Titulación: Ingeniería Industrial

Alumno: Abel Herrera Cambeiro

Título PFC: Diseño de un Sistema de Supervisión y Control mediante PLC de un robot cartesiano de dos ejes eléctricos, que simula el taladrado y la inserción de pivotes en un proceso productivo de laboratorio.

Director del PFC: Juan Carlos Hernández Palacín

Convocatoria de entrega del PFC: 2013

Contenido de este volumen: -MEMORIA-
1 Objeto del Proyecto ... 1
2 Justificación ... 2
3 Alcance ... 3
4 La Pirámide CIM ... 4
5 El Laboratorio de Robótica y CIM .. 8
 5.1 Composición de la célula .. 9
5.2 Las estaciones de la célula .. 12
 5.2.1 Estación I: Suministro de piezas 12
 5.2.2 Estación II: Mecanizado de piezas 12
 5.2.3 Estación III: Verificación y posicionamiento de piezas .. 13
 5.2.4 Estación IV: Inspección de piezas 13
 5.2.5 Estación V: Almacén intermedio 13
 5.2.6 Estación VI: Módulo de transporte 14
 5.2.7 Estación VII: Robot de montaje de conjuntos 14
 5.2.8 Estación VIII: Perforación y montaje de pivotes 14
 5.2.9 Estación IX: Carga de placas 15
 5.2.10 Estación X: Almacén final ... 15
 5.2.11 Estación XI: Robot carga/descarga almacén 15
 5.2.12 Estación XII: Robot carga/descarga al robot filo guiado 15
6 Diseño del Sistema de Supervisión y Control 16
 6.1 La Estación VIII .. 17
 6.1.1 La mesa de trabajo .. 18
 6.1.2 El cuadro eléctrico .. 25
 6.1.3 Fuente de alimentación .. 26
 6.1.4 Relé y Regleta Weidmüller 27
 6.1.5 Módulos X0 y X1 ... 28
 6.1.6 Circuito Neumático .. 29
 6.1.7 Controladores de Motor .. 30
 6.1.8 Botonera ... 31
 6.2 La Secuencia ... 32
 6.3 El Autómata .. 34
 6.3.1 Fuente de Alimentación .. 35
 6.3.2 CPU ... 36
 6.3.3 Áreas de Memoria .. 37
 6.3.4 Tarjetas ... 41
 6.3.4.1 Unidad de Entrada de c.a./c.c. C200H-IM212 44
 6.3.4.2 Unidad de Salida de Contacto C200H-OC222V 47
 6.3.4.3 Unidad de Entrada Analógica C200H-AD002 50
1 Objetos del Proyecto

El objetivo del proyecto es la realización de la automatización de una estación de trabajo de un proceso productivo simulado.

Se plantea la necesidad de poder controlar y supervisar el funcionamiento de una estación de taladrado e insertado de pivotes, de forma que la selección de la posición de taladrado de los mismos sea seleccionable por el usuario. Se trata pues, de la programación de un robot tipo cartesiano de tres ejes, dos de ellos eléctricos (X e Y), y un tercero (Z) neumático.
2 Justificación

Con la realización del presente proyecto se pretende ampliar y profundizar en temas relacionados con la automatización avanzada, que durante la realización de los estudios de Ingeniería Industrial, no ha sido posible cubrir.

La elección de este proyecto, vino justificada tras realizar la asignatura de Automatización Industrial, donde la relación entre los conocimientos teóricos y los tecnológicos es del cincuenta por ciento. Esta entrada en el mundo de la tecnología provocó el interés por ampliar conocimientos en el área de la producción automatizada, y en concreto, en sistema de supervisión y control de producción, ampliamente utilizados en los sectores industriales en los que se pretende desarrollar la futura carrera profesional.
3 Alcance

Los objetivos a cubrir en la realización de este proyecto son:

-Verificación del cableado de la estación

-Comprobación del estado de la sensórica y actuadores de la estación

-Programación en forma estructurada del autómata programable que controla esta estación

-Diseño de una aplicación SCADA que supervise y controle el correcto funcionamiento de la estación
4 La Pirámide CIM

El modelo más sencillo de representación de una empresa es el mostrado en la Figura 4.1, que representa la jerarquización de la información dentro de la empresa.

![Diagrama de la Pirámide CIM](image)

Figura 4.1

Este modelo, el más ampliamente extendido y aceptado, fue establecido por la NBS o National Bureau of Standards americana y está compuesto de los siguientes niveles:

- **Nivel 0**: Nivel de máquina. Formado por la maquinaria con la que opera la empresa, aunque estrictamente hablando es el conjunto de sensores y actuadores que la componen.

- **Nivel 1**: Nivel de control de máquina. Formado por los elementos de mando y control de la maquinaria como PLCs, lógica cableada, controles numéricos, etc. Este nivel proporciona la información de actuación directa al nivel 0, y de estado al nivel 2.
• **Nivel 2:** Nivel de supervisión y control. Con la ayuda de medios humanos o informáticos, realiza las siguientes tareas:
 - Supervisión.
 - Recogida de datos.
 - Programación a corto.
 - Control de calidad.
 - Gestión de alarmas.
 - Sincronización de células.
 - Coordinación de transporte.
 - Aprovisionamiento de líneas.
 - Seguimiento de lotes.
 - Mantenimiento.

Este nivel emite órdenes de ejecución al nivel 1 y recibe los programas (de producción, calidad, ...) del nivel 3.

• **Nivel 3:** Nivel de planificación. Tiene como función realizar las siguientes tareas:
 - Programación de la producción.
 - Gestión de materiales.
 - Gestión de compras.
 - Análisis de costes de fabricación.
 - Control de inventarios.
 - Gestión de recursos de fabricación.
 - Gestión de calidad.
 - Gestión de mantenimiento.

Este nivel emite los programas hacia el nivel 2 y recibe de éste las incidencias de la planta. Recibe información del nivel 4 sobre:
 - Pedidos.
 - Previsiones de venta.
 - Información de ingeniería tanto de producto como de proceso.

Y envía información al nivel 2 sobre:
 - Costes de fabricación.
 - Costes de operación.
 - Cambios de ingeniería.
Nivel 4: Nivel corporativo. En este nivel se realizan las tareas de:

- Gestión comercial y de marketing.
- Planificación estratégica.
- Administración y finanzas.
- Gestión de recursos humanos.
- Ingeniería de producto y de proceso.
- Gestión de tecnología.
- Gestión de sistemas de información.
- Investigación y desarrollo.

Este nivel emite al nivel 3 información sobre la situación comercial, información de ingeniería de producto y de proceso, etc. Y recibe de éste la anterior información sobre el cumplimiento de programas, costes, etc.

Como se ha podido ver en la anterior estructura, se permite la comunicación de la información entre los distintos niveles, por tanto, existe una comunicación vertical. Sin embargo, también existe una comunicación entre los distintos elementos que componen un mismo nivel, así pues, una comunicación horizontal. Esto pone de manifiesto el alto nivel de integración de la información, para obtener una mayor concepción de globalización de la empresa, consiguiendo una realimentación de la información y garantizando el cumplimiento de los objetivos; consiguiendo un sistema de gestión más eficiente.

Esta información se caracteriza por moverse dinámicamente, tanto horizontal como verticalmente, a través de los distintos estamentos o niveles estructurales de la empresa y representados en la pirámide de la Figura 4.1. No obstante, la vida media de la información transportada varía considerablemente en función del nivel. La Tabla 4.1 muestra la vida media de esta información en cada nivel.
Las diferencias de tiempo ponen de manifiesto la criticidad de las tareas de control, con un alto grado de rapidez, frente a la lentitud de la decisión humana en el nivel 4, aunque, no por ello es menos importante.

Gracias a la pirámide es posible estructurar toda la información en un entorno industrial consiguiendo una gestión de la producción más eficiente. Éste es el objetivo del presente proyecto pero orientado a la célula de fabricación flexible del laboratorio de robótica y CIM de departamento ESAII de Terrassa. Así pues, el objetivo marcado es la creación de las estructuras de datos necesarias de los niveles 0, 1, 2 y establecer el enlace con el nivel 3 de programación de la producción para permitir la gestión de ésta.
5 El Laboratorio de Robótica y CIM

En este apartados se detallará el Laboratorio de Robótica y CIM (Computer Integrated Manufacturing) donde se ha llevado a cabo el proyecto.

El laboratorio de Robótica y CIM del edificio TR11 del campus UPC de Terrassa es el entorno donde se encuentra emplazada la estación a automatizar del presente proyecto. Estas instalaciones consisten en una maqueta que representa lo que podría encontrarse perfectamente en la planta de una fábrica: una célula de fabricación flexible automatizada en su totalidad.

Un sistema de fabricación flexible es aquel que permite la fabricación simultánea de una familia de productos. Se minimiza así los costes derivados del cambio de producto tanto temporales como económicos, gracias a que proporciona unos costes unitarios de producción que hasta hace poco estaban reservan a series de gran fabricación. Es una tecnología muy adecuada para centros de producción con gran variabilidad de producto (siempre dentro de unos márgenes determinados) o bien para empresas dedicadas a la fabricación o procesamiento de productos con rápida caducidad dentro del mercado.

En la maqueta de las instalaciones del laboratorio puede encontrarse integradas una gran cantidad de tecnologías. Fruto de esta diversidad de tecnologías, en este laboratorio se puede hacer la simulación de problemas de integración reales, los mismos que se pueden encontrar en entornos industriales donde se lleve a cabo la integración de varios niveles de la Pirámide CIM.

El producto que se fabrica en esta célula es de tipo genérico y no corresponde a ningún producto comercial concreto. Las piezas que se manipulan son cilíndricas, de tres colores diferentes (naranja, negro y metálico) y de tres alturas diferentes cada una. El producto final es una base perforada con tres pivotes incrustados, sobre los cuales se colocan las piezas cilíndricas previamente perforadas.

En la siguiente imagen se puede observar el producto final, así como los tres tipos de piezas que son manipuladas en la célula.
Teniendo en cuenta que hay 9 tipos de piezas diferentes y que hay 3 posiciones, se pueden hacer hasta 729 lotes de producto diferentes.

5.1 Composición de la célula

La célula consta de trece estaciones, cada una con una función específica. El laboratorio reproduce una planta de fabricación y almacenamiento de piezas.

Esta se puede dividir en dos partes:

En la primera parte, se transforma un producto inicial en un producto acabado. La intervención es sencilla: se hace un agujero en medio de la pieza con un torno automático. Tal y cómo se ha comentado, hay tres tipos de piezas, clasificables según su color (naranjas, negras y metálicas), y a la vez según su medida (grandes, medias y pequeñas). Así pues, hay un total de nuevo tipos diferentes de piezas.

El tipo de pieza que se trabaja se identifica en la primera estación, donde se discriminan el color y la medida de la pieza. En la segunda estación es donde se realiza la transformación del producto, realizando el agujero. La tercera actúa como verificador, puesto que revisa que la pieza tenga realmente el agujero. La cuarta estación verifica la forma que presenta la cara superior de la pieza en proceso, mediante visión artificial. Finalmente, la quinta estación actúa como almacén matricial de cuatro filas y cuatro columnas (diecisésis posiciones), donde se guardan las piezas temporalmente.
Esquemáticamente, la primera parte de la célula sería la siguiente:

En la segunda parte, se preparan las placas que actúan en representación de pallets industriales, que pueden guardar hasta tres piezas en cada una, y se llenan con los ítems correspondientes. En la estación VIII, que es la que se automatiza en el presente proyecto, se perforan las bases y se los insertan los pivotes que sujetarán las piezas. La estación IX es la que suministra de bases (placas de PVC) a la estación VIII. La estación VII, es la que, cogiendo las piezas del almacén intermedio (que es la quinta estación), llenará las bases. La sexta estación controla el transfer circular que mueve las bases y los productos acabados por las diferentes estaciones. Las estaciones XI y XII se encargan de cargar y descargar el robot filo-guiado que hace el trayecto entre la estación seis y el almacén. Para acabar, la estación X hace la gestión del almacén final, de 72 posiciones.
El siguiente diagrama servirá para complementar la explicación:

Figura 5.3

Existe una estación que gobierna el sistema SCADA, responsable del funcionamiento integrado de la estación. Desde ésta estación se pueden controlar todas las otras. Actualmente, ésta aplicación se encuentra en la estación V.

Todas las estaciones están implementadas con PLCs C-200, de la casa OMRON.
5.2 Las estaciones de la célula

Como se ha dicho en el apartado anterior, la célula está compuesta por doce estaciones. En los apartados siguientes se hará una breve explicación de las funciones que realiza cada estación dentro de la línea de producción.

Se explicarán siguiendo el orden de numeración, que tal y cómo se ha indicado en el apartado anterior, no es el orden que sigue el proceso.

5.2.1 Estación I: Suministro de piezas

En esta primera estación se inicia el proceso de fabricación. Las piezas se introducen mezcladas en un cilindro, y la estación, con la ayuda de los sensores, discrimina el color y la medida de la pieza que es enviada hacia la línea de producción.

5.2.2 Estación II: Mecanizado de piezas

Esta estación está equipada con un plato giratorio que permite llevar a cabo un procesamiento de la pieza (en esta maqueta, se hace una trepanación). Por motivos de comodidad, lo que se hace realmente es una simulación de esta perforación, puesto que hacerlo produciría virutas y polvo, e implicaría un constante mantenimiento de la célula.

Figura 5.4
5.2.3 Estación III: Verificación y posicionamiento de piezas

Aquí se realiza la verificación del agujero y el posicionamiento correcto de salida de las piezas hacia el almacén temporal. De este modo es posible asegurarse que sólo se almacenarán piezas procesadas correctamente (las que no son correctas son expulsadas), a la vez que estén bien posicionadas, puesto que salen de la estación con el agujero abajo, importante para las siguientes estaciones.

5.2.4 Estación IV: Inspección de piezas

En la estación IV se realiza un control de calidad mediante técnicas de visión artificial. Se detectan los defectos que las piezas puedan tener, siendo expulsadas aquellas que no cumplan los requisitos definidos a priori.

5.2.5 Estación V: Almacén intermedio

Aquí se realiza un almacén temporal de piezas, para poder realizar la sincronización de los diferentes tiempos de ciclo, así como la posibilidad de producir por lotes. La estación V actúa de master del sistema, pudiendo controlar, monitorizar y supervisar todo el proceso desde aquí, por medio de una aplicación de SCADA.
5.2.6 Estación VI: Módulo de transporte

En esta estación se realiza el control del transfer circular, transfer que tiene la misión de hacer el transporte de pallets con producto en diferente estado de procesado entre las diferentes estaciones de la célula que conforman la segunda parte del proceso (de la estación VI a la XII).

5.2.7 Estación VII: Robot de montaje de conjuntos

En esta estación se hace el montaje de las piezas cilíndricas sobre el pallet de transporte. El pallet de transporte llega con la base acabada, puesto que previamente se los ha insertado los pivotes que sujetan las piezas.

5.2.8 Estación VIII: Perforación y montaje de pivotes

Se realiza el taladrado de las placas base, junto con la posterior inserción de pivotes metálicos en los correspondientes agujeros. Por motivos de comodidad, lo que se hace realmente es una simulación de esta perforación, puesto que hacerlo produciría virutas y polvo, e implicaría un constante mantenimiento de la célula.
Ésta estación está explicada en detalle más adelante, puesto que es el objeto del presente proyecto.
5.2.9 Estación IX: Carga de placas

Realiza la operación de carga/descarga de placas baso a la estación VIII. Un golpe procesadas las placas baso a la estación VIII, la estación IX es la encargada de situarla sobre los pallets de transporte de la estación VI.

5.2.10 Estación X: Almacén final

Esta estación, compuesta por un almacén lineal de 72 posiciones, realiza el almacenamiento final del producto fabricado.

5.2.11 Estación XI: Robot carga/descarga almacén

En esta estación, un robot de tipo antropomórfico se encarga de la transferencia de los pallets que contienen el producto acabado hacia el almacén final.

5.2.12 Estación XII: Robot carga/descarga al robot filo-guiado

Finalmente, en esta estación un robot de tipo SCADA se encarga de cargar el robot móvil con los pallets que contienen el producto acabado al almacén final y que han sido destinados a ser transportados mediante el robot móvil filo-guiado. Además, esta estación también controla el propio robot filo-guiado, que realiza el transporte de material desde un puerto de carga descarga hacia la estación XI.
6 Diseño del Sistema de Supervisión y Control

En los siguientes apartados se abordarán los alcances definidos para este proyecto.

En primer lugar se describirá el cableado de la estación de trabajo, junto con los sensores, actuadores y resto de componentes eléctricos utilizados.

A continuación, se expondrá toda la programación creada para el automata programable que controla esta estación.

Finalmente se concluirá con la descripción del diseño propuesto, de una aplicación SCADA que supervisa y controla el funcionamiento de la estación.
6.1 La Estación VIII

La estación ocho está formada por una mesa metálica de cuatro ruedas fijas. La mesa hace la función de bastidor para todo el sistema y sirve de soporte para el mecanismo de taladro, el de inserción de pivotes y el de posicionamiento de piezas, que se encuentra sobre ella (Figura 6.1). En su parte frontal inferior, se encuentra un cuadro eléctrico con todos los componentes requeridos para el funcionamiento de la estación, es decir: fuente de alimentación, autómata, controladores de motores, relé, regletas de distribución, bloques de terminales, cableado, electroválvulas y filtro/regulador neumático.
6.1.1 La mesa de trabajo

A continuación, en la Figura 6.2, se muestra el conjunto de toda la mesa de trabajo, que conforma la parte superior de la estación.

Figura 6.2

Se utiliza una pequeña mesa móvil de trabajo para posicionar las piezas. Éstas son placas de PVC de 11x7 [cm] como la que se muestra en la Figura 6.3.

Figura 6.3
Se ha elegido la vista posterior de la estación para la siguiente imagen pues brida el ángulo más favorable para apreciar la mesa móvil. En el final de la imagen se puede observar la botonera, la cual se encuentra en la parte frontal de la estación.

La placa se sujeta a la mesa móvil mediante una mordaza neumática (Mordaza C). Las dos imágenes siguientes se utilizarán para señalar la ubicación de este y del resto de componentes de la mesa de trabajo.

En la Figura 6.5 se ha realizado una fotografía aclarativa del estado de la estación, mientras que en la 6.6 se ha construido una imagen para referenciar, de una forma sencilla, todos los componentes de la mesa superior.
La mesa móvil se encuentra enroscada a dos ejes perpendiculares que permiten moverla en el plano horizontal. Cada eje es un tornillo sin fin, y gira gracias a un motor de corriente continua colocado en un extremo de cada eje (Figura 6.7).

