: pilot study 

The 4 instances selected with the PAM algorithm were solved to gather knowledge about the 

problem we were facing. 4 equally spaced values were analyzed for each parameter: 0.125, 

0.375, 0.625 and 0.875. Each instance was solved with 4 different seeds17, as it has been 

shown that they can have an important influence on the solutions of algorithms including 

metaheuristics (see Juan et al. (2014), Monteiro et al. (2013), and Czarn et al. (2004)). Hence, a 

total of 256 runs per chosen instance were executed. The objective solutions for different 

seeds were aggregated by calculating the lower endpoint of the confidence interval for the 

population mean18. This measure will be denoted as ‘Total cost (eCI)’.  

The results for the instance p07 are illustrated in a 3D-scatterplot (Figure 6.4). Each aggregated 

observation is represented by a point, the axes give information of its parameter values and 

the colour of the point reveals the rank of the total cost (eCI), the light yellow tones indicate 

                                                
17

 The number of seeds, as the number of parameter values, was decided based on the computational 
time.  
18

 In statistics, the confidence interval for a population mean is calculated  with this formula: 

 𝑋  ± 𝑡
1−

∝

2
,𝑛−1

·
𝑠

 𝑛
 

Where 𝑋  represents the sample mean, 𝛼 the confidence level, 𝑛 the sample size, 𝑠 the sample deviation 

and the term 𝑡
1−

∝

2
,𝑛−1

 is the 100(1 − 
∝

2
 ) percentile of the 𝑡 distribution with 𝑛 − 1 degrees of freedom.  

In this case, 𝑛 is the number of seeds (4) and 𝛼 is 0.05, a usually recommended value.   
Employing this measure is better than using only the mean because we want to find a good solution, not 
a good mean; at the end, we will just store the minimum of the objective solutions found with the 
selected set of parameters values. Therefore, by taking into account the standard deviation, we will 
choose parameter values that provide a low total cost on average and/or that have a high variance, 
which means that for some seed the total cost will be relatively far from the mean.  
Another good option would be to select the minimum value, it could be better if we worked with few 
seeds and all the analysis was performed with the same ones.  
In this project, we selected the first one because it is a more robust measure.     

𝑘 Average silhouette 

2 0.258 

3 0.303 

4 0.391 

5 0.372 

6 0.352 

7 0.402 

8 0.393 

9 0.422 

Medoids Clusters 

p07 p01, p02, p03, p04, p05, p06, p07, p12, p15 

p09 p08 , p09, p10, p11 

p19 p18, p19, p20, p21, p22, p23, pr06, pr10 

pr03 p13, p14, p16, p17, pr01, pr02, pr03, pr04, pr05, pr07, pr08, pr09 
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the worst outputs and the dark red tones highlight the best. It can be concluded that the 

parameter 𝒑∗ does not influence the total cost. We expected to observe an effect of this 

parameter; however, the absence of it could be due to the predominance of the other studied 

effects. This pattern is repeated in all 4 instances. Therefore, from here, we considered a fixed 

value for this parameter.   

 

Figure 6.4. Scatterplot of total cost (eCI) versus algorithm parameters for the instance p07. 

The next step consisted on better studying the relation between the parameters 𝑏𝑀 and 𝑏𝑅. 

We solved the selected instances with 25 sets of parameters values as Figure 6.5 indicates. 4 

seeds were considered, so the solutions of 100 runs were stored. Then the values for other 

sets were estimated by linear interpolation.  

 
Figure 6.5. Sets of parameters values analyzed in the pilot study. 

Figure 6.6 show the results for each instance. It can be concluded that the second parameter, 

𝑏𝑅, influents more than the first one. The results of the instance p19 do not change for a wide 

set of values of both parameters, that is to say, the algorithm is very robust for that instance. 

