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Abstract

Title: Metaheuristics and their application in engineering optimization

Author: López Martínez, David Alan

Tutor: Rodríguez Ferran, Antonio

Every engineering design problem aims for the optimal solution that, for instance, maximizes e�ciency
while minimizing cost. The use of optimization techniques in order to achieve such goal is known as
engineering optimization. In the last few years this subject has drawn the attention of many engineers
to optimization algorithms.

The present document studies the possibility of using metaheuristics, a recently devised type of com-
putational methods, in engineering optimization. Metaheuristics are nature inspired optimization
algorithms that have already been applied in many areas. To be able to conclude if these algorithms
perform well when facing engineering design problems, several classic optimization methods and two
metaheuristics, namely Genetic Algorithm and Simulated Annealing, have been implemented. The
di�erent methods have then been used to solve optimization problems related to engineering, such as
structural design or logistics.

According to the results of the simulations carried out, Genetic Algorithm and Simulated Annealing
outperform classic methods in all the problems proposed. Genetic Algorithms excel in unconstrained
continuous optimization and combinatorial optimization while Simulated Annealing is best at con-
strained optimization. Most of the time the metaheuristics studied are capable of reducing the error
obtained by classic methods even for simulation times under one second.

The conclusion extracted from this dissertation is that metaheuristics can be successfully applied to
engineering optimization. With the advances in computer science more complex metaheuristics can be
implemented and run in reasonable time lapses. Therefore, these optimization algorithms should be
considered as a powerful tool for engineers of any area.
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Resumen

Título: Metaheurísticas y su aplicación en optimización ingenieril

Autor: López Martínez, David Alan

Tutor: Rodríguez Ferran, Antonio

Todo problema de diseño de ingeniería trata de encontrar la solución óptima que, por ejemplo, max-
imiza la e�ciencia mientras minimiza el coste. El uso de técnicas de optimización para lograr dicho
objetivo se conoce como optimización ingenieril. En los últimos años este tema ha provocado que
muchos ingenieros se �jen en los algoritmos de optimización.

El presente documento estudia la posibilidad de usar metaheurísticas, un tipo de métodos computa-
cionales ideados recientemente, en optimización ingenieril. Las metaheurísticas son algoritmos de
optimización inspirados en la naturaleza que han sido ya aplicados en muchas áreas. Para poder con-
cluir si estos algoritmos funcionan bien cuando hacen frente a problemas de diseño de ingeniería, varios
métodos clásicos de optimización y dos metaheurísticas, concretamente Algoritmo Genético y Reco-
cido Simulado, han sido implementados. Los diferentes métodos han sido utilizados luego para resolver
problemas de optimización relacionados con la ingeniería, tales como diseño estructural o logística.

De acuerdo con los resultados de las simulacions llevadas a cabo, el Algoritmo Genético y el Recocido
Simulado superan a los métodos clásicos en todos los problemas propuestos. Los Algoritmos Genéticos
sobresalen en optimización continua sin restricciones y optimización combinatoria mientras el Recocido
Simulado es mejor en optimización con restricciones. En la mayoría de los casos las metaheurísticas
estudiadas son capaces de reducir el error obtenido por los métodos clásicos incluso para tiempos de
simulación de menos de un segundo.

La conclusión extraída de esta tesina es que las metaheurísticas se pueden aplicar satisfactoriamente
en optimización ingenieril. Con los avances en las ciencias de la computación metaheurísticas más
complejas pueden ser implementadas y ejecutadas en lapsos de tiempo razonables. Por lo tanto, estos
algoritmos de optimización deberían ser comnsiderados como una herramienta potente para ingenieros
de cualquier ámbito.

ii



Contents

1 Introduction 1

2 State of the art 1

2.1 Heuristics and Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Engineering Optimization 3

3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Type of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Classic Algorithms 8

4.1 Newton's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Penalty Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4 Pure Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Metaheuristics 11

5.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.1 Background to GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Background to SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



6 Benchmark Problems 25

6.1 Unconstrained Continuous Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 De Jong's Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.2 Rastrigin's Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.3 Six-Hump Camel Back Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Constrained Continuous Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2.1 Schmit Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3.1 Travelling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Implementation and Testing 32

7.1 Newton's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Pure Random Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.5 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iv



8 Simulation Results and Discussion 83

8.1 Unconstrained Continuous Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.1 De Jong's Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.2 Rastrigin's Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.1.3 Six-Hump Camel Back Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 Constrained Continuous Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.1 Schmit Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3.1 Travelling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9 Conclusions 95

v



List of Figures

1 Classi�cation of optimization problems (source: [20]) . . . . . . . . . . . . . . . . . . . . 5

2 Classi�cation of algorithms (source: [20]) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 GA algorithm �ow chart diagram (source: self made) . . . . . . . . . . . . . . . . . . . . 14

4 Graphical representation of the Roulette Wheel Selection (source: self made) . . . . . . 16

5 Graphical representation of Uniform Crossover (source: self made) . . . . . . . . . . . . 16

6 Graphical representation of Single Point Crossover (source: self made) . . . . . . . . . . 17

7 SA algorithm �ow chart diagram (source: self made) . . . . . . . . . . . . . . . . . . . . 21

8 Graphical representation of De Jong's function in 2D (source: [13]) . . . . . . . . . . . . 26

9 Graphical representation Rastrigin's function in 2D (source: [13]) . . . . . . . . . . . . . 27

10 Graphical representation Six-hump camel back function (source: [13]) . . . . . . . . . . 28

11 Schmit structure (source: [14]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 Schmit structure isostatic quasi-optimal solution (source: [14]) . . . . . . . . . . . . . . 30

13 Schmit structure hyperstatic optimal solution (source: [14]) . . . . . . . . . . . . . . . . 30

14 Travelling Salesman Problem illustration (source: wikipedia) . . . . . . . . . . . . . . . 31

15 Graphical representation of Rastrigin's function in 1D (source: self made) . . . . . . . . 35

16 Graphical representation of Rastrigin's function �rst derivative in 1D . . . . . . . . . . . 36

17 Graphical representation of the behaviour of solution f(x) with initial approximation
(source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

18 Zoomed graphical representation of the behaviour of solution f(x) with initial approxi-
mation (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

19 Graphical representation of the behaviour of solution x with initial approximation
(source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

20 Zoomed graphical representation of the behaviour of solution x with initial approxima-
tion (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

21 Graphical representation of the behaviour of cost with initial approximation (source:
self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



22 Zoomed graphical representation of the behaviour of cost with initial approximation
(source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

23 Graphical representation of the behaviour of solution f(x) with tolerance (source:self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

24 Graphical representation of the behaviour of solution x with tolerance (source: self made) 43

25 Graphical representation of the behaviour of iterations with tolerance (source: self made) 44

26 Graphical representation of the behaviour of solution f(x) with grid size (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

27 Graphical representation of the behaviour of solution x with grid size (source: self made) 48

28 Graphical representation of the behaviour of nº of iterations until best solution is found
with grid size (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

29 Graphical representation of the behaviour of simulation time with grid size (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

30 Graphical representation of avg. solution f(x) with number of iterations (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

31 Graphical representation of avg. solution x with number of iterations (source: self made) 53

32 Graphical representation of the behaviour of avg. number of iterations until best solution
is found with number of iterations (source: self made) . . . . . . . . . . . . . . . . . . . 54

33 Graphical representation of the behaviour of avg. simulation time with number of
iterations (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

34 Graphical representation of the performance of the GA models with the 1st set of pa-
rameters (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

35 Graphical representation of the performance of the GA models with the 2nd set of
parameters (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

36 Graphical representation of the performance of the GA models with the 3rd set of
parameters (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

37 Graphical representation of the performance of the GA models with the 4th set of
parameters (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

38 Graphical representation of the performance of the GA models with the 5th set of
parameters (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

39 Graphical representation of avg. solution f(x) with initial population (source: self made) 66

40 Graphical representation of avg. solution x with initial population (source: self made) . 66

vii



41 Graphical representation of avg. number of iterations until best solution is found with
initial population (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

42 Zoomed graphical representation of avg. number of iterations until best solution is found
with initial population (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . 67

43 Graphical representation of avg. solution f(x) with crossover rate (source: self made) . . 68

44 Graphical representation of avg. number of iterations until best solution is found with
crossover rate (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

45 Graphical representation of avg. solution f(x) with mutation rate (source: self made) . . 69

46 Graphical representation of avg. number of iterations until best solution is found with
mutation rate (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

47 Graphical representation of avg. solution f(x) with number of generations (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

48 Graphical representation of avg. number of iterations until best solution is found with
number of generations (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . 71

49 Graphical representation of avg. solution f(x) with search diameter (source: self made) . 74

50 Zoomed graphical representation of avg. solution f(x) with search diameter (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

51 Graphical representation of avg. solution x with search diameter (source: self made) . . 76

52 Zoomed graphical representation of avg. solution x with search diameter (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

53 Graphical representation of number of iterations until best solution is found with search
diameter (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

54 Graphical representation of avg. solution f(x) with initial temperature (source: self made) 78

55 Graphical representation of avg. solution x with initial temperature (source: self made) 78

56 Graphical representation of avg. number of iterations until best solution is found with
initial temperature (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

57 Graphical representation of avg. solution f(x) with number of iterations (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

58 Zoomd graphical representation of avg. solution f(x) with number of iterations (source:
self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

59 Graphical representation of avg. solution x with number of iterations (source: self made) 81

viii



60 Zoomed graphical representation of avg. solution x with number of iterations (source:
self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

61 Graphical representation of avg. number of iterations until best solution is found with
number of iterations (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

62 Graphical representation of De Jong's function simulations results (source: self made) . 86

63 Graphical representation of Rastrigin's function simulations results (source: self made) . 87

64 Graphical representation of Six-Hump Camel Back function simulations results (source:
self made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

65 Graphical representation of Schmit structure simulations results (source: self made) . . 91

66 TSP distribution of cities (source: self made) . . . . . . . . . . . . . . . . . . . . . . . . 93

67 Graphical representation of TSP Exhaustive Search simulation results (source: self made) 94

68 Graphical representation of TSP simulations results (source: self made) . . . . . . . . . 94

ix



List of Tables

1 Operators for each GA model (source: self made) . . . . . . . . . . . . . . . . . . . . . . 62

2 Parameters used in the simulations for each method . . . . . . . . . . . . . . . . . . . . 84

3 Isostatic and hyperstatic solutions for schimt structure (source: self made) . . . . . . . . 90

4 TSP Exhaustive Search simulation results (source: self made) . . . . . . . . . . . . . . . 93

5 Summary of simulations results for unconstrained continuous optimization (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Summary of simulations results for constrained continuous optimization (source: self
made) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Summary of simulations results for combinatorial optimization (source: self made) . . . 98

x



1 Introduction

Nowadays optimization is found everywhere, from professional �elds to personal decisions. Any en-
terprise intends to maximize its pro�ts or performance while minimizing costs. Engineering design,
planning, logistics or �nances all involve some kind of optimization. Even in our daily activities people
tend to optimize time spent and enjoyment, for instance. In fact, we are constantly searching for the
optimal solutions to every problem we meet, though we are not necessarily able to �nd such solutions.

Metaheuristics are a relatively new family of computational methods which can be used to solve
optimization problems. Most metaheuristic algorithms are nature inspired as they have been developed
based on some abstraction of nature. Nature has evolved over millions of years and has found perfect
solutions to almost all the problems she met. We can thus learn the success of problem solving from
nature and develop nature inspired heuristic and metaheuristic algorithms. More speci�cally, some
nature inspired algorithms are inspired by Darwin's evolutionary theory. Consequently, they are said
to be biology inspired.

Many classical methods have intrinsic limitations on their performance due to their essential mechanics
while, usually, metaheuristics are only limited by computational cost. Recent advances in computer
science involve an exponential increase in computation power and therefore the limitations on meta-
heuristics' performance are continuously being dramatically reduced. This fact has drawn attention
on this kind of methods in the last years.

The aim of this study is to conclude whether metaheuristics can be successfully applied to engineering
optimization. A number of classical and metaheuristic optimization methods are implemented and
a series of simulations performed in order to compare the behaviour of the studied algorithms. The
simulations consist in using the implemented algorithms to solve several proposed benchmark problems
related to engineering. For the objective set, the present is a qualitative research rather than a
quantitative research.

Three types of optimization problems are studied, namely unconstrained continuous optimization,
constrained continuous optimization and combinatorial optimization. These encompass most of the
habitual optimization problems found. An e�ort has been put into �nding engineering optimization
problems, for instance, structural design and logistics.

The document starts by introducing optimization in terms of the type of problems and solving methods.
A more thorough explanation of the algorithms studied and the benchmark problems used follows.
Then the implementation is presented in detail together with the testing done for the parameters of
each method. Finally, the simulations are performed that will allow to make a judgement on the
feasibility of using metaheuristics in engineering optimization.

2 State of the art

Even thought mathematical optimization is a relatively new branch of mathematics, optimization
in the broadest sense has always been present in any human decision making processes. Although
subconsciously, when facing any given choice we tend to search for the best solution possible. Thus,
throughout human history, optimzation has always been present.
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Before mathematics was even considered a modern science, many mathematicians solved optimization
problems. In ancient Egypt, for instance, optimization was used in the construction of the piramids.
In ancient Greek, many optimization problems were proposed and subsequently solved. For example,
Euclid proved that a square encloses the greatest area amongst all the possible rectangles with the
same perimeter.

Up to the twentieth century, as mentioned above, many mathematicians studied a number of optimiza-
tion problems. Usually the optimal solutions were found by exhaustively studying the search space or
using brute force approaches. In such attempts of solving optimization problems the e�ort was put
into �nding the actual optimal solution rather than devising an algorithm that would allow to �nd
the optimum in di�erent situations and problems. Some problems remain unsolved and are still being
studied today. An example to this is the Travelling Salesman Problem for a large number of cities, a
benchmark used in this dissertation, which was proposed as it is known today around the year 1930
but was introduced for the �rst time in the eighteenth century.

Many well known mathematicians and physicists have also contributed to the study of optimization
problems. Just to mention a few, Fermat and Lagrange found calculus-based formulas for identifying
optima while Newton and Gauss proposed iterative methods for moving towards an optimum. The
iterative method proposed by Newton was the widely used Newton's Method or Newton-Raphson
Method, included in this dissertation. Another example is Cauchy, who proposed a general iterative
method for solving systems of equations that leads to two other notorious methods: gradient method
and steepest descent.

In the twentieth century, an algorithm for linear programming was developed and used in economics.
Linear programming was historically the �rst term for optimization. E�ective methods for �nding
solutions using linear programming were found. These advancements were made during the �rst half
of the century.

The development of the transistor in the early 1950s revolutionized the �eld of electronics and paved the
way for computers. With the evolution of computers and the consequent accessibility to computation
power, mathematical optimization has been greatly reinvigorated. A large number of computational
optimization methods and algorithms have been devised since the 1960s and even more appear every
day. The reason behind this is that the number of mathematical operations computers can do nowadays
permit the execution of algorithms that were unthinkable before. Obviously this is also accompanied
by the fact that today we are living in the era of the information and thus it is very easy to have access
to ongoing studies as they are being carried out. In the same way as many other �elds, optimization
is growing exponentially in the last decades. Such are the advancements in optimization since the
existance of computers that it would take a whole book to write even a brief history on optimization
after 1960.

2.1 Heuristics and Metaheuristics

In the last few decades a new group of optimization methods has appeared taking advantage of the
aforementioned increase in computational power, namely heuristics and metaheuristics. The term
heuristic makes reference to the fact that the method uses experience as a tool to �nd the best solution
to an optimization problem. These methods are usually based on trial-and error. While heuristic
methods don't �nd the exact solution to a problem, like calculus-based methods do, they excel at
producing acceptable solutions in a reasonably practical time. There is no guarantee at all that these
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methods will �nd the optimal solution. Despite this fact, they are usually e�cient in �nding nearly
optimal solutions in an acceptable time lapse. Heuristics are usually designed to solve one speci�c
problem, on the other hand, metaheuristics are problem-independent methods that use some kind of
heuristic together with some stochastic component.

The �rst to use heuristic algorithms was probably Alan Turing when trying to decipher german encoded
messages during the Second World War. Turing described his method as a heuristic algorithm since
there was no guarantee to �nd the correct solution but it could be expected to work most of the time.
It was a tremendous success.

Further studies resulted in the development of evolutionary algorithms. Probably the most notable
algorithms of this type are the Genetic Algorithms (GA), inspired by Darwin's natural selection.
Genetic Algorithms were devised by John Holland and his collaborators in the 1960s and 1970s. Holland
published his �ndings in the groundbreaking book �Adaptation in Natural and Arti�cial Systems� in
1975. Other evolutionary algorithms were developed around the same time, for instance Evolution
Strategy or Evolutionary Programming.

The next big step was the development of Simulated Annealing (SA) by S. Kirkpatrick et al. in 1983,
inspired by the annealing process of metals. Both GA and SA are studied in this dissertation and will
be explained in detail later in the document.

Many more heuristic and metaheuristic methods have been devised to date. These include Tabu Search,
Ant Colony Optimization, Harmony Search, Arti�cial Bee Colony and Fire�y Algorithm amongst
others.

For a more thorough description of the history of optimization the book �Engineering Optimization:
An Introduction with Metaheuristic Application� by the author Xin-She Yang can be consulted. This
book mentions some important contributors to optimization from the ancient times up to today. A very
good overview of the evolution of optimization can be found there, together with a brief description of
the algorithms cited above.

