DISSENY I EMULACIÓ DE LA SEGURETAT D’UNA CAMBRA CUIRASSADA

PROJECTE DE FINAL DE GRAU

Nom alumne: Èric Rodríguez Maench
Tutora: Immaculada Martínez
Data: 11 de desembre de 2013
Curs: 2013 - 2014
ÍNDEX

1. Introducció ... pàgina 3
2. Antecedents .. pàgina 4
3. Objecte de la memòria ... pàgina 5
4. Què és una cambra cuirassada pàgina 6
5. Sistemes de seguretat antirobatori pàgina 7
6. Normatives ... pàgina 7
 6.2. Norma UNE – EN 1143-1 ... pàgina 9
7. Disseny de la cambra ... pàgina 11
 7.1. La cambra cuirassada ... pàgina 11
 7.2. Mesures .. pàgina 11
 7.3. Disseny .. pàgina 14
 7.4. Materials ... pàgina 16
8. Sistemes de seguretat de la cambra pàgina 18
9. Ubicació dels aparells de seguretat pàgina 24
10. Procés de fabricació .. pàgina 29
 10.1. Matèries primeres .. pàgina 29
 10.2. Disseny ... pàgina 29
 10.3. Els panells ... pàgina 30
 10.4. La porta ... pàgina 30
 10.5. El pany ... pàgina 31
 10.6. Instal·lació .. pàgina 31
 10.7. Control de qualitat ... pàgina 32
11. Pressupost .. pàgina 33
12. Programari ... pàgina 34
 12.1. Què és LabWindows/CVI? pàgina 34
 12.2. Explicació del programa pàgina 35
 12.3. Explicació del funcionament pàgina 38
 12.3.1. Funcionament normal pàgina 38
 12.3.2. Funcionament quan s’ataca la cambra pàgina 42
13. Conclusions ... pàgina 48
14. Bibliografia ... pàgina 49
15. Annexes .. pàgina 51
1. INTRODUCCIÓ

En aquest projecte es realitzarà un disseny acurat d’una cambra cuirassada, explicant tots els sistemes de seguretat que s’hauran d’implementar en el mateix, així com la ubicació dels mateixos per a obtenir-ne una màxima eficiència.

El disseny de la cambra es realitzarà a partir dels criteris que marca la legislació, però altres factors com les dimensions o el nivell de seguretat de cada aparell els assignarà l’autor del treball seguint els seus propis criteris.

Un cop realitzat el disseny, es realitzarà també el programa que controlarà la seguretat de la cambra. Aquest programa disposarà d’un client i un servidor. El servidor s’encarregarà de controlar tots els sistemes de seguretat de la cambra (es tractarà d’una simulació a causa de l’elevat cost de tots els components necessaris), i de l’enviament de les claus d’accés. El client, en canvi, tindrà les funcions limitades.

Aquest programari es realitzarà mitjançant el programa LabWindows de National Instruments, ja que es tracta d’una plataforma força completa per a realitzar programes informàtics dedicats al control, en aquest cas dels sistemes de seguretat implementats a la cambra.
2. ANTECEDENTS

La motivació per a la realització d’aquest projecte neix del meu interès en tot allò relacionat amb la seguretat, ja siguin els components que s’utilitzen, els millors mètodes per assegurar un complex, com es podria optimitzar el conjunt de components per obtenir-ne la màxima eficiència...

Per tant, després de moltes valoracions, vaig decidir realitzar un disseny d’una cambra cuirassada amb tots els seus elements de seguretat, així com el programari necessari per a controlar-los.

Malgrat que no es tracta d’un tema innovador, és força desconegut ja que es disposa de molt poca informació sobre el tema, amb la qual cosa el meu procés de recerca ha hagut d’ésser més exhaustiu. A més, a nivell personal m’ha servit per a conèixer més conceptes sobre seguretat.
3. OBJECTE DE LA MEMÒRIA

En el present projecte es pretén dissenyar una cambra cuiassada, així com el programari encarregat de gestionar la seguretat de la mateixa.

1) Disseny de la cambra cuiassada complint la normativa vigent per a l’obtenció d’un grau de seguretat V

És dissenyarà una cambra cuiassada partint des de zero, amb unes mides i materials raonables, però que a la vegada compleixin totes les especificacions que el grau de seguretat V requereix per a les cambres.

2) Tria i ubicació dels aparells de seguretat en la cambra.

Es triaran els elements encarregats d’assegurar la cambra optimitzant al màxim possible la relació entre qualitat i preu en la matèria de seguretat, i obtenir la màxima eficiència quant a la ubicació dels aparells per a no col·locar-ne de sobra.

3) Elaboració del programari que gestioni la seguretat, enviament de dades i gestió d’alertes entre client i servidor.

Es crearà un programari que mitjançant trames i a partir d’una connexió TCP, permeti gestionar la seguretat de la cambra mitjançant un servidor que controli els aparells de seguretat i gestioni les alertes i enviaments de claus i un client que rebi les claus, les alertes i pugui enviar sol·licituds o respostes al servidor.
4. QUÈ ÉS UNA CAMBRA CUIRASSADA

Una cambra cuirassada és un espai segur on s’emmagatzemen objectes de valor. La seva finalitat és la de protegir el seu contingut de furts, foc, desastres naturals i altres amenaces.

A diferència de les caixes fortes, les cambres cuirassades són una part íntegra de l’edifici dins el qual es construeixen, utilitzant parets cuirassades i una porta cuirassada també amb un pany amb força complexitat.

Les cambres cuirassades no només són utilitzades en bancs, sinó també en altres edificis on són guardats els objectes de valor, com per exemple en oficines de correus, grans hotels, joieries i alguns ministeris de govern entre d’altres.

El desenvolupament de la tecnologia equipada a la cambra cuirassada sol ser equiparada a una carrera d’armaments enfront els atracadors, ja que aquests sempre descobreixen nous mètodes innovadors per accedir a les cambres. Per tant constantment s’han de prendre innovadores mesures de seguretat contra aquests nous mètodes, ja que d’altra banda la seguretat quedaria obsoleta.

Tot i que hi ha cambres cuirassades dels segles XIX i XX inexpugnables, les cambres cuirassades modernes solen disposar d’una àmplia gamma d’alarmes i de dispositius antirobatori per avisar als encarregats de la seguretat de possibles atacs o amenaces.
Les cambres cuirassades que es fan actualment, solen realitzar-se amb materials més lleugers i menys gruixuts que els seus antecessors, fet que permet desmuntar-les més fàcilment que les cambres antigues. De tota manera, el nivell de seguretat de les actuals és més elevat, ja que a causa de la innovació tecnològica s’han obtingut materials més lleugers però amb el mateix grau de duresa i resistència enfront els atacs.

5. SISTEMES DE SEGURETAT ANTIROBATORI

Un sistema de seguretat antirobatori és qualsevol dispositiu o mètode utilitzat per a prevenir o dissuadir l’apropiació desautoritzada dels articles considerats valuosos. Com la propietat d’una possessió física pot ser alterada sense el consentiment del seu propietari legítim, la prevenció de furts s’ha introduït per afirmar la propietat, sempre que el propietari legítim estigui físicament absent. Els sistemes antirobatori han estat actius des que els individus van començar a robar les propietats d’altra gent, per aquest motiu s’han desenvolupat aquests sistemes per a frustrar mètodes de furt cada dia més complexes.

