Sumario

<table>
<thead>
<tr>
<th>SUMARIO</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. MATERIALES Y PRODUCTOS</td>
<td>3</td>
</tr>
<tr>
<td>A.1. Disolución stock</td>
<td>3</td>
</tr>
<tr>
<td>A.2. Disolución portadora (DP)</td>
<td>3</td>
</tr>
<tr>
<td>A.3. Ajustador de fuerza iónica (ISA)</td>
<td>4</td>
</tr>
<tr>
<td>A.4. Solución externa del electrodo de referencia</td>
<td>4</td>
</tr>
<tr>
<td>A.5. Solución de carga</td>
<td>4</td>
</tr>
<tr>
<td>A.6. Patrones</td>
<td>5</td>
</tr>
<tr>
<td>A.6.1. Patrones de calibración</td>
<td>5</td>
</tr>
<tr>
<td>A.6.2. Patrones de entrenamiento</td>
<td>6</td>
</tr>
<tr>
<td>A.7. Biosorbente</td>
<td>7</td>
</tr>
<tr>
<td>B. EQUIPO DE TRABAJO</td>
<td>9</td>
</tr>
<tr>
<td>B.1. Columna de biosorción</td>
<td>9</td>
</tr>
<tr>
<td>B.2. Bomba peristáltica</td>
<td>9</td>
</tr>
<tr>
<td>B.3. Matriz de sensores</td>
<td>10</td>
</tr>
<tr>
<td>B.4. Válvulas solenoides</td>
<td>11</td>
</tr>
<tr>
<td>B.5. Electrodo de referencia</td>
<td>11</td>
</tr>
<tr>
<td>B.6. Desburbujeador</td>
<td>11</td>
</tr>
<tr>
<td>B.7. Sistema de adquisición de datos</td>
<td>12</td>
</tr>
<tr>
<td>B.8. Colector de fracciones</td>
<td>12</td>
</tr>
<tr>
<td>B.9. Elementos de unión</td>
<td>13</td>
</tr>
<tr>
<td>C. SOFTWARE DE TRABAJO</td>
<td>15</td>
</tr>
<tr>
<td>C.1. LabVIEW</td>
<td>15</td>
</tr>
<tr>
<td>C.1.1. Control y adquisición semiautomático</td>
<td>15</td>
</tr>
<tr>
<td>C.1.2. Calibración, control y adquisición</td>
<td>16</td>
</tr>
<tr>
<td>C.2. Microsoft Excel</td>
<td>20</td>
</tr>
<tr>
<td>D. CARACTERIZACIÓN DE LOS SENSORES</td>
<td>21</td>
</tr>
<tr>
<td>D.1. Calibración sensores de cromo</td>
<td>21</td>
</tr>
<tr>
<td>D.2. Calibración sensores de calcio</td>
<td>23</td>
</tr>
<tr>
<td>D.3. Calibración sensores genéricos</td>
<td>24</td>
</tr>
<tr>
<td>D.3.1. Respuesta a cromo</td>
<td>24</td>
</tr>
<tr>
<td>D.3.2. Respuesta a calcio</td>
<td>25</td>
</tr>
<tr>
<td>E. FICHAS DE SEGURIDAD QUÍMICA</td>
<td>27</td>
</tr>
</tbody>
</table>
A. Materiales y productos

A.1. Disolución stock

Consiste en una disolución de concentración 0,1 M del metal a estudiar, a partir de la cual se prepara la disolución portadora y todos los patrones utilizados en las calibraciones de los sensores y en el entrenamiento de la red neuronal.

Esta disolución madre se prepara disolviendo nitrato de metal hidratado en agua Milli-Q. La cantidad de nitrato necesaria para preparar 1l de cada una de las disoluciones madre es la siguiente:

- Disolución stock de Cr\(^{3+}\) 0,1 M:

\[
1l \cdot \frac{0,1 \text{mol} \text{ Cr}^{3+}}{l} \cdot \frac{1 \text{mol} \text{ Cr(NO}_3)_3 \cdot 9\text{H}_2\text{O}}{1 \text{mol} \text{ Cr}^{3+}} \cdot \frac{400,15 \text{g} \text{ Cr(NO}_3)_3 \cdot 9\text{H}_2\text{O}}{1 \text{mol} \text{ Cr(NO}_3)_3 \cdot 6\text{H}_2\text{O}} = 40,015 \text{g} \text{ Cr(NO}_3)_3 \cdot 6\text{H}_2\text{O}
\]

Dónde: PM(\text{Cr(NO}_3)_3 \cdot 9\text{H}_2\text{O})=400,15g/mol

- Disolución stock de Ca\(^{2+}\) 0,1 M (Riedel-de Håen ref:31218)

\[
1l \cdot \frac{0,1 \text{mol} \text{ Ca}^{2+}}{l} \cdot \frac{1 \text{mol} \text{ Ca(NO}_3)_2 \cdot 4\text{H}_2\text{O}}{1 \text{mol} \text{ Ca}^{2+}} \cdot \frac{236,15 \text{g} \text{ Ca(NO}_3)_2 \cdot 4\text{H}_2\text{O}}{1 \text{mol} \text{ Ca(NO}_3)_2 \cdot 4\text{H}_2\text{O}} = 23,615 \text{g} \text{ Ca(NO}_3)_2 \cdot 4\text{H}_2\text{O}
\]

Dónde: PM(\text{Ca(NO}_3)_2 \cdot 4\text{H}_2\text{O})=236,15g/mol

A.2. Disolución portadora (DP)

Consiste en una mezcla de los iones que se van a analizar en el experimento con una concentración de 2·10\(^{-6}\)M, la cual se utiliza para acondicionar los sensores durante los experimentos permitiendo conseguir una línea base estable. Esta disolución se prepara diluyendo en agua Milli-Q el volumen necesario de disolución stock de cada metal para obtener la concentración deseada.