3 Engineering Optimization

Mathematical optimization includes a number of di�erent problems with the objective of �nding the
best possible solution. The wide range of problems and searching methods included make it di�cult
to classify optimization in terms of the type of problem or the type of searching algorithm. There is
no consensus in literature on the way this classi�cation must be done, therefore one speci�c approach
is presented in this dissertation.

3.1 Optimization

It is possible to write most optimization problems in the generic form
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minimize
xε<n fi(x), (i = 1, 2, ...,M), (1)

subject to φj(x) = 0, (j = 1, 2, ..., J), (2)

ψk(x) ≤ 0, (k = 1, 2, ...,K), (3)

where fi(x), φj(x) and ψk(x) are functions of the design vector

x = (x1, x2, ..., xn)
T . (4)

In the above formulation, the components xi of x are called design or decision variables. The decision
variables can be continuous, discrete or anything in between and belong to the search space <n.
The functions fi(x) are called the objective functions. The objective function is also known as the
cost function or energy function. The equalities φj and ψk inequalities are called constraints. The
optimization problem can also be formulated as a maximization problem.

Somtimes an optimization problem can have no objective function and consist only in constraints. In
this case the problem is known as a feasibility problem since any feasible solution is an optimal.

The possibility exists that the objective function can not be written in the explicit form since it is
too complex or it can not be expressed mathematically. In such cases some sort of simulations have
to be carried out to determine whether a solution is optimal or not. In this dissertation the problems
studied all can be formulated through the explicit form of the objective function.

In the following sections, the types of optimization problems and optimization search algorithms are
presented. As mentioned before, only one speci�c classi�cation is included amongst the many available
in literature.

3.2 Type of Optimization

The huge variety of existing optimization problems makes it di�cult to establish a certain classi�cation
of these. There is no consensus in the literature on how this should be done, therefore the classi�cation
here is aimed at presenting the optimization problem types in a clear manner so the reader can get a
grasp of the basic types. In general terms, the optimization problems can be classi�ed by the number
of objectives, number of constraints, landscape of the objective function, function form, type of design
variables and determinacy (see Figure 1).

According to the number of objectives, an optimization problem can be single objective or multiob-
jective. A single objective problem is that in which only one objective function exists that represents
the one value to be maximized or minimized. For example, the design of a structure that must sup-
port a certain weight with the lowest cost possible. In this example the one objective is to minimize
the structure cost. On the other hand, multiobjective problems must optimize a number of di�erent
objectives or objective functions. Therefore, an example would be the same structure as before if,
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besides minimizing the cost, we try to maximize the weight it can support. In such case, two di�erent
objective functions exist corresponding to the cost and maximum weight supported. Most engineering
optimization problems are multiobjective.

When calssifying the optimization problems in terms of the number of constraints there are obviously
those which have no constraints, unconstrained problems, and those that do have a number of con-
straints, constrained optimization problems. The constraints in the second type can be both equalities
and inequalities. Furthermore, any equality constraint can be rewritten as two inequality constraints
and therefore sometimes in the literature only inequality constraints are considered.

optimization
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Figure 1: Classi�cation of optimization problems (source: [20])

Another way of classifying the optimization problems is by the landscape of the objective functions.
Such can functions can may have a single valley or peak with a unique global optimum or they might, on
the other hand, have a number of valleys and peaks with di�erent local optima and therefore one or more
global optima. In the �rst case we have a unimodal landscape, which can in turn be convex, while in the
second case we have a multimodal landscape. Obviously, multimodal optimization problems are harder
to solve and are found more often in engineering optimization. An example of a unimodal landscape is
De Jong's Function, meanwhile Rastrigin's Function is an example of a multimodal landscape. Both
examples are studied in this dissertation.

The optimization problems can also be classi�ed according to the function form. If the objective
function and the constraints are linear then it is called a linear programming problem. If only the
constraints are linear, but the objective function is not, then it becomes a linearly constrained problem.
However, if the objective function and the constraints are nonlinear, the usual case, then it is a nonlinear
optimization problem. When this happens, the problems can be classi�ed again according to the type
of function form once more. For example, the function form can be nonlinear with a quadratic form.

The type of variables in optimization problems can also be used in the classi�cation of these. When the
variables are discrete then we talk about discrete optimization. Particular cases of discrete optimization
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are those in which the problem variables are integers or natural numbers. Discrete optimization is also
known as combinatorial optimization sometimes. The problem variables can also be continuous, like
in the case of real numbers, in such case the problem belongs to continuous optimization. These two
types of optimization problems have been studied in the present work. Many design problems can
present both discrete and continuous variables, resulting in a mixed optimization problem.

All the above classi�cations belong to the case in which any set of variables can be evaluated by means
of the objective function and constraints in an exact way. Therefore, the optimization problem can
be called deterministic in this sense since the values for the objective function and constraints can be
determined without uncertainty. Nonetheless, not every optimization problem is deterministic. It is
common to �nd engineering optimization problems where some objective function or constraint can
not be determined exactly since there is some kind of inherent uncertainty associated to the physical
parameter studied. In such cases we have stochastic optimization problems.

3.3 Optimization Algorithms

In the preceding section, the di�erent types of optimization problems are presented according to one
possible classi�cation. This section proceeds the same way with the di�erent existing optimization
algorithms used to solve such optimization problems.

Suppose that we have an optimization problem that consists of �nding a certain object that is located
in the centre of a room. Loosely speaking, there are two opposite ways in which to perform the search
of the object. The �rst option consists in entering the room and randomly walking around until the
object is found, supposing that you can not see the object from afar. The second option is based on the
knowledge beforehand that the object is in the center of the room and consists in entering the room
and walking directly to the center hoping to �nd the object there. In this analogy, the �rst option
is a pure stochastic or random search while the second is known as a hill-climbing technique. Every
optimization algorithm can be understood as an instance of one of the options above or something in
between.

In general terms, optimization algorithms can be divided into two main groups: deterministic and
stochastic. A deterministic algorithm follows a series of steps based on exact calculations and therefore,
no matter how many times one speci�c deterministic algorithms is run, it always �nds the same solution.
On the other hand, stochastic algorithms have a random behaviour in at least one of the steps followed
to search for the optimum. Thus a stochastic algorithm gives a di�erent solution, or at least follows a
di�erent path to such solution, for every simulation run.

Deterministic algorithms are mainly classic calculus-based optimization algorithms. These range from
linear and nonlinear programming to gradient-based or gradient-free algorithms. Some examples of
deterministic algorithms are Linear Programming, Newton's Method and Gradient Descent. The �rst
is obviously used to solve linear problems while the other two methods belong to the gradient-based
algorithms. Many deterministic optimization algorithms were devised before the twentieth century and
therefore are considered classic or conventional. As mentioned above, these methods are repeatable and
always follow the same path towards the solution. The only way of varying the result obtained by means
of a deterministic method is changing the starting search point. Some algorithms are deterministic by
nature but include a small random component. These hybrid algorithms are classi�ed as stochastic in
the literature.
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Figure 2: Classi�cation of algorithms (source: [20])

Most conventional or classic algorithms are deterministic. For example, the Simplex method in linear
programming is deterministic. Some deterministic optimization algorithms used the gradient infor-
mation, they are called gradient-based algorithms. For example, the well-known Newton-Raphson
algorithm is gradient-based as it uses the function values and their derivatives, and it works extremely
well for smooth unimodal problems. However, if there is some discontinuity in the objective function,
it does not work well. In this case, a non-gradient algorithm is preferred. Non-gradient-based or
gradient-free algorithms do not use any derivative, but only the function values. Hooke-Jeeves pattern
search and Nelder-Mead downhill simplex are examples of gradient-free algorithms.

For stochastic algorithms, we have in general two types: heuristic and metaheuristic, though their
di�erence is small. Loosely speaking, heuristic means 'to �nd' or 'to discover by trial and error'.
Quality solutions to a tough optimization problem can be found in a reasonable amount of time, but
there is no guarantee that optimal solutions are reached. It is expected that these algorithms work
most of the time, but not all the time. This is usually good enough when we do not necessarily want
the best solutions but rather good solutions which are easily reachable.

Further development over the heuristic algorithms is the so-called metaheuristic algorithms. Here
meta- means 'beyond' or 'higher level', and they generally perform better than simple heuristics. In
addition, all metaheuristic algorithms use certain tradeo� of randomization and local search. It is worth
pointing out that no agreed de�nitions of heuristics and metaheuristics exist in literature, some use
'heuristics' and 'metaheuristics' interchangeably. However, recent trends tend to name all stochastic
algorithms with randomization and local search as metaheuristic. Here we will also use this convention.
Randomization provides a good way to move away from local search to the search on the global scale.
Therefore, almost all metaheuristic algorithms intend to be suitable for global optimization.

3.4 Metaheuristics

Most metaheuristic algorithms are nature-inspired as they have been developed based on some ab-
straction of nature. Nature has evolved over millions of years and has found perfect solutions to
almost all the problems she met. We can thus learn the success of problem-solving from nature and
develop nature-inspired heuristic and/or metaheuristic algorithms. More speci�cally, some nature-
inspired algorithms are inspired by Darwin's evolutionary theory. Consequently, they are said to be
biology-inspired or simply bio-inspired.
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Two major components of any metaheuristic algorithms are: selection of the best solutions and ran-
domization. The selection of the best ensures that the solutions will converge to the optimality, while
the randomization avoids the solutions being trapped at local optima and, at the same, increase the
diversity of the solutions. The good combination of these two components will usually ensure that the
global optimality is achievable.

Metaheuristic algorithms can be classi�ed in many ways. One way is to classify them as: population-
based and trajectory-based. For example, genetic algorithms are population-based as they use a set
of strings, so is the particle swarm optimization (PSO) which uses multiple agents or particles. PSO
is also referred to as agent-based algorithms.

On the other hand, simulated annealing uses a single agent or solution which moves through the design
space or search space in a piecewise style. A better move or solution is always accepted, while a not-
so-good move can be accepted with certain probability. The steps or moves trace a trajectory in the
search space, with a non-zero probability that this trajectory can reach the global optimum.

Two major modern metaheuristic methods are studied in this dissertation: genetic algorithms (GA)
and simulated annealing (SA).

The e�ciency of an algorithm is largely determined by the complexity of the algorithm. The algorithm
complexity is often denoted by the order notation, which will be introduced below.

4 Classic Algorithms

This section contains a brief description of a few well known classical optimization algorithms, namely
Newton's Method, Exhaustive Search and Pure Random Search. The �rst is a calculus based method,
the second is a brute force method and the third is a pure stochastic method.

4.1 Newton's Method

Newton's method, also known as Newton�Raphson method, is a root-�nding algorithm, but it can
be modi�ed for solving optimization problems. This is because optimization is equivalent to �nding
the root of the �rst derivative f ′(x) of the objective function f(x). For a continuously di�erentiable
function f(x), we have the Taylor expansion in terms of 4x = x− xn about a �xed point xn

f(x) = f(xn) + (∇f(xn))
T4x+

1

2
4xT∇2f(xn)4x+ ...,

whose third term is a quadratic form. Hence f(x) is minimized if 4x is the solution of the following
linear equation

∇f(xn) +∇2f(xn)4x = 0. (5)
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This leads to

x = xn −H−1∇f(xn), (6)

where H−1 is the inverse of the Hessian matrix H = ∇2f(xn), which is de�ned as

H(x) ≡ ∇2f(x) ≡


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n

 . (7)

This matrix is symmetric due to the fact that

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
. (8)

If the iteration procedure starts from the initial vector x(0), usually a guessed point in the feasible
region, then Newton's formula for the nth iteration becomes

x(n+1) = x(n) −H−1(x(n))f(x(n)). (9)

It is worth pointing out that if f(x) is quadratic, then the solution can be found exactly in a single
step. However, this method is not e�cient for non-quadratic functions.

In order to be able to use Newton's Method in an optimization problem the �rst derivative of the
objective function must be a continuously di�erentiable function. Besides this requirement, if the
global optimum of the problem is to be found, a good enough initial estimate of the solution has to be
set. This is usually one of the main drawbacks of this method.

4.2 Penalty Method

The basic idea in penalty method is to eliminate some or all of the constraints and modify the objective
function with a penalty term. These term is used to increase the cost of points that not verify the
constraints. The penalty is large if the constraints are far from being veri�ed and small if they are
close to being veri�ed. Moreover, one particular constraint might bear more importance than the
rest, hence weights associated to each constraint are introduced in the formulation that represent the
importance of the veri�cation of such constraint.

The objective function is usually modi�ed with the penalty term in two possible ways. The �rst way
is to use additive form:
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eval(x) =

{
f(x), if xεF

f(x) + p(x), otherwise

where F is the feasible space and p(x) represents a penalty term. For minimization problems p(x) is
positive while for maximization problems it is negative, this guarantees that the penalty increases the
cost.

The second way is to use multiplicative form:

eval(x) =

{
f(x), if xεF

f(x) · p(x), otherwise

for minimization problems p(x) bigger than one while for maximization problems it is smaller than
one. The additive penalty is used much more often than the multiplicative in the literature.

As an example, for a simple function optimization problem with equality and inequality constraints

minimize
xε<n f(x), x = (x1, ..., xn)

T,

subject to φi(x) = 0, (i = 1, ...,M),

ψj(x) ≤ 0, (j = 1, ..., N),

the idea is to de�ne a penalty function so that the constrained problem is transformed into an uncon-
strained problem. Now we de�ne g(x, µi, νj)

g(x, µi, νj) = f(x) +

M∑
i=1

µiφ
2
i (x) +

N∑
j=1

νjψ
2
j (x), (10)

where µi � 1 and νj ≥ 0 are the weights used for each constraint.
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4.3 Exhaustive Search

Exhaustive Search, which is also known as Brute Force Search, is a trivial but very recurrent search
algorithm in literature. This problem solving technique consists in comparing all the possible solutions
to the studied problem and checking which one satis�es the problem statement. For example, to �nd
the square root of a given number (x) Exhaustive Search would multiply every number, from 0 to x,
by itself and check whether the solution of the multiplication is x. When the multiplication result is
equal to x the solution to the initial problem has been found.

The implimentation of Exhaustive Search is very straightforward and will always �nd a solution if it
exists. However the cost of running Exhaustive Search is usually very high compared to the cost of
other methods. This is due to the fact that the cost is proportional to the number of possible solutions
to the problem being solved. Thus the cost grows very quickly with the size of the problem's search
space size. The use of Exhaustive Search is usually limited to problems of small size or when the ease
in implementing the algorithm is more important than the cost or speed.

This method is also used often when testing other algorithms such as metaheuristics. In this disserta-
tion Exhaustive Search has been implemented and used with the aforementioned aim.

When facing continuous optimization the method can only be applied through a discretization of the
search space in order to be able to evaluate all the number of candidate solutions in a �nite time. This
is usually done by de�ning a grid of points in the search space. Therefore a new parameter appears
when solving continuous optimization with the exhaustive method, this parameter is the grid size.
The grid size can be understood as the distance between one point and its neighbours in the grid,
in the hypothesis of an equally spaced grid. The grid size determines the number of evaluations, or
computational cost, together with the precision of the solution obtained. Therefore, it can be compared
to the tolerance in Newton's Method.

4.4 Pure Random Search

The simplest stochastic global optimization algorithm is the so-called Pure Random Search (PRS),
which was introduced in 1958. This algorithm randomly generates candidate solutions in the search
space and evaluates the objective function for each candidate. When the termination criterion is met,
the best candidate solution generated thus far is returned as the solution to the problem.

Since this search method is completely stochastic and has no directed search the results obtained are
far from optimal. Nonetheless, in simple optimization problems Pure Random Search can be applied
successfully. In more complex optmization problems Pure Random Search proves to be very ine�cient.

5 Metaheuristics

This section presents the metaheuristic algorithms used in this dissertation. Genetic Algorithm and
Simulated Annealing have been implemented and applied to the benchmark engineering problems
proposed in this study. Both methods are described thoroughly herein. For further information on
these two algorithms the reader can consult the bibliography at the end of this document.
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5.1 Genetic Algorithm

Genetic Algorithms are metaheuristics inspired by the theory of natural selection, also known as
survival of the �ttest. Darwin, in his book �On the Origin of Species�, proposed the scienti�c theory
that all species of life have descended over time from common ancestors through a process that he
called natural selection. Natural selection explains how the �ttest members of a population are more
likely to survive and reproduce, hence their genes are passed to the next generations. In the same
way, Genetic Algorithms evolve solutions to a problem in order to obtain better solutions in the next
generations.

In this section an understanding of the functioning of genetic algorithms is developed. A basic back-
ground to GA is included in order to give the reader an overall view on the matter. The background
mentions early works on GA and the particularities of this metaheuristic. The section continues to in-
troduce the basic algorithm and explain in detail the existing operators and parameters that constitute
the genetic algorithm.

For a more detailed explanation on Genetic Algorithms and how they di�er from classic optimization
methods, the reader can consult the book �Genetic Algorithms in Search, Optimization and Machine
Learning� by David Edward Goldberg (1989) which includes a complete summary on GAs.

