

Universität Stuttgart

Institut für Energieübertragung und Hochspannungstechnik

Design of a proper set-up for

low current measurements of

insulation systems

Master thesis

Jordi Rovira Buhigas

 Beginning of thesis: 14.10.2013

 End of thesis: 29.04.2014

 Supervisor: M.Sc. Farzaneh Vahidi

2

3

1. Motivation and scope of work .. 9

2. Methodologies for low current measurements .. 10

2.1. Shunt ammeter .. 11

2.2. Shunt Ammeter with buffer amplifier ... 12

2.3. Feedback Ammeter ... 13

2.4. Differences between shunt and feedback... 14

3. Test set-up ... 14

3.1. Definitions of technical words designing a low current measurement circuit 14

3.2. Isolating material ... 15

3.3. Arduino UNO ... 17

3.3.1. Power pins .. 18

3.3.2. Input and Output .. 19

3.3.3. Communication .. 20

3.3.4. Programming .. 20

3.3.5. Physical Characteristics .. 21

3.3.6. ATmega328 ... 21

3.4. Programming the software ... 23

3.4.1. !ǊŘǳƛƴƻΩǎ ǎƻŦǘǿŀǊŜ ... 23

3.4.2. {ǘƻǊŀƎŜ ƻŦ ǘƘŜ ŘŀǘŀΥ άtǊƻŎŜǎǎƛƴƎ нέ {ƻŦǘǿŀǊŜ .. 27

3.5. Testing Arduino.. 30

3.5.1. Comparison of accuracy between Arduino, multimeter and Electrometer. 30

3.5.2. Experiment changing the reference value of Arduino. 34

4. Description of the circuits ... 37

4.1. First design ... 37

4.1.1. ±ŀǊƛŀǘƛƻƴ ƻŦ ƻǳǘǇǳǘ ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ƛǎƻƭŀǘƛƴƎ ǎȅǎǘŜƳΩǎ ǊŜǎƛǎǘŀƴŎŜ 39

4.1.2. Operational amplifiers ... 41

4.1.3. Power supply .. 46

4

4.2. Modified designs ... 47

4.2.1. Update 1: Three ranges and multimeter option .. 48

4.2.2. Update 2: Use of another Amplifier ... 55

4.2.3. Update 3: Adapting for negative values ... 64

4.2.4. Update 4: Design to fit into a shielding box ... 67

5. Eagle design ... 71

6. Components and costs estimation.. 76

7. Resolution ... 77

8. Accuracy of the results with constant resistances .. 78

8.1. Positive-Negative Error .. 83

9. Accuracy of the results with insulating liquid ... 86

10. Summary and outlook ... 89

11. References ... 91

A Appendix ... 92

5

Declaration

I hereby declare that I prepared this thesis independently and without outside help or

unauthorized aids, nor used other than the stated sources and aids and the sources points

extracted have been marked as such.

Stuttgart, October 22, 2013

 Signature: .

6

7

Acknowledgements

I want to thank my tutor M. Sc. Farzaneh Vahidi for letting me do this thesis under her

supervision and all the help and guidance she has given me throughout the length of the

thesis. Also Dipl.-Ing. Mark Jovalekic, who never had no as an answer to any question or

doubt that I came to him with.

I want to also thank my girlfriend, Kristin N. Osborn, who gave me all her support and

motivation and helped with checking the correctness of the English language.

I want to thank Sophia, Laura and Daniel, with whom I shared the lab most of the days. I

thank them for their support in the days in the lab as colleagues and friends.

I also want to thank IEH and the University of Stuttgart for the opportunity to develop my

thesis in their department and enjoy the great experience surrounded by great people and

professional workers.

Finally, I thank my parents and my sister for giving me the opportunity to go on the

ERASMUS program, as well as their support through all the days.

8

9

1. Motivation and scope of work

Low-level measurements are an important part of electrical studies. Due to the small values

of current and voltage used, the precision of the values becomes very important. For

example, a change of 1 nA or 1 nV can make a huge difference.

For that reason, measuring those values requires special study and therefore, special

attention, procedures, equipment and designs.

In this thesis, different ways to measure low current, values of pA and nA, will be analyzed

and compared. Currently in the market, devices capable of doing this task do exist, but for a

very expensive price. The purpose of this study will be to design an economically affordable

device capable of producing acceptable results.

The steps outlined in the following pages will focus on measuring polarization current

through an isolating system applying a voltage up to 20 kV.

Different processes of measuring will be evaluated. In the end, one will be chosen to take

the measurements and show them over a multimeter device while simultaneously logging

the values in a computer.

10

2. Methodologies for low current measurements

This section will outline and describe the basic circuits on which the ammeters and

electrometer are based as well as the basics of the operational amplifiers.

An operational amplifier is a device which can have a varying amount of pins. The standard

ones are non-inverting input (V+), inverting input (V-), output (Vout) and positive and

negative voltage supply inputs (Vs+,Vs-). In addition to those, there can be pins for offset

cancelling, clock synchronizing, and many others.

Image 1 External and internal representation [1]

The main equation for the operational amplifier is:

 (2.1)

The amplifier amplifies the difference of voltage between both inputs multiplied by the open

loop gain A. The gain is different at every operational amplifier and cannot be modified.

The range of the gain will typically be approximately 10.000 to 100.000. As it is so big, a very

small difference between the inputs creates a big output, usually at the level of the power

supply (saturation). Due to this big gain, it is really difficult to control the behavior in an

open loop. The most usual way to operate using amplifiers is using a feedback loop. It

usually connects the inverting input to a portion of the output.

11

Image 2 Example of feedback connection [1]

By using 2 resistances the gain is highly reduced. The transfer function applied in this

situation is:

(2.2)

The 2 resistances work as a voltage divider. It is acceptable to make the assumption that V+ =

V- For that reason, the voltage between both resistors will have to be the same as the Vin,

therefore, the relation between the resistors will give the new gain.

For example, if both resistors have the same value, and Vin = 5 V, the output will be 10 volts.

That is because the node between the resistors connected to the inverting input has to also

be 5 V, so the output has to be 10 V. It proves the equation:

(2.3)

(2.4)

with X as the value of the resistors.

2.1. Shunt ammeter

RS

RA

RB

IbiasIin
A

+

_

Vout

Image 3 Shunt ammeter schematic

12

The shunt ammeter works by measuring the voltage created over a resistance (RS), through

which the current desired to measure circulates. Knowing the values of the shunt resistance

(RS) and RA and RB, the current can be calculated from the voltage of the output with the

following equation:

(2.5)

The shunt resistance should be as small as possible, for reasons such as: better stability with

time and temperature, reduced input constant time and reduced voltage burden. However,

if it is too small, it could lead to degrading of the signal-to-noise ratio and introducing some

noise and zero drift.

