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Abstract

This work targets the pedestrian detection in static images from a computer

vision point of view. The interest of such detector resides in its many appli-

cations; automotive safety, crowd control, video surveillance or automatic

image indexing are just a few examples. Detecting pedestrians is a chal-

lenging matter as persons can adopt a wide range of poses, in very different

backgrounds and under significant changes in illumination and color. To

achieve a robust detection method we study and develop a HOG plus SVM

solution, as proposed by Dalal & Triggs. The HOG descriptor proposed

turns out to be robust to small changes in the image contour, location and

direction, and significant changes in illumination and color. Even though

HOGs perform equally well for other classes, in this work we target specifi-

cally in upright persons, or to say, pedestrians. Furthermore we try several

SVM models and training approaches to pick out the best possible SVM

kernel and parameters for two different well known persons data sets; MIT

and INRIA data sets.
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1

Introduction

Computers and machines are ubiquitous elements in our daily lives and this tends to

be an increasing reality day by day. Its natural to try to improve the computer-human

or computer-environment interaction. Even though computers process and treat huge

amounts of data with an ease that humans have failed to achieve, human daily problems

like recognizing another person or obtaining high level information from a scene turns

out to be something machines do not deal with the same ease as human do. This

fact was somehow evidenced in the 80s by Hans Moravec who pointed out that human

reasoning needs relatively little computation while sensorimotor skills require enormous

amounts of computation. 1 Therefore one of the most challenging points of the modern

engineering is to achieve a good interaction between machines and their environment.

This requires computers to have some intelligence and learning capability. Specially

speech recognition and visual interpretation are key points to grant computers and

machines with good interaction skills.

This chapter presents a brief description of the computer vision field, some back-

ground of it and the main challenges it presents.

1.1 Computer vision

Computer vision or artificial vision is a field that comprehend methods, techniques and

technologies to acquire, process and understand images. Typical targets in computer

1As Moravec writes: ”It is comparatively easy to make computers exhibit adult level performance on

intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old

when it comes to perception and mobility.”

1



1. INTRODUCTION

vision include;

• detection, segmentation and localization of objects (i.e face identification)

• object tracking (i.e following pedestrian movements for surveillance)

• image search by its content (i.e image online searchers)

• image restoration (i.e noise or motion blur removal)

• 3D construction from a set of 2D images

Even though many computer vision applications are programmed to solve a particular

problem, it is becoming common to find method based on machine learning. Therefore

computer vision is highly related with other fields. Figure 1.1 shows this relations.

Figure 1.1: Relations between computer vision and many other fields -

As a scientific discipline, computer vision is concerned with the theory behind artificial

systems that extract information from images. In a more technological point of view,

among its applications we could highlight:

• Industrial quality control (i.e detecting cracks or fissures in tiles, bottles etc)

• Autonomous driving

• Detecting events in video surveillance

2



1.2 Some background on object detection

• Indexing image data bases

• Modeling object or environments (i.e medical image analysis)

• Computer-human interaction (i.e controlling a computer with the eye movement)

• Automatic document treatment (i.e bank checks verification)

1.2 Some background on object detection

In this thesis we target in searching objects, in this case, pedestrians within static

images. Mainly an object detection application can be splitted in two different stages;

an encoding stage where the image or a region of it is translated into a feature vector

representation, and a detection stage to decide whether some concrete region is or not a

positive match. The feature extraction representation can either be sparse or dense and

usually capture shapes,contour information or intensity patterns. The sparse feature

approach extracts information only from some special regions, assuming not the same

importance over the whole image. Its noteworthy that this method needs some way to

detect important regions what implies a dense search over the image. Nevertheless the

way this points are found differs from the final encoding of the dense feature approach.

Additionally the space relationships between the features representation can also be

used to make detection decision. From the detector point of view mainly two approaches

can be found. On one hand a part based approach, where a detection is defined by the

presence of different parts constituting the object to detect and the spacial relations

between these parts. Considering the pedestrian detection problem we could think on

a pedestrian like a set of arms, legs, head and torso. For this set of parts to effectively

be a person it is not enough to find each part, it is also needed to satisfy some spatial

ordering. On the other hand a kind of template approach, where a densely feature

is computed to, further on, classify it as matching or not by any learning algorithm,

commonly SVM or similar techniques.

Among the pedestrian detection proposed solutions and methods, one of the most

promising approaches seems to be the sliding window paradigm when dealing with low

or medium resolution images.

3



1. INTRODUCTION

Papageorgiou et al. proposed one of the first sliding window plus SVM with an over-

complete dictionary of multiscale Haar wavelets (2). Viola and Jones built their de-

tector upon integral images for fast feature computation and a cascade structure for

efficient detection, and utilizing AdaBoost for automatic feature selection (3). Zhu et

al. sped up HOG features by using integral histograms (4, 5). Dollar et al. proposed

an extension of Viola and Jones method where Haar-like features are computed over

multiple channels of visual data (LUV color channels,grayscale, gradient magnitude

and gradient magnitude quantized by orientation) (6). The Fastest Pedestrian Detec-

tor in the West (FPDW), extended this approach to fast multi-scale detection after it

was demonstrated how feature computed at a single scale can be used to approximate

feature at nearby scales. Achieving a 5fps on 640×480 images as this method does not

need to compute a fine scale-space-pyramid. (7).

In this thesis we densely compute our feature vector representation over image

regions following a template approach, and then classify every feature with a SVM.

The goal is to model pedestrians in such a way that light, background or their clothes

does not detriment the detection. Concretely this point leads us to briefly review

some of the most common issues that object-detection problems present. These can

be divided in two categories, on one hand we can talk about the ones encountered

when modeling the object class that we want to detect, on the other hand, the ones in

modeling the non-object class.

1.2.1 Challenges in modeling the object class

Among the several difficulties that make hard modeling and detecting a particular

object we could mention the following:

• Illumination variations: objects appear widely different and modeling them in

such a way they become invariant to this variations turns out to be a key point.

• Object pose or object deformation: changes what an object looks like and therefore

template approaches for object recognition tend to suffer low performance in high

changing objects.

• Cluttered scenes: hinder detection and localization of objects.

4



1.2 Some background on object detection

• Occlusion: makes hard to recognize shapes and therefore objects as some parts

can not be seen.

• Intra-class appearance: makes difficult to group dissimilar objects. (i.e car types,

colors, shapes widely vary but they all represent cars)

• Viewpoint : makes appearance to widely vary (i.e pedestrians from an aerial point

of view versus frontal view)

1.2.2 Challenges in modeling the non-object class

On the other hand for the non-object class we should mention:

• Bad localization: sub-parts of the object could be detected but not the whole

object.

• Confusion with similar objects

• Miscellaneous backgrounds

5
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2

Aims of the project

2.1 Final aim

The main objective of the thesis is to implement and evaluate a pedestrian detection

method for static images. We relay in the descriptor proposed by Dalal and Triggs, from

the French National Institute for Research in Computer Science and Control (INRIA).

Their solution consists in a HOG plus a SVM approach which we build using the

MATLAB language and environment. More specifically we compare the effectiveness

of different set of parameters, SVM models, kernels, pedestrian data sets, and variations

of the detection method, while achieving a completely understanding of Support Vector

Machines,kernels and the HOG descriptor itself. Furthermore we realize a complete set

of tests and measures to each trained detector to prove and show in different manners

which turns out to be the best possible configuration taking into account detection

accuracy in terms of a trade-off between two different types of errors. In addition every

bit of code is developed with flexibility and abstraction in mind so every experiment

and model realized in this thesis can be replicated with same or different parameters,

configurable through parameter files. This enables other people to find extra results or

make different comparisons. For the same reason a wide set of routines and functions are

also available to provide a way to produce the same data results and make comparisons

easier.

7



2. AIMS OF THE PROJECT

2.2 Preliminary aims

Before tackling the problem some research was made to have a better understanding

of the pedestrian detection problem, its applications and how other people approached

the solution. Besides, in order to accomplish the above mentioned objective some

familiarization with SVM, its details and difficulties that may appear when trying to

shape a solution to this kind of computer vision problems is required. As well as

with various testing, accuracy measures and methods in order to make a complete

comparison. Concretely a thorough study of the mathematical basis of SVM and

its kernels, together with a study of which problems and how to diagnose and solve

them, when dealing with machine learning problems, has been done. Moreover some

high dimensional reduction and visualization techniques has been explored to find some

procedures that permit to examine easier how the studied HOG descriptor characterizes

the desired data. Finally before starting any implementation a brief research and

comparison was done in order to determine which environment or language was more

appropriate to carry out the whole project development, taking into account available

tools or libraries, which requires less effort or lines of code or which had a more active

community developing similar tools and applications just to name a few aspects.

8



3

A robust feature for object

recognition

3.1 Introduction

The main goal of this chapter is to explain an outperforming descriptor for object

recognition. Both from a theoretically point of view as from a more pragmatic and

computationally point of view. As has been said in the previous sections of this the-

sis the real challenge is finding a descriptor that performs equally well independently

of illumination variations and within a relatively wide range of poses variations that

can be adopted by pedestrians, this is a descriptor able to cleanly discriminate be-

tween pedestrians and not pedestrian even in cluttered background in difficult illumi-

nation environments. After examining all this requirements Dalal and Triggs (8) end

up with a feature called Histogram of Oriented Gradients a reminiscent of edge orienta-

tion histograms(9, 10), SIFT descriptors (Scale- Invariant Feature Transform)(11) and

shape contexts.(12).

Even though this work is completely focused on their usefulness regarding pedestrian

detection it is worth mentioning that HOGs performs equally well in other shape-based

object classes, showing substantial gains over intensity based features.

3.2 HOG configuration

For this thesis the default HOG configuration used by Dalal and Triggs in (8) has been

used. The reader may notice that the configuration used in this work differ slightly

9
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from the best one found in Dalal and Triggs in their work. This fact has two main

reasons to be. The first one is to successfully compare the models and experiments

performed in this work with the ones developed by them. The second one is that the

best configuration choice increments the size of the descriptor as having more redundant

information.

The selected configuration consists of linear gradient voting into 9 orientation bins in

0◦ to 180◦; 16x16 pixel blocks of four 8x8 pixel cells. Figure 3.1 shows the performance

depending on the configuration choice.

Figure 3.1: Cell and block size performance impact - The miss rate at 10−4 FPPW

as the cell and block sizes change. The stride (block overlap) is fixed at half of the block

size. 3× 3 blocks of 6× 6 pixel cells perform best, with 10.4% miss rate.

As the performance of the selected configuration is pretty much the same as for the

best one lets compare the descriptor size. For the default configuration the descriptor is

a vector of 3780 components but for the optimum configuration is a 12312 component

vector. In general the size of the descriptor can be calculated as:

Descitor size = b2s · nb · (vcells − bs + σ) · (hcells − bs + σ) (3.1)

Figure 3.2: Descriptor size equation

(nb: number of bins, bs: block size, σ: stride between blocks)
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3.3 Extracting HOGs from an image

Lets review now a complete definition of the descriptor, the key points of its obtainment

and the main configuration used in this thesis.

3.3.1 Brief overview of HOG descriptors

In the introduction of this chapter other descriptors were said to be similar as the

one we are studying, the main difference is that HOGs are computed on a dense and

overlapping grid of equispaced cells.

The main idea behind HOGs is that the local appearance and shape of an object in

an image can be characterized as the intensity gradient distribution, this is, by the

edges directions. This characterization can be accomplished by dividing the image

in little and connected regions, named cells, from within the gradients are computed.