La acción de los motores de continua está controlada por el autómata de la estación, junto con el resto de componentes. Cada eje va equipado con un sensor potenciométrico de tipo lineal, que permite en todo momento conocer la coordenada del desplazamiento realizado. También hay un sensor inductivo en cada eje que marcará la posición de inicio de la secuencia de trabajo (ver Figura 6.8, esquema de ejes). Ésta posición se ha denominado Home, si los tornillos sin fin se llaman Eje X y Eje Y, los sensores inductivos serán HomeX y HomeY.

El desplazamiento vertical del útil de taladro se realiza mediante un cilindro de simple efecto (Cilindro B) que dispone de un regulador de presión propio a fin de ajustar la presión a la que se realizara el taladro (no se dispone de sensor de fuerza). El movimiento de dicho cilindro se encuentra amortiguado por un amortiguador hidráulico situado en la parte superior del cilindro. El motor del taladro es el M1.

Un primer cilindro de simple efecto (Cilindro E) provoca un acercamiento vertical del elemento de inserción sobre la base taladrada, para la inserción de pivotes. Un segundo cilindro de simple efecto (Cilindro G) es el encargado de realizar un movimiento horizontal de la corredera provocando el paso de un pivote desde la salida del almacén de pivotes hasta la salida del útil de inserción del pivote. Finalmente el cilindro de inserción (Cilindro F) introduce el pivote.
Una vez realizado todo el proceso, el mecanismo vuelve a su posición original y queda listo para sacar la placa realizada, insertar una nueva y seguir su funcionamiento.

Figura 6.8
Hay cinco componentes en de la mesa que no se utilizarán en éste proyecto. Uno de ellos es el sensor I0.7 que se muestra en la Figura 6.9 a continuación, y los otros cuatro son los sensores de límites SL.

El uso del sensor I0.7 se dejará en éste proyecto para las mejoras futuras.

Los sensores de límite se muestran en la Figura 6.10. No se utilizarán éstos sensores debido a que, por falta de terminales, todos ellos están conectados a un único terminal de la tarjeta de entradas del autómata. Por tanto, están asociados a un único bit de memoria, dificultando así la identificación de cuál de los cuatro sensores está activo. En éste proyecto se ha elegido la detección de la posición de la mesa móvil mediante los bloques de comparación del programa del PLC, haciendo uso de los potenciómetros lineales del recorrido, en lugar de por sensores de límite. Además esto permite de forma directa conocer la posición de la mesa, y sin deducciones extras, decidir hacia dónde se ha de mover. En la Figura 6.10 también se muestran los potenciómetros de recorrido.
El objetivo de esta fotografía es mostrar los cuatro sensores de límites que posee la estación y los potenciómetros X e Y.
6.1.2 El cuadro eléctrico

En este apartado se describirá la función que tiene cada componente en la estación. Además de las fotografías que muestran cada componente real, se han creado los dibujos en detalle de varios componentes, pues es importante que quede bien definido el cableado, ya que en el laboratorio se realizan muchas prácticas con la estación, y cualquier tirón involuntario sobre un cable, implicaría el malfuncionamiento de la misma. Para ver en más detalle el cableado, referirse a la sección de Planos de este proyecto, donde se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes de la estación, llamado Circuito de la Estación 8.

Figura 6.11 El Cuadro Eléctrico
6.1.3 Fuente de alimentación

Para suministrar potencia a los dispositivos que trabajan con cargas elevadas como el taladro, se utiliza una fuente de alimentación, totalmente independiente de la que incluye el autómata.

La fuente de alimentación está conectada directamente a la red eléctrica, y entrega una tensión de 24 Voltios de continua al cuadro eléctrico de la estación.

La Figura 6.12 muestra el aspecto de éste dispositivo, y en la Figura 6.13 se hace un detalle de las cavidades donde van conectados los cables.

Figura 6.12

Figura 6.13

Para ver en más detalle el cableado, referirse a la sección de Planos de este proyecto, donde se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes de la estación, llamado Circuito de la Estación 8.
6.1.4 Relé y Regleta Weidmüller

La regleta Weidmüller sirve de distribución, para el cableado de los motores de continua y los sensores lineales de recorrido. El relé recibe una orden lógica del autómata, y conecta el taladro a la fuente de alimentación que suministra potencia para las cargas elevadas.

Figura 6.14

Figura 6.15
6.1.5 Módulos X0 y X1

Los Módulos X0 y X1 reciben a la entrada todos los cables conectados a las tarjetas del autómata, y permite a la salida unas conexiones más seguras con el resto de dispositivos de la estación.

Para ver en más detalle el cableado, referirse a la sección de Planos de este proyecto, donde se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes de la estación, llamado Circuito de la Estación 8.

Figura 6.16

Figura 6.17
6.1.6 Circuito Neumático

La Figura 6.18 muestra las conexiones de las mangueras de aire, que van hacia los cilindros de la estación. El aire proviene de la red del laboratorio, pasa por el regulador de presión (se encuentra en la parte trasera del panel eléctrico) y entra en las electroválvulas.
6.1.7 Controladores de Motor

Los controladores de motor, tienen un selector (recuadros de la Figura 6.22) que permite elegir un control de los motores X e Y mediante el PLC o mediante un control manual de sentido de giro mediante el regulador circular que tiene cada controlador. La Figura 6.21 es un esquema aclarativo del circuito interno de los controladores.

Figura 6.21

Figura 6.22
6.1.8 Botonera

De la botonera de la estación, cabe señalar que el paro de Emergencia es de tipo Normalmente Abierto, es decir, enviará tensión cuando esté pulsado. Los pulsadores de Marcha y Reset son también Normalmente Abiertos.

El selector Manual/Automático (MAN/AUTO) da tensión (es decir, se pone a 1) cuando se encuentra en Automático, de lo contrario está en 0. El selector Independiente/Integrado (IND/INT) da tensión (es decir, se pone a 1) cuando se encuentra en Independiente, de lo contrario está en 0.

Figura 6.23
La estación tiene dos funciones que realiza en dos pasos por separado:
- En el primero hay una placa de PVC que es depositada en la mesa de posicionamiento de la estación. La placa queda sujeta por una mordaza, y es transportada por la mesa hasta la zona de taladrado. Allí la placa es perforada en tres posiciones que previamente fueron configuradas desde una interface SCADA creada para la estación. Este es el paso de taladrado.
- En el segundo paso se inserta un pivote metálico en cada uno de los tres agujeros hechos en la placa de PVC durante el taladrado. Este paso es la inserción de los pivotes.

La secuencia de trabajo de las especificaciones básicas se mostrará a continuación. Se deberá realizar la automatización de esta estación de forma que cuando se pulse el pulsador de MARCHA se realice se realice la secuencia. El funcionamiento dependerá de la posición del conmutador MAN/AUTO, el cual permite respectivamente seleccionar una realización de la secuencia paso a paso según se vaya pulsando marcha, o bien de manera continua. La secuencia tiene que pararse inmediatamente cuando se produce un PARO DE EMERGENCIÁ y volver a condiciones iniciales cuando se produce un RESET.

1°) La Mordaza se activa: C+
2°) La mesa de posicionamiento se mueve en el eje X hasta la posición POS1
3°) La mesa de posicionamiento se mueve en el eje Y hasta la posición POS1
4°) Se activa el motor del taladro: M1+
5°) El taladro baja activándose el cilindro B+
6°) El taladro sube: B-
7°) El motor del taladro se para: M1-
8°) La mesa de posicionamiento se mueve en el eje X hasta la posición POS2
9°) La mesa de posicionamiento se mueve en el eje Y hasta la posición POS2
10°) Se activa el motor del taladro: M1+
11°) El taladro baja activándose el cilindro: B+
12°) El taladro sube: B-
13°) El motor del taladro se para: M1-
14°) La mesa de posicionamiento se mueve en el eje X hasta la posición POS3
15°) La mesa de posicionamiento se mueve en el eje Y hasta la posición POS3
16°) Se activa el motor del taladro: M1+
17°) El taladro baja activándose el cilindro: B+
18°) El taladro sube: B-
19°) El motor del taladro se para: M1-
20°) La mesa de posicionamiento se mueve en el eje X hasta la posición POS4
21º) La mesa de posicionamiento se mueve en el eje Y hasta la posición POS4
22º) El grupo de inserción de piezas baja E-
23º) Se pasa la corredera G+
24º) Se inserta un pivote F+
25º) F-
26º) G-
27º) El grupo de inserción de piezas sube E+
28º) La mesa de posicionamiento se mueve en el eje X hasta la posición POS5
29º) La mesa de posicionamiento se mueve en el eje Y hasta la posición POS5
30º) El grupo de inserción de piezas baja E-
31º) Se pasa la corredera G+
32º) Se inserta un pivote F+
33º) F-
34º) G-
35º) El grupo de inserción de piezas sube E+
36º) La mesa de posicionamiento se mueve en el eje X hasta la posición POS6
37º) La mesa de posicionamiento se mueve en el eje Y hasta la posición POS6
38º) El grupo de inserción de piezas baja E-
39º) Se pasa la corredera G+
40º) Se inserta un pivote F+
41º) F-
42º) G-
43º) El grupo de inserción de piezas sube E+
44º) La mesa de posicionamiento de mueve en el eje X hasta la posición HomeX
45º) La mesa de posicionamiento de mueve en el eje Y hasta la posición HomeY
46º) La mordaza se desactiva C-

La tabla a continuación muestra en forma resumida cuales son las condiciones iniciales de las que parte esta estación:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Estado Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor X</td>
<td>MX=0 , HomeX=1</td>
</tr>
<tr>
<td>Motor Y</td>
<td>MY=0 , HomeY=1</td>
</tr>
<tr>
<td>Cilindro Vertical B (simple efecto)</td>
<td>B- , b0=1</td>
</tr>
<tr>
<td>Mordaza C (simple efecto)</td>
<td>C-</td>
</tr>
<tr>
<td>Cilindro Vertical E (simple efecto)</td>
<td>E- , e0=1</td>
</tr>
<tr>
<td>Cilindro Vertical F (simple efecto)</td>
<td>F-</td>
</tr>
<tr>
<td>Cilindro Vertical G (simple efecto)</td>
<td>G- , g0=1</td>
</tr>
<tr>
<td>Motor del taladro</td>
<td>M1-</td>
</tr>
</tbody>
</table>

Tabla 6.1
6.3 El Autómata

En este apartado se describirá el PLC con el que se trabajará. Es de la firma OMRON, modelo C200HG-CPU43-E, con una CPU de tipo C200H-alpha. En la Figura 6.24 se muestra un esquema de este autómata. Es de gama alta, de tipo modular, y en su rack se encuentra una fuente de alimentación, una CPU, tres tarjetas inteligentes, una tarjeta de salidas y una de entradas. Ésta configuración es diferente en cada estación del entorno de trabajo donde se ha desarrollado este proyecto.

En el caso concreto de este autómata, su estructura está formada por una tarjeta de entradas digitales tipo IM212, una tarjeta de salidas digitales (tipo relé) modelo OC222V, y tres tarjetas inteligentes. Las cada tarjeta inteligente tiene una CPU que funciona como esclavo de la CPU maestro del autómata. Estas tres tarjetas son: una convertidora Analógico-Digital modelo AD002, una convertidora Digital-Analógica modelo DA002, y una tarjeta de comunicaciones modelo CLK21, que establece un bus de campo denominado Controller Link.

En este proyecto no se trabajará con éste tipo de comunicaciones, pero sería posible utilizarlo en un futuro para ampliar el lazo de comunicaciones con el resto de las estaciones.
6.3.1 Fuente de Alimentación

La fuente de alimentación es del modelo PA204, alimentado por corriente alterna que proviene directamente de la red eléctrica. El rango admisible de tensión de entrada va de 200 a 240 Vc.a.. Y la potencia que entrega, está dimensionada por OMRON para mantener el consumo de las tarjetas y de la CPU.

![Figura 6.25](image)

1 - **Entrada de c.a.**: Aplicar a los terminales 100 a 120 V ó 200 a 240V.

2 - **Terminales de selección de tensión**: Cortocircuitar estos terminales con una pletina de cortocircuito cuando se aplique 100 a 120 Vc.a. a los terminales de entrada de c.a.

3 - **LG**: Conectar a tierra de 100 " o menor el terminal LG para aumentar la resistencia al ruido y proteger la unidad contra posibles descargas eléctricas.

4 - **GR**: Conectar a tierra de 100 " o menor el terminal GR para proteger la unidad contra posibles descargas eléctricas.

5 - **NC**: La firma OMRON, no utiliza el término "NC" para indicar "Normally Closed" sino para "No Connection". En esos terminales no hay ningún cable conectado. Esto se debe simplemente a que utilizan el mismo tipo de regleta de terminales para los diversos dispositivos que construye esta familia, pero no necesariamente le dan utilidad a cada tornillo o terminal.
El autómata no solo es modular con respecto a las tarjetas, sino también con la CPU, de forma que pudiera elegirse otro procesador. Tal y como se puede apreciar en la Tabla 6.2, habrían cuatro modelo posibles a elegir para este autómata. Teniendo en cuenta el número de Entradas/Salidas que se utilizarán, no es necesario elegir una CPU con tantas prestaciones como la CPU53-E ni la CPU63-E. Además, el SCADA deberá comunicarse con los autómatas, siendo necesarios los conectores de tipo serie (como el RS-232) ya que no se dispone de tarjetas Ethernet. Por todo esto, la elección más ajustada es la CPU43-E.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Capacidad de programa (ca.-)</th>
<th>DM (canal)</th>
<th>EM (canal)</th>
<th>Tiempo de proceso de instrucción básica</th>
<th>No. de puntos de E/S</th>
<th>No. máx. de bastidores expansores de E/S conectables</th>
<th>No. máx. de unidades de E/S alta densidad conectables (Grupo-3) (ver nota 1)</th>
<th>No. máx. de unidades de E/S especiales conectables (nota 1)</th>
<th>RS-232C</th>
<th>Riel</th>
<th>Tarjeta de comunicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>C200HE-CPU11-E</td>
<td>32K</td>
<td>4K</td>
<td>Ninguno</td>
<td>0,3 µs min.</td>
<td>640</td>
<td>2 No disponible</td>
<td>10 10</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>C200HE-CPU12-E</td>
<td>16K</td>
<td>2K</td>
<td>Ninguno</td>
<td>0,3 µs min.</td>
<td>880</td>
<td>10</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C200HG-CPU33-E</td>
<td>16K</td>
<td>6K</td>
<td>6K</td>
<td>0,15 µs min.</td>
<td>880</td>
<td>2 10</td>
<td>10 10</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td></td>
</tr>
<tr>
<td>C200HG-CPU33-E</td>
<td>16K</td>
<td>6K</td>
<td>6K</td>
<td>0,15 µs min.</td>
<td>880</td>
<td>16 (16)</td>
<td>16 (16) (ver nota 2)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>C200HG-CPU44-E</td>
<td>16K</td>
<td>6K</td>
<td>6K x 3 (18K)</td>
<td>0,1 µs min.</td>
<td>880</td>
<td>16 (18) (ver nota 2)</td>
<td>16 (16) (ver nota 2)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.2

La CPU utilizará los dos conectores serie que trae, uno para la comunicación SYSWIN que permitirá la transferencia del diagrama de contactos, y el otro para el SCADA. La conexión se puede apreciar en la Figura 6.26.

A su vez, cada conector serie dispone de dos canales de comunicación dentro de él: COM1 y COM2. Pero la CPU en total solo puede leer dos.

Con lo cual si el SCADA está utilizando el COM1, la transferencia del diagrama de contactos deberá hacerse por el COM2; y si por el contrario el SCADA está utilizando el COM2, la transferencia del ladder deberá hacerse por el COM1.
Áreas de Memoria

La distribución de todas las áreas de memoria del autómata, se encuentra detallada en la tabla de Áreas de Memoria de Anexos. La memoria del PLC se encuentra organizada en palabras de 16 bits denominados canales o words. La memoria del PLC se encuentra dividida en varias áreas; cada una de ellas con un contenido y características distintas:

ÁREA DE PROGRAMA

En esta área es donde se encuentra almacenado el programa del PLC (que se puede programar en lenguaje Ladder ó Nemónico).

ÁREA DE DATOS

Esta área es usada para almacenar valores, o para obtener información sobre el estado del PLC. Está dividida según funciones en:

- IR: Internal Relay
- SR: Special Relay
- AR: Auxiliar Relay
- HR: Hold Relay
- LR: Link Relay
- DM: Data Memory
- TR: Temporal Relay
- T/C: Timers / Counters

En éste proyecto solamente será necesario trabajar con las áreas IR y DM. La capacidad de memoria de cada área que tiene la CPU con la que se trabaja, está señalada en la siguiente Tabla 6.3 (Nota: Kw se refiere a KiloWords).

<table>
<thead>
<tr>
<th>PLC</th>
<th>TIPO CPU</th>
<th>MEMORIA DE PROGRAMA</th>
<th>MEMORIA DE DATOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C200-HE</td>
<td>CPU 11</td>
<td>3,2Kw</td>
<td>DM:4Kw</td>
</tr>
<tr>
<td></td>
<td>CPU 32/42</td>
<td>7,2Kw</td>
<td>DM:6Kw</td>
</tr>
<tr>
<td>C200-HG</td>
<td>CPU 33/43</td>
<td>15,2 Kw</td>
<td>DM:6Kw EM:6Kw</td>
</tr>
<tr>
<td></td>
<td>CPU 33/63</td>
<td>15,2 Kw</td>
<td>DM:6Kw EM:6Kw</td>
</tr>
<tr>
<td>C200-HX</td>
<td>CPU 34/44</td>
<td>31,2Kw</td>
<td>DM:6Kw EM:18Kw</td>
</tr>
<tr>
<td></td>
<td>CPU 54/64</td>
<td>31,2Kw</td>
<td>DM:6Kw EM:18Kw</td>
</tr>
<tr>
<td></td>
<td>CPU 65/85</td>
<td>63,2Kw</td>
<td>DM:6Kw EM:48Kw EM:72Kw</td>
</tr>
</tbody>
</table>

Tabla 6.3
El área de memoria de Internal Relays, disponible para cada una de las tarjetas de Entrada/Salida, es función de la posición en la que se instale cada tarjeta, dentro del bastidor o rack. Los canales de E/S se asignan por posición de los huecos que ocupan las tarjetas, tal como se puede ver en la Tabla 6.4.