6. NORMATIVES

6.1. ORDE INT/317/2011, D’1 DE FEBRER, SOBRE MESURES DE SEGURETAT PRIVADA

Article 8 Cambres cuirassades:

1. Les cambres cuirassades de nova instal·lació hauran d’estar delimitades per una construcció de murs cuirassats en parets, sostre i terra, amb accés al seu interior a través de la porta i trapa, si n’hi ha, ambdues cuirassades.

El mur estarà envoltat en tot el seu perímetre lateral per un passadís de ronda amb una amplada màxima de 60 centímetres, delimitat per un mur exterior amb grau de seguretat II, segons la Norma UNE-EN 1143-1:2012.
2. Els murs, porta i trapa, si n'hi ha, de la càmera, hauran d'estar construïts, de manera que, com a mínim, el grau de seguretat sigui VI, segons la Norma UNE-EN 1143-1.

3. Les portes de les cambres cuirassades comptaran amb un dispositiu de bloqueig i sistema d'obertura amb un retard de, com a mínim, deu minuts. Queden exceptuades del sistema d'obertura retardada aquelles que continguin compartiments de lloguer.

4. La cambra estarà dotada de detecció sísmica, microfònica o altres dispositius que permetin detectar qualsevol atac a través de paret, sostre o terra així com de detecció volumètrica en el seu interior. Tots aquests elements, connectats al sistema de seguretat, han de transmetre el senyal d'alarma, per dos mitjans de comunicació diferents, de manera que la inutilització d'un d'ells produeixi la transmissió del senyal per l'altra.

Els elements que componen el sistema electrònic de protecció, hauran de tenir un grau de seguretat 3, conforme al que estableix la Norma UNE-EN 50131-1.

5. El sistema de bloqueig de les cambres cuirassades ha d'estar activat des de l'hora de tancament de l'establiment fins a l'hora d'obertura del dia següent hàbil.

6. Les cambres cuirassades la funció sigui únicament la de contenir l'encaix diari de l'oficina, s'assimilen a les caixes fortes a l'efecte del grau de seguretat que han de complir, en els termes establerts per a elles, en l'article següent.
6.2. NORMA UNE-EN 1143-1

Aquesta normativa es troba completa a l’annex.

Aquesta norma europea estableix les bases d’assaig i classificació de caixes fortes autònomes, caixes fortes encastables (en sòl i paret), caixes fortes i bases de ATM, portes cuirassades i cambres cuirassades (amb o sense porta) d’acord amb la seva resistència al robatori. Aquesta norma europea no cobreix l’assaig i classificació de sistemes de dipòsit i sistemes d’ATM.

Classificació:

Les caixes fortes es classifiquen d’acord al seu grau de seguretat segons la taula 1.

Les caixes fortes d’ATM són classificades d’acord al seu grau de seguretat segons la taula 2.

Les portes de cambres cuirassades i les mateixes cambres cuirassades (amb i sense porta) es classifiquen amb un grau de seguretat segons la taula 3.

Tots els productes han de complir els requisits generals (4.2) i els productes amb designació EX, GAS i CD han de complir amb requisits addicionals (4.3, 4.4 i 4.5).

Requisits generals:

No hi ha d’haver orificis en el material de protecció excepte aquells necessaris per panys, cables o l’ancoratge, o per a la instal·lació d’accessoris de les portes de cambres cuirassades i de les cambres cuirassades.

Les obertures per al pas de cables en caixes fortes, portes de cambres cuirassades i cambres cuirassades (amb o sense porta) no han d’excedir els 100 mm2. El fabricant ha d’obstruir o tapar les entrades per a cables sense utilitzar amb mitjans que no es puguin treure des de l’exterior sense deixar empremtes visibles.
Les caixes fortes autònomes amb un pes inferior a 1000 quilogramas han de tenir almenys un orifici a través del qual puguin ancorar. El sistema de fixació per a cada orifici d'ancoratge ha de suportar la força especificada a la taula 1 (veure annex).

Taula 3 - Requisits mínims per a la classificació de portes de cambres cuirassades i cambres cuirassades segons els graus de seguretat

<table>
<thead>
<tr>
<th>Grado de seguridad</th>
<th>Ensayo de ataque con herramienta (capiítol 7)</th>
<th>Cerraduras a</th>
<th>Requisitos adicionales para la designación EX (opcional) (capítulo 9)</th>
<th>Requisitos adicionales para la designación CD (opcional) (capítulo 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valor de resistencia al acceso completo</td>
<td>Cantidad</td>
<td>Tipo de acuerdo con la norma EN 1300</td>
<td>Valor de resistencia post-detonación c</td>
</tr>
<tr>
<td></td>
<td>RU</td>
<td></td>
<td></td>
<td>RU</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td>1</td>
<td>A</td>
<td>b</td>
</tr>
<tr>
<td>I</td>
<td>50</td>
<td>1</td>
<td>A</td>
<td>b</td>
</tr>
<tr>
<td>II</td>
<td>80</td>
<td>1</td>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>120</td>
<td>1</td>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>180</td>
<td>2</td>
<td>B</td>
<td>9</td>
</tr>
<tr>
<td>V</td>
<td>270</td>
<td>2</td>
<td>B</td>
<td>14</td>
</tr>
<tr>
<td>VI</td>
<td>400</td>
<td>2</td>
<td>C</td>
<td>20</td>
</tr>
<tr>
<td>VII</td>
<td>600</td>
<td>2</td>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>VIII</td>
<td>825</td>
<td>2</td>
<td>C</td>
<td>41</td>
</tr>
<tr>
<td>IX</td>
<td>1 050</td>
<td>2</td>
<td>C</td>
<td>53</td>
</tr>
<tr>
<td>X</td>
<td>1 350</td>
<td>2</td>
<td>C</td>
<td>68</td>
</tr>
<tr>
<td>XI</td>
<td>2 000</td>
<td>3</td>
<td>C o</td>
<td>100</td>
</tr>
<tr>
<td>XII</td>
<td>3 000</td>
<td>3</td>
<td>C o</td>
<td>150</td>
</tr>
<tr>
<td>XIII</td>
<td>4 500</td>
<td>2</td>
<td>D</td>
<td>225</td>
</tr>
</tbody>
</table>

a No aplicable para la clasificación de cámaras acorazadas sin puerta.
b La designación EX no se permite para los grados de seguridad 0 y I.
c Valor de resistencia al acceso completo.
d La designación CD no se permite para los grados de seguridad 0 a VII.
7. DISSENY DE LA CAMBRA

7.1. LA CAMBRA CUIRASSADA

El disseny de la cambra que s’ha decidit adaptar serà de tipus quadrada, ja que és més fàcil de realitzar, econòmic i amb un grau de duresa més elevat respecte a una estructura amb configuracions específiques i com a enginyers hem d’optimitzar els nostres dissenys. A més a més s’ha decidit dissenyar la cambra d’aproximadament uns 8,5 metres quadrats ja que, com a criteri personal, penso que és una mida prou gran perquè la majoria d’empreses que vulguin adaptar aquest disseny de cambra als seus edificis, ho puguin fer sense carències d’espai d’emmagatzematge.

7.2. MESURES

La cambra tindrà com a mesures externes una amplitud de 2,87 metres, una fondària de 2,945 metres i una alçada de 2,60 metres. Cal destacar que aquesta alçada no incorpora els centímetres que està soterrada la cambra, és a dir que per sota d’aquesta línia de terra hi haurà 400 mm de gruix de paret que estarà soterrada.