Instead of choosing a range, the minimum values were used in the next step. 
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Minimum total cost (eCI): 896.0814 
 
Parameters values: 

  𝑏𝑀 =  0.744                                  
  𝑏𝑅 =  0.256 

 

 

Minimum total cost (eCI): 3922.647 
 
Parameters values: 

𝑏𝑀 =  0.000                                                            
𝑏𝑅 =  0.256 

 

 

Minimum total cost (eCI): 3872.709 
 
Parameters values: 
                    𝑏𝑀 =  0.487         

𝑏𝑅 =  0.256 
 

 

Minimum total cost (eCI): 1813.586 
 
Parameters values: 

     𝑏𝑀 =  0.487                              
𝑏𝑅 =  0.487 

 

Figure 6.6. Left: contour plots of total cost (eCI) versus 𝑏𝑀 and 𝑏𝑅. From top to bottom: 

instance p07, p09, p19 and pr03. The minimum values are indicated with a circle. Right: 

information about the exact value of the minimum and the parameter values where they are 

found. 
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3. Estimation of optimal values  

o Design of the experiment 

A Central Composite Design of 2 factors was implemented; the replicates were based on 

different seeds. Considering the computational time availability, the difficulty of the problem 

and the power analysis19, which was realized before estimating the regression models (i.e. “a 

priori”), a number of 4 replicates was initially chosen. Figure 6.7 represents the design for the 

first instance of the subset. It is centred on the values estimated in the previous section. The 

difference between points was set at 0.05 for both parameters20.   

 

Figure 6.7. Central Composite Design for the instance p07. We decided to set 𝛼 = 0 to ensure 

that we did not set values greater than 1 or smaller than 0. Although this would not have 

happened with this instance, we prefer to use the same design for all instances. Hence, the 

resulting design is a 32 Factorial Design. 

o Estimations   

Figure 6.8 shows the objective solutions for instance p09; each point represents the lower  

endpoint of the confidence interval for the population mean calculated with 4 observations 

(replicates) and the black asterisks are the mean for each value of 𝑏𝑀. The lines are not 

parallel, so it can be deduced that there is an interaction between the parameters. From these 

combinations, we will select 𝑏𝑀 =  0.05  and 𝑏𝑅 =  0.256 in order to minimize the total cost 

(eCI) (left plot). However, to minimize the computational time, we would choose 𝑏𝑀 = 0.05 

and 𝑏𝑅 = 0.206 (right plot).  

                                                
19

 For a large effect size, two predictors and a sample size of 36 (4 seeds · 9 observations per seed), at 
the 95% confidence level, the power is 0.87. The large effect size is the proposed in Cohen (1988). 
20

 It was based on several experiments. It had to be big enough to obtain different solutions for each 
point but sufficiently small, to work in the neighborhood of the central point, where a local minimum is 
expected to be.   
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Figure 6.8. Results for the instance p09.  Left: total cost (eCI). Right: computational time in seconds. 

In multi-objective optimization there is usually a trade-off as in this case, the best solution 

depends on the response variable that is being considered. A possible solution consists in 

reckoning a weighted mean by assigning a weight to each response variable. In this master’s 

degree thesis, we will just focus on the total cost due to its major importance. Just for 

illustration purposes, we present the bi-objective problem for the instance p09 and a possible 

solution (Figure 6.9).       

 

Figure 6.9. Bi-objective optimization. Results for the instance p09 (standardized data). Weights: 

0.6, total cost (eCI) and 0.4, computational time. 

This experiment was carried out also for the instances p07 and pr03. However, it did not make 

sense for the instance p19, as its variance near the minimum is too low. The minimum values, 

for each analized instance, were found at: 

  

 

 

  

Table 6.4. Best set of parameter values for each cluster of the benchmark instances. 

Medoid Set 

p07 𝑏𝑀 =  0.794, 𝑏𝑅 =  0.256 

p09 𝑏𝑀 =  0.050, 𝑏𝑅 =  0.256 

p19 𝑏𝑀 =  0.487, 𝑏𝑅 =  0.487 

pr03 𝑏𝑀 =  0.437, 𝑏𝑅 =  0.206 
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At this point, we tried to estimate two regression models, one per response variable, with the 

data of each instance. Nevertheless, the goodness of fit of the obtained models (both linear 

and quadratic) was extremely low. Therefore, we opted for proposing the previous sets of 

parameter values (Table 6.4). 