Roughly speaking to make the descriptor we should join all the gradients computed

through all this regions and count the occurrences of the orientations. Anyway further

improvement can be achieved by defining a larger area, called block, where cells are

grouped. This blocks are then used to compute a intensity measure of the whole

block, used no normalize all the cells within the blocks. Proceeding like this makes the

descriptor more invariant to illuminations changes.

Figure 3.3: HOG extraction general view - graphical description of all the extraction

steps

11
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3.3.2 Input Images

3.3.2.1 Image size

All the images used in this work, and therefore the detection window, are 64 × 128.

Dalal & Triggs spotted out that shorter window size with less margin between the

pedestrian and the image borders turned out in a loss of performance. Therefore every

window present a margin of about 16 pixels from the pedestrian to all four sides.

Reducing this margin to only 8 pixels (48 × 112 window) decreases performance by

6%. Increasing the pedestrian size within a 64× 128 window also causes a similar loss

of performance as the margin results decreased even though the person resolution is

increased. The information in these margins provides useful context information that

helps the detection.

3.3.2.2 Color spaces

A color model is an abstract mathematical model describing the way colors can be

represented as tuples of numbers, typically as three or four values or color components.

For the present case, we are specially interested in the RGB model as is the color space

in which our images are encoded. Its name comes from the initials of each of the three

additive primary colors (Red, Green and Blue), as it is an additive color model, specially

designed for representing and displaying images in electronic systems, anyway before

its electronic usage was a solid model based on the human color perception theory.

Even though the RGB model has several implementations, the most common one uses

8 bits per channel, giving a total of 24 bits to encode a concrete color, or equivalently

2563 ' 16.7 colors.

We are specially, but not only, interested in the RGB color space as we are also dealing

with gray-scale images. While in the RGB model each pixel was represented by 24

bits (8 bits per channel), in the gray-scale model every pixel is commonly encoded with

only 8 bits, therefore every pixel value ranges from 0 up to 255, giving 256 gray levels.

As we have said, an input image can be in different pixel representations, so this thesis

has evaluated two different options; Gray-scale images and RGB images.

12
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3.3.3 Gradient computation

Even though many feature computations require some kind of image normalization,

such as color or gamma normalization, this method does not need to pre-process the

image due to the subsequent steps of the descriptor computation, therefor the first step

is to calculate the gradients. Dalal and Triggs (8) evaluated several derivative masks,

both 2-D and 1-D masks, and they found that the performance was quite sensitive to

the way this gradients were computed.

Within the 2-D derivative masks we find 2x2 diagonal masks

(
0 1
−1 0

)
,

(
−1 0
0 1

)
and Sobel masks (13)

And from the 1-D alternatives we find; centered: ([−1, 0, 1]),uncentered: ([−1, 1]) and

cubic corrected: ([1,−8, 0, 8, 1]) masks.

Also several gaussian smoothing (14) scales were tested, including no smoothing. It

turned out that no smoothing and the simplest 1-D centered derivative mask performed

better than all the others.

Therefor in this thesis we center in the evaluation of the best choice found by (8), so

the gradient is computed applying [−1, 0, 1] for the horizontal direction and [−1, 0, 1]T

for the vertical direction.

By applying a mask we refer to calculate the convolution of the masks as they go

through the image, so at every pixel we calculate a value for the x-derivative and another

value for the y-derivative, this values correspond to the x and y gradient magnitudes

respectively, lets name them Gx and Gy.

The equations defining the gradients are, respectively (being I the image and (i, j) the

pixel coordinates):

Gx(i, j) =
∂I

∂x
(i, j) (3.2)

Gy(i, j) =
∂I

∂y
(i, j) (3.3)

Figure 3.4: Gradient equations

The gradient magnitude itself is then computed as the square root of the quadratic

sum of each gradient component, this is:

M(i, j) =
√
G2
x(i, j) +G2

y(i, j) (3.4)
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Figure 3.5: Gradient magnitude equation

As regards the angle it can be calculated as the four-quadrant inverse tangent of Gy

and Gx, namely:

Θ(i, j) = arctan

(
Gy(i, j)

Gx(i, j)

)
(3.5)

Figure 3.6: Gradient angle equation

However we have not commented yet two details about the HOG obtainment. The first

detail concerns the already mentioned aspect of the color space of the input image.

The process obtained so far does not mention how to deal with image colors, so for the

RGB image case. As we will see in §7 using when available the three channels improves

slightly the overall performance. The basic idea behind the HOG computation when

taking a three channel image is mainly apply the explained method independently for

all the channels and taking for each pixel of the image the gradient with highest value

and its correspondent angle.

The second detail has to do with the boundary condition, that is to say how to compute

the gradient at the image boundaries where the center of the derivative mask can not

be placed as it should. Anyway we can forget this detail by now, just to not obscure

the main idea behind the descriptor itself, this will be explained in more detail when

we review the concrete implementation in §6.

3.3.4 Spatial / Orientation Binning

This step introduces the non linearity of the descriptor and implies the creation of an

histogram for a bunch of local spatial areas, the ones that we called cells. If we remem-

ber the first and brief definition given in the introduction, the image was subdivided in

little cells. Thus for every pixel within a cell a weighted vote is issued for the bin cor-

responding to the angle of its gradient, then for all the pixels of a cell the issued votes

are accumulated to form the final histogram for that cell. This histograms represent

angles evenly spaced between 0◦ and 180◦ or within 0◦ and −360◦, depending whether

the angle is signed or unsigned respectively.

The authors found out that using unsigned angles together with 9 orientation bins,

was the outperforming configuration. Probably the reason why omitting angle sign

information is better is because in human detection we find a wide range of clothing

and background colors and therefor this information is uninformative.
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With respect to the vote weighting either squared gradient magnitude, the square root

or the magnitude itself could be an option. In practice using the magnitude itself results

to be the best option.

Therefor the resulting equation for the computation of the kth bin of the histogram is:

hk =
∑
i,j

= M(i, j)1[Φ(i, j) = k] (3.6)

Figure 3.7: Bin k equation

(1 is the characteristic function that indicates if a particular orientation belongs to a given bin or not)

In our concrete case, k ranges from 1 to 9. As Dalal and Triggs showed in (8), a fine

orientation coding turns out to be essential while a more coarse spatial coding can be

done.

In fact, given the previous angle division in bins, probably given an angle it will fall

between to bin centers, so the vote is calculated via a bilinear interpolation between

the two neighboring bin centers. Doing the voting like this reduces the aliasing. The

bilinear interpolation is done as a double linear interpolation in both orientation and

position.

f(x|x1, x2) = f(x1) +
f(f(x2)− f(x1)

x2 − x1
(x− x1) (3.7)

Figure 3.8: Linear interpolation equation

Summarizing we have that the image is by now divided in little sub-regions called

cells, at the same time cells are grouped in larger spatial areas called blocks. Then for

every pixel within a cell the gradient (G(i, j)) is computed and a vote is issued, this

vote is then linearly interpolated to discover which portions of its magnitude (M(i, j))

correspond to each contiguous bin. So at the same time every pixel contributes to a

couple of bins and at each of the four histograms that form a block.

3.3.5 Normalization and descriptor blocks

As has been said over all the whole work, detecting pedestrian is subject to the main

computer vision issues like illumination and background variations or occlusions. For

the sake of a robust descriptor some kind of illumination normalization must be done,
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this is evidenced when paying attention to the variations in the gradients strength.

Actually this step is essential to achieve good results.

Several normalization schemes were explored by (8). Lets define first v as the vector

containing all the histograms for a given block, ||v||k the k-norm of v, with k ∈ 1, 2 and

lets ε be a small constant. Then the normalization schemes are:

L1-norm : v → v

||v||2 + ε
(3.8)

Figure 3.9: L1-normalization for the v descriptor vector of a block

L1-squared norm : v →
√

v

||v||2 + ε
(3.9)

Figure 3.10: L1-squared-normalization for the v descriptor vector of a block

L2-norm : v → v√
||v||22 + ε2

(3.10)

Figure 3.11: L2-normalization for the v descriptor vector of a block

And L2-norm followed by a clipping, limiting the values of v to 0.2 and re-normalizing

again. This can be achieved by getting the result of the L2-norm and cutting it and

normalizing again.

The experiments showed that either L1-norm-squared, L2-norm or L2-norm-Hys per-

forms similar and achieves good results, but L1-norm decreases performance in a 5%.

Not normalizing penalizes enormously the performance in around a 27%.

One could suppose that including the ε value in the above mentioned calculations may

in any manner disrupt or distort the discrimination defectiveness of the descriptor but

the results are insensitive to a wide range of ε values.

3.4 Visualizing the data

In general before dealing with any classification task, sometimes helps visualizing how

the selected descriptor represents the elements we want to classify. Obviously when the

dimension of the descriptor increases more difficult becomes the task of visualizing how

the selected features represent the data and therefor more difficult to determine at a
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glance if that set of features in conjunction with a concrete classification method will

lead to success or will fail.

In this case we are trying to visualize points on a 3780 space as the explained HOG

configuration gives a such dimensional vector. Once assumed this space is impossible

to really be visualized, the only possible way to figure out how the data is distributed

is by applying some dimensional reduction method. The idea is to end up with a 2D

or 3D plot revealing in some manner the implicit relations between points. A good

descriptor plus a good high visualization technique should give a map where instances

of the same class are close in the map and different classes are far from each other.

We selected t-distributed Neighbor Embedding (t-SNE) (15) method for achieving a

visualization from HOGs representation. The reason is because of the improvement

that this method presents compared with other similar ones. Plots from t-SNE present

a lower tendency to crowd points together in the center of the map and is better in

representing structures at many different scales in a single map.

Before presenting the results of the t-SNE visualization a very brief explanation of

how it works follows. Two stages comprise the algorithm. First, t-SNE constructs

a probability distribution over pairs of high-dimensional objects in such a way that

similar objects have a high probability of being picked, whilst dissimilar points have an

infinitesimal probability of being picked. Second, t-SNE defines a similar probability

distribution over the points in the low-dimensional map, and it minimizes the Kullback-

Leibler (16), divergence between the two distributions with respect to the locations of

the points in the map.

Looking at the visualization provided by the t-sne algorithm one can observe at least

a strong relationship between points representing HOGs extracted from pedestrian

windows and the ones extracted from windows not containing any pedestrian.

Once we have some clue about the discrimination capabilities of the HOG descriptor

we can start thinking about classification methods that we will explain in detail in the

next chapter.

Moreover, instead of visualizing the whole bunch of points representing every instance,

we may want to visualize a HOG feature extracted from a concrete image, is to say, to

visualize the image in the feature space, something similar to view the same as the clas-

sifier system sees. One possible approach to directly plot the values of each histogram

bar for all cells in the image, commonly represented in a star shape. Figure 3.13 shows
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Figure 3.12: HOG t-sne map - red circles represent pedestrians, blue crosses not

pedestrians

some examples of this representation. Another approach, more complex but quite bet-

ter to understand why our detector fails in some cases, is the method proposed by Carl

Vondrick, Aditya Khosla, Tomasz Malisiewicz and Antonio Torralba from MIT (17).

Figure 3.14 show some examples in image and feature space,the HOGgles representation

show how the HOG descriptor seems to belong to person images.

(a) HOG representation (b) Original image

Figure 3.13: HOG common representation

18



3.4 Visualizing the data

(a) (b) (c)

Figure 3.14: HOG HOGgles representation
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4

SVM

4.1 What is SVM?

In a wide variety of situations one may want to be able to assign a concrete object

to one or more categories or classes, based on its characteristics. For example, given

the characteristics of a concrete document page we may want to be able to determine,

from a set of page types, which type of page it is. In computer science this is called a

classification problem. SVM or Support Vector Machine are supervised learning models

and algorithms that are able to analyze data and recognize patterns to automatically

build a set of rules to classify similar data that they have never seen before.

