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Abstract

The most common methodology of similarity based learning is the k-nearest neighbour
method. But this has the disadvantage of having to store and calculate distances
(similarities) for all the instances in the dataset. A more efficient methodology is to
calculate similarities to only a set of chosen prototypes and use this as a new
representation for learning.

The current thesis deals with the implementation of these ideas using the Gower’s
similarity measure for heterogeneous data. The comparison of clustering and feature
selection methods for prototype selection is explored. Different methodologies are
implemented in an attempt to improve the Gower’s similarity measure with the
incorporation of weights for features. Novel methodologies to extract deep/higher level
features from the similarity representation are proposed. The thesis provides
preliminary results in these areas of research which are encouraging.

2



Contents

1 Introduction 5

2 Related prior art: Similarity Learning 8
2.1 Data types and missingness . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Similarity measures for different variable types . . . . . . . . . . . . . 11

2.3.1 Nominal variables . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Ordinal variables . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Continuous variables . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Missing value treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Extension to Neural Networks . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 15
2.5.2 The S-Neuron Model . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Similarity Neural Networks . . . . . . . . . . . . . . . . . . . 18

2.6 Similarity representation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Data 20
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Pima Diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Horse Colic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Audiology Database . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Credit Approval . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Hepatitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.6 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Simple KNN and Gower KNN 23
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Results and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Prototype Selection 25
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



5.1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 The Feature Selection algorithm . . . . . . . . . . . . . . . . . 29
5.1.3 Resampling methods . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 33
5.2.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Results and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Improved Similarity Measure 41
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Relief Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Results and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Higher Level Similarities 47
7.1 Similarity of Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 48
7.1.2 Results and Inference . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Powers of Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.2 Results and Inference . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusion and Future Work 56
8.1 Transitive Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Appendix 60
9.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4



1 Introduction

Machine learning techniques aim to learn the underlying model that governs different
aspects of the world, based on patterns extracted from observations. The methodology
of extracting this knowledge is of crucial importance to machine learning [28, 29].
Traditional methods build models based on measurable heuristic properties of the real
world called features. But there is a new trend in this field to learn from the notion of
proximity rather than the features themselves [27, 30, 26]. It is the proximity of
instances to each other that determines its description of belonging to a particular class
or associating it to a particular target. Instances that are similar/close to each other (in
some sense) will have similar targets, and those that are dissimilar tend to have
dissimilar targets. This implies that the notion of proximity is more fundamental than
the notion of a feature for the purpose of learning [31, 27]. Learners should hence be
geared to learn from similarities rather than from features.

The most common methodology of learning from similarities is the k-nearest neighbour
(KNN) approach. Here, the majority vote of the k nearest neighbours is chosen to find
the class. It is described briefly with an example of classification as shown in figure 1.
This shows a two class problem where an instance has to be classified. The value of k
has to be tuned. This same mechanism is used for regression, but now the average value
of the targets of the k closest neighbours is considered.

The problem with KNN and related algorithms is that the entire dataset is used each
time a new instance has to be classified, which greatly increases the computational load
and storage requirements. This is especially true for large datasets which are very
common these days in online applications. Another disadvantage is that these methods
only take into account the information from the closest neighbours and neglect the
overall topological structure of the data.

The current thesis deals with the study of similarity based representations, which are
an extension to nearest neighbour methods. Recent trends [27, 26] have been focussed
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Figure 1: KNN - Example

The figure shows a simple two class problem. The instance at the centre(circle) is the one to be
classified. If k is 3, then it is classified as triangle and if k is 5 it is classified as square

on moving to a new representation of data based on similarities or closeness. Here the
similarity of instances to a chosen set of prototypes is considered as the new similarity
space. In this new space a typical learner can be used to solve a classification or
regression problem. The current work seeks to improve this methodology specifically
for the problem of heterogenous data.

Heterogeneous data refers to data containing a mix of real, ordinal, categorical etc.
data, possibly with missing values. Such data is very common in the real world. For
instance, in the well known UCI machine learning repository [32] over half of the
datasets contain categorical values [26]. Many times the type of data is not even
reported. The problem is that typical learners are designed to work with real data. It
becomes especially difficult when datasets contain a mixture of different types of data,
which is typically the case. The thesis proposes to implement the Gower’s similarity
measure to calculate similarities. This representation is able to calculate similarities
directly without having to guess the missing values or convert the data to a real
representation.

The thesis explores the comparison of clustering and feature selection methods for the
task of prototype selection within the framework of similarity representations.
Different methodologies are also explored in an attempt to improve the Gower’s
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similarity measure with the incorporation of weights for features. Novel methodologies
to extract deep/higher level features from the similarity representation are proposed.
The thesis provides preliminary results which are encouraging. Overall the thesis is an
initial attempt at these methods. Further study and experimentation is required to
create accurate methodologies from these ideas.

Section 2 discusses the related prior research in the field of similarity representations in
the context of this thesis. Section 3 discusses the different datasets used in this study
for the purpose of experiments. Sections 5, 6 and 7 discuss the proposed mechanisms
of prototype selection, improved similarity measure and higher level similarities
respectively.
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2 Related prior art: Similarity Learning

The intuitive notion of similarity is very useful to group objects under specific criteria
and has been used with great success in several fields within or related to Artificial
Intelligence, like Case Based Reasoning [1], Information Retrieval [2] or Pattern
Matching [3].

In classical artificial intelligence (AI) systems, the notion of similarity appears mainly
in case-based reasoning (CBR), where learning by analogy and instance-based learning
fuse. The popularity of CBR systems has boosted its use and signalled its key role in
cognitive tasks [33]. As a matter of fact, some form of similarity is inherent in the
majority of AI approaches. There is an agreement in that it is easier to respond
intelligently to a stimulus if previous responses made under similar circumstances can
be recalled. Similarity coefficients have had a long and successful history in the
literature of cluster analysis and data clustering algorithms [15].

The origins of learning by similarity in artificial neural systems can be traced back to
the pioneering works of Hebb and his now classic book [34]. He postulated that the
functionality of ANNs had to be determined by the strengths of the neural connections.
This functionality should be adjusted to increase the likeliness of getting a similar

response to similar inputs in the future, provided the elicited response is the desired
one. In the opposite situation, the weights should be adjusted to decrease this
likeliness. However, this inspiring idea has not been fully exploited in the prevalent
neuron models.

There have been few attempts to incorporate heterogeneous information into the
workings of an artificial neuron in a principled way. The main contribution is perhaps
encountered in heterogeneous distance proposals, where separate distance calculations
are used for nominal and continuous variables [35], where the authors present an
extension of the RBF model to nominal quantities and missing values. The RBF
network is used in its original interpolative definition (i.e., there is one hidden node for
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each example in the training set). The extension consists in the use of the Value
Difference Metric [36] for nominal distance computation. An Euclidean metric is used
to account for the partial distances. Missing values are handled with a pessimistic

semantics, defining the distance involving a missing value to be the maximum possible
distance (actually a value of one). The results point to an increase in performance w.r.t.
standard Euclidean distance when the amount of nominal information is significant,
giving support to a deeper and more precise formulation of neuron models as similarity
computing devices.

Section 2.1 introduces the problem of heterogeneous data and section 2.2 details the
Gower’s similarity measure. The intuition of similarity is extended to neural networks
in 2.5. Finally 2.6 introduces the notion of a similarity space, using the above methods
as pre-processing step.

2.1 Data types and missingness

In many important domains from the real world, objects are described by a mixture of
continuous and discrete variables, usually containing missing information and
characterized by an underlying uncertainty or imprecision. For example, in the
well-known UCI repository [9] over half of the problems contain explicitly declared
categorical attributes, let alone other data types, usually unreported. In the case of
artificial neural networks (ANN), this heterogeneous information has to be encoded in
the form of real-valued quantities, although in most cases there is enough domain
knowledge to characterize the nature of the variables.

The integration of heterogeneous data sources in information processing systems has
been advocated elsewhere [10]. In this sense, a shortcoming of the existent neuron
models is the difficulty of adding prior knowledge to the model in a principled way.
Current practice assumes that input vectors may be faithfully represented as a point
in Rn, and the geometry of this space is meant to capture the meaningful relations in
input space. There is no particular reason why this should be the case. Moreover, the
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activity of the units should have a well defined meaning in terms of the input patterns
[12]. Without the aim of being exhaustive, commonly used coding methods are (see,
e.g. [13]):

Ordinal variables coded as real-valued or using a thermometer scale.

Categorical variables with c modalities are coded using a binary expansion
representation (also known as a 1-out-of-c code).

Vagueness and uncertainty are considerations usually put aside.