Para 2 l de disolución, el volumen necesario de disolución stock es:

\[
2l \cdot \frac{2 \cdot 10^{-6} \text{mol}}{l} \cdot \frac{l}{0,1 \text{mol}} = 40 \cdot 10^{-6}l = 40\mu l
\]
A.3. Ajustador de fuerza iónica (ISA)

Consiste en una disolución 0,2 M de nitrato de sodio, la cual se utiliza para igualar la fuerza iónica de los diferentes patrones. Se prepara disolviendo NaNO₃ del 99,5% de pureza en agua Milli Q. Para 2 litros de disolución son necesarios 34,1668 g de NaNO₃, valor calculado a partir de la siguiente ecuación:

\[
2l \cdot \frac{0,2mol}{l} \cdot \frac{84,99g}{mol} \cdot \frac{100g}{99,5g} = 34,1668g \text{ NaNO}_3
\]

A.4. Solución externa del electrodo de referencia

Se utiliza una disolución de 0,1M de nitrato de sodio. Para preparar 100 ml de esta disolución introduciremos 50 ml del ajustador de fuerza iónica preparado anteriormente en un matraz aforado de 100 ml y se enrasará con agua Milli-Q.

A.5. Solución de carga

Es una disolución que contiene los iones a analizar en cada experimento, sin tener en cuenta el ión calcio, ya que éste se encuentra de forma natural en el raspo de uva y se libera a medida que el raspo absorbe otros iones. Según experiencias previamente realizadas, la cantidad de cada ión es de 5,55·10⁻⁴M, lo cual conlleva que para una disolución de 2 l el volumen de los correspondientes iones será de 11,016 ml.

En el caso del experimento con disolución de cromo sintético, se utiliza una disolución de carga con 11,016 ml de Cr³⁺ en 2 l de agua Milli-Q, que equivale a una concentración de 28,64 ppm.

En el caso del experimento con muestra real, se diluye esta muestra para obtener una concentración similar de cromo que en el experimento con cromo sintético y poder compararlos posteriormente. Además, esta muestra debe diluirse porque la concentración de cromo es de aproximadamente 3000 ppm y debido a que el volumen de la columna de biosorción es muy reducido, ésta se saturaría en muy poco tiempo si no se diluyeran previamente las muestras.
A continuación se especifica la composición de la muestra real:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>ppm</th>
<th>Elemento</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>108.75</td>
<td>Mo</td>
<td><2</td>
</tr>
<tr>
<td>Mg</td>
<td>14.63</td>
<td>Ni</td>
<td><2</td>
</tr>
<tr>
<td>Ba</td>
<td>0.13</td>
<td>Sb</td>
<td>14.62</td>
</tr>
<tr>
<td>Cd</td>
<td><0.2</td>
<td>Ti</td>
<td><0.4</td>
</tr>
<tr>
<td>Co</td>
<td><0.2</td>
<td>Ti</td>
<td><2</td>
</tr>
<tr>
<td>Cu</td>
<td>40.73</td>
<td>V</td>
<td><1</td>
</tr>
<tr>
<td>Cu</td>
<td>39.65</td>
<td>V</td>
<td><1</td>
</tr>
<tr>
<td>Mn</td>
<td>0.85</td>
<td>Na</td>
<td>107.74</td>
</tr>
<tr>
<td>Pb</td>
<td><4</td>
<td>As</td>
<td><10</td>
</tr>
<tr>
<td>Sr</td>
<td>0.56</td>
<td>B</td>
<td><4</td>
</tr>
<tr>
<td>Zn</td>
<td>3.66</td>
<td>Cr</td>
<td>991.93</td>
</tr>
<tr>
<td>K</td>
<td>14.68</td>
<td>P</td>
<td><20</td>
</tr>
<tr>
<td>Al</td>
<td><10</td>
<td>S</td>
<td>39.16</td>
</tr>
<tr>
<td>Be</td>
<td><2</td>
<td>Se</td>
<td><10</td>
</tr>
<tr>
<td>Fe</td>
<td>67.07</td>
<td>Si</td>
<td><5</td>
</tr>
<tr>
<td>Li</td>
<td><2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla A.1. Concentración de los elementos presentes en la muestra real

A.6. Patrones

A.6.1. Patrones de calibración

Son disoluciones con diferentes concentraciones del metal a estudiar que se utilizan para calibrar el sistema FIA y se preparan a partir de la disolución stock de concentración 0,1M. Se utilizan 4 patrones con las siguientes concentraciones: 10^{-2}M, 10^{-3}M, 10^{-4}M y 10^{-5}M.

Para preparar el primer patrón (10^{-2}M), se diluye 10ml de la disolución stock en 100ml de agua Milli-Q. El segundo patrón (10^{-3}M) se prepara diluyendo 10ml del primer patrón en 100ml de agua. Para el tercer patrón (10^{-4}M) se diluyen 10 ml del segundo patrón en 100 ml de agua. Y por último, se prepara el cuarto patrón (10^{-5}M) diluyendo 10 ml del tercer patrón en agua Milli-Q.
A.6.2. Patrones de entrenamiento

En el caso del experimento con cromo se han utilizado 36 patrones con diferentes concentraciones de cromo y calcio para el entrenamiento y la validación de la red neuronal. Estos patrones se han preparado adicionando diferentes volúmenes de disolución madre de cada metal. En la siguiente tabla se indica la concentración y el volumen de disolución madre añadido para preparar 100 ml de cada uno de los patrones:

<table>
<thead>
<tr>
<th>Patrón</th>
<th>$[\text{Ca}^{2+}]$ (mM)</th>
<th>$[\text{Ca}^{2+}]$ (ppm)</th>
<th>$V_{\text{Ca}^{2+}}$ (µl)</th>
<th>$[\text{Cr}^{3+}]$ (mM)</th>
<th>$[\text{Cr}^{3+}]$ (ppm)</th>
<th>$V_{\text{Cr}^{3+}}$ (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,19</td>
<td>9,63</td>
<td>185,20</td>
</tr>
<tr>
<td>2</td>
<td>0,01</td>
<td>0,40</td>
<td>10,00</td>
<td>0,45</td>
<td>23,31</td>
<td>448,20</td>
</tr>
<tr>
<td>3</td>
<td>0,05</td>
<td>2,15</td>
<td>53,80</td>
<td>0,71</td>
<td>36,98</td>
<td>711,20</td>
</tr>
<tr>
<td>4</td>
<td>0,10</td>
<td>3,90</td>
<td>97,60</td>
<td>0,97</td>
<td>50,65</td>
<td>974,10</td>
</tr>
<tr>
<td>5</td>
<td>0,14</td>
<td>5,66</td>
<td>141,40</td>
<td>1,24</td>
<td>64,33</td>
<td>1237,10</td>
</tr>
<tr>
<td>6</td>
<td>0,19</td>
<td>7,41</td>
<td>185,20</td>
<td>1,50</td>
<td>78,00</td>
<td>1500,00</td>
</tr>
<tr>
<td>7</td>
<td>0,23</td>
<td>9,16</td>
<td>229,10</td>
<td>1,14</td>
<td>7,35</td>
<td>141,40</td>
</tr>
<tr>
<td>8</td>
<td>0,27</td>
<td>10,92</td>
<td>272,90</td>
<td>0,40</td>
<td>21,03</td>
<td>404,40</td>
</tr>
<tr>
<td>9</td>
<td>0,32</td>
<td>12,67</td>
<td>316,80</td>
<td>0,67</td>
<td>34,70</td>
<td>667,40</td>
</tr>
<tr>
<td>10</td>
<td>0,36</td>
<td>14,42</td>
<td>360,60</td>
<td>0,93</td>
<td>48,38</td>
<td>930,30</td>
</tr>
<tr>
<td>11</td>
<td>0,40</td>
<td>16,18</td>
<td>404,40</td>
<td>1,19</td>
<td>62,05</td>
<td>1193,20</td>
</tr>
<tr>
<td>12</td>
<td>0,45</td>
<td>17,93</td>
<td>448,20</td>
<td>1,46</td>
<td>75,72</td>
<td>1456,20</td>
</tr>
<tr>
<td>13</td>
<td>0,49</td>
<td>19,68</td>
<td>492,10</td>
<td>0,10</td>
<td>5,08</td>
<td>97,60</td>
</tr>
<tr>
<td>14</td>
<td>0,54</td>
<td>21,44</td>
<td>535,90</td>
<td>0,36</td>
<td>18,75</td>
<td>360,60</td>
</tr>
<tr>
<td>15</td>
<td>0,58</td>
<td>23,19</td>
<td>579,70</td>
<td>0,62</td>
<td>32,42</td>
<td>623,50</td>
</tr>
<tr>
<td>16</td>
<td>0,62</td>
<td>24,94</td>
<td>623,50</td>
<td>0,89</td>
<td>46,10</td>
<td>886,50</td>
</tr>
<tr>
<td>17</td>
<td>0,67</td>
<td>26,70</td>
<td>667,40</td>
<td>1,15</td>
<td>59,77</td>
<td>1149,40</td>
</tr>
<tr>
<td>18</td>
<td>0,71</td>
<td>28,45</td>
<td>711,20</td>
<td>1,41</td>
<td>73,44</td>
<td>1412,40</td>
</tr>
<tr>
<td>19</td>
<td>0,76</td>
<td>30,20</td>
<td>755,00</td>
<td>0,95</td>
<td>2,80</td>
<td>53,80</td>
</tr>
<tr>
<td>20</td>
<td>0,80</td>
<td>31,95</td>
<td>798,80</td>
<td>0,32</td>
<td>16,47</td>
<td>316,80</td>
</tr>
<tr>
<td>21</td>
<td>0,82</td>
<td>32,98</td>
<td>824,60</td>
<td>0,58</td>
<td>30,14</td>
<td>579,70</td>
</tr>
<tr>
<td>22</td>
<td>0,89</td>
<td>35,46</td>
<td>886,50</td>
<td>0,84</td>
<td>43,82</td>
<td>842,60</td>
</tr>
<tr>
<td>23</td>
<td>0,93</td>
<td>37,21</td>
<td>930,30</td>
<td>1,11</td>
<td>57,49</td>
<td>1105,60</td>
</tr>
<tr>
<td>24</td>
<td>0,97</td>
<td>38,96</td>
<td>974,10</td>
<td>1,37</td>
<td>71,16</td>
<td>1368,50</td>
</tr>
<tr>
<td>25</td>
<td>1,02</td>
<td>40,72</td>
<td>1017,90</td>
<td>0,01</td>
<td>0,52</td>
<td>10,00</td>
</tr>
<tr>
<td>26</td>
<td>1,06</td>
<td>42,47</td>
<td>1061,80</td>
<td>0,27</td>
<td>14,19</td>
<td>272,90</td>
</tr>
<tr>
<td>27</td>
<td>1,11</td>
<td>44,22</td>
<td>1105,60</td>
<td>0,54</td>
<td>27,87</td>
<td>535,90</td>
</tr>
<tr>
<td>28</td>
<td>1,15</td>
<td>45,98</td>
<td>1149,40</td>
<td>0,80</td>
<td>41,54</td>
<td>798,80</td>
</tr>
<tr>
<td>29</td>
<td>1,19</td>
<td>47,73</td>
<td>1193,20</td>
<td>1,06</td>
<td>55,21</td>
<td>1061,80</td>
</tr>
<tr>
<td>30</td>
<td>1,24</td>
<td>49,48</td>
<td>1237,10</td>
<td>1,32</td>
<td>68,88</td>
<td>1324,70</td>
</tr>
<tr>
<td>31</td>
<td>1,28</td>
<td>51,24</td>
<td>1280,90</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>32</td>
<td>1,32</td>
<td>52,99</td>
<td>1324,70</td>
<td>0,23</td>
<td>11,91</td>
<td>229,10</td>
</tr>
<tr>
<td>33</td>
<td>1,37</td>
<td>54,74</td>
<td>1368,50</td>
<td>0,49</td>
<td>25,59</td>
<td>492,10</td>
</tr>
<tr>
<td>34</td>
<td>1,41</td>
<td>56,50</td>
<td>1412,40</td>
<td>0,76</td>
<td>39,26</td>
<td>755,00</td>
</tr>
<tr>
<td>35</td>
<td>1,46</td>
<td>58,25</td>
<td>1456,20</td>
<td>1,02</td>
<td>52,93</td>
<td>1017,90</td>
</tr>
<tr>
<td>36</td>
<td>1,50</td>
<td>60,00</td>
<td>1500,00</td>
<td>1,28</td>
<td>66,61</td>
<td>1280,90</td>
</tr>
</tbody>
</table>

Tabla A.2. Composición de los patrones de entrenamiento
A.7. Biosorbente

El biosorbente utilizado como relleno en la columna de absorción es el raspo de uva, un residuo de la viña, el cual debe tratarse previamente para eliminar cualquier resto de polvo o residuos con el objetivo de facilitar la posterior adsorción de metales.