By supervised learning we refer to the task of inferring the above mentioned set of

rules from already labeled data. Other kind of algorithms are able to group or classify

different object into clusters by similarity without knowing a priori the classes they

belong to. In the case of SVM we need to provide labeled data for all the classes in

which we wish to have our data classified.

4.2 How it works?

Let’s explain the simpler case in which we only have two classes; generally called a

binary classification.

Then, given a set of L labeled points, {xi, yi} with xi ∈ <d being a vector of features

or characteristics of the i-th object and yi ∈ {−1,+1} the class label, we want to build

a rule to determine, given a new x,one of the two possible classes. We will also assume

our date is linearly separable, this is to say that we can draw a line that splits all points
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belonging to one class from the points belonging to the other class when d = 2, and a

hyperplane when d > 2. Furthermore we want this separating hyperplane to maximize

the margins or distances to the closest points of each class.

The above mentioned hyperplane can be described by w · x+ b = 0 where w is normal

to the hyperplane and b
‖w‖ being the perpendicular distance from the hyperplane to

the origin.

Then solving the classification can be written like:

xi · w + b ≥ +1 for yi = +1 (4.1)

xi · w + b ≤ −1 for yi = −1 (4.2)

This two equations can be described by only one equation in the following form:

yi (xi · w + b)− 1 ≥ 0 ∀i (4.3)

If, as we said, the sets of points are linearly separable, then we can draw a line or

hyperplane going through the points that lie closest to the separating hyperplane, this

is, the support vectors. The main aim of SVM is then to maximize the distance between

the new hyperplanes; let’s call them H1 and H2.

Figure 4.1 illustrates the above explained theory.

Figure 4.1: SVM maximum separating hyperplane margin -

Geometrically we can see that the distance from H1 to the hyperplane is equal to 1
‖w‖ ,

and similarly to H2, so the distance from H1 to H2 is equal to 2
‖w‖ . As we explained the

main goal is to maximize this distance, then we have that solving the problem reduces
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to minimize ‖ w ‖. Minimizing ‖ w ‖ is equivalent to minimize 1
2 · ‖ w ‖

2 but using the

later term makes possible to perform Quadratic Programming optimization (QP).

Therefore we have:

min
(w,b)

1

2
· ‖ w ‖2

s.t. yi(xi · w + b)− 1 ≥ 0 ∀i
(4.4)

The development of the QP problem is out of the scope of this thesis, but the complete

development can be studied in detail in (18, 19, 20).

Regardless of the details of the QP the intuition behind SVM can be easily explained

with figure 4.2, where we have three different planes. H3 does not even separate com-

pletely the two set of points. H1 does separate the points, but does not satisfy the

maximum margin restriction, finally H2 separates both sets and maximizes the dis-

tance from the hyperplane to the support vectors.

Figure 4.2: Different hyperplanes in 2D - This figure shows three different separations

but only H2 gives the maximum separation margin

4.2.1 SVM kernels

The reader will have noticed that, until now, all the possible separation boundaries that

SVM is able to infer turn out to be lines in the <2 case or hyperplanes in <n. Sometimes

more complex boundaries are needed in order to classify not linearly separable data.

Figure 4.3 shows two examples of 2D representations of non linearly separable data.
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(a) (b)

Figure 4.3: Graphic examples of 2D non linear separable data.

When dealing with this kind of data a more complex boundary is a clear need. The way

in which SVM deals with this is through kernel tricks. Often non linearly separable

features become linearly separable when mapped to a high dimensional feature space.

This is an interesting property as allows us to use the same classifying method explained

in §4.2 without an extra effort, the only requirement is to transform in some way our

data.

Let give an example to illustrate this idea.

Figure 4.4 (a) shows the original data presented in figure 4.3, at its right we show the

results of mapping all the points to a three dimensional space through:

φ : <2 → <3

(x1, x2) 7→ (z1, z2, z3) = (x21,
√

2x1x2, x
2
2)

Clearly after mapping a 3D feature space our data becomes separable by a hyperplane.
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(a) Radial structured data (b) Radial data 3D mapping

Figure 4.4: Feature mapping to a higher dimensional space

Although many kernels exist (Fisher,graph,polynomial,string kernels etc) we explain

the Gaussian kernel or Radial Basis kernel (RBF) as this is the one used later on this

thesis. The expression defining the RBF kernel follows:

K(x, x′) = φ(x)Tφ(x′) =

exp

(
−‖ x− x

′ ‖22
2σ2

)
(4.5)

Figure 4.5: Gaussian kernel formula.

Where σ is a free parameter, x and x′ are feature vectors in some input space and ‖ x − x′ ‖22 is the

squared Euclidean distance.

Sometimes can also be found written like:

K(x, x′) = exp
(
−γ ‖ x− x′ ‖22

)
with γ = 1

2σ

Even though the kernel feature expansion has infinite number of dimensions 1 we don’t

ever need to compute the feature mappings φ(x), actually we work with their kernels.

1Assume that Gaussian RBF kernel k(x, y) is defined on domain X×X where X contains an infinite

number of vectors. One can prove that for any set of distinct vectors x1, . . . , xm ∈ X, the matrix

(k(xi, xj))m×m is not singular, which means that vectors φ(x1), . . . , φ(xm) are linearly independent.

Thus, a feature space H for the kernel k cannot have a finite number of dimensions.
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As this kernel ranges from 0 (in the limit) to 1 (when x = x′), it can be seen as a

measure of similarity.

They way in which the new similarity measure helps us follows:

Let’s suppose we have m training instances. Then for every instance of our training

data set, we define a set of landmarks in such a way that every landmark position

corresponds exactly to the points of the training set.

Formally given (x1, y1), (x2, y2), . . . , (xm, ym) training instances, we choose the men-

tioned landmarks as l1 = x1, l2 = x2, . . . , lm = xm.

Now given an example x, instead of having x as the feature vector, we map the vector

to:

x 7→ xmapped =


k(x, l1)
k(x, l2)

...
k(x, lm)


Then the same optimization problem can be formulated but instead of x using the

new feature vector xmapped. In conclusion classifying a point boils down to predict one

when:

xmapped · w + b− 1 ≥ 0 (4.6)

And 0 otherwise.

4.2.2 Training a SVM

While the above section explains the main theory behind SVM we have not explained

yet the effect of some details and parameters involving the learning itself.

The effectiveness of SVM, assuming we have good data and features, depends on the

kernel selection, the kernel parameter selection and on the soft margin parameter C.

Between the kernel parameters, in the RBF case, we find the γ value, which we will

explain further on. We have yet explained nothing about the soft margin parameter C

until now. The main idea behind C is to allow some amount of miss classified instances

when no possible clean separation can be done by any hyperplane, but still achieve the

cleanest possible separation. One way of understanding C is to see it like a parameter

to measure the effort that SVM will do until finding a separation boundary. Formally it

is a weighting parameter to control how much penalizes every miss classified instance.
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We can write the objective of SVM like:

min
(w,b,ξ)

1

2
· ‖ w ‖2 +C

m∑
i=1

ξi

s.t. yi(xi · w + b)− 1 ≥ −ξi ∀i ξi ≥ 0

(4.7)

Figure 4.6 shows the effect of the C parameter, if we strongly penalize a miss classified

instance, SVM will try to perfectly fit every instance, giving as separating hyperplane

H1 what will lead to have a poorer classification boundary. If instead, we relax the cost

value, we obtain a more reasonable hyperplane, H2.

Figure 4.6: Cost parameter effect - H1 corresponds to a high C value, while H2

correspond to a low C value

With respect to γ, the relationship with σ is γ = 1
2σ2 . Therefore when σ is large (γ

small) we have that the similarity function varies smoothly, conversely σ small (γ large)

implies a more pronounced variation in the similarity function. This can be seen by

plotting the shape that takes the Gaussian function when varying σ and taking the

similarity value as the height of a concrete point (figure 4.7). Furthermore figure 4.8

illustrates the effect on the classification boundary.
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(a) σ = 1 (b) σ = 2

Figure 4.7: Gaussian curves as similarity functions

(a) γ = 10 (b) γ = 100 (c) γ = 1000

Figure 4.8: γ effect on the classification boundary

4.2.2.1 Selecting the SVM parameters

Now we have reviewed the effects of the parameter selection and the impact of these

in the SVM boundaries, we can talk about how to chose the proper values to each

parameter and which analysis we can perform in order to detect some problems like

over-fitting or under-fitting.

Many times classification problems involve features with more than two dimensions,

therefore training a SVM with some pair of values of gamma and C and plotting the

boundary is not possible, moreover does not seem a very intelligent procedure. The

most accepted way to find the optimum parameters is to perform a cross validation

over a range of possible values. Mainly this is a technique to check how well will a
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model generalize on unseen data. Given a set Γ of possible γ values, a set κ of cost

values and an integer k, the cross validation method, for every parameter configuration

in Γ × κ builds a model with a random subset of size k−1
k and with the remaining

1
k validates the model. This process is repeated k times (folds) in such a way that

every fold is used once as validation set. From each repetition an accuracy measure

is obtained, the average accuracy is then the accuracy of the model for that concrete

parameter selection. Even though this is the most popularized technique for performing

a parameter search, some problems may arise, the most common are:

Over-fitting.

We say that the model has over-fitted when describes random errors or outliers

rather than the underlying relationship between data. The possibility of over-fitting

exists because the criterion used for training the model is not the same as the criterion

used to judge the efficacy of a model. When training we try to minimizing the error

in classifying a set of instances, this is, to fit some concrete set of points, but what

really makes good a model is its capability of generalization and therefore how well

classifies unseen data. Not only a bad parameter selection is likely to lead in an overfit,

also having a little number of training instances is likely to over-fit, specially if using a

complex boundary model.

Figures 4.6 and 4.8 (c) clearly show examples of over-fitting. The first one due to a

large cost and the second because of a too large γ. Owing to this behavior it is usual to

find that, when training RBF models, the optimum parameter configurations present

some kind of diagonal through the parameter space, as lower γ values tend to balance

the effect of large C values and vice versa.

Diagnosing over-fitting is not always easy. An evidence of over-fitting, due to a bad

parameter selection, might be having a low error when classifying the training set but

a high error when classifying the cross validation or test set. Plotting error curves in

function of the C value for both training and cross validating sets may give some clue.

Figure 4.9 shows an example of the mentioned learning curve.
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Figure 4.9: Learning curve showing the evolution of the error in function of

the model complexity - High variance = over-fit, high bias = under-fit

Another reason for over-fitting could be an insufficient number of training instances.

Plotting error curves in function of the training instances for both training and cross

validation or test set could help. In this case we expect to see the training error

increasing as the number of training instances grows and the cross validation error

decreasing, as the model is not possible to perfectly fit the total number of instances.

It is also common to see a large gap between both type of errors. Figure 4.10 show an

example of the expected curve.

Figure 4.10: Typical learning curve for high variance - Large gap between errors

and error convergence tendency suggest over-fitting

In conclusion to solve this problem we should opt to increase the number of training

instances, what is not always possible and usually implies a hard labeling work, or to

relax the model complexity, either choosing another parameter configuration or using
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another kernel.

Under-fitting.

On the other hand we say a model has under-fitted when it is not capable of describing

the relationships between the given data. Under-fitting may occur when trying to fit

some complex data with an excessive simple model. For instance trying to classify with

a linear kernel the data shown in 4.3 would lead in a clear case of under-fitting, as

a line is not able to split both classes. Contrary to what happens in the over-fitting

case, when the model turns out to be very simple, both training and testing errors are

high. The same analysis can be done to determine if we have an under-fitting problem.