Missing information is difficult to handle, specially when the lost parts are of
significant size. Typical approaches remove the involved examples (or variables)
or “fill in the holes” with the mean, median or nearest neighbor value. Statistical
approaches need to model the input distribution itself [11], or are
computationally very intensive [16].

Although these encodings may be intuitive, their precise effect on performance (very
specially in relation to overfitting) is far from clear. This is due to the change in input
distribution, the increase (sometimes acute) in input dimension and other subtler
effects, derived from imposing an order or a continuum where there was none.

2.2 Similarity measures

Let us represent patterns belonging to a space X 6= ∅ as a vector x of n components,
where each component xk represents the value of a particular feature k. A similarity

measure is a unique number expressing how “like” two patterns are, given these features.
It can be defined as an upper bounded, exhaustive and total function s : X ×X → Is ⊂
R with |Is| > 1 (therefore Is is upper bounded and smax ≡ sup RIs exists). A similarity
measure may fulfill many properties, like:

Reflexivity: s(x, y) = smax ⇔ x = y.

Symmetry: s(x, y) = s(y, x).
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Lower boundedness: ∃a ∈ R such that s(x, y) ≥ a, for all x, y ∈ X (note this is
equivalent to ask that inf RIs exists).

Closedness: given a lower bounded s, ∃x, y ∈ X such that s(x, y) = inf RIs (equivalent
to ask that inf RIs ∈ Is).

These axioms should be taken as desiderata. Some similarity relations may fulfill part
or all of them [15]. Other properties (like transitivity) may be of great interest in some
contexts, but are not relevant for this work. However, it is not difficult to show that
reflexivity implies a basic form of transitivity [6].

2.3 Similarity measures for different variable types

We present in this section specific similarity measures defined in a common codomain
Is = [0, 1]. Not only it is possible to find different types of variables, also different
similarity measures could be used for different variables of the same type. For notational
convenience, we use sijk to mean sk(xik, xjk).

2.3.1 Nominal variables

It is assumed that no partial order exists among these values and the only possible
comparison is equality. The basic similarity measure for these variables is the overlap.
Let xik, xjk be the modalities taken by two examples xi, xj , then sijk = 1 if xik = xjk

and 0 otherwise.

2.3.2 Ordinal variables

These variables can be seen as a bridge between categorical and continuous variables.
It is assumed that the values of the variable form a linearly ordered space (O,�). Let
xik, xjk ∈ O, such that xik � xjk, and Plk be defined as above. Then,

sijk =
2 log(Pik + . . .+ Pjk)

logPik + logPjk
(1)
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where the summation runs through all the ordinal values xlk such that xik � xlk and
xlk � xjk [8].

2.3.3 Continuous variables

Let xik, xjk ∈ A = [r−, r+] ⊂ R, r+ > r−. The standard metric in R is a metric in A.
Therefore, for any two values xik, xjk ∈ A:

sijk = ŝ

(
|xik − xjk|
r+ − r−

)
(2)

where ŝ : [0, 1] −→ [0, 1] is a decreasing continuous function. A very simple family is
ŝ(z) = (1−zβ)α, 0 < β ≤ 1, α ≥ 1. We use here the simplest choice α = β = 1.

2.4 Missing value treatment

Missing information is a recurrent problem in data analysis because there are many
causes for the absence of a value. The problem acquires more relevance when
significant parts of a data sample are lost or unknown. There are basically three ways
of dealing with missing values: fill in the examples, extend the learning methods to
cope with incomplete data or discard the examples (or the variables) with missing
values. We advocate for the second possibility, for which there exist some possible
approaches:

1. The first proposal is based on Gower’s general similarity measure [17]. When a
partial similarity si is missing, the flag δi that goes with this partial similarity is
set to 0 (otherwise it is 1).

The work of Gower in general similarity measures [17] shows some partial
coefficients of similarity for three different types of features: Dichotomous
(Discrete or Categoric), Qualitative (Categoric) and Quantitative (Continuous
and Discrete) features, that in addition are shown to produce PSD (similarity)
matrices. These functions can therefore be seen as Kernels.

For any two points xi, xj ∈ X to be compared on the basis of a feature k a score
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sijk is defined, described below. First δijk is defined as 0 when the comparison of
xi, xj cannot be performed on the basis of feature k for some reason; for example,
by the presence of missing values, by the feature semantics, etc; δijk is 1 when
such comparison is meaningful. The coefficient of similarity between xi, xj is
defined as the average score over all the partial comparisons:

Sij =

∑n
k=1 sijk∑n
k=1 δijk

(3)

If δijk = 0 for all the features, then Sij is not defined. An equivalent form to (3) is

Sij =

∑n
k=1 sijkδijk∑n
k=1 δijk

The scores sijk are defined as follows:

i) For Dichotomous (binary) features: The presence of the feature is denoted
by + and its absence by −. When there are no missing values of feature k,
then

Values of feature k

Point xi + + - -
Point xj + - + -

sijk 1 0 0 0
δijk 1 1 1 0

ii) For Qualitative features: Define

sijk =

1, if xik = xjk;

0, if xik 6= xjk

iii) For Quantitative features: With values x1, x2, ..., xn of featrue k for the total
sample of n points define

sijk = 1− |xik − xjk|
Rk

where Rk is the range of feature k (the difference between the maximum
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and minimum values); it may be the population range or the range in the
sample (the training set, in practice).

Gower proves that, if there are no missing values, the similarity matrix S = (Sij)

is PSD. This property may be lost when there are missing values. An example
will suffice:

We have three points with four quantitative features:

Feature 1 2 3 4

Point 1 1 2 3 1
Point 2 1 3 3 *
Point 3 1 3 3 5

In this table ∗ denotes a missing value and all feature values lie in [1, 5], that is,
Rk = 4. In this case,

S =

 1 11
12

11
16

11
12

1 1
11
16

1 1


then

det(S) = − 121

2304

and S is therefore not PSD. But if we replace ∗ by any value in [1, 5], then the
matrix S is certainly PSD.

It is not difficult to realize that this is equivalent to the replacement of the
missing similarities by the average of the non-missing ones. Therefore, the
conjecture is that the missing values, if known, would not change the overall
similarity.

2. The second proposal is even simpler: to replace the missing partial similarity
measures by a constant quantity, namely the midpoint of the similarity codomain
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Is. For instance, when Is = [0, 1], this constant would be 1
2
. Doing this we

are assuming that the missing similarities, if known, would make the example as
similar to any other example as the average similarity.

Both methods look very naive and indeed they are; on the other hand, they are very
intuitive and computationally simple. The appealing trait of these two approaches is that
they do not try to estimate the missing information (a delicate and risky undertaking)
but to estimate the overall similarity between two observations, given that some of the
partial similarities could not be computed. We argue that this second task is easier and,
after all, is what we really are interested in: the similarity value. This is the reason
why we consider missing value treatment together with the construction of the overall
similarity value.

2.5 Extension to Neural Networks

This section deals with the extension of the previously defined similarity representations
to a neural network architecture. Section 2.5.1 briery describes artificial neural networks
in general. Section 2.5.2 extends the idea of a similarity based neuron and section 2.5.3
extends this idea to a neural network architecture.

2.5.1 Artificial Neural Networks

Artificial Neural Networks (ANN) [37] are information processing structures evolved
as an abstraction of known or assumed principles of how the brain might work. The
network is said to learn when, as a result of exposure to examples, the parameters of
the units are adapted to represent the information present in the examples in an optimal
sense to be precised. The network relies upon the neuron model representation
capacity as the cornerstone for a good approximation.

The strong points of ANNs are their appealing capacity to learn from examples, their
distributed computation —which helps them tolerate partial failures to a certain
extent— and the possibility, so often exploited, to use them as black-box models. This
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last characteristic is paradoxically one of the major weaknesses, given that in practice
this autonomy of functioning involves no transfer of knowledge from or to the
designer. With the exception of very specific architectures, the networks are forced to
learn from scratch most of the times. The network works (in the sense that solves a
problem to a certain satisfaction), but the weights convey information as
high-dimensional real vectors whose meaning about the solution can be intricate. A
significant part of the task is devoted to find structure in the data and transform it to a
new hidden space (or space spanned by the hidden units) in such a way that the
problem becomes easier (almost linearly separable in the case of the output layer). The
internal workings of a neuron are thus obscure, because the weights have not been set
to shape a previously defined (and considered adequate) similarity measure, but rather
to adapt a general physical measure (like scalar product or Euclidean distance) to the
problem at hand.