La primera etapa del tratamiento es el desbrozado, que consiste en eliminar a mano cualquier resto de uva u hojas que pueda contener el raspo.

A continuación, se procede a realizar el lavado del raspo, el cual consta de un lavado manual y un lavado con ultrasonidos. El lavado manual consiste en tres baños con agua destilada. En el primer lavado se agita la rapa durante 3 minutos y se deja reposar 6 minutos. Pasado un tiempo se introduce la rapa en el segundo baño, se agita durante 2 minutos y se deja reposar 4 minutos. Para finalizar el lavado manual, el raspo se introduce en el tercer baño, se agita 1 minuto y se deja reposar 2 minutos. Una vez finalizado, se elimina el agua y se deja reposar el raspo durante 24 horas. Pasado este tiempo, se procede a repetir el tercer lavado y seguidamente se realiza un lavado en el aparato de ultrasonidos durante 5 minutos con la misma agua del tercer lavado.

Posteriormente, el raspo limpio se introduce en una estufa a 110°C durante 24 horas para su posterior secado. Una vez pasado este tiempo, si el raspo sigue conteniendo agua, se deja evaporar el tiempo necesario al aire libre.

La siguiente etapa es el molido, la cual consiste en moler el raspo seco con un molinillo de café durante varios segundos para reducir el tamaño de los trozos de raspo, ya que el grosor de los trozos que se introducen en la columna deben tener entre 0.8 y 1 mm de grosor, valor determinado en experiencias previas.

El último paso es introducir el raspo molido en una tamizada que dispone de tamices de 1,4; 1; 0,8; 0,5 y 0,355 mm. Una vez pasados 60 minutos se obtendrán los trozos de raspo separados por tamaños y se utilizarán los trozos de entre 0,8 y 1 mm, los cuales se obtienen en el tercer tamiz.

Además de este tratamiento, un día antes de utilizar el raspo de uva en la columna de absorción, se pesa la cantidad necesaria de raspo, la cual se ha optimizado en experimentos anteriores en 1,31 g. A continuación, se introduce en un vaso de precipitados con agua Milli-Q y se agita en un agitador mecánico para eliminar el polvo que se ha producido durante el molido. Para asegurar la limpieza total del raspo, se debe cambiar el agua de lavado cada vez que se enturbiaba hasta que se observe que el agua queda totalmente limpia.
Por último, la acción de introducir el raspo en la columna debe hacerse con especial cuidado para que no se formen burbujas en el lecho, evitando así la aparición de posibles interferencias en el sistema.
B. Equipo de trabajo

En este apartado se citarán todos los elementos que forman parte del equipo de trabajo para realizar los diferentes experimentos.

B.1. Columna de biosorción

Las columnas de biosorción utilizadas son columnas de extremos ajustables de la casa Omnifit modelo 006CC-10-10-AA. Con unas dimensiones de 10 mm de diámetro x 100 mm de largo y una presión máxima de 600 psi.

![Columna de biosorción](image)

Figura B.1. Columna de biosorción

B.2. Bomba peristáltica

Se utilizan dos bombas peristálticas: una para facilitar el transporte de la solución de carga a través de la columna de biosorción y para el acondicionamiento de sensores, y la otra para la circulación de la disolución portadora y el ajustador de fuerza iónica por el sistema de detección. Ambas son de la marca Gilson, modelo Minipuls 3 de 8 canales.
Para la realización de la mayoría de los experimentos de este proyecto se han empleado electrodos con soporte de Ag y membranas selectivas a iones, elaborados en el propio laboratorio. Dichos electrodos se ensamblan en unos cuerpos de plástico (MEDBRYT Flow Cells System) que no alteran el flujo.

B.3. Matriz de sensores

Figura B.3. Sensor de Cromo en una Flow Cell
B.4. **Válvulas solenoides**

Se utilizan válvulas solenoides de dos y tres vías de la casa NResearch. Se diferencian dos tipos de válvulas según su configuración, normalmente abiertas o normalmente cerradas.

B.5. **Electrodo de referencia**

Se utiliza un electrodo comercial Ag/AgCl de doble unión de la casa ORION, modelo 900200. Tiene un doble compartimento, interior y exterior, que se rellenan con dos disoluciones distintas. El compartimento interno contiene el electrodo de Ag/AgCl, relleno de una disolución comercial saturada de cloruro de plata como solución interna que proporciona un potencial equivalente al del electrodo de calomelanos. El compartimento externo se llena con una disolución de 0,1M de NaNO₃, tal y como se ha explicado en el apartado A.4.

![Electrodo de referencia](image)

Figura B.4. Electrodo de referencia

B.6. **Desburbujeador**

Se emplea un desburbujeador de la casa Omnifit, modelo 006BT que tiene una estructura donde se conecta la entrada y la salida del fluido. Este desburbujeador contiene una membrana de PTFE, en la cual quedan retenidas las burbujas para evitar la entrada de aire al sistema de detección.
B.7. **Sistema de adquisición de datos**

El sistema de adquisición de datos registra y almacena las medidas de potencial de cada sensor en el ordenador. Este sistema lo constituye una tarjeta de adquisición de datos (modelo PCI 6221, de National Instruments), un procesador de señales y la instrumentación virtual, que incluye un CPU y el software de visualización y control de la medida. Dicho software está compuesto por dos programas: “Control y adquisición semiautomático” y “Calibración, control y adquisición” realizados mediante la herramienta LabVIEW (National Instruments).