Plotting error curves in function of the training set size should help. Figure 4.11 show

the typical shape these curve should show when suffering from under-fitting. In this

case usually a little gap separates both errors.

Figure 4.11: Typical learning curve for high bias - Little gap between errors and

high errors suggest under-fitting

In this case, increasing the training instances, by itself, does not tend to help. When

dealing with this problem we should increase the model complexity.

4.2.3 Testing a SVM

Some considerations must be taken into account when trying to determine the effec-

tiveness of a classification model. The first, and most important, is to select as testing

instances data not used in the training process. As we want to test the real performance

of the model we need to know how it does when dealing with unseen data, this should

give us an intuition of how did the model generalized while training.
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The second consideration, has to do with the relation between the amount of instances

from each class. Let’s think we test with a very skewed data set where 99% of our

data belong to the positive class and the remaining 1% to the negative one. Now

we perform our test with a model, that independently of the input, always outputs

a positive prediction. In this scenario, counting the right guesses will give a 99% of

accuracy, however it is obvious this model is not a good choice. Therefore is preferable

to use a similar amount of instances of each class. However some measures apart from

a simple count can be done to circumvent this drawback if for some reason we specially

need to use skewed data sets. These measures and their explanations can be seen in

§5.2.
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Pedestrian detection

5.1 Training the detector

A complete explanation follows about how the SVM training has been done, not only

of the final detector, also of all the intermediate states, models and detectors that have

led the way until achieving the definitive one.

In general every detector trained is divided in two or more steps of retraining. First

a pre-model is trained, then several hard example searches follow using the previous

trained model to achieve this purpose, this is, using the just trained model a exhaus-

tively search along the negative images is done with the purpose of finding windows that

the model mistakes in its classification. Each model in turn is trained searching throw

a cross-validation the optimum parameter sets for that kernel within a range of pos-

sible values for each parameter. Once the best parameter within the given parameter

space is found that model is saved and becomes the model for the hard example search.

This process is repeated until no further improvement is reached or the performance

increases in a very low rate.

When talking about exhaustive search we refer to a search in a dense space-scale pyra-

mid following a sliding window paradigm. See figure 5.1

The starting scale level is 1, so the first image is the original one, then we keep adding

one more level in the pyramid until the size of the scaled image is greater than 64 for

the horizontal axis and 128 for the vertical axis. The scale ratio between consecutive

levels is 1.2. So concretely we will generate more scaled images until
⌊
ImageWidth

Scale

⌋
> 64

and
⌊
ImageHeight

Scale

⌋
> 128.
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Figure 5.1: Scale-space pyramid illustration - Each level represents a scaled version

of the original image

As regards to the sliding window configuration, the window stride (sampling distance

between two consecutive windows) at any scale is 8 pixels. If after fitting all windows

at a scale level some margin remains at borders, we divide the margin by 2, take its

floor and shift the whole window grid.

For example, if image size at current level is (75,130) and the margin (with stride of

8 and window size of (64,128) left is (3,2), then we shift all windows by
⌊
MarginX

2

⌋
,⌊

MarginY
2

⌋
.

New image width and height are calculated using the formulas:

NewWidth =
⌊
OrigWidth

Scale

⌋
and NewHeight =

⌊
OrigHeight

Scale

⌋
.

Here scale = 1 implies the original image size.

5.1.1 Data sets

As pedestrian in particular, and any object detection in general, is becoming an import

goal in the machine learning field, several image data sets can be found all over internet,

many of them belonging to computer vision institutes and research departments all

around the world. For this thesis two well known pedestrian data sets has been used,
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the first one from the Massachusetts Institute of Technology (MIT) and the second

one from the French National Institute for Research in Computer Science and Control

(INRIA).

This are the specifications of each data set:

• MIT Data Set: (21)

– 64 x 128 (x3) PPM format images

– 924 files (positive right standing pedestrians)

– 10 Megabytes compressed : 22 Megabytes uncompressed

– pedestrian posses limited to rear or front views (people height from shoulders

to the feet is approximately 80 px)

– images obtained from color video sequences taken in different seasons with

different video cameras

• INRIA Data Set: (22) Divided in two formats. (a) original images with corre-

sponding annotation files, and (b) positive images in normalized 64x128 pixel

format (as used in (8)) with original negative images.

– 70 x 134 normalized and centered positive test images (left and right reflec-

tions)

– 96 x 160 normalized and centered positive train images (left and right re-

flections)

– 1218 original negative training images

– 614 original positive training images

– 453 original negative testing images

– 288 original positive testing images

– 970 Megabytes compressed : 1150 Megabytes uncompressed

– Only upright persons with height larger than 100 px are marked in each

image

– images obtained from different sources
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5.1.2 SVM models

Several SVM models has been trained to find such a configuration that performs in the

best possible way.

5.1.2.1 MIT models

For the MIT data set linear kernel and color images has been used because perfectly

separation was achieved. Results can be found in the test section. As the MIT data

set only provides positive images an additional group of 2000 random negative images

were sampled from images were no pedestrian could be found. This images joined with

a group of 654 positive images (the positive images given as train set by MIT data set)

were fed into a linear SVM to train a pre-model.

To find a reasonable good pre-model various models were trained with different param-

eter configuration performing a 5-fold cross-validation over the training set to find a

measure of the performance depending on the parameter. As the model was a linear

kernel model the only parameter to adjust is the cost parameter (C) as explained in

§4.2.2. This parameter searches were made over a power of two range starting from 2−2

and up to 27, finding out that increasing C over a value of 23 makes the model overfit

and decreases its performance as can be seen in figure 5.2.

Figure 5.2: MIT pre linear model cross-validation - y-axis represents performance

and x-axis cost value.

Although this model is just a preliminary model reaches a cross-validation accuracy of
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99.85% and even though the cross-validation was performed over the train set it gives

a good intuition about how will the model perform on unseen data.

The final model was acquired by searching exhaustively, as explained at the beginning

of this chapter, the original 2000 negative images from where the negative training set

was sampled to find hard examples. Then the initial training set plus the hard examples

found by the pre-model were fed into the linear SVM to obtain the final model repeating

the above explained process. This definitive MIT model performed slightly better than

the preliminary one, this slight difference can be seen in the next cross validation.

Figure 5.3: MIT round 1 linear model cross-validation - y-axis represents perfor-

mance and x-axis cost value.

5.1.2.2 INRIA models

Linear models. For the more challenging INRIA data set we can find two groups of

models depending on the SVM kernel used.

For the purpose of training SVM models from the INRIA data set a bunch of 12180

negative windows were sampled randomly from the original negative images.

As the training process remains the same as long as the SVM kernel type is the same,

the training process will only be explained once for each kernel type even though all

the results will be shown later on this chapter.

The process for all the linear kernels of the INRIA data sets are identical to the process

explained for the MIT data set so it can be considered as explained but considering a
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little difference in the cross validation process. While in the MIT models a 5-fold cross

validation was performed, in the INRIA models a 3-fold cross validation instead was

done, this was like this because of the difference in the number of images used to create

the models.

Due to the great amount of images involved in the training process and because of the

nature of the training itself a big amount of time and memory is needed to perform a

more high order fold cross validation. This fact is specially notorious in the first retrain

round when the hard examples found by the pre model are used. With this is mind and

at the expense of a slightly poorer error estimation in the training process the number

of folds was reduced from 5 to 3.

As the training method followed by the authors was not very clear explained with

respect of the number of negative instances used to train the pre-models, two ways of

proceeding were tried.

In the first approach a subset of the whole negative training images was chosen randomly

to train a pre-model, once this model was ready the hard examples were joined with

the negative training images and served like the training set for the different rounds.

Generally a similar number of negative and positive instances were used.

It is noteworthy that, in contrast to the MIT case, the first linear model of the INRIA

data set did not perform as good as the MIT case did, so the re-train step becomes

more important. Anyway only one retrain round is worth it, further rounds do not

improve significantly the performance of the detector. The cross-validation curves of

the RGB models can be seen in figure 5.4.
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(a) INRIA pre linear model cross-validation (b) INRIA round 1 linear model cross-validation

Figure 5.4: Cross validation accuracy tendency round comparison

y-axis represents performance and x-axis cost value.

The second approach consists in the same process but using as initial set the whole

negative training set provided by the INRIA team. In this way a more wide range of

cost values was needed to find the optimum parameter configuration, leading in the

following parameter search and curve. 5.5

Figure 5.5: INRIA pre linear model cross-validation using all the negative

training instances - y-axis represents performance and x-axis cost value.
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As can be seen the larger data set needs a softer cost condition. This can be understood

because finding a more adjusted line, fitting better the training set, can lead in a poorer

generalizing conclusion and when unseen data is tested the model fails to correctly

separate between classes.

In this case retraining the above pre-model did not make any improvement, anyhow

the above cross validation results show very similar results for both approaches, even

slightly better results can be seen in the former one. 5.6 shows the cross validation

curve.

Figure 5.6: INRIA linear model round 1 cross-validation - y-axis represents per-

formance and x-axis cost value.

Eventually for the linear kernel a gray scale model was trained. For the gray scale

model same curves were achieved, showing the same tendency through the parameter

space but with slightly lower cross validation accuracy. This decrease in the accuracy

was constant over the whole curve and around 0.25% less. This was made just to be

sure about the little impact that color images versus gray scale images have. In the

tests section of this work more accurate experiments about using color versus gray scale

images and models will be explained.
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RBF models. Also RBF models were trained following the same methodology, this

is, training a pre-model and the further exhaustive search through the original training

images.

Despite of the fact that the process is always the same, in the RBF case a more

intelligent way of feeding the SVM is needed. If at the very first attempt of training the

pre-model we feed the entire negative image set, as the image set presents a important

skew in the number of instances available between the positive and negative classes,

along a large cost range of values, the cross validation accuracy results to be always the

same,even for relatively high values of C and low values of γ, giving a value of 83.44%.

A fast observation reveals that doing like this results in the SVM process considering

only one class, in this case the negative one. This can be easily seen by dividing the

negative training cases by the total number of instances, this is: 12180
12180+2416 = 0.8344

Given this behavior, we could opt to continue increasing the cost values or to train a

pre-model providing SVM with a similar amount of negative and positives instances so

neither of the classes hides the other one at the training phase. We consider both options

even though a large time and memory requirements are needed when dealing with RBF

cross validations and a huge amount of data. This leads again in two approaches and

their corresponding sets of models.

As has been explained a main difference between the two families of models is the

parameter space, for the RBF models a surface must be explored to find a reasonable

good parameter set. This exploration for all the models trained consisted in a general

and wide grid given, for both γ and cost parameters, a range going from 2−2 up to 26

in step of powers of 2 is used.

After this general cross validation accuracy grid is done, if needed, a more fine-scaled

parameter search is made, looking this time, only over the possible promising areas.

This areas could be, for instance, the gaps between two values of cost or γ of the

previous cross validation or any possible value outside the first parameter range.

Regarding the first approach, is to say, using a sub set of the training images where

negative and positives instance are similar in number, three models where trained,

two pre-models and the final round-1 model. The two pre-models stand for different

parameter searches over areas far away each other to figure out which was the most

promising one. Figure 5.7 show the wide parameter searches made for the pre-model
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and the round-1 model. Both searches show high accuracy values, but about a 3% of

improvement is achieved by the re-training step.

(a) pre-model wide cross-validation search (b) round-1 wide cross-validation search

Figure 5.7: RBF parameter cross validation search (1st approach)

For the second approach, we performed several parameter searches until finding the

most promising configuration, the cross-validation search grid plots can be seen in 5.8

and 5.9.