The final step was averaging the parameter values. As the contourplots suggest that some 

instances are much more robust that others, we decided to give more weight21 to the most 

variable. The proposed set of parameter values was: 𝑏𝑀 =  0.517, 𝑏𝑅 =  0.284. 

6.3 Results analysis 

Following the next step of the proposed methodology, we tested the proposed set on the 

instances of the subset and compared the results with those provided by other sets (9 random 

sets were considered). Each instance was solved for 4 different seeds and the solution with the 

lowest total cost was stored. The results22 are summarized in Table 6.5. Considering the 

number of sets and the ties, our set can be classified as valid; it provides better results that the 

ones expected due to random.   

  Rank 

p07 5 

p09               1  

p19               5.5 (1-10)  

pr03  3.5 (2-5)  

Table 6.5. Rank of our results for the instances of the subset compared with 9 random sets of 

parameter values. In case of ties, the parentheses reveal which ranks present them. 

Table 6.6 shows the results when solving all instances with the proposed sets of parameter 

values.  

  PS Rank RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9 

p01 578.2 8 576.9 578.2 578.2 578.2 578.2 576.9 576.9 576.9 576.9 

p02 476.7 5 473.9 476.7 476.7 476.7 476.7 476.7 473.9 476.7 476.7 

p03 641.2 5.5 641.2 641.2 641.2 641.2 641.2 641.2 641.2 641.2 643.7 

p04 1015.5 3 1011.0 1019.0 1020.3 1018.2 1019.8 1030.7 1030.8 1011.0 1036.6 

p05 752.9 1 755.7 755.0 762.4 755.0 763.4 766.3 762.4 765.0 767.8 

p06 882.1 4 880.4 882.2 880.4 882.2 883.0 881.5 887.2 884.3 886.1 

p07 899.8 5 902.2 898.0 898.9 898.0 897.8 904.3 901.6 900.6 905.6 

p12 1319.0 6.5 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 

p15 2562.9 4 2562.9 2562.9 2562.9 2562.9 2562.9 2564.0 2564.0 2564.0 2564.0 

p08 4441.2 1 4441.5 4443.6 4453.9 4446.5 4449.0 4457.4 4468.3 4442.8 4477.5 

p09 3922.3 1 3928.3 3927.9 3961.1 3925.8 3930.1 3960.3 3960.3 3960.3 3967.3 

                                                
21

 Concretely, the coefficient of variation (which is the ratio of the standard deviation to the mean) of 
each instance was calculated. The weight of an instance was defined as the coefficient for that instance 
divided by the sum of all. 
22

 The expected rank due to random would be 5.5. In the case of a very robust solution, for example for 
the instance p19, it would also be 5.5.  
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p10 3680.0 2 3692.3 3690.4 3699.1 3679.6 3690.7 3701.2 3709.6 3699.0 3713.6 