B.8. **Colector de fracciones**

Para poder analizar las muestras que salen por la columna mediante AAS, se debe incorporar a nuestro sistema un colector de fracciones. El que se ha utilizado es de la casa Gilson modelo FC204. Dependiendo de los requisitos del experimento, se puede programar el colector para recoger las muestras en el intervalo de tiempo deseado.
B.9. **Elementos de unión**

Para poder garantizar el buen funcionamiento del sistema, también se han usado los siguientes elementos de unión:

- Tubos de teflón de 0,8 mm de diámetro interno
- Conectores y rosca Omnifit, usados para empalmar tubos de teflón entre sí o con otros elementos del circuito.
- Conectores en ocho y en tres de Omnifit, permiten mezclar distintas soluciones que confluyen y circular a través de ellos.
C. Software de trabajo

C.1. LabVIEW

C.1.1. Control y adquisición semiautomático
Para asegurar que no quedan restos de iones provenientes de experimentos anteriores, se utiliza el programa Control y adquisición semiautomático, mediante el cual se hace pasar agua por todos los conductos del sistema para conseguir la limpieza deseada. Este programa también se emplea para comprobar el funcionamiento de la válvulas de forma manual o modificar otros parámetros como la velocidad o la parada de la bomba.

Una vez abierto el programa, se clica en el círculo verde número 3 para cerrar la válvula 3, que está normalmente abierta, impidiendo el paso del ISA y el DP. Seguidamente, se van abriendo las demás válvulas, normalmente cerradas, para que circule agua Milli-Q por cada uno de los conductos. Cada válvula se debe mantener abierta unos 20 segundos aproximadamente para el agua tenga suficiente tiempo para circular por todo el conducto y así poder eliminar los restos que pudieran quedar presentes. El orden de apertura de estas válvulas es el siguiente: 4-8-5-7. Es importante abrir de nuevo la válvula 3 una vez cerradas el resto de válvulas, ya que si se deja cerrada, en el próximo uso la válvula se cerraría cuando debiera abrirse y viceversa.

Figura C.1. Programa control y adquisición semiautomático
C.1.2. Calibración, control y adquisición

Este es el programa usado para la realización de los experimentos. Antes de abrirlo, se debe elaborar una plantilla en un documento de texto que indique la secuencia de acciones que el programa deberá ir siguiendo, como apertura y cierre de válvulas, adquisiciones de muestra o regulación de velocidad de bomba.

Una vez se tenga las plantillas confeccionadas, se abrirá el programa y se marcarán los canales que se deseen analizar. A continuación se clicará en la flecha RUN, se introducirá el nombre con el que se desee guardar el archivo y, por último, se indicará el lugar donde se encuentra la plantilla que se quiera utilizar.

A partir de este momento, el programa irá registrando y representando en la pantalla los valores de potencial que nos proporcionen los sensores a lo largo del tiempo. La información quedará guardada en un archivo.dat, que se podrá abrir posteriormente con la herramienta Excel para poder trabajar con los resultados obtenidos.

Figura C.2. Programa calibración, control y adquisición

Para cada tipo de experimento se deberá elaborar una plantilla distinta. En nuestro proyecto hemos utilizado 5 plantillas diferentes:

- Experimento para la calibración de sensores

Para poder realizar la caracterización de los sensores de modo satisfactorio, se hará pasar por cada sensor varias disoluciones de diferentes concentraciones del ión o de los iones que queramos estudiar. Como ya se ha explicado en la memoria, el programa realiza un doble pico para cada patrón, abriendo de las válvulas por orden (4, 8, 5 y 7) de menor a mayor concentración de iones.
La plantilla para esta experiencia es:

```
<table>
<thead>
<tr>
<th>b5</th>
<th>v4</th>
<th>-v3</th>
<th>v7</th>
</tr>
</thead>
<tbody>
<tr>
<td>adg500</td>
<td>adg60</td>
<td>adg120</td>
<td>adg60</td>
</tr>
<tr>
<td>v3</td>
<td>-v4</td>
<td>v3</td>
<td>-v7</td>
</tr>
<tr>
<td>v4</td>
<td>-v3</td>
<td>v5</td>
<td>-v3</td>
</tr>
<tr>
<td>adg60</td>
<td>adg120</td>
<td>adg60</td>
<td>adg120</td>
</tr>
<tr>
<td>-v4</td>
<td>v3</td>
<td>-v5</td>
<td>v3</td>
</tr>
<tr>
<td>-v3</td>
<td>v8</td>
<td>-v3</td>
<td>v7</td>
</tr>
<tr>
<td>adg120</td>
<td>adg60</td>
<td>adg120</td>
<td>adg60</td>
</tr>
<tr>
<td>v3</td>
<td>-v8</td>
<td>v3</td>
<td>-v7</td>
</tr>
<tr>
<td>v4</td>
<td>-v3</td>
<td>v5</td>
<td>-v3</td>
</tr>
<tr>
<td>adg50</td>
<td>adg120</td>
<td>adg60</td>
<td>adg300</td>
</tr>
<tr>
<td>-v4</td>
<td>v3</td>
<td>-v5</td>
<td>b0</td>
</tr>
<tr>
<td>-v3</td>
<td>v8</td>
<td>-v3</td>
<td></td>
</tr>
<tr>
<td>adg120</td>
<td>adg60</td>
<td>adg120</td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>-v8</td>
<td>v3</td>
<td></td>
</tr>
</tbody>
</table>
```

Figura C.3. Plantilla para la caracterización de sensores

Dónde:

- bx: activación de la bomba a velocidad x.
- adqx: tiempo x en el que adquieren datos.
- vx: apertura de la válvula x.
- -vx: cierre de la válvula x.
- b0: cierre de la bomba.

➤ Experimiento de calibración múltiple

Esta plantilla es muy similar a la descrita anteriormente ya que el programa utiliza el mismo código, pero en este caso enlazaremos una calibración detrás de otra para así poder ver y comprobar la reproducibilidad de las calibraciones. La plantilla será la misma que la anterior repetida “n” veces, siendo “n” el número de veces que se quiera repetir dicha calibración. Normalmente se realiza durante la noche, ya que se puede alargar durante muchas horas y no precisa de intervención humana.
Experimento de biosorción

Como ya se ha explicado anteriormente, este programa irá inyectando las muestras que salen por la columna de biosorción para así hacerlas pasar a través del sistema de detección, y obtener de este modo los picos de potencial de cada sensor. Esta plantilla está programada para que se realicen más inyecciones de muestra los 30 primeros minutos, que es el tramo donde se producirán más cambios y así poder obtener más datos, ofreciendo más información.