5.8 shows the results of the first and general search, used to figure out, in a first

approach, how it looks the parameter surface.

As this surface throws no good configurations, a wider search is done, this time trying

some extreme values for the parameter, hoping this would shows any tendency and

therefor get some clue from where to search. Once the tendency could be spotted out

a finer search was done. Concretely for this model we can see how large cost values but

low gamma are needed to obtain a good performance. This can be appreciated in 5.9
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Figure 5.8: First RBF parameter search - y-axis represents gamma and x-axis cost

value.

(a) wide search (b) finer search

Figure 5.9: RBF parameter cross validation search (2nd approach)

Then as usual, the original negative images are exhaustively searched to find hard

examples. This examples then become part of the training set and the entire process

is repeated. Anyway this did not represent an improvement, slightly worst accuracies

were achieved around the expected areas in the parameter space where good results

should be found.

It can be seen that a higher accuracy is reached, compared to the accuracy achieved by
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the first approach with either linear and Gaussian kernels. But it is worth mentioning

that is at a expense of a really higher computational time.

5.2 Testing the detector

Even though the cross validations performed during the training stages give a quite

accurate measure of the performance of a model, several tests has been performed to

each model to really know how it will respond with unseen data.

Between the main reasons to develop good test methods and measures the next one

could be remarked, while for cross validating not the entire training data is used to

find accuracies, as the training set is divided in fractions as explained in §4.2.2., this

will make some differences between the numbers obtained in the training stages and

the definitive model.

Another important aspect to note is that in the case of this work, the accuracies com-

puted at cross validations does not take into account possible differences in the impor-

tance of misses, so a false positive is as bad as a false negative. For the concrete case of

pedestrian detection a mistake in the classification of a window containing no pedestri-

ans, resulting as a positive case, may be less important that the opposite case. As this

work is centered in the detection itself and not in any concrete application of pedestrian

detection, all mistakes in the classification are counted as equal. Therefore its possible

to find models with the same accuracy but differing in the type of errors committed.

Furthermore, when training with image set that greatly differ in the instance number

between classes, high accuracies can be reached while cross validating but only because

a class can represent a good percentage of the whole training instances.

Knowing the foregoing considerations this performance measures has been done to each

model:

• Precision, Recall and F-score measures

• Receiver Operating Characteristic (ROC curve)

• Detection Error Trade-off curve (DET curve)

• SVM scores distribution analysis

An explanation about what is each measure and how it is obtained follows.
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Precision, recall and F-score measures. In pattern recognition and information

retrieval with binary classifications two different measures can be done. We understand

by precision the fraction of retrieved instances that are relevant while recall can be

understood as the fraction of relevant instances that are retrieved. In a classification

task we would define:

• tp: true positives, the number of correctly labeled as belonging to the positive

class

• tn: true negatives, the number of correctly labeled as belonging to the negative

class

• ftp: false positives, the number of wrong labeled as belonging to the positive class

• fn: false negatives, the number of wrong labeled as belonging to the negative

class

Then:

precision =
tp

tp + fp
(5.1a)

recall =
tp

tp + fn
(5.1b)

Figure 5.10: precision and recall equations

A value of one in the precision measure means that actually every instance classified

as positive was indeed positive but tells nothing about the items that did not were

classified as positives. On the other hand a value of one in the recall measure means

that all the positive instances were classified as positives but says nothing about the

negatives instances that were also label as positives.

As has been pointed out by the definition of the above measures a kind of average

is needed to somehow easily compare results from different models. A measure that

combines precision and recall is the harmonic mean of both values, traditionally called

F-score.

Fscore =
precision · recall

precision + recall
(5.2)

Figure 5.11: F-score equation

This is also known as F1 score as recall and precision are evenly weighted.
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ROC curves. When there is a tradeoff of error types, a single performance number

is not the best solution to represent the capabilities of a system. Such a system has

many operating points, and is best represented by a performance curve. A receiver

operating characteristic, or simply ROC curve, is a graphical plot which illustrates the

performance of a binary classifier system as its discrimination threshold is varied. It is

a plot of the true positive rate against the false positive rate, then, the tradeoff between

sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease

in specificity).

Some observations should help to interpret this plot:

• The closer the curve follows the left-hand border and then the top border of the

ROC space, the more accurate the test.

• The closer the curve comes to the 45-degree diagonal of the ROC space, the less

accurate the test.

• The slope of the tangent line at a point gives the likelihood ratio for that value

of the test.

• The area under the curve is a measure of accuracy. An area of 1 represents a

perfect test; an area of .5 represents a worthless test.

Anyhow when a good performance is achieved most of the plotting area is underutilized

as the curve tends to get closer to the left and upper margins, giving fewer details

about the tradeoff between errors. Therefore we also use other type of plot to be able

to compare en detail different models.

DET curves. In order to solve this issue with ROC curves we also use DET curves.

In the DET curve we plot error rates on both axes, giving uniform treatment to both

types of error, and use a scale for both axes which spreads out the plot and better

distinguishes different well performing systems, this usually produces plots that are

close to linear.

This plot assumes a normal likelihood distribution for both positives and negatives

instances and scales the axis according to this assumption. This scaling and linearity

allows to have a clearer observation of the system behavior.
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Besides this advantage, some special points can be easily viewed in DET curve. A

weighted average of the missed detection and false positives rates may be used as a

reference of the overall performance, in this work all the plotted curves indicate, by

a little circle, the point where this average becomes minimum. As we don’t have any

special requirements in minimizing any of the two types of errors an evenly weighted

average is performed to find the point where this measure becomes minimum, anyhow

this could be adjusted to meet any special requirement that a concrete application may

need.

SVM scores distribution. In the general case SVM defines one or more hyper-

planes which behave as boundaries between classes, therefore the confidence of belong-

ing to a concrete class can be seen as the distance from a boundary. This is what

we call classification score. Just for having a clue on how well the boundaries were

placed, we plot a histogram counting how many positive and negative instances were

at a similar distance from the boundary using different colors between classes. In this

plots we expect to find little overlapping between different color bins as SVM tries to

maximize the margins from the boundary to each class. We could also use the prob-

ability estimates but it turns out to be a expensive computation and is know to have

some numerical issues. Even though a score may not be a very informative measure

itself, we are not interested in the value itself but in the distribution of all the scores.

Threshold curves. SVM implicitly uses a 0.5 threshold to determine whether a

concrete instance belongs to one class or the other. Depending on how the prediction

probabilities are distributed and the actual ground truth values, maybe other thresholds

may prove to be more appropriate. To find the optimum threshold for a desired trade-

off between the two possible kind of errors (false positives and false negatives) we plot

precision, recall and F-score measures in function of the classification threshold.

5.3 The final detector

Once the best possible model has been selected a complete detector can be made. The

detector consists then in a SVM classifier using the best model achieved in the previous

training stages plus a sliding window system.
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Given an image, we re-scale the image, then a dense scale-space pyramid is made and a

64×128 detection window scans all the pyramid levels sliding this window as explained

in the process of the exhaustive search performed during the training for finding hard

examples.

This re-scaling of the input image is done for two main reasons. The first reason has

to do with the way on how the model was trained. As all the models where trained

with 64× 128 images where pedestrians presented an average height of 100 pixels, the

testing stage must also be compliant with this. This reduces the overall processing time

by not checking non useful windows.

After this reduction is made, the exhaustive search begins. As one pedestrian can

cause several detections from nearby windows a non maximal suppression is applied so

only the most probable detection window is shown. Anyway the detector is capable of

drawing all the detection window if desired as well as showing each window in separate

figures for a more detailed examination.

Just for the purpose of understanding and making visible how the sliding window

method works, we made another detector where the sliding windows is shown at every

stage, showing a red rectangle where no pedestrian is found inside the window and

green rectangle with the percentage of confidence when a pedestrian is found.

Regarding to the non-maximmum-suppression algorithm, the main idea behind it, is to

group all the detection windows fulfilling some proximity condition for comparing their

classification probabilities and suppress all but the most probable detection within each

cluster.

We tried two proximity condition to group detection windows. The first approach is

to group them by a squared Euclidean distance measured in pixels. For every window

we compute its distance as d = d2x + d2y. Where dx and dy are the coordinate difference

between the top left corners of each window. As the square root operation turns out to

be computationally expensive and does not provide any improvement to the calculus

we decided not to do it. Every window at a shorter distance than the square of the

shortest side of the detection windows size is considered near each other.

The other approach is similar but comparing the overlapping area between windows,

every two windows with a overlapped area greater than half the total area is considered

close and therefore considered as two windows detecting the same pedestrian.
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Figure 5.12: Multi detection versus non-max-suppression detection

Appears that the first approach gives better suppressions for the tested images. Anyway

some more detailed testing should be considered as the proximity conditions could not

be the optimum ones.

Some detection suppression examples are shown in figure 5.12.
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Implementation and Usage

In this section we give a brief review of the implementation and some details of each

detector component, nevertheless a list and explanation of the libraries and packages

used in the project can be found in §9.

Additionally to the description in this chapter a complete documentation in HTML

format is provided to easily navigate through the whole set of functions, making possible

to see the calls between them and the complete code.

The development of the entire project has been made using MATLAB, a widely known

language and environment, designed for numerical calculus and fast development of

applications. Between the main reasons for what MATLAB was chosen, we find:

1. Much faster development compared with traditional languages like C++ or Java

2. Large number of libraries and toolbox for computer vision, optimization etc

3. Efficient manipulation of matrices and vectors

4. Large community and support

Besides MATLAB provides an interesting development environment, as MATLAB runs

on top the Java Virtual Machine it’s performance becomes poor compared with a more

low level language.

MATLAB structures all the code through .m files that can be scripts or functions.

The main difference between them is that functions expect input parameters and in

turn returns any number of output parameter while scripts don’t use neither input

nor output parameters and therefore work with the workspace variables, so no private
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variables are available when working with scripts.

(A detailed explanation about the workspace and MATLAB can be found in §9)

In addition to the MATLAB project code, some scripts are also available in order to

make possible some fast and easy results acquisition. Mainly we provide functions for

plotting cross-validation grids and curves and create excel worksheets from different

logging data written by the training or testing functions of the project itself. Many

of this scripts are written in Python but its use is generally straightforward and brief

explanations are included with the code.

6.1 Implementation

Before explaining the functions and script composing the project is worth being familiar

with some MATLAB variable types, libraries or concepts as: cell array (9.1.1), .mat

files (9.1.1) and the libSVM library (9.2.1).

Is also noteworthy that the whole project is made in such a way that every configurable

parameter of the studied method is capable of being changed through configuration files.

The functions and scripts composing the project follow (in alphabetical order):

• compute cell coordinates.m - function for computing cell coordinates given

the cell x and y size. Input: image to split in cells, x cell size and y cell size.

• compute gradient.m - function for computing the gradient of the input image.

If the input image is a RGB image, the gradient is computed for each channel

and the returned magnitudes and angles correspond to the highest magnitude for

each pixel. Input: Image from where to compute the gradient. Output: Angles

and magnitudes of the gradient in each pixel.

• compute HOG.m - function responsible of computing the descriptor. Calls the

compute gradient function and performs the histogram computation and block

normalization. Input: Image to process, cell size in pixels, block size in cells and

number of bins of the histogram. Output: HoG descriptor of the image.

• convert2gray.m - Script for saving a gray scale version of every image in a

specified folder. Used to obtain a gray set from the RGB images in train and test

sets from INRIA person dataset.
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• cross validate.m - function responsible of the cross validation of a SVM model.