p11 3574.8 1 3594.4 3581.4 3582.5 3589.0 3591.4 3594.0 3594.0 3594.0 3594.0 

p18 3825.8 4 3825.8 3823.7 3825.8 3825.8 3825.8 3825.8 3825.8 3825.8 3825.8 

p19 3869.6 5.5 3869.6 3869.6 3869.6 3869.6 3869.6 3869.6 3869.6 3869.6 3869.6 

p20 4091.5 7 4091.5 4091.5 4091.5 4091.5 4091.5 4085.9 4080.3 4091.5 4085.9 

p21 5660.7 2 5658.4 5678.4 5690.8 5678.4 5678.4 5690.8 5690.8 5690.8 5690.8 

p22 5801.0 3 5803.9 5803.9 5801.0 5806.4 5801.0 5801.0 5805.7 5801.0 5806.4 

p23 6140.0 3 6140.0 6145.6 6145.6 6145.6 6145.6 6140.0 6140.0 6145.6 6140.0 

pr06 2706.1 2 2713.0 2711.8 2716.8 2699.9 2715.1 2719.9 2725.4 2711.7 2730.8 

pr10 3021.4 1 3027.1 3027.0 3056.9 3082.4 3037.5 3033.6 3037.8 3047.9 3056.7 

p13 1319.0 5.5 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 1319.0 

p14 1360.1 5.5 1360.1 1360.1 1360.1 1360.1 1360.1 1360.1 1360.1 1360.1 1360.1 

p16 2585.4 3.5 2585.4 2585.4 2585.4 2585.4 2585.4 2586.1 2586.1 2585.4 2586.1 

p17 2725.8 6.5 2725.8 2725.8 2725.8 2725.8 2725.8 2725.8 2720.2 2725.8 2720.2 

pr01 861.3 3 861.3 861.3 861.3 861.3 861.3 861.3 861.3 861.3 867.8 

pr02 1316.0 8 1314.2 1314.4 1316.0 1309.0 1314.4 1310.7 1316.0 1310.7 1316.0 

pr03 1813.6 3.5 1813.6 1812.3 1813.6 1813.6 1813.6 1813.6 1818.5 1813.8 1821.4 

pr04 2089.9 3 2107.5 2103.6 2086.4 2104.4 2100.0 2104.4 2124.8 2087.7 2101.9 

pr05 2368.6 3 2360.5 2373.1 2371.3 2375.4 2365.9 2372.0 2373.2 2370.7 2380.6 

pr07 1109.2 4.5 1109.2 1109.2 1109.2 1109.2 1109.2 1109.2 1109.2 1109.2 1110.4 

pr08 1678.9 3 1678.9 1678.9 1679.9 1678.9 1678.9 1680.6 1682.9 1679.9 1686.8 

pr09 2152.0 5 2143.1 2175.5 2149.2 2147.2 2147.2 2173.6 2178.2 2164.0 2187.4 

Table 6.6. Table of results. It includes our results, the ranks and the results provided by 9 random sets. 

PS: Proposed set. RS: Random set. Gray: instances of the subset. Purple: worse results compared with 

our results. Green: better results. Orange: equal results. Data rounded to one decimal place. 

This data is more concisely presented in Table 6.7, which shows the average rank.  

 

Average rank 

33 inst. 4 

29 inst.  4 

Table 6.7. Average rank of our results for all benchmark instances and same measure without 

considering the four instances of the subset. 

The coloured cells of Table 6.6 reveal that there is no set of the 9 randomly generated that 

performs ‘always’ better than our one and, at the same time, there is no set that performs 

‘always’ worse; the better values are not concentrated in a column, and there is no clear 

pattern. Therefore, it seems that the best set of the 10 reported is highly instance-dependent. 

Even though, our proposed set obtains an average rank of 4, performing especially well for the 

instances of the second and the third clusters.    

Finally, we compared our results with the ones provided by the set of parameter values that 

the authors of the project proposed23. As before, each instance was solved for 4 seeds and 

                                                
23

 In order to be able to compare results, the ones from the paper were recalculated to adjust them to 
the number of seeds (4), number of iterations and computer used in this master’s degree thesis.    
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only the solution with the lowest total cost was stored. The differences are shown in Table 6.8. 

The mean difference is -0.08%, indicating that the results obtained with the proposed 

methodology are significantly24 better.     

 
OR PR Difference (%) 