La plantilla es la siguiente:

```
  b5   v6   -v3   v6
adq120  adq60  adq120  adq60
  v2  -v6  v3  -v6
adq600  -v0  v0  -v0
  -v2  -v3  v6  -v3
  v3  adq300  adq50  adq120
  v0  v2  -v6  v3
  v6  adq300  -v0  v0
adq60  -v2  -v3  v6
  -v6  v3  adq300  adq60
  -v0  v0  v2  -v6
  -v3  v6  adq300  -v0
adq120  adq60  -v2  -v3
  v3  -v6  v3  adq300
  v0  -v0  v0  v2
```

Figura C.4. Fragmento de la plantilla para la realización de un experimento

- Comprobación de la saturación de la columna

Una vez acabado el experimento de biosorción, se retira la columna, haciendo pasar directamente la solución de carga por el sistema. De este modo se puede comprobar si la columna está saturada o no. Se realizan 2 dobles picos de solución de carga y un doble pico de patrón de 10^{-4}M de Ca.
El programa usado es el siguiente:

```
   b 5   adq 60   adq 120   v 3  
v 2   -v 0     v 3     v 8  
adq 500  -v 3    v 0     adq 50  
   -v 2   -v 6    v 6     -v 8  
v 3   adq 120   adq 60   -v 3  
v 0   v 2     -v 0    adq 300  
v 6   adq 300   -v 3  b 0 
adq 60  -v 2   -v 6  
   -v 0   v 3  adq 300  
   -v 3   v 0     v 3  
   -v 5   v 6  v 8  
  adq 120  adq 60  adq 60  
v 3   -v 0   -v 8  
v 0  -v 3   -v 3  
v 6  -v 6  adq 120
```

Figura C.5. Plantilla para la comprobación de la saturación de la columna

- Calibración para el entrenamiento

Para poder desarrollar el entrenamiento de la red neuronal, se conectará cada patrón a una válvula diferente y se realizará un doble pico para cada uno de estos patrones.

La plantilla usada es la siguiente:

```
   b 5   v 8  -v 3  v 7  
adq 300  adq 60  adq 120  adq 60  
   v 3  -v 8     v 3  -v 7  
v 4  -v 3  v 5  -v 3  
adq 60  adq 120  adq 60  adq 300  
   -v 4   v 3  -v 5  b 0  
   -v 3   v 8  -v 3  
  adq 120  adq 60  adq 420  
   v 3  -v 8  v 3  
v 4  -v 3  v 7  
adq 60  adq 420  adq 60  
   -v 4   v 3  -v 7  
   -v 3   v 5  -v 3  
  adq 420  adq 60  adq 120  
   v 3  -v 5  v 3
```

Figura C.6. Plantilla para las calibraciones de entrenamiento
C.2. Microsoft Excel

Para la determinación de los valores máximos de absorbancia y las áreas de pico se ha utilizado una plantilla de Excel como esta:

El funcionamiento de esta plantilla consiste en cargar los datos registrados mediante la casilla Load Data. Una vez cargados los datos, se calculan la absorbancia y el área de pico mediante las fórmulas programadas en la plantilla.
D. Caracterización de los sensores

A continuación se representan las calibraciones de los diferentes sensores, donde se observa la respuesta de éstos a sus respectivos iones específicos. Para comprobar el correcto funcionamiento de los sensores se grafica el valor de potencial de cada uno de los picos frente al logaritmo de la concentración del ión y se comprueba que la pendiente de la recta (sensibilidad del sensor) cumple la ecuación de Nernst:

\[E = cte + S \log C \]

Dónde: \(S = 2,3 \cdot \frac{RT}{zF} = 59,16 \text{mV/dec} \)

D.1. Calibración sensores de cromo

![Gráfica de respuesta a Cr³⁺](image.png)

Figura D.1. Respuesta de los sensores selectivos a Cr³⁺
En el caso del cromo, la sensibilidad del sensor debe ser próxima a 19,7 mV/dec para cumplir con la ecuación de Nernst, ya que el Cr\(^{3+}\) es un ión trivalente. Como se observa en la gráfica, las pendientes de los sensores de cromo son 18,5 mV/dec y 19,2 mV/dec, valores muy cercanos a 19,7 mV/dec. Por lo tanto, los sensores son aptos para incluir en la lengua electrónica.
D.2. Calibración sensores de calcio

Figura D.3. Respuesta de los sensores selectivos a Ca$^{2+}$

Figura D.4. Recta de calibración de los sensores selectivos a Ca$^{2+}$
En el caso del calcio, la pendiente debe tener un valor próximo a 29,6 mV/dec para cumplir con la ecuación de Nernst, ya que el \(\text{Ca}^{2+} \) es un ión divalente. La sensibilidad de los sensores de calcio se encuentra en torno a 20 mV/dec, de tal manera que se pueden considerar válidos para utilizarlos en la lengua electrónica.

D.3. Calibración sensores genéricos

D.3.1. Respuesta a cromo

![Figura D.5. Respuesta de los sensores genéricos a \(\text{Cr}^{3+} \)](image)
Los sensores genéricos cuando responden a cromo deben tener una sensibilidad cercana a 19,7 mV/dec para cumplir con la ecuación de Nernst, ya que el Cr$^{3+}$ es un ión trivalente. Como se observa en la gráfica, las pendientes de los sensores genéricos están muy por encima de este valor, por lo que se consideran adecuados para incluir en la lengua electrónica.

D.3.2. Respuesta a calcio
La respuesta de los sensores genéricos a calcio debe tener una sensibilidad cercana a 29.6 mV/dec para cumplir con la ecuación de Nernst, ya que el Ca\(^{2+}\) es un ión trivalente. Se puede observar que no llega al valor deseado pero se pueden incluir en la lengua electrónica.
E. **Fichas de seguridad química**

En este apartado se numeran las fichas internacionales de seguridad química de los diferentes elementos químicos presentes durante la realización del proyecto.