2.2. Shunt Ammeter with buffer amplifier

This case is similar to the shunt ammeter but with a buffer amplifier between the shunt

resistance and the operational amplifier. This case is used when the current measured is

really low and the input bias current can be around the same range of the desired measured

values. For that reason, a special ultralow input bias current operational amplifier is used. It

is mounted in a follower configuration, without adding gain but providing stability. The

buffer has ideal infinite input impedance and zero output impedance which allows to

transfer voltage from first to second part of the circuit.

A voltage follower configuration is where the output is connected with the inverting input

with a unity gain, giving the following transfer function:

 (2.6)

Image 4 Voltage follower with ultralow input bias current

13

Currently exists ultralow input bias current as low as 40fA like AD549L

Image 5 Shunt ammeter schematic with buffer amplifier

2.3. Feedback Ammeter

In the feedback ammeter, there is a resistor connected between the output and the negative

input. The positive input is connected to the ground. The equation is:

 (2.7)

Image 6 Feedback Ammeter schematic

14

The input current flows through the feedback resistor. It is suitable that the operational

amplifier has a low input bias current, so the full current flows through the feedback resistor

and not inside the operational amplifier. That way, the measurement wonΩt be affected by

the own operational amplifier and will be as accurate as possible so the measurement is as

accurate as possible.

The commercial picoammeter is an example of hardware using the Feedback ammeter

situation.

2.4. Differences between shunt and feedback

Shunt measurement is the most common type of measuring for the wide range they can

achieve. Feedback ammeters are better in cases of really low current measurements [2].

However, as long as the shunt resistor is significantly smaller than the resistance of the DUT

and the currents to be measured are not very small (not much lower than microamp level

[10 ς6 µA]), shunt ammeters work fine. [2]

In shunt ammeter, the voltage drop is created between the output and the input of the high

gain amplifier instead of between the inputs like the shunt. The main characteristic for the

voltage feedback ammeter is the low voltage burden, which makes it more appropriate for

low level measurements. The input voltage is equal to the output voltage divided by the op-

amp gain (typically 100,000), so the voltage burden has now typically been reduced to micro

volts. [2].

3. Test set-up

3.1. Definitions of technical words designing a low current

measurement circuit

Before starting to describe the different parts and elements of the circuits, it is important to

get familiar with the technical words that are going to be used frequently throughout the

study and the differences between them.

15

 Accuracy

The definition of accuracy is the closeness of agreement between the measurement

and its true value [3]. It is often specified as ± (% of reading + count) or ± (ppm of

reading + ppm of range). The percentage of reading is more significant when the

reading is close to full scale and the percent of range is most significant when the

reading is a small fraction of full scale [3].

 Error

The deviation of a measurement from its true value. It can be expressed as the

difference or as a ratio [3].

 Resolution

The smallest portion of the signal that can be observed [3]. This means the number of

counts that can be displayed, based on the number of digits. An example is: ±(0,05%

+ 1 count) reading 10.000V equals a total error of ±(5mV + 1 mV) out of 10V. Usually,

the higher resolution, higher accuracy.

 Sensitivity

The smallest change in the signal that can be detected [3]. That means that a change

ōŜƭƭƻǿ ǘƘŜ ǎŜƴǎƛǘƛǾƛǘȅ ǾŀƭǳŜ ǿƻƴΩǘ ōŜ ǊŜŦƭŜŎǘŜŘ ƻƴ ǘƘŜ ǊŜŀŘƛƴƎΦ ¢ƘŜ ǎŜƴǎƛǘƛǾƛǘȅ ǿƛƭƭ

depend on the display resolution and the measurement range.

3.2. Isolating material

The isolating system consists of a metal plate test cell device with a surface of 300 mm, with

3 electrodes (High, Low and Guard) inside containing an oil or paper between them. The

distance between the 2 electrodes can be changed between 1 and 5 mm.

On the system a voltage between 5 kV and 20 kV will be applied.

16

The resistance of the isolating system depends on the temperature and the strength of the

electrical field applied. It can have a range between 100 MҠ and 100GҠ depending on the

conditions.

Image 7 Closed test cell Image 8 Opened test cell

Image 7 and 8 show the test cell used for current measurement. The insulation system goes

placed inside, either oil or paper.

17

3.3. Arduino UNO

Arduino UNO is the device that will be used to read the values and send them to the

computer to be logged. It will take some time and processes to adjust and program the

device so the results are the expected ones.

Arduino is a prototype board, easy to use and without the need to add significant hardware.

It can perform many different operations. All the components are mounted on a board, with

the input and output connections defined.

The platform can also communicate with other devices through digital IN/OUT pins or

through the USB. In this case it will be communicating with a computer that will receive and

log the data coming from it through a USB.

The Arduino operations are made through the Arduino development environment. It is

based on C computer language and will be later discussed and explained.

Referring to specifications, the Arduino Uno is a microcontroller board based on the

ATmega328. It has 14 digital input/output pins, 6 analog inputs, a 16 MHz ceramic resonator,

a USB connection, a power jack, an ICSP header, and a reset button. It contains everything

needed to support the microcontroller.

The most common specifications are:

Table 1 Arduino specifications [4]

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14

Analog Input Pins 6

DC Current per I/O Pin 40 mA

Flash Memory 32 KB

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

18

3.3.1. Power pins

The Arduino Uno can be powered via the USB connection or with an external power supply.

External (non-USB) power can come from either an AC-to-DC adapter or a battery. The

adapter can be connected by plugging a 2.1mm center-positive plug into the board's power

jack. Lead from a battery can be inserted in the GND and Vin pin headers of the POWER

connector. By default it is provided 5V from the USB. As a computer will be used to show the

results, in this case power will be powered via the USB connection.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V,

however, the 5V pin may supply less than five volts and the board may be unstable. If using

more than 12V, the voltage regulator may overheat and damage the board. The

recommended range is 7 to 12 volts.

The power pins are as follows:

 VIN. The input voltage to the Arduino board when it's using an external power source

(as opposed to 5 volts from the USB connection or other regulated power source).

You can supply voltage through this pin, or, if supplying voltage via the power jack,

access it through this pin.

 5V. This pin outputs a regulated 5V from the regulator on the board. The board can

be supplied with power either from the DC power jack (7 - 12V), the USB connector

(5V), or the VIN pin of the board (7-12V).

 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw

is 50 mA.

 GND. Ground pins.

19

Image 9 Arduino board with the components

3.3.2. Input and Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(),

digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or

receive a maximum of 40 mA and have an internal pull-up resistor (disconnected by default)

of 20-50 kOhms. In addition, some pins have specialized functions:

 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These

pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial

chip.

 External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a

low value, a rising or falling edge, or a change in value. See the attachInterrupt()

function for details.

 PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite()

function.