p01 578.2 578.5 -0.06% 

p02 476.7 473.9 0.59% 

p03 641.2 641.2 0.00% 

p04 1015.5 1020.0 -0.44% 

p05 752.9 760.3 -0.98% 

p06 882.1 882.6 -0.06% 

p07 899.8 897.0 0.31% 

p12 1319.0 1319.0 0.00% 

p15 2562.9 2562.3 0.03% 

p08 4441.2 4448.1 -0.16% 

p09 3922.3 3929.9 -0.19% 

p10 3680.0 3680.4 -0.01% 

p11 3574.8 3578.7 -0.11% 

p18 3825.8 3823.7 0.05% 

p19 3869.6 3869.6 0.00% 

p20 4091.5 4091.5 0.00% 

p21 5660.7 5684.3 -0.41% 

p22 5801.0 5803.9 -0.05% 

p23 6140.0 6145.4 -0.09% 

pr06 2706.1 2714.5 -0.31% 

pr10 3021.4 3038.9 -0.58% 

p13 1319.0 1319.0 0.00% 

p14 1360.1 1360.1 0.00% 

p16 2585.4 2589.4 -0.15% 

p17 2725.8 2725.8 0.00% 

pr01 861.3 861.3 0.00% 

pr02 1316.0 1314.4 0.12% 

pr03 1813.6 1813.8 -0.01% 

pr04 2089.9 2092.3 -0.11% 

pr05 2368.6 2367.7 0.04% 

pr07 1109.2 1109.2 0.00% 

pr08 1678.9 1678.9 0.00% 

pr09 2152.0 2152.4 -0.02% 

Table 6.8. Comparison between our results and the ones provided by the set proposed in the 

project. OR: our results. PR: project results. 

                                                
24

 The Wilcoxon signed Rank test with continuity correction was applied as the data was not normal. This 
test is a non-parametric test for paired data to analyze differences between population mean ranks. The 
p-value was 0.01.   
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It is important to note that these are preliminary results. In order to confirm our results, it 

would be necessary to repeat this comparison with a higher number of seeds. 

- The set proposed by the authors of the project 

The fine-tuning process performed by the authors provided this proposal:

 𝑏𝑀 ~ 𝑈 (0.5, 0.8)   

              𝑏𝑅 ~ 𝑈 (0.1, 0.2) 

               𝑝 ~ 𝑈 (0.1, 0.2)    

Instead of choosing a constant value, a Uniform distribution was selected for each parameter.  

So at each iteration of the algorithm execution, three values are simulated using these 

distributions. As the number of iterations considered in the hybrid algorithm is relatively high, 

this procedure incorporates more diversity of results, which can lead to better solutions.  

Based on this idea, some runs were executed to try to improve our results. The third 

parameter, as in the previous experiment, was set constant. To simplify the analysis, it was 

assumed that there was no interaction25 between the first parameter (𝑏𝑀) and the second one 

(𝑏𝑅). Therefore, two sets of runs were studied. The first one had fixed and equal values for the 

distribution of the second parameter (i.e. 𝑏𝑅~ U  abR , bbR  ,  where abR = bbR ). Similarly, the 

values of the first distribution were set for the second set of runs (𝑏𝑀~ U  abM , bbM  ,  where 

abM = bbM ). The 4 instances of the subset, 4 seeds and 7 equidistant values (ranging from 0 to 

1) were analyzed. The solutions are shown in Figure 6.10.    

  

  

                                                
25

 Figure 17 does not indicate the existence of it, which makes this assumption more realistic.    
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Figure 6.10. Left: contour plots of total cost (eCI) versus the parameters of the distribution of  𝑏𝑀 

for a fixed 𝑏𝑅. From top to bottom: instance p07, p09, p19, pr03 and all four instances
26

. The 

minimum values are indicated with a circle. Right: contour plots of total cost (eCI) versus the 

parameters of the distribution of  𝑏𝑅 for a fixed 𝑏𝑀. 

Afterwards we compared the results obtained with constant parameter values with the ones 

provided by this new proposal, 𝑏𝑀 ~ 𝑈 (0.154, 0.513)  and 𝑏𝑅 ~ 𝑈 (0, 0.333) . Table 6.9 

shows the differences between results.     

 

 

                                                
26

 For drawing the fifth plot, the data of the four instances was gathered, once standardized. The linear 
interpolation used for this average the duplicate values. As there are differences between the plots of 
the instances, using only the average of the parameter values proposed for each one could have lead to 
inefficient results. For example, if we averaged the proposed sets for the instances 07 and 09, the result 
would provide poor values for both parameters. This is the reason why we opted for this method.   
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OR (UD) OR Difference (%) 