Les mesures internes de la cambra seran de 2,2 metres d’altura, 2,17 metres d’amplitud i 2,145 metres de profunditat. Per tant, mitjançant aquests valors s’observa que el gruix de les pares serà de 400 mil·límetres.

<table>
<thead>
<tr>
<th>Característiques</th>
<th>180</th>
<th>180 S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions exteriores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Ancho</td>
<td>2870</td>
<td>2870</td>
</tr>
<tr>
<td>Fondo</td>
<td>2345</td>
<td>2345</td>
</tr>
<tr>
<td>Dimensions interiores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td>2200</td>
<td>2200</td>
</tr>
<tr>
<td>Ancho</td>
<td>2370</td>
<td>2370</td>
</tr>
<tr>
<td>Fondo</td>
<td>2045</td>
<td>2045</td>
</tr>
<tr>
<td>Volumen (m³)</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Peso aproximado (Kg.)</td>
<td>12400</td>
<td>12400</td>
</tr>
<tr>
<td>Capa al suelo aproximada (Kg/m²)</td>
<td>1950</td>
<td>1950</td>
</tr>
<tr>
<td>Número de columnes de compartiments</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Imatge 2: Exemple de mesures que utilitza la marca oficial Fichet per a les seves cambres.
L'alçada interior que tindrà la cambra serà de 2 metres i 20 centímetres ja que així es supera el mínim legal habitable el qual és de 2 metres i 10 centímetres d’altura, a més a més, considero que no hauria de ser extremadament alta per evitar despeses econòmiques en cas que es volgués soterrar la cambra (ubicar-la en un soterrani) però si que ha de tenir la suficient altitud per a encabir-hi la porta cuirassada així com mantenir el gruix del sostre desitjat per evitar vulnerabilitats.

El gruix de les parets de la cambra així com del sostre i terra ens serviran per indicar el risc o probabilitat que hi ha de patir un atracament a la nostra cambra. Normalment estan dividits en diferents gruixos segons el temps de reacció necessari per a actuar, per exemple: si hi ha molt risc a causa que els objectes són de gran valor, els gruixos haurien de ser d’una mida suficient per evitar que els atracadors accedissin al recinte abans que els cossos de seguretat poguessin actuar. Per indicar aquesta seguretat els gruixos que ho indiquen són els següents:

- Riscs dèbils: gruixos de 300 a 350 mm
- Riscs mitjans: gruixos de 350 a 450 mm
- Riscs forts: gruixos de 450 a 600 mm
- Riscs molt forts: gruixos de més de 600 mm

En aquest cas s’ha decidit d’utilitzar un gruix de 400 mm per al disseny, ja que així obtindrem una seguretat enfront riscs mitjans, però afegint l’armadura Tordbar (explicada en l’apartat materials), serà capaç d’aguantar un atac extern durant el temps suficient perquè els cossos de seguretat puguin actuar abans no es realitzi la intrusió a la cambra.

Així doncs els volums que tindrem de la cambra seran:

\[Volum\ exterior = 2,6\ m \cdot 2,87\ m \cdot 2,945\ m = 21,975\ m^3 \]

\[Volum\ interior = 2,2\ m \cdot 2,07\ m \cdot 2,145\ m = 9,768\ m^3 \]

És a dir que tindrem un volum total de aproximadament 22 m³ i un volum interior per a dipositar les pertinences d’aproximadament uns 9,77 m³.
Un cop coneguts els volums, per a calcular el pes total de la cambra aproximat s’ha realitzat la diferència entre ambdós volums obtenint així el volum de formigó armat que envolta el perímetre de la cambra.

\[Volum\ paret_s,\ terra \ i\ sostre = 21,975\ m^3 - 9,768\ m^3 = 12,207m^3 \]

A partir d’aquesta última dada i sabent que el pes aproximat del formigó armat és de 2400 kg/m³, obtindrem que el pes total de la cambra serà d’aproximadament:

\[Pes \ aproximat = 12,207\ m^3 \cdot 2400\ \frac{kg}{m^3} = 292968\ kg \]

Així doncs, tindrem la nostra cambra amb un volum total de 21,975 m³, un volum lliure de 9,77 m³ a disposició dels clients per a guardar les pertinen�es, aproximadament 29.300 kilograms de pes de la cambra i un volum de formigó armat d’aproximadament 12,2 m³.

Mesures globals:

Mesures externes: amplitud 2,87 metres; fondària 2,945 metres; alçada 2,60 metres sense comptar 400 mm de gruix del terra, ja que sinó l’alçada total seria de 3 metres.

Mesures internes: amplitud 2,07 metres; fondària 2,145 metres; altura 2,2 metres.
7.3. DISSENY

A continuació es mostren les vistes de la cambra cuirassada, és a dir; la planta, l’alçat i el perfil. Per veure les vistes amb una dimensió més àmplia cal veure l’annex.

A partir de l’apartat de “requisits generals” de la norma UNE-EN 1143-1 que assenyala:

“Les obertures per al pas de cables en caixes fortes, portes de cambres cuirassades i cambres cuirassades (amb o sense porta) no han d’excedir els 100 mm². El fabricant ha d’obstruir o tapar les entrades per a cables sense utilitzar amb mitjans que no es puguin treure des de l’exterior sense deixar empremtes visibles.”

S’han realitzat quatre forats quadrats de 1 cm², segons estableix el límit de la legislació, a les cantonades dels límits de l’àrea interna de la cambra (zones marcades amb vermell). Aquests forats travessen la paret i estan destinats a permetre el pas dels cables per a la posterior connexió dels aparells de seguretat interns de la cambra cuirassada. Cada forat permet exclusivament el pas d’un sol cable, ja que com s’aprecia en el disseny, la mida del forat és molt reduïda.

Imatge 4: forats per permetre el pas dels cables a l’interior de la cambra
S'han realitzat quatre forats a la cambra per permetre el pas dels cables per una raó concreta. El disseny de l’interior de la cambra tindrà dos sistemes de seguretat diferents, el primer serà una càmera de vigilància activa les 24 hores, mentre que el segon serà un detector volumètric, també conegut com a detector de moviment.

El motiu per dissenyar quatre forats en lloc dels dos necessaris per connectar els aparells, és perquè, segons la Ordre INT/317/2011, els sistemes han de transmetre la senyal per dues vies diferents, és a dir, per dos cables diferents, de manera que si s’inutilitza un dels mitjans, s’enviï el senyal d’alarma pel segon mitjà. A més a més, a causa del gruix de la cambra, els mitjans de comunicació “sense fils” no serien adequats ja que no rebrien la senyal adequadament.

Ordre INT/317/2011 quart apartat:

“La cambra estarà dotada de detecció sísmica, microfoneica o altres dispositius que permetin detectar qualsevol atac a través de paret, sostre o terra així com de detecció volumètrica en el seu interior. Tots aquests elements, connectats al sistema de seguretat, han de transmetre el senyal d’alarma, per dos mitjans de comunicació diferents, de manera que la inutilització d’un d’ells produeixi la transmissió del senyal per l’altra.”

7.4. MATERIALS

El material que s’utilitzarà per a construir aquests murs exteriors serà el formigó armat on hi afegirem l’armadura Tordbar ja que li aporta un elevat increment a la resistència en cas de ser atacats.