E.1. Nitrato de sodio

Fichas Internacionales de Seguridad Química

NITRATO DE SODIO

<table>
<thead>
<tr>
<th>Nº CAS</th>
<th>7031-89-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº RTECS</td>
<td>WC5600000</td>
</tr>
<tr>
<td>Nº ICSC</td>
<td>0185</td>
</tr>
<tr>
<td>Nº NU</td>
<td>1490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIPOS DE PELIGRO/EXPOSICION</th>
<th>PELIGROS/SINTOMAS AGUDOS</th>
<th>PREVENCIÓN</th>
<th>PRIMEROS AUXILIOS/ LUCHA CONTRA INCENDIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCENDIO</td>
<td>No combustible pero facilita la combustión de otras sustancias. (Despierta humos inoportunos) Extingúe con agentes reductores.</td>
<td>NO poner en contacto con combustibles o agentes reductores.</td>
<td>En caso de incendio con el antimonio: están permitidos todos los agentes antinobró.</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>Riesgo de incendio y explosión en contacto con agentes reductores.</td>
<td>¡EVITAR LA DISPERSIÓN DEL POLVO!</td>
<td></td>
</tr>
<tr>
<td>EXPOSICION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INHALACION</td>
<td>Tos, dificultad respiratoria (véase ingesta).</td>
<td>Extracción localizada o protección respiratoria.</td>
<td>Aire limpio, reposo y proporcionar asistencia médica.</td>
</tr>
<tr>
<td>PIEL</td>
<td>Enrojecimiento.</td>
<td>Guantes protectores.</td>
<td>Aclarar con agua abundante, después quitar la ropa contaminada y aclamar de nuevo.</td>
</tr>
<tr>
<td>OJOS</td>
<td>Enrojecimiento, dolor.</td>
<td>Gafas de protección de seguridad.</td>
<td>Enjugar con agua abundante durante varios minutos (quitar las lentes de contacto si puede hacerse con facilidad) y proporcionar asistencia médica.</td>
</tr>
<tr>
<td>INGESTION</td>
<td>Dolor abdominal, lumbalgia, náuseas, vómitos, diarrea, vómito, dolor de cabeza, dificultad respiratoria.</td>
<td>No comer, ni beber ni fumar durante el trabajo. Lavar las manos antes de comer.</td>
<td>Enjugar la boca y proporcionar asistencia médica.</td>
</tr>
</tbody>
</table>

DERRAMAS Y FUGAS

- Barre la sustancia derramada e introduce en un recipiente plástico visto. Alimentar al residuo con agua abundante.

ALMACENAMIENTO

- Separado de sustancias combustibles y reductores. Mantener en lugar seco.

ENVASADO Y ETIQUETADO

- Clasificación de Peligros NU: E.1
- Grupo de Envasado NU: III

VEASE AL DORSO

INFORMACION IMPORTANTE

ICSC: 0185
Preparada en el contexto de cooperación entre el IFC y la Comisión de las Comunidades Europeas © CCE, IFC, 1004
NITRATO DE SODIO

DATOS IMPORTANTES
- **Estado físico: Aspecto**
 - Inodoro
 - Crístales incoloros e higroscópicos.

- **Riesgos físicos**
 - La sustancia puede absorberse por inhalación del neblina y por ingestión.

- **Riesgo de inhalación**
 - La evaporación a 20°C es despreciable; sin embargo, se puede alcanzar rápidamente una concentración nociva de partículas en el aire cuando se dispara.

- **Efectos de exposición de corta duración**
 - La sustancia irrita los ojos, la piel y el tracto respiratorio.

- **Límites de exposición**
 - TLY no establecido.

DATOS FÍSICOS
- **Punto de ebullición (se descompone):** 380°C
- **Punto de fusión:** 200°C
- **Densidad relativa (agua = 1):** 2.3
- **Solubilidad en agua:** g/100 ml a 25°C: 0.1

NOTAS
- Enjuagar la ropa contaminada con agua abundante (peligro de incendio).

INFORMACIÓN ADICIONAL

| PIQ: |
| 3-15-8 NITRATO DE SODIO |

© CE, IPCS, 1994
E.2. Nitrato de calcio

Fichas Internacionales de Seguridad Química

<table>
<thead>
<tr>
<th>NITRATO DE CALCIO</th>
<th>ICSC: 1037</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº ICSC 1037</td>
<td>Nº CAS 10124-37-6</td>
</tr>
<tr>
<td>Nº RTECS: E50295600</td>
<td>Nº NU 1454</td>
</tr>
<tr>
<td>Dinitrato de calcio</td>
<td>Nitrato de calcio (II)</td>
</tr>
<tr>
<td>Ca(NO₃)₂</td>
<td>Masa molecular: 164.10</td>
</tr>
</tbody>
</table>

TIPOS DE PELIGRO/EXPOSICIÓN

<table>
<thead>
<tr>
<th>INCENDIO</th>
<th>EXPLOSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>En caso de incendio se desprenden humos o gases tóxicos e irritantes. No combustible pero facilita la combustión de otras sustancias.</td>
<td>Riesgo de incendio y explosión en contacto con sustancias combustibles.</td>
</tr>
<tr>
<td>NO poner en contacto con sustancias inflamables.</td>
<td>En caso de incendio en el entorno: están permitidos todos los agentes extintores.</td>
</tr>
</tbody>
</table>

PELIGROS/SÍNTOMAS AGUDOS

- **INHALACION**: Tos, Dolor de garganta. Extracción localizada o protección respiratoria. Aire limpio, reposo.
- **PIEL**: Guantes protectores. Aclarar con agua abundante, después quitar la ropa contaminada y aclarar de nuevo.
- **ÓJOS**: Enjuague. Gafas de protección de seguridad. Enjuagar con agua abundante durante varios minutos (quitar las lentes de contacto si puede hacerse con facilidad), después proporcionar asistencia médica.

PRIMEROS AUXILIOS/LUCHA CONTRA INCENDIOS

DERRAMES Y FUGAS

Barrer la sustancia derramada e introducirla en un recipiente plástico. Eliminar el residuo con agua abundante.

ALMACENAMIENTO

Separado de sustancias combustibles y reductoras. Mantener en lugar seco.