In practice the network has to discover the relations in the structure induced by the
chosen coding scheme and find ways to accommodate the underlying similarity
relationship (inherent in the training examples) to a fixed similarity computation.
During the learning process, patterns seen as physically similar may have to be told
apart and vice versa. In consequence, several layers may be needed for complex
transformations, or a large amount of neurons per layer if we restrict the number of
hidden layers to one or two, as is common proceeding. An increase in neurons leads to
a corresponding growth in the number of free parameters, and these are less likely to
be properly constrained by a limited size data set [37].

Besides all that, real-world data come from many different sources (continuous or
discrete numerical processes, symbolic information, etc.) and have their own
peculiarities (vagueness, imprecision, incompleteness), and thus may require different
treatments. For example, in the well-known UCI repository [9] over half of the
problems contain explicitly declared nominal attributes, let alone other discrete types
or fuzzy information, usually unreported. This heterogeneity is traditionally coped
with by preparing the data using a number of methods. This preprocessing is not part
of the original task and may involve an abrupt change in input dimension and
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distribution. The new high-dimensional patterns entail a lower data density, requiring
stronger constraints on the problem solution [38].

2.5.2 The S-Neuron Model

Consider s : Xn × Xn → Is a similarity function in Xn = X(1) × . . . × X(n), the
cartesian product of an arbitrary number n of source sets, where Is = [0, 1] for
simplicity. This function is formed by combination of n partial similarities
sk : X(k) ×X(k) → Is, each X(k) being the domain of the predictive variable k.

The sk are normalized to a common real interval (Is = [0, 1] in this case) and computed
according to different formulas for different variables (possibly but not necessarily
determined by variable type alone). A neuron model can be devised that is both
similarity-based and handles data heterogeneity and missing values, as follows. Let
Σi(x) the function computed by the i-th neuron, where x ∈ Ĥn having a weight vector
µi ∈ Ĥn and smoothing parameter pi, defined as:

Σi(x) = f(s(x, µi), pi), with s(x, µi) =
1

n

n∑
k=1

sk(xk, µik) (4)

This S-neuron adds a non-linear activation function to the linearly aggregated
similarities. Such function could be any sigmoid-like automorphism (a monotonic
bijection) in [0, 1]. In particular, we consider the simple family of functions:

f(x, p) =

{
−p

(x−0.5)−a(p) − a(p) if x ≤ 0.5
−p

(x−0.5)+a(p) + a(p) + 1 if x ≥ 0.5

a(p) =
−0.5 +

√
0.52 + 4p

2
(5)
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where p > 0 is a parameter controlling the shape of the function (Fig. 2). The function
fulfills ∀p ∈ R+, f(0, p) = 0, f(1, p) = 1, lim

p→∞
f(x, p) = x and f(x, 0) = H(x−0.5),

being H the Heaviside function.
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Figure 2: Family of sigmoidal functions f(·, p) for different values of p.

2.5.3 Similarity Neural Networks

Similarity neural networks (SNN) are neural architectures built out of the previously
defined S-neurons, thus allowing for heterogeneous or missing inputs. A feed-forward
architecture, with a hidden layer composed of heterogeneous neurons and a linear output
layer is a straightforward choice, thus conforming a hybrid structure. The k-th output
neuron of the SNN computes the function:
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fk(x) =
h∑
i=1

wkiΣi(x) + wk0, k = 1, . . . ,m

where h > 0 is the number of hidden S-neurons, m is the number of outputs and {wki}
is the set of mixing coefficients. The SNN thus keeps linearity in the output layer and
interpretability in the hidden layer. It can be naturally seen as a generalization of the
RBF. This is so because the response of hidden neurons is localized: centered at a given
object (the neuron weight, where response is maximum), falling down as the input is
less and less similar to this center.

2.6 Similarity representation

Another approach along these lines could be to incorporate the similarity neural network
as a pre-processing step to project the data into a new space called the similarity space
[26, 27]. Here the new set of features are similarities to a set of chosen prototypes. Any
learner can now be used in the new space for the required task. Figure 3 shows this
framework of pre-processing.

...
...

x1

x2

xd

p1

pl

s1

sl

Input Features Similarity representation

Figure 3: Similarity representation used as pre-processing

The first layer represents the d input features for a single instance in the original data space.
The l chosen prototypes selected from the original space are as p1...pl and s1...sl represent

features in the new space
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3 Data

This section deals with the datasets used for study in this thesis. Section 3.1 introduces
the 7 datasets used for study and section 3.2 describes the handling of data for the
different methodologies tested in this thesis.

3.1 Datasets

Some challenging problems have been selected as characteristic of modern modeling
datasets because of the diversity in data heterogeneity and the presence of missing
values. The problem descriptions and the datasets are taken from the UCI repository
[9]. The available documentation has been analyzed for an assessment on the more
appropriate treatment. Missing information is also properly identified – see Table 1.
The Horse Colic dataset has been investigated with two different targets (variables #23
and #24, resp.).

Name #Obs Def. Missing In→Out Data
Pima Diabetes 768 (500,268) 65.1% 10.6% 8→ 2 8R, 0N, 0D
Horse Colic 23 363 (295,68) 61.4% 25.6% 22→ 3 7R, 7N,8D
Horse Colic 24 364 (296,68) 63.5% 25.6% 22→ 2 7R, 7N,8D
Credit Approval 690 (400,290) 55.5% 0.65% 15→ 2 6R, 9N, 0D
Audiology 226 (200,26) 66.3% 2.1% 31→ 4 0R, 24N, 7D
Heart 270 (200,70) 55.56% 0% 13→ 2 6R, 6N, 1D
Hepatitis 155 (100,55) 79.35% 5.6% 19→ 2 6R, 13N, 0D

Table 1: Basic characteristics of the datasets

#Obs (learning, test). Def. (default accuracy), Missing (percentage of missing values). In→Out
(no. of inputs features and output classes). The last column shows variable types: (R)eal,

(N)ominal, or(D)inal.

3.1.1 Pima Diabetes

This is a much studied dataset, in which a population of Pima Indian women living
near Phoenix, Arizona was tested for diabetes according to World Health Organization
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criteria. In this dataset, most of the variables show impossible zero values (e.g, Diastolic
blood pressure), which are actually missing values [39]. Upon careful analysis, it turns
out that only 392 out of the 768 observations are unaffected.

3.1.2 Horse Colic

This dataset makes an excellent case study, because of the diversity in data heterogeneity
and the presence of missing values; it has been used as paradigmatic example in some
textbooks [19]. Each observation is the clinical record of a horse and the variables are
specially well documented1.

3.1.3 Audiology Database

This problem is interesting for many reasons: it is multiclass, has a low number of
observations and all variables are categorical (with different modalities, some of them
ordered)2. We have reduced the original 24 classes to 4 by a meaningful grouping. We
have also eliminated non-informative variables.

3.1.4 Credit Approval

This is a binary classification problem concerning credit card applications. This dataset
is interesting because there is a good mix of attributes – continuous, nominal with small
numbers of values, and nominal with larger numbers of values. There are also a few
missing values.

3.1.5 Hepatitis

This dataset 3 relates to predicting whether the patients live or die after being diagnosed
with Hepatits. It contains real and nominal values as features.

1This dataset is made available thanks to M. McLeish and M. Cecile (Computer Science Dept., Univ.
of Guelph, Ontario, Canada).

2Original owner: Professor Jergen at Baylor College of Medicine.
3Original donor: G.Gong (Carnegie-Mellon University) via Bojan Cestnik
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3.1.6 Heart

This is another binary classification that deals with data collected from patients aiming
to predict the presence or absence of heart disease. It contains no missing values but
provides a good mix of different data types. The classes are evenly distributed with
accuracy close to 50%.

3.2 Data Handling

The datasets are handled in the two way discussed

1. raw :- There is no effort in identifying variable types (all information is
considered numerical, and scaled); missing values are either not identified or left
as they come (for example, treated as zeros).

2. heterog :- The data is retained in the original format. The missing values are
identified. This mechanism is used for the Gower’s similarity formulation.
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4 Simple KNN and Gower KNN

The K nearest neighbour technique discussed earlier is now compared for the different
datasets using the traditional Euclidean distance and the Gower’s similarity
measure.

4.1 Experimental Setup

The analysis is done in the two ways discussed below

1. Using the ’raw’ version of the data (as described in section 3.2). The
distance/similarity measure used here is the Euclidean distance.

2. Using the ’heterog’ version of the data (as described in section 3.2). The
distance/similarity measure used here is the Gower’s similarity measure 2.4.

The data is split to test and training sets as described in table 1. The number of nearest
neighbours considered for KNN is tuned between 1 and 15. This is done with K-fold
cross validation with 5 folds on the training set. This process is repeated for 20
different combinations of training and test sets and the average classification error is
studied.