Once the whole parameter space is searched the best configuration found is re-

turned. Also a cross validation log file, where the accuracy reached for each

configuration is logged, is saved a long with a cross validation grid or curve repre-

senting the evolution of the accuracy with respect the parameter selection. Input:

kernel type (RBF or linear as string), cost and gamma ranges as lists of doubles,

the train matrix (as many rows as training instances and as many columns as the

HoG dimension), a label column vector specifying the class of each instance and

the model save path. Output: String representing the best parameter set in the

libSVM format.

• static detector.m - function that performs the pedestrian search over all the

images found in a specified folder. Given a model asks for a folder from where to

read the desired images. Then for each image searches for pedestrians. If desired

applies non-maximum suppression to draw only the most probable matches over

the image marked with a green bounding box. If non maximal suppression in

desired all positives matches can be drawn. Also every detection can be showed

in a separate figure for a more accurate examination if wanted. Input: SVM

model. Output: Empty

• sliding detector.m - function similar to static detector but draws the scanning

window all along its sliding process over every image. Prompts for the image

folder path and calls draw sliding window for every image found in the folder.

Input: SVM model. Output: Empty

• draw sliding window.m - function responsible of drawing the sliding window.

Called from sliding detector. Responsible of computing the descriptor and clas-

sifying each window as long as the detection window slides through the image.

Input: sub image defined by the detection window and the libSVM model desired

for the classification. Output: Empty

• get feature matrix.m - function to compute the descriptor matrix for all the

input images. Input: Paths to positive and negatives images. All window param-

eters are read from the window params file. Output: labels; a column vector with

the ground truth class for each input instance, train matrix; descriptor/feature
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matrix where the number of rows is equal to the number of input instances and

the number of columns is equal to the feature vector dimension.

• get files.m - function for retrieving all or a subset of the image paths positive

and negative folders. Input: number of positive image paths desired, number

of negative image paths desired (-1 in case of asking for all the images in the

folder) and a cell array containing the paths to the folders containing positive

and negative images respectively. In case no folder paths are given a windows

prompts for both folders path. Output: Two lists containing the positives and

negatives paths to the images.

• get negative windows.m - function for computing the descriptor matrix for

all input images. Input: two lists containing positive and negative images paths

respectively. Output: labels; a column matrix with 1 in positives images and -1

in negatives, train matrix; the descriptor/feature matrix. where num. Rows =

num. instances and num. columns = feature dimension.

• get params.m - function responsible of reading different parameters from a .mat

file. Input: parameter file path. Output: map or dictionary mapping all the

parameter keys to its actual values.

• get pyramid dimensions.m - function for computing the dimensions of the

scale-space pyramid given an input Image. The parameters defining the stride,

scale factor and windows dimensions are read from a pyramid parameter file. By

default this file is searched in the .m file root folder, if not found is searched in the

params folder where the .m file is located. If both searches fail to find the param-

eters file then a window prompts for it. Accordingly to the parameters read the

function computed how many detection windows will the pyramid have. Input:

Image to process. All pyramid parameters are read from the pyramid params file.

Output: number of levels, total number of windows and windows per level.

• get pyramid hogs.m - function responsible of computing all the HoGs from

the space-scaled pyramid given an input image and the pyramid configuration

parameters. Input: input image, descriptor size, pyramid scale factor between

levels and window stride. Output: HoGs for every window, all the pyramid

windows, number of window per level and every window coordinate.

54



6.1 Implementation

• get scale space pyramid images.m - function for computing all the pyramid

window images and its coordinates given an input image. Input: image to process

Output: pyramid; cell array containing in a pyramid structure all the windows of

the scale-space pyramid, coordinates; upper-left coordinates for each windows in

the return pyramid structure.

• get window.m - function for retrieving a specified sized window from an image.

Input: image to process, width and height of the desired window and the extrac-

tion method. The possible method are centered or random, where the centered

method extracts a centered window of the specified size from the input image,

while the random method simply picks any valid window of the specified size

somewhere over the input image. Giving a coordinate as a method leads on a

window whose upper-left coordinate coincides with the specified one. Output:

the extracted window

• non max suppression.m - function responsible of applying a suppression of all

nearby detections selecting the most confident one. Two modes of proximity are

defined. Windows not meeting a distance criterion or not meeting a threshold

value of overlapping area are considered as nearby window and therefore likely

to be compared to find the most confident between them. Input: window pixel

coordinate, window confidence measure and window size. Output: Empty

• plot DETcurve.m - function for plotting one or more overlapped DET curves

given one or more SVM models. Input: List containing the models to test, cell

array containing the model names as should be represented in the legend, positive

and negative folder paths. If no positive nor negative paths are given a windows

prompts for the folder paths. Output: Empty

• plot ROCcurve.m - Script responsible of plotting the ROC curve. A window

prompts for the SVM model file and the folders containing the positive and neg-

ative training images.

• plot tsne map.m - function to plot the t-SNE map given the image paths. In

case no paths are given prompts an explorer window to locate the folders. Input:

Cell array containing positive and negative image paths. Output: t-SNE plot
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• test svm.m - function to test a given libSVM model. Given the paths where to

find the positive and negative images, reads all the images, extracts the HoG de-

scriptor of each one and classifies every image to compare with the Ground Truth

class. Finally computes all the numeric measures explained in §5.2 Inputs: Model

path, negative and positive image paths. In case no paths are given prompts an

explorer window to locate the folders. Output: Struct containing all the numeric

measures explained in §5.2

• train svm.m - function to train a libSVM model. Finds the best possible model

by reading the training configuration from a training parameter file where the

kernel type, cost and gamma ranges are specified. After reading the configuration,

all the images found in the given positive and negative folder paths are read and

their HoGs are computed. With the ground-truth label plus the descriptor a

training matrix is used to build the model. The model is then saved in the

specified path. In addition, in the same path, a cross-validation logging file is

written. Each line specifies the current kernel parameter configuration and the

accuracy reached. Together with the logging file a cross-validation grid plot is

saved in order to easily examine the parameter space. Inputs: model name, model

save path and image paths, in case no paths are given a window prompts for them

as in test svm.m. Output: libSVM model struct.

• plot reject curves.m - function responsible of plotting accuracy measures in

function of the classification threshold. Plots recall, precision and F-score mea-

sures. Input: libSVM model and input image folder. Output: Empty

6.1.1 Auxiliar functions

• draw curve.py / draw grid.py Both scripts are intended to draw same train-

ing plots as the ones provided by the cross-validation MATLAB function but

solving some drawing issues that may occur when plotting axis values.

• performance to excel.py Script to parse test file information from a text file

and write a excel worksheet with every test measure. This allows to easily make

bar plots and compare different accuracy measures from one or more models

together. Internally uses workbook.py, a class acting as an abstraction layer, to

easily write tables in excel sheets.
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6.2 Usage

A very simple interaction is needed to run any of the detectors as we provide a com-

piled version for every implemented one. The detectors consists in an .exe file, under

Windows operating systems, so only double click is needed to launch them. Once the

file es executed a console will show up and a window dialog will prompt for a folder

containing the input images in JPG or PNG format. Once at a time the detector will

perform all the operations and show the detections found as green boxes around the

area where a pedestrian is detected together with a numeric measure representing the

detection confidence. The application will wait for a key press, focusing the console

window, before continuing with the next image. Figure 6.1 shows how it looks the

detector application while running.

Figure 6.1: Static-detector compiled version - At the left the console shows how the

application waits for a key to be pressed before processing the next image, at the right the

woman is surrounded by a green bounding box indicating a pedestrian detection
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7

Performance

Until now we have completely covered the theoretical background and how to use this

theory to build a working pedestrian classifier. Now we give some details on how the

detectors perform. We do so by comparing all the models between them, so we end up

with the most outperforming one. This is attained by doing to every final stage model

all the performance test explained in §5.2.

In order to present information in the most compact way possible, instead of presenting

every individual curve on its own we have grouped all the curves of the comparable

models between them. In this chapter we will not present any ROC curve. Given the

low error made by some models, ROC curves are not a good way to represent their

behavior. The ROC curve gives nearly an area equals to 1 and becomes hard to spot

differences when they become really subtle. Conversely we are providing DET curves

for all the comparisons. Some other measures, like the mentioned ROC curves or the

classifications scores distributions may be found attached in the Annex.

Is also important to note that the following tests were performed giving images of the

window size to each model, so no window sliding nor scale-space pyramids intervened

in the process. This must be known to understand the differences in performance that

may occur when testing with the detectors, not on windows, but on full images.

7.1 MIT models

As the MIT models were found to be much easier to train and gave very good results,

we begin with their performance measures. For the MIT data set only two models were
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trained due to the great success achieved in the first attempt. Only linear models were

trained and only one round of re-training was needed to achieve perfect separation.

MIT linear pre models versus definitely MIT liner model.

With table 7.1 we try to illustrate the little difference a re-train makes when talking

about the MIT person data set. As the first model trained already performed really

well, obtaining any improvement in further re-training steps becomes nearly impossible.

The only motivation to continue training is due to the fact that the first trained model

made mistakes of classifying negative windows as positives, error that hopefully could

be solved by adding more negative examples. Owing to the exceptional performance

achieved by this models, also DET curves become unhelpful when trying to illustrate

their differences. Consequently we opted to give some numeric measures.

Model OKs KOs fp fn tp tn miss rate Precision Recall F-score

pre model 725 3 3 0 274 451 0 0.9891 1 0.9945

def model 726 1 1 0 276 453 0 0.9963 1 0.9981

def model (opt th) 728 0 0 0 274 454 0 1 1 1

Table 7.1: MIT linear models performance comparison table

As can be seen in the MIT case nearly perfect separation is achieved, reaching a 99% of

accuracy in the detection in both cases without searching for the optimum classification

threshold, this is using a 0.5 default threshold. When using the optimum threshold

found in figure 7.1, for the definitely model we achieve an absolutely perfect separation

for the test set provided in the MIT data set.

MIT linear def model. RGB images versus gray scale images.

In figure 7.2 we study the impact of using images with only one color channel, this

is gray scale images, when classifying with RGB trained models. As we can appreciate

the performance is almost the same, therefore is not worth to train separate models

for gray and color images as the detector is not so sensitive to the number of channels.

Even though if possible is better to train and use RGB color images.
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Figure 7.1: MIT linear def model threshold search - X axis represent threshold

value, Y axis represents the performance measure value

(a) Absolute measures (b) Relative measures

Figure 7.2: Color information impact in MIT linear model

7.2 INRIA models

As the INRIA data set contains a wider range of poses, partial occlusions and more

illumination variances, happens to be much more complicated to end up with an SVM

model as good as the MIT one. Hence we performed a broader training stage but also
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a broader testing stage, including a lot of comparisons between models to find the best

possible options.

The INRIA person data set provides 2416 positive windows and 453 negative images to

test. From the negative images, we randomly sampled 3 windows per image, obtaining

1359 negative windows. This was done like this to perform all the test without having

skewed classes that could potentially distort some measure. More details of the image

data sets can be found in §5.1.1.

As we saw in §5.1.2 different approaches were followed when training the INRIA models,

depending on the ratio between positives and negatives instances. The first approach

consisted in training every model with a similar amount of positives and negatives

instances while in the second all the training instances were used. This is, using a data

set where the available negative instances represent around 5 times the positive ones.

For each approach linear and Gaussian kernels were trained. In the following section

we present the performance measures grouped by approach followed and kernel type

first and finally a review between the best models found in the previous comparisons

in order to find the best option regarding the kernels.

7.2.1 1st training approach

7.2.1.1 Linear models

As regards to the first method and the linear kernels, we have that, as pointed by

the cross validation curves showed in the SVM training chapter, little improvement is

achieved by re-training with the hard examples images. The improvement achieved can

be seen in the 7.11, showing how the optimal threshold value makes the second model

slightly better.