<table>
<thead>
<tr>
<th>Bastidor</th>
<th>CPU</th>
<th>1er Expansor</th>
<th>2do Expansor</th>
<th>3er Expansor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hueco 1</td>
<td>IR 000</td>
<td>IR 010</td>
<td>IR 020</td>
<td>IR 030</td>
</tr>
<tr>
<td>Hueco 2</td>
<td>IR 001</td>
<td>IR 011</td>
<td>IR 021</td>
<td>IR 031</td>
</tr>
<tr>
<td>Hueco 3</td>
<td>IR 002</td>
<td>IR 012</td>
<td>IR 022</td>
<td>IR 032</td>
</tr>
<tr>
<td>Hueco 4</td>
<td>IR 003</td>
<td>IR 013</td>
<td>IR 023</td>
<td>IR 033</td>
</tr>
<tr>
<td>Hueco 5</td>
<td>IR 004</td>
<td>IR 014</td>
<td>IR 024</td>
<td>IR 034</td>
</tr>
<tr>
<td>Hueco 6</td>
<td>IR 005</td>
<td>IR 015</td>
<td>IR 025</td>
<td>IR 035</td>
</tr>
<tr>
<td>Hueco 7</td>
<td>IR 006</td>
<td>IR 016</td>
<td>IR 026</td>
<td>IR 036</td>
</tr>
<tr>
<td>Hueco 8</td>
<td>IR 007</td>
<td>IR 017</td>
<td>IR 027</td>
<td>IR 037</td>
</tr>
<tr>
<td>Hueco 9</td>
<td>IR 008</td>
<td>IR 018</td>
<td>IR 028</td>
<td>IR 038</td>
</tr>
<tr>
<td>Hueco 10</td>
<td>IR 009</td>
<td>IR 019</td>
<td>IR 029</td>
<td>IR 039</td>
</tr>
</tbody>
</table>

Tabla 6.4

En el caso del PLC de ésta estación no hay expansores, con lo cual los canales que se asignarán son el IR000 para la tarjeta de entradas IM212 colocada en el hueco 1; y el canal IR001 para la tarjeta de salidas OC222V colocada en el hueco 2 (Figura 6.27).
Tal como se ha comentado anteriormente, este autómata dispone de cuatro procesadores (los de las tarjetas AD002, DA002 Y CLK21, y el de la CPU del autómata). Las tarjetas no tienen memorias dentro de ellas, con lo cual, utilizarán parte del área de memoria de la CPU maestro.

Esto implica la necesidad de un mapeo de las zonas de memoria, sobre la que actuarán varios procesadores, dentro de un mismo PLC. Este mapeo se consigue a través del concepto del Número de Unidad. La Tabla 6.5 muestra, cómo el número de unidad, reserva automáticamente diez canales IR y DM para las tarjetas, dentro de la memoria de la CPU maestro.

<table>
<thead>
<tr>
<th>No. de Unidad</th>
<th>Canales IR</th>
<th>Canales DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IR 100 a IR 109</td>
<td>DM 1000 a DM 1099</td>
</tr>
<tr>
<td>1</td>
<td>IR 110 a IR 119</td>
<td>DM 1100 a DM 1199</td>
</tr>
<tr>
<td>2</td>
<td>IR 120 a IR 129</td>
<td>DM 1200 a DM 1299</td>
</tr>
<tr>
<td>3</td>
<td>IR 130 a IR 139</td>
<td>DM 1300 a DM 1399</td>
</tr>
<tr>
<td>4</td>
<td>IR 140 a IR 149</td>
<td>DM 1400 a DM 1499</td>
</tr>
<tr>
<td>5</td>
<td>IR 150 a IR 159</td>
<td>DM 1500 a DM 1599</td>
</tr>
<tr>
<td>6</td>
<td>IR 160 a IR 169</td>
<td>DM 1600 a DM 1699</td>
</tr>
<tr>
<td>7</td>
<td>IR 170 a IR 179</td>
<td>DM 1700 a DM 1799</td>
</tr>
<tr>
<td>8</td>
<td>IR 180 a IR 189</td>
<td>DM 1800 a DM 1899</td>
</tr>
<tr>
<td>9</td>
<td>IR 190 a IR 199</td>
<td>DM 1900 a DM 1999</td>
</tr>
<tr>
<td>A</td>
<td>IR 400 a IR 409</td>
<td>DM 2000 a DM 2099</td>
</tr>
<tr>
<td>B</td>
<td>IR 410 a IR 419</td>
<td>DM 2100 a DM 2199</td>
</tr>
<tr>
<td>C</td>
<td>IR 420 a IR 429</td>
<td>DM 2200 a DM 2299</td>
</tr>
<tr>
<td>D</td>
<td>IR 430 a IR 439</td>
<td>DM 2300 a DM 2399</td>
</tr>
<tr>
<td>E</td>
<td>IR 440 a IR 449</td>
<td>DM 2400 a DM 2499</td>
</tr>
<tr>
<td>F</td>
<td>IR 450 a IR 459</td>
<td>DM 2500 a DM 2599</td>
</tr>
</tbody>
</table>

Tabla 6.5

En el caso del PLC de ésta estación, se trabajará sólo con la tarjeta especial AD002 a la cual se le ha elegido el número de Unidad es 0; y la tarjeta especial DA002 con el número de Unidad 1 (Figura 6.27). No se pueden seleccionar números solapados para las unidades, es decir, se obtendría un error si a diferentes tarjetas inteligentes se les hubiese asignado un mismo número de Unidad. En este proyecto no será necesario utilizar las DM que se reservan automáticamente para cada tarjeta; solo se trabajará con las IR.

Se desean controlar dos motores con éstas tarjetas, con lo cual se utilizarán los dos primeros canales disponibles de cada tarjeta. Como se puede comprobar en la Tabla 6.5, los diez canales disponibles para cada una serán:

Para la AD002, desde el canal IR100 hasta el IR109
Para la DA002, desde el canal IR110 hasta el IR119
En el apartado de tarjetas se verá en detalle cómo se trabajará con estos canales. Por último, se describirán a continuación, el resto de áreas de memoria utilizadas en este proyecto.

La memorias utilizadas para los contactos del ladder, fueron los canales IR del 460 al 495. Esta zona de memoria esta destinada a utilizarse precisamente como bits de trabajo en el programa.

Se utilizaron las memorias DM para almacenar las coordenadas de todas las posiciones de la mesa, pues no se borrarían de la memoria de la CPU al apagar el autómata. Los canales elegidos fueron del DM100 al DM102, y del DM150 al DM162. Pertenecen al área de Lectura/Escritura Normal del Data Memory y por tanto se pueden editar desde el ladder y desde el SCADA.
4.3.4 Tarjetas

En este apartado se detallaran por separado las características de cada tarjeta que se ha utilizado en el proyecto.

Aunque en el autómata también esté instalada una tarjeta de Controller Link, en éste proyecto no se estudiará la comunicación entre las diferentes estaciones del laboratorio, que es la función de la Controller Link. Antes de describir las tarjetas se mostrará a continuación una tabla resumen de los periféricos que estarán conectados a ellas (Tablas 6.6 y 6.7).
<table>
<thead>
<tr>
<th>Componente</th>
<th>Funcionalidad</th>
<th>Nombre</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selector Automático/Manual</td>
<td>Manual=0, Automático=1</td>
<td>A/M</td>
<td>IR 000.00</td>
<td>Booleano</td>
</tr>
<tr>
<td>Botón Marcha</td>
<td></td>
<td>M</td>
<td>IR 000.01</td>
<td>Booleano</td>
</tr>
<tr>
<td>Botón Reset</td>
<td></td>
<td>R</td>
<td>IR 000.02</td>
<td>Booleano</td>
</tr>
<tr>
<td>Pulsador Paro de Emergencia</td>
<td>No pulsado=0, Pulsado=1</td>
<td>PE</td>
<td>IR 000.03</td>
<td>Booleano</td>
</tr>
<tr>
<td>Selector Integrado/Independiente</td>
<td>Integrado=0, Independiente=1</td>
<td>I/I</td>
<td>IR 000.04</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro B</td>
<td>activado=1</td>
<td>b0</td>
<td>IR 000.05</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro B</td>
<td>activado=1</td>
<td>b1</td>
<td>IR 000.06</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor I.07</td>
<td></td>
<td></td>
<td>IR 000.07</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro G</td>
<td>activado=1</td>
<td>g1</td>
<td>IR 000.08</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro G</td>
<td>activado=1</td>
<td>g0</td>
<td>IR 000.09</td>
<td>Booleano</td>
</tr>
<tr>
<td>Límites</td>
<td>Sensor que indica que la tabla posicionadora ha llegado a alguno de sus límites</td>
<td>SL</td>
<td>IR 000.10</td>
<td>Booleano</td>
</tr>
<tr>
<td>HomeX</td>
<td>Sensor que indica que la tabla posicionadora se encuentra en HomeX</td>
<td>HX</td>
<td>IR 000.11</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro E</td>
<td>activado=1</td>
<td>e0</td>
<td>IR 000.12</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro E</td>
<td>activado=1</td>
<td>e1</td>
<td>IR 000.13</td>
<td>Booleano</td>
</tr>
<tr>
<td>HomeY</td>
<td>Sensor que indica que la tabla posicionadora se encuentra en HomeY</td>
<td>HY</td>
<td>IR 000.14</td>
<td>Booleano</td>
</tr>
<tr>
<td>PotenciómetroX</td>
<td>Canal de entrada con el valor de la posición del motor X</td>
<td>PosX</td>
<td>IR 101</td>
<td>Analógica</td>
</tr>
<tr>
<td>PotenciómetroY</td>
<td>Canal de entrada con el valor de la posición del motor Y</td>
<td>PosY</td>
<td>IR 102</td>
<td>Analógica</td>
</tr>
</tbody>
</table>

Tabla 6.6 Entradas al PLC
<table>
<thead>
<tr>
<th>Componente</th>
<th>Funcionalidad</th>
<th>Nombre</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro B (simple efecto)</td>
<td>Cilindro de desplazamiento vertical del taladro</td>
<td>B+</td>
<td>IR 001.00</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro C (simple efecto)</td>
<td>Mordaza aprisionadora de piezas</td>
<td>Mordaza</td>
<td>IR 001.01</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro E (simple efecto)</td>
<td>Cilindro de desplazamiento vertical del grupo de inserción</td>
<td>E+</td>
<td>IR 001.02</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro F (simple efecto)</td>
<td>Cilindro de inserción</td>
<td>F+</td>
<td>IR 001.03</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro G (simple efecto)</td>
<td>Cilindro de la corredera</td>
<td>G+</td>
<td>IR 001.04</td>
<td>Booleano</td>
</tr>
<tr>
<td>Motor M (simple efecto)</td>
<td>Motor del taladro</td>
<td>M1+</td>
<td>IR 001.05</td>
<td>Booleano</td>
</tr>
<tr>
<td>Motor X</td>
<td>Motor de desplazamiento en el eje X de la mesa posicionadora</td>
<td>MX</td>
<td>IR 110</td>
<td>Analógica</td>
</tr>
<tr>
<td>Motor Y</td>
<td>Motor de desplazamiento en el eje Y de la mesa posicionadora</td>
<td>MY</td>
<td>IR 111</td>
<td>Analógica</td>
</tr>
</tbody>
</table>

Tabla 6.7 Salidas del PLC
La unidad de entradas digitales realiza la conexión eléctrica entre la CPU y los dispositivos externos, capaces de enviar señales boolenas. Por tanto, cada una de las señales que admite esta tarjeta presenta dos estados lógicos, “0” o “1”. La siguiente tabla muestra las características más relevantes de la tarjeta IM212, con la cual se ha desarrollado este proyecto:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>IM212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión nominal de entrada</td>
<td>24 V.c.c.</td>
</tr>
<tr>
<td>Tensión de operación de entrada</td>
<td>20.4 a 26.4 V.c.c.</td>
</tr>
<tr>
<td>Impedancia de entrada</td>
<td>3 kΩ</td>
</tr>
<tr>
<td>Corriente de entrada</td>
<td>7 mA (a 24 V.c.c.)</td>
</tr>
<tr>
<td>Tensión de ON</td>
<td>14.4 V.c.c. mín.</td>
</tr>
<tr>
<td>Tensión de OFF</td>
<td>5.0 V.c.c. máx.</td>
</tr>
<tr>
<td>Tiempo de respuesta de ON</td>
<td>15 ms máx. (a 24 V.c.c., 25°C)</td>
</tr>
<tr>
<td>Tiempo de respuesta de OFF</td>
<td>15 ms máx. (a 24 V.c.c., 25°C)</td>
</tr>
<tr>
<td>No. de circuitos</td>
<td>1 (16 puntos/común)</td>
</tr>
<tr>
<td>Consumo interno</td>
<td>10 mA 5 V.c.c. máx.</td>
</tr>
<tr>
<td>Peso</td>
<td>250 g máx.</td>
</tr>
</tbody>
</table>

Tabla 6.8
Conexiones de los terminales

En el apartado anterior del Área de Memoria del PLC se mostró que a ésta tarjeta le corresponde el canal IR000. La relación entre cada terminal conectado, y su bit de memoria asociado, es la siguiente:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Código</th>
<th>Terminal</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selector Automático/Manual</td>
<td>I0.00</td>
<td>0</td>
<td>IR 000.00</td>
<td>Boolean</td>
</tr>
<tr>
<td>Botón Marcha</td>
<td>I0.01</td>
<td>1</td>
<td>IR 000.01</td>
<td>Boolean</td>
</tr>
<tr>
<td>Botón Reset</td>
<td>I0.02</td>
<td>2</td>
<td>IR 000.02</td>
<td>Boolean</td>
</tr>
<tr>
<td>Pulsador Paro de Emergencia</td>
<td>I0.03</td>
<td>3</td>
<td>IR 000.03</td>
<td>Boolean</td>
</tr>
<tr>
<td>Selector Integrado/Independiente</td>
<td>I0.04</td>
<td>4</td>
<td>IR 000.04</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor Cilindro B</td>
<td>I0.05</td>
<td>5</td>
<td>IR 000.05</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor Cilindro B</td>
<td>I0.06</td>
<td>6</td>
<td>IR 000.06</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor I.07</td>
<td>I0.07</td>
<td>7</td>
<td>IR 000.07</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor Cilindro G</td>
<td>I0.08</td>
<td>8</td>
<td>IR 000.08</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor Cilindro G</td>
<td>I0.09</td>
<td>9</td>
<td>IR 000.09</td>
<td>Boolean</td>
</tr>
<tr>
<td>Límites</td>
<td>I0.10</td>
<td>10</td>
<td>IR 000.10</td>
<td>Boolean</td>
</tr>
<tr>
<td>HomeX</td>
<td>I0.11</td>
<td>11</td>
<td>IR 000.11</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor Cilindro E</td>
<td>I0.12</td>
<td>12</td>
<td>IR 000.12</td>
<td>Boolean</td>
</tr>
<tr>
<td>Sensor Cilindro E</td>
<td>I0.13</td>
<td>13</td>
<td>IR 000.13</td>
<td>Boolean</td>
</tr>
<tr>
<td>HomeY</td>
<td>I0.14</td>
<td>14</td>
<td>IR 000.14</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Tabla 6.9

La Figura 6.29 muestra la nomenclatura que aparece en la superficie de la tarjeta, y su correspondencia con el número de terminal asociado.
La Figura 6.31 muestra de forma esquemática las conexiones externas de la tarjeta. Los códigos de las conexiones mostradas en esta Figura, se encuentran detallados en la Tabla 6.9 de la página anterior.

La Figura 6.30 muestra el circuito interno. En la sección de Planos de este proyecto, se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes, llamado Circuito de la Estación 8.
La unidad de salidas digitales realiza la conexión eléctrica entre la CPU y los dispositivos externos, que reciben señales booleanas. Por tanto, cada una de las señales que admite esta tarjeta presenta dos estados lógicos, “0” o “1”.

La siguiente tabla muestra las características más relevantes de la tarjeta OC222V, con la cual se ha desarrollado este proyecto:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>OC222V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de conmutación máx.</td>
<td>2 A 250 Vc.a. ($\cos \theta = 1$), 2 A 250 Vc.a. ($\cos \theta = 0,4$), 2 A 24 Vc.c. (8 A/unidad)</td>
</tr>
<tr>
<td>Capacidad de conmutación mín.</td>
<td>10 mA 5 Vcc.</td>
</tr>
<tr>
<td>Relé</td>
<td>G6R-1 (24 Vc.c.) con zócalo</td>
</tr>
<tr>
<td>Vida útil del relé</td>
<td>Eléctrica: 300.000 operaciones</td>
</tr>
<tr>
<td></td>
<td>Mecánica: 10.000.000 operaciones</td>
</tr>
<tr>
<td></td>
<td>La vida útil varía dependiendo de la corriente y la temperatura ambiente.</td>
</tr>
<tr>
<td>Tiempo de respuesta a ON</td>
<td>15 ms máx.</td>
</tr>
<tr>
<td>Tiempo de respuesta a OFF</td>
<td>15 ms máx.</td>
</tr>
<tr>
<td>No. de circuitos</td>
<td>1 (12 puntos/común); pueden estar en ON simultáneamente 8 puntos máx.</td>
</tr>
<tr>
<td>Consumo de corriente interna</td>
<td>8 mA 5 Vcc. máx. 90 mA 26 Vcc. (8 puntos simultáneamente en ON)</td>
</tr>
<tr>
<td>Peso</td>
<td>400 g máx.</td>
</tr>
</tbody>
</table>

Tabla 6.10
En el apartado anterior del Área de Memoria del PLC se mostró que a ésta tarjeta le corresponde el canal IR001. La relación entre cada terminal conectado, y su bit de memoria asociado, es la siguiente:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Código</th>
<th>Terminal</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro B (simple efecto)</td>
<td>O1.00</td>
<td>0</td>
<td>IR 001.00</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro C (simple efecto)</td>
<td>O1.01</td>
<td>1</td>
<td>IR 001.01</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro E (simple efecto)</td>
<td>O1.02</td>
<td>2</td>
<td>IR 001.02</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro F (simple efecto)</td>
<td>O1.03</td>
<td>3</td>
<td>IR 001.03</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro G (simple efecto)</td>
<td>O1.04</td>
<td>4</td>
<td>IR 001.04</td>
<td>Booleano</td>
</tr>
<tr>
<td>Motor M (simple efecto)</td>
<td>O1.05</td>
<td>5</td>
<td>IR 001.05</td>
<td>Booleano</td>
</tr>
</tbody>
</table>

Tabla 6.11

La Figura 6.33 muestra la nomenclatura que aparece en la superficie de la tarjeta, y su correspondencia con el número de terminal asociado.