p01 578.2 578.2 0.00% 

p02 476.7 476.7 0.00% 

p03 641.2 641.2 0.00% 

p04 1011.5 1015.5 -0.39% 

p05 755.0 752.9 0.28% 

p06 880.4 882.1 -0.19% 

p07 897.0 899.8 -0.31% 

p12 1319.0 1319.0 0.00% 

p15 2562.9 2562.9 0.00% 

p08 4441.9 4441.2 0.02% 

p09 3925.5 3922.3 0.08% 

p10 3677.4 3680.0 -0.07% 

p11 3583.1 3574.8 0.23% 

p18 3825.8 3825.8 0.00% 

p19 3869.6 3869.6 0.00% 

p20 4085.9 4091.5 -0.14% 

p21 5678.4 5660.7 0.31% 

p22 5801.0 5801.0 0.00% 

p23 6145.6 6140.0 0.09% 

pr06 2702.6 2706.1 -0.13% 

pr10 3035.1 3021.4 0.45% 

p13 1319.0 1319.0 0.00% 

p14 1360.1 1360.1 0.00% 

p16 2589.3 2585.4 0.15% 

p17 2720.2 2725.8 -0.20% 

pr01 861.3 861.3 0.00% 

pr02 1309.0 1316.0 -0.53% 

pr03 1813.6 1813.6 0.00% 

pr04 2100.5 2089.9 0.51% 

pr05 2378.5 2368.6 0.42% 

pr07 1109.2 1109.2 0.00% 

pr08 1678.9 1678.9 0.00% 

pr09 2147.5 2152.0 -0.21% 

Table 6.9. Comparison between the results obtained with constant values and with parameters 

following Uniform distributions. OR: our results. OR (UD): our results (Uniform distributions). 

Although the new results are better for some instances, the average difference (0.01%) does 

not indicate a general improvement.  
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- Final comments of the experiment 

The performed experiment has enabled us to show some statistical approaches to tackle the 

Parameter Setting Problem. In order to improve it, design of experiments could be applied 

when tuning the parameter of the distributions. Furthermore, it would be fruitful to test 

several distributions to find the most suitable (e.g. Normal or Log-normal distributions). Other 

interesting change would consist in setting some values for the distribution that boost the 

diversity of results (e.g. 𝑏𝑀~ U  0,1 ) and modifying the algorithm to store data about the 

selected parameter and the solution for each iteration. After an initial phase, we would know 

which parameter values provide the best values and we could use them for the next iterations. 

This could be considered a Control Parameter Strategy.    
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7. Conclusions and future research 

7.1 Main conclusions 

This master’s degree thesis has addressed the Parameter Setting Problem in metaheuristics 

focusing on the use of different statistical techniques.  

Metaheuristics are potent procedures for solving NP-hard problems. They can provide 

sufficiently good solutions in a relatively short amount of time. Their use has grown during 

the last decades in a high number of fields. Despite being easy to adapt to different problems, 

there are many kinds of metaheuristics. The reason is explained by the multidisciplinary 

theorem called “No free lunch”. In this context, it states that there is no metaheuristic that 

outperforms the others in all the problems. An introduction of metaheuristics has been shown 

in section 2.1. Studying the literature, it has been seen that, in the past, researches did not use 

to clearly report how they chose the parameter values of the metaheuristics. However, it has 

changed, and nowadays, we find an increasing interest for this problem as the influence of 

these values on the performance of metaheuristics has been proven. In fact, there are several 

approaches: the Parameter Tuning Strategies, which aim to find a robust set of parameter 

values for a group of instances by using statistical techniques, the Parameter Control 

Strategies, based on using the information gathered during the solving of an instance to adapt 

the parameter values, and the Instance-specific Parameter Tuning Strategies, which employ a 

statistical learning technique to obtain a recommended set which depends on the instance 

features. The definition of the Parameter Setting Problem, the different approaches, and their 

comparisons, have been presented in Section 2.2.      

Considering the diversity of statistical tools used by researchers to solve the PSP, Chapter 3 

has reviewed some of the main contributions of the academic community. Almost all the 

existing methodologies use Regression Models and Design of Experiments. Chapter 4 has 

outlined one representative investigation (paper) of each approach.     