 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication

using the SPI library.

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/SPI

20

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

value, the LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of

resolution (i.e. 1024 different values). By default they measure from ground to 5 volts,

though is it possible to change the upper end of their range using the AREF pin and the

analogReference() function.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs. Used with analogReference().

 Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset

button to shields which block the one on the board.

3.3.3. Communication

The Arduino Uno has a number of facilities for communicating with a computer, another

Arduino, or other microcontrollers. The ATmega328 provides UART TTL (5V) serial

communication, which is available on digital pins 0 (RX) and 1 (TX). The Arduino software

includes a serial monitor which allows simple textual data to be sent to and from the

Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted

via the USB-to-serial chip and USB connection to the computer.

3.3.4. Programming

The Arduino Uno can be programmed with the Arduino software. This software can be

downloaded for free from the Arduino webpage. The ATmega328 on the Arduino Uno comes

pre-burned with a bootloader that allows you to upload new code to it without the use of an

external hardware programmer.

http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Tutorial/Bootloader

21

3.3.5. Physical Characteristics

The maximum length and width of the Uno PCB are 68.58 mm and 53.34 respectively, with

the USB connector and power jack extending beyond the former dimension. Four screw

holes allow the board to be attached to a surface or case. Note that the distance between

digital pins 7 and 8 is 160 mil (4,064 mm), not an even multiple of the 100 mil (2,54mm)

spacing of the other pins.

Image 10 Arduino front and back sides

3.3.6. ATmega328

The microcontroller ATmega328 is the main part of the Arduino board. It has 32 pins and a

CPU of 8 bits. The main characteristics are the following:

Table 2 ATmega328 Specifications [5]

Flash (kbytes) 32 Kbytes

Pin Count: 32

Max. Operating Frequency: 20 MHz

ADC channels 8

ADC Resolution 10 bits

ADC Speed 15 ksps

EEPROM 1024 Bytes

RAM 2 KBytes

Operating Voltage (Vcc) 1,8 to 5,5

Inside the ATmega328, an important part is the Analog-to-Digital converter.

22

The ADC is connected to an 8-channel Analog Multiplexer which allows eight single-ended

voltage inputs constructed from the pins of Port A. The ADC converts an analog input voltage

to a 10-bit digital value through successive approximation. The minimum value represents

GND and the maximum value represents the voltage on the AREF or USB supply.

A simple ended conversion is:

(3.1)

Where VIN is the voltage at the input pin and VREF is the voltage selected as a reference.

For example, if VREF is 5V, an example of conversion would be:

Table 3 Example of conversion values of ADC

Vin (V) Conversion value Digital Value

0 0.0000 0

0.001 0.2048 0

0.002 0.4096 0

0.003 0.6144 0

0.004 0.8192 0

0.005 1.0240 1

0.01 2.0480 2

0.02 4.0960 4

0.05 10.24 10

0.1 20.48 20

0.2 40.96 40

0.5 102.40 102

1 204.80 204

2 409.60 409

4 819.20 819

5 1024.00 1024

23

3.4. Programming the software

The process to program the Arduino consists of 2 parts. First of all the process of making

Arduino read the values and show them on the screen and second part, to log the values

appropriately for representing them after.

3.4.1. !ǊŘǳƛƴƻΩǎ ǎƻŦǘǿŀǊŜ

The first step when attempting to work with Arduino is to program it so it can do the needed

functions. Arduino is based in C/C++ programing. It has its own library of functions, which

allows many actions to be made. The library and other tutorials found on the internet can be

consulted.

The complete code used is the following:

#define NUM_SAMPLES 30 //set a number of samples constant
#include<stdlib.h> κκ ƛƳǇƻǊǘ ŘŜ ƭƛōǊŀǊȅ ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ŦǳƴŎǘƛƻƴ άŘǘƻǎǘǊŦόύέ

int sum = 0; //create and initialize variables
unsigned char sample_count = 0;
float voltage = 0.000;
float current = 0.000;
float correction = 0.000;

void setup() {
Serial.begin(9600); //start the communication with the computer
}

void loop(){ // add all the reads until the samples number
while (sample_count < NUM_SAMPLES) {
sum += analogRead(A3) ; //read pin A3 but could be any other pin
sample_count++;
delay(10); //make a read every 10 ms
}

voltage = ((float)sum / (float)NUM_SAMPLES * 5.06) / 1024.000; //make the average of the samples,

and reference voltage and divide by
the arduino number of values

Current = voltage*10000/400; //multiply or divide the result value by the internal resistance
Correction = Current + (current * -0,0085 + 5,25); //applies the correction depending on the range

Serial.print(Current); //Show the result throught the serial port
Serial.println(correction);

sample_count = 0; //restarts the variables
sum = 0;

Serial.print("#S|PROVAPRI1|["); κκ/ƻƳƳŀƴŘ ŦƻǊ ƳŀƪƛƴƎ ǘƘŜ ǇǊƻƎǊŀƳ άƎŜǘǿƛƴƎƻέ ǊŜŎƻǊŘ ǘƘŜ ǾŀƭǳŜǎ
Serial.print(dtostrf(total,6,4,buffer));
Serial.println("]#");
} //end of the program

24

This algorithm has to be implemented through the Arduino software and uploaded to the

board through the USB.

This program starts defining a constant value, NUM_SAMPLES, which will be used later to

make the average of the values read from the input pin. This is used to eliminate single

interferences by grouping them together.

Following that, it is important to include any library of which a function is going to be used.

In this case, the function dtostrf() is included in the library stdlib.h. The way to include the

library to the logarithm is #include.

There are going to be some variables needed, which have to be declared and initialized. Sum

and sample_count are going to be used for making the average of numbers, total and

voltage will represent real values of voltages. Buffer is going to make space in the buffer for

the subaction dtostrf()

.

With the function Serial.beggin(9600) the Arduino begins to communicate with the

computer. 9600 sets the speed. It has to be the same in both the computer and the Arduino

board.

The main program is found in the void loop (){. First, with a while ŀƴŘ ǘƘŜ ŎƻƴŘƛǘƛƻƴ ƻŦ άuntil

the number of reads is equal as the expected number of samples, keep readingέΣ ǘƘŜ ǇǊƻƎǊŀƳ

reads the value on the analog pin number 3 (A3) with the function analogRead(A3).

Delay(10) indicates that every 10 ms Arduino will repeat the loop.

int sum = 0; //create and initialize variables

unsigned char sample_count = 0;

float voltage = 0.000;

char buffer[8];

float total = 0.000;

#define NUM_SAMPLES 30 //set a number of samples constant

#include<stdlib.h> // import de library containing the function

άŘǘƻǎǘǊŦόύέ

25

At the end of the while there is going to be the sum of NUM_SAMPLE values. The voltage

variable is going to take that number, divide it by NUM_SAMPLE values, and scale it to the

Arduino. This scaling is as simple as taking the value and multiplying for the maximum value

input range 5V (in our case, measured before and it is 5,06V) and divide it by the number of

bits it operates, in our case 1024.