5.1.1 Background to GA

Genetic Algorithms were �rst presented in 1975 by John H. Holland in his book �Adaptation in Nat-
ural and Arti�cial Systems�. In his work Holland noticed that arti�cial systems work very similarly
to natural systems and therefore devised a way in which natural selection could be formulated mathe-
matically. He succeeded in implementing an early version of a Genetic Algorithm that used selection,
crossover and mutation operators to improve solutions to a problem over a number of generations or
iterations.

In mathematical terms the genes in the chromosomes of each member in the population are the problem
variables for which we are searching the best values. To calculate the �tness of a given member of the
population the objective or cost function is evaluated using the member's genes. Using such encoding
it is quite straightforward to implement the operators involved in the Genetic Algorithm.

Today, Genetic Algorithms have been used numerous times to solve complex optimization problems
successfully. The good performance of GAs can be ascribed to its operators. In the same way as
in nature, the selection and crossover operators are very appropiate at exlpoiting the best solutions
obtained so far by passing their genes to the next generations. Moreover, the mutation operator is
in charge of the exploration of the search space guaranteeing a diversity of genes in any generation.
Probably the most noticeable advantage of Genetic Algorithms is their robustness. It is an easy task
to ascertain that GAs always tend to improve the solution obtained in successive generations and
therefore consistently approach the global optimum solution to the optimization problem being solved.

Since Genetic Algorithms emulate the biological process of evolution, a population of members is used
to represent a generation. This fact implies that at any given time the algorithm has a number of
candidate solutions instead of having only one candidate solution like many classic methods do. Like
most metaheuristics, being one of their main fortes, GAs use an objective or cost function that does
not involve the calculation of derivatives and does not need any additional information. Many calculus
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based methods, such as Newton's Method, require the derivatives of the function to optimize which is
a huge drawback when such derivatives are di�cult or even impossible to obtain. Another di�erence
from calculus based methods, common to most metaheuristics, is obvioously the fact that GAs are
stochastic algorithms based on some probabilistic rules rather than deterministic ones.

5.1.2 Algorithm

As described before the GA is an attempt to emulate natural selection, or survival of the �ttest, in
a way that instead of evolving genetic information the algorithm evolves a series of numbers which
represent the variables of the optimization problem being solved. In other words, in natural selection
chromosomes (DNA) are evolved to be as �t as possible to the environment while, by analogy, in
the GA chromosomes (problem variables) are evolved to be as �t as possible to the cost or objective
function (problem function to be optimized).

The algorithm of GA is a simpli�cation of natural selection process where several operators are used
to simulate evolution. In the same way it happens in nature, a population of individuals is evolved
throughout generations by means of selection of the �ttest and reproduction. The population rep-
resents the current approximations to the solution, thus each population member is usually a series
of numbers depending on the encoding used. These approximations that form the population can be
interchangeably referred to as approximations, solutions, members and chromosomes by analogy to
the GA nature. Each chromosome consists in a series of numbers which are a solution to the problem
under study, in other words, the chromosome contains values for the problem variables and therefore
the chromosome's length is given by the number of variables in the problem. Each of these numbers
are called genes in GA; so a chromosome has a number of genes equal to the number of variables in
the problem.

The whole process of natural selection can be simulated using �ve simple operators, namely Initial
Population, Selection, Crossover, Mutation and Replacement. The Initial Population operator is in
charge of generating the initial population. Selection evaluates the �tness of the population members
and selects the parents for the new generation. Crossover and Reproduction belong to the process of
Reproduction and carry out the crossing, or crossover, of the population members and the mutation of
the o�spring respectively. The result of Reproduction is the new generation of o�spring. Finally, the
operator Replacement merges the present population with the o�spring to generate the new population.
The point where the simulation stops or the number of generations simulated needs to be managed by
the last operator used, Termination Criteria.
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Figure 3: GA algorithm �ow chart diagram (source: self made)

Given the fact that the GA is a method designed to be run by a computer its algorithm can be
expressed in terms of a number of operators (or functions) and a set of parameters which determine
how the method behaves, besides of course the objective problem's variables. The operators are the
actors who guarantee that the method obtains better solutions with the number of iterations and set
the algorithm �ow. The parameters on the other hand are values to be �xed according to the type of
optimization problem faced; these vary the behaviour of the algorithm to better adapt to the problem
being solved.

5.1.3 Operators

A more thorough explanation of the operators of the GA is presented in this section. The function of
each operator is described in detail along with some basic working mechanics. While each operator has
a certain role in the algorithm, these roles can be carried out in a number of di�erent ways. An example
to this is the operator used to generate the initial population which can be generated with randomly
or in a more greedy approach. The general purpose of each operator is presented here, together with
the description of the speci�c operators used in the implementation done for this dissertation.

Initial Population
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The purpose of this operator is to generate the initial population of solutions or approximations
to the solution. Obviously, this operator is only used in the �rst generation or iteration for each
simulation run. To be able to generate the initial population the operator needs to know the size of
the population that must be generated, thus the �rst parameter of the GA is the size of the initial
population (number of members).

Several di�erent ways of generating the �rst generation of population members exist. The focus of this
study is not to exhaustively compare all the possible operators but to compare a general GA algorithm
to other methods. Therefore, only a few variations of each operator are studied.

Two variations of the Initial Population operator have been used in this dissertation, namely Random
Initial Population and Greedy Initial Population.

Random Initial Population is a trivial variation of the operator that generates new members randomly
in the search space given by the problem statement.

The Greedy Initial Population operator generates a population of better than average solutions (mem-
bers) by, for example, generating a population larger than necessary and then select the best solutions
to form the initial population.

Selection

Selection is the stage of a genetic algorithm in which individual members are chosen from the
current population for breeding (crossover or recombination). The di�erent variations of the operator
de�ne how these members are selected. According to Darwin's evolution theory the best ones should
survive and create new o�spring.

There are many ways of selecting the best parents, two have been studied here. These are Random
Selection and Roulette Wheel Selection. The Random operators have been introduced to make more
aparent the di�erences between the studied metaheuristic methods and more stochastic approaches.

Random Selection is, as expected, the trivial approach where the parents are selected randomly from
the population.

In the Roulette Wheel Selection parents are selected according to their �tness. The better the chromo-
somes are, the more chances to be selected they have. Imagine a roulette wheel where all chromosomes
in the population are placed and the size of the slice of pie each chromosome occupies is determined
according to the �tness of the chromosome.
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Figure 4: Graphical representation of the Roulette Wheel Selection (source: self made)

Then a marble is thrown into the roulette and selects a new parent. This process must be done twice
for each o�psring because the crossover operators used cross two parents to generate one o�spring,
just like in sexual reproduction. Chromosomes with higher �tness will be selected more times.

Crossover

Crossover is a genetic operator used to vary the chromosomes from one generation to the next.
It is analogous to reproduction and biological crossover, upon which genetic algorithms are based.
This operator takes more than one parent solution and produces a child solution from them. As with
any other operator there are many ways in which this can be done.

Two variations of this operator have been used here as well. These are Uniform Crossover and Single
Point Crossover.

In Uniform Crossover genes are randomly copied from the �rst or from the second parent into the
o�spring with the same probability.

Figure 5: Graphical representation of Uniform Crossover (source: self made)
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On the other hand, in Single Point Crossover one crossover point is selected. Genes before this point
are copied from one parent while genes that come after this point are copied from the second parent.

Figure 6: Graphical representation of Single Point Crossover (source: self made)

While the Crossover operator generates one o�spring for each pair of parents, this o�spring is not
always a recombination of the parents genes. O�spring are also generated, with some probability, as
an exact copy of one of the parents. The probability with which this happens is set by a new parameter
named Crossover Rate. To be more precise, the Crossover Rate is the probability with which parents
are crossed to generate the o�spring. Therefore the probability of being an exact copy of one of the
parents is 1 - Crossover Rate.

Mutation

The Mutation operator introduces randomness into the reproduction by changing randomly some
genes in a chromosome. While this prevents the algorithm from falling into local optima, it also
increases the exploration capabilities of the method.

The usual approach is to set the probability with which a gene in a chromosome is mutated. This
probability is another parameter of GA called Mutation Rate. Mutation is usually understood as
completely random so no other variations of this operator have been studied in this dissertation.

Replacement

The Replacement operator is in charge of merging the current population and the generated o�-
spring into the new population. This new population will then be used as starting point for the next
generation. Again, there are several di�erent ways of performing this combination.

Like with the other operators, two variations of the Replacement operator are studied in this disserta-
tion: the Random Replacement and the Elitist Replacement.

The Random Replacement operator is again the trivial variation of the Replacement operator. This
variation randomly selects a number of members of the current population equal to the number of
o�spring and replaces these members with the o�spring. The result of this replacement is the new
population which is used in the next generation as the starting population.

The Elitist Replacement operator favours the replacement of the less �t members of the population
in order to introduce the o�spring. The members to be replaced are selected using the same Roulette
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Wheel strategy used in the selection operator. Although, in this case, the probability with which
a certain member is selected is inversely proportional to its �tness. This variation is successful at
exploting the best solutions found, or chromosomes, but this is in detriment of the exploration facet
of the algorithm.

It is convenient to point out here that the population remains the same size throughout the simulation.
Other variations of the Replacement operator exist where this is not true. For example, one possible
variation is simply to add the o�spring to the population without removing any current members.
This causes the population to grow each generation together with the computational cost which can
be inconvenient.

Termination Criteria

The generational process in GA is repeated until a termination condition has been reached. Com-
mon terminating conditions are: a solution is found that satis�es minimum criteria, �xed number of
generations reached and allocated budget (computational cost) reached amongst others.

Since the Termination Criteria operator has no relation to the algorithm's e�ciency, the simplest
variation has been used that allows a certain control over the simulation time. Such variation is
the corresponding to a �xed number of generations reached. The last of the method's parameters is
therefore the Number of Generations. When the number of generations given by this parameter is
reached the algorithm is stopped.

The higher the Number of Generations the higher the probability of �nding a better solution and the
higher the computational cost and simulation time.

5.1.4 Parameters

Initial Population

The Initial Population parameter �xes the size of the initial population. The Initial Population
operator will generate a number of chromosomes equal to this size. The higher the value of this
parameter the more chromosomes must be generated in the �rst generation, or �rst iteration of the
algorithm, thus the higher the computational cost and the simulation time.

While a low value of this parameter improves the simulation time slightly, it can also act in detriment of
the method since the probability of having all the population members converge to a same chromosome
increases.

As with any other parameter of the GA, the optimal value for the Initial Population parameter depends
on the type of problem studied. Every parameter for each method has been tested and the results
presented in the corresponding section in this document.
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Crossover Rate

The Crossover Rate parameter sets the probability with which a pair of selected parents will be
crossed to generate one o�spring. Usually this probability is set below 100% due to the fact that
sometimes it is preferable that the selected parents, which should be chromosomes with above average
�tness, are passed unmodi�ed to the next generation.

Crossover rate generally should be high, about 80%-95%. However some results show that for some
problems crossover rate about 60% is the best. This parameter is thoroughly tested in this study.

Mutation Rate

Mutation Rate sets the probability with which each gene in a o�spring chromosome is mutated.
The higher the value the more stochastic the algorithm results. A high Mutation Rate ensures the
exploration of all the search space. Moreover, a low Mutation Rate favours the exploitation. Usually
the Mutation Rate is set to a very low value. Best rates reported are about 0.5%− 1%.

Since the above values depend highly on the way the mutation is implemented, Mutation Rate must
also be tested in order to obtain the best values for each problem type studied.

Number of Generations

The Number of Generations can be understood as the length of the simulation. As explained above,
the higher the number of generations the better the solution obetained, usually, and the higher the
simulation time or computational cost. It seems logical to run as much generations as possible in one
simulation but the fact that several simulations must be ran to average the solutions obtained should
be considered. Therefore, in order to maintain a feasable simulation time the Number of Generation
must be relatively low.

Together with every other parameter, the Number of Generations has been tested for the optimization
problems studied in this dissertation. The optimum value for each parameter varies with the type of
problem.

5.2 Simulated Annealing

Annealing is a process in metallurgy that consists in heating up a material and then cooling it slowly.
After heating up the material, when at high temperature, the atoms move about in great mesure since
they have high kinetic energy. At this state the atoms sort themselves in many con�gurations with
di�erent stabilites. As the temperature decreases, the atoms gradually lose the ability to move freely
and tend to move only to more stable con�gurations. In this way, after the whole process is completed,
the resulting con�guration corresponds to that with the highest stability. The annealing process is
commonly used to obtain a more consistent and stable crystal structure which increases the metal's
durability.

Simulated Annealing is a metaheuristic optimization algorithm that intends to emulate the process
explained above. This method works with one candidate solution at a time. The simulation starts
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at a high temperature at which the candidate solution moves around the search space freely. At this
stage the algorithm focuses almost exclusively on exploring the search space. In the same way as in
the physical process, as the temperature decreases the candidate solution tends to move only to better
solutions and thus focuses more on exploitation. This algorithm leads the Simulated Annealing to
better solutions in the same way as better internal con�gurations are found in the annealing process.

In the simulated annealing method (SA), each point of the search space is analogous to a state of some
physical system, and the function to be minimized is analogous to the internal energy of the system
in that state. The goal is to bring the system, from an arbitrary initial state, to a state with the
minimum possible energy.

5.2.1 Background to SA

Simulated annealing was developed in the mid 1970s by Scott Kirkpatrick and several other researchers.
It was developed to better optimize the design of integrated circuit chips by simulating the actual
process of annealing. An article by S. Kirkpatrick et al. named �Optimization by Simulated Annealing�
explaining in more depth the Simulated Annealing can be found in the academic journal Science,
Volume 220, Number 4598, 13 May 1983.

Since Simulated Annealing was devised up to today the algorithm has been successfully applied to
many optimization problems of di�erent kinds. As an example, in the aforementioned article by
S. Kirkpatrick et al., SA is said to be able to solve the Travelling Salesman Problem which is a
combinatorial optimization problem.

The algorithm di�ers from many other metaheuristics in that it uses only one approximation to the
solution at a time instead of a number or population of solutions. Compared to other metaheuristics
Simulated Annealing has a quite uncomplicated implementation given the relatively low number of
operators and parameters used to simulate the annealing process.

5.2.2 Algorithm

By analogy with the physical process each step of the SA algorithm attempts to replace the current
solution by a random solution, chosen according to a candidate distribution often constructed from
solutions near the current solution. The new solution may then be accepted with a probability that
depends both on the di�erence between the corresponding function values and also on a global pa-
rameter T , called the temperature, that is gradually decreased during the process. The dependency is
such that the choice between the previous and current solution is almost random when T is large, but
increasingly selects the better or "downhill" solution (for a minimization problem) as T goes to zero.
The allowance for "uphill" moves potentially saves the method from becoming stuck at local optima,
which is the bane of greedier methods.
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Figure 7: SA algorithm �ow chart diagram (source: self made)

In other words, at each step the SA heuristic considers some neighbouring state s′ of the current
state s, and probabilistically decides between moving the system to state s′ or staying in state s.
These probabilities ultimately lead the system to move to states of lower energy. Typically this step
is repeated until the system reaches a state that is good enough for the application or until a given
computation budget has been exhausted, which is introduced through a termination criteria.

In the same way as GA, the algorithm is described in terms of operators (functions) and parameters
since it is a computational method and this allows a more straightforward implementation.

5.2.3 Operators

In this section the operators of the Simulated Annealing algorithm are explained in detail. Some of the
working mechanics of the operators are introduced here while others appear when the implementation
is described or when the simulations are performed and the results to these presented.

Initial Approximation
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The Initial Approximation operator works in the same exact way as the Initial Population oper-
ator of the GA with the sole di�erence that in the SA there is only one approximation each iteration
or, in other words, the population size here is one. Therefore, the size population parameter is not
needed in this algorithm.

The same two variations as in the GA's Initial Population operator are used here, namely Random
Initial Approximation and Greedy Initial Approximation. These operators work exactly as their coun-
terparts in GA but, again, only generate one initial approximation.

Pick Neighbour State

The neighbours of a state are new states of the problem that are produced after altering a given
state in some particular way. For example, in the traveling salesman problem, each state is typically
de�ned as a particular permutation of the cities to be visited. The neighbours of permutation are the
permutations that are produced for example by interchanging a pair of adjacent cities. The action
taken to alter the solution in order to �nd neighbouring solutions is called a "move" and di�erent
moves give di�erent neighbours. These moves usually result in minimal alterations of the solution, as
the previous example depicts, in order to help an algorithm to optimize the solution to the maximum
extent and also to retain the already optimum parts of the solution and a�ect only the suboptimum
parts. In the previous example, the parts of the solution are the city connections.

Searching for neighbours of a state is fundamental to optimization because the �nal solution will
come after a tour of successive neighbours. Simple heuristics move by �nding best neighbour after
best neighbour and stop when they have reached a solution which has no neighbours that are better
solutions. The problem with this approach is that the neighbours of a state are not guaranteed to
contain any of the existing better solutions which means that failure to �nd a better solution among
them does not guarantee that no better solution exists. This is why the best solution found by such
algorithms is called a local optimum in contrast with the actual best solution which is called a global
optimum. Metaheuristics use the neighbours of a state as a way to explore the solutions space and
can accept worse solutions in their search in order to accomplish that. This means that the search will
not get stuck to a local optimum and if the algorithm is run for an in�nite amount of time, the global
optimum will be found.