Figura 6.33
La Figura 6.35 muestra de forma esquemática las conexiones externas de la tarjeta. Los códigos de las conexiones mostradas en esta Figura, se encuentran detallados en la Tabla 6.11 de la página anterior.

La Figura 6.34 muestra el circuito interno. En la sección de Planos de este proyecto, se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes, llamado Circuito de la Estación 8.
6.3.4.3 Unidad de Entrada Analógica C200H-AD002

La unidad de entradas analógicas realiza la conexión eléctrica entre la CPU y los dispositivos externos, que envían señales analógicas a la CPU.

Esta tarjeta es la encargada de convertir las salidas de sensores analógicos a formato digital, y las transmite al PLC de forma que éste las pueda leer. Cada terminal de la tarjeta recibe la señal que le corresponde y esto permite medir el dispositivo externo analógico al cual esté conectado. De esta forma se puede medir la posición un dispositivo externo dentro de un rango de valores, en lugar de hacerlo entre dos únicos estados conmutados ON/OFF.
Características de la C200H-AD002:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>AD002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de entradas analógicas</td>
<td>8 máx.</td>
</tr>
<tr>
<td>Rango de señal de entrada</td>
<td></td>
</tr>
<tr>
<td>Entrada de tensión</td>
<td>-10 a +10 V</td>
</tr>
<tr>
<td></td>
<td>+1 a +5 V</td>
</tr>
<tr>
<td></td>
<td>0 a 10 V</td>
</tr>
<tr>
<td>Seleccionada para cada número de entrada en el área de DM asignada.</td>
<td></td>
</tr>
<tr>
<td>Entrada de corriente</td>
<td>4 a 20 mA</td>
</tr>
<tr>
<td>Señal de entrada máx.</td>
<td></td>
</tr>
<tr>
<td>Entrada de tensión</td>
<td>±15 V</td>
</tr>
<tr>
<td>Entrada de corriente</td>
<td>±30 mA</td>
</tr>
<tr>
<td>Impedancia de entrada</td>
<td></td>
</tr>
<tr>
<td>Entrada de tensión</td>
<td>1 MΩ mín.</td>
</tr>
<tr>
<td>Entrada de corriente</td>
<td>250 Ω (valor nominal)</td>
</tr>
<tr>
<td>Resolución</td>
<td>1/4000 máx.</td>
</tr>
<tr>
<td>Datos de salida convertidos</td>
<td></td>
</tr>
<tr>
<td>Dato binario</td>
<td>Rango ±10 V: 87D0 a 07D0</td>
</tr>
<tr>
<td></td>
<td>Resto rangos: 0000 a 0FA0</td>
</tr>
<tr>
<td>Dato BCD</td>
<td>Rango ±10 V: A000 a 2000</td>
</tr>
<tr>
<td></td>
<td>Resto rangos: 0000 a 4000</td>
</tr>
<tr>
<td>Precisión</td>
<td>25°C</td>
</tr>
<tr>
<td></td>
<td>Entrada de tensión: ±0.25%</td>
</tr>
<tr>
<td></td>
<td>Entrada de corriente: ±0.40%</td>
</tr>
<tr>
<td></td>
<td>0º a 55ºC</td>
</tr>
<tr>
<td></td>
<td>Entrada de tensión: ±0.60%</td>
</tr>
<tr>
<td></td>
<td>Entrada de corriente: ±0.80%</td>
</tr>
<tr>
<td>Tiempo de conversión</td>
<td>2.5 ms máx./punto</td>
</tr>
<tr>
<td>Aislamiento</td>
<td></td>
</tr>
<tr>
<td>Entre terminales de entrada y PLC: fotoacoplador</td>
<td></td>
</tr>
<tr>
<td>Entre terminales de entrada: ninguno</td>
<td></td>
</tr>
<tr>
<td>Conectores externos</td>
<td></td>
</tr>
<tr>
<td>Conector de 34-pines</td>
<td></td>
</tr>
<tr>
<td>Conector para el lado del cable</td>
<td></td>
</tr>
<tr>
<td>MR-34LFG</td>
<td>Conector: MR-34FG</td>
</tr>
<tr>
<td></td>
<td>Carcasa: MR-34L</td>
</tr>
<tr>
<td>Consumo</td>
<td>450 mA máx. a 5 Vc.c.</td>
</tr>
<tr>
<td>Peso</td>
<td>290 g</td>
</tr>
</tbody>
</table>

Tabla 6.12
Conexiones de los terminales

En el apartado anterior del Área de Memoria del PLC se mostró que a ésta tarjeta le corresponden los canales IR100 a IR109, pues será la Unidad 0. Esta tarjeta tiene ocho entradas, de las cuales se han utilizado la 1 y la 2, para los potenciómetros PosX y PosY respectivamente. La relación entre cada entrada y su canal de memoria asociado, es la siguiente:

<table>
<thead>
<tr>
<th>E/S</th>
<th>CH (IR)</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>n</td>
<td>0</td>
</tr>
<tr>
<td>In</td>
<td>n+1</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>n+2</td>
<td>Datos de conversión A/D de entrada 1 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+3</td>
<td>Datos de conversión A/D de entrada 2 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+4</td>
<td>Datos de conversión A/D de entrada 3 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+5</td>
<td>Datos de conversión A/D de entrada 4 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+6</td>
<td>Datos de conversión A/D de entrada 5 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+7</td>
<td>Datos de conversión A/D de entrada 6 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+8</td>
<td>Datos de conversión A/D de entrada 7 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>n+9</td>
<td>Datos de conversión A/D de entrada 8 o proceso de datos</td>
</tr>
</tbody>
</table>

Donde n = 100 + 10 * Número de la Unidad

Con lo cual, si el número de la Unidad es 0, n será 100 y el resultado sería el de la Tabla 6.14.

<table>
<thead>
<tr>
<th>E/S</th>
<th>CH (IR)</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>In</td>
<td>101</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>Datos de conversión A/D de entrada 1 o proceso de datos</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>Datos de conversión A/D de entrada 2 o proceso de datos</td>
</tr>
</tbody>
</table>

La Tabla 6.15 unifica la nomenclatura utilizada en la estación, para los sensores lineales de recorrido, y los canales de memoria por los cuales serán accesibles.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PotenciómetroX</td>
<td>PosX</td>
<td>IU0</td>
<td>IR 101</td>
<td>Analógica</td>
</tr>
<tr>
<td>PotenciómetroY</td>
<td>PosY</td>
<td>IU1</td>
<td>IR 102</td>
<td>Analógica</td>
</tr>
</tbody>
</table>
A continuación, se muestra la correspondencia eléctrica de cada pin del conector de la tarjeta y la entrada asociada:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Entrada de tensión/corriente (+)</td>
<td>7</td>
<td>Entrada de tensión/corriente (+)</td>
<td>12</td>
<td>Común (-)</td>
</tr>
<tr>
<td>11</td>
<td>Entrada de corriente (+)</td>
<td>8</td>
<td>Entrada de corriente (+)</td>
<td>13</td>
<td>Tierra (FG)</td>
</tr>
<tr>
<td>10</td>
<td>Entrada de tensión/corriente (+)</td>
<td>9</td>
<td>Malla</td>
<td>14</td>
<td>Malla</td>
</tr>
<tr>
<td>9</td>
<td>Común (-)</td>
<td>5</td>
<td>Malla</td>
<td>15</td>
<td>Malla</td>
</tr>
<tr>
<td>8</td>
<td>Entrada de corriente (+)</td>
<td>4</td>
<td>Malla</td>
<td>16</td>
<td>Malla</td>
</tr>
<tr>
<td>7</td>
<td>Entrada de tensión/corriente (+)</td>
<td>3</td>
<td>Malla</td>
<td>17</td>
<td>Malla</td>
</tr>
<tr>
<td>6</td>
<td>Común (-)</td>
<td>2</td>
<td>Malla</td>
<td>18</td>
<td>Malla</td>
</tr>
<tr>
<td>5</td>
<td>Entrada de corriente (+)</td>
<td>1</td>
<td>Malla</td>
<td>19</td>
<td>Malla</td>
</tr>
<tr>
<td>4</td>
<td>Entrada de tensión/corriente (+)</td>
<td>11</td>
<td>Tierra analógica (AG)</td>
<td>20</td>
<td>Malla</td>
</tr>
<tr>
<td>3</td>
<td>Común (-)</td>
<td>10</td>
<td>Tierra analógica (AG)</td>
<td>21</td>
<td>Malla</td>
</tr>
<tr>
<td>2</td>
<td>Entrada de corriente (+)</td>
<td>12</td>
<td>Común (-)</td>
<td>22</td>
<td>Tierra analógica (AG)</td>
</tr>
<tr>
<td>1</td>
<td>Entrada de tensión/corriente (+)</td>
<td>13</td>
<td>Común (-)</td>
<td>23</td>
<td>Entrada de corriente (+)</td>
</tr>
</tbody>
</table>

Tabla 6.16

La tarjeta AD002 utiliza un conector HONDA MR-34M (tipo macho) para las entradas. La Figura 6.37 muestra una ampliación de los terminales de este conector, visto desde la cara frontal de la tarjeta. La figura también incluye una imagen detallada de la numeración de los pines.

Figura 6.37 Conector HONDA MR-34M
La Figura 6.39 muestra de forma esquemática las conexiones externas de la tarjeta. Los códigos de las conexiones mostradas en esta Figura, se encuentran detallados en la Tabla 6.15. En la sección de Planos de este proyecto, se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes, llamado Circuito de la Estación 8.

El conector que encaja en el HONDA MR-34M es el HONDA MR-34L (Figura 6.38). Este conector utiliza un terminal tipo HONDA MR-34F (tipo hembra). La parte posterior del MR-34F tiene una distribución de pines igual a la que se muestra en la Figura 6.37.

Figura 6.38
Interruptor de selección de Unidad:

El número de unidad (MACHINE No.) señala el número de unidad. El interruptor de la Figura 6.40 está seleccionado a 0, tal cual se ha colocado en la estación. Verificar que el interruptor queda en una posición correcta y no entre dos selecciones.

Figura 6.40

Inhabilitar entradas no utilizadas

Actualmente la tarjeta tiene habilitados los ocho canales de entrada disponibles. Puesto que en esta estación únicamente se utilizan las dos primeras entradas analógicas, el procesador está comprobando innecesariamente, las otras seis entradas. La Tabla 6.17 muestra cómo se pueden inhibir las conversiones de los canales no utilizados, de forma que no estén en scan.

<table>
<thead>
<tr>
<th>Canales DM</th>
<th>Bits</th>
<th>Item</th>
<th>Contenidos de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>15 a 10</td>
<td>---</td>
<td>No utilizado.</td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>Modo de aviso de límite</td>
<td>Selecciona el modo de operación para la función de aviso de límite. Esta selección se aplica a las 8 entradas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Modo 1 (aviso normal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Modo 2 (aviso de secuencia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consulta 2-3-8 Función de aviso de límite.</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>Tipo de datos de conversión</td>
<td>Selecciona el tipo de datos a convertir: binario o BCD. Esta selección se aplica a las 8 entradas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Binario</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: BCD</td>
<td></td>
</tr>
<tr>
<td>07 a 00</td>
<td></td>
<td>Selección de inhibir conversión</td>
<td>Cuando estos bits están en ON inhiben la conversión A/D para la entrada correspondiente. Los bits 00 a 07 corresponden a las entradas 1 a 8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0: Conversión habilitada</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: Conversión inhibida</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.17

Donde \(m = 1000 + 100 \times \) Número de la Unidad

Con lo cual, si el número de la Unidad es 0, \(m \) será 1000 y por tanto, para inhibir las entradas 3 a 8, se debería escribir un 1 en los bits 2 al 7 del canal DM1000.
Rango de valores:

El rango de entrada de esta tarjeta puede configurarse en el área DM del PLC según la siguiente tabla:

<table>
<thead>
<tr>
<th>Canales DM</th>
<th>Bits</th>
<th>Item</th>
<th>Contenidos de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>m+1</td>
<td>15 y 14</td>
<td>Rango de señal de entrada para entrada 8</td>
<td>Cada par de bits selecciona el rango de señal para la entrada correspondiente, como sigue. (El primer bit es el de mayor peso.)</td>
</tr>
<tr>
<td></td>
<td>13 y 12</td>
<td>Rango de señal de entrada para entrada 7</td>
<td>00: -10 V a +10 V</td>
</tr>
<tr>
<td></td>
<td>11 y 10</td>
<td>Rango de señal de entrada para entrada 6</td>
<td>01: 0 a 10 V</td>
</tr>
<tr>
<td></td>
<td>09 y 08</td>
<td>Rango de señal de entrada para entrada 5</td>
<td>10: 1 a 5 V/4 a 20 mA</td>
</tr>
<tr>
<td></td>
<td>07 y 06</td>
<td>Rango de señal de entrada para entrada 4</td>
<td>11: No utilizado.</td>
</tr>
<tr>
<td></td>
<td>05 y 04</td>
<td>Rango de señal de entrada para entrada 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03 y 02</td>
<td>Rango de señal de entrada para entrada 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01 y 00</td>
<td>Rango de señal de entrada para entrada 1</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.18

Donde \(m = 1000 + 100 \times \) Número de la Unidad

Con lo cual, si el número de la Unidad es 0, \(m \) será 1000 y por tanto, al poner un cero en el canal DM1001 el rango es -10V a +10V.

La salida de los potenciómetros va de 0 a 10V, pero en la estación se ha configurado la tarjeta de forma que pueda leer valores de -10V a +10V. Por tanto, la entrada de tensión variará de 87D0 a 07D0 en hexadecimal (en decimal sería de -2000 a +2000). Siendo la relación lineal, se obtendría el siguiente gráfico de equivalencia entre valores digitales y señal analógica:
Nota:

1. El rango de señal de entrada (0 a +10 V, +1 a +5 V / +4 a +20 mA ó -10 a +10 V) se puede seleccionar para cada número de entrada.

2. Si se aplica una señal de entrada que excede el rango de señal de entrada (valor máx. de +10 V ó +5 V / 20 mA, o valor mín. de 0 V, +1 V/+4 mA, ó --10 V), la salida digital permanecerá fija al valor máximo o mínimo.

3. Cuando el rango de entrada se selecciona de -10 V a +10 V, el bit de mayor peso (bit 15) es el bit de signo.

4. Cuando el rango de entrada se selecciona de -10 V a +10 V y la señal de salida analógica es 0V, la salida digital será 0000 y el bit de mayor peso (bit 15) será 0.
En la práctica, los potenciómetros no llegan a realizar todo el recorrido, debido a que la mesa queda atascada antes de llegar a algún extremo. La mesa choca con la estructura de la estación, y queda inaccesible un rango de valores de los potenciómetros.

La tarjeta no leerá valores negativos, pues los potenciómetros entregan únicamente tensiones positivas entre 0 y +10V. Además, tampoco se leerá todo el recorrido desde 0 hasta 2000 como se indica en la Figura 6.41, pero esto no implica un malfuncionamiento de la tarjeta, sino una falta de aprovechamiento del espacio de la estación.

El rango útil de cada eje se ha tomado experimentalmente, moviendo la mesa hasta los extremos máximos, y los valores obtenidos se muestran a continuación (las coordenadas están expresadas en decimal):

-El Eje X es capaz de moverse desde 0 a 1731
-El Eje Y es capaz de moverse desde 484 a 2000

La Figura 6.42 muestra de forma esquemática, esta pérdida de rango en los potenciómetros, y su equivalencia en voltios:

![Figura 6.42](image)

La Figura 6.43 muestra la distribución de los rangos perdidos y las zonas útiles, en el plano de la mesa.
Figura 6.43
6.3.4.4 Unidad de Salida Analógica C200H-DA002

La unidad de salidas analógicas realiza la conexión eléctrica entre la CPU y los dispositivos externos, hacia los cuales la CPU envía las señales analógicas.

Esta tarjeta es la encargada de convertir, en salidas analógicas salidas, los valores digital del interior del PLC. Además, transmite dichas señales analógicas hacia los motores, por el terminal que corresponda. Esto permite controlar el dispositivo externo dentro de un rango de valores, en lugar de hacerlo entre dos únicos estados conmutados ON/OFF.
Características de la C200H-DA002:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>DA002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de salidas analógicas</td>
<td>4</td>
</tr>
<tr>
<td>Rango de señal de salida</td>
<td></td>
</tr>
<tr>
<td>Salidas de tensión</td>
<td>-10 a +10 V</td>
</tr>
<tr>
<td>Salidas de corriente</td>
<td>4 a 20 mA</td>
</tr>
<tr>
<td>Impedancia de salida máx.</td>
<td>Salida de tensión: 0.5 Ω</td>
</tr>
<tr>
<td>Corriente de salida máx.</td>
<td>Salida de tensión: 10 mA</td>
</tr>
<tr>
<td>Resistencia de carga máx.</td>
<td>Salida de corriente: 350 Ω</td>
</tr>
<tr>
<td>Resolución</td>
<td></td>
</tr>
<tr>
<td>Salidas de tensión</td>
<td>1/8190 máx. (fondo de escala)</td>
</tr>
<tr>
<td>Salidas de corriente</td>
<td>1/4095 máx. (fondo de escala)</td>
</tr>
<tr>
<td>Selección de datos</td>
<td>Salida de tensión: Bit de signo +12-bit binario (8FFF a 0FFF)</td>
</tr>
<tr>
<td></td>
<td>Salida de corriente: 12-bit binario (0000 a 0FFF)</td>
</tr>
<tr>
<td>Precisión</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>Salidas de tensión: ±0.3% máx.</td>
</tr>
<tr>
<td></td>
<td>Salidas de corriente: ±0.5% máx.</td>
</tr>
<tr>
<td>0°C a 55°C</td>
<td>Salidas de tensión: ±0.5% máx.</td>
</tr>
<tr>
<td></td>
<td>Salidas de corriente: ±1.0% máx.</td>
</tr>
<tr>
<td>Tiempo de conversión</td>
<td>2.5 ms máx./punto</td>
</tr>
<tr>
<td>Aislamiento</td>
<td>Entre terminales de salida y PLC: fotoacoplador</td>
</tr>
<tr>
<td></td>
<td>Entre terminales de salida: ninguno</td>
</tr>
<tr>
<td>Conexiones externas</td>
<td>Bloque de terminales 19-pines (desmontable)</td>
</tr>
<tr>
<td>Consumo</td>
<td>600 mA máx. a 5 Vc.c.</td>
</tr>
<tr>
<td>Peso</td>
<td>320 g máx.</td>
</tr>
</tbody>
</table>

Tabla 6.19
Conexiones de los terminales

En el apartado anterior del Área de Memoria del PLC se mostró que a ésta tarjeta le corresponden los canales IR110 a IR119, pues será la Unidad 1. Esta tarjeta tiene cuatro salidas, de las cuales se han utilizado la 1 y la 2, para los motores MX y MY respectivamente. La relación entre cada terminal de salida y su canal de memoria asociado, es la siguiente:

<table>
<thead>
<tr>
<th>E/S</th>
<th>CH (IR)</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>n</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>n+1</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>n+2</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>n+3</td>
<td>Signo</td>
</tr>
</tbody>
</table>

Tabla 6.20

Donde \(n = 100 + 10 \times \text{Número de la Unidad} \)
Con lo cual, si el número de la Unidad es 1, \(n \) será 110 y el resultado sería el de la Tabla 6.21.