The result of these operations is the value of voltage is going to be the real voltage at the

middle of both resistances. For that reason, it is necessary to multiply the value for the

voltage divisor rate, so the resulting value is the voltage at the source.

Next, the values need to be sent to the computer. Serial.print() will send through the serial

the values and they will be able to be seen at the serial monitor.

To finish the program, the variables need to be restarted, so the program can start again.

voltage = ((float)sum / (float)NUM_SAMPLES * 5.06) / 1024.000; //make the average of the
samples, and reference voltage and divide by the
arduino number of values

Current = voltage*10000/400; //multiply or divide the result value by the internal resistance
Correction = Current + (current * -0,0085 + 5,25); //applies the correction depending on the

range

void loop(){ // add all the reads until the samples

number

while (sample_count < NUM_SAMPLES) {

sum += analogRead(A3) ;

sample_count++;

delay(10);

}

Serial.print(Current); //Show the result throught the serial port

Serial.println (Correction);

sample_count = 0; //restarts the
variables

sum = 0;

26

In this case, it would be convenient to log those values into a text file so afterwards they can

be later analyzed. To accomplish the logging operation, there are many different options.

¢ƘŜ ƻƴŜ ǳǎŜŘ ƘŜǊŜ ƛǎ ǘƘŜ ǇǊƻƎǊŀƳ άDƻōŜǘǿƛƴƻέ ǿƘƛŎƘ ǿƻǊƪǎ ƛƴ ǘŀƴŘŜƳ ǿƛǘƘ ǘƘŜ !ǊŘǳƛƴƻ

program.

Gobetwino function of logging the data requires a special kind of data. The values sent have

to be string ǘȅǇŜ ŀǎ ǘƘŜ ǇǊƻƎǊŀƳ ŘƻŜǎƴΩǘ ŀŎŎŜǇǘ float numbers. For this reason, it is

necessary to use the function dtostrf (VALUE; PRECICION; DECIMAL; BUFFER). This function

will transform the float number to string with the parameters precicion, decimal, buffer.

These values have to be big enough so they ŘƻƴΩǘ ŘƛŦŦŜǊ ŦǊƻƳ ǘƘŜ float values.

¢ƻ ƳŀƪŜ άƎŜǘǿƛƴƎƻέ ǊŜŎƻǊŘ ǘƘŜ ǾŀƭǳŜǎΣ ƛǘ ƴŜŜŘǎ ǘƻ ōŜ ǎŜƴǘ ǘƘǊƻǳƎƘ

serial.printόάІ{μƴŀƳŜψŦǳƴŎǘƛƻƴψƎŜǘǿƛƴƎƻμώǾŀƭǳŜǎψǘƻψōŜψǊŜŎƻǊŘŜŘϐІέύΦ

hƴŎŜ ǿŜ ŎƭƻǎŜ ǘƘŜ ǇǊƻƎǊŀƳ άƎŜǘǿƛƴƎƻέΣ ǘƘŜ ǾŀƭǳŜǎ ǿƛƭƭ ōŜ ǊŜŎƻǊŘŜŘ ƛƴ ŀ ΦǘȄǘ ŘƻŎǳƳŜƴǘ ǿƛǘƘ

or without the date and time.

To finish the entire program, we just need to use the closing sign }

On the Arduino software, there is a button to check for error prior to uploading the program

onto the board.

Serial.print("#S|PROVAPRI1|["); κκ/ƻƳƳŀƴŘ ŦƻǊ ƳŀƪƛƴƎ ǘƘŜ ǇǊƻƎǊŀƳ άƎŜǘǿƛƴƎƻέ

record the values

Serial.print(dtostrf(total,6,4,buffer));

Serial.println("]#");

} //end of the program

27

3.4.2. Storage of the data: άProcessing 2έ {ƻŦǘǿŀǊŜ

Once the Arduino sends the measured value over the serial port, and it is shown on the

screen, it is important to be able to save those values. There are many ways to do it, but in

this situation what is wanted is that the values get logged in .CSV type, so they can be easily

uploaded to Matlab or Excel to represent the values.

¢ƘŜ ǎƻŦǘǿŀǊŜ tǊƻŎŜǎǎƛƴƎ нΣ ōŀǎŜŘ ƻƴ ǘƘŜ !ǊŘǳƛƴƻΩǎ ǇǊƻƎǊŀƳƳƛƴƎ ƭŀƴƎǳŀƎŜΣ Ŏŀƴ ǇŜǊŦƻǊƳ ǘƘƛǎ

task.

To make Arduino software and Processing 2 software work with each other, there has to be

some modifications to the original design.

On the Arduino code, it is very simple, just so the variables printed on the serial port will

have to be show the following way:

The variables being measured in this case are var1, var2 and var3. They are float numbers

with 4 decimal values. The important part of this procedure is the printing of the comma

between the variables and the Serial.println at the end. This command makes a new line, so

the three variables go on the same line separated by commas and the next time the code

makes the loop, it will be stored on the following line.

The part of the Processing 2 will have to be edited from the beginning. The language is

similar to Arduinos, but some functions and commands are special for Processing 2.

Serial.print(var1,4);

Serial.print (" , ");

Serial.print(var2,4);

Serial.print (" , ");

Serial.println(var3,4);

28

The code to be written on the Processing page is:

There are some special functions that require a little bit of attention:

Printwriter() allows to print a text-output stream. It requires the function createWriter() to

generate the file and ideally it should be flushed and closed with flush() and close().

import processing.serial.*; //import the library

Serial myPort; //create a variable of the type άSerialέ

PrintWriter output; //creates άprintwriterέ type variable

int lf = 10; // created and assigns 10 as a integrer value

void setup() {

size(500,500); //opens the window

println(Serial.list()); //shows on screen the ports available

myPort = new Serial(this, Serial.list()[1], 9600); // chose port [1] at 9600 of speed

(same one as arduino)

output = createWriter("measure.csv"); //creates ŀ άΦ/{±έ ŦƛƭŜ

}

void draw() {

if (myPort.available() > 0) { //as long as there is serial port data:

String value = myPort.readStringUntil(lf); // r ead until a change of line

if (value != null) { //if the value read is not null

output.println(value); //save the value the value

println(value); //show the value on the screen

}

}

}

void keyPressed() { //when pressing any key:

output.flush(); //writes the remaining data

output.close(); //closes the file and save it

exit(); //quit the program

}

29

When using the function newSerial(this,Serial.list[],9600), it is important that the speed of

the serial is the same in Arduino and processing 2. In this case, it is 9600. This value can be

another one, but it must be the same in both Arduino and Processing 2.

bƻǘƛŎŜ ǘƘŜ ǳǎŜ ƻŦ ǘƘŜ ƛƴǘŜƎǊŜǊ άƭŦέ which has a value of 10. This is because in ASCII, 10 equals

to άnew lineέ. Therefore, when the program is using the function readStringUntil(), it will

read until the a new line is made, which was set at the Arduino program with the

serial.println(). By doing these commands, the results are just as wanted: a certain number

of values on the same line for each iteration of the program and separated by commas.