A methodology including concepts of Regression Models, Design of Experiments and Multi-

objective Optimization can be developed to obtain a general and scientific methodology to 

tackle the PSP. It has been reported in Chapter 5. 

It can be also concluded that the proposed statistics-based methodology provides promising 

solutions. Chapter 6 describes the application of our methodology. Indisputably, the outputs 

highlight the importance/need of further research on this topic.   

In summary, this master’s degree thesis has tried to shed light on the Parameter Setting 

Problem analyzing the existing approaches and the techniques used so far. The main 

contributions of it are: 

 A general methodology based on Regression Models and Design of Experiment 

which include some validation procedures. Its steps seek to provide an efficient 

procedure. Our proposal is necessarily flexible, as the different features of each 

problem can make some options more adequate than others.  
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 A first approximation to tackle the Parameter Setting Problem. It has been illustrated 

with a real application which has been useful to analyze the benefits and pitfalls of 

the proposed methodology.  

7.2 Limitations and future research topics 

The proposed methodology presents some limitations which allow us to propose a range of 

future possibilities.  

- The main limitation of this work has been the difficulty to model the relation between the 

parameters and the objective solution of the metaheuristic with quadratic regression models.    

However, the adequacy of this technique has been proven in many investigations. We 

conclude that the rugged fitness landscape of our problem could need other approaches as 

polynomial regressions of higher degree or non-parametric methods, such as 𝐾-nearest 

neighbours regression, in order to obtain a better adjustment. Any proposed methodology has 

to be flexible enough to be capable of tackling all sorts of problems, so this issue could be 

more studied.  

- Due to the huge variety of problems in which metaheuristics are employed, it is essential to 

test each methodology on several problems. 

- Another part that could be improved in our methodology would be the clustering phase. It 

would be helpful to develop some procedure to determine which features plays a major role in 

splitting a group of instances into subgroups with similar optimum sets of parameter values. 

Our approach was naive in this respect, as it considered that all the analyzed features had the 

same role/weight.    

- We have focused on a problem with only three parameters. Indeed, researchers usually 

analyze three or four factors. However, sometimes it is desirable to study tens of factors that 

can affect a system simultaneously. In those cases, a Full Factorial Design can be too 

expensive. Other popular and more effective designs are: the Fractional Factorial, the Central 

Composite, the Box-Behnken (formed by combining 2k Factorials with Incomplete Block 

Designs, they can be very efficient in terms of required runs and they are either rotatable or 

nearly rotatable) and the D-Optimal (in which the practitioner decides the numbers of runs a 

priori, its objective is to minimize the variance across all regression coefficients). Another 

interesting design which is investigated in Méndez-Vázquez et al. (2013) consists in generating 

a full Factorial Design as an initial enumeration, clustering the listed runs and retrieving the 

𝑘 −medoids associated to the 𝑘 clusters. Only these medoids are run, consequently the 

number of required runs is dramatically decreased. All these designs enable us to investigate 

relations with more parameters, more interactions and usually more realistic.     

Other potential lines of future work are discussed in the remainder of this section. 

- In our opinion, the Instance-specific Parameter Tuning Strategies constitute a new approach 

that requires much further investigation. It is a field where statisticians could apply a wide 

range of techniques. For instance, Principal Component Analysis could be used to convert the 

variables describing the main features of each instance into linearly uncorrelated variables 
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while reducing the number of variables, and to analyze the contribution of each original 

variable to explain the variability of the data. Working with uncorrelated variables would avoid 

potential problems of multicollinearity. One more example, as it was proposed from a 

theoretical point of view in Dobslaw (2010), neural networks could be trained with features of 

some instances and their objective solutions for a set of combinations of parameter values. 

Then, networks could be used as an oracle to return a proposal of parameter values for new 

instances. In this same line, as suggested by Pavón et al. (2009), concepts of Bayesian 

networks could help to improve the oracle by feeding it with new information provided by the 

new instances and their resolution. 

In conclusion, statisticians could play an even more important role in tackling the Parameter 

Setting Problem. It is a real problem, which despite having been studied in recent years, lacks 

of a methodology commonly accepted by the scientific community.       
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