L’armadura Tordbar integrada als murs de formigó s’ha comprovat que augmenta l’eficàcia de la cambra sobretot quan aquesta és atacada per sistemes moderns com ara les corones diamantades o bé martells pneumàtics entre d’altres.

El mur de formigó serà armat mitjançant diferents barnillatges, els quals amb una bona dosificació de ciment, grava, sorra i aigua i afegint-li adhesius per augmentar la
Seva resistència permetrà que el formigó armat assoleixi resistències enfront una pressió de 250 a 350 kg/cm².

Es defineix com a formigó armat, al material resultant de la unió del formigó (barreja de ciment pòrtland o qualsevol altre ciment hidràulic, sorra, grava i aigua, amb o sense additius, que al forjar i endurir adquireix resistència) i les armadures o barres d'acer de reforç, combinats de tal manera que constitueixin un element sòlid i únic des del punt de vista de les seves característiques físiques, amb l'objectiu d'aprofitar les propietats individuals, que presenten ambdós materials.

El formigó per si sol, assegura una gran resistència als esforços de compressió, però molt escassa als esforços de flexo-tracció, pel que no és apropiat per a estructures sotmeses a aquestes exigències. Tot i així, si en aquestes zones són degudament instal·lades barres d'acer de reforç, s'haurà solucionat tal deficiència, obtenint així un element capaç de resistir esforços o tensions combinades.

Imatge 5: Barres d'acer utilitzades per a la fabricació del formigó armat
8. SISTEMES DE SEGURETAT DE LA CAMBRA

Els sistemes de seguretat dels quals disposarà la nostra cambra cuirassada seran els següents:

- Un sistema de vigilància actiu les 24 hores, que visualitzaran tant l’entrada a la cambra com l’interior de la mateixa.
- Sensors de detecció sísmica ubicats al contorn de la cambra per poder avaluar possibles amenaces des de l’exterior de la mateixa.
- Un detector volumètric a l’interior de la cambra per a detectar moviment, és a dir, reconèixer possibles intrusions no desitjades a la cambra.
- Una porta cuirassada amb sistema de bloqueig que eviti l’accés a la cambra fora de l’horari de treball de l’empresa i a més a més disposarà d’un sistema amb un retard mínim de 10 minuts per a poder accedir a l’interior d’aquesta.

La clau d’accés per entrar a la cambra serà requerida mitjançant un segon programari que podrà estar a l’ordinador del client i que només tindrà accés el director de l’empresa que tingui la cambra cuirassada o una segona persona designada pel director d’aquesta. Aquesta clau se li enviarà mitjançant una connexió TCP i serà un codi de 4 dígits que expirarà un cop s’hagi tancat la cambra.

Imatge 6: Ampli ventall de aparells electrònics de seguretat
Tots els sistemes enviaran el senyal d’alarma mitjançant dues vies de comunicació diferents, de manera que la inhabilitació d’una d’elles activarà el senyal d’alarma per l’altre via, descartant però les vies de comunicació sense fils, ja que a causa del gruix del mur de la cambra, el senyal podria no ser rebut correctament.

Els sistemes de seguretat triats per a la nostra cambra cuirassada seran els següents:

- **Gravadora de vídeo (quantitat 1):**

Bosch 4 Channel, 500gb Hard drive, DVR: H.264, Model:440 Series View on IPhone or Android via App.

![Gravadora de vídeo Bosch model 440](image)

Característiques tècniques a:

http://products.boschsecuritysystems.eu/es/EMEA/products/bxp/SKU198654618745035999233586187-CATM2a7bab6758ea92e3ff18622486bb52bf

Preu: 376.22 EUR
- Càmera de vídeo vigilància (quantitat 2):

Bosch Group EX65 EXPLOSION PROTECTED CAMERA ALUMINUM DAY/NIGHT 1/3IN CC

![Imatge 8: Càmera de vídeo Bosch Group EX65 amb protecció contra explosions](http://products.boschsecurity.es/es/ES/products/bxp/SKU22298668919007202208329099-CATMafc1a2d7aa5fb0f1ed4d4b9918d02a89)

Preu: 1,643.86 EUR x 2 = 3296 EUR

- Sensors sísmics (quantitat 6):

Bosch ISN-SM-50

![Imatge 9: Sensor símic Bosch ISN-SM-50](http://products.boschsecurity.es/es/ES/products/bxp/SKU22298668919007202208329099-CATMafc1a2d7aa5fb0f1ed4d4b9918d02a89)
Característiques tècniques a:

http://products.boschsecurity.es/es/ES/products/bxp/SKU263782964336028799991044107-CATM39265ff6a28b84b75644a40299e6425c

Preu: 101.053 EUR x 6 = 606,31 EUR

- Detector volumètric o de moviment (quantitat 1):

Bosch ISC-BPQ2-W12 INFRARED DETECTOR BLUE LINE GENERATION 2

![Imatge 10: Sensor de moviment Bosch ISC-BPQ2-W12](image)

Característiques tècniques a:

Preu: 18,77 EUR
• **Porta cuirassada (quantitat 1):**

Porta cuirassada Optema 100 grau VII (obertura cap a la dreta) + equipament pel muntatge del pany.

Mesures: Alçada total 2157 cm, amplada total 1200 cm, alçada lliure 2030 cm, amplada lliure 895 cm. Gruix de 40 cm.

Aquestes mesures inclouen tota la porta, és a dir, que també inclouen el pany i els forats on s’encaixa la porta al ser tancada.

![Imatge 11: Porta cuirassada grau VII modul Optema 100](image)

Característiques tècniques a:

PREU: 6366.81 EUR
- **Panell de control (quantitat 1):**

ICP-CC408 Series Paneles de control

![Panell de control Bosch ICP-CC408](image)

Característiques tècniques a:
http://products.boschsecuritysystems.eu/es/EMEA/products/bxp/SKU25003882352966469131-CATM9041c922dee6818b90ec4a0dd67fddef

Preu: 95.4 EUR
9. UBICACIÓ DELS APARELLS DE SEGURETAT

La ubicació, així com el model i la marca dels aparells electrònics de seguretat s’han triat subjectivament. Tots ells compleixen la normativa UNE-EN 50131-1, la qual obliga als elements que componen el sistema electrònic de protecció d’una cambra cuirassada a tenir un grau de seguretat 3.

Segons marca la normativa UNE-EN 1143-1:2012, la cambra ha d’estar envoltada en tot el seu perímetre lateral per un passadís de ronda amb una amplada no superior als 60 centímetres. A més a més, els murs exteriors que envolten la cambra hauran de tenir un grau de seguretat II.

La ubicació dels diferents aparells electrònics per a la seguretat de la cambra cuirassada serà el següent:

Quatre dels sis sensors sísmics seran ubicats en el quatre murs que envolten la cambra, és a dir, no en la paret de la cambra sinó en les exteriors, inclosa la paret amb la porta per accedir a l’habitació de la cambra, on el sensor s’ubicarà a sobre de la porta, tant centrat com sigui possible. Un dels inconvenients que pot tenir el sensor sobre la porta, és que s’activi quan per exemple es tanqui de cop la porta, per aquest motiu, és probable que aquest sensor hagi de ser menys sensible que els altres.
Els altres dos sensors sísmics restants s’ubicaran un al terra i l’altre al sostre. Aquests sensors s’emplaçaran tant centrats com sigui possible de manera que protegeixin el màxim de rang possible de cada mur, sostre o paret. D’aquesta manera assegurarem que l’accés al perímetre de la cambra només sigui possible des de l’entrada principal, i que en cas de no esser així salti el dispositiu d’alarma. Com és obvi, l’emplaçament d’aquests dispositius es col·locaran a l’interior de l’habitacle de la cambra ja que d’altra banda els podrien desactivar abans d’entrar.