4.2 Results and Inference

Figure 4 shows the average test error for both versions of KNN. As can be seen there
is not much difference between the two methodologies. More sophisticated methods
have to be implemented in order to get significantly better results using the Gower’s
similarity measure. Table 2 shows the average test error over all the seven datasets
being considered.
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Figure 4: K-Nearest Neighbour results

Average test error values for all datasets considered for simple KNN method shown in red and
KNN with Gower’s measure in blue

Method Average error(%)

Euclidean-KNN 22.2

Gower-KNN 22.1

Table 2: Average Error over all Datasets
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5 Prototype Selection

The main idea with the advent of similarity (or dis-similarity) based methods is to
create a more efficient method than nearest neighbour methods. The problem with
nearest neighbour methods is that similarities between all the instances in the entire
training dataset and the current instance to be classified, need to be measured. This can
be very computationally intensive for large datasets. Better techniques use clustering to
reduce the dataset to a certain number of centroids and use nearest neighbour on the
centroids. But these methods suffer from rejecting all instances other than the chosen
centroids.

Recent techniques developed by [27, 26] use the similarity representation as data to be
learned using a typical learner. In this methodology, the similarity between each
instance in the training data and the set of centroids(called prototypes) is calculated.
Hence each instance now has instead of its original features, features which are
similarities to each of the chosen prototypes. Data in this new ’similarity’ feature space
can now be learned by a typical learner. The advantage here over, typical nearest
neighbour methods is that, the entire dataset and not just the prototypes contribute to
the results, while still having to calculate only the similarity between the new instance
to be solved, with the set of prototypes.

For example, consider a dataset with originally N instances and d features. Clustering
is done to choose d1 prototypes from the data space. The new similarity space is
represented by an N × d1 matrix i.e. with N instances and d1 features corresponding to
the similarity between each instance and the chosen prototypes. A typical learner is
now used for the required task of classification or regression .

This methodology is illustrated in the following example shown in figure 5. This shows
a simple 2 dimensional classification problem. Prototypes are chosen using the
partitioning around medoids (PAM) algorithm discussed in algorithm 1.
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(b) Similarity representation

Figure 5: Similarity Representation - Example

Figure 5(a) shows a simple 2-D problem with two classes in red and blue. The prototype chosen
are marked as ’P-1’ and ’P-2’. Figure 5(b) shows the similarut representation using the two

prototypes.

All studies done so far on such similarity based methodologies use clustering in the
original data space(to choose prototypes) to reduce the final similarity matrix. Another
possibility that is not yet explored, is using feature selection methods. Here the
similarity data space created from the similarity of each instance with all the other
points in the space. Hence for a dataset with originally N instances and d features, the
similarity data space is now an N × N matrix i.e. with N instances and N features
corresponding to the similarity between each instance and every other instance.
Feature Selection methods could now be used on this dataset and may lead to better
results.

The subsequent sections will describe the methodology of the theory, the experimental
setup and results obtained.
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5.1 Methodology

The following approaches have been followed to compare the two approaches for
prototype selection i.e. Clustering and Feature Selection. Each of these approaches
results in the similarity space representation of an N × d1 matrix i.e. with N instances
and d1 features. This is treated as separate dataset and is trained with a typical learner.
Finally section 5.1.3 discussed the different resampling methods used for
experimentation.

5.1.1 Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the same
group (called a cluster) are more similar to each other than to those in other groups
(clusters). The notion of similarity can be different leading to different algorithms. It is
the task of dividing the data space into definite zones and the set of instances contained
in each zone is projected onto a representative instance called the centroid. An
example is shown in the figure 6

Figure 6: Clustering Example

The data space on the left is divided into 3 zones/clusters shown as different colours on the
right. Each cluster is represented by an instance called as a centroid.

PAM for Clustering in the original data space :- Partitioning around medoids (PAM)
[41] algorithm has the advantage of choosing medoids(centroids) that are part of the
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dataset. A brief description of the PAM algorithm is shown below in 1. It is also called
as the k-medoids algorithm. The total cost is the sum of distance/dis-similarity
between each instance and its closest the medoid (prototype). The Manhattan distance
is used as a measure of distance/dis-similarity here. The number of medoids d1 has to
be optimised.

Algorithm 1: Partition around Medoids
Data: XN×d - Input data of N instances and d features
Result: Pd1×d - d1 instances chosen as medoids

1 Initialize :- Pd1×d randomly from XN×d ;
2 while Pd1×d changes do
3 Associate each instance to the closest medoid forming clusters;
4 for i := all medoids do
5 for k := all instances do
6 Swap i and k and re-compute total cost of the configuration;
7 end
8 end
9 Choose the set of medoids that corresponds to minimum total cost

10 end

This is the typical approach, where clustering is is done on the original data space to
choose the prototypes. PAM offers reliable and relatively stable results.

PAM for Clustering in the similarity space :- The N × N matrix that represents the
data in the similarity space is symmetric. This means that another approach that could
be explored other than the two discussed above could be explored. Clustering could be
done in the similarity space to choose prototypes. Since this N × N matrix is
symmetric, the indices of the prototypes chosen can be used to choose the relevant
features.

It will be interesting to observe the results of this approach. Although it is true that the

28



matrix is symmetric, the methodology of clustering and feature selection are completely
different. Clustering tries to best choose few instances in the space that are the best
approximation of the entire dataset. Feature selection on the other hand is the problem
of finding the set of features that add the most information to the task of learning.

5.1.2 The Feature Selection algorithm

Feature selection can be seen as a search problem, where each state in the search space
corresponds to a subset of the features. In the ML literature, a wide family of
suboptimal algorithms depart from an initial solution and iteratively add or delete
features by locally optimizing the error function. In forward selection, features are
progressively incorporated into larger subsets; in backward selection (or elimination)
one starts with the full set of features and progressively eliminates elements from it.

Wrappers are often criticized because they are computationally very expensive.
Moreover, feature selection is badly affected by small sample sizes, producing overly
optimistic results and introducing an excess of variance in the readings. This is
aggravated in the presence of very sophisticated search algorithms [44]. On the other
hand, greedy search strategies seem to be particularly computationally advantageous
and may alleviate the problem of overfitting [45]. Nevertheless, traditional pure
forward selection and backward elimination search algorithms are ill-advised in that
they cannot rectify their decisions and may end up delivering poor solutions both in
terms of quality and size.

ReliefF Algorithm for Feature selection :- The Relief algorithm [42] is a feature
selection algorithm designed for a binary classification problem. It is one of the
simplest feature selection algorithms. The algorithm returns a set of weights
corresponding to the relevance of each feature for the problem of classification. The
features with the highest weights are chosen. The basic algorithm of Relief is shown in
2. The nearest hit Hi and nearest miss Mi of a particular instance xi refer to the closest
instances of the same class and of the opposite class respectively.

29



Algorithm 2: Relief
Data: XN×d - Data of N instances and d features
Result: w - array of weights for each feature

1 w[:] := 0;
2 for i := 1 to d do
3 xi := random instance ;
4 Hi := nearest-hit of xi;
5 Mi := nearest-miss of xi;
6 for k := 1 to N do
7 wk := wk + |Mik−Xik|

N
− |Hik−Xik|

N

8 end
9 end

This algorithm is used for feature section in the N × N similarity matrix, as discussed
above. An improvement of the Relief algorithm called the ReliefF algorithm is used
here. As before, the number of features chosen, d1, has to be optimised.

CFS for Feature selection :- The CFS [43] is a correlation based feature selector. It
is based on finding the subset of features S that maximises the correlation between the
features and the target and minimises the correlation between the features. This is based
on the concept that good features are those which have a high linear relationship to the
target but at unrelated to each other. For a dataset of d features, CFS finds the subset of
k features Ck that maximises the value shown in 6. f1...fk are the k chosen features, t
is the target and r denotes a measure of correlation.

maximize
Sk

rtf1 + rtf2 ...+ rtfk√
k + 2(rf1f2 + ...+ rfifj ...+ rfkf1)

(6)

For this framework, the CFS algorithm is implemented in the N ×N similarity matrix
to extract the relevant prototypes. There is no need of tuning the model, as in the case
of ReliefF, as CFS directly returns the optimal feature set.
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5.1.3 Resampling methods

Model selection is concerned with the process of finding the optimal model for a set of
samples among a set of candidate models. Resampling methods aim at making a better
use of the available data. These methods are very useful for assessing how a predictive
model that can be the result of a complex modeling process will perform in practice.