<table>
<thead>
<tr>
<th>E/S</th>
<th>CH (IR)</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>110</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>Signo</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>Signo</td>
</tr>
</tbody>
</table>

Tabla 6.21

La Tabla 6.22 unifica la nomenclatura utilizada en la estación, para los motores de continua, y los canales de memoria por los cuales serán controlados.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor X</td>
<td>MX</td>
<td>OU0</td>
<td>IR 110</td>
<td>Analógica</td>
</tr>
<tr>
<td>Motor Y</td>
<td>MY</td>
<td>OU1</td>
<td>IR 111</td>
<td>Analógica</td>
</tr>
</tbody>
</table>

Tabla 6.22
La Figura 6.45 muestra la nomenclatura que aparece en la superficie de la tarjeta, y su correspondencia con el número de terminal asociado.

<table>
<thead>
<tr>
<th>Salida tensión 1 (-)</th>
<th>B0</th>
<th>Salida tensión 1 (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salida corriente 1 (-)</td>
<td>A0</td>
<td>Salida corriente 1 (+)</td>
</tr>
<tr>
<td>Salida tensión 2 (-)</td>
<td>A1</td>
<td>Salida tensión 2 (+)</td>
</tr>
<tr>
<td>Salida corriente 2 (-)</td>
<td>A2</td>
<td>Salida corriente 2 (+)</td>
</tr>
<tr>
<td>Salida tensión 3 (-)</td>
<td>A3</td>
<td>Salida tensión 3 (+)</td>
</tr>
<tr>
<td>Salida corriente 3 (-)</td>
<td>A4</td>
<td>Salida corriente 3 (+)</td>
</tr>
<tr>
<td>Salida tensión 4 (-)</td>
<td>A5</td>
<td>Salida tensión 4 (+)</td>
</tr>
<tr>
<td>Salida corriente 4 (-)</td>
<td>A6</td>
<td>Salida corriente 4 (+)</td>
</tr>
<tr>
<td>No utilizado.</td>
<td>A7</td>
<td>B8</td>
</tr>
<tr>
<td>No utilizado.</td>
<td>A8</td>
<td>B9</td>
</tr>
</tbody>
</table>

Figura 6.45

El cableado para el circuito externo de la tarjeta se muestra en la Figura 6.46:
La Figura 6.47 muestra el circuito interno de la tarjeta en forma de diagrama de bloques.

La Figura 6.48 muestra de forma esquemática las conexiones externas de la tarjeta. Los códigos de las conexiones mostradas en esta Figura, se encuentran detallados en la Tabla 6.22. En la sección de Planos de este proyecto, se adjunta un esquema de las conexiones de este dispositivo con el resto de componentes, llamado Circuito de la Estación 8.
Interruptor de selección de Unidad:

La muesca del interruptor señala el número de unidad. El interruptor de la Figura 6.49 está seleccionado a 0, pero en la estación se ha colocado en la posición 1. Los números impares, que aparecen entre paréntesis en esta figura, no aparecen realmente en la superficie de la tarjeta pero la distribución es tal cual se muestra en la Figura 6.49.

Rango de valores:

En la Tabla 6.19, al inicio de este apartado, se pude ver que el número de bits designados para el rango de valores de la señal es 12 bits. Con lo cual, la distribución de los bits para las cuatro salidas disponibles de la tarjeta será la de la Tabla 6.23:

<table>
<thead>
<tr>
<th>Bit</th>
<th>IR 1n0</th>
<th>IR 1n1</th>
<th>IR 1n2</th>
<th>IR 1n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Output 1 data setting (3-digit hex.)</td>
<td>Output 2 data setting (3-digit hex.)</td>
<td>Output 3 data setting (3-digit hex.)</td>
<td>Output 4 data setting (3-digit hex.)</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Not used</td>
<td>Not used</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sign bit</td>
<td>Sign bit</td>
<td>Sign bit</td>
<td>Sign bit</td>
</tr>
</tbody>
</table>

Tabla 6.23

De los cuatro primeros bits se utiliza solamente el primero para definir el signo de la señal de salida, y los otros tres no se utilizan ni formarán parte del rango posible de valores de la señal. Por esta razón la salida, que será por tensión, variará de 8FFF a 0FFF en valores binarios (Hexadecimal). Los niveles analógicos asociados a estos valores irán de -10 a +10 V pues es bipolar. Siendo la relación lineal, se obtendría el siguiente gráfico de equivalencia entre valores digitales y señal analógica:
Nota:

1. Si se aplica una señal digital que excede el rango de señal de salida (valor máx. de +10 V ó +20 mA, o valor mín. de -10 V ó +4 mA), la salida analógica permanecerá fija al valor máximo o mínimo.

2. Cuando el rango de entrada se selecciona de -10 V a +10 V, el bit de mayor peso (bit 15) será el bit de signo.
6.4 El Diagrama de Contactos

La estructura del ladder se describirá a continuación. Cabe mencionar antes de empezar, que la transición entre todas las etapas de la secuencia, tienen una condición común a todas: Manual * Marcha + Automático. Se ha repetido en cada transición, de forma que en cualquier momento de la secuencia, pueda hacerse un cambio a Manual en caso de ser necesario, y la secuencia podría seguir paso a paso cada vez que se pulse Marcha.

6.4.1 Secciones y Modos de Funcionamiento del programa

El programa se ha dividido en secciones, las cuales se describirán a continuación:

- Seccion01_Inicio
- Seccion02_Busqueda_Home
- Seccion03_Busqueda_Condiciones_Iniciales
- Seccion04_Comienzo_Mordaza
- Seccion05_Posicionamiento1
- Seccion06_Posicionamiento2
- Seccion07_Posicionamiento3
- Seccion08_Posicionamiento4
- Seccion09_Posicionamiento5
- Seccion10_Posicionamiento6
- Seccion11_Taladrado
- Seccion12_Pivote
- Seccion13_Condiciones_Emergencia
- Seccion14_Salidas
- Seccion15_Keibrar
- Seccion16_Memorias

Seguidamente se hará una descripción esquemática de los modos de funcionamiento del programa, y las secciones activas en cada uno de ellos.

En cada modo de funcionamiento el programa entrará sólo en las secciones que se han señalado en verde a continuación, en el resto no entrará hasta que se produzca un cambio de funcionamiento.
Modo de funcionamiento Automático/Manual:

Cuando todas las memorias están apagadas, se entra en la etapa Inicio. Si la memoria de Calibrar está apagada y se da la consigna de Búsqueda de Home, comienza a avanzar por las siguientes secciones, que pertenecen al modo de funcionamiento Automático/Manual.

Este modo de funcionamiento, no son dos separados presentan diferencias de secciones entre Automático y Manual, sino que son las mismas; solo que las condiciones de transición entre cada etapa tienen la posibilidad de avanzar de forma paso a paso o continua según el selector Manual/Automático respectivamente. Aunque el programa entre en todas las secciones señaladas en verde, no todas actúan a la misma vez, sino que se va avanzando en el mismo orden de numeración que se les ha puesto, a medida que se cumplen las condiciones de avance en la secuencia.

- Seccion01_Inicio
- Seccion02_Busqueda_Home
- Seccion03_Busqueda_Condiciones_Iniciales
- Seccion04_Comienzo_Mordaza
- Seccion05_Posicionamiento1
- Seccion06_Posicionamiento2
- Seccion07_Posicionamiento3
- Seccion08_Posicionamiento4
- Seccion09_Posicionamiento5
- Seccion10_Posicionamiento6
- Seccion11_Taladrado
- Seccion12_Pivote
- Seccion13_Condiciones_Emergencia
- Seccion14_Salidas
- Seccion15_Calibrar
- Seccion16_Memorias
Modo de funcionamiento Calibrar:

Desde el SCADA, se accede a una memoria llamada Calibrar. Esta memoria hace que, si se está en la Sección Inicio, se entre en la de Calibrar. En este modo de funcionamiento, la única sección que se ejecuta en cada ciclo es la de Calibrar. No se sale de esta sección hasta que se apaga la memoria Calibrar, o bien se presiona el Paro de Emergencia.

Aunque la sección de memorias esté activa, no tiene dentro de ella ninguna memoria encendida, pues la función de esta sección es únicamente tener un registro de los pasos realizados de la secuencia, pero en el modo de funcionamiento de Calibrar estarán apagadas todas las memorias de la secuencia.

Seccion01_Inicio
Seccion02_Busqueda_Home
Seccion03_Busqueda_Condiciones_Iniciales
Seccion04_Comienzo_Mordaza
Seccion05_Posicionamiento1
Seccion06_Posicionamiento2
Seccion07_Posicionamiento3
Seccion08_Posicionamiento4
Seccion09_Posicionamiento5
Seccion10_Posicionamiento6
Seccion11_Taladrado
Seccion12_Pivote
Seccion13_Condiciones_Emergencia
Seccion14_Salidas
Seccion15_Calibrar
Seccion16_Memorias
Modo de funcionamiento Paro de Emergencia:

Se entra en la sección de Paro de emergencia cuando se presiona el botón de Emergencia (ya sea por SCADA o por la botonera de la estación). No se sale de esta sección hasta que se hace un Reset estando desbloqueado el botón de Emergencia.

Aunque la sección de memorias esté activa, no tiene dentro de ella ninguna memoria encendida, pues la función de esta sección es únicamente tener un registro de los pasos realizados de la secuencia, pero en el modo de funcionamiento de Paro de Emergencia estarán apagadas todas las memorias de la secuencia.

Seccion01_Inicio
Seccion02_Busqueda_Home
Seccion03_Busqueda_Condiciones_Iniciales
Seccion04_Comienzo_Mordaza
Seccion05_Posicionamiento01
Seccion06_Posicionamiento02
Seccion07_Posicionamiento03
Seccion08_Posicionamiento04
Seccion09_Posicionamiento05
Seccion10_Posicionamiento06
Seccion11_Taladrado
Seccion12_Pivote
Seccion13_Condiciones_Emergencia
Seccion14_Salidas
Seccion15_Calibrar
Seccion16_Memorias
6.4.2 Inicio

Si todas las etapas de la secuencia se encuentran apagadas, incluyendo la etapa de paro de emergencia, entonces se enciende la etapa de Inicio. De lo contrario el programa no podría comenzar la secuencia y por tanto no se movería nada.

Estando en Inicio, cabe la posibilidad de elegir si se desea Calibrar para comprobar su buen funcionamiento, o directamente dar la consigna de buscar la posición de Home, en la cual la mesa móvil se coloca en la situación de partida de la secuencia. Para dar la consigna de búsqueda de Home se ha elegido de la botonera la combinación Automático & Independiente & Reset. Por último, la única situación restante para salir de la etapa de Inicio sería al finalizar la secuencia de Taladrado e Inserción de Pivote. En tal caso se deberían recuperar las condiciones iniciales de la secuencia, en las cuales la mesa móvil se debe encontrarse en Home. Para ello, cuando el último paso de la secuencia concluye, es decir, la inserción del tercer pivote ha finalizado, se apagan todas las etapas de la secuencia de forma que se active la de Inicio, y de ahí buscar la posición de Home dependiendo de si la secuencia se encuentra en Manual o Automático. Si estuviese en Manual sería necesario presionar el botón de marcha como consigna para que se hiciera la búsqueda de Home, y así salir de Inicio.

6.4.3 Búsqueda de Home

Una vez que ya se ha dado la consigna de búsqueda de Home estando en Inicio, se trabajará en paralelo y de forma independiente cada uno de los dos ejes de posicionamiento. Sin embargo, ambos realizarán por separado un mismo procedimiento. Se describirá a continuación.

Lo primero es comprobar cuál es la posición en ese momento de la mesa móvil, es decir, se leen los valores de los potenciómetros lineales que representan las coordenadas x e y de dicha mesa.

Cada uno de estos valores se compara respectivamente con los valores que estén guardados en las memorias DM100 y DM150 del PLC. Estás posiciones de memoria fueron seleccionadas para almacenar los valores que se desean que marquen los potenciómetros cuando la mesa se encuentra en Home. Es decir, en la DM100 se encuentra la coordenada de la posición HomeX, y en la DM150 e encuentra la de HomeY.
Por tanto, el comparador indica si la posición actual de cada eje de la mesa es menor o mayor a la que corresponde con la mesa situada en Home. Dependiendo del resultado de la comparación, se moverán los motores a máxima velocidad hacia delante o hacia detrás con el fin de alcanzar la posición de Home lo antes posible y por el camino más corto que hay. Ninguna de las dos comparaciones afecta a la otra pues las dos se hacen completamente en paralelo, analizando cada eje por separado, con lo cual si uno ya se encontrase el Home y el otro no, simplemente el primero no haría falta moverlo, y el segundo e movería en el sentido de giro que acercase la mesa lo antes posible al Home del segundo eje; y así ambos ejes estarían en Home.

Si la comparación de alguno de los ejes con su DM correspondiente diese como resultado igual, simplemente estaría activo el sensor de detección de Home de ese eje, y no se movería ese motor pues la combinación de Búsqueda de Home de un eje más el sensor activo de Home de dicho eje lo que hace es no dar tensión alguna a ese motor, y por tanto se queda esperando inmóvil pues su posición es correcta.

En el instante que ambos ejes se encuentren en sus respectivas posiciones de HomeX y HomeY, entonces se activa la memoria Home Encontrado y lo siguiente es esperar la consigna de buscar el resto de Condiciones Iniciales necesarias para dar comienzo a la secuencia.

6.4.4 Condiciones Iniciales

Estando en la situación de Home Encontrado, se esperaría la consigna de Búsqueda de Condiciones Iniciales, la cual se ha elegido de la botonera mediante la combinación Manual & Independiente & Reset. La otra posibilidad para avanzar desde Home Encontrado sería la siguiente. Si la búsqueda de Home se realizó a causa de haber acabado una secuencia anteriormente, es decir, después de haber finalizado la última inserción de pivote y haber buscado Home a continuación, entonces estaría encendida la memoria de Final de Secuencia, y por tanto, en este caso, se saldría de Home Encontrado de forma automática o manual dependiendo de la posición del dicho selector de la botonera. Si estuviese en manual, habría que presionar Marcha para continuar.

En Condiciones Iniciales se comprueba que todos los pistones estén apagados y además si en un futuro hubiese algún interés por ampliar el proyecto, se podría utilizar la etapa de Búsqueda de Condiciones Iniciales para restetear contadores o temporizadores que se deseean añadir.

Una vez que ya se han alcanzado todas las condiciones iniciales, el programa queda a la espera de que se pulse el botón de Marcha para dar comienzo a la secuencia de trabajo de las especificaciones básicas.
A partir de aquí la descripción será suponiendo que el selector Aut/Man de la botonera se encuentra en Automático para que la explicación sea más fluida. Si estuviese en Manual el funcionamiento sería el mismo, solo que cada paso requeriría el tener que pulsar el botón de Marcha para continuar, seguido de una condición de botón de Marcha apagado, y así evitar que la secuencia estando en Manual, no continúe sin control si siguiere pulsado Marcha del paso anterior, sino que se espere a que haya dejado de estar pulsado y vuelta a estar pulsado.

6.4.5 Mordaza

La etapa de Accionar Mordaza simplemente extiende el Cilindro C, y en cuanto está activado continúa a la siguiente etapa.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro C (simple efecto)</td>
<td>Mordaza</td>
<td>O1.01</td>
<td>IR 001.01</td>
<td>Booleano</td>
</tr>
</tbody>
</table>

Tabla 6.24

6.4.6 Buscar Posición

La sección de buscar posición es la misma repetida seis veces (tres posiciones de taladrado y tres de inserción de pivote), pero cambiando las direcciones de área de memoria DM que se deben leer en cada caso, acorde con las coordenadas de la posición que se esté buscando. Es necesario especificar que el PLC no controla directamente las coordenadas de los ejes, sino que controla la velocidad y sentido de giro de cada motor mediante el nivel de tensión que le entrega. En el programa se ha de implementar una lógica para encontrar las posiciones.

Inicialmente, para saber cuáles eran las coordenadas de cada posición, se movió manualmente con la ayuda del Controlador Manual de cada motor, y ajustando finalmente mediante un giro manual de los tornillos sin fin que conforman los ejes. Una vez colocados en la situación deseada, se tomó nota del valor de ambos potenciómetros en las seis posiciones necesarias para la pieza por defecto. Es decir, un total de doce medidas que se tomaron leyendo el área de IR correspondiente a los potenciómetros; es decir:

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PotenciómetroX</td>
<td>PosX</td>
<td>IU0</td>
<td>IR 101</td>
<td>Analógica</td>
</tr>
<tr>
<td>PotenciómetroY</td>
<td>PosY</td>
<td>IU1</td>
<td>IR 102</td>
<td>Analógica</td>
</tr>
</tbody>
</table>

Tabla 6.25
El resultado final de las coordenadas encontradas se muestra a continuación:

<table>
<thead>
<tr>
<th></th>
<th>Eje X</th>
<th></th>
<th>Eje Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hexadecimal</td>
<td>Decimal</td>
<td>Hexadecimal</td>
</tr>
<tr>
<td>HomeX</td>
<td>01EF</td>
<td>495</td>
<td>HomeY</td>
</tr>
<tr>
<td>PosX1</td>
<td>0453</td>
<td>1107</td>
<td>PosY1</td>
</tr>
<tr>
<td>PosX2</td>
<td>0517</td>
<td>1303</td>
<td>PosY2</td>
</tr>
<tr>
<td>PosX3</td>
<td>0453</td>
<td>1107</td>
<td>PosY3</td>
</tr>
<tr>
<td>PosX4</td>
<td>0418</td>
<td>1048</td>
<td>PosY4</td>
</tr>
<tr>
<td>PosX5</td>
<td>04D3</td>
<td>1235</td>
<td>PosY5</td>
</tr>
<tr>
<td>PosX6</td>
<td>0418</td>
<td>1048</td>
<td>PosY6</td>
</tr>
</tbody>
</table>

Tabla 6.26

Estas coordenadas son las que se utilizaron para el funcionamiento inicial de la estación. Tras añadirle el SCADA, se podrán modificar para cada pedido, pero ésta es la situación de partida.