Bar plots in figure 7.4 illustrate the little difference between both models. The middle

bar represents the performance of the re-trained model when no optimal threshold is

used, this is, when a 0.5 threshold determines the prediction class. In this case the

performance falls dramatically.
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Figure 7.3: INRIA linear rgb pre-model versus round-1 model DET curve (1st

approach) - The optimal threshold value yields a slightly better model after the re-training

(a) Absolute measures (b) Relative measures

Figure 7.4: re-train impact in INRIA linear model (1st approach)

A fast review of the classification probabilities shows that the round-1 model is very

confident in predicting negative instances, so a little suspicion about a particular win-

dow being a positive instance is enough to determine that is actually a positive one.

That gives a optimal threshold of 0.1 for the positive prediction probability, what is

the same as saying that, if the detector is not sure at at least at a 90% of not being a

positive instance, then is not a positive instance. The optimal threshold search can be

seen in figure 7.5.
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Figure 7.5: INRIA linear rgb round1 model threshold search (1st approach) -

X in the figure shows optimal threshold, Y shows the convergence of the three performance

measures

7.2.1.2 RBF models

Similarly as we did for the linear models, we compare now the performance for every

Gaussian or RBF model. In this case more than one round is needed to find a model

from which new steps of re-training does not improve. Anyhow the three first steps

are essential as at every new re-train we reached a much better model. DET curves in

figure 7.6 show the improvement of every model.

Concrete numeric measures over the test set can be seen in 7.7. As pointed out by the

DET curves in 7.6, every stage improves all of the possible performance measures of

the model.
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Figure 7.6: INRIA RBF rgb training rounds DET curves (1st approach) - At

every re-training stage we achieve around a 50% of error reduction.

(a) Absolute measures (b) Relative measures

Figure 7.7: re-train impact in INRIA RBF models

It should be noted that these measures have been taken from the optimal threshold

found by 7.8 where the optimality criterion is to minimize a cost function where false

positives and false negatives penalize in the same ratio. In other words, maximize the

F1-score. As explained earlier, a different weighting might be desired, for that purpose

the same plots could be used.
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(a) INRIA rbf rgb pre-1 model (b) INRIA rbf rgb round-1 model

(c) INRIA rbf rgb round-2 model

Figure 7.8: optimal threshold search for INRIA RBF models (1st approach)

7.2.1.3 Linear versus RBF model comparison

Now we have the best model for each kernel type, following the same measures, we

compare the performance between the linear and the Gaussian or RBF models. As

shown in 7.9 the Gaussian model performs better at every threshold level.

As we had a large amount of data to train and a rather complex feature descriptor

we can take advantage from a more complex model that can generate more complex

boundaries, therefore obtaining a better discrimination capability. Even though the

RBF kernel performs better at every threshold, is noteworthy the effort needed to

achieve this gain. In one hand because of the much more expensive cross-validation

process, and in the other hand because of the extra re-training steps required to achieve

the optimum model.
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Figure 7.9: INRIA linear vs rbf models DET curves (1st approach) - DET curves

show an advantage for the kernel model

The difference in performance when using optimal thresholds for both models can be

seen in 7.10

Figure 7.10: INRIA linear model versus RBF model performance comparison

(1st approach) - The RBF model increases in about a 2% the precision and around a 1%

the overall performance respect the linear one
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7.2.2 2nd training approach

7.2.2.1 Linear models

Same methodology as for the first approach follows. First we compare the performance

between the different steps needed by the linear models to achieve the best possible

results. As before this can be seen with the DET curves in figure 7.11

Figure 7.11: INRIA linear rgb per-model versus round-1 model - Round-1 re-

training step improves the miss rate error

As shown in figure 7.11, is not so easy to determine which model performs better at

a first glance. A numeric measure at the optimums thresholds reveals a slightly little

gain for the round-1 model. Specially in figure 7.12 a subtle improvement can be seen

in the miss rate measure in favor of the round-1 model.

7.2.2.2 RBF models

For the RBF models following the second approach only one train step was performed

as further re-training did not improve. Anyway a hard parameter search was needed

to find a good performance. In the following section all the figures will refer not to

different re-training steps but to different parameterization that lead to quite different

models. Even though we will not present the concrete performance measures for every
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(a) Absolute measures (b) Relative measures

Figure 7.12: Re-train impact in INRIA linear model (2nd approach)

cross-validation search made while searching the best Gaussian model, we show in

figure 7.13 the DET curves showing the evolution made by the performance of every

model depending on the training parameters. Finally in figure 7.2 we show the numeric

measures obtained with the final Gaussian model.

OKs KOs fp fn tp tn miss rate Precision Recall F-score

2457 28 16 12 1114 1343 0.01065 0.9858 0.9893 0.9875

Table 7.2: INRIA RBF final model performance.

7.2.2.3 Linear versus RBF model comparison

Again, in order to find the best model from this training approach, we compare the

performance over all the linear and RBF models. Figure 7.14 shows how the Gaussian

model outperforms over the linear model, achieving around a 1% of improvement in

both types of errors. This makes the Gaussian model, again, the best choice.

7.2.3 Selecting the final model

Once completed all the possible comparison over the whole set of models trained, we

show a more general comparison from the model kernel type point of view. With this

section we pretend not only to determine the best model between all the trained ones,

but we want to know which type of approach proved to be the most successful one,

which approach give the best models and with less effort.
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Figure 7.13: INRIA RBF model performance due to the parameter configura-

tion - Every curve represents a parameter search from 1 to 3 until a outperforming model

was achieved

Figure 7.15 illustrates the comparison between all the linear models on one hand and

a comparison of the best linear models from each training approach.

(a) All linear models comparison (b) Final linear models comparison

Figure 7.15: Linear models comparison between the 1st and 2nd training approach

As can be seen in figure 7.15, the final round-1 models and the pre-models in both cases
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Figure 7.14: INRIA linear versus rbf model performance comparison (2nd

approach) - DET curves show an advantage about a 1% for the RBF model

are better when trained following the second approach, this is, using all the available

data. Is important to note that even the best 1st approach linear model is worst

than the 2nd approach pre-model. Figure b isolates the best two linear models from

each training approach, and clearly illustrates the improvement that involves the 2nd

approach regarding the linear models.

The same analysis between the RBF models will lead us to the most outperforming

model found in the previous sections so we can objectively conclude which SMV model

will give us the best detection accuracy given our optimality criterion. Figure 7.16

shows how the best possible model turns out to be the RBF or Gaussian model trained

following the second approach. The advantage is in decreasing both type of errors (false

positives and false negatives) in around a 1%.
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Figure 7.16: INRIA RBF model comparison between 1st and 2nd training

approach - As this curves show, the RBF model trained following the 2nd approach

stands out from the rest.

7.3 Detector performance

With the final model selected the only point to examine is how the detector performs

w.r.t the time. Even though we provide a compiled version for every detector, the

MATLAB tool 1 for obtaining a .exe file consist in packing every needed toolbox 2

together with the MATLAB Compiler Runtime (MCR) 3 so no time improvement is

achieved by this process. Anyway some independence from MATLAB is achieved as

to run the application there is no need to have neither a MATLAB installation nor

license.

Figure 7.17 show the time evolution w.r.t the input image size and the number of

windows. Every measure has been done on a Intel i3 at 1.4 GHz with 4 Gb of RAM

and Windows 8 (x64) operating system.

1MATLAB compiler (mcc)
2Toolboxes are matlab packages providing extra algorithms and methods. For instance: Computer

Vision Toolbox
3Standalone set of shared libraries that enables the execution of applications or MATLAB compiled

components on computers that do not have MATLAB installed
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Figure 7.17: Detector time in seconds w.r.t the number of evaluated windows -

Small increases in image size imply large increases in the number of windows and therefore

in time.

Even though the HOG extraction process by itself achieves an average of 24 windows

per second, when measuring the complete detector this throughput falls down to 8 ∼ 9

windows per seconds. The scale-space-pyramid extraction together with the non-max-

suppression steps have a serious performance impact.

To avoid this time issue a C translation was considered. We tried the MATLAB Coder

tool (ccoder) but many code needed to be remodeled in order to make it suitable for

the automatic code translation for the static detector version. Figure 7.18 show the

MATLAB code analysis.

Therefore we consider this point for further and future work.
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Figure 7.18: MATLAB code analysis for C code generation - Cell arrays and

recursion is not yet supported by ccoder.
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Discussion

8.1 Possible improvements

In the following subsections we review some possible improvements not implemented

nor tried during the realization of this thesis. They are explained just to provide

alternatives and further experimenting areas. Many of the improvement are focused on

achieving a real-time detection. This is not an easy goal as many of the state-of-the-art

pedestrian detectors use the sliding window paradigm.

8.1.1 Code compilation.

The first contribution to achieve some time improvement is to change the implemen-

tation language, so the next obvious step, if we were trying to develop an effective

pedestrian detector application, will be to develop the project with all the found results

in a more low level approach. At an early stage, where a large number of experiments

and alternatives are considered, a fast and easy language as MATLAB turns out to

be one of the most convenient options. When a more mature stage is reached other

programming languages, more low level ones, should be the desired implementation

option as we would obtain much more shorter execution times.

Even though a more low level implementation is completely out of the scope of this

thesis, little research has been done in order to provide some recommendation on use-

ful packages for a possible C or C++ implementation. The SVM package used in this

particular implementation (LibSVM) is available for many other languages, including

C++. Specially for the C and C++ languages OpenCV libraries provide very inter-
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esting tools in order to easily manage images, deal with image filtering and much more

image processing tasks.

8.1.2 Parallel GPGPU computation.

New-generation GPUs have a many-core architecture (hundreds of cores) and supports

running thousands of threads in parallel, giving large memory bandwidth and very

high performance, achieving magnitudes of 1012 Floating Point Operations per second

(TFLOPS).

NVIDIA CUDA is an SDK, software stack and compiler that allows for the implemen-

tation of parallel programs in C for execution on the GPU.

As the HOG based detector is highly parallelizable, an interesting improvement could

be achieved with GPGPU computation and the NVIDIA CUDA framework. Other

frameworks can also be considered, OpenCL is also an interesting alternative.

As described in (1) a 67x improvement can be achieved by following this approach

where every intensive computation is delegate to the GPU and only the non-maximum-

suppression is done at the CPU.

The mentioned scheme is illustrated in figure 8.1

Figure 8.1: GPU implementation steps followed in (1) - Almost all the computation

is delegated to the GPU achieving around 70x time improvement.
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8.1.3 Principal Component Analysis for dimensional reduction.

Even though our default HOG feature vector has 3780 dimensions, using different

overlapping, cell size, block size or number of bins will results in a variation in the

dimension of the HOG feature vector. Dealing with larger vectors can increase the

detection performance but at a expense of a higher time consumption. Therefore we

are interested in a way of reducing high dimensional feature vectors in such a way that

a good trade-off between time and performance loss is achieved. One possible way

of dimensional reduction can be attained by using (PCA) over the descriptor matrix.