The function createWriter() can create either a .CSV file to open with a datasheet program or

a .txt.

The steps to set are: first connect Arduino to the computer, upload the code and run it. The

serial monitor has to be closed because the program just allows one connection. Then, open

the processing 2 software, and run the code. Once the program is closed, there will be in the

same folder of the specified one, the document with the values saved and ready to open

with excel or text editor.

30

3.5. Testing Arduino

The first step before taking any measurements is to check the accuracy of the measuring

device. In this case, the Arduino will have to be checked and evaluated, so that the values,

specifications and operation are as expected.

The following experiments will check the response from the Arduino known values, checking

for accuracy and evaluating for efficiency.

3.5.1. Comparison of accuracy between Arduino, Multimeter and

Electrometer.

For this experiment, the circuit made consists of a voltage source, from 0 to 25V, a

resistance of 2MҠ, and a resistance of 300kҠΦ

The measuring equipment is the Arduino, a standard multimeter and the Keithley

electrometer.

¢ƘŜ !ǊŘǳƛƴƻ ǿƛƭƭ ƳŜŀǎǳǊŜ ǘƘŜ ǾƻƭǘŀƎŜ ŘǊƻǇ ƻǾŜǊ ǘƘŜ оллƪҠ ǊŜǎƛǎǘŀƴŎŜ ŀƴŘ ǘƘŜƴ ŎŀƭŎǳƭŀǘƛƴƎ

what it should be at the voltage source. The multimeter and electrometer will measure

directly over the voltage source. In addition, there will be an ammeter measuring the current

going through the circuitΦ YƴƻǿƛƴƎ ǘƘŜ ŎǳǊǊŜƴǘ ŀƴŘ ǘƘŜ ǘƻǘŀƭ ǊŜǎƛǎǘŀƴŎŜ όнΣоaҠύΣ ƛǘ ƛǎ Ŝŀǎȅ ǘƻ

calculate the voltage drop at the source.

Image 11 Circuit to test Arduino's measuring abilities

31

Table 4 Table of measured values with different devices

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

25,000 24,942 0,232 25,070 -0,280 24,957 0,172 10,634 24,458 2,167

22,000 21,880 0,545 22,030 -0,136 21,924 0,345 9,341 21,484 2,344

18,500 18,422 0,422 18,560 -0,324 18,470 0,162 7,868 18,096 2,182

16,200 16,208 -0,049 16,320 -0,741 16,249 -0,302 6,922 15,921 1,725

13,800 13,703 0,703 13,830 -0,217 13,766 0,246 5,864 13,487 2,267

11,500 11,519 -0,165 11,650 -1,304 11,596 -0,835 4,939 11,360 1,220

8,150 8,066 1,031 8,180 -0,368 8,138 0,147 3,465 7,970 2,215

6,500 6,399 1,554 6,510 -0,154 6,481 0,292 2,758 6,343 2,409

4,700 4,576 2,638 4,690 0,213 4,673 0,570 1,988 4,572 2,715

2,800 2,637 5,821 2,763 1,321 2,750 1,786 1,169 2,689 3,975

1,900 1,823 4,053 1,941 -2,158 1,930 -1,579 0,819 1,883 0,878

1,180 1,080 8,475 1,172 0,678 1,168 1,017 0,496 1,141 3,322

0,640 0,543 15,156 0,642 -0,313 0,637 0,547 0,270 0,621 2,969

0,330 0,233 29,394 0,327 1,061 0,325 1,576 0,137 0,316 4,219

0,250 0,155 38,000 0,254 -1,680 0,253 -1,144 0,107 0,246 1,744

0,140 0,039 72,143 0,135 3,857 0,134 4,593 0,056 0,129 8,131

0,120 0,003 97,500 0,119 1,167 0,118 1,917 0,049 0,113 5,777

0,020 0,000 100,000 0,018 10,000 0,017 13,450 0,006 0,015 26,400

0,015 0,000 100,000 0,016 -6,667 0,015 -3,067 0,006 0,013 12,600

 S=8,224 S=3,104 S=3,387 S= S5,943

(1): Ideal value (V)

(2) Arduino measured values (V)

(3) Relative error or Arduino (%)

(4) Multimeter measured values (V)

(5) Relative error Multimeter values (%)

(6) Electrometer measured values (V)

(7) Relative error electrometer (%)

(8) Current measured with pico ammeter
(µA)

(9) Voltage calculated from the pico
ammeter and resistance (2,3MҠ) (V)

(10) Relative error for pico ammeter (%)

Notice that the last column is the ideal voltage calculated by the current measured by the

pico ammeter and the resistance values (2,3 MҠ).

32

 (3.2)

The last row shows the standard deviation, for each of the individual errors.

The standard deviation has been calculated as:

The electrometer and the multimeter show the smallest ones. Arduino is bigger, because at

low voltages it is not able to read appropriately, therefore, it shows a big error, which affects

the deviation. The calculated voltage from the current, it has a certain error due the value of

the resistors are not exact 2,3 MҠ.

Image 12 Comparison of measurements between Arduino, Electrometer, Multimeter and Ammeter

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Voltage at the
source (V)

Experiments

Arduino V

Multimeter V

Keithley V

Voltatge calculated by current
* 2,3 V

33

Image 13 Zoon in between 2 and 0V for Image 12

Image 12 shows the evolution of the voltage from 25V to 0V. The only small difference seen

appears around the values of 25 V. The άcalculated valuesέ line is the one that shows

difference from the other 3 lines. The reason for this change is that the calculated

measurement is measured from the current and multiplied, not using any voltage

measurement. In this studyΣ ǘƘŜǊŜ ǿƻƴΩǘ ōŜ ŀ ƴŜŜŘ ǘƻ ƳŜŀǎǳǊŜ ǎǳŎƘ ŜƭŜǾŀǘŜŘ ǾŀƭǳŜǎΣ

therefore it can be considered not of importance.

Either on Image 12 and Image 13, the X axes ŀǊŜ άŜȄǇŜǊƛƳŜƴǘǎέΦ .ŀǎƛŎŀƭƭȅ ƛǘ Ǝƻ ŀǘ ŀ ŎŜǊǘŀƛƴ

value and measure with the different devices, not giving important to the real value

measured, just looked at the differences between them.