Imatge 14: Emplaçament dels sensor sísmics. En verd murs exteriors de la cambra (la cambra és a l’interior d’aquests murs). En vermell ubicació dels sensors sísmics.
La càmera de vigilància externa, és a dir, situada a l’habitacle de la cambra, serà ubicada a la cantonada superior dreta del mur d’entrada, ja que d’aquesta manera es podrà controlar qui accedeix a la cambra o bé si algú intenta boicotejar els cables de la seguretat interna de la cambra cuirassada.

La imatge que es mostra a continuació fa referència a la planta de les vistes de la cambra. El cercle que hi ha en la ubicació de la càmera és per visualitzar el moviment que pot realitzar, fins a tocar la paret (on es col·locaran topalls perquè l’aparell no es pugui avariar).

Imatge 15: Emplaçament de la càmera externa vista des de la planta. En verd murs exteriors de la cambra (la cambra és a l’interior d’aquests murs). En vermell ubicació de la càmera, cercle realitzat per comprovar el correcte gir de l’aparell.
La segona càmera de vigilància estarà a l’interior de la cambra, en la cantonada superior esquerra del final, d’aquesta manera es tindrà visió de qui entra, així que es podran seguir els moviments de la persona que ha accedit a ella.

Imatge 16: Emplaçament de la càmera externa i de la interna vista des de la planta. En verd murs extersiors de la cambra. En vermell ubicació de la càmera. Cercle realitzat per comprovar el correcte gir de l’aparell.
Finalment el sensor de moviment estarà ubicat a l’interior de la cambra, concretament al centre del sostre de la cambra cuirassada per evitar conflictes de punts morts o que s’obstrueixi l’aparell amb algun objecte ubicat davant. D’aquesta manera qualsevol moviment dins la cambra no desitjat serà reconegut i s’activarà el senyal d’alarma. Aquest sensor de moviment, haurà d’estar desconnectat mentre la cambra roman oberta, ja que sinó cada cop que entrés un usuari encara que fos autoritzat enviaria una falsa senyal d’alarma a la central.

Imatge 17: Ubicació del sensor volumètric vist des de la planta, en verd murs exteriors de la cambra, en vermell ubicació de la càmera.
10. PROCÉS DE FABRICACIÓ

10.1. MATÈRIES PRIMERES

Les parets de la cambra i portes es componen principalment de formigó, barres d'acer de reforç i additius patentats per donar al formigó encara més força.

10.2 . DISSENY

Les cambres cuirassades es construeixen sota ordres d'encàrrec. La cambra és generalment el primer aspecte d'un nou edifici o banc a ser dissenyat i construït.

El procés de fabricació comença amb el disseny de la cambra, i la resta de l'edifici es construeix al voltant d'aquesta. El fabricant de cambres consulta amb el client per determinar els factors tals com la mida total de la cambra, forma desitjada, i la ubicació de la porta.

Després que el client signi el disseny, el fabricant configura l'equip per fer els panells de la cambra així com de la porta. El client generalment mana que la cambra sigui enviada i instal·lada. És a dir, el fabricant de cambres no només s'encarrega de crear els panells i diferents parts de la cambra cuirassada, sinó que porta les parts i les instal·la al seu emplaçament.

Les cambres cuirassades es fan típicament de formigó reforçat amb acer. Aquest material no era substancialment diferent de l'utilitzat en els treballs de construcció, ja que es basava en la seva immensa espessor per a major resistència.

Les cambres cuirassades modernes estan fetes típicament de panells modulars de formigó amb una barreja patentada especial de formigó i additius per obtenir una resistència extrema. El formigó ha estat dissenyat per a una màxima resistència a l'aixafament. Per posar un exemple, un panell d'aquest material, encara que només sigui de 3 polzades (7,62 cm) de gruix, pot ser fins a 10 vegades més fort que 18 polzades (45.72 cm) de gruix del panell de ciment mitjançant la fórmula regular.
10.3. ELS PANELLS

El primer pas en el procés és el de modelar els panells que formaran les parets. A diferència del formigó regular que s'utilitza en la construcció, el formigó per cambres cuirassades és tan gruixut que no pot ser abocat. La consistència del formigó es mesura per la seva "depressió". El ciment de les cambres es diu que té depressió zero. També s'estableix molt ràpidament, és a dir, s'asseca en aproximadament de sis a dotze hores, en lloc dels tres a quatre dies necessaris per a la majoria de formigons. En aquest pas doncs, els treballadors bolquen la barreja de formigó en els motlles dels panells.

A continuació, es col·loquen una xarxa de varetes d'acer de reforç manualment en la barreja humida del ciment.

Un cop col·locades les varetes, els motlles es fan vibrar durant diverses hores. Aquesta vibració assenta el material i elimina les bosses d'aire eliminant-ne les impureses.

Després les vores es suavitzen amb una paleta, i el formigó es deixa endurir.

Finalment, els treballadors desemmotllen el producte i posen els panells sobre un camió per al seu transport al lloc designat pel client on s'iniciarà la obra.

10.4. LA PORTA

La porta de la cambra també està modelada mitjançant el formigó especial que s'utilitza per fer els panells, però es pot fer de diverses maneres. El motlle de la porta difereix dels motlles dels panells perquè hi ha un orifici per al pany i la porta ha d'ésser revestida d'acer inoxidable. Alguns fabricants utilitzen aquest revestiment d'acer com a motlle i aboquen el formigó directament al revestiment. Altres fabricants utilitzen un motlle regular i el revestiment d'acer es realitza quan el panell s'ha assecat.
10.5. EL PANY

El bloqueig d'una cambra cuirassada moderna és generalment una combinació del pany de doble control, és a dir, que es necessiten dues persones per obrir-lo. Aquest pany està connectat a un bloqueig de temps (retard) que es pot establir de manera que la combinació del pany no obrirà fins que hagi passat aquest temps de retard.

Aquest sistema de bloqueig antirobatori el va inventar Sargent a finals del segle XIX però com és molt eficaç segueix vigent en moltes cambres actuals.

El sistema de bloqueig es subministra ja muntat pel fabricant de cambres. Cal destacar que la fabricació d'aquests panys es duu a terme per molt poques empreses arreu del món, és a dir, que tot i que hi ha forces fabricants de cambres cuirassades, els panys d'aquestes solen ser de poques empreses.

10.6. INSTAL·LACIÓ

Els panells acabats, portes de cambres, i el conjunt de bloqueig es transporten en camions al lloc de l'obra de l'edifici.

A continuació, els treballadors del fabricant de cambres posen els panells d'acer tancats en els llocs designats i els solden entre si. El fabricant també pot subministrar un sistema d'alarma, que s'instal·la a la vegada. En canvi, la porta de la cambra i l'interior de la mateixa poden ser connectats amb un dispositiu d'escolta que reculli els sons inusuals o poc freqüents.

