
Appendix: Theoretical calculation of the multimode

g(2)(T )

Collett and Gardiner [2] calculate the Bogoliubov transformation that the

annihilation and creation operators undergo while passing through the double-ended

cavity containing nonlinear crystal (Fig. 1) that has only one resonance. The result

cannot be directly applied in case the cavity has multiple resonances, therefore here we

derive a Bogoliubov transformation for the cavity that has infinite number of equally

spaced spectral modes. Next we present a calculation of the g(2)(T ) correlation function

for the multimode cavity that bases on the definition 2 in the thesis and the obtained

Bogoliubov transformation.

1. Bogoliubov transformations for a multi-resonance cavity

Let us consider a two-sided ring cavity as in Fig. 1 (A). Amplitude transmission and

reflection coefficients are t1, t2, r1 and r2. Cavity roundtrip time is denoted by τ .

Intracavity field annihilation operator just before exiting the cavity is denoted as a, the

input fields are ain and bin and the output field aout. For an empty cavity we have the

following relations:

a(t) = r1r2a(t− τ) + t1r2ain(t− τ) + t2bin(t− τ) (1)

aout(t) = r1ain(t) + t1a(t)

Including the transformation of the operators due to squeezing inside the cavity (r is

squeezing amplitude for the single pass through the crystal):

a(t) = r1r2 cosh(r)a(t− τ) + r1r2 sinh(r)a†(t− τ) +

+t1r2 cosh(r)ain(t− τ) + t1r2 sinh(r)a†in(t− τ) +

+t2 cosh(r)bin(t− τ) + t2 sinh(r)b†in(t− τ)

This yields the Bogoliubov transformation:

aout(ω) = A(ω)ain(ω) +B(ω)a†in(−ω) + C(ω)bin(ω) +D(ω)b†in(−ω) (2)

Where:

A(ω) = d(ω)(t21r2(e
−iωτ cosh(r)− r1r2) + r1d(ω)−1) (3)

B(ω) = d(ω)(sinh(r)t21r2e
iωτ )

C(ω) = d(ω)(t2t1(e
−iωτ cosh(r)− r1r2)

D(ω) = d(ω)(sinh(r)t2t1e
iωτ )
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Figure 1. (A);Input, output and intracavity field operators for double-sided cavity

with a nonlinear crystal inside. Operator a denotes intracavity field annihilation

operator just before exiting the cavity. (B): g(2)(T ) plotted from eq. 5

The pre-factor:

d(ω) =
1

1− 2r1r2 cos(ωτ) cosh(r) + r21r
2
2

2. Multimode g(2)(T )

The objective is to calculate g(2)(T ) of the output field (for the vacuum inputs in both

modes) which after expressing the electric field operator in eq.?? in terms of creation

and annihilation operators reduces to:

g(2)(T ) =bin 〈0|ain〈0|a
†
out(t)a

†
out(t+ T )aout(t+ T )aout(t)|0〉ain |0〉bin (4)

Knowing that:

a(t) =
1√
2π

∫ ∞
−∞

a(ω)e−iωtdω

a†(t) =
1√
2π

∫ ∞
−∞

a†(−ω)e−iωtdω

We can use the operators in the Fourier domain:

g(2)(T ) =

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

∫ ∞
−∞

dω3

∫ ∞
−∞

dω4e
−i(ω2+ω3)(t+T )e−i(ω1+ω4)t

×bin〈0|ain〈0|a
†
out(−ω1)a

†
out(−ω2)aout(ω3)aout(ω4)|0〉ain |0〉bin

After the reduction of the operators we find:

bin〈vac|ain〈vac|a
†
out(ω1)a

†
out(ω2)aout(ω3)aout(ω4)|vac〉ain |vac〉bin =

= δ(ω1 + ω2)δ(ω3 + ω4)[C
∗(ω1)A

∗(ω2) +D∗(ω1)B
∗(ω2)][A(ω3)C(ω4) +B(ω3)D(ω4)]

+δ(ω2 + ω3)δ(ω1 + ω4)[C
∗(ω1)C(ω4) +D∗(ω1)D(ω4)][C

∗(ω2)C(ω3) +D∗(ω2)D(ω3)]

+δ(ω1 + ω3)δ(ω2 + ω4)[C
∗(ω1)C(ω3) +D∗(ω2)D(ω3)][C

∗(ω2)C(ω4) +D∗(ω2)D(ω4)]

This yields:

g(2)(T ) = F [A(ω)C(−ω) +D(−ω)B(ω)](T )F [A(ω)C(−ω) +D(−ω)B(ω)](−T )

+(F [C∗(ω)C(ω) +D∗(ω)D(ω)](0))2 + (F [C∗(ω)C(ω) +D∗(ω)D(ω)](T ))2
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Let us express the pre-factor as a sum of Dirac delta functions:

F [d(ω)2](T ) =

∞∑
k=−∞

δ(T − kτ)F (k)

F (k) =

∞∑
m=−∞

(
2r1r2 cosh(r)

1 + r21r
2
2 +

√
(1 + r21r

2
2)2 − (2r1r2 cosh(r))2

)|k−m|

×

(
2r1r2 cosh(r)

1 + r21r
2
2 +

√
(1 + r21r

2
2)2 − (2r1r2 cosh(r))2

)|m|
((1 + r21r

2
2)2 − (2r1r2 cosh(r))2)−1

Therefore the final expression:

g(2)(T ) = f 2
1 (0) + Σ∞k=−∞δ(T − kτ)[f 2

1 (k) + f2(k)f2(−k)] (5)

Where

f1(k) = t21t
2
2([−r1r2 cosh(r)]F (k + 1) + [−r1r2 cosh(r)]F (k − 1) +

+[r21r
2
2 + cosh(2r)]F (k))

f2(k) = t1t2([−r21r2 cosh(r)2]F (k − 2) +

+[r1(1 + r22(3r
2
1 − 1)) cosh(r)]F (k − 1) + [−1

2
r2(r

2
1(3 + 2r22(2r

2
1 − 1)) +

+(3r21 − 2) cosh(2r)]F (k) + [r1r
2
2(2r

2
1 − 1) cosh(r)]F (k + 1))

The g(2)(T ) of the multimode cavity output has an envelope of the shape of double

falling exponential and peaks approximately every cavity roundtrip time (plotted for

our experimental conditions on Fig. 1 (B)), resulting from the interference between

the modes. As opposed to that, the single mode g(2)(T ) should also have the shape

of double exponential decay (Fourier transform of a single Lorentzian peak being the

power spectral density)[1].
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