The main idea is to apply a Singular Value Decomposition SVD to factorize the feature

matrix at the training stage, capture the dimensions in which the most variation occurs

and reduce the training matrix accordingly to only those dimensions. Geometrically

we try to project

Formally: Let Md be a m × n descriptor matrix, where each row is a HOG feature

vector for a concrete instance. Being m the number of training instances and n the

dimension of the feature vector. Let Σ be the co-variance matrix, defined as (with Md):

Σ =
1

m
MT
d Md

Then the SVD factorizes the co-variance matrix as:

Σ = USV T

Where U is a matrix where each column is a left singular vector of Σ, S is a diagonal

matrix with every singular value of Σ sorted in decreasing order. (Lets denote every

element of S as λij). As S is a diagonal matrix we have that λij = 0 for every pair

of i and j such that i 6= j. On the other hand V is a matrix with each column being

right singular vectors of Σ. We want to find the k principal components of our feature

matrix retaining a concrete amount of variance (σ) in our data. In order to achieve

such variance retention we must find k in such a way that:∑k
i=1 λii∑n
i=1 λii

> σ

Keeping the k first vectors of U (Ureduced) we obtain a reduced descriptor matrix as:

Md(reduced) = UTreducedMd
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Therefore SVM will deal with shorter feature vectors, what it is translated in less

computational effort and time.

Our brief tests on applying PCA to the HOG feature matrix show that it is possible

to reduce a 3780 dimensional HOG to a 937 dimensional one by sacrificing in more

or less a 1% the overall performance. However we must take into account that only

a pre-model has been trained following this approach (so no re-training steps) and no

optimal threshold has been searched.

Figure 8.2 show the cross-validation curve and table 8.1 show the test measures applied

to a linear model trained with reduced HOGs.

Figure 8.2: INRIA linear PCA-model cross-validation curve - Cross-validation of

a linear model trained with PCA-reduced features.

OKs KOs fp fn tp tn miss rate Precision Recall F-score

2410 75 55 20 1106 1304 0.0176 0.952 0.982 0.967

Table 8.1: INRIA linear PCA-model performance.

Anyway, as already mentioned, further test should be done in order to obtain a more

accurate conclusion,optimum reductions and maybe possible drawbacks not notices

during out brief testing.
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8.2 Alternatives

At the beginning of this thesis we have mentioned some methods developed by many

different institutes and investigators apart from the developed one. Anyway all the

commented methods consist in defining some kind of feature and then classifying them

following different scanning approaches and trying many of the possible enhancements

like early rejections etc. Recently some interesting results have been found using Arti-

ficial Neural Networks (ANN), specially Convolutional Neural Networks (CNN). Sur-

prising results were achieved in many different fields and problems; Handwritten digit

recognition (23), object recognition (24) or autonomous driving. Concretely the work

developed in (24) by Alex Krizhevsky achieved a much lower error rate in the ILSVRC-

2012 competition compared with many famous computer vision groups all over the

world. Among several advantages, the CNN integrates feature extraction and classifi-

cation into one single, fully adaptive structure. Furthermore we do not need to worry

about defining complex features representations as the embedding layers of the network

already define implicitly what features best represent the inputs. They are designed

to recognize visual patterns directly from pixel images with minimal pre-processing.

Another significant improvement has to do with the relative tolerance that CNN show

in front geometric transformations, local distortions etc.

Figure 8.3 show a representation of the features learned by a hidden layer of 25 hidden

units on an ANN designed to recognize handwritten digits. The inputs for the network

were 20 × 20 images with a handwritten digit. After the training stage every hidden

unit had a most likely activation representation. This ANN was just a little example

with only one input layer, one hidden layer and one output layer.

Anyway, defining the topology of deep networks and training them can be a very

expensive task, so, many resources may be needed to find good results. In order to

illustrate this idea we give some numbers of the deep net trained in (24):

• Trained with stochastic gradient descent on two NVIDIA GPUs for about a week

• 650,000 neurons

• 60,000,000 parameters

• 630,000,000 connections
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Figure 8.3: Hidden layer feature representation learned by a simple ANN -

Every square image represents the inputs that make a concrete neuron to be activated.

• Final feature layer: 4096-dimensional

Even though it could be a very interesting approach for further investigation,. Y.Bengio

and Y.LeCun present in (25) theoretical and empirical evidence showing that kernel

methods and other ”shallow” architectures are inefficient for representing complex func-

tions such as the ones involved in artificially intelligent behavior, such as visual per-

ception.
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Materials & methods

9.1 MATLAB

9.1.1 variable types

Even though the aim of this chapter is not making a complete explanation about the

MATLAB variables, we give a brief description about some data types used in the

project implementation.

Mainly MATLAB works with matrices of different numeric representation, anyway non

numeric types can also be stored in a matrix while some requirements are fulfilled.

Figure 9.1 show the possible data types that can be stored in a matrix form. The only

requirement that a matrix must meet is to have all dimension being consistent, this is

to say, all elements in a matrix must have the same dimension and all elements within

the matrix must of the same type.

Figure 9.1: MATLAB matrix data types - For a more accurate type explanation

refer to the MATLAB documentation in (26)
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Cell Array.

For storing some varying size data, lets say, strings of different size in a vector or

array, MATLAB provides an special variable type called cell arrays which is a data

type with indexed data containers called cells, where each cell can contain any type of

data. Cell arrays commonly contain either lists of text strings, combinations of text

and numbers, or numeric arrays of different sizes.

Mat files.

Files with a .mat extension contain MATLAB formatted data. This data can be

loaded from or written to these files using the functions LOAD and SAVE, respectively.

We use this format to store the SVM models and the different parameters needed to

configure the scale-space-pyramid procedure, testing or training process etc. More

information about the .mat files is available in (27).

9.2 Libraries and packages

9.2.1 libSVM

Many SVM packages are available but libSVM turns out to be one of the most popular

and complete ones. It is an open source library developed at the National Taiwan

University, is developed in C++ and supports classification and regression. It is free

software published under a BSD license. Among its advantages we may notice that

counts, trough many interfaces, with compatibility to a wide range of languages and

platforms, this is noteworthy because just in case the code is ported to another language

the same classifier with same parameters and configuration could be used.

9.2.2 NIST DET plots

In order to plot Detection Error Tradeoff curves a MATLAB package provided by the

National Institute of Standards and Technology (NIST) is used. The compete software

can be downloaded in (28). For additional information about DET curves refer to (29).

9.2.3 m2html

With the purpose of delivering a comprehensive code documentation in a easy to read

and ecologic way, all the MATLAB code has been parsed with the m2html functions
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creating a set of HTML pages containing all the information regarding the code. In

this way we explicitly define the relationship between functions, inputs, outputs and

the code itself while making extremely easy navigating throw all the source code and

files. The tool itself and all the information about it can be found in: (30).
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10

Project Management

10.1 Planning

The project is divided in four main sections; Research,Implementation,Building and

Documentation. The research step consists in the information compilation and un-

derstanding,the implementation considers all the code developing, the Building stage

collects all the model training, testing and selection and finally the Documentation

phase has to do with all the results recollection, and documentation writing.

Figure 10.1 shows the overall project planning.

Figure 10.1: Overall project schedule - Collapsed view of all four project phases

A more detailed view of the research step reveals two main stages; the first one is an

approach to the theory behind the HOG descriptor, SVMs and the pedestrian detection

problem. The second one has to do with the selection of the developing environment

w.r.t the programming language, tools, libraries and available information or commu-

nity. Figure 10.2 shows the original schedule. The State-of-the-art step took longer

because of the need of further research as other pedestrian detection alternatives in-

volved some unseen theory.
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Figure 10.2: Research schedule - Detailed view which comprehends a theory and

technology study

Once all the theory was digested and MATLAB was chosen the implementation phase

began, developing first the HOG feature extraction and followed by the classifier con-

struction. Also all the measurement tools were developed in order to be able to par-

allelize the training, testing and evaluation of the models. Figure 10.3 shows this

breakdown. Gratefully some pre-build functions for plotting measures like ROC curves

and visualizing HOGs helped to reduce the data visualization phase span.

The next stage consists in training and testing the SVM models. When possible the

training and testing stages were overlapped in time, using two different computers. Due

to the long computational times needed on order to train complex models like RBF ones

with a large data-set and wide parameter-spaces cross-validations, the model building

phase was delayed. Mean while the final detector developing was carried out. Figure

10.4 shows this temporal overlapping.

Finally the results collecting and documentation writing stage compiled all the project

explanation. As the code was properly documented in a first stage the only pending

work was to make a easy to use and understand documentation. Using a matlab to

html converter the code explanation turned out to be very friendly in effort and time.

It is noteworthy that the redaction of the thesis is ,by itself, the largest step. Figure

10.5 show this detail.

86



10.1 Planning

Figure 10.3: Implementation schedule - Detailed view showing all the implementation

phase

Figure 10.4: Building schedule - Detailed view of the building stage
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Figure 10.5: Building schedule - Unfolded view of the building section

In general there has been no severe deviation from the time schedule even though tasks

like the detector building or information searches about the State-of-the-art techniques

turned out to be more time-consuming. Anyhow every deviation proved to be in such

a way that little rearrangements could easily solve any mishap, commonly by using the

time to compute expensive tasks to later on dispose of needed data like HOGs feature

matrix. Figure 10.6 shows a complete view of the planning.

Figure 10.6: Complete schedule - Complete schedule and dependencies between tasks
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10.2 Costs

The next sections exposes the associated cost due to the project development. We

assume an average of 6.5 hours of work per day. We divide the cost explanation in

three parts; Human resources, Hardware and Software costs.

w

10.2.1 Human resources

In order to compute the human resources costs, we average the hours of work of every

stage. In order to take into account the difference effort needs of every phase, a weighing

is applied through a estimation of the time load. Table 10.1 resumes this information.

Concept Days Hours Time load Price Cost

Research 22 143 90% 35e 5005e

Implementation 36 234 100% 50e 11700e

Building the detector 22 143 60% 50e 1100e

Documentation 58 377 80% 25e 1450e

Total 138 897 19255e

Table 10.1: Human resources cost breakdown

10.2.2 Hardware resources

The hardware needed comprises:

• Laptop with Intel i3 quad Core processor at 1.4GHz with 4Gb of RAM memory

(' 500 e)

• PC with an Intel Core 2 6400 at 2.13GHz with 4Gb of RAM memory (' 400 e)

Both computers sum up to around 900e, nevertheless both computers are not only

being used for this project so we must take in consideration the hardware amortization.

Considering three years like the average life for a computer:

Hardware cost =
900e

3 years · 12 months/year · 22 days/month · 8 hours/day
' 0.14e/hour

Even though table 10.1 show the total working hours, does not reflects the total amount

of computing time,as for instance, the model computing and optimization stage that
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required many days of computation without stop. To obtain a fair measure of the total

computing time, we estimate a mean of 20 hours of computing time for the model

building stage. Therefore:

total computing hours = 116 days · 6.5 hours + 22 days · 20 hours = 1194 hours

Resulting in a hardware cost of:

Hardware cost = 1194 hours · 0.14e/hour = 167.16e

10.2.3 Software cost

Table 10.2 specifies the software prices excluding open source software like libSVM,

Python, matplotlib etc. Therefore mainly MATLAB and Microsoft software comprises

the payment software.

Software Price

MATLAB R2014a 2000e

Image processing Toolbox 1000e

Computer Vision System ToolBox 1250e

Microsoft Excel 2013 135e

Microsoft Project 2013 769e

Total 5154 e

Table 10.2: Software costs

Applying a similar amortization formulation as before, assuming a complete MATLAB

use during the whole project, only 8 hours for both Microsoft Excel and Project and a

useful life for software around 3 years:

MATLAB cost = 1194 hours · 0.67 e/hour = 2850.77e

Microsoft Excel cost = 8 hours · 0.0.21 e/hour = 0.17e

Microsoft Project cost = 8 hours · 0.14 e/hour = 1e

Total = 2851.91e

Finally the overall project cost is:
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Project Price

Human resources 19255 e

Hardware 167.16 e

Software 2851.91 e

Total 22274.07 e

Table 10.3: Total project cost
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