La cambra també pot ser estudiada amb una càmera i una alarma que es pot connectar per a alertar a la policia local (o el cos de seguretat), si la porta o el pany és manipulat.
10.7 CONTROL DE QUALITAT

El control de qualitat per a la indústria de cambres està supervisat per Underwriters Laboratories, Inc (UL), a Northbrook, Illinois. Fins el 1991, el govern d'Estats Units també regulava la indústria de les cambres. Actualment, el govern estableix les normes mínimes per al gruix de les parets de les cambres, però els avanços en la tecnologia del ciment han requerit una mesura arbitrària de la força. Ara, l'eficàcia de la cambra es mesura per com es porta a terme en contra d'un simulacre de robatori. Els fabricants s'esforçen per fer que els productes repel·leixin els atacs durant un determinat nombre de minuts.

La Classe de cambres UL 1 estan garantides per suportar un intent de robatori durant 30 minuts, la classe UL 2 durant 60 minuts, i la Classe UL 3 per 120 minuts. Els treballadors realitzen atacs de mostra a les parets i porta de la cambra amb l’equipament probable que un lladre portaria. Això en general inclou torxes i martells de demolició. Si el treballador pot fer un forat de com a mínim 6 x 16 polzades (15,24 x 40,64 cm) en menys temps de l’establert, llavors la cambra no ha passat la prova.

Els fabricants també solen fer les seves pròpies proves d’atacs als dissenys de nous productes per assegurar-se que la cambra cuirassada tingui èxit en les proves UL i sigui apta per a la venda i comercialització.
11. PRESSUPOST

Suposant que el disseny de la nostra cambra passi el control de qualitat de Underwriters Laboratories, Inc, sobre el grau de seguretat V, el pressupost de la cambra seria el següent:

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>QUANTITAT (unitats o hores)</th>
<th>PREU UNITAT</th>
<th>PREU TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panell de control</td>
<td>1</td>
<td>95,4</td>
<td>95,4</td>
</tr>
<tr>
<td>Porta cuirassada</td>
<td>1</td>
<td>6366,81</td>
<td>6366,81</td>
</tr>
<tr>
<td>Detector Volumètric</td>
<td>1</td>
<td>18,77</td>
<td>18,77</td>
</tr>
<tr>
<td>Sensors símics</td>
<td>6</td>
<td>101,05</td>
<td>606,3</td>
</tr>
<tr>
<td>Càmeres</td>
<td>2</td>
<td>1643,86</td>
<td>3287,72</td>
</tr>
<tr>
<td>Gravadora de vídeo</td>
<td>1</td>
<td>376,22</td>
<td>376,22</td>
</tr>
<tr>
<td>Formigó armat</td>
<td>12,21</td>
<td>185</td>
<td>2258,85</td>
</tr>
<tr>
<td>Hores de treball</td>
<td>260</td>
<td>7,7</td>
<td>2002</td>
</tr>
<tr>
<td>Programari</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15012,07</td>
<td></td>
</tr>
</tbody>
</table>

Com es pot observar el preu de la instal·lació de la cambra amb tots els elements costaria aproximadament uns 15.000 €, els preus poden diferir lleugerament respecte als reals. Exceptuant el preu de la instal·lació, el sistema de vigilància del servidor que estarà actiu i controlat les 24 hores al dia, costaria aproximadament uns 100 € - 150 € al mes.
12. PROGRAMARI

A continuació es realitzarà un programari mitjançant l’entorn “LabWindows” que serà l’encarregat de gestionar els sistemes de seguretat de la cambra tant exteriors com interiors.

Cal destacar que com que el hardware necessari no ha estat comprat a causa del seu elevat cost, el programa realitzarà una emulació del comportament, és a dir, que les connexions amb els aparells de seguretat no seran reals.

Aquest programa disposarà d’un client i un servidor o ordinador “central” des del qual es controlarà tota la seguretat de la cambra, per tant actuarà com a una versió pròpia del programari “CC816 Software de Alarm Link” que s’utilitzen amb els ordinadors connectats als panells de control Bosch per a gestionar la seguretat.

D’altra banda el client serà requerit per sol·licitar la clau d’accés a la cambra, rebre notificacions d’alerta, veure les càmeres de vigilància o bé avisar al servidor del final de les alertes.

12.1. QUÈ ÉS LABWINDOWS/CVI?

LabWindows/CVI dissenyat per l’empresa National Instruments, és un entorn de programació per al desenvolupament d’instruments de control, per a realitzar proves automatitzades, així com aplicacions d’adquisició de dades en ANSI C.

Imatge 18: Logo de National Instruments dissenyador de Labwindows/CVI
L’entorn LabWindows/CVI ens ofereix les següents característiques:

- Biblioteques estàndard i panells de funcions interactives.
- Editor d'interfícies gràfiques per a usuaris, amb biblioteques per a la creació, visualització i control d’aquestes.
- Assistent i biblioteca per al control de servidors ActiveX.
- Assistent i biblioteca per a la creació de controladors d'instruments IVI.
- Conjunt de controladors d'instruments els quals contenen funcions d’alt nivell i panells de funcions interactives per al control d'instruments específics.
- Eina per crear i editar tasques NI-DAQmx.
- Eina per a la creació de tasques de control d'instruments.
- Entorn de desenvolupament amb Windows per gestionar projectes, codi font, depuració, i funcions de protecció per a l’usuari.

LabWindows/CVI ens proporciona un entorn per crear i provar aplicacions que utilitzin les biblioteques de LabWindows/CVI. L'entorn genèric és una combinació entre l'editor, el compilador i el depurador amb exhaustives comprovacions en temps d'execució.

LabWindows/CVI també inclou panells de funcionament, que fan que la tasca de desenvolupar programes sigui molt més senzilla. Utilitzant un panell de funcionament, pots executar una funció de la biblioteca LabWindows/CVI interactiva i generar codi que cridi a la funció.

Els panells de funcionament també contenen ajuda per a les funcions i paràmetres de la funció. Així es pot construir, executar, provar i depurar el codi font de la aplicació en l'entorn de LabWindows/CVI.

A més a més l'entorn de LabWindows/CVI també té un editor d'interfícies d'usuari per a la creació d'una interfície gràfica d'usuari per als programes d'aplicació. Pots controlar l'interfície d'usuari mitjançant les funcions ubicades a User Library Interface.

Finalment, pots utilitzar l'entorn LabWindows/CVI per crear drivers d'instruments.
12.2. EXPLICACIÓ DEL PROGRAMA

Com ja s’ha comentat anteriorment aquest programa disposarà d’un client el qual serà capaç d’enviar sol·licituds per a la clau d’accés o bé enviar finals d’alertes quan s’hagin comprovat a la cambra al servidor.

A més a més, aquest client també tindrà accés a la visualització de les càmeres ubicades al recinte de la cambra de seguretat i a l’estat de l’accés de la porta, en vermell quan no es pot accedir i en verd quan ja s’hi pot accedir (cal recordar que la llei obliga a les cambres de seguretat a tenir una obertura retardada de com a mínim 10 minuts).

Imatge 19: Finestra del servidor

Aquest client serà disponible només pel director de l’empresa o algú que ell hagi anomenat com a encarregat del programari.