Además de éstas coordenadas, se calcularon unas intermedias entre cada posición y la siguiente, de forma que a partir de ésta coordenada calculada la velocidad del motor se redujese a la mitad y así conseguir una mayor precisión al acercarnos al punto deseado (más exactamente, la coordenada de reducción de velocidad no se calculó en el punto medio sino a dos tercios de la distancia entre la posición de partida y la que se quiere alcanzar, de forma que se aprovechase más tiempo moviéndose a velocidad máxima). Todos los valores se almacenaron en las áreas DM tal y como se muestra en las Tablas 6.27 y 6.28:

<table>
<thead>
<tr>
<th></th>
<th>Eje X</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hexadecimal</td>
<td>Decimal</td>
<td>Area DM</td>
<td></td>
</tr>
<tr>
<td>HomeX</td>
<td>01EF</td>
<td>495</td>
<td>DM100</td>
<td></td>
</tr>
<tr>
<td>HomeX+2/3</td>
<td>038C</td>
<td>908</td>
<td>DM101</td>
<td></td>
</tr>
<tr>
<td>PosX1</td>
<td>0453</td>
<td>1107</td>
<td>DM102</td>
<td></td>
</tr>
<tr>
<td>PosX1+2/3</td>
<td>04D9</td>
<td>1241</td>
<td>DM103</td>
<td></td>
</tr>
<tr>
<td>PosX2</td>
<td>0517</td>
<td>1303</td>
<td>DM104</td>
<td></td>
</tr>
<tr>
<td>PosX2+2/3</td>
<td>049A</td>
<td>1178</td>
<td>DM105</td>
<td></td>
</tr>
<tr>
<td>PosX3</td>
<td>0453</td>
<td>1107</td>
<td>DM106</td>
<td></td>
</tr>
<tr>
<td>PosX3+2/3</td>
<td>042F</td>
<td>1071</td>
<td>DM107</td>
<td></td>
</tr>
<tr>
<td>PosX4</td>
<td>0418</td>
<td>1048</td>
<td>DM108</td>
<td></td>
</tr>
<tr>
<td>PosX4+2/3</td>
<td>0498</td>
<td>1176</td>
<td>DM109</td>
<td></td>
</tr>
<tr>
<td>PosX5</td>
<td>04D3</td>
<td>1235</td>
<td>DM110</td>
<td></td>
</tr>
<tr>
<td>PosX5+2/3</td>
<td>045B</td>
<td>1115</td>
<td>DM111</td>
<td></td>
</tr>
<tr>
<td>PosX6</td>
<td>0418</td>
<td>1048</td>
<td>DM112</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.27
En el funcionamiento normal, las coordenadas de los tres puntos de taladrado serán introducidas en el SCADA, y éste calculará tanto las de taladrado como todas las intermedias necesarias para la reducción de velocidad, y las escribirá en éstas mismas áreas DM que le correspondan a cada punto.

Debido a que la precisión no es absoluta, pues pasa un tiempo desde que se realiza un ciclo de scan hasta que se hace el siguiente, rara vez coincidirá que en el instante en el que se compare la posición del potenciómetro con la DM sean exactamente iguales. Incluso aunque físicamente ya esté colocada la mesa posicionadora, lo más común es que como mínimo un bit o dos del final del canal del potenciómetro no coincida, pues se ha sobrepasado una distancia extremadamente pequeña. Al no tener sensores que indiquen que la posición ha sido alcanzada para cada valor del potenciómetro, la comparación para determinar si se ha alcanzado la posición debe plantearse así:

- Si se estaba avanzando, y la posición del potenciómetro es igual o mayor a la de la coordenada deseada, significa que ya se ha alcanzado la posición.

- De la misma forma si se estaba retrocediendo, y la posición del potenciómetro es igual o menor a la de la coordenada deseada, significa que ya se ha alcanzado la posición.
Por esta razón lo primero que se debe hacer es determinar si lo que se va a realizar es un avance o un retroceso. La descripción que se hará a continuación de la secuencia, se realiza de forma idéntica en paralelo tanto para el Eje X como para el Y.

Cada sección de Buscar Posición lo primero que hace es leer el área DM con la coordenada a la que se desea ir, y la compara con la posición actual de los ejes que viene dada por la lectura de los potenciómetros. Con ello determina si el motor ha de girar en un sentido u otro para llegar lo más rápido posible a la coordenada deseada. Si el potenciómetro tiene una posición inferior a la que debería tener entonces se enciende la memoria Avanzar, y en el caso opuesto se enciende Retroceder. En base a ello se mueven los motores a máxima velocidad en el sentido de giro que toque.

Para mover los motores a máxima velocidad es necesario enviar el valor superior del rango de salida de la tarjeta de conversión Digital/Analógica, es decir, 0FFF en hexadecimal (para indicar que el valor se va a escribir en hexadecimal, es necesario escribir el símbolo almohadilla delante del valor, ej. #0FFF). Los valores que se utilizarán para la velocidad de los motores son:

<table>
<thead>
<tr>
<th>Voltios</th>
<th>Hexadecimal</th>
<th>Decimal (con signo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>8FFF</td>
<td>-4095</td>
</tr>
<tr>
<td>-5</td>
<td>87FF</td>
<td>-2047</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>07FF</td>
<td>+2047</td>
</tr>
<tr>
<td>10</td>
<td>0FFF</td>
<td>+4095</td>
</tr>
</tbody>
</table>

Tabla 6.29

Estos valores se han de enviar hacia los canales IR110 e IR111 que corresponden al motor MX y MY respectivamente.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor X</td>
<td>MX</td>
<td>OU0</td>
<td>IR 110</td>
<td>Analógica</td>
</tr>
<tr>
<td>Motor Y</td>
<td>MY</td>
<td>OU1</td>
<td>IR 111</td>
<td>Analógica</td>
</tr>
</tbody>
</table>

Tabla 6.30

Cada eje se mueve de forma independiente completamente, es decir, en la secuencia de uno no aparece ninguna condición del otro motor. Cuando alguno de ellos alcanza el valor intermedio entre coordenadas, se envía al canal de dicho motor el valor #07FF para reducir la velocidad de giro a la mitad; independientemente de que el otro motor esté moviéndose a máxima velocidad, media o parado.
Cuando alguno de los ejes alcanza la posición que le corresponde, se envía un cero al canal del motor que acciona dicho eje y así se detiene.

En éste punto el programa se detiene a esperar que el otro eje llegue a la posición que le toque. Cuando se cumple esto, se activa la memoria de esa posición encontrada, y se continúa de forma automática al taladrado o a la inserción de pivote, o bien se espera la consigna de marcha para ir avanzando paso a paso.

6.4.7 Taladrado

Para la descripción de ésta sección se mostrará en la siguiente tabla los componentes que se utilizarán en ésta parte de la secuencia.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Cilindro B</td>
<td>b0</td>
<td>I0.05</td>
<td>IR 000.05</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro B</td>
<td>b1</td>
<td>I0.06</td>
<td>IR 000.06</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro B (simple efecto)</td>
<td>B+</td>
<td>O1.00</td>
<td>IR 001.00</td>
<td>Booleano</td>
</tr>
<tr>
<td>Motor M (simple efecto)</td>
<td>M1+</td>
<td>O1.05</td>
<td>IR 001.05</td>
<td>Booleano</td>
</tr>
</tbody>
</table>

Tabla 6.31

En la sección de taladrado lo primero que se realiza es el encendido del taladro y se activa la memoria de Taladrado en Curso, la cual no se apagará hasta el final del taladrado, y es la que permite saber que aunque la posición haya sido encontrada, hay que esperar a que termine el taladrado antes de continuar a buscar la siguiente posición.

Una vez encendido el motor del taladro, se acciona el cilindro B, y así desciende el taladro hasta la posición del sensor b1. En ésta posición la placa de PVC ya ha quedado agujereada correctamente. Lo siguiente es levantar el conjunto del taladro, es decir, desactivar el cilindro B, y cuando llega a la posición del sensor b0 se apaga el motor del taladro al igual que la memoria Taladrado en Curso; finalizando así el taladrado. Cabe recordar que siempre dependiendo de la posición del selector Automático/Manual se realizará cada paso de forma automática uno tras otro, o bien deteniéndose a esperar que se pulse marcha para realizar la siguiente acción.
6.4.8 Inserción de Pivote

Para la descripción de ésta sección se mostrará en la Tabla 6.32 los componentes que se utilizarán en ésta parte de la secuencia.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Nombre</th>
<th>Código</th>
<th>Dirección</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Cilindro G</td>
<td>g1</td>
<td>I0.08</td>
<td>IR 000.08</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro G</td>
<td>g0</td>
<td>I0.09</td>
<td>IR 000.09</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro E</td>
<td>e0</td>
<td>I0.12</td>
<td>IR 000.12</td>
<td>Booleano</td>
</tr>
<tr>
<td>Sensor Cilindro E</td>
<td>e1</td>
<td>I0.13</td>
<td>IR 000.13</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro C (simple efecto)</td>
<td>Mordaza</td>
<td>O1.01</td>
<td>IR 001.01</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro E (simple efecto)</td>
<td>E+</td>
<td>O1.02</td>
<td>IR 001.02</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro F (simple efecto)</td>
<td>F+</td>
<td>O1.03</td>
<td>IR 001.03</td>
<td>Booleano</td>
</tr>
<tr>
<td>Cilindro G (simple efecto)</td>
<td>G+</td>
<td>O1.04</td>
<td>IR 001.04</td>
<td>Booleano</td>
</tr>
</tbody>
</table>

Tabla 6.32

En la sección de inserción de pivote lo primero que se realiza es accionar el cilindro E y se activa la memoria de Inserción de Pivote en Curso, la cual no se apagará hasta el final de la inserción del pivote, y es la que permite saber que aunque la posición haya sido encontrada, hay que esperar a que termine el la inserción antes de continuar a buscar la siguiente posición.

Una vez el cilindro E ha descendido hasta alcanzar la posición marcada por el sensor e1, se acciona el pistón G (también llamado Corredera), el cual se mueve horizontalmente provocando el paso de un pivote desde el almacén de pivotes hasta la salida del útil de inserción del pivote. El almacén es un cilindro metálico vertical por el cual se pueden introducir manualmente los pivotes, acumulándose uno encima de otro. Cuando el sensor g1 se activa, indicando que la corredera ya ha realizado el desplazamiento del pivote, se activa el cilindro F que finalmente introducirá el pivote en el agujero de la placa.

Puesto que en la estación no hay sensor que indique la posición del cilindro F, se ha utilizado un temporizador que comienza en el momento que se active el cilindro F, y se activa tras pasar un segundo; tiempo suficiente para que el pivote caiga en el agujero de la placa. Cuando la salida del temporizador se activa, se deja de accionar el cilindro F y G a la vez. Cuando se llega a la posición del sensor g0, se desactiva el cilindro E y la sección de taladrado finaliza cuando este cilindro llega a la posición e0. Cabe recordar que siempre dependiendo de la posición del selector Automático/Manual se realizará cada paso de forma automática uno tras otro, o bien deteniéndose a esperar que se pulse marcha para realizar la siguiente acción.
6.4.9 Final de secuencia

Tras acabar la última inserción de pivote, se activa la memoria Final de Secuencia, es la única memoria que queda activa, y esto produce que se active la etapa Inicio (la cual no está condicionada por la memoria Final de Secuencia). En inicio vuelve a comenzar el ciclo, y por tanto, si la máquina está en Automático, se continuará hacia la Búsqueda de Home y permanecerá a la espera de una nueva pieza de PVC tras haber alcanzado Home y las Condiciones Iniciales.

6.4.10 Condiciones de Emergencia

Se ha creado una memoria llamada “Paro de Emergencia”. Ésta se activa cuando se pulsa el botón de Emergencia (ya sea por pantalla del SCADA o el de la botonera física), y se desactiva cuando se pulsa Reset y no sigue pulsado el botón de Emergencia de la botonera.

La memoria de Paro de Emergencia se ha incluido en el Reset de todas las memorias del programa, excepto la de la Mordaza. Con lo cual, en el momento que se activa la Emergencia, se apagan todas las memorias, y únicamente quedan encendidas la de Emergencia y la de la Mordaza.

No se apaga la mordaza pues se entiende que no se debería soltar la pieza durante un paro de emergencia.

Una vez apagado el Paro de Emergencia, al no haber ninguna otra memoria encendida (excepto la Mordaza), el programa vuelve a Inicio (el cual no está condicionado por el estado de la Mordaza).

Con lo cual, desde cualquier posición, si se hace un Paro de Emergencia se detiene todo el sistema, y al salir de Paro de Emergencia no se continua en el punto donde se estaba, sino que se va al Inicio, para más adelante hacer una recuperación de condiciones iniciales, de forma que se pueda seguir trabajando.

6.4.11 Salidas

Para cada salida real, se ha creado una o varias memorias, según fuesen necesarias, de forma que las salidas se activan a través de sus memorias auxiliares.
6.4.12 Calibrar

La sección no sigue ninguna secuencia en su interior, sino que simplemente permite actuar directamente desde el exterior sobre las memorias de cada salida. Esto permite controlar cada dispositivo de forma independiente desde el SCADA.

6.4.13 Memorias de etapas cumplidas

La sección de memorias está funcionando en todo momento, y su función es comprobar hasta que punto de la secuencia de trabajo se ha llegado.

Ésta sección no actúa sobre ninguna otra, ni sobre ninguna salida, sino que sirve únicamente para tener un registro de las etapas cumplidas del proceso de taladrado he inserción.
Si el programa se encontrase en modo Calibrar, simplemente estarían apagadas todas las memorias excepto Inicio, pues la secuencia no está trabajando. Si estuviese en Paro de Emergencia, todas estas memorias estarían desactivadas.
En este apartado recopilarán todos los GRAFCETs que describen, de forma esquemática, el programa escrito con el diagrama de contactos.
Figura 6.51
Figura 6.52
Figura 6.53
Figura 6.54
Figura 6.55
6.5 El SCADA

La creación del SCADA se realizó mediante el entorno de programación iFix. En Anexos se ha incluido una breve guía sobre su uso, con todo lo necesario para la realización de un proyecto como este. Puesto que la instalación y creación de la portabilidad de los archivos del proyecto no es algo intuitivo, se ha creído conveniente incluirlo también en esa guía. Allí se explicará todo lo necesario hasta tener el entorno listo para crear la base de datos de éste proyecto y sus pantallas.

La aplicación SCADA que se creó se ha dividido en tres pantallas denominadas: Entrar Pedido, Supervisión General, y Calibrar. Es común a todas ellas la pantalla de Navegación que está presente en todo momento en la zona izquierda del monitor, y también es común el Header, presente en la parte superior. Las variables que se utilizan para accionar las pantallas y enlazarlas con el autómata se encuentran en la base de datos hecha para el proyecto.

En este apartado se hará primero una descripción de la función de cada pantalla y la dinámica del movimiento entre ellas dentro de la aplicación. Luego se verán por separado cómo se crearon las pantallas y finalmente el contenido de la Base de Datos.
6.5.1 Función y dinámica de las pantallas

La pantalla Entrar Pedido está pensada para ser la primera que le aparecerá al usuario por defecto. En ella se introducirán las coordenadas X e Y de las tres posiciones de los pivotes que van en la placa de PVC. En la Figura 6.56 se ha hecho una captura de pantalla del aspecto que tiene la aplicación cuando muestra la de Entrar Pedido y las comunes de Navegación (a la izquierda) y el Header (en la parte superior).

Están sombreadas en gris las casillas donde se pueden escribir las coordenadas X e Y de las tres posiciones. Las coordenadas estarán en centímetros y sólo se admiten dos decimales máximo, positivas y dentro de los rangos siguientes:

\[X = [0 ; 5,60] \text{ [cm]} \quad \text{Y} = [0 ; 9,60] \text{ [cm]} \]

Se han llevado a centímetros pues se ha creído que es la escala más apropiada para suministrarle al usuario, en lugar de los valores de los potenciómetros. El usuario podrá verificar los datos introducidos, ayudándose de la imagen en esa misma pantalla sobre la ubicación de los puntos en la placa. Finalmente podrá confirmar que el pedido es correcto (botón del centro de la pantalla) y a continuación aparecerá la ventana de Supervisión General.
Con las coordenadas introducidas, el SCADA calculará el equivalente de ellas en el rango de trabajo de los potenciómetros.

La pantalla de Supervisión General es la del seguimiento del trabajo de la estación (Figura 6.57).

![Figura 6.57](image)

La ventana de Navegación que se despliega cuando se está en Supervisión General permite volver a Entrar Pedido para corregir alguna coordenada o simplemente hacer un pedido nuevo. También tiene la opción ir a la pantalla de Calibrar, de forma que se pueda comprobar que la estación responde correctamente.

En el centro de la pantalla de Supervisión General, se muestra una animación del movimiento que esté realizando en ese momento la mesa de taladrado. En la parte superior izquierda aparece la coordenada en la que se encuentra cada eje, y junto a ello las coordenadas que se están buscando (ya sea para realizar el taladrado o la inserción de pivote). Debajo de ésta tabla de coordenadas se muestra un área de notificaciones en la cual aparecerán, en
forma de mensajes, las instrucciones para poner a trabajar la estación. Las notificaciones sólo aparecen en caso de que esté detenida la estación por alguna razón; ya sea por paro de Emergencia o inactividad cuando esté en modo Manual.

En la zona de la derecha se muestra la secuencia completa de trabajo, y un registro del punto en el que se encuentra el proceso (los pasos realizados y los próximos a realizar).

En la zona inferior derecha se encuentra una botonera idéntica a la que existe físicamente en la estación. La botonera de la pantalla permite visualizar la situación de los interruptores que sólo pueden accionarse desde la estación (botones MAN/AUTO y IND/INT), y también muestra tres pulsadores para controlar desde la pantalla la Marcha, el Paro de Emergencia y el Reset de la estación. Encima del pulsador de Emergencia aparecerá una Notificación cuando esté activo dicho pulsador, de forma que se pueda identificar claramente su estado.