Image 13 is a magnification of the first graph, in the range between 2 and 0 V. There, it can

be seen that at low voltages, Arduino presents άōŀŘ ǊŜǎǳƭǘǎέ, starting at 2V and being very

significant from 0,6V to 0V. Those values are the source values, which are not the same as

the voltage applied on the Arduino. To know the ones applied on the input of the Arduino, it

needs to be converted with the following formula:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

1 2 3 4 5 6 7 8 9

Voltage at the
source (V)

Experiments

Multimeter V

Keithley V

Arduino V

Voltatge calculated by current *
2,3 V

34

(3.3)

According to this formula, 2V is actually 0,25V and 0,6V is 0,08V. That means that from now

on, it should not be considered accurate the values below that point.

3.5.2. Experiment changing the reference value of Arduino.

Arduino has 5V as the default max reference value for analog input. That means Arduino

divides the 5V into the 1024 bit.

But this is not the only option that Arduino can do. Arduino can be set up at other reference

values using the function analogreference(type), depending on the need of each

measurement. There are different options:

 DEFAULT: the default analog reference of 5 volts

 INTERNAL: an built-in reference, equal to 1,1 volts on the ATmega328

 EXTERNAL: the voltage applied to the AREF pin (0 to 5V only) is used as the reference.

In this experiment, the value used will be the 1,1 volts. It will be set with the function

analogreference(INTERNAL).

The circuit used in this experiment will be exactly the same as what was used before in

section 3.4.1.

Table 5 Measures with different devices with 1.1V reference

Arduino (V) Multimeter (V) Keithley (V) Keithley (µA) Voltatge calculated by

current * 2,3 (V)

8,43 10,06 10,0137 4,2675 9,81525

6,25 6,03 6,0078 2,5595 5,88685

5,2 5,03 5,0072 2,1328 4,90544

3,102 3,021 3,0057 1,2805 2,94515

2,053 2,016 2,0053 0,85397 1,964131

1,529 1,513 1,50515 0,64066 1,473518

1,001 1,008 1,00254 0,42646 0,980858

35

0,687 0,705 0,701 0,29788 0,685124

0,478 0,503 0,50014 0,2122 0,48806

0,27 0,304 0,30263 0,12804 0,294492

0,165 0,2021 0,20088 0,08465 0,194695

0,06 0,1011 0,10031 0,0418 0,09614

0,008 0,0504 0,04996 0,02032 0,046736

0 0,0438 0,04321 0,01745 0,040135

0 0,0056 0,00515 0,00123 0,002829

Image 14 Voltage measurement using 1,1V instead of 5V as reference

Image 14 shows the representation of the same measurements as before. Notice that now

the limit for the Arduino input analog is 1,1V.

In other words, if the limit for the Arduino is 1,1V at the input pin, through the conversion it

will be:

(3.4)

That means that at more than 8,43 volts on the power source, the Arduino will not be able

to measure. This is the example of the first value shown on the graph and in the data. The

other devices show a value of approximately 10 V, but instead, Arduino shows 8,43V which

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Source Voltage (V)

Experiments

Arduino V

Multimeter V

Keithley V

Voltatge calculated by current * 2,3 V

36

is the limit of the Arduino, the 1,1V. Obviously, this should not be considered in any

calculation but should help to understand the idea of the reference value.

Image 15 Zoom in of Image 14

Following the idea of the previous graph, image 15 is a magnification of image 14. It goes

from approximately 1 to 0 volts.

This graph is very important as it shows the difference in the deviation of the measurement.

It follows the expected values until 0,3V where it differs from it. Following the formula

shown before, that corresponds to a voltage of 0,039 V.

That change increases the accuracy of those measured, as it was expected, making the

Arduino reliable until values of 0,05V as opposite of the 0,08V of the 5V reference.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Source Voltage

Experiments

Arduino V

Multimeter V

Keithley V

Voltatge calculated by
current * 2,3 V

37

4. Description of the circuits

4.1. First design

This section will explain the steps that have been taken to make the final circuit.

The first schematic about the circuit is simple using the idea a shunt ammeter. This means

measuring the voltage created by a resistor and knowing the current flowing through it.

Image 16 Voltage measuring with only 1 operational amplifier with unity feedback

It only requires an operational amplifier and the shunt resistance. The output of the

operational amplifier should show the voltage between the common point of R1 and R2 and

the ground, making the current flow though the shunt resistance and not damaging Arduino.

Knowing the shunt resistance value, it is easy to know the current.

 First, on the left side of the image there is a power source (V1) and a resistor (R1). These are

the power source and the isolating system. As a starting value, 100 GB will be taken as the

value of the isolating system and 10.000V in the power source. As a reminder, the voltage

will be in a range of 5 to 20 kV and the resistance between 100GB and 1TB.

From now on, the isolated system will be also referred as R1.

38

The current that is being measured is the current that goes thought R1. On the end not

connected to the voltage source of R1, there will be a resistance (R2) connected and

grounded to the floor. The functionality of this resistance is to create a voltage drop so it can

be later measured. The value of this resistance has to be big enough so that the voltage

created is big enough for the operation amplifier to read it, while at the same time not too

big ǎƻ ƛǘ ŘƻŜǎƴΩǘ ƛƴǘŜǊŦŜǊŜ ǿƛǘƘ ǘƘŜ ƳŜŀǎǳǊŜment. The proposed value will be 500 kҠ.

The voltage obtained at the output is around 50 mV, which is too small for the Arduino to

measure properly.

For that reason, the amplifier needs a gain, which will be created using 2 resistors. The ideal

values for Arduino should be an output between 0,8 and 5 V, as that is the range values that

Arduino can read with more accuracy.

The operational amplifier will be set in the non-inverting configuration.

(4.1)

A good value for Arduino to be measured would be around 3 V at the output. Therefore, a

value of 50 mV is assumed as Vin, the relation between R2 and R1 have to be of 59. Then,

one option could be 100Ҡ ŦƻǊ wм and 5900Ҡ ŦƻǊ wн

Finally, the formula to know the value of the current thought the voltage will be:

39

(4.2)

Image 17 Voltage measuring with amplifying

4.1.1. ±ŀǊƛŀǘƛƻƴ ƻŦ ƻǳǘǇǳǘ ŘŜǇŜƴŘƛƴƎ ƻƴ ǘƘŜ ƛǎƻƭŀǘƛƴƎ ǎȅǎǘŜƳΩǎ ǊŜǎƛǎǘŀƴŎŜ

Along with the design, it is important to know what situations could be expected, and know

if those values will meet the specifications. In other words, we have to make sure that the

!ǊŘǳƛƴƻ ŘƻŜǎƴΩǘ ƎŜǘ ƻǾŜǊ ǘŜƴǎƛƻƴ ŀƴŘΣ ŀǘ ǘƘŜ ǎŀƳŜ ǘƛƳŜΣ ǘƘŜ !ǊŘǳƛƴƻ ǿƛƭƭ be able to read all

the values.