D’altra banda, el servidor, serà l’encarregat de gestionar les alertes, és a dir rebrà les alertes dels components simulats (alertes d’activació dels sensors sísmics o el
volumètric, i també alertes de desactivació de les càmeres). Aquestes alertes es mostraran per pantalla visiblement i permetran a la persona que estigui de vigilància enviar l’alerta amb el nom del sensor o càmera afectat per l’atac al client mitjançant trames a través d’una connexió TCP. A més a més el servidor també serà l’encarregat de l’enviament de la clau d’accés quan aquesta li sigui sol·licitada així com de l’enviament de les fi d’alertes per acabar amb les alertes activades prèviament. Finalment el servidor també podrà visualitzar l’estat de l’accés a la porta (si és accessible per al client o no a causa del retard), i també de les visualitzacions de les càmeres de videovigilància.

Aquest servidor serà utilitzat per un vigilant que estarà les 24 hores davant el monitor per si succeeix algun esdeveniment, ja sigui en horari laboral del client o no.

Imatge 20: Finestra del client
12.3. EXPLICACIÓ DEL FUNCIONAMENT

El funcionament del nostre programari serà el següent:

Representarem que tant el servidor com el client estaran actius les 24 hores al dia, és a dir, que sempre estarà actiu per al control de les alertes. Però, tot i tenir una certa seguretat amb el programari, cada cop que es generi una alerta, el vigilant del servidor s’hauria de posar amb contacte amb el client mitjançant una via telefònica per assegurar que el client ha rebut l’alerta, ja que podria estar fora d’horari d’oficines, fent una parada...

Cal destacar que a banda del programari també es realitzarà una trucada telefònica entre el cos de seguretat i el client. A continuació, passarem a explicar detalladament el programari.

Primerament tant el client com el servidor disposaran d’un led indicatiu que ens indicaran si el client i el servidor estan connectats entre si. El servidor es pot obrir si el client no està connectat, però no a la inversa. És a dir, el client requereix del funcionament del servidor perquè aquest funcioni o d’altra banda no es podrà executar correctament. De tota manera el servidor un cop engegat no s’hauria d’apagar mai o d’altra banda estariem davant una vulnerabilitat del sistema.

![Imatge 21: Leds indicatius de la connexió client servidor]

12.3.1. FUNCIONAMENT NORMAL (SENSE ATACS A LA CAMBRA)

El client disposarà d’un botó per sol·licitar la clau d’accés a la cambra.

![Imatge 22: Botó sol·licitar clau del client]
Prement aquest botó, es generarà un avís en el servidor mitjançant el qual avisarà al vigilant que el client ha sol·licitat una clau d'accés a la cambra. La trama que rebrà el servidor serà “KEY” precedit per una lletra “Å”.

Aquesta lletra que precedeix al cos de la trama ens servirà per indicar el tipus de dada, i canviarà tant en el client com en el servidor en funció de si s'envia una alerta, una fi d'alerta, una clau o com en aquest cas una sol·licitud per obtenir la clau.

Per sol·licitar la clau la lletra indicativa serà “Å”. A més a més tindrem un símbol únic per indicar l'inici de la trama que serà “ª”, així doncs tindrem que la trama completa rebuda serà “ªÅKEY”.

Imatge 23: Panell emergent del servidor quan es solicita la clau

Imatge 24: Trama rebuda pel servidor quan el client sol·licita la clau
Un cop el servidor ha rebut la sol·licitud de la clau, el vigilant o encarregat del control del servidor, haurà d’enviar una clau al client.

Per a realitzar aquesta tasca, s’haurà de seleccionar “Enviar clau” al control “Tipus d’avís” i col·locar un codi de quatre dígits en el numèric on posa “Clau accés”. Aquest valor no pot ser superior a 9999 ni inferior a 1000. Aquest valor mínim és per evitar que la lectura de les dades ometi el valor zero a l’esquerre d’un nombre, per tant s’ha limitat a 1000 el valor mínim.

Un cop s’ha seleccionat el tipus d’avís i la Clau d’accés, s’haurà de prémer el botó enviar el qual enviarà la trama amb la clau al client. El valor d’inici de la trama serà com ja s’ha mencionat anteriorment “ª” i l’indicatiu per enviar la clau serà el caràcter 0xC1 en hexadecimal que serà el valor “Á”, és a dir que la trama rebuda pel client serà “ªÁ(VALOR_CLAU)ÿ” on la “ÿ” indica el final de la trama.

D’altra banda el client respondrà a l’enviament de la clau amb el mateix capçal “Á” seguit d’un “OK” y el final de trama “ÿ”

Imatge 25: Enviament de la clau d’accés al client

Imatge 26: En verd, trama rebuda pel servidor del client. En groc, trama rebuda pel client des del servidor
Un cop s’ha enviat la clau d’accés, s’ha d’esperar un temps abans d’accedir a la cambra, ja que, com indica la legislació vigent, la porta ha de tenir un retard mínim de 10 minuts des que s’envia la petició d’accés fins que es pot accedir a la mateixa.

Aquest accés serà visible tant en el servidor com en el client, ja que el client el necessita per saber quan pot accedir a la cambra, mentre que el servidor requerirà aquesta informació per evitar generar alertes de falsos atacs en veure moviments a través de les càmeres o el volumètric detectant.

![Imatge 27: Accés a la cambra passat el temps de retard que estableix la legislació](image)

Per aquest motiu s’ha creat un temporitzador amb un temps de 30 segons (haurien de ser de 10 minuts, però donat que es tracta d’una simulació hem reduït aquest temps d’espera), que activa l’accés a la porta passat el temps establert, és a dir que si s’intenta accedir a la porta abans que el temps hagi concorregut, no ho permetrà.

Per mostrar això s’han realitzat dos leds d’accés a la porta, un en vermell que indica que no es pot accedir a l’interior de la cambra, i un en verd que ens indica que l’accés a la cambra està permès. Aquest accés a la cambra es clausurarà quan es tanqui la porta, per simular aquest fet s’ha dissenyat un botó que emularia el senyal que envia la porta al tancar-se. Un cop s’ha tancat la porta, només es pot accedir de nou a la cambra sol·licitant una nova clau d’accés, ja que, encara que s’introdueixi de nou la clau, l’accés a la cambra romandrà tancat. Mitjançant aquest mètode s’incrementa notablement la seguretat de la cambra.
La trama que rebrà el servidor quan el client tanqui la porta serà el següent “#ÄTPŷ”, on TP significarà tancar porta la # y la ñ indicaran inici i final de trama i el valor Ä indicarà el tipus de valor que conté la trama, ja que d’aquesta manera es podrà esbrinar el que inclou la trama amb aquesta capçalera i tractar-la en funció d’aquest valor.

Cal esmentar que mentre es permet l’accés a la cambra, s’ha inhabilitat el senyal (LED) del sensor volumètric 1, ja que d’altra banda, cada cop que s’entres a la cambra, tot i tenir l’accés, generaria una falsa alerta per al vigilant.

12.3.2. FUNCIONAMENT QUAN S’ATACA A LA CAMBRA (GENERACIÓ D’ALERTES)

Per simular un atac a la cambra (recordem que s’han simulat tots els components a causa del seu elevat cost) hem generat un botó que realitza la tasca d’activar un dels 9 LEDS que indiquen cada un dels elements de seguretat, aleatoriament.