In continuous optimization, the neighbours of a point are all the points in its vecinity. At this point
it is necessary to de�ne what the vecinity of a point is then. Here the �rst parameter of the SA
appears, the Search Diameter. This parameter allows to de�ne a di�erent size of the vecinity of a
point according to the problem being solved.

In combinatorial optimization, the neighbours are all the possible resutls of performing small changes
to the current approximation. For instance, swaping cities in a tour in the Travelling Salesman Problem
as explained above.

Acceptance Probability

The probability of making the transition from the current state s to a candidate new state s′ is
speci�ed by an acceptance probability function P (e, e′, T ), that depends on the energies e = E(s) and
e′ = E(s′) of the two states, and on a global time-varying parameter T called the temperature. States
with a smaller energy are better than those with a greater energy. The probability function P must
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be positive even when e′ is greater than e. This feature prevents the method from becoming stuck at
a local minimum that is worse than the global one.

When T tends to zero, the probability P (e, e′, T ) must tend to zero if e′ > e and to a positive value
otherwise. For su�ciently small values of T , the system will then increasingly favor moves that go
"downhill" (i.e., to lower energy values), and avoid those that go "uphill." With T = 0 the procedure
reduces to the greedy algorithm, which makes only the downhill transitions.

In the original description of SA, the probability P (e, e′, T ) was equal to 1 when e′ < e, the procedure
always moved downhill when it found a way to do so, irrespective of the temperature. Many descriptions
and implementations of SA still take this condition as part of the method's de�nition. However, this
condition is not essential for the method to work, and one may argue that it is both counterproductive
and contrary to the method's principle.

The P function is usually chosen so that the probability of accepting a move decreases when the
di�erence e′ − e increases, that means small uphill moves are more likely than large ones. However,
this requirement is not strictly necessary, provided that the above requirements are met.

Given these properties, the temperature T plays a crucial role in controlling the evolution of the state
s of the system in relation to its sensitivity to the variations of system energies. To be precise, for a
large T , the evolution of s is sensitive to coarser energy variations, while it is sensitive to �ner energy
variations when T is small.

In the formulation of the method by Kirkpatrick et al., the acceptance probability function P (e, e′, T )
was de�ned as 1 if e′ < e, and exp((e − e′)/T ) otherwise. This formula was super�cially justi�ed by
analogy with the transitions of a physical system; it corresponds to the Metropolis-Hastings algorithm,
in the case where the proposal distribution of Metropolis-Hastings is symmetric. However, this accep-
tance probability is often used for simulated annealing even when the pick neighbour function, which is
analogous to the proposal distribution in Metropolis-Hastings, is not symmetric, or not probabilistic at
all. As a result, the transition probabilities of the simulated annealing algorithm do not correspond to
the transitions of the analogous physical system, and the long-term distribution of states at a constant
temperature T need not bear any resemblance to the thermodynamic equilibrium distribution over
states of that physical system, at any temperature. Nevertheless, most descriptions of SA assume the
original acceptance function, which is probably hard-coded in many implementations of SA.

Cooling Schedule

The name and inspiration of the algorithm demand an interesting feature related to the tempera-
ture variation to be embedded in the operational characteristics of the algorithm. This necessitates a
gradual reduction of the temperature as the simulation proceeds. The algorithm starts initially with T
set to a high value (or in�nity), and then it is decreased at each step following some cooling schedule,
which may be speci�ed by the user but must end with T = 0 towards the end of the allotted time
budget. In this way, the system is expected to wander initially towards a broad region of the search
space containing good solutions, ignoring small features of the energy function; then drift towards
low-energy regions that become narrower and narrower; and �nally move downhill according to the
steepest descent heuristic.

For any given �nite problem, the probability that the simulated annealing algorithm terminates with
the global optimal solution approaches 1 as the annealing schedule is extended. This theoretical result,
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however, is not particularly helpful, since the time required to ensure a signi�cant probability of success
will usually exceed the time required for a complete search of the solution space.

The second parameter of the SA is related to the Cooling Schedule. As mentioned above, the algorithm
starts initially with a given temperature T . Therefore this initial value must be introduced as a
parameter to the algorithm according to the problem studied. This parameter has been named Initial
Temperature.

Termination Criteria

In th same ways as in GA the Termination Criteria used is the �xed number of iterations reached.
Therefore, here again, a Number of Iterations parameter is used to set the duration of the simulation.

5.2.4 Parameters

In order to apply the SA method to a speci�c problem, which is given in terms of the search space
and the energy function (objective function), one must specify, for the implementation used, the
following parameters: search diameter, initial temperature and number of iterations. These choices
can have a signi�cant impact on the method's e�ectiveness. Unfortunately, there are no choices of
these parameters that will be good for all problems, and there is no general way to �nd the best
choices for a given problem. Therefore the parameters are tested after the implementation to get a
better understanding of how they vary the method's performance for the problems under study.

Search Diameter

Simulated annealing may be modeled as a random walk on a given search space, whose vertices
are all possible states, and whose edges are the candidate moves. An essential requirement for the
pick neighbour state function is that it must provide a su�ciently short path on this graph from the
initial state to any state which may be the global optimum. In other words, the diameter of the
search space must be small in terms of the time it takes from any point to get to any other point
by picking neighbouring points. In the traveling salesman problem, for instance, the search space for
n = 20 cities has n! = 2, 432, 902, 008, 176, 640, 000 (2.4 quintillion) states; yet the pick neighbour state
function that swaps two consecutive cities can get from any state (tour) to any other state in at most
n(n− 1)/2 = 190 steps.

The search diameter permits to determine a subspace of the search space which contains the candidate
neighbour states to which the method may jump next. The larger the search diameter, the more
number of candidate neighbours and the faster it is to get from any given point to any other point of
the search space. If the search diameter is too small it makes it di�cult for the method to �nd the
global optimum.

In an euclidean space the search diameter can be undestood like the diameter of the circle containing
all the candidate neighbour states and centered in the current state.

Note that this parameter exists only in Continuous Optimization. Thus in Combinatorial Optimization,
for example, the neighbours must be picked following another criteria such as swapping two consecutive
cities for the travelling salesman problem.
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Initial Temperature

This parameter represents the temperature T with which the method starts. Given a certain cooling
schedule, the higher the initial temperature value is the more time or iterations it will take to get
to a temperature of T = 0. This translates in a better solution in detriment of the computational
cost. The way in which the temperature descends through the iterations is determined by the cooling
schedule therefore the initial temperature must be chosen knowing the cooling schedule and jointly
with the number of iterations. These two parameters, initial temperature and number of iterations,
together with the cooling schedule operator dictate how the method behaves and how much emphasis
the method puts into exploration and exploitation. The �nal temperature of the method is always
T = 0.

Number of Iterations

The number of iterations the simulation runs determines the number of times the whole algorithm
is executed and thus represents the computational cost or elapsed time and the quality of the solu-
tion obtained in the same way the initial temperature does. The number of iterations should be high
enough to be able to obtain a acceptable solution and low enough to be able to run the simulation in
a reasonable time.

During the simulation, when the temperature drops to T = 0, the algorithm becomes exclusively
focused on exploitation. At this point, it is usually recommended to allow the SA to run some more
iterations with T = 0 in order to obtain the best solutions.

This parameter is analogous to the number of generations in the Genetic Algrithm.

6 Benchmark Problems

In this section benchmarks commonly known in the literature are presented, an e�ort has been put
into �nding engineering optimization problems.

In order to test the optimization algorithms studied, di�erent types of problems have been used.
Speci�cally three types of optimization problems are utilised to test the algorithm studied, namely
Unconstrained Continuous Optimization, Constrained Continuous Optimization and Combinatorial
Optimization. Only certain methods can be used for each type of optimization.

Several common benchmark problems are used as representation of Unconstrained Continuous Op-
timization. These problems are widely used as testing methods in the literature and are therefore
included in this dissertation.

The Constrained Continuous Optimization problem studied belongs to the area of structural engi-
neering optimization. The problem consists on the optimization of the structure presented by Schmit
(1960). Although the structure consists of a small number of beams its optimization is not di�erent
from a larger structure in terms of complexity.
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In the last place, the Travelling Salesman Problem is proposed to test the algorithm's behaviour in
Combinatorial Optimization. This problem has been very well known and broadly studied up to date.
The problem can be considered to belong to the area of transport engineering optimization.

The optimization problems described in this section are used to evaluate the optimization algorithms
studied and to compare how metaheuristics perform in relation to classical algorithms.

6.1 Unconstrained Continuous Optimization

6.1.1 De Jong's Function

The so called �rst function of De Jong's is one of the simplest test benchmark. Function is continuous,
convex and unimodal. It has the following general de�nition

f(x) =

n∑
i=1

x2i . (11)

Test area is usually restricted to the hypercube −5.12 ≤ xi ≤ 5.12, i = 1, ..., n. Global minimum
f(x) = 0 is obtainable for xi = 0, i = 1, ..., n.

Figure 8: Graphical representation of De Jong's function in 2D (source: [13])
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6.1.2 Rastrigin's Function

Rastrigin's function is based on the function of De Jong with the addition of cosine modulation in
order to produce frequent local minima. Thus, the test function is highly multimodal. However, the
location of the minima are regularly distributed. Function has the following de�nition

f(x) = 10n+

n∑
i=1

[x2i − 10 cos(2πxi)]. (12)

Test area is usually restricted to the hypercube −5.12 ≤ xi ≤ 5.12, i = 1, ..., n. Its global minimum
equal f(x) = 0 is obtainable for xi = 0, i = 1, ..., n.

Figure 9: Graphical representation Rastrigin's function in 2D (source: [13])

6.1.3 Six-Hump Camel Back Function

The six-hump camel back function is a global optimization test function. Within the bounded region it
owns six local minima, two of them are global ones. Function has only two variables and the following
de�nition
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f(x1, x2) = (4− 2.1x21 +
x41
3
)x21 + x1x2 + (−4 + 4x22)x

2
2. (13)

Test area is usually restricted to the rectangle −3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2. Two global minima equal
f(x) = −1.0316 are located at (x1, x2) = (−0.0898, 0.7126) and (0.0898,−0.7126).

Figure 10: Graphical representation Six-hump camel back function (source: [13])

6.2 Constrained Continuous Optimization

6.2.1 Schmit Structure

Structural optimization is a branch of engineering design optimization that has seen much research
during the 1960s thanks to the studies by Schmit in 1960. Schmit noted that the optimization methods
at that time were unable to �nd optimal solutions to structural design problems and often found
suboptimal solutions.

He proved that the theories of simultaneous failure modes and maximum stress approach design method
failed at �nding the optimal of many structure designs since such optimal does not always correspond
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to the case where all the failure modes occur simultaneously. In other words, the optimal design for a
structure is not always the one in which all the beams are under the maximum stress.

To demonstrate assertion, Schmit presented the simple example shown below.

Figure 11: Schmit structure (source: [14])

If the presented articulated structure is designed using the maximum stress approach with the beams'
cross sections as optimization variables and the structure total weight as the objective function, con-
sidering two di�erent loading scenarios, a quasi-optimal solutions is found where the section of the
middle beam is null.
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Figure 12: Schmit structure isostatic quasi-optimal solution (source: [14])

However, if the structure is solved by means of other optimization algorithms, a better solution can
be found which is in fact the optimum solution for the proposed design. In this new solution the three
beams have non-null cross sections, the total weight of the structure is smaller than the one of the
quasi-optimal solution and none of the beams are at their maximum stress. This result shows that the
theory of simultaneous failure modes and maximum stress approach do give suboptimal solutions in
some cases.

Figure 13: Schmit structure hyperstatic optimal solution (source: [14])

However, by introducing into the design problem the possibility of modifying the geometry of the
structure and not only the beam's cross sections, the same mathematical programming techniques lead
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to the optimal isostatic solution of di�erent geometry and smaller weight than both of the previous
designs.

The problem can be expressed in a mathematical way through an objective function, which is the
structure weight, and three constraints that represent the condition that the structure must resist the
loads. The variables x1 and x2 correspond to the area of the beam's cross-sections. The structural
optimization problem can be stated in terms of the objective function (23) and the constraints (24)
shown below these lines.

minimize
xε<2 f(x) = 2 ·

√
2 · x1 + x2 (14)

subject to

ψ1(x) =
1−
√
2

x2
x1

+
√
2
< 1

ψ2(x) =
√
2

x2
x1

+
√
2
< 1

ψ3(x) = (1− x1 · (1−
√
2

x2
x1

+
√
2
))/x1 < 1

ψ4(x) = x1 > 0

(15)

6.3 Combinatorial Optimization

6.3.1 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a classic combinatorial optimization problem used com-
monly as a benchmark in literature. The problem consists in �nding the shortest possible tour that
visits a number of cities and returns to the original city. Each city must be visited only once.

Figure 14: Travelling Salesman Problem illustration (source: wikipedia)

The problem was �rst formulated as a mathematical problem in 1930 and is one of the most intensively
studied problems in optimization. It is used as a benchmark for many optimization methods. Even
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though the problem is computationally di�cult, a large number of exact methods and heuristics are
known, so that some instances with tens of thousands of cities can be solved.

Exhaustive Search can be run to �nd the exact solution to the Travelling Salesman Problem. Although
it does always �nd the optimum to the problem, running this optimization method is very expensive
in terms of computational cost and becomes impractical even for only 20 cities.

Various heuristics and approximation algorithms, which quickly yield good solutions have been devised.
Modern methods can �nd solutions for extremely large problems (millions of cities) within a reasonable
time which are with a high probability just 2− 3% away from the optimal solution.

The TSP has several applications in many di�erent areas related to engineering, such as planning or
logistics. Besides it is used to test new optimization algorithms since it is a good benchmark given its
computational complexity.

In the Travelling Salesman Problem the objective function is nothing but the tour length expressed
in terms of the coordinates of each city. There are no constraints in this problem, other than the fact
that a city can not appear twice in a same tour.

7 Implementation and Testing

This section collects details on the implementation of the various methods studied. Some methods
favour the use of a particular programming language that may have built-in functions which make
implementation much smoother. Therefore two di�erent programming languages are used, namely
MATLAB and C++. In order to make the explanation more comprehensible, the implementation
is presented by means of pseudo-code unrelated to any speci�c programming language. The aim is
to present the implementation in such way that it can be used as a guideline by any engineer who
might want to do their own implementations. It must be taken into account that, obviously, there are
multiple ways in which each algorithm can be successfully implemented.

In addition to the above, the methods are tested to check the implementation and determine the most
suited combination of parameters for solving the benchmark problems. Every method is explained
separately sorting the information in a more accessible manner.

7.1 Newton's Method

This method, as explained earlier in this dissertation, is used to �nd the root of the �rst derivative of
the objective function. In this way the method can successfully �nd the solution to the optimization
problem with such objective function. Moreover, to be able to search expressly for a minimum or
maximum the method must be further modi�ed. This modi�cation is made at the point of the algorithm
where the new approximation is calculated using the current approximation and the gradient. It
consists in adding or subtracting the gradient to the current approximation in such way that the value
decreases when searching for a minimum and increases when searching for a maximum.
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7.1.1 Implementation

The Newton's Method implementation to solve unconstrained continuous optimization problems is
quite straightforward. In fact, it is the exact same algorithm as the basic method used for �nding a
function's roots except the function is replaced by the �rst derivative of the function. In order words,
the function in the formula is replaced by the �rst derivative of the function (Jacobian matrix) and the
�rst derivative is replaced by the second derivative (Hessian matrix). The program implemented must
take as input the function, initial approximation and tolerance. The output is obviously the solution
to the optimization problem or, in other words, the optimal value for the variables and function.

Since the method requires the calculation of the Jacobian and Hessian matrices the implementation
favours the use of math oriented programming languages such as the MATLAB package. It is possible
in MATLAB to take advantage of the built-in functions for calculating the mentioned matrices.

The implementation is presented below these lines by means of pseudo-code related to no program-
ming language in particular. Therefore, the de�nition of the variables, their type and their memory
allocation, for example, are not included.

Request user to input function equation (f)

Request user to input initial approximation (initial approximation)

Request user to input tolerance (tolerance)

Calculate Jacobian and Hessian matrices (J,H)

Set initial approximation as current approximation (x = initial approximation)

Start iteration loop

Evaluate Jacobian and Hessian matrices for the current approximation (J(x), H(x))

Calculate gradient (grad = H(x)−1 · J(x))

Calculate new approximation (xi+1 = xi − grad)

Check if new approximation is solution (
√∑

grad2i < tolerance)

Stop loop if solution found

Output solution

The modi�ed algorithm of the Newton's Method that permits to search expressly for a minimum or
maximum separately is only a small variation of the above. The di�erence resides in the calculation of
the new approximation alone. Instead of subtracting the gradient from the current approximation to
obtain the new approximation, the gradient is added or subtracted in such way that the resulting new
approximation corresponds to a lower function value (minimization) or a higher function value (max-
imization). Thus each new approximation gets closer to the desired type of optimum and eventually
�nds the searched solution.

The pseudo-code for this modi�cation is the following:

Calculate new approximation (xi+1 = xi±grad so that f(xi+1) < f(xi) inminimizationwhile f(xi+1) > (xi) inmaximization)

There are no additional considerations to be made on the implementation but it is worth to point out
that a valid input is required so, for instance, the function must be di�erentiable in the search space.
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7.1.2 Testing

The most important input in Newton's Method is the objective function of which we want to �nd the
optimum. It is well known that the behaviour of the method depends in great extent on the form the
given function adopts. Since Newton's Method has been used widely there is many information on the
literature about its behaviour before speci�c type of functions.