The generic goal of cross-validation (CV) is to estimate the expected error of a model
in a data set that is independent of the data that were used to train the model. One round
of k-fold CV (or k-CV) involves partitioning the sample into k complementary subsets,
systematically performing the modeling on the union of k−1 such subsets and checking
the obtained model on the remaining subset (acting as a validation set). The result of
k-CV is an estimation of the error if only a fraction (k − 1)/k of the available data
is used. This error is expected to be conservative (larger than the error obtained if the
entire sample was used). To reduce variability, multiple rounds can be performed using
different partitions, and the results averaged over the rounds.

5.2 Experimental Setup

The ’heterog’ version of the datasets are used i.e. containing the nominal, ordinal and
missing values in the original form. The data is split to test and training as described in
table 1. Let Ntr be the number of instances in the training set and Nte be the number of
instances in the test set. The Ntr × Ntr similarity matrix is calculated using the
Gower’s similarity measure. d1 features from this matrix are selected by using the
above mentioned methods of clustering or feature selection. For the methods such as
PAM and RELIEFF, the number of features/prototypes chosen must be tuned. This is
done using K-fold cross validation, for each learner(discussed below) individually, by
varying the number of features/prototypes chosen, d1, from 2% to 10% of Ntr. The
learner is then finally trained using d1 corresponding to the minimum classification
error in cross validation.

For testing the Gower similarity between each of the test instances and the chosen
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prototypes/features is calculated to form a Nte × d1 dataset and fed to the trained
learner. This process is repeated for 20 different combinations of training and test sets
and the average classification error is studied.

This approach is initially compared by applying KNN to the new similarity data-space.
Other learners chosen for the analysis in this study are

1. Logistic regression

2. Linear Discriminant Analysis

3. Support Vector Machines

4. Multinomial regression

The following will briefly describe each of these algorithms

5.2.1 Logistic regression

Logistic regression is a binary classification algorithm. It seeks to solve the equation 7,
where Yi is the target,Xi the ith instance of the data, w a set of weights for each feature
and function g() is called the logit function.

g(E{Yi|Xi}) = wTXi (7)

It is an extension of the generalised linear model for a Bernoulli distribution. Here
the logit function is defined as g(z) = ln( z

1−z ). Hence equation 7 can be rewritten as
equation 8 .

E{Yi|Xi} =
1

1 + e−wTXi
(8)

The final probability distribution of Yi belonging to a particular class can be written as
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equation 9. The class with the highest probability is assigned the ith instance.

P (Yi = yi|Xi) = (
1

1 + ewTXi
)yi(1− 1

1 + ewTXi
)1−yi (9)

5.2.2 Linear Discriminant Analysis

Linear and quadratic discriminant analyses or LDA/QDA (Duda et al. 2001) are widely
used parametric methods which assume that the class distributions are multivariate
Gaussians. With LDA, all classes are assumed to have the same covariance matrix.
QDA does not need such an assumption; however, the number of parameters to be
estimated from the data available for each class is much higher, entailing lower
statistical significance.

In both methods, classification is achieved by assigning an example to the class for
which the posterior probability P (ωk|x) is greater, or equivalently for which
ln {P (ωk)p(x|ωk)} is greater.

These methods are attractive because they need no parameter tuning, and their limited
complexity (quadratic at most) may be a solid guard against overfitting the data.
Moreover, for LDA fast updating procedures exist for the computation of certain forms
of the cross-validation error [47]. The discriminant function for class ωk is expressed
as:

gk(x) = ln {P (ωk)p(x|ωk)}

= ln P (ωk)− ln {(2π)
n
2 |Σk|

1
2} − 1

2
(x− µk)tΣ−1k (x− µk)

which simplifies to:

gk(x) = ln P (ωk)−
1

2

(
ln |Σk|+ (x− µk)tΣ−1k (x− µk)

)
If we assume that all class-conditional distributions p(x|ωk) have the same covariance
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matrix Σ, we get:

gk(x) = ln P (ωk) + µtkΣ
−1x− 1

2
µtkΣ

−1µk

These are linear discriminant functions (linear in x) and the decision boundaries
gi(x) = gj(x) are hyperplanes in n-dimensional space.

In practical situations, only an i.i.d data sample S is available. When means, covariances
and priors for every class are not available, maximum-likelihood estimates on S can be
used, although in this case the Bayesian optimality properties are no longer valid. Let
Sk ⊂ S be the subset of samples known to belong to class ωk. Then S1, . . . , Sc is a
partition of S. Unbiased estimates for the vector means and for the class priors can be
obtained as:

µk ≈ µ̂k =
1

|Sk|
∑
x∈Sk

x; P (ωk) ≈ P̂ (ωk) =
|Sk|
|S|

The following pooled covariance matrix is then used:

Σ ≈ Σ̂pooled =
1

|S| − c

c∑
k=1

(|Sk| − 1)Σ̂k

where
Σ̂k =

1

|Sk| − 1

∑
x∈Sk

(x− µ̂k)(x− µ̂k)t

5.2.3 Support Vector Machines

The support vector machine (SVM) is a machine learning method solidly based on
statistical learning theory [46]. Intuitively, given a set of examples labeled into one of
two classes, the linear SVM finds their optimal linear separation: this is the hyperplane
that maximizes the minimum orthogonal distance to a point of either class (this
distance is called margin of the separation).
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Consider again an i.i.d data sample S = {x1, . . . ,xN} of training patterns (in n

dimensions), labelled into two classes ω1, ω2 by z1, . . . , zN , with zi = +1 if xi ∈ ω1

and zi = −1 if xi ∈ ω2. If we set up an affine function g(x) = 〈w,x〉 + b, then we
have a linear discriminant as sgn(g(x)), for which we would like:

〈w,xi〉+ b > 0 xi ∈ ω1 (zi = +1)

〈w,xi〉+ b < 0 xi ∈ ω2 (zi = −1)

In short, zi(〈w,xi〉+ b) > 0 , or zi g(xi) > 0, for all 1 ≤ i ≤ N . Given the hyperplane
π : g(x) = 0, the perpendicular distance from x to π is d(x, π) = |g(x)|

‖w‖ . The support

vectors are those x closest to the hyperplane. Rescaling w, b such that | 〈w,x〉+ b| = 1

for these closest points, one obtains | 〈w,x〉 + b| ≥ 1. The support vectors are now
those {xi / | 〈w,xi〉+ b| = 1}.

The margin m(π) of a plane π can now be written as twice its distance of any support
vector: m(π) = 2 d(xSV, π) = 2

‖w‖ , where |g(xSV)| = 1. To maximize the margin, we
should minimize ‖w‖ subject to zi (〈w,xi〉+ b) ≥ 1, for all 1 ≤ i ≤ N .

In the case where an hyperplane does not exist that can separate correctly the points in
the data sample, a set of non-negative slack variables are introduced to allow for small
margin violations, leading to a soft margin:

zi(〈w,xi〉+ b) + ξi ≥ 1 i = 1, ..., n (10)

where ξi ≥ 0. For an error to occur, the corresponding ξi must exceed unity, and so
∑

i ξi

is an upper bound on the number of training errors. The optimal separating hyperplane
can be found as the solution of the 1-norm Quadratic Programming problem:
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min
w,ξ

1
2
||w||2 + C

N∑
i=1

ξi

s.t. zi(〈w,xi〉+ b) ≥ 1− ξi, i = 1, . . . , N

The solution to this optimization problem corresponds to the saddle point of its
associated Lagrangian:

||w||2

2
−

N∑
i=1

αi(zi(〈w,xi〉+ b)− 1 + ξi) + C

N∑
i=1

ξi −
N∑
i=1

µiξi

where αi, µi ≥ 0 for i = 1, ..., n.

Once this QP problem is solved, the solution vector w∗ can be expressed as a linear
expansion over the support vectors:

w∗ =
N∑
i=1

α∗i zixi (11)

The support vectors are precisely those xi ∈ S for which α∗i > 0.

5.2.4 Multinomial

Multinomial regression is a simple neural network with no hidden layer. Non linearities
are created by using a sigmoid function at the neurons of the output layer. This is
illustrated in figure 7. For multi-class problems more than one output neurone is used for
each class. The weights are optimised with the help of a typical decent algorithm.

5.3 Results and Inference

Figure 8 shows the average test error for the different datasets using KNN as a learner
in the similarity representation model discussed earlier. The different prototype
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Figure 7: Multinomial

Here the weights are applied to each feature before passing it through a sigmoid function at the
neuron

selection methods are compared. Table 3 shows the average test error values over all
the datasets. Apart from the Audiology dataset, there is not much difference in the test
error. The ReliefF method for prototype selection offers the worst results amoung the
methodologies compared. It is the simplest method amoung the different methods
being considered, and does not do a very good job at prototype selection.