Aquests leds en el cas de tractar-se de sensors sísmics o bé volumètrics, la seva activació indica un possible atac o risc per a la seguretat ja que representa que han detectat una intrusió. En el cas de les càmeres és el contrari, mentre estigui el led apagat significa que estan gravant correctament, ja que, si s’encén un dels LEDS de les càmeres, indicarà que una de les dues vies per les quals s’enviava la transmissió de les càmeres (recordem que els components han d’enviar els seus senyals per dues vies diferents) ha estat inhabilitada generant així una alerta.
Imatge 29: Simulació dels senyals dels components (LED inhabilitat tot correcte, LED habilitat possible atac o vulnerabilitat)

Un cop s’ha activat un sensor o càmera, el servidor rep per pantalla un panell indicatiu del component que s’ha activat o inhabilitat. En cas de succeir l’atac a varis components es generarien més d’un panell d’alerta indicant cada un dels sistemes que han detectat anomalies.

Imatge 30: Panell d’alerta de seguretat mostrat pel servidor
El vigilant en aquest cas actuarà enviant un senyal al client amb el nom del sensor o càmera afectat pel possible atac. En cas de tractar-se de múltiples activacions hauria d’enviar una alerta per cada component atacat/activat.

És necessari destacar que a banda de les alertes enviades mitjançant servidor/client, el vigilant hauria de contactar immediatament via telefònica amb el client i si fos necessari amb les forces policials.

Imatge 31: Enviament de l’alerta de seguretat i panell que es mostra al client així com la trama rebuda

Un cop ha acabat l’atac o bé s’ha trobat el motiu de l’activació del component cal desactivar l’alerta. Per a realitzar aquest pas en primer lloc el client ha de prèmer el botó de “Fi d’alertes”, aquest botó enviarà al servidor un senyal “ÆEND” que activarà el panell de fi d’alertes el qual permetrà al vigilant veure que el client ha solucionat el problema.
Un cop s’ha enviat el fi d’alertes del client, l’alerta es mantindrà activa en el servidor mentre el vigilant comprova (ja sigui mirant càmeres o bé posant-se en contacte amb el client) que s’ha solucionat el problema/atac.

Finalment un cop el vigilant ha constatat que s’ha solucionat el problema o s’ha aturat l’atac enviarà el “Fi Alerta” amb el “Tipus d’avís”, el qual desactivarà totalment l’alerta així com els panells d’alerta si és que seguien oberts.
Imatge 34: Enviament del fi d'alerta del servidor i trama que rep com a resposta el servidor

Per acabar, tant el client com el servidor disposaran d’un sistema de visualització de les càmeres (com s’ha simulat, falta el ActiveX corresponent a les càmeres per a poder veure-les en transmissió directe també conegut com “streaming”, és a dir que s’hauria de crear el DLL amb el driver que utilitzin les càmeres de gravació “Bosch Group EX65” per poder veure el que transmeten). Aquest sistema es podrà veure obrint els panells corresponents des del programari, però es recomana tenir dos monitors extres per a mostrar aquestes pantalles ja que d’altra banda es perdria la visió d’una de les càmeres o del programari en si.
Imatge 35: Visualització dels panells de les càmeres (simulats)
13. CONCLUSIONS

Aquest Projecte de Final de Grau “Disseny i emulació de la seguretat d’una cambra cuirassada” ha estat dividit en dues fases.

La primera, s’ha centrat en realitzar una recerca sobre diferents aspectes de les cambres cuirassades. A partir d’aquesta recerca, s’ha elaborat un disseny propi d’una cambra cuirassada partint de zero, és a dir, elaborant el traçat de la cambra, triant-ne les mides, els components de seguretat implementats, la ubicació d’aquests...

En la segona fase de la memòria, s’ha creat un programari que, simulant els components de seguretat de la cambra, realitza la tasca de control d’aquests elements i en gestiona les alertes, enviaments o sol·licituds entre el client i el servidor.

La recerca d’informació ha estat molt complexa ja que, tant en format físic com digital, no s’acostumen a proporcionar dades sobre els dispositius de seguretat o mètodes que utilitzen les empreses per a realitzar les cambres. D’altra banda, els atracadors es podrien informar per buscar-ne vulnerabilitats i accedir a l’interior amb més facilitat.

A causa del desenvolupament tecnològic, les cambres són més segures, ja que les tecnologies utilitzades per a l’elaboració d’aquestes aporten una major eficiència respecte a les cambres predecessores, a més a més, els components per detectar intrusions també han millorat amb els avenços tecnològics. Però, com a contrapartida, crec que aquest mateix desenvolupament tecnològic també afecta negativament a la seguretat de les cambres, ja que també es creen nous mètodes d’intrusió o aparells per a realitzar els atacs més ràpidament, iniciant així una cursa “armamentística” entre assaltants i fabricants.

Realitzant aquest projecte he assolit tots els objectius proposats inicialment, si bé és cert que, afegint components de seguretat es podria optimitzar la seguretat, com a criteri personal, no ho considero oportú ja que el cost també s’elevaria considerablement. No obstant, el disseny elaborat, compleix tots els requisits per obtenir un grau de seguretat V segons la normativa UNE-EN 1143-1.
14. BIBLIOGRAFIA

- **ATOCHA SEGURIDAD S.A.**

- **BOSCH. EX65 Càmara Protegida contra Explosiones.**
 (http://products.boschsecurity.es/es/ES/products/bxp/SKU222986689190072022083290999-CATMaf1a2d7aa5fb0f1ed4d4b9918d02a89, 7 d’octubre de 2013).

- **BOSCH. Videograbador Digital Serie 440/480.**

- **BOSCH. ISN-SM Detectores Sísmicos.**
 (http://products.boschsecurity.es/es/ES/products/bxp/SKU263782964345035999245785099-CATM39265ff6a28b84b75644a40299e6425c, 7 d’octubre de 2013).

- **BOSCH. ICP-CC408 Series Paneles de control.**

- **BOSCH. ISC-BPQ2 – Blue Line Gen2 Quad PIR Motion Detector.**

- **DOCSTOC. Vault Room Construction.**

- **DYSS CAJAS FUERTES. Camara acorzada joyerías.**
 (http://www.youtube.com/watch?v=vZlt8EoEfB8, 15 d’octubre de 2013).
• **FICHET – BAUCHE. Càmaras y puertas acorazadas.**
 (http://www.fichet.es/producto/06-camaras-y-puertas-acorazadas/03-camara-acorazada-modular-optema.html, 11 de novembre de 2013)

• **ROOT CONSTRUCTION. *What makes a strong room?***
 (http://www.rootconstruction.com/blog/2012/03/12/what-makes-a-strong-room/, 28 de setembre)

• **SAFE ZONE BALLISTICS. *Media Vault.***

• **STACKE. *Euroline strongroom doors.***
 (http://www.stacke-safe.de/Welcome/Products/Strongroom_doors/strongroom_doors.html, 29 de setembre de 2013)

• **SSSPL DIRECTORY. *Strong room and safes.***

• **WIKIPEDIA. *Hormigón.***
 (http://es.wikipedia.org/wiki/Hormig%C3%B3n, 26 d’octubre de 2013).
ANNEXES

• **ANNEX A:**
 VISTES DE LA CAMBRA

• **ANNEX B:**
 NORMATIVA UNE-EN-1143-1

• **ANNEX C:**
 CLIENT_TCP.C

• **ANNEX D:**
 SERVIDOR_TCP.C

• **ANNEX E:**
 CARACTERÍSTIQUES DELS COMPONENTS DE SEGURETAT