It is worth to point out once more that in solving optimization problems Newton's Method is used to
�nd the roots of the �rst derivative of the objective function whose optimal is being searched. Therefore
the form of the �rst derivative dictates the performance of Newton's Method. This method is known
to have a quadratic convergence near the solution, or any local optimum, and a linear convergence
elsewhere.

In this study, the implemented modi�ed Newton's Method is used to resolve the benchmark problems
for unconstrained continuous optimization presented in the corresponding section of the dissertation.
Some testing is necessary to be able to understand how the method performs when facing these type
of optimization problems and discuss the two parameters that can be varied, which are the initial
approximation and the tolerance.

An objective function, representative of the problems under study, must be selected in order to carry
out the testing. To be able to extract as many conclusions as possible, a function with several local
optima is favoured.

The function used in the tests is Rastrigin's Function in one dimension. Such function has been
selected because it is multimodal and a recurrent benchmark in optimization. Moreover, the function
has already been introduced since it is one of the problems under study. The testing in this section
is done with the one-dimensional version of the function to ease the graphical representation and
interpretation of the results obtained. As long as it is possible this same function will be used to test
the resting methods.

The graphical representation of the function is the following

34



Figure 15: Graphical representation of Rastrigin's function in 1D (source: self made)

As explained previously, Newton's Method solves the optimization problem by �nding the roots of the
�rst derivative of the objective function. Therefore it is convenient to include a graphical representation
of Rastrigin's Function �rst derivative in order to make the interpretation of the method's behaviour
easier. Newton's Method advances with the slope of the �rst derivative of the objective function, hence
its behaviour is dictated by the form the derivative adopts.
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Figure 16: Graphical representation of Rastrigin's function �rst derivative in 1D

Both parameters are studied separately. Although it is possible that the behaviour of one can be
in�uenced by the behaviour of the other, this interaction can be neglected.

In the �rst place, the in�uence of the initial approximation chosen is studied. This is done by using the
method to �nd the minimum of Rastrigin's Function with a number of di�erent initial approximations
belonging to the search space for such problem. The search space is given by −5.12 ≤ x ≤ 5.12. Over
a hundred initial approximations have been tested. Even though these are not enough to obtain a
smooth graphical representation, it is indeed enough to be able to understand the method's behaviour
with the initial approximation selected. The tolerance has been �xed to a value of 0.000001 while
testing the initial approximation in�uence. Even though this value may seem very small, if a greater
value were to be used then the di�erences between iterations would be almost non-existent.

The results of testing the initial approximation shows that, as expected, the solution found depends
greatly on the initial approximation used. Given the function's �rst derivative and how Newton's
Method works, the algorithm falls into local optima close to the initial approximation. If the initial
approximation belongs to a point with a high slope in the �rst derivative then the solution obtained
corresponds to a nearby local minimum. On the other hand, if the initial approximation happens
to be a point with a low slope value then the solution obtained is usually far away from the initial
approximation. This explains why the method does not strictly �nd a better solution the closer the
initial approximation is to the global optimum. Therefore, choosing an initial approximation close
to the global optimum is not always enough. The function's �rst derivative must also be taken into
account, if possible, when selecting the initial approximation.
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Figure 17: Graphical representation of the behaviour of solution f(x) with initial approximation (source:
self made)

Figure 18: Zoomed graphical representation of the behaviour of solution f(x) with initial approximation
(source: self made)
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The behaviour of the solution obtained with the initial approximation explained above can be easily
appreciated when looking at the �gures below. If a positive initial approximation is chosen and the
slope of the �rst derivative of the function in this point happens to be very steep, then the solution
found is as well positive. If for the same point the slope happens to be very low then the solution
obtained can be a local optimum far away from the initial approximation. For instance, in the �gure
representing the solution x obtained according to the initial approximation used, it appears clear that
with an initial approximation x = 4.25 the solution obtained is almost at x = −30. This point belongs
to a local minimum very far away from the global minimum and, therefore, the solution f(x) at this
point is a lot higher than it is at the global minimum, where x = 0 and f(x) = 0. Thus the solution
obtained with such initial approximation is very imprecise.

Figure 19: Graphical representation of the behaviour of solution x with initial approximation (source:
self made)
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Figure 20: Zoomed graphical representation of the behaviour of solution x with initial approximation
(source: self made)

When several computational methods are to be compared to each other in terms of their performance,
the solution obtained alone is not enough to conclude what the best method is. The computational
cost is key in determining a method's e�ciency. Following this approach, the comparison between the
methods must be in terms of the solutions obtained for a certain computational cost. Computational
cost refers to the number of operations done throughout the simulation but can also be understood as
the time elapsed during such simulation.

The time elapsed for every simulation performed using Newton's Method is under one second, so the
computational cost is not really an issue in this method. Despite this fact, the number of iterations
until the solution has been reached are presented too. Obviously, the closer the initial approximation
to a local optimum, the faster the method converges and the less iterations needed. Bear in mind
that the initial approximation must be close to the local or global optimum in terms of distance and
favourable slope of the �rst derivative at the initial approximation.
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Figure 21: Graphical representation of the behaviour of cost with initial approximation (source: self
made)
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Figure 22: Zoomed graphical representation of the behaviour of cost with initial approximation (source:
self made)

The second parameter, the tolerance, is studied in a similar manner. In this case the initial approxi-
mation is set to a �xed value of 0.18 and the tolerance is given a series of value ranging from 0 to 1. A
reasonable value for the tolerance is strictly determined by the problem under study and the physical
attributes represented, if any.

The results of testing the di�erent tolerance values appear below these lines.
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Figure 23: Graphical representation of the behaviour of solution f(x) with tolerance (source:self made)

As is obvious, the smaller the tolerance the smaller the error in the solution obtained and the more
precise it will be. The tolerance does not, however, improve the method's behaviour. In other words,
the solution obtained will belong to the pit of the same local optimum independently of the tolerance
used. The slope of any local optimum is equal to zero, the tolerance can be understood as the maxium
slope admitted for the solution. Therefore, the tolerance is a exploitation tool which will allow to
obtain more precision in the local optimum found.
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Figure 24: Graphical representation of the behaviour of solution x with tolerance (source: self made)

Although, as mentioned before, the method's computational cost and number of iterations are very low,
these have also been studied. The results of the testing show that the number of iterations increases
while the tolerance decreases. It must be noted that the number of iterations is not linear with the
tolerance.
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Figure 25: Graphical representation of the behaviour of iterations with tolerance (source: self made)

From the testing performed, several conclusions can be extracted. In the �rst place, the initial ap-
proximation chosen is of utmost importance and must be selected according to the form the function
and its �rst derivative adopt. A suitable initial approximation is one as close as possible to the
global optimum and with a considerable slope. Other feasible possibilities for the initial approxima-
tion include any point at which the slope of the �rst derivative of the function studied points towards
x = global optimum, f(x) = 0.

Since the computational cost is not really an issue in this method, the tolerance can be set to a very
low value in order to obtain the best results.

All in all, while the method excels at exploitation of a certain local optimum, it fails at the exploration
of the whole searc space and therefore is not a robust method. Having to choose a suitable initial
approximation according to the problem studied, in order not to fall into local optima, is the main
drawback of Newton's Method.

7.2 Exhaustive Search

The Exhaustive Search is theoretically a very simple method. The algorithm consists merely on
travelling through every point in the search space, evaluating the function and checking whether a
best solution has been found. As simple as this might seem at �rst, when talking in terms of the
implementation, it actually bears some complexity. This is due to the fact that it is impossible to
travel through every single point in a continuous search space in a �nite time.
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The method has been implemented to be able to perform well in combinatorial optimization as well
as continuous optimization. The di�erence being that in the �rst the search space is discrete while in
the second the search space must be discretized by means of, for example, the grid size.

It is possible to use this method to solve constraint optimization problems by checking the constraints
at each point while evaluating the function and rejecting the solutions that do not verify the constraints.
This has also been implemented and it does not add in complexity despite the fact that it does add in
computational cost.

This method has one parameter which can be modi�ed to increase the performance in continuous
optimization, such parameter is the grid size. This parameter is an indicator of the number of points
in the discretized search space and therefore the computational cost of evaluating all of them through
the objective function. The values for the grid size which better work with the continuous problems
studied in this dissertation are obtained through testing.

In the same way, in combinatorial optimization the number of points in the search space will determine
the cost of running the method. Therefore the method is also tested through the Travelling Salesman
Problem to be able to understand how does the computational cost, which can also be represented
in terms of the number of iterations or simulation time, behave with the increment in the number of
points.

7.2.1 Implementation

The only input the Exhaustive Search requires is the objective function to be optimized, the search
space and the grid size in the case of continuous optimization. As mentioned before, the algorithm has
to travel through every point in the search space, evaluate the function and check if the optimum has
been found.

for every possible solution

evaluate objective function with the solution′s variables

if best solution has been found

store best solution

If the algorithm is implemented for a speci�c problem, hence the number of variables is known be-
forehand, the implementation consists mainly in a number of nested for loops equal to the number of
variables in the problem. In each iteration, or point visited, the function is evaluated and stored if an
optimum has been found.

On the other hand, if an implementation of the method is to be made that can handle di�erent problem
inputs with di�erent number of variables, then travelling through the search space is no longer trivial
to implement. The nested for loops presents in this case the handicap that the number of loops is not
known. Therefore, a modi�cation has to be made so that the code includes a variable number of nested
for loops depending on the number of variables of the problem. This step is key in the implementation
and requires the most attention.
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In combinatorial optimization the total number of loops corresponds to the number of possible solutions
obtained by combination of the search space points. This can be done because the search space is
discrete in this type of optimization and the number of possible solutions is �nite. For example, in the
Travelling Salesman Problem the number of loops is the number of possible tours.

In continuous optimization the implementation of the algorithm must perform a discretization of the
continuous space, with an in�nite number of points, into a discrete space, with a �nite number of
points, to be able to evaluate the solution at every point. This discretization is done by means of the
grid size introduced by the user. Any given variable will adopt the values given by discretizing the
search space into a set of points separated a distance equal to the grid size from each other. This can be
implemented, for one given variable, through a for loop starting at the search space minimum, ending
at the search space maximum and with an increase of a value equal to the grid size each iteration. The
grid size determines the number of points in the search space, thus it does also determine the number
of possible solutions or loops in the algorithm.

In order to search for optima of constrained continuous optimization problems the algorithm is modi�ed
to check whether the constraints are veri�ed for each possible solution and to reject the solutions that
do not verify.

When facing combinatorial optimization, in particular the Travelling Salesman Problem, the algorithm
is analogous to the one above.

for every possible tour

calculate tour′s distance

if shortest tour has been found

store shortest tour

7.2.2 Testing

The grid size is the one parameter that can be modi�ed to improve the method's performance and it
does only appear in continuous optimization as explained before. Therefore, this section consists of a
number of tests that allow a judgement to be made on what the best values of the grid size are for
problems of the type of the studied.

Some conclusions regarding the parameter's behaviour can be made beforehand by means of a theoret-
ical approach. Since the grid size determines the number of possible solutions, the computational cost
increases drastically with a decrease in the grid size. A high value of the grid size means the points
are more spaced and there is less number of them. In such case the computational cost is low but
the precision is too. A low value of the grid size means the points are less spaced and there is more
number of them, hence the computational cost will increase together with the precision of the solution
obtained.

The intention of the testing is to study the behaviour of the computational cost and precision of the
solution with di�erent grid size values.
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Rastrigin's Function in one dimension has been used to test the method for the same reasons as in the
testing done for Newton's Method. The search space is −5.12 ≤ x ≤ 5.12. The values adopted by the
grid size range from 0 to 2.

In general terms, the smaller the grid size the better the solutions obtained. This is due to the fact
that the smaller the grid size, the more points on the grid and the higher the precision of the solution.
This is specially true when reducing the grid size in several orders of magnitud.

Despite the above being true, there are some exceptions. Given the search space and a certain grid size,
the possibility exists that by decreasing slightly the grid size a worse solution than before is obtained.
This is due to the fact that, by pure coincidence, the new vertices of the grid are more far away than
before from the solution even though the grid size is smaller.

Figure 26: Graphical representation of the behaviour of solution f(x) with grid size (source: self made)

47



Figure 27: Graphical representation of the behaviour of solution x with grid size (source: self made)

Given the way in which the grid size determines the number of possible solutions, the number of
iterations used to evaluate all the solutions grows exponentially with the decrease in grid size. The
�gures below illustrate this behaviour.
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Figure 28: Graphical representation of the behaviour of nº of iterations until best solution is found
with grid size (source: self made)
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Figure 29: Graphical representation of the behaviour of simulation time with grid size (source: self
made)

The above behaviour is comparable to the one expected from the method when facing combinatorial
optimization. The grid size determines the number of points in the search space in continuous opti-
mization. Similarly, in combinatorial optimization, the problem statement determines the number of
points in the search space. In the assumption that in both cases the number of points is the same
then running Exhaustive Search will have approximately the same computational cost. Hence, the
conclusions extracted in this section are also applicable to combinatorial optimization.

The testing indicates that the best solutions are obtained for very small grid sizes but these result in
high computational costs too. Thus a balance between an acceptable solution and computational cost
must be found for each problem.

7.3 Pure Random Search

The implementation of Pure Random Search is very uncomplicated. The algorithm consists in gener-
ating random solutions in the search space and checking whether a best solution has been found for a
certain number of iterations.

In the same way as the Exhaustive Search, the Pure Random Search can handle constrained optimiza-
tion by checking if the constrained are veri�ed when checking if a best solution has been found.
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The method's only parameter is the number of iterations selected or, in other words, the number
of random possible solutions generated and evaluated. As in the Exhaustive Search grid size, this
parameter determines how good the solution obtained is and more importantly the cost of running the
method. The testing is carried out to better comprehend this behaviour.

7.3.1 Implementation

Most programming languages have built-in random number generators. With the help of these it is
trivial to generate a random number in the search space and check if a best solution has been found,
for as many iterations as desired. Although this is a true statement in the practice, due to the way in
which computers work it is impossible to generate a true random number. Thus the computer usually
takes a base number, usually from the internal watch, and performs several mathematical operations
to generate an apparently random number.

The pseudo-code for the Pure Random Search is the following:

for the desired number of iterations

for every variable in the solution

generate random number in the search space for this variable

evaluate the objective function with the generated solution variables

if best solution has been found

store best solution

The above algorithm can be also applied to constrained optimization if the unfeasible solutions are
never stored or taken into account, which would be sort of a Penalty Method. In such case before
evaluating the objective function, the constraints should be checked.

When facing combinatorial optimization the method has to be modi�ed to be able to generate random
solutions of a discrete search space which can have additional constraints like the Travelling Salesman
Problem does, where every city can only be picked once. For the mentioned problem, studied in this
dissertation, the code has been modi�ed so that all the cities are introduced into a pool and then
picked one at a time. Therefore a valid tour is obtained after picking all the cities.

create a list with all the cities

for every city in the tour

pick randomly a city from the remaining cities in the list

store the city coordenates

remove the selected city from the list

calculate the resulting tour distance

if shortest distance has been found

store shortest distance
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7.3.2 Testing

Rastrigin's Function in one dimension is here again the test function used to study the in�uence of
the number of iterations on the method's performance. The test is done in the same conditions as the
other methods. The values for the number of iterations range from 1 to 200000.

Since this method's behaviour is purely stochastic, the results obtained through one simulation alone
are not representative of the method's performance. Therefore, the method must be run several times
and the results presented in terms of the average solution found or average time elapsed. The number
of runs is to be selected considering that the number must be high enough to be able to obtain
representative values and must be low enough to complete the simulations in a reasonable time. The
adopted value for the number of runs in the following simulations is 100.

The graphical representation of the average solution f(x) given the number of iterations draws a
logarithmically decreasing function. Hence, there is a threshold beyond which a very big increase in
the number of iterations has to be made in order to obtain a slightly better solution. Obviously, the
more iterations run the better the solution obtained. The number of iterations must be high enough
to obtain a suitable solution but low enough to be able to run the simulation in an acceptable time
lapse.

The average solution x is not a reliable indicator because in a search space centered in the origin
of coordinates the average of randomly generated numbers is usually close to the same origin of
coordinates, which is the actual global optimum of the proble studied here. Therefore, even if the
method performed poorly the average solution x expected is always around x = 0.

Figure 30: Graphical representation of avg. solution f(x) with number of iterations (source: self made)
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Figure 31: Graphical representation of avg. solution x with number of iterations (source: self made)

The testing done in order to determine the best value for the number of iterations shows that the time
elapsed in the simulation has a linear behaviour. Thus, the simulation time increases linearly with the
number of generations. Despite this fact, it appears that the solution to the test optimization problem
is found after a maximum of around 10000 iterations even if the method is run for 20 times that many
iterations.
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Figure 32: Graphical representation of the behaviour of avg. number of iterations until best solution
is found with number of iterations (source: self made)
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Figure 33: Graphical representation of the behaviour of avg. simulation time with number of iterations
(source: self made)

7.4 Genetic Algorithm

The implementation of the GA is quite complex since there are several operators and parameters. As
mentioned before, due to the fact that this is a computational method the implementation is structured
in a very similar way to the actual algorithm. The implementation for most of the operators is di�erent
for Continuous Optimization and Combinatorial Optimization.