Method Average error(%)

Euclidean-KNN 22.2

Gower-KNN 22.1

Sim-PAMnonClass KNN 23.3

Sim-PAMClassical-KNN 23.9

Sim-relief KNN 25.9

Sim-CFS KNN 23.3

Table 3: Comparing Prototype selection methods

Figure 9 shows the average test errors over all datasets with the similarity
representation methodology for different prototype selection methods and more
sophisticated learners than KNN i.e. Logistic regression, Multinomial regression, LDA
and SVM. It can be seen that there is not much difference in performance comparing
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Figure 8: K-Nearest Neighbour results

Average test error values for all datasets considered for simple KNN method shown in red,
KNN with Gower’s measure in blue and Similarity based representation with KNN as learner
using prototyping as PAM in original space shown in black, PAM on similarity space in green,

ReliefF in cyan and CFS in pink

clustering and feature selection for the task of prototype selection. ReliefF again
performs the worst of all the prototype selection methods. CFS, another feature
selection method, on the other hand performs quiet well. As described earlier CFS is
just based on correlation or linear relationships between the features and the targets. It
is possible that a more sophisticated, non-linear, feature selection method would
produce better results. Interestingly PAM used on the N × N similarity matrix works
as well as that used on the original dataset.

In general most methods (other than ReliefF) work better than Euclidean KNN. SVM
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when used as a learner after the similarity representation doesn’t work well, but this
could be due to the poor tuning of its parameters. The rest of the learners being
compared work almost equally well. Logistic regression in particular works well when
applicable and consistently shows better prformance then Euclidean KNN. Section 18
shows the plots for each dataset. Except for Audiology, the datasets perform better with
this similarity mechanism than with the simple Euclidean KNN. As seen in figure 8
simple Gower-KNN works as well as Euclidean KNN. Hence, the problem then is
most likely with the selection of prototypes.
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Figure 9: Comparison of different prototype selection methods and learners

The figure shows average results for all datasets for different prototype selection methods (as
different plots) and different learners (on x-axis). The horizontal line shows the test error of

simple Euclidean KNN for comaprison

This methodology offers the advantage over simple KNN that only the similarity to a
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certain number of prototypes have to be calculated and not the whole training dataset.
Hence, although not providing significantly better results in terms of classification
error, this methodology provides an reduction in computation.
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6 Improved Similarity Measure

The evaluation of the Gower similarity metric can involve a series of weights for each
feature, as shown equation (12). Here the Sij refers to the similarity measure, between
the ith and jth instances of the data. sijk is the similarity measure between the the kth
feature of the ith and jth instances, wk to the weights assigned to the kth feature. The
quantity δijk represents the possibility to make a comparison, and is usually 1 when
feature k can be compared for instances i and j and 0 otherwise.

Sij =

∑d
k=1 sijkwk∑d
k=1 δijkwk

(12)

By default the weights are set equal, meaning an equal importance is given to all the
features. Assigning weights can increase or decrease the relative influence of the
features on the similarity measure. This could possibly lead to better separation of
classes in the new similarity space. The difficulty is in choosing the weights.

The subsequent sections will describe the methodology of the theory, the experimental
setup and results obtained.

6.1 Methodology

This thesis proposes the following methods to tackle the problem of choosing the
weights in an attempt to create a better similarity representation.

6.1.1 Relief Algorithm

A simple way to assign weights to the features is the use of the RELIEFF algorithm
(as described in section 5.1.2). This algorithm assigns weights to each of the features
corresponding to its relevance for the problem of classification.
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6.1.2 Least squares

In this approach the task of assigning weights is treated as the equivalent of solving the
following least squares problem as illustrated in equation (13). Here the target, tij , is
1 if the ith and jth instances belong to the same class and is 0 otherwise. We assume
that the weights wk are positive and sum to 1, so that the denominator of the similarity
measure, from equation (12), can be eliminated from the optimisation problem. d is the
number of features. As the original similarity matrix S is symmetric, only the upper
triangle values of the matrix need to be optimised.

minimize
wk

N∑
i=1

∑
j>i

|
d∑

k=1

sijkwk − tij|2

subject to
d∑

k=1

wk = 1

wk ≥ 0, k = 1, . . . , d.

(13)

Intuitively, this means that the similarity measure Sij should be as close to 1 as
possible when the ith and jth instances are of the same class and 0 otherwise. This
approach tries to separate instances of different class and bring closer those of the same
class. There are a few drawbacks of this procedure.

1. Firstly, this problem has NC2 i.e. N(N − 1)/2 equations where N is the number
of instances. This can cause the problem to become very computationally
intensive for large datasets. One possible way to counter this is to do feature
selection via clustering on the original data space before the optimisation. This
means that the similarity matrix to be optimised now is reduced from N × N to
N × d1, where d1 is the number of prototypes chosen by the clustering algorithm
in the original data space. This reduces the number of equations to N.d1.

2. Another drawback is in the way this problem is designed. As explained earlier,
this approach tries to bring closer all instances with the same class and vice
versa. This might be unnatural in some cases. Let us consider the example as
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shown in Figure 10. Here all the instances of the blue class are not similar to
each other i.e. they are separated by they instances of the red class. If the
previous idea for optimisation is applied here, the similarity measure would try
to force all the instances of the blue class to be similar which is unnatural and
may lead to worse results. Instead what is desired is that cluster instances of the
blue class in the left and right must be individually separated from the instances
of the red class. The flaw in the previous optimisation procedure which is
causing this problem is that the similarities are optimised globally, whereas it
might more appropriate if done locally. One approach to solve this problem is to
optimise the weights considering instances of each cluster individually. For
example if the dataset was separated to 3 clusters, the instances (i and j in
equation 13) chosen to optimise the weights are all possible combinations of
within each cluster.

If both these strategies are combined, the number of equations in the objective function
reduces to N .

−100 −80 −60 −40 −20 0 20 40 60 80 100
−40

−30

−20
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Figure 10: Example

Here the blue class is naturally separated and hence all instances of this class will not be
similar to each other
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Equation (13) can be rewritten in matrix notation as shown below in (14). Matrix S̃
is L × d, where L is the number of equations in the objective function. Each row of S̃
corresponds to to a particular combination of ith and jth instances. w is a d dimensional
vector of the weights to be optimised and t is a vector containing the L target values
corresponding to tij from equation (13)

minimize
w

||S̃w − t||2

subject to 1w = 1

w ≥ 0

(14)

6.2 Experimental Setup

The ’heterog’ version of the datasets are used i.e. containing the nominal, ordinal and
missing values in the original form. The data is split to test and training as described in
table 1. Let Ntr be the number of instances in the training set and Nte be the number
of instances in the test set. The two methodologies discussed for generating weights for
features i.e. ReliefF and the least squares are implemented on the training set to obtain
a vector of weights. This is used to obtain he Ntr × Ntr similarity matrix is calculated
using the Gower’s similarity measure. The rest of the procedure is repeated similar to
the previous as described in section 5.2

6.3 Results and Inference

Figure 16 shows the average test errors over all datasets with the improved similarity
representation using the RELIEFF algorithm discussed earlier. It is compared, as
earlier, for the different prototype selection methods and learners i.e. Logistic
regression, Multinomial regression, LDA and SVM. The change varies depending on
the dataset as shown in section 19. This is especially evident for the RELIEFF
prototype selection method. This indicates that a more sophisticated methodology for
including weights could potentially greatly improve the results.The disadvantage with
the chosen datasets is that the features are all relevant for the problem of classification
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i.e. feature selection has already been done. The results could be much better for
general problems where some features may be irrelevant.
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Figure 11: Comparison using improved similarity measure with RELIEFF

The figure shows average results for all datasets for different prototype selection methods (as
different plots) and different learners (on x-axis). The horizontal line shows the test error of

simple Euclidean KNN for comaprison

Figure 12 shows average test errors over all datasets with the improved similarity
representation using the least squares problem. Only the methodology optimising the
similarities within a cluster with respect to the corresponding prototype was explored.
Section 20 shows the results for each dataset. The results are considerably worse than
the previously discussed methods. This is because the weights are not chosen well.
The major problems with this could be

• This methodology is very susceptible to when the prototypes chosen are outliers
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with respect to class labels.