La pantalla Calibrar permite testear la estación en busca de algún malfuncionamiento que se haya observado. Puede ser por algún resultado no esperado o simplemente para hacer comprobaciones de mantenimiento (Figura 6.58).

![Figura 6.58](image_url)
En el área central, se muestra la lectura de todas las áreas de memoria DM del PLC que actúan de valores de consigna. En ellas se encuentran almacenadas las coordenadas que utiliza el autómata para el movimiento de la mesa.

Por ejemplo, para mover la mesa en el Eje X, desde HomeX hasta la primera posición de taladrado (PosX1), el diagrama de contactos comenzará accionando el motor del Eje X a máxima velocidad. Luego, leerá la PosX_PosX1 para saber en qué coordenada debe reducir la velocidad de los motores, pues estará próximo a alcanzar la posición definitiva del primer taladrado. El Eje X de la mesa móvil de trabajo se detendría, cuando el potenciómetro X marcase un valor igual (o superior) al valor de PosX1. Para un mayor detalle del programa del autómata, referirse al apartado “6.4 El Diagrama de Contactos”.

Las PosX1, PosX2 y PosX3 que se ven en la pantalla Calibrar, son los valores en Decimal, de las coordenadas X en centímetros, introducidas en el pedido. Lo mismo ocurre con las PosY1, PosY2 y PosY3, respecto a las coordenadas del Eje Y, introducidas en centímetros. Las siguientes coordenadas

HomeX_PosX1	HomeY_PosY1
PosX1_PosX2	PosY1_PosY2
PosX2_PosX3	PosY2_PosY3
PosX3_PosX4	PosY3_PosY4
PosX4_PosX5	PosY4_PosY5
PosX5_PosX6	PosY5_PosY6

fueron calculadas por el SCADA. Ellas sirven para indicarle al diagrama de contactos, los puntos en los que debe reducir la velocidad de los motores, pues se estará acercando a una coordenada de taladrado, o una de inserción de pivotes. Las siguientes coordenadas

PosX4	PosY4
PosX5	PosY5
PosX6	PosY6

fueron calculadas por el SCADA. Ellas sirven para indicarle al diagrama de contactos, los puntos en los que debe hacer la inserción de pivotes. Estas coordenadas no son necesarias pedírselas al usuario, pues se pueden calcular fácilmente sumando un offset a las posiciones de taladrado que introdujo.
La Tabla 6.33 muestra la correspondencia, entre los nombres de las posiciones que se muestran por pantalla, y las áreas de memoria DM asignadas a ellas.

<table>
<thead>
<tr>
<th>HomeX</th>
<th>DM100</th>
</tr>
</thead>
<tbody>
<tr>
<td>HomeX_PosX1</td>
<td>DM101</td>
</tr>
<tr>
<td>PosX1</td>
<td>DM102</td>
</tr>
<tr>
<td>PosX1_PosX2</td>
<td>DM103</td>
</tr>
<tr>
<td>PosX2</td>
<td>DM104</td>
</tr>
<tr>
<td>PosX2_PosX3</td>
<td>DM105</td>
</tr>
<tr>
<td>PosX3</td>
<td>DM106</td>
</tr>
<tr>
<td>PosX3_PosX4</td>
<td>DM107</td>
</tr>
<tr>
<td>PosX4</td>
<td>DM108</td>
</tr>
<tr>
<td>PosX4_PosX5</td>
<td>DM109</td>
</tr>
<tr>
<td>PosX5</td>
<td>DM110</td>
</tr>
<tr>
<td>PosX5_PosX6</td>
<td>DM111</td>
</tr>
<tr>
<td>PosX6</td>
<td>DM112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HomeY</th>
<th>DM150</th>
</tr>
</thead>
<tbody>
<tr>
<td>HomeY_PosY1</td>
<td>DM151</td>
</tr>
<tr>
<td>PosY1</td>
<td>DM152</td>
</tr>
<tr>
<td>PosY1_PosY2</td>
<td>DM153</td>
</tr>
<tr>
<td>PosY2</td>
<td>DM154</td>
</tr>
<tr>
<td>PosY2_PosY3</td>
<td>DM155</td>
</tr>
<tr>
<td>PosY3</td>
<td>DM156</td>
</tr>
<tr>
<td>PosY3_PosY4</td>
<td>DM157</td>
</tr>
<tr>
<td>PosY4</td>
<td>DM158</td>
</tr>
<tr>
<td>PosY4_PosY5</td>
<td>DM159</td>
</tr>
<tr>
<td>PosY5</td>
<td>DM160</td>
</tr>
<tr>
<td>PosY5_PosY6</td>
<td>DM161</td>
</tr>
<tr>
<td>PosY6</td>
<td>DM162</td>
</tr>
</tbody>
</table>

| Tabla 6.33 |

En la parte inferior izquierda se encuentra el interruptor de Calibrar. No será posible calibrar, a menos que la secuencia se encuentre en la etapa de Inicio. Para ir a Inicio en cualquier momento, pude hacerse mediante los siguientes pasos:

- Pulsar Paro de Emergencia
- Desbloquear el botón de Emergencia
- Pulsar Reset una vez

Con esta sucesión de pasos se llega a Inicio. En la pantalla Calibrar, se pulsa el interruptor del mismo nombre, y el PLC entra en una sección del diagrama de contactos creada específicamente para la tarea de calibrar.

En esta pantalla se pueden observar interruptores para encender o apagar todos los cilindros de forma independiente. También se encuentra en la zona inferior derecha unos recuadros para introducir cualquier coordenada (que esté dentro de los límites de la estación). La mesa instantáneamente irá a buscarla. Para salir de la sección de Calibrar y volver a la de Inicio, basta con apagar el interruptor Calibrar o bien saltar hacia otra pantalla.
6.5.2 Distribución de pantallas

En Anexos se adjunta la guía del iFix que se ha creado. En ella se describe la configuración de la geometría de las pantallas y su distribución en el monitor, para una aplicación como la de este proyecto. De forma que en los próximos apartados sea posible centrarse únicamente en el contenido de cada pantalla. En ésta sección se describirán la barra de Navegación y el Header, que son comunes a todas las pantallas principales. Luego, en los siguientes apartados, se describirán en detalle, las tres pantallas principales de ésta aplicación.

6.5.3 Contenido de la Barra de Navegación

En la barra de Navegación tres botones con animaciones de tipo Command (Figura 6.59). Al hacer en clic en ellos realizan una función que se ha programado. Estas instrucciones son:

Botón de Entrar Pedido.

- Abrir la ventana (Picture) Entrar Pedido
- Cerrar la ventana (Picture) Supervisión General
- Cerrar la ventana (Picture) Calibrar
- Abrir el tag digital CALIBRAR (desactivarlo)
- Abrir el tag digital PEDIDO_CORRECTO (desactivarlo)
- Abrir el tag digital PANTALLA_CALIBRAR (desactivarlo)
- Abrir el tag digital PANTALLA_SUPERVISIONGENERAL (desactivarlo)
- Cerrar el tag digital PANTALLA_ENTRAR_PEDIDO (activarlo)

Al apagar el tag Calibrar, se garantiza que al abandonar la pantalla Calibrar para ir a la de Entrar Pedido, automáticamente el diagrama de contactos sale de la sección de calibrar hacia la de la secuencia pues se desactiva Calibrar.

Botón de Supervisión General.

- Abrir la ventana (Picture) Supervisión General
- Cerrar la ventana (Picture) Entrar Pedido
- Cerrar la ventana (Picture) Calibrar
- Cerrar el tag digital PANTALLA_SUPERVISIONGENERAL (activarlo)
- Abrir el tag digital PANTALLA_ENTRAR_PEDIDO (desactivarlo)
- Abrir el tag digital PANTALLA_CALIBRAR (desactivarlo)
- Abrir el tag digital CALIBRAR (desactivarlo)
Botón Calibrar.

- Abrir la ventana (Picture) Calibrar
- Cerrar la ventana (Picture) Entrar Pedido
- Cerrar la ventana (Picture) Supervisión General
- Cerrar el tag digital PANTALLA_CALIBRAR (activarlo)
- Abrir el tag digital PANTALLA_ENTRAR_PEDIDO (desactivarlo)
- Abrir el tag digital PANTALLA_SUPERVISION_GENERAL (desactivarlo)

6.5.4 Contenido del Header

En la parte central del Header, se han colocado los títulos de las pantallas principales, y se les ha añadido una animación de visualización. Cada título se hará visible, únicamente cuando el tag digital de su pantalla asociada esté activo.

![Imagen de Header](image.png)

Figura 6.60

Por ejemplo, cuando esté activo el tag PANTALLA_ENTRAR_PEDIDO, se hará visible el texto del Header con el mensaje Entrar Pedido. Los otros dos mensajes no serán visibles pues estarán desactivados los tags de PANTALLA_CALIBRAR y PANTALLA_SUPERVISION_GENERAL.

En la parte izquierda de la pantalla se ha incluido un mensaje con la fecha y hora en todo momento

En la parte derecha se ha puesto una imagen bitmap de salida, pensada para cerrar toda la aplicación cuando se haga clic sobre dicha imagen. No obstante, quedaría para mejorar futuras las instrucciones de la animación Command para realizar dicha acción.
6.5.5 Creación de la Pantalla Entrar Pedido

En este apartado se describirá cómo fue construida la pantalla Calibrar, así como los enlaces y conversiones que hay detrás de todo lo que se muestra por pantalla.

Para definir el área donde irán los centros de las posiciones, se ha establecido una zona de seguridad a 5 milímetros desde cada extremo del dibujo de la placa de PVC. La broca del taladro tiene un diámetro de 4 milímetros, con lo cual, para respetar la zona de 5 milímetros de seguridad en los extremos, es necesario que los límites de los centros de los agujeros estén 2 milímetros más hacia el interior de la pieza (correspondientes al radio del agujero que hará el taladro). En la Figura 6.62 se muestran los ejes de coordenadas que inicialmente se tomaron para la pieza (la placa de PVC), y la zona de seguridad.
Figura 6.62

Figura 6.63
La Figura 6.63 muestra los ejes definitivos. Estos ejes se llamaran “ejes locales de la pieza”. En la Figura 6.63, se señala la zona de seguridad de 5 milímetros, que se sigue respetando tras haber hecho un agujero, incluso en los límite. La Figura 6.64 muestra una imagen ampliada de esta situación.

Aunque las placas midan 11[cm] x 7[cm], la zona admisible para los centros de los agujeros se verá reducidas en 7 milímetros desde cada extremo, con lo cual el área admisible es 9,6[cm] x 5,6 [cm]:

\[
11 \text{[cm]} - 0,7 \text{[cm]} - 0,7 \text{[cm]} = 9,6 \text{[cm]}
\]
\[
7 \text{[cm]} - 0,7 \text{[cm]} - 0,7 \text{[cm]} = 5,6 \text{[cm]}
\]

De esta forma, quedan definidos los límites de trabajo:

\[
X = [0 ; 5,60] \text{[cm]}
\]
\[
Y = [0 ; 9,60] \text{[cm]}.
\]

Si el usuario introduce alguna coordenada fuera de estos rangos, el SCADA automáticamente le dará un error y no guardará dicha coordenada. De la misma forma, no se admitirá una precisión superior a los dos decimales, pues la resolución de los potenciómetros no lo permite.

A continuación se explicará cómo se encontró la equivalencia entre la coordenada del un agujero introducida por el usuario, y el valor del potenciómetro que permitirá colocar la mesa. Las coordenadas introducidas por el usuario estarán en centímetros, y referidas a los ejes locales de la pieza. Las coordenadas de la mesa, definidas por los potenciómetros, están en decimal, y referidas a unos ejes fijos en la estación. La Figura 6.65 muestra la situación de estos dos sistemas de referencia diferentes, cuando la mesa se encuentra en la posición de Home.
Esta imagen representa la placa de PVC colocada en su base y presionada por la mordaza. Los ejes rojos de la Figura 6.65 (los que marcan la posición de HomeX y HomeY), son ejes fijos. Estos ejes no se moverán con la mesa, pues están definidos por las coordenadas que miden los potenciómetros (los cuales están fijos en la estación). A estos ejes se les llamará “ejes objeto”.

La equivalencia entre centímetros referidos a los ejes locales de la pieza, y los valores de los potenciómetros referidos a los ejes objeto, se halló de la siguiente forma:

Primero se evaluó el Eje X de los ejes objeto. Se movió la mesa en el Eje X hasta la coordenada 1000 (en decimal, referida a los ejes objeto). Esta posición coincide verticalmente con la broca del taladro en el extremo izquierdo de la pieza, tal y como se indica en la Figura 6.66.
La componente Y es indiferente, basta con que la placa quede en una posición en Y debajo del taladro. Esto se hizo con el único fin de tener un punto fijo, próximo a la placa, desde el cual poder medir con una regla los desplazamientos de la mesa, y así tener una correspondencia entre centímetro movidos y valores decimales avanzados. Desde la posición 1000 [D] se avanzó la mesa por el Eje X (de los ejes objeto), hasta que hubo recorrido los 7 centímetros de ancho de la placa. El resultado muestra en la Tabla 6.34 las variaciones de los potenciómetros 35 (las coordenadas están referidas a los ejes objeto).

<table>
<thead>
<tr>
<th>Potenciómetro X</th>
<th>Coordenada antes de recorrer los 7 [cm]</th>
<th>Coordenada después de recorrer los 7 [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>1000</td>
<td>1470</td>
</tr>
</tbody>
</table>

Se hizo una marca con lápiz sobre la placa y se movió la mesa en el Eje Y hasta que hubo recorrido los 11 centímetros de longitud de la placa. Las variaciones de los potenciómetros se muestran en la Tabla 6.35 (las coordenadas están referidas a los ejes objeto).
Ahora se plantean las ecuaciones del cambio de escala:

$$\text{EjeX cm} \cdot \frac{A_X \text{ decimal}}{\text{cm}} + B_X \text{ decimal} = \text{EjeX decimal} \quad (1)$$

$$\text{EjeY cm} \cdot \frac{A_Y \text{ decimal}}{\text{cm}} + B_Y \text{ decimal} = \text{EjeY decimal} \quad (2)$$

Tanto A_X como A_Y pueden encontrarse directamente con los datos de las Tablas 6.34 y 6.35:

$$A_X \frac{\text{decimal}}{\text{cm}} = \frac{1470-1000}{7} \frac{\text{decimal}}{\text{cm}} = \frac{470}{7} \frac{\text{decimal}}{\text{cm}} \quad (3)$$

$$A_Y \frac{\text{decimal}}{\text{cm}} = \frac{1235-542}{11} \frac{\text{decimal}}{\text{cm}} = \frac{693}{11} \frac{\text{decimal}}{\text{cm}} \quad (4)$$

Lo siguiente es tener algún punto que sirva para encontrar las constantes B_X y B_Y. Para el Eje X, se ha llevado la mesa móvil hasta que la posición del taladro queda justo en el extremo del comienzo de la placa (Figura 6.67). En esta posición el potenciómetro marca 1000 en decimal.

Para el Eje Y se ha movido la mesa en el Eje X, respetando la coordenada de HomeY en el Eje Y. Se acercó hasta llegar debajo del taladro para medir qué posición es ésa en la placa. La situación obtenida se muestra en la Figura 6.68. En esta posición el potenciómetro marca 542 en decimal.
En el caso del Eje X queda que una posición de -5[mm], equivale a un valor del potenciómetro X igual a 1000 en decimal. En el caso del Eje Y queda que una posición de -1[mm], equivale a un valor del potenciómetro Y igual a 542 en decimal. Con lo cual se puede proceder a calcular completamente la relación de escalas:

\[-0.5 \text{ cm} \cdot \frac{470}{7} \text{ decimal/cm} + B_X \text{ decimal} = 1000 \text{ decimal} (5)\]

\[B_X \text{ decimal} = 1000 \text{ decimal} + 0.5 \text{ cm} \cdot \frac{470}{7} \text{ decimal/cm} (6)\]

\[B_X = 1034 \text{ decimal} (7)\]

\[-0.1 \text{ cm} \cdot 63 \text{ decimal/cm} + B_Y \text{ decimal} = 542 \text{ decimal} (8)\]

\[B_Y \text{ decimal} = 542 \text{ decimal} + 0.1 \text{ cm} \cdot 63 \text{ decimal/cm} (9)\]

\[B_Y = 549 \text{ decimal} (10)\]

Las aproximaciones se han hecho por exceso para garantizar siempre que se mantenga la zona de seguridad de 5 [mm]. Las ecuaciones finales serán:

\[\text{EjeX cm} \cdot \frac{470}{7} \text{ decimal/cm} + 1034 \text{ decimal} = \text{EjeX decimal} (11)\]

\[\text{EjeY cm} \cdot 63 \text{ decimal/cm} + 549 \text{ decimal} = \text{EjeY decimal} (12)\]
6.5.5.1 Conversión de centímetros a decimal

Para llevar a cabo la conversión dentro de la aplicación el camino que se ha seguido se muestra a continuación.

Por pantalla se introducen las coordenadas en centímetros en los tags siguientes (son AO):

\[
\begin{align*}
\text{POSX1_CENTIMETROS} \\
\text{POSX2_CENTIMETROS} \\
\text{POSX3_CENTIMETROS} \\
\text{POSY1_CENTIMETROS} \\
\text{POSY2_CENTIMETROS} \\
\text{POSY3_CENTIMETROS}
\end{align*}
\]

Cada uno se envía respectivamente a los siguientes bloques de cálculos (son CA):

\[
\begin{align*}
\text{CENTIMETROS_DECIMAL_POSX1} \\
\text{CENTIMETROS_DECIMAL_POSX2} \\
\text{CENTIMETROS_DECIMAL_POSX3} \\
\text{CENTIMETROS_DECIMAL_POSY1} \\
\text{CENTIMETROS_DECIMAL_POSY2} \\
\text{CENTIMETROS_DECIMAL_POSY3}
\end{align*}
\]

Éstos bloques serán los encargados de hacer el cambio de escala de centímetros a decimal. El resultado se escribirá en los siguientes tags (son AO):

\[
\begin{align*}
\text{POSX1} \\
\text{POSX2} \\
\text{POSX3} \\
\text{POSY1} \\
\text{POSY2} \\
\text{POSY3}
\end{align*}
\]

Éstos tags están enlazados directamente con las áreas de memoria DM que lee el diagrama de contactos, donde se almacenarán las coordenadas.