The GA can be used in Constrained Optimization by forcing the algorithm to generate only feasable
solutions, chromosomes that verify the constraints, or by introducing Penalty Methods such as Death
Penalty which consists in removing from the population any member that does not verify the con-
straints.

Since di�erent variations of the same operators have been implemented, a test on how these perform is
due too in order to conclude what set of operators work best. The results for the testing are presented
in the second part of this section.

7.4.1 Implementation

The implementation of the GA results in a computer application that takes as an input the problem
data, such as objective function and search space, together with the method's parameters to be in-
troduced by the user and after running the simulation outputs the results obtained. Since GA has a
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stochastic component the results obtained for one single simulation are not representative, thus the
simulation must be run a number of times and the results averaged as explain later in this document.

Even though the implementation of GA is quite straightforward and practically identical to the ac-
tual algorithm, special attention must be put into the structure of the implementation's operators or
functions. Every operator in the algorithm is implemented as a function and these must be run in the
appropiate sequence to simulate each generation. Due to the number of operators and parameters in
GA the programming language C++ has been chosen to implement the method since it favours nested
classses and functions which will facilitate structuring the implementation.

There are multiple ways in which the implementation of the GA can be structured. In this dissertation,
the software design pattern used is a combination of two existing patterns, namely Strategy Pattern
and Template Method. The Strategy Pattern is appropiate for structuring the di�erent operators
and parameters chosen by the user since this can be understood as strategies that the user selects
at runtime. On the other hand, the Template Method allows to implement an abstract class for
the general algorithm and concrete classes for the di�erent problem types, such as continuous and
combinatorial optimization, which introduce some variations into the algorithm.

As mentioned before, the general �ow of the implementation is the same as the GA algorithm. In the
�rst generation the initial population is generated, then for as many generations as �xed the genetic
operators selection, crossover, mutation and replacement are applied to the population. Finally, the
termination criteria stops the simulation when the desired number of generations has been reached.

The GA algorithm has been implemented as a class and the di�erent operators, which are the steps the
algorithm actually does, are functions belonging to this class. The implementation is herein presented
introducing separately each operator or function.

Besides the operators used the GA algorithm must input the problem statement, input the operators
and parameters chosen by the user, call the operators in the logical sequence and output the results of
the simulation. The GA class, where the GA algorithm is implemented, also contains several variables
used to control the �ow of the algorithm. The current population, selected population and o�spring
population are stored as lists. Moreover, the chromosomes have been implemented by means of a
nested class that de�nes how a chromosome is for any type of problem. Here, the way in which the
problem variables are encoded into the chromosomes has been studied. Along the lines of the present
state of the art in GA the problem variables have been encoded using strings of numbers, of the variable
type double.

Initial Population

This operator generates the initial population of members by randomly generating numbers for every
gene in every chromosome of the population. The most appropiate way of presenting the implemen-
tation is to describe it by means of pseudocode. Below these lines the pseudocode for the Initial
Population operator is included.

for every chromosome in the initial population

for every gene in the chromosome

generate random number in the search space for this variable
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Most programming languages, if not all, include a function that allows to generate random numbers.
Even though this is considered true, trully random numbers can not be generated by means of any
existing technic. The random function usually takes a known number as a seed, for example the current
time, and then performs a number of mathematical operations on this seed to obtain a resulting number
that appears to be random.

While the use of the random number generator function is enough to generate an initial population
in continuous optimization, in combinatorial optimization some additional code must be written to
generate the random initial population.

The pseudocode for generating the initial population in the Travelling Salesman Problem, the combi-
natorial optimization problem studied, is presented below these lines.

create a list with all the cities

for every chromosome in the initial population

for every two genes in the chromosome

pick randomly a city from the remaining cities in the list

store the cityx and y coordenates into the two genes

remove the selected city from the list

In the above implementation each city is picked only once for every chromosome, also known as tours
in the TSP. Besides, the tour is selected randomly.

As mentioned before in this dissertation, two variations of this operator have been implemented. The
Random Initial Population has been described above. The Greedy Initial Population is basically the
same as the Random Initial Population, with the only di�erence that ir generates a population of twice
the size of the required and then selects the 50% best chromosomes and uses them to generate the
actual initial population for the GA.

Selection

Two variations of this operator have been used in this study. These variations are the Random
Selection and the Roulette Wheel Selection operators. The pseudocode for the implementation of the
Random Selection is something along the lines of the following:

for every offspring chromosome

randomly select two parents from the current population members

On the otherside the Roulette Wheel Selection is a little more complex since it actually selects the
parents regarding the chromosomes' �tnesses. The pseudocode for this second variation is included
below these lines. It must be taken into account that the parents can not be the same population
member and therefore the implementation must repeat the selection process if both parents are, by
coincidence, the same member.

for every parent needed
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add up the fitness of all the population members

generate a random number between zero and the result of the addition above

declare and initiate variable to store sum (sum = 0)

for every population member

add the member′s fitness to sum

if sum > random number generated

select this population member as a parent

exit the population member loop

As explained before, this algorithm favours the selection of the �ttest chromosomes. In the above
description, the �tness represents how good a solution or chromosome is. In minimization problems
the lowest value of the objective function is the best solution, thus if the evaluation of the objective
function is called �tness then a lower �tness is better. For this reason, the above algorithm must
also be implemented with the multiplicative inverse of the �tness according to the type of optimization
problem. For instance, in the TSP the �tness represents the tour length and therefore the multiplicative
inverse of the �tness in the code above must be used.

Crossover

The �rst variation of this operator, the Uniform Crossover, passes down to the o�spring each gene
randomly from either of the parents with the same probability. The pseudcode is as follows:

for every offspring chromosome

generate random number between zero and one

if the above random number < Crossover Probability

for every gene in the offpring

generate new random number between zero and one

if new random number < 0.5 then copy gene from first parent

if new random number > 0.5 then copy gene from second parent

The Single Point Crossover selects a point in the chromosome which divides the genetic code passed
from each of the parents. The pseudocode for this variation of the operator is included below these
lines.

for every offspring chromosome

generate random number between zero and one

if the above random number < Crossover Probability
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generate random number between one and the number of genes in the chromosome minus one

copy an amount of genes equal to the random number obtained from the first parent starting from the ...

...beginning of the chromosome

copy the rest of the genes of the offspring chromosome from the second parent

The above variations of the operator work only in continuous optimization, since in combinatorial
optimization the crossover will most likely generate invalid o�spring that do not verify the constraints.
As mentioned before, in combinatorial optimization the unfeasible o�springs result of the crossover
are deleted and a new o�psring is generated through the whole same process. This method is called
Death Penalty and belongs to the mentioned Penalty Methods. The problem with this solution is that
if the problem is highly constrained then it may take a lot of crossover attempts to obtain every valid
o�spring. Thus the computational cost can be signi�cantly increased. A more cost e�cient approach
is to perform the crossover in such a way that it only generates feasible o�spring chromosomes.

In the Travelling Salesman Problem, for example, Uniform Crossover can be implemented by copying
randomly cities from either parent with the condition that any city can only appear once in the o�spring
tour. The pseudocode in this case is:

for every offspring tour

generate random number between zero and one

if the above random number < Crossover Probability

for every city in the offpring

generate new random number between zero and one

if new random number < 0.5

if first parent′s current city is not yet in offspring tour

copy city from first parent

if first parent′s current city is already in offspring tour

copy city from second parent

if new random number > 0.5

if second parent′s current city is not yet in offspring tour

copy city from second parent

if second parent′s current city is already in offspring tour

copy city from first parent
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Mutation

Only one variation for the Mutation operator has been implemented in this dissertation, for the
reasons already mentioned. The pseudocode for the implementation of this operator is the following:

for every offspring chromosome

for every gene

generate random number between zero and one

if the above random number < Mutation Probability

mutate the current gene to a random number in the search space

Here again, the implementation varies slightly for combinatorial optimization. The pseudocode for the
implementation used in the Travelling Salesman Problem is included below these lines.

for every offspring tour

for every city

generate random number between zero and one

if the above random number < Mutation Probability

swap current city with the following city in the tour

Although swapping contiguous cities might seem a very small mutation given the number of possible
tours for a certain number of cities, it has already been noticed that with a relatively small number of
swaps it is possible to get from any starting tour to any other tour possible.

Replacement

The di�erent variations implemented for the Replacement operator are: the Random Replacement
and the Elitist Replacement. The pseudocode for the random variation is included below these lines.

for every offspring chromosome

select a random member of the current population

replace the selected chromosome with the offspring chromosome

On the other hand, the implementation of the Elitist Replacement can be explained using the following
pseudocode:

for every offspring chromosome

add up the fitness of all the population members

generate a random number between zero and the result of the addition above

declare and initiate variable to store sum (sum = 0)

60



for every population member

add the member′s fitness to sum

if sum > random number generated

replace this population member with the offspring chromosome

exit the population member loop

Here again the �tness is considered proportional to the precision of the solution. Therefore, if the
�tness is the result of evaluating the objective function with the chromosome's genes as values for
the variables, the above code represents only the case of a maximization problem. When facing
minimization problems the �tness value in the pseudocode must be replaced with its multiplicative
inverse.

Termination Criteria

The Termination Criteria is a trivial operator that stops the algorithm when the desired number of
generations has been reached. The pseudocode is:

if generation count > maximum number of generations

exit the algorithm

else

add one generation to the generation count

The generation count must obviously be set to zero at the start of each simulation.

7.4.2 Testing

Following De Jong's example (De Jong 1975) several models of GA have been studied, each with a
di�erent set of operators. This models are then tested with a few sets of parameters in order to �nd
out what models perform best and with what values for the parameters.

Here again, given the stochastic component of the method, a number of runs is required to be able
to extract representative solutions averaged from the di�erent runs. The GA in particular has a big
stochastic component and therefore the chosen number of simulations to be run is 1000.

This method is not tested properly in a one dimensional problem since the crossover operator would
have no function. Therefore the method must be tested at least with a two dimensional problem.
Rastrigin's function in two dimensions has been used in the testing. The description of such function
can be found in the corresponding section of this dissertation.

The di�erences between the di�erent GA models tested are the operators used. Below these lines a
table is included that shows what operators are used by each model.
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Model
Strategies

Initial Population Selection Crossover Replacement

GA1 Random Random Uniform Random
GA2 Random Roulette Wheel Uniform Random
GA3 Random Roulette Wheel Single Point Random
GA4 Random Roulette Wheel Single Point Elitist
GA5 Greedy Roulette Wheel Single Point Elitist

Table 1: Operators for each GA model (source: self made)

The di�erent combinations of operators work well with many sets of parameters but thoroughly study-
ing every possibility is out of the scope of this dissertation due to the number of tests required. However,
the GA models are studied with several di�erent sets of parameters to conclude in general terms what
models work best.

The parameters for the GA are: initial population, crossover rate, mutation rate and number of
generations. In this section, a certain set of parameters for the GA is represented with the values for the
parameters in parenthesis: (initial population, crossover rate, mutation rate, number of generations).

The �rst set of parameters is (100,0.8,0.2,1000). The results are presented graphically as it is the best
way of analyzing them.

Figure 34: Graphical representation of the performance of the GA models with the 1st set of parameters
(source: self made)

The testing done with the �rst set of parameters shows that the GA1 model, the more stochastic
approach of the algorithm, obtains the worst solutions and has the shortest simulation time. The
GA2 and GA3 models obtain signi�cantly better solutions than the GA1 at a cost of a slightly longer
simulation time. The last two models, the GA4 and GA5, do improve the solution obtain but it is at
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a cost of a double or triple simulation time. This is due to the fact that these two models have the
most complex operators, such as the greedy and elitist variations.

The second set of parameters is (1000,0.8,0.2,1000). This time the size of the initial population has
been increased to 1000. With this set of parameters the solutions obtained for the GA1 are the
worst again while the remaining models give similar solutions. In terms of the computational cost or
simulation time, the same pattern as for the �rst set of parameters is presented. The GA1 model is
the fastest. The GA2 and GA3 models take approximately twice the time the GA1 does. The GA4
model simulation time is as well twice the time taken by GA2 and GA3. Finally, the GA5 model has
the longest simulation time being about twice the GA4 model simulation time.

Figure 35: Graphical representation of the performance of the GA models with the 2nd set of param-
eters (source: self made)

FIGURE.

The third set of parameters is (100,0.6,0.2,1000). The results obtained for this set of parameters is
almost identical to the results obtained for the second set of parameters. The best solutions are still
found by the GA5 at the expense of a very high simulation time, compared to the other models.
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Figure 36: Graphical representation of the performance of the GAmodels with the 3rd set of parameters
(source: self made)

For the fourth set of parameters, (100,0.8,0.4,1000), the test results show that the GA4 outperforms
the GA5 model even when the simulation time is shorter. In fact, the GA2 and GA3 also obtain better
solutions than the GA5 model. This is due to the fact that the Mutation Rate has been increased and
thus the elitist replacement does not work as well as it does for lower rates of mutation.

Figure 37: Graphical representation of the performance of the GAmodels with the 4th set of parameters
(source: self made)

The �fth and last set of parameters corresponds to (100,0.8,0.2,10000). The number of generations
has been increased tenfold. Here again the GA4 outperforms the other models even though the GA5
has a slightly longer simulation time. The results obtained through the testing of the models vary very
little from one set of parameters to another, as can be concluded from the �gures in this section.
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Figure 38: Graphical representation of the performance of the GAmodels with the 5th set of parameters
(source: self made)

In conclusion, the GA4 model obtains the best results with the same set of parameters. This is
accompanied by a moderate increase in the simulation time and therefore this model may not be the
most e�cient. An additional simulation has been performed to check if the results obtained with the
GA2 model, which are already acceptable, are better than the ones obtained with the GA4 model for
the same simulation time. This can be done by increasing the number of generations run with the
GA2 model.

The simulations reveal that the GA2 model is more e�cient than the GA4 model since it does �nd a
better solutions in the same time, therefore the GA2 model will be henceforth used in the future testing
and simulations. Greedy and Elitist seem to be a big handicap to the exploration facet although they
increase the exploitation. Together with the complexity and computational cost of the added code
these strategies need a �ner tuning to be able to outperform a more stochastic approach. There is also
the possibility that such strategies work better when facing more complex problems, in other words,
problems with a high number of variables or highly constrained.

Once the best GA model has been found, the GA parameters are tested more thoroughly using such
model (GA2).

In the �rst place, the Initial Population size is tested. This is done by representing the average solution
f(x) obtained for di�erent Initial Population values. The results show that the improvement on the
solution obtained is not signi�cant at all above a size of 2000 or, at least, the improvement is very
small with big di�erences in the Initial Population. Therefore, although the best results are obtained
for the highest Initial Population, this may be ine�cient due to a very high computational cost of
generating the initial population. It can be noted that from a population of around 100 onwards, the
solutions obtained are quite similar. If the computational cost is an issue perhaps a size of 100 for the
Initial Population would work better. On the other hand, if computational cost is not an issue using
a very large size could be bene�cial.
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Figure 39: Graphical representation of avg. solution f(x) with initial population (source: self made)

Figure 40: Graphical representation of avg. solution x with initial population (source: self made)

Together with the average solution f(x) obtained, the average number of iterations until the solution
is found is also studied. This is indeed another indicator that allows to understand how the method
behaves. The �gures below show that for Initial Population sizes under 2000 the average number of
iterations until the solution is found is around 600. For sizes above 2000, the number of iterations
seems to decrease the larger the Initial Population is. It must be taken into account that these
simulations have been made for a number of generations equal to 1000, which certainly a�ects the
solutions obtained since this number is in fact the maximum number of iterations run.
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Figure 41: Graphical representation of avg. number of iterations until best solution is found with
initial population (source: self made)

Figure 42: Zoomed graphical representation of avg. number of iterations until best solution is found
with initial population (source: self made)

The behaviour of the GA with di�erent values of the Crossover Rate is studied next. The testing
shows that there are not meaningful di�erences in the solutions obtained although these do exist. The
average solution f(x) improves with higher values of the Crossover Rate up to around the value 0.8,
for higher rates the solutions obtained seem to be less precise. Along the lines of the state of the art of
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GA, here as well the best value for the Crossocer Rate seems to be 0.8. This way the best chromosomes
are sometimes passed down to the next generation unmodi�ed but most of the time the crossover does
take place as expected.

Figure 43: Graphical representation of avg. solution f(x) with crossover rate (source: self made)

The testing performed on the average number of iterations until the best solution is found does not
seem to behave in a certain way according to the Crossover Rate used. As can be seen from the �gures,
the number of iterations do not seem to follow a particular pattern or logic. One thing that may be
pointed out is that for a Crossover Rate of 1 the number of iterations until the best solution is found
is one of the highest obtained probably due to the fact that, although the exploration is good, the
exploitation is not as good as for lower rates.
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Figure 44: Graphical representation of avg. number of iterations until best solution is found with
crossover rate (source: self made)

The Mutation Rate is tested next. The results show that the average solution f(x) has an optimum for
a value of the Mutation Rate equal to around 0.4. It appears that this value ensures a good exploration
of all the search space but does not turn the GA into an excessively stochastic method. Bear in mind
that the results obtained for every parameter depend on the operators used for the method.