• A more robust objective function than the one used here needs to be developed
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Figure 12: Comparison using improved similarity measure with lease squares

The figure shows average results for all datasets for different prototype selection methods (as
different plots) and different learners (on x-axis). The horizontal line shows the test error of

simple Euclidean KNN for comaprison
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7 Higher Level Similarities

In similarity based learning data from the original space of, for example, N instances
and d features i.e. an N × d matrix is transformed to a space of N instances and d1
features i.e. an N × d! matrix. Each instance in the new representation corresponds to
its similarity between a few chosen instances (called prototypes). This representation is
defined by not just the values of certain features but the topological location of
instances with respect to a few prototypes.

In a way, we moving from a local representation to a global representation. This
intuition can be extended to a representation where each instance contains information
not just about its similarity to other instances but about the global topological
information. This representation, which we refer to as higher level similarities, can
potentially be ricer and more informative.

Listed below are some of the motivations of switching to a higher level similarity
representation

• As we move from the original representation to a more global one, where each
instance has information about the entire topology, the influence of outliers will
reduce.

• Intuitively this could mean that simpler models, such as linear/quadratic be good
enough to learn the data.

This thesis explores three different approaches of calculating higher level similarities.
They are elaborated in sections 7.1 and 7.2

7.1 Similarity of Similarity

In this approach, higher level similarities are extracted by iterating the methodology of
transforming the original data space to the similarity data space. The process of
calculating the initial similarity representation, denoted here by, S1 (i.e. the N × d1
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matrix) is repeated. S1 matrix is considered as a new dataset and is subject to
clustering to choose d2 prototypes. The similarity between all the N instances and
these d2 prototypes is calculated from S1 to form the new set of features. This N × d2
matrix representation can be called as the second level of similarities denoted by S2.
Here, each instance now corresponds to the similarity between the first level of
similarities. This process can be iterated for a number of loops.

This can be visualized as a deep neural network to extend the ideas presented in section
2.6. Each hidden layer corresponds to one iteration of clustering and similarity
calculation. The number of hidden layers corresponds to the number of iterations.
Also, the number of neurons in each hidden layer the neurons represents the prototypes
chosen for that particular iteration. For example, if there are m iterations and
d1, d2, ..., dm are the number of prototypes chosen for each loop, then the neural
network representation will have m hidden layers with each d1, d2, ..., dm neurons
respectively. This is illustrated in the figure 13, shown below below. The figure shows
an m-layer deep similarity neural network with the prototypes being represented as
neurons.

In the new ’high level’ similarity representation each instance has global/higher level
information of the entire topology. This means that instances close to each other in the
original data space are very close in the new representation. As the number of iterations
increases, the instances are expected to get more and more similar to each other. Hence
the similarities will get closer and closer to one and eventually it will be impossible
to get any information from the representation. There should be, however an optimal
number of iterations for which the separation between the classes is maximum.

7.1.1 Experimental Setup

As previously done, the dataset is split into training and test sets of approximately 70%
and 30% respectively. The ’heterog’ version of the data is used. Let Ntr be the number
of instances in the training set and Nte be the number of instances in the test set. Only
PAM clustering on the original data space is considered for experiments in this case.
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Figure 13: Deep Similarity Neural Network

The first layer represents the d input features for a single instance in the original data space.
Layer-1 shows the d1 prototypes selected from S1 as p11...p

1
d1

. Prototypes of layer-2 are chosen
from S2 and are denoted by p21...p

2
d2

and so on. There are m layers in total and the final feature
space are instances in the Sm similarity data space. Features in this space are denoted by

sm1 ...smdm

The prototypes chosen at each level of the iterative process described earlier are saved
for testing. The similarity matrix at each iteration is calculated using the Gower’s
similarity measure.

Let there are m iterations and d1, d2, ..., dm are the number of prototypes chosen for
each loop. PAM clustering is used on the original data space i.e. the Ntr × d matrix.
The layer-1 similarity representation, S1, is calculated. This process is repeated for m
layers. The final representation i.e. the Ntr × dm similarity matrix trained with the
learners described in section 5.2 i.e. LDA, SVM, Multinom and Logistic regression.
For testing, the Nte instances are passed through the iterative process with the
prototypes d1, d2, ..., dm chosen during training. The final matrix Nte × dm is used to
cacluate the prediction of the trained learner.
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Cross validating the number of prototypes at each iteration can be computationally very
intensive. Hence for the sake of this study two approaches are explored as discussed
below

1. Number of prototypes decreasing over the different layers :- Here the number
of prototypes is lowered as the number of the iteration is increased. For example
in in a 2 layer similarity measure, the number of prototypes double be 10 for the
first layer and 5 for the second. One intuitive reason is as we move higher in
the similarity loops, each instance already contains a lot of information about the
topology and hence we may not need as many features(prototypes) to represent
the dataset in this similarity space. Experimentally is done such that the final
number of neurons(dm) is fixed, and reduces after each loop at a constant rate. dm
values of 3% and 6% of Ntr are used.

2. Number of prototypes constant over the different iterations :- The option of
having the number of prototypes constant over the different levels is also tested
i.e. d1 = d2 = ... = dm. The values chosen for the number of prototypes are of
5% and 10% of Ntr.

7.1.2 Results and Inference

The plots show the Credit Approval dataset for the different methods of reducing the
number of prototypes at each layer. There is not much difference in the different
variations of choosing the number of prototypes for each layer. The tests results as
expected increase with the number of layers as the instances get more and more similar
to each other. But the performance does not improve in the higher level representation.

The plots for the rest of the datasets are shown in figures 21, 22, 23 and 24. The overall
results for different datasets are inconsistent. For most of the datasets the test error
eventually increases as the number of iterations/layers increases. The test errors of the
high level representation reduce only for a few datasets and only by a very small
margin. It is possible that better prototype selection techniques may improve the
results. Also optimisation of the similarity matrix with weights should help here. More
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work needs to be done to try and improve this methodology.

7.2 Powers of Similarity

Another possibility explored in this thesis to extract higher levels of similarity is to
take powers of the N ×N similarity matrix S i.e. similarity of each instance to every
other instance in the dataset. Each term of S is the similarity evaluated between
instances in the original space. The closer the two instances are in the original space
the closer the measure is to 1. And conversely, if they are dis-similar in the original
space the measure will be closer to 0. As discussed earlier, this methodology only
considers the instances individually and not the global characteristics.

Powers of S retain global characteristics. For instance the second power of the similarity
matrix (S2) is given by

S2
ij =

1

N

N∑
k=1

√
Sik
√
Skj (15)

The (i, j)th term in the matrix S2 represents the product of the similarity between the
ith instance and an instance k and the similarity between k and the jth instance. This
value is averaged over all the instances k in the dataset. This can be visualised as the
average distance/similarity of all possible paths from instances i and j separated by an
single intermediate instance k. This is illustrated in the figure 15(b). Now we have a
new feature which contains global information about the entire topology of the space
and not just the similarity between two points. The element-wise square root is taken
before taking powers of the matrix in order to prevent the values from concentrating to
zero.

This methodology can be extended to higher powers. For example let us consider the
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Figure 14: Higher Level using Similarity of similarity:- CreditApproval dataset

The plots show the test errors for the Credit Approval dataset with the similarity of similarity
framework. The different learners are shown as separate lines and the x-axis shows increasing

number of iterations. (a) shows the methodology with the number of prototypes for each
iteration reducing at a constant rate to a final of 3% of Ntr and similarly (b) for 6%. (c) shows

the methodology with the number of prototypes for each iteration constant at 5% of Ntr and
similarly (a) for 10%
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Figure 15: Interpretation of Powers of the Similarity Matrix

(a) shows the calculation of the usual direct similarity between two instances i and j, (b) shows
the calculation of the similarity using S2, where the similarity is calculated over a path with
one intermediate instance(averaged over all instances), and (c) shows the calculation of the

similarity using S4 i.e. over a path with three intermediate instance(averaged over all
instances)

4th power of S. This is given by

S4
ij =

1

N

N∑
k=1

(
1

N

N∑
k1=1

√
Sik1

√
Sk1k)(

1

N

N∑
k2=1

√
Skk2

√
Sk2j)

=
1

N3

N∑
k=1

N∑
k1=1

N∑
k2=1

√
Sik1

√
Sk1k

√
Skk2

√
Sk2j

(16)

Again this can be visualised as the average distance/similarity of all possible paths
from instances i and j separated now by three intermediate instance k, k1 and k2. This
is illustrated in the figure 15(c).
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This computation of the higher powers of the S matrix can be made very efficient using
its singular value decomposition (SVD). Gower [17] proves that the S matrix is positive
semidefinite, if there are no missing vales in the data. If this is the case the SVD is as
follows in equation 17, where Q is the matrix of the eigen vectors and D is a diagonal
matrix containing the eigen vectors along the diagonal.