ENVASADO Y ETIQUETADO

Nº (transporte): Ver pictograma en cabezera Clasificación de Peligros N.º: 5.1 Grupo de Envasado N.º: II CE: No clasificado

VEASE AL DORSO INFORMACION IMPORTANTE

ICSC: 1037
Preparada en el Contexto de Cooperación entre el IPCS y la Comisión Europea © CE, IPCS, 2003
Fichas Internacionales de Seguridad Química

NITRATO DE CALCIO

ICSC: 1037

DATOS IMPORTANTES

<table>
<thead>
<tr>
<th>FICHA</th>
<th>DETALLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTADO FÍSICO: ASPECTO:</td>
<td>Cristales higroscópicos, de incolora blanca.</td>
</tr>
<tr>
<td>PELIGROS FÍSICOS:</td>
<td></td>
</tr>
<tr>
<td>PELIGROS QUÍMICOS:</td>
<td>La sustancia es un oxidante fuerte y reacciona con materiales combustibles y reductores.</td>
</tr>
<tr>
<td>LÍMITES DE EXPOSICIÓN:</td>
<td>TLV no establecido. MAK no establecido.</td>
</tr>
</tbody>
</table>

PROPIEDADES FÍSICAS

- Punto de fusión: 590°C
- Densidad: 2.50g/cm³
- Solubilidad en agua: g/L en ml: 121.2

DATOS AMBIENTALES

<table>
<thead>
<tr>
<th>NOTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enjuagar la ropa contaminada con agua abundante (peligro de incendio). En caso de envolventamiento con esta sustancia es necesario realizar un tratamiento específico, así como disponer de los medios adecuados junto las instrucciones respectivas. Aplicar también las recomendaciones de esta ficha a Nitrato de calcio hidratado (CAS 30034-52-5) y estabilizado (CAS 15477-34-4).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTA ADICIONAL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Última revisión IPCS:</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traducción al español y actualización de valores límite y etiquetado:</td>
<td>2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICSC:</th>
<th>1037</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÓE, PCS, 2003</td>
<td></td>
</tr>
</tbody>
</table>

NOTA LEGAL IMPORTANTE:

Esta ficha contiene la opinión colectiva del Comité Internacional de Expertos del IPCS y es independiente de requisitos legales. Su posible uso no es responsabilidad de la CE, el IPS, sus representantes el INSHT, autor de la versión española.
E.3. Nitrato de cromo

Fichas Internacionales de Seguridad Química

<table>
<thead>
<tr>
<th>NITRATO DE CROMO(III) NONAHIDRATADO</th>
<th>ICSC: 1530</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octubre 2004</td>
<td></td>
</tr>
</tbody>
</table>

CAS: 7789-02-8
RTECS: GB6300000
NU: 2726
CE / EINECS: 236-921-1
Masa molecular: 430.2

TIPO DE PELIGRO / EXPOSICIÓN

PELIGROS AGUDOS / SÍNTOMAS

INCENDIO
No combustible pero facilita la combustión de otras sustancias. En caso de incendio se desprenderán humos (o gases) tóxicos e infames.
PREVENCIÓN
Evitar las llamas.
PRIMEROS AUXILIOS / LUCHA CONTRA INCENDIOS
En caso de incendio en el entorno: están permitidos todos los agentes extintores.

EXPLOSIÓN

Residuo de incendio y explosión.

EXPOSICIÓN

Inhalación	Tox. Dolor de garganta	Extracción localizada o protección respiratoria.
Piel	Guantes protectores. Traje de protección.	
	Quitar las ropas contaminadas.	
	Aclarar la piel con agua abundante o deshues.	
Ojos	Gafas ajustables de seguridad.	
	Enjuagar con agua abundante durante varios minutos (agarar las gafas de contacto si pueda hacerlo con facilidad, después proporcionar asistencia médica.	
	No correr, ni beber, ni fumar durante el trabajo.	
	Enjuagar la boca. NO provocar el vómito. Proporcionar asistencia médica.	

DERRAMES Y FUGAS

ENVASADO Y ETIQUETADO

| Barrer la sustancia derramada e introducir en un recipiente precipitado; si fuera necesario, numecer el peligro para evitar su dispersión. Protección personal adicional: respirador de filtro P9 contra partículas nocivas. NO permitir que este producto químico se incorpore al ambiente.
| Clasificación NU
| Clasificación de Peligros NU: 5.1
| Grupo de Envasado NU: III |

RESPUESTA DE EMERGENCIA

ALMACENAMIENTO

Ficha de Emergencia de Transporte (Transport Emergency Card): TEC: (R):51CGD-LuIII
Separado de sustancias combustibles y reductoras.

Preparada en el Contexto de Cooperación entre el IPCS y la Comisión Europea © CE, IPCS, 2005
Fichas Internacionales de Seguridad Química

NITRATO DE CROMO(III) NONAHDRIATADO

DATOS IMPORTANTES

<table>
<thead>
<tr>
<th>RIESGO DE INHALACIÓN:</th>
<th>· Puede alcanzarse rápidamente una concentración nociva de partículas suspendidas en el aire cuando se dispersa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFECTOS DE EXPOSICIÓN DE CORTA DURACIÓN:</td>
<td>· La sustancia irrita el tracto respiratorio.</td>
</tr>
<tr>
<td>EFECTOS DE EXPOSICIÓN PROLONGADA O REPETIDA:</td>
<td>· El contacto prolongado o repetido puede producir espongiosis de la piel.</td>
</tr>
</tbody>
</table>

DATOS FÍSICOS

- **ESTADO FÍSICO: ASPECTO:** Cristales violetas intenses.
- **PELIGROSOS QUÍMICOS:** La sustancia es un excitante fuerte y reacciona con materiales combustibles y reductores. La disolución en agua es un ácido cítrico.
- **LÍMITES DE EXPOSICIÓN:** TLV (como Cr metal, compuestos de Cr(III) 0,5 mg/m³ TWA; A4 no clasificado como cancerígeno humano) (ACGIH 2004).
- **MNI:** no establecido.

DATOS AMBIENTALES

- La sustancia es tóxica para los organismos acuáticos.

NOTAS

NO llevar a casa la ropa de trabajo. Aplicar también las recomendaciones de esta ficha al nitrito de Cromo(III) anhidro.

INFORMACIÓN ADICIONAL

Nota legal

Esta ficha contiene la opinión colectiva del Comité Internacional de Expertos del IPCS y es independiente de requisitos legales. Su posible uso no es responsabilidad de la CE, el IPCS, sus representantes o el INSHT, autor de la versión española.

© IPCS, CE 2005