Figure 45: Graphical representation of avg. solution f(x) with mutation rate (source: self made)
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The average number of iterations until the best solution is found does seem to be in�uenced by the
Mutation Rate, unlike with Crossover Rate. Here, the number of iterations is the highest for the value
for which the best results are obtained, a Mutation Rate of 0.4. This behaviour could be due to the
fact that in this scenario the exploration is the highest without resulting in an excessive randomness,
therefore the algorithm keeps improving the solution obtained for more iterations than with other
values of the parameter studied.

Figure 46: Graphical representation of avg. number of iterations until best solution is found with
mutation rate (source: self made)

Last but not least, the behaviour of the GA with the number of generations evolved is tested. The
simulations show, as expected, that the longer the method is run the better the solutions obtained.
Since the actual algorithm does succeed in evolving the population to better adapt the environment,
or the problem statement in the case under study, the solutions improve generally with every new
generation. This is true until the population comes to a point where all the members are almost
identical and therefore the crossover no longer serves its purpose of exploring the search space. This
is the main reason for which a relatively high Mutation Rate has been chosen, since it prevents the
population from being copies of the same chromosome by introducing random genes.

It should also be noted that the average solution f(x) draws a logarithmically decreasing function
with the number of generations. Thus, if the number of generations is small a light variation of this
number results in a great improvement in the solution obtained. On the other hand, if the number
of generations is high a huge variation in the number of generations is needed to improve signi�cantly
the solution obtained.
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Figure 47: Graphical representation of avg. solution f(x) with number of generations (source: self
made)

Finally, as is shown in the �gure below these lines, the average number of iterations until the best
solution is found increases linearly with the number of generations. Again, this is due to the fact that
the algorithm continually improves the population throughout the simulation and therefore the best
solution is usually found in the last generations. This implies that the algorithm can be always be run
for more generations if a better solution is required. This is undoubtedly the GA's forte, the method
appears to improve the present solution to a given problem inde�nitely. The robustness of this method
is unmatched, at least by the methods studied in this dissertation.

Figure 48: Graphical representation of avg. number of iterations until best solution is found with
number of generations (source: self made)
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7.5 Simulated Annealing

In the SA implementation the number of operators and parameters is considerably lower than in the
GA. The design pattern used is the same as in the mentioned method. Here as well, the implementation
of some of the operators is di�erent for continuous and combinatorial optimization problems.

Like in the GA again, this method can be used in constrained optimization by means of Penalty
Methods or by implementing speci�c operators for this type of problems.

Following the dissertation's structure, the testing done regarding the optimal parameters for the SA
is also presented in this section. Although the SA uses di�erent variations of the same operators
according to the type of problem, the algorithm of this method is quite straightforward and does is
not as prone as the GA to be implemented in multiple ways. Therefore, a �xed set of operators has
been chosen for implementing the method and the parameters have been tested to determine the best
values of these.

7.5.1 Implementation

The implementation of the SA is identical to that of the GA in terms of the programming language
used and the software design pattern. C++ is the object oriented programming language chosen and
the design pattern is again a combination of the Strategy Pattern and the Template Method. In the
same way as for all metaheuristics, given their stochastic nature, the simulations must be run a number
of times and the results averaged.

The SA starts o� by generating a random initial approximation and then, every iteration, it picks a
neighbouring point to the current approximation and decides probabilistically if the current approxi-
mation is changed to the neighbouring point. Every iteration the temperature decreases. Thus, as the
algorithm progresses the probability with which the current approximation will jump to a neighbouring
point with less energy decrease with the temperature.

The algorithm is presented in terms of the operators, or functions, involved. The implementation is
presented introducing separately each operator in the same way as for the GA.

The encoding used is again strings of numbers of the variable type double. In the Travelling Salesman
Problem these numbers correspond to the cities coordenates, for example. The temperature is of
utmost importance in this method and must be stored in such way that all the functions can access
it. No lists are necessary in the implementation of this method since there is only one approximation
at any given time.

Initial Approximation

This operator generates a random initial approximation in the search space. The implementation of
this operator is the exact same as the Initial Population operator in the GA with the sole exception
that here only one population member is required, which will be the initial approximation. Since
the implementation is analogous the pseudocode is not rewritten here, check the Initial Population
implementation where the code is included.
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Pick Neighbour State

The Pick Neighbour State operator selects a neighbour point to the current approximation. This
point is picked randomly from all the neighbouring points. The pseudocode for this operator is un-
complicated and can be described as:

for every variable in the current state

generate random variable between zero and the Search Diameter

set neighbour variable to the addition of the current state variable plus the random number generated minus half the Search Diameter value

In the implementation of the Pick Neighbour State operator for this dissertation, the neighbourhood
of a point has been described as the hypercube centered on the given point and with a side equal to
the Search Diameter parameter. In other words, the di�erence between a point and a neighbour is at
most equal to half the Search Diameter for each variable. This is due to the way the algorithm has
been implemented.

Acceptance Probability

The Acceptance Probability operator decides whether the current state should be changed to the
neighbour state or not. The decision is made probabilistically according the the temperature in the
current iteration. As explained earlier in this dissertation, the acceptance probability function used in
this study is the one proposed by Kirkpatrick et al..

The pseudocode for this operator is very straightforward. In the case of a minimization problem, the
code is structured in the following manner given the current state's energy (e), the neighbour state's
energy (e′) and the temperature (T ):

if e < e′

change to neighbour

if e > e′

generate random number between zero and one

if random number generated < exp((e− e′)/T )

change to neighbour

Cooling Schedule

The Cooling Schedule used in the implementation of the SA for this study consists in decreasing the
temperature by one every iteration. There is no need to include pseudocode for this operator since
it is trivial. At any point in the algorithm's main loop, the variable storing the current temperature
must be decreased one degree. It is usually advised to implement this operator together with the
Termination Criteria since both modify global variables once per iteration, namely temperature and
iteration counter.
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Termination Criteria

The Termination Criteria operator's implementation in the SA is the exact same as the one used for
the GA. When the desired number of iterations has been reached, this operator exits the algorithm's
main loop.

7.5.2 Testing

Since the SA is usually implemented in a speci�c manner, not like GA that can be implemented in
many ways, there is only one model of the method. The parameters of the method are the Search
Diameter, Initial Temperature and Number of Iterations. In the same way as the GA, a number of
simulations need to be run in order to average the results obtaining representative values. The number
of simulation runs is again 1000.

The interaction between the di�erent parameters is neglected, therefore when studying the Search
Diameter, for example, the Initial Temperature and the Number of Iterations are �xed to certain values.
The same is done with the rest of the parameters. The default, or �xed, values for the parameters are
SearchDiameter = 15%, Initial Temperature = 500 and Number of Iterations = 1000.

The problem used in the testing of the SA parameters is Rastrigin's Function in one dimension.

The results obtained from testing the SA performance for di�erent Search Diameters reveal that, for
the problem under study, while the solution is better for small diameters there is a point at which
the diameter is too small to allow a complete exploration of the search space and therefore the global
optimum is not found. In the case tested here, it is for diameters smaller than the 10% of the search
space that the global optimum is not found. The simulations show that the best value for the Search
Diameter is the smallest that still allows the algorithm to explore thoroughly the search space.

Figure 49: Graphical representation of avg. solution f(x) with search diameter (source: self made)
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Figure 50: Zoomed graphical representation of avg. solution f(x) with search diameter (source: self
made)

The average solution x obtained in the tests carried out behaves in the same way as the average solution
f(x) above. Best value for the Search Diameter appears to be around 15% again.
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Figure 51: Graphical representation of avg. solution x with search diameter (source: self made)

Figure 52: Zoomed graphical representation of avg. solution x with search diameter (source: self made)
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Although the algorithm is run for a certain number of iterations, the best solution found does not
coincide with the solution of the last iteration. While the SA has been run for 1000 iterations, the best
solution is found most of the time around the iteration 500. It shall be noted that for a Search Diameter
smaller than 10% the best solution is found earlier but this is due to the fact that the exploration is
very poor for those values of the studied parameter.

Figure 53: Graphical representation of number of iterations until best solution is found with search
diameter (source: self made)

Below, the results of testing the Initial Temperature parameter are presented graphically. The best
value for the Initial Temperature depends greatly on the number of iterations run. The �gures show
that if a high Initial Temperature is used then the solutions obtained are not the best. This is due
to the fact that when the temperature reaches zero the algorithm concentrates solely on exploitation
improving greatly the solution obtained. In the case presented, if the Initial Temperature is higher than
500 then, since 1000 iterations have been performed for the simulation, the algorithm's exploitation
is not great. On the other hand, if the Initial Temperature is set to a value lower than 500 then the
algorithm has at least another 500 iterations with temperature equal to zero where it can exploit the
solution obtained.

In general terms, the best value for the Initial Temperature parameter corresponds usually to around
half the number of iterations run. Thus the method is balanced between exploration and exploitation.
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Figure 54: Graphical representation of avg. solution f(x) with initial temperature (source: self made)

Figure 55: Graphical representation of avg. solution x with initial temperature (source: self made)
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Here again, even though the simulation is run for 1000 iterations, the best solution is usually found
around the 500 iteration. It can also be concluded that in almost every scenario the best solution is
found after a relatively low number of iterations at a temperature equal to zero.

Figure 56: Graphical representation of avg. number of iterations until best solution is found with
initial temperature (source: self made)

As expected, the higher the number of iterations simulated the better the solution obtained. However
this is only true up to about 1000 iterations, for a higher number of iterations no signi�cant improve-
ment in the solution is noted. This is due to the Initial Temperature, which has been set to 500. As
mentioned before, the SA seems to work best for a Initial Temperature of half the number of iterations
run.

Although the above partially explains the testing results, there is another limitation intrinsic of the
implementation used that also must be taken into account. The �gure below shows how the solu-
tion stabilizes around 0.002 and does not improve anymore with the number of iterations. The �rst
explanation for this, the one above, states that the Initial Temperature should increase with the num-
ber of iterations run in order to improve the solution obtained. The second explanation is related
to the implementation of the method. The SA has been programmed to generate random numbers
with a precision of 0.001, therefore when searching for a neighbour point to jump to, the randomly
generated neighbour only has a precision of 0.001. This behaviour can be corrected by modifying the
implementation.
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Figure 57: Graphical representation of avg. solution f(x) with number of iterations (source: self made)

Figure 58: Zoomd graphical representation of avg. solution f(x) with number of iterations (source: self
made)
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Figure 59: Graphical representation of avg. solution x with number of iterations (source: self made)
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Figure 60: Zoomed graphical representation of avg. solution x with number of iterations (source: self
made)

The �gure below these lines presents the number of iterations until the best solution is found. The test
shows that the number of iterations until best solution increases with the number of iterations run.
This implies that running more iterations does improve the solution obtained but, according to the
results of the precedent tests, the improvement on the solution is very small after the point in which
the temperature reaches zero.
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Figure 61: Graphical representation of avg. number of iterations until best solution is found with
number of iterations (source: self made)

8 Simulation Results and Discussion

The optimization methods presented in this dissertation are used to solve the di�erent optimization
problems studied. The aim of the simulations is to be able to see how metaheuristics fare against
classical optimization methods and determine whether metaheuristics can be successfully applied to
engineering optimization.

The most favourable values for each method's parameters have been chosen, according to the testing
done previously in this study. Although the optimal value for the number of iterations is included, in
order to carry out the simulations a range of values for the number of iterations is used to study the
performance of each method according to the computational cost.
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Parameters

Newton's Method
Initial Approximation variable

Tolerance 0.000001

Exhaustive Search Grid Size variable

Pure Random Search Nº of Iterations variable

Genetic Algorithm

Initial Population 100
Crossover Rate 0.8
Mutation Rate 0.4

Nº of Generations variable

Simulated Annealing
Search Diameter 15

Initial Temperature 1
2 ·Nº of iterations

Nº of Iterations variable

Table 2: Parameters used in the simulations for each method

The parameters that appear as variable are so because they are used to exert a control over the
method's computational cost. The comparison of the di�erent methods can only be done in terms
of the error in the solution obtained and the computational cost. The latter is expressed through
the simulation time since all the simulations have been run un the same computer and therefore the
time is proportional to the computational cost. Besides, time is the limiting resource in almost every
real life attempt of solving an optimization problem. In addition to the error in the solution and the
computational cost, the aim of this section is also to elucidate the performance of the methods in terms
of robustness.

Since the computational resources for this dissertation are limited and due to the fact that the solutions
obtained using some of the methods studied must be averaged from a number of simulations, the
problems proposed are relatively simple and can be usually be solved in a few seconds. Bear in mind
that if a single simulation takes one second then the number of simulations run in order to average the
results obtained can take a signi�cant time lapse.

The simulations results are arranged according to the type of optimization problem solved. Since all
the methods studied have been already tested, the way in which every algorithm behaves is already
known and their performance can be predicted. Special attention has been put in this dissertation into
explaining how the metaheuristics work and how these can be implemented and applied to engineering
optimization problems. Due to this fact, the aim of the simulations carried out is to clearly state if the
metaheuristics perform successfully in the problems studied. Therefore, the results are presented as
brie�y as possible in order to make clear the conclusions reached. For a more thorough understanding
of how each method works, the section in this dissertation presenting the testing of each method should
be read.

The results of the simulations performed have been represented graphically by means of B-spline
functions.
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8.1 Unconstrained Continuous Optimization

Unconstrained Continuous Optimization is the most general type of optimization problem and the
least demanding in terms of the requisites of the solving method used. Thus all the methods studied
in this dissertation can be used to solve this sort of problems.

As mentioned before, the di�erent methods are compared in terms of the solution obtained for a certain
computational cost. The computational cost in Pure Random Search and both metaheuristics, GA
and SA, is directly related to the number of iterations run. Furthermore, in continuous optimization,
the computational cost in Exhaustive Search can be set through the Search Diameter parameter. On
the other hand, there is no way to exert a control over the computational cost in Newton's Method
since this method always obtains the same solution for a given problem with a certain computational
cost.

Notice that the solutions obtained with Newton's Method are not presented together with the solutions
obtained by means of the rest of the algorithms studied. This is due to the fact that a direct comparison
is not possible since Newton's Method gives a much more precise solution when the global minimum
is found but does only �nd such minimum for certain initial approximations. Therefore, while the
other algorithms can be run for a longer duration in order to improve the solution found with no
limitation, Newton's Method does not work the same way and will only �nd the global minimum in
certain situations.

8.1.1 De Jong's Function

The 2D version of De Jong's function is used in the simulations. As mentioned in the corresponding
section of this dissertation, the usual search space for this optimization problem is usually restricted
to the hypercube −5.12 ≤ xi ≤ 5.12, i = 1, ..., n. De Jong's function is a very simple optimization
problem which consists only of one global and local minimum located at the origin.

In order to compare the performance of the studied optimization methods in �nding the global mini-
mum of De Jong's function, a number of simulations have been run to be able to analyze the solutions
obtained according to the computational cost for each method. The results of the simulations have
been used to represent graphically the behaviour of each method in a way that a direct comparison
can be made.

The results are presented in the �gure below these lines.
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Figure 62: Graphical representation of De Jong's function simulations results (source: self made)

The �rst observation to be made from the simulations performed is that Exhaustive Search improves the
solution obtained linearly with the computational cost while Pure Random Search, Genetic Algorithm
and Simulated Annealing improve the solution drawing a logarithmically decreasing function with
the computational cost. This is expected given the way in which the Grid Size parameter works in
Exhaustive Search applied to continuous optimization. The smaller the grid size, the larger the number
of points in the search space thus the error decreases and the computational cost increases linearly
with the number of points.

For very low simulation times the Exhaustive Search gives the best solutions, the reasoning behind
this is that not enough iterations have been run of the other methods in order to e�ectively explore
the search space and exploit the solutions found. When enough time is given to the metaheuristic
algorithms studied, these can successfully �nd better solutions than the Exhaustive Search. In a
problem as simple as the one being solved here, enough time seems to be around 0.2 to 0.3 seconds for
the GA and slightly over 1 second for the SA. For more complex optimization problems the simulation
time required is obviously higher but the behaviour of the methods is qualitatively the same.

Amongst the optimization methods studied, Pure Random Search has the worst performance. It
behaves in a similar way to GA and SA, although these metaheuristics have a guided search that allows
them to perform way better than their more stochastic counterpart. The results of the simulations
show that even an exhaustive search of the whole space is better than the pure random approach.

The Genetic Algorithm obtains the best solutions for the �rst optimization problem studied. The
performance of the Simulated Annealing is better for low computational costs but falls o� for longer
simulation times with respect to GA. Since De Jong's function has only one minimum and the curvature
is of the same sign in any direction, the exploitation capabilities of a method are more valuable in this
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problem than the exploration facet. The simulations indicate, until further comprobations are made,
that GA probably has better exploitation capabilities than SA.

Given De Jong's function curvature and the fact that only one minimum exists, Newton's Method
always �nds the best solution with a smaller error and less computational cost than the methods
above.

8.1.2 Rastrigin's Function

Here again the 2D version of the function is used since it allows a visual interpretation of the results
of the simulations. The search space is the same as in De Jong's function, namely the hypercube
−5.12 ≤ xi ≤ 5.12, i = 1, ..., n. Unlike De Jong's function, this optimization problem has an in�nite
number of local minima and therefore serves the purpose of testing the robustness of each method
together with their exploration capabilities. Rastrigin's function is symmetrical and therefore makes
the exploration that much simpler. The global minima is located at the origin.