For that reason, there is a theoretical approximation of the expected output depending on

the value that the isolating system takes.

R1 is the LǎƻƭŀǘƛƴƎ ǎȅǎǘŜƳΩǎ ǊŜǎƛǎǘŀƴŎŜ ŀƴŘ ǘƘŜ ά{ƛƳǳƭŀǘŜŘ Outputέ ƛǎ ǘƘŜ Ǿoltage expected at

the output of the operational amplifierΦ wн ǿƛƭƭ ƘŀǾŜ ŀ Ŏƻƴǎǘŀƴǘ ǾŀƭǳŜ ƻŦ рллƪҠ ŀƴŘ wоκwп

will be 59. The voltage source is 10kV.

40

Table 6 Variation of the output depending on the resistance value

The table above shows an increase of R1 from 100 GҠ to 280GҠ. What maintains constant is

the relation R3/R4, the value of R2, and the voltage source. The result is the value that the

output of the operation amplifier will have at every situation.

As a result of this table, it proves that even as the resistance value changes, the whole range

of numbers is completely functional for the Arduino (between 1 and 5 Volts).

The formula used to calculate it is:

(4.3)

R1 (Ҡύ Calculated Output (V)

1,0E+11 2,999

1,1E+11 2,727

1,2E+11 2,499

1,3E+11 2,307

1,4E+11 2,142

1,5E+11 1,999

1,6E+11 1,874

1,7E+11 1,764

1,8E+11 1,666

1,9E+11 1,578

2,0E+11 1,499

2,1E+11 1,428

2,2E+11 1,363

2,3E+11 1,304

2,4E+11 1,249

2,5E+11 1,199

2,6E+11 1,153

2,7E+11 1,111

2,8E+11 1,071

41

4.1.2. Operational amplifiers

In the design 2 chips will be used. The LTC1050 and LT1013. The LT1013 will be used to

create the virtual ground and the power supply. The LTC1050 will be used to amplifying and

acquiring the main measuring signal.

4.1.2.1. LTC1050

The LTC is a precision zero-drift operational amplifier with internal capacitors. The main

features of it, important in this thesis are:

Table 7 Specifications of the LTC1050 [6]

Input offset voltage 0,5 µV

Input offset current 20 pA

Input bias current 10 pA

Slew Rate 4 V/µS

Total Supply voltage ±18 (-V to +V) V

The operational amplifier is mounted on a SO-8 package.

Image 18 LTC1050 Pin configuration

Outside of the specifications of the chip, it is important to see the actual response of the

operational amplifier.

 Response of the operational amplifier LTC1050

It is important to know the performance of the operational amplifier beside the datasheet

specifications. In the following graphs, it can be seen the response of the operational

amplifier when the input is a step signal at different frequencies. It is important to check the

42

frequency response of the amplifier, thus it could affect the results and is the most

important part of the circuit.

Image 19 Response at 30 kHz

Image 20 Response at 160 kHz

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Voltage (V)

Time (µS)

INPUT OUTPUT

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

Voltage (V)

Time (µS)

INPUT OUTPUT

43

Image 21 Response at 425 kHz

Image 22 Response at 1 MHz

From these graphs, the different responses at every frequency can be seen. The response is

the same in all cases, with the same space between peaks and rising time. The problem

occurs when the frequency is higher than 425 kHz, in which case the step is too short for the

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

Voltage (V)

Time (µS)

INPUT OUTPUT

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Voltage (V)

Time (µS)

INPUT OUTPUT

44

ǎƛƎƴŀƭ ǘƻ ǊŜŀŎƘ ǘƘŜ Ŧƛƴŀƭ ǾŀƭǳŜΦ Lƴ ǘƘŀǘ ŎŀǎŜΣ ŀǎ ǎƘƻǿƴ ƛƴ LƳŀƎŜ оп ǘƘŜ ƻǳǘǇǳǘ ŎŀƴΩǘ Ŧƻƭƭƻǿ ǘƘŜ

input signal and turns into a signal not dependent of the input.

For our set-up, we never get to reach those frequencies at any moment, so the response of

the amplifier is not a variable likely to give errors on the results.

4.1.2.2. LT1013

The LT1013 is a dual precision operational amplifier, but only one of them will be used in the

circuit. The main features are:

Table 8 LT1013 specifications [7]

Input offset voltage 60 µV

Input offset current 0,2 nA

Input bias current 15 nA

Slew rate 0,4 V/µS

Total supply voltage ±22 V

Drift 2 µV/C°

It also comes in a SO-8 configuration with the following distribution:

Image 23 LT1013 pin configuration

45

 Response of the operational amplifier LT1013

Image 24 Response at 30 kHz

Image 25 Response at 150 kHz

In the case of this operational amplifier, it reaches the value perfectly at 30 kHz but, as seen

on image 24, at a range of 150kHz it reaches its limit not being able to reach the expected

value for higher frequencies. It is not really important because this chip is connected to the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Voltage (V)

Time (µS)

INPUT OUTPUT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Voltage (V)

Time (µS)

INPUT OUTPUT

46

voltage source, which has really small variations and the output is not required to be very

exact.

!ǎ ǿŜƭƭ ŀǎ ǘƘŜ [¢/млрлΣ ǘƘŜ ǊŜǎǇƻƴǎŜ ƻŦ ǘƘŜ ŀƳǇƭƛŦƛŜǊ ŘƻŜǎƴΩǘ ŀŦŦŜŎǘ ǘƘŜ ǎystem and can be

considered fast enough at all time.

4.1.3. Power supply

The power supply of the device depends only on the operational amplifiers used. There is

the option of using single batteries, as low as 3 volts, or using an external power source of

any value. In this study, a power supply will be used connected to the electrical line, 230 V

(Europe), and transformed to 12V outside the board. In this thesis, the one used will be a

power source with a floating voltage of 12V.

Image 26 Schematic of the voltage supply circuit

This is the schematic of the supply circuit. It starts with the external floating supply of 12

volts. The aim of this part is to provide, on one part, a virtual ground, and on the other part,

a power supply for the main operational amplifier, as a positive and negative supply.

The operational amplifier is configured as a follower, with a feedback between the output

and the inverted input.

47

The pins represented on image 26 are:

Table 9 Explanation of the pins

Pin 1 Output

Pin 2 Inverting input

Pin 3 Non-inverting input

Pin 4 Negative supply input

Pin 8 Positive supply input

Remember that the transfer function of an operational amplifier as:

 (4.3)

 (4.4)

 Then: = 0

(4.5)

On the other hand, both resistances have to guarantee that the voltage drop over one is the

same as the voltage drop over the other, as they both have the same value.