S = QDQ∗ (17)

The powers of S can now be simply calculated as shown in eqution 18 since Q is
orthogonal.

Sn = (QDQ∗)(QDQ∗)....(QDQ∗)

= QDnQ∗
(18)

7.2.1 Experimental Setup

In this case, the problem of learning is considered to be semi-supervised. This means
that the test set is also used for the purpose of learning. So the whole set of N instances
of the data are used to calculate the N × N similarity matrix, S. The powers of S are
now calculated and PAM clustering is applied to choose the prototypes.

7.2.2 Results and Inference

The errors for this methodology are quite poor. The test errors consistently increase
for higher powers of the similarity matrix. They tend to become constant after a few
iterations. Modifications in the methodology are needed to get better results.
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Figure 16: Higher level similarity using Powers of S:-Credit Approval dataset

The figure shows average results for all datasets for different prototype selection methods (as
different plots) and different learners (on x-axis). The horizontal line shows the test error of

simple Euclidean KNN for comaprison
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8 Conclusion and Future Work

The thesis aimed to extend the analysis of similarity based representations laid out by
[27, 26] . In particular the thesis dealt with the analysis of heterogenous data with a
significant amount of missing information. Gower’s similarity measure was used for
the analysis. The three directions of study included

• The analysis and comparison of clustering and feature selection methods for the
task of prototype selection

• The improvement of Gower’s similarity measure with the incorporation of
weights for features

• The analysis of possible methods to extract higher level features from the
similarity representation

These methodologies were compared with simple K-nearest neighbour techniques.
They produce results that are comparable (and in some cases better) than nearest
neighbour techniques. The advantage here is that, during testing, only the similarity
with a few prototypes needs to be measured rather than with the whole dataset, hence
contributing to reduced computational load. This is especially true for large datasets,
which are very common in the field of online search, biomedical datasets, etc.

Only very simple feature selection techniques like ReliefF and CFS (i.e. correlation
based) were studied here. Overall, these methodologies did not produce significantly
better results than PAM (Partitioning Around Medoids) based clustering techniques.
More advanced non-linear techniques could possibly lead to better results. Also
interestingly PAM(Partitioning Around Medoids) based clustering works as well for
prototype selection when used on the N ×N similarity matrix, as it does when used on
the original feature space

The similarity representation shows possibility of improvement with the inclusion of
weights for the features in the dataset. This is illustrated in the results of the
methodology of inclusion of weights using the very simple ReliefF algorithm. An
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obvious step forward would be to use one of the vast array of sophisticated feature
selection mechanisms that assign weights to features such as the Random Forest
Algorithm etc. A novel mechanism was also explored to directly obtain weights by
trying to minimise a cost function geared at separating the instances of different classes
within a cluster. The current thesis only examines a simplified version of this where the
similarities are compared with respect to the chosen prototype. This can lead to
erroneous results when the prototype chosen is an outlier. This could be one of the
main reasons for the ineffectiveness of this method in this study with respect to the
method that uses ReliefF or with equal weights.

A possible way to avoid this, is to use the similarities of all instances within a cluster,
with each other rather than with just the prototype. Also, the current framework (cost
function to be minimised) is designed to increase the intra-cluster class separability. It
does not take into account the similarities of inter-cluster instances. It is possible that
instances of different classes in different clusters are pushed closed together, thus
making the problem more difficult. A different cost function needs to be developed that
takes into account both these effects. Another for reason the moderate effectiveness of
this attempt, is that the datasets chosen for this thesis already have a set of features that
are very relevant for the problem of classification. General detests which may contain
irrelevant information could potentially be greatly improved by such techniques.

Two approaches to extract deep/high level features from the similarity representation
were explored. This included iterating the process of similarity calculation and
exploring the powers of the similarity matrix. Initial attempts showed inconsistent
results for different datasets. For the former (i.e. the similarity of similarity
mechanism), the results as expected worsen as the number of layers increases as all
instances get similar to each other. Results improve only for a few cases in the higher
level similarity space, for a small number of layers. The improved similarity measure
using weighted features could improve results for this methodology, as all the
prototypes chosen in the high level similarity space may not be equally important.
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For the latter methodology using powers of S, the results are unexpectedly poor. Error
values increase for the second power and worsen for further powers. The idea here was
to reduce the effect of outliers by calculating similarities along paths averaged over all
instances, as shown in figure 15. The performance could improve by averaging over only
the local instances. Both these methodologies are only a preliminary attempt to extend
the notion of similarity representation to deep learning. They have to be explored in
further detail to create an effective model. Another approach along this line could be
the use of transitivity to transform the similarity matrix as discussed in section 8.1.

8.1 Transitive Closure

A relation R on a set X is transitive if, for all x, y, z in X , whenever xRy and yRz then
xRz. The transitive closure of a binary relation R on a set X is the transitive relation
R+ on set X such that R+ contains R and R+ is minimal (Lidl and Pilz 1998:337).
This intuition can be extended by visualising a binary directed graph. A binary directed
graph is transitive if two nodes are connected by a path via other nodes, then those two
nodes are also directly connected (i.e. adjacent). This is illustrated in the figure 17
shown below.

Figure 17: Transitivity in a directed Graph

The figure on the left is a directed graph that does not have the property of transitivity. The
adjacency matrix of the graph is shown next to it. The figure on the right shows the same after

transitive closure
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Applying a transitive closure in the adjacency matrix of the binary directed graph on
the left gives us the graph on the right of the figure 17. For example node 1 and node 4
are connected via node 2 in the first graph, but are not directly connected. Hence after
the operation of transitive closure nodes 1 and 4 are now adjacent. The dashed lines
show the newly added edges. This notion of binary transitivity has been extended to
fuzzy relations as studied in [40] using the Floyd-Warshall algorithm. This could be
used on the similarity matrix S create a better representation in the similarity space.

Finally, the disadvantage in the current study lies in working with small datasets that
for the most part are relatively simple and yield good results with very simple methods.
They are most likely already at the Bayesian limit, and could be impossible to improve
greatly. Also, the test errors over different datasets are used as the primary evaluation
of performance. But, datasets suffer from inherent randomness and are not ideal to
monitor progress in every step of research.

The analysis of the methodologies in this thesis should therefore be extended with
more complicated heterogenous datasets. Ideal datasets could include online search
based datasets, datasets with media based content such as speech/video. In this vein,
the developed framework could also be extended to include more sophisticated
similarity (or dissimilarity) measures, beyond simple univariate ones. Different
techniques of visualising the similarity representation directly also need to be
developed. One such method could be the analysis of inter-class and intra-class
similarities before and after the change of representation.

To conclude it may be inappropriate to quote the father of machine learning and artificial
intelligence Alan Turing - ’I believe that at the end of the century the use of words and
general educated opinion will have altered so much that one will be able to speak of
machines thinking without expecting to be contradicted.’
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9 Appendix

The appendix includes detailed plots from experiments described in the thesis in section
9.1.

9.1 Results

The following includes detailed results of experiments described in previous sections.
Figure 18 describes the results for individual datasets for different prototype selection
technoques discussed in section 5.2. Figure 19 describes the results for all datasets of
improvement of the similarity measure with the ReliefF algorithm and figure20 for the
same with the least squares algorithm as described in section 6.2. Figures 21, 22, 23
and 24 show the results of the high level similarity using the ’similarity of similarity’
mechanism described in section 7.1.2. Finally figure 7.2 shows results of the Powers of
S mechanism shown in section 7.2.1.
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Figure 18: Prototype selection
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shows the test error for simple Euclidean KNN for comparison
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Figure 19: Improved Similarity measure - RELIEFF
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Figure 20: Improved Similarity measure - Least Squares
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Figure 21: Higher level similarities - Similarity of similarity(3% reducing)
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Test errors over increasing number of layers using PAM clustering and different learners.
These plots are for the methodology of reducing the number of neurons in each layer with the

number of neurons in the last layer as 3% of Ntr

64



Figure 22: Higher level similarities - Similarity of similarity(6% reducing)
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Test errors over increasing number of layers using PAM clustering and different learners.
These plots are for the methodology of reducing the number of neurons in each layer with the

number of neurons in the last layer as 6% of Ntr
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Figure 23: Higher level similarities - Similarity of similarity(5% constant)
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Test errors over increasing number of layers using PAM clustering and different learners.
These plots are for the methodology of having the number of neurons constant in each layer as

5% of Ntr
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Figure 24: Higher level similarities - Similarity of similarity(10% constant)
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Test errors over increasing number of layers using PAM clustering and different learners.
These plots are for the methodology of having the number of neurons constant in each layer as

10% of Ntr
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Figure 25: Higher level similarities - Powers of S
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