In the same way as for De Jong's function simulations, the results obtained have been represented
graphically in the �gure below.

Figure 63: Graphical representation of Rastrigin's function simulations results (source: self made)

In general terms, the results obtained are pretty much the same as for De Jong's function optimization
problem. Rastrigin's function consists in an in�nite number of local minima as explained before,
thus an adequate exploration of the search space is essential to be able to �nd the global minimum.
Due to this fact, the Pure Random Search algorithm performs far better than before compared to
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the metaheuristics since the stochastic component ensures a good exploration of the search space.
Nonetheless, the metaheuristics still outperform the pure random approach as expected.

The Exhaustive Search, in the same way as for De Jong's function, obtains better solutions than the
other methods for very low simulation times. Its improvement of the solution obtained is also presented
here as linear with the increase in the computational cost. Despite this fact, it must be mentioned
that the Exhaustive Search does not strictly improve the solution with the computational cost given
that the vertices of the search grid may be closer to the solution even if the grid size is bigger. These
irregularities have been neglected and the improvement has been considered linear.

The Genetic Algorithm gives better results than the Simulated Annealing for Rastrigin's function too.
Therefore, apparently the GA's exploration capabilities in unconstrained continuous optimization are
also better than the SA's.

When facing an optimization problem with several local minima, such as the Rastrigin's function,
Newton's Method does no longer �nd the global minimum in any circumstances. Only for certain initial
approximations does Newton's Method �nd the global minimum. Since these initial approximations
are not known beforehand, said method is not reliable anymore and fails in �nding the solution to
the optimization problem in most cases. This proves that the lack of robustness is Newton's Method
biggest drawback.

8.1.3 Six-Hump Camel Back Function

The Six-Hump Camel Back function only exists in its 2D version. It is, together with the above,
one of the usual benchmarks used for testing optimization algorithms. This function is asymmetric
and has a �nite number of local minima, six to be more precise, which makes it harder to search for
the global minima. The function has two global minima located at (x1, x2) = (−0.0898, 0.7126) and
(0.0898,−0.7126).

The results obtained through the simulations are presented in the following �gure.
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Figure 64: Graphical representation of Six-Hump Camel Back function simulations results (source:
self made)

The simulations carried out for the last unconstrained continuous optimization problem studied con�rm
the conclusions drawn from the previous simulations. The performance of the di�erent methods is
almost the exact same as the observed for De Jong's and Rastrigin's functions. Again, the Exhaustive
Search obtains the best solutions for very low computational costs. Although, in solving this problem,
Exhaustive Search is outperformed even by Pure Random Search for simulation times over 1 second.

The metaheuristic algorithms, GA and SA, give the best results once more. Nonetheless, this time
around both methods obtain very similar solutions with no noticeable di�erence in the precision of
the solution for simulation times over 0.6 seconds. The SA gives slightly better results than GA for
lower computational costs and slightly worse as the simulation time increases. The similarity in the
solutions obtained with both metaheuristics could be due to the fact that two global minima exist and
thus it is easier to �nd the solution to the problem.

Given the fact that there are only six local minima in this function belonging to a common pit and that
two global minima exist, the results obtained are almost as good as the ones for De Jong's function.
This is also the reason why Pure Random Search gives such good results, together with the fact that
the search space is smaller than for the other two functions studied and therefore a random search of
the space is more likely to �nd the global optimum.

8.2 Constrained Continuous Optimization

In Constrained Continuous Optimization only the points in the continuous search space that verify
the constraints are feasible solutions to the problem. Therefore Newton's Method can not be applied
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naturally to these type or problems. With the sole exception of the aforementioned method, the rest
of the algorithms studied are used to solve the selected benchmark problem.

Exhaustive Search and Pure Random Search check if the constraints are veri�ed for every solution
evaluated with the problem's objective function and if the solution does not verify the constraints then
it is not stored as the best solution. Remember that a discretization of the search space is carried out
in the Exhaustive Search.

The metaheuristics, GA and SA, use the Death Penalty approach to check if a solution is feasible.
Death Penalty consists in checking if the constraints are veri�ed every time a new approximation or
population member is generated, if these are not veri�ed then the solution is generated again. There
are many other penalty methods but this is the simplest to implement. For the problem studied
this approach works �ne but for highly constrained problems Death Penalty usually entails very high
computational costs and therefore must be avoided in favour of other penalty methods.

The optimization of Schmit's Structure is proposed here as a benchmark for constrained continuous
optimization because it can be used to understand how the studied methods behave before this type of
optimization problems and is related to engineering optimization. This problem belongs to the branch
of structural optimization.

8.2.1 Schmit Structure

The structural problem posed herein, as explained before, has at least two known local minima cor-
responding to the isostatic and hyperstatic solutions of the structure. Both solutions are presented
again in the table below these lines. Since this is a constrained optimization problem, the points of the
actual search space are not known beforehand until the constraints are checked for any given point.
This signi�cantly complicates the exploration and exploitation of the search space.

Solutions to Schmit Structure
Variable x1 x2

Isostatic 1.066771 0
Hyperstatic 0.788675 0.408248

Table 3: Isostatic and hyperstatic solutions for schimt structure (source: self made)

The solutions in the table above are dimensionless to ease the analysis of the results obtained during
the simulations.

The results of applying the methods studied to this optimization problem are the following.
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Figure 65: Graphical representation of Schmit structure simulations results (source: self made)

The �rst observation to be made from the simulations carried out for the structural optimization
problem under study is that the Exhaustive Search gives the best results up to a relatively high
simulation time. This is due to a peculiarity of Schmit Structure's problem and does not imply that
the Exhaustive Search performs better than the other methods in constrained continuous optimization
problems. With a Grid Size of 0.1 for the Exhaustive Search the best solution found in the search
space is (0.8, 0.4). Despite being a coarse grid, which implies a low computational cost, the solution
is very good given the fact that the global optimum happens to be casually very close to (0.8, 0.4). If,
for instance, the solution had been close to (0.75, 0.35) then the Exhaustive Search would no longer
have the best performance.

The main di�erence between the structural optimization problem studied here and the unconstrained
optimization problems solved above is obviously the fact that the constraints must be veri�ed by any
candidate solution. This is also the reason why, unlike in unconstrained continuous optimization, the
best solutions here are obtained with SA instead of GA. Since Simulated Annealing works only with
one approximation at a time, instead of a whole population like in Genetic Algorithm, the constraints
must only be checked once per iteration and thus the computational cost is much lower. Therefore,
for the same computational cost or simulation time the results obtained with SA are better than those
obtained with GA for constrained continuous optimizaton.

As mentioned before, other ways of checking if the constraints are veri�ed exist for the metaheuristics
studied. Many of these belong to the penalty methods but others rely on algorithms that allow the
metaheuristics to generate only new approximations or solutions that already verify the constraints,
so these need not be checked. Such methods obtain better results than Death Penalty, due to the fact
that the computational costs are lower, but are harder to implement.
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8.3 Combinatorial Optimization

In the same way as in constrained optimization, all the methods studied but Newton's Method can
be used to search for the optimum of a Combinatorial Optimization problem. The reason behind
this is that a combinatorial optimization problem can be understood as a constrained optimization
problem where the search space is discrete and the constraint is that the same value can not appear in
two di�erent variables. In other words, in combinatorial optimization solutions (a series of variables)
are generated by picking values from several available (discrete search space) and no value can be
picked twice in the same solution (constrained problem). Since the search space is not continuous nor
di�erentiable, Newton's Method can not be used.

Unlike in continuous optimization, when using Exhaustive Search in combinatorial optimization there
is no continuous search space to discretize. Therefore, there is no Grid Size parameter and thus there
is no control over the computational cost of applying this method. This fact prevents Exhaustive
Search from being compared to the other methods like done before. When facing a combinatorial
optimization problem Exhaustive Search always �nds the exact solution but usually does so at a very
high computational cost.

The Travelling Salesman Problem has been selected as the representative of combinatorial optimiza-
tion. TSP is a widely studied combinatorial optimization problem which has a variety of applications
in engineering, for example planning or logistics. It has also been used in the simulations of this dis-
sertation due to the fact that it is commonly utilized as a benchmark for computational optimization
methods such as the metaheuristics studied herein.

8.3.1 Travelling Salesman Problem

In the �rst place, the distribution of cities must be speci�ed. This is done by de�ning an euclidean
space and introducing a set of points or cities between which the euclidean distance is de�ned. Since an
emphasis has been put in this dissertation into studying real applications for the algorithms analyzed,
the distribution of cities chosen does also correspond to real life scenarios.

A map of Spain has been drawn and the ten largest cities, according to the population, have been
included in the study. The goal is to �nd the shortest closed tour through all of the cities. The distance
from one city to another is considered to be described by a straight line. Therefore, the case studied
corresponds to the problem of �nding the shortest tour to travel through all the cities by airplane.
If the tour was to be done by car, for example, then the euclidean distanced between any two cities
should be substituted by the driving or road distance.

The distribution of cities studied is drawn in the �gure below these lines.
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Figure 66: TSP distribution of cities (source: self made)

The best tour found with the Exhaustive Search, and therefore the best tour possible, is presented in
the following table together with the computational cost of �nding such tour.

Shortest Tour

Tour Length 2287 km
Simulation Time 49 seconds

Table 4: TSP Exhaustive Search simulation results (source: self made)

The solution obtained is represented visually in a more appropiate way in the �gure below. Although
the resulting tour can be easily predicted by human logic due to the way in which the cities are
distributed, this does not make it easier for a computational method to �nd the correct solution. Thus
the distribution chosen is as good as any other in testing the method's behaviour.
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Figure 67: Graphical representation of TSP Exhaustive Search simulation results (source: self made)

As explained before, the Exhaustive Search gives the best results and thus has the best performance
as long as it can be run in a practical time lapse. When the number of cities is too large, this method
can not be utilised and metaheuristics become the best approach to solving combinatorial optimization
problems. Exhaustive Search becomes impractical even for twenty cities.

The results of searching for the shortest tour with Pure Random Search, Genetic Algorithm and Sim-
ulated Annealing are presented graphically in order to facilitate the comparison of their performance.

Figure 68: Graphical representation of TSP simulations results (source: self made)
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The simulations show, in the same way as for the other types of optimization problems studied, that
the metaheuristics GA and SA �nd considerably better results than Pure Random Search. Again,
the reason behind this is that the search is being directed through heuristics instead of being purely
stochastic.

The computational cost required to obtain successful solutions for the TSP is high due to the fact that
even with ten cities the search space is huge. To be more precise, the number of possible tours is over
three and a half million in the case studied. Despite the number of possible tours, both metaheuristics
have an error of around 4% with a simulation time of only 2 seconds. Thus the results are quite
promising and show that an acceptable solution could be found for a TSP with twenty cities in a
reasonable simulation time.

Moreover, the current implementations of the GA and SA can be further improved which would also
results in a better performance of these methods in front of this type of optimization problems. For
instance, the way in which two parent tours are crossed to generate an o�spring or a tour is mutated
can be modi�ed.

In general terms, the way in which the methods studied behave in combinatorial optimization problems
is pretty much the same in which they behave before the rest of problems. In other words, here as
well, the improvement in the solution found draws a logarithmically decreasing function with the
computational cost.

9 Conclusions

In the �nal section of the dissertation, the conclusions extracted from the study are summarised.
The aim set at the start of this work was to evaluate the feasibility of applying the recently devised
metaheuristic algorithms to engineering optimization. Therefore, the conclusions shall clearly state
if this is possible while explaining the bene�ts, if any, of using these methods over more classical
approaches.

The �eld of engineering optimization is broad and has applications in many areas such as structural
design optimization or logistics, both studied herein. Most of these optimization problems can be put
as one of the three types of problems included in this study: unconstrained continuous optimization,
constrained continuous optimization and combinatorial optimization.

Several classical algorithms have been compared to the metaheuristics, Genetic Algorithm and Sim-
ulated Annealing, when applied to the benchmark optimization problems. Many other optimization
methods exist that have not been studied in this dissertation, nonetheless this does not prevent from
making a judgement about whether the metaheuristics can be successfully applied to the problems
under study.

The overall results of the simulations show that not only metaheuristics can be used to solve engineering
optimization problems but, in fact, these usually outperform classical methods when doing so. Bear
in mind that the simulations have been carried out at a relatively low computational cost for practical
reasons, for higher computational costs the performance of the metaheuristics studied is expected
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to be signi�cantly better. At any rate, the conclusions reached are always qualitative rather than
quantitative.

Calculus based methods such as Newton's Method usually fail in �nding the global optimum of a
optimization problem because they have no robustness and tend to fall into local optima and can not
escape. Newton's Method has a very e�ective exploitation since it does �nd the optimum very fast and
with virtually no error when in the vecinity of such optimum. However, the exploration of the search
space in this method is almost non-existant. It can also be used only in continuous optimization with
a di�erentiable objective function which is a strong limitation.

Despite the above, it is possible to take advantage of Newton's Method exploitation capabilities when
used together with another optimization algorithm. For instance, in unconstrained continuous opti-
mization, a metaheuristic method can be used to search for the pit where the global optimum lies and
then Newton's Method can be applied using as initial approximation the solution obtained from the
metaheuristic. This approach bene�ts from the exploration of the metaheuristic and the exploitation
of Newton's Method.

Brute force methods, such as Exhaustive Search, and pure stochastic algorithms, such as Pure Random
Search, have the disadvantage that the search follows no logical steps or, in other words, is not directed.
Any directed search method, whether calculus based or based on heuristics, is expected to perform
better than the aforementioned algorithms. If there is no limitation at all in the computational cost
then Exhaustive Search can be deemed appropiate since it �nds the exact solution. Nonetheless, most
of the time for complex optimization problems the computational cost of running Exhaustive Search
is prohibitive. Pure Random Search is always outperformed by other stochastic algorithms with a
directed search, such as the studied GA and SA.

Genetic Algorithm and Simulated Annealing, the two metaheuristics studied, have been able to �nd the
global optimum for every optimization problem proposed. Furthermore, these have obtained the best
results amongst the various methods implemented even at low computational costs. The performance
of these methods compared to that of classic methods can be quanti�ed in terms of the simulation
time elapsed to obtain a certain improvement of the solution.

Several tables have been used to summarise the results obtained from the simulations for elapsed times
of 1 second for unconstrained continuous optimization and 2 seconds for constrained continuous opti-
mization and combinatorial optimization. The solutions obtained are presented in terms of the actual
error and the percentage error. The methods included are Pure Random Search (PRS), Exhaustive
Search (ES), Genetic Algorithm (GA) and Simulated Annealing (SA).
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PRS ES GA SA

Error(units) 0, 00252 0, 002 0, 0000056 0, 00035
De Jong's
Function

Error(%) - - - -

Error(units) 0, 34 0, 11 0, 0071 0, 12
Rastrigin's
Function

Error(%) - - - -

Error(units) 0, 0002 0, 0005 0 0
Six-Hump Camel
Back Function

Error(%) 0, 0194 0, 0484 0 0

Table 5: Summary of simulations results for unconstrained continuous optimization (source: self made)

For unconstrained continuous optimization, Genetic Algorithm is able to reduce the error of the solution
obtained by Exhaustive Search in over a 90% for the three problems studied for a simulation time of
1 second. This improvement increases with the simulation time. In the same problems, Simulated
Annealing reduces the error obtained by Exhaustive Search in a range from 0 to 50% for the same
simulation time of 1 second. The improvement increases again with the simulation time. Therefore,
while Simulated Annealing might obtain the same results as Exhaustive Search for a simulation time
of 1 second in some of the problems studied, for longer simulation times the performance of SA is
guaranteed to be better than that of Exhaustive Search. The three mentioned methods outperform
Pure Random Search.

PRS ES GA SA

Error(units) 0, 08 0, 0334 0, 045 0, 025
Schmit
Structure

Error(%) 3, 0337 1, 2666 1, 7065 0, 9840

Table 6: Summary of simulations results for constrained continuous optimization (source: self made)

For constrained continuous optimization, Genetic Algorithm does no longer obtain the best results.
In this type of optimization problem Simulated Annealing has an edge on Genetic Algorithm due to
the fact that constraints must be checked for every candidate solution and, therefore, since GA has a
larger number of candidate solutions the computational cost drastically increases for highly constrained
problems.
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PRS ES GA SA

Error(units) 212 - 79 113
Travelling Salesman

Problem
Error(%) 9, 2698 - 3, 4543 4, 9410

Table 7: Summary of simulations results for combinatorial optimization (source: self made)

For combinatorial optimization, since no constraints must be checked, Genetic Algorithm gives again
the best results. Both metaheuristics outperform Pure Random Search as expected. In this problem,
Exhaustive Search can not be directly compared to the other methods studied since it can not be run
for the chosen simulation time of 2 seconds. If Exhaustive Search is run it returns the shortest tour in
49 seconds while both metaheuristics �nd a tour with an error below 5% in under 2 seconds.

As computer science advances computational cost is less of an issue and thus metaheuristics are ev-
eryday more powerful. If the simulations carried out in this dissertation were to be repeated in one
year time, using the exact same implementations, the results obtained would be signi�cantly better
than the ones today due to the increase in computational power. For these reason metaheuristics will
probably be widely used in the near future to solve a broad variety of optimization problems, including
engineering optimization. Moreover, given the current interest in ecological processes, nature based
algorithms such as GA and SA are being thoroughly studied.
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