If the center of both resistances is connected to VIN+ and it has to be 0, and the voltage drop

on each resistance has to be the same, this means that the initial 12 volts will be +6 and -6.

By this method, now the board is supplied with a constant V+=6V, V-= -6V and a virtual

ground VGND of 0V.

It has also included a capacitor to stabilize and a resistor of 100Ҡ at the output as a

protection.

4.2. Modified designs

From the idea of the first design, diverse updates can be done to make the circuit more

complex and adapt better to the difference expectations. Each update includes one or

different new parts to add functionality to the first ideal design.

48

4.2.1. Update 1: Three ranges and multimeter option

The problem with the first design was that with only 1 resistance, the range of values was

very specific.

 In the firsǘ ŘŜǎƛƎƴΣ ǘƘŜ ǎƘǳƴǘ ǊŜǎƛǎǘƻǊ ǿŀǎ ƻŦ рллƪҠΣ ŀ ǾƻƭǘŀƎŜ ŀǇǇƭƛŜŘ ƻŦ млΦллл± ŀƴŘ мллDҠ

of starting resistance of the insulator capacity and an amplification of 60 times to get the

results with an output of 3V for the Arduino. That means the ideal current flowing was

100nA.

Table 9 shows with the standard parameters, what would be the output depending on the

input.

Table 10 Input current and output voltage

Current nA Output (V)

10 0,3

15 0,45

20 0,6

25 0,75

30 0,9

50 1,5

70 2,1

90 2,7

100 3

125 3,75

150 4,5

166 5

175 5,25

The device would actually be working on a range between 20nA and 166nA approximately.

hōǾƛƻǳǎƭȅ ǘƘŀǘ ƛǎ ŀ ƘǳƎŜ ƭƛƳƛǘŀǘƛƻƴ ǘƘŀǘ ŘƻŜǎƴΩǘ ƳŀǘŎƘ ǿƛǘƘ ǘƘŜ ŜȄǇŜŎǘŜŘ ǊŀƴƎŜ ƻŦ ǾŀƭǳŜǎΦ

So in the first update, the idea is to have 3 different resistances that can focus in 3

measuring ranges: micro amps, nano amps and pico amps. The transition between the

resistors will be made through a rotatory switch.

49

The basic idea of the circuit is the following:

Image 27 Representation of the idea of the 3 switchable resistances.

Based on Ohm law, the voltage drops created will be the following:

Table 11 Relation between the voltage drop created and the current applied

Resistance Current Voltage drop created

10 Ҡ 1 µA 0,01 mV

1000 µA 10 mV

10 kҠ 1nA 0,01 mV

1000 nA 10 mV

10 MҠ 1 pA 0,01 mV

1000 pA 10 mV

The reason for using these values is to allow, by just switching the resistance, to use all of

the other components in the board without having to change any other part. This is very

practical, especially at the moment of optimizing the amount of components on the board.

At the same time, the amplification of the resistors will be change to 100x instead of 60x.

The reason to do that is to adapt to the 10, 10K and 10M, and their voltage drop created,

0,01mV to 10mV, multiply it 100 times to ranges of 1mV to 1000mV, where can be used a

voltmeter on their if wanted. The voltmeter will read from 1 mV to 1000 mV for 1 µ/n/p A to

1000 µ/n/p A.

50

4.2.1.1. Resistor and switch

The switch is a very important part of the circuit. It is responsible for selecting what range

will be used at any moment and connects to the operational amplifier. Many different

switches can be used, but the one used at least needs to have 3 poles and 3 ways. Standard

rotatory switches usually come as 4 poles 3 ways or 3 ways 4 poles.

Image 28 Representation of the inside of 2 different switches

The function is the same: At the same time, each pole will be connected to one of the ways.

For example, in the 3 Pole 4 Way switch, Pole A can be only connected to way 1, 2, 3 or 4 as

well as Pole B can be only connected to 5, 6, 7 or 8 at a time. As it rotates, all the

connections will rotate at the same time in 30°, for example, the configurations A-1, B-5, C-9

or A-3, B-7, C-11.

The resistors used will be all 0,1%, so they are as accurate as possible. The switch will be the

CK1027 with 4 pole and 3 way, even 1 pole will not be used.

51

Image 29 Schematic of the switching circuit

Among different configurations, this picture shows how the connections are made. PAD1

and PAD2 are the jacks where the current will flow, input and output. PAD5 and PAD6 are

the connections of the external power supply. This switch has 4 poles and 3 ways.

The switch is situated in positions: D1-C1-B1-A1. The current will flow through the 10MҠ

resistance, making a voltage drop, which will be connected through D1 and C1 to the

resistance of 100Ҡ used as a protection before the non-inverting input of the operational

amplifier. If the values measured were micro or nanoamps, the same procedure would exist

with D1-C1 and D2-C2.

At the same time, on pole A, the LED system will be connected. It will indicate what mode is

selected at any time by illuminating one of the three LEDs. The LEDs will be connected

between +V and ςV of the power supply though a resistance of 2kҠ to limit the current.

4.2.1.2. Adapting the measuring circuit and functionality for a multimeter.

This part of the circuit is where the value is measured and amplified to millivolt output

range. It consists of an operational amplifier with a feedback.

52

It is intended to have an amplification of 100 times. That means:

 If ; (4.6)

 ; (4.7)

(4.8)

Within an infinite amount of combinations, one solution could be:

As a resistor of 99kҠ is difficult to find, the conversion will be made with 2 resistors in series

of 24kҠ and 75kҠΦ

With this amplification, the values on the output will have a range from 1mV to 1000mV.

Image 30 Schematic of the measuring part

53

The voltage drop created over the resistors comes through R2 (100Ҡύ into the non-inverting

pin. That pin has the feedback with the resistors and is also connected to the virtual ground

through the 1kҠ.

The +V and ςV come from the power supply and 2 capacitors of 100nF are added on both

positive and negative inputs and the ground for stabilization. The output is protected with a

100Ҡ resistor.

Between the virtual ground and the end of the resistor is where the voltage will be

measured with a multimeter or connected to another amplifier to increase the amplifier to

make it suitable for the Arduino or other measuring device.

The resistors used are all 0,1%. That is because there is a need to have the most accurate

value at any time. If instead of 75k, the resistor ǿŀǎ тсƪΣ ǘƘŜ Ŧƛƴŀƭ ǊŜǎǳƭǘ ǿƻǳƭŘƴΩǘ ōŜ ǘƘŜ

same, as the whole board has many steps and resistances, the error created would sum up,

making a considerable error at the end. For that reason, the most exact the resistances are,

the better will be to have the expected value at the end.

54

Image 31 Second design board, front and back

Image 32 Complete schematic of second design