Tomando por ejemplo el bloque de cálculo CENTIMETROS_DECIMAL_POSX1, la operación que debe realizar en su interior es la siguiente:

\[
\text{POSX1_CENTIMETROS} \cdot \frac{470}{7} + 1034 = \text{POSX1} \quad (13)
\]
La forma de hacerlo con el bloque de cálculo es primero declarando las variables, asignándole los valores, y luego poner la operación:

A: POSX1CENTIMETROS
B: 67,14
C: 1034
Y el calculo es: \((A \times B) + C\)

El resultado finalmente se envía a la variable POSX1 y la conversión queda finalizada. La Figura 6.69 muestra el aspecto del interior del bloque de cálculo:

![Image of Calculation block]

Para el resto de posiciones X2, X3, Y1, Y2 e Y3 es la misma operación, con la posición en centímetros respectiva que toque en la entrada. La única diferencia para el Eje Y serán los valores de las constantes:

POSY1CENTIMETROS \cdot 63 + 549 = POSY1 \quad (15)

A: POSY1CENTIMETROS
B: 63
C: 549
Y el calculo es: \((A \times B) + C\)
6.5.5.2 Animación de la placa

Para la animación de la placa que aparece en la pantalla de Entrar Pedido, se dibujó un rectángulo de dimensiones:

Altura: 28,34 unidades
Ancho: 18,87 unidades

Éstas dimensiones no están en centímetros, sino que representan un porciento de la pantalla que ocupan. En el caso del monitor del Laboratorio de Robótica y CIM, cuando se visualiza la aplicación SCADA con zoom al 100%, éstas dimensiones son las que corresponden a unas distancias (sobre el monitor) de 11 x 7 [cm]; que es el tamaño de las placas de PVC. Además está en una posición a 29,21 unidades verticales y a 34,32 unidades horizontales; tal y como muestra la imagen siguiente.

![Figura 6.70](image-url)
Con estos datos es posible hacer el cambio de coordenadas. De forma que se puedan traducir los centímetros introducidos por el usuario, en las unidades que se han de mover los círculos blancos de la placa, que representan los agujeros de los pivotes. Para el movimiento Horizontal la ecuación será:

\[
\begin{align*}
H \text{ unidades} &= 34,32 \text{ unidades} + \frac{18,87}{7} \frac{\text{unidades}}{\text{cm}} \cdot 0,5 + \text{PosX1 cm} \quad (16) \\
H \text{ unidades} &= 34,32 \text{ unidades} + 2,7 \frac{\text{unidades}}{\text{cm}} \cdot 0,5 + \text{PosX1 cm} \quad (17)
\end{align*}
\]

Esta ecuación es la que se introduce en la animación del objeto de uno de los tres agujeros. Los otros dos tendrán una igual, pero utilizando PosX2 o PosX3 en lugar de PosX1. Los tags que se deben utilizar para éstas variables son en centímetros, por tanto, serán:

- POSX1_CENTIMETROS
- POSX2_CENTIMETROS
- POSX3_CENTIMETROS

Cabe señalar que el 0,5 que se le añade a la posición introducida por el usuario, es a causa de los 5 [mm] de seguridad del extremo de la placa. La Figura 6.71 servirá de ayuda:

La Figura 6.71

El SCADA coloca las imágenes por sus extremos y no por su centro. Por lo tanto, cuando el usuario escriba que el centro del agujero (de 2 [mm] de radio), lo desea en el cero del eje horizontal (es decir, a 7 [mm] del extremo de la placa, dejando 5 [mm] de seguridad), el objeto tendrá su coordenada a 34,32 unidades horizontales, más los 5 [mm] de seguridad convertidos a la escala de las unidades con las que trabaja el SCADA. Experimentalmente se comprobó que a causa de las aproximaciones y decimales perdidos era necesario aumentar en 1,1 la constante, para que las posiciones calculadas fuesen más exactas. La ecuación definitiva es:

\[
H = 34,32 + 1,1 + 2,7 \cdot (0,5 + \text{POSX1_CENTIMETROS}) \quad (18)
\]
Para el movimiento Vertical la ecuación será:

\[V = 29,21 + 28,34 \text{ unidades} - \frac{28,34}{11} \cdot 0,5 + 0,4 + PosY1 \text{ cm (19)} \]
\[V = 57,55 \text{ unidades} - 2,58 \cdot 0,9 + PosY1 \text{ cm (20)} \]

Esta ecuación se introduce en la animación del objeto de uno de los tres agujeros. Los otros dos tendrán una igual, pero utilizando PosY2 o PosY3 en lugar de PosY1. Los tags de entrada estarán en centímetros; serán:

POSY1_CENTIMETROS
POSY2_CENTIMETROS
POSY3_CENTIMETROS

Cabe señalar que el 0,5 Y EL 0,4 que se le añaden a la posición introducida por el usuario, es a causa de los 5 [mm] de seguridad del extremo de la placa y los 4 [mm] de diámetro del agujero. La Figura 6.72 servirá de ayuda:

![Figura 6.72](image)

El SCADA coloca las imágenes por sus extremos y no por su centro. Por lo tanto, cuando el usuario escriba que el centro del agujero, lo desea en el cero del eje vertical (es decir, a 7 [mm] del extremo de la placa, dejando 5 [mm] de seguridad), el objeto tendrá su coordenada a 9 [mm] desde el extremo inferior de la placa. Con lo cual, estará a 29,21+28,34 unidades verticales, menos los 9 [mm] convertidos a la escala de las unidades con las que trabaja el SCADA. La ecuación definitiva es:

\[V = 57,55 - 2,58 \cdot (0,9 + \text{POSY1_CENTIMETROS}) \text{ (21)} \]
6.5.5.3 Botón de Pedido Correcto

La animación del botón Pedido Correcto es de tipo Command.
Se ha configurado con cuatro instrucciones, de forma que al hacer clic en él se realice lo siguiente:

- Cerrar el tag digital PEDIDO_CORRECTO (activarlo)
- Abrir la ventana (Picture) Supervisión General
- Cerrar la ventana (Picture)Entrar Pedido
- Cerrar la ventana (Picture) Calibrar
- Cerrar el tag digital PANTALLA_SUPERVISION_GENERAL (activarlo)

El tag de PEDIDO_CORRECTO se utiliza para visualizar los botones de Supervisión General y Calibrar de la ventana Navegación. Con lo cual, en el momento que el pedido es correcto, no solo aparece la ventana Supervisión General, sino que se visualizan los botones mencionados para poder moverse entre la pantalla Calibrar y la de Supervisión General.

No se habían visualizado hasta ese momento para evitar poner en marcha la secuencia, sin haber comprobado que el pedido sea correcto.

El tag de PANTALLA_SUPERVISION_GENERAL se utiliza para que al abrirse esa pantalla aparezca su nombre en el Header; el cual tiene el estado visible condicionado a éste tag.
6.5.6 Creación de la Pantalla Supervisión General

En este apartado se describirán los principales aspectos de cómo fue construida la animación de la pantalla Supervisión General (Figura 6.73), así como los enlaces y conversiones que hay detrás de su diseño. El resto de componentes de la pantalla quedan explicados con los datos mostrados en la guía del iFix que se generó para este proyecto.

Primero se describirá la animación del movimiento de la mesa de taladrado.
En segundo lugar se describirá la tabla que aparece a la derecha en la pantalla, que lleva el registro del punto de la secuencia donde se encuentra el proceso.
Finalmente se describirán en este orden la botonera, la tabla de coordenadas en la parte superior izquierda de la pantalla, y las notificaciones debajo de ésta tabla.
6.5.6.1 Animación de la mesa móvil

Al no poder introducir un objeto 3D en el iFix, se tuvo que simular el movimiento espacial de la mesa con imágenes 2D. El punto de partida fue dibujar sobre una foto (Figura 6.75) la perspectiva más favorable para visualizar todo el proceso. El resultado es el que se utilizó para el diseño de la pantalla (Figura 6.74).
En la Figura 6.75 se muestra la fotografía que se eligió de base para el dibujo.

Para el dibujo se utilizó el programa de diseño gráfico CorelDraw12. Se separaron unos fragmentos de imágenes, pues en muchos casos tendrían que moverse por separado respecto otras imágenes. Un ejemplo se muestra a continuación. La Figura 6.76, representa la estructura fija, sin ninguna animación, pero la Figura 6.77 será el taladro que realizará un movimiento vertical sobre la Figura 6.76.
Cabe destacar que se deben dibujar las zonas que serán visibles en ciertos momentos de la animación; aunque en otros momentos estén cubiertos por una imagen encima. Es el caso, por ejemplo, de la barra de metal que va detrás del taladro. En la Figura 6.74 no se ve dibujada al completo, pero en realidad lo está, como bien se puede apreciar en la Figura 6.76. Se debe hacer así ya que al desplazarse la imagen del taladro, quedará al descubierto parte de la barra metálica que antes no se veía.
Para el fondo de las imágenes se ha elegido un color que no se utilizará en ninguna otra zona del dibujo y que además es un color de la paleta que trae el iFix (Figura 6.78). De esta forma, es posible crear las transparencias, sin afectar el interior del dibujo.

![Imagen de software de selección de color](image)

Figura 6.78

Para identificar qué color es ese, y utilizarlo fuera del iFix, es necesario encontrar su código RGB. Para ello se hace impresión de pantalla del iFix hasta obtener una imagen como la Figura 6.78, y se abre con un programa que tenga la herramienta Cuentagotas como por ejemplo el Paint (Figura 6.79).

![Imagen de programa de software](image)

Figura 6.79

Se selecciona el color haciendo clic sobre él con el Cuentagotas.
El paso siguiente es leer el nombre de dicho color. En la barra de herramientas del Paint, dentro de la pestaña “Colores” > “Modificar colores…” (Figura 6.80).

Aparecerá la ventana de la Figura 6.81.

Se entra en “Definir colores personalizados >>” y finalmente aparece la ventana de la Figura 6.82.

En el recuadro de ColorSólido se muestra el color seleccionado, y a la derecha en la ventana aparece el código RGB (Rojo-Verde-Azul). Con éste código es posible dibujar en el CorelDraw12, o en cualquier otro programa de diseño gráfico, un relleno del mismo color exacto al que se utilizará en el iFix para definir el color de transparencia.

En Anexos se han adjuntado todas las imágenes creadas para la animación de la mesa, y el orden en el que fueron colocadas.

Una vez elegida la posición para todas el siguiente paso fue crear el movimiento.

Se comenzó con el movimiento horizontal de la mesa, y luego el vertical.
6.5.6.2 Movimiento horizontal de la mesa

Lo primero que se hizo fue utilizar la imagen de la placa de PVC (es el bitmap39 en la aplicación), y moverla manualmente (con las flechas del teclado) hasta identificar las posiciones horizontales que debería ocupar durante la animación. Estas posiciones se pueden identificar fácilmente alineando verticalmente los agujeros de la placa con la punta del taladro (para las posiciones 1, 2 y 3) y con la boquilla por donde salen los pivotes (para las posiciones 4, 5 y 6). Las coordenadas utilizadas son las de la pieza por defecto, pues los agujeros en la imagen e la placa se dibujaron siguiendo esas coordenadas.

Ahora se buscará una ecuación que permita conocer la coordenada horizontal (en unidades del iFix) conociendo una posición cualquiera que den los potenciómetros. Los datos que se utilizan como partida son las posiciones horizontales (en unidades del iFix) que se describieron en el párrafo anterior, y las combinaciones de coordenadas de los potenciómetros correspondientes a cada una de esas seis posiciones (tal y como se muestra en la Tabla 6.36).

<table>
<thead>
<tr>
<th>H (posición horizontal del bitmap39, placa negra)</th>
<th>X</th>
<th>Y</th>
<th>XY</th>
<th>X^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>39,4991874469871</td>
<td>1.107</td>
<td>609</td>
<td>674.163</td>
<td>1.225.449</td>
</tr>
<tr>
<td>35,5954019580283</td>
<td>1.303</td>
<td>834</td>
<td>1.086.702</td>
<td>1.697.809</td>
</tr>
<tr>
<td>36,5023420211198</td>
<td>1.107</td>
<td>1.059</td>
<td>1.172.313</td>
<td>1.225.449</td>
</tr>
<tr>
<td>32,7562852387856</td>
<td>1.048</td>
<td>1.392</td>
<td>1.458.816</td>
<td>1.098.304</td>
</tr>
<tr>
<td>28,8524997498266</td>
<td>1.235</td>
<td>1.616</td>
<td>1.995.760</td>
<td>1.525.225</td>
</tr>
<tr>
<td>29,7594398129181</td>
<td>1.048</td>
<td>1.840</td>
<td>1.928.320</td>
<td>1.098.304</td>
</tr>
</tbody>
</table>

Tabla 6.36

Con estos datos se calcularon varios modelos de regresión lineal, utilizando el software de cálculo Statistix. Se probaron los cuatro modelos siguientes:

1) \(H = f(X, Y) \)

<table>
<thead>
<tr>
<th>(H = f(X, Y))</th>
<th>Variables</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>58,3452</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0,0118</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-0,0090</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.37
2) \(H = f (X, Y, X^2) \)

\[
\begin{array}{|c|c|}
\hline
\text{Variables} & \text{Coefficient} \\
\hline
\text{Constant} & 51,0000 \\
X & 0,0016 \\
Y & -0,0090 \\
X^2 & -5,712*e-6 \\
\hline
\end{array}
\]

Tabla 6.38

3) \(H = f (X, Y, XY) \)

\[
\begin{array}{|c|c|}
\hline
\text{Variables} & \text{Coefficient} \\
\hline
\text{Constant} & 52,5795 \\
X & -0,0067 \\
Y & -0,00424 \\
XY & -4,259*e-6 \\
\hline
\end{array}
\]

Tabla 6.39

4) \(H = f (X, Y, X^2, XY) \)

\[
\begin{array}{|c|c|}
\hline
\text{Variables} & \text{Coefficient} \\
\hline
\text{Constant} & -223,5420 \\
X & 0,4376 \\
Y & 0,0245 \\
X^2 & -0,0002 \\
XY & 0,0000 \\
\hline
\end{array}
\]

Tabla 6.40

A continuación se hizo la diferencia entre la \(H \) real y la calculada. Es decir, el error que se comete con la aproximación. Se restó la \(H \) que se había medido (la que se deseaba obtener) menos la \(H \) calculada con cada uno de los modelos y luego se hizo valor absoluto de los resultados. Los obtenido se muestra a continuación:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Error} & \text{Error} & \text{Error} & \text{Error} \\
\text{H=f(X,Y)} & \text{H=f(X,Y,X^2)} & \text{H=f(X,Y,XY)} & \text{H=f(X,Y,X^2,XY)} \\
\hline
26,38 & 0,81 & 0,20 & 0,28 \\
30,56 & 0,31 & 0,08 & 0,04 \\
25,31 & 0,25 & 0,83 & 0,25 \\
25,35 & 1,12 & 0,68 & 0,08 \\
29,43 & 0,87 & 0,09 & 0,10 \\
24,30 & 0,08 & 0,23 & 0,18 \\
\hline
\text{Error Medio} & 26,89 & 0,57 & 0,35 & 0,15 \\
\hline
\end{array}
\]

Tabla 6.41
Finalmente se calcularon también los errores de las aproximaciones para la posición de Home. Se eligió esta situación pues es la única restante, de la cual se puede conocer la posición en la pantalla del iFix, ya que la foto que sirvió para dibujar el modelo tenía la mesa en Home. Esta posición no tiene tanto peso pues el resultado que se desea es que los agujeros encajen lo mejor posible debajo del taladro y de los pivotes, y por ello no se incluyó en los cálculos de los modelos para que influyese, sin embargo, se ha de considerar también en el modelo que se elija.

<table>
<thead>
<tr>
<th>H medida en Home</th>
<th>Error H=f(X,Y)</th>
<th>Error H=f(X,Y,X^2)</th>
<th>Error H=f(X,Y,XY)</th>
<th>Error H=f(X,Y,X^2,XY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,14587514</td>
<td>9,13</td>
<td>4,63</td>
<td>4,33</td>
<td>94,89</td>
</tr>
</tbody>
</table>

Tabla 6.42

Como se puede apreciar en la Tabla 6.41, el modelo que comete menos error dentro de la zona de las seis posiciones es el H=f(X,Y,X^2,XY). Pero este modelo se desvía enormemente fuera de esta zona, como se puede apreciar en la Tabla 6.42. El segundo mejor modelo de aproximación dentro de la zona de las seis posiciones es el H=f(X,Y,XY), y resulta ser el mejor modelo de aproximación para fuera de esa zona. Con lo cual, la elección final fue éste modelo.

\[
H = f(X, Y, XY, X^2, XY) = 52,5795 - 0,0067 * X - 0,00424 * Y - 0,000004259 * X * Y
\]

Para evitar tener que hacer cálculos de más si en algún momento hubieses que mover el dibujo de la estación a otra zona de la pantalla, se le hizo un cambio a la constante del modelo, de forma que incluyese la coordenada del bitmap que moverá. El modelo se encontró utilizando la imagen de la placa, por lo tanto, si su coordenada horizontal cuando el programa no está corriendo es la de Home (50,1458751439211), el cambio que en el modelo queda de la siguiente forma.

\[
H = \text{Coordenada_del_Bitmap_en_Home} + 2,433628 - 0,00671 * X - 0,00424 * Y - 0,000004259 * X * Y
\]

El modelo no queda alterado pues la coordenada del bitmap en Home (50,1458751439211) más la nueva constante (2,433628) da exactamente la constante del modelo original (52,5795). Con este cambio se consigue además una forma sencilla de aplicar el modelo en la animación de todos los bitmps que han de hacer al unísono este movimiento, pues simplemente hay que copiar la coordenada que tienen en el dibujo original y será suficiente para que se muevan haciendo una misma trayectoria pero en paralelo.
El siguiente paso es corregir la desviación del modelo cuando la mesa está próxima a Home. En el movimiento horizontal, la variable de más peso será el potenciómetro X.

Por un lado su coordenada en Home es 495 en decimal.

Por otro lado, la coordenada más pequeña que puede introducir el usuario es un agujero a cero centímetros en los ejes de la placa. Esto equivale a una valor en decimal de 1034. Esto se puede calcular con la ecuación siguiente, deducida en el apartado “6.5.5.1 Conversión de centímetros a decimal” dentro de “Creación de la Pantalla Entrar Pedido”:

\[
POSX1 = POSX1\text{CENTIMETROS} \cdot \frac{470}{7} + 1034 \quad (22)
\]

\[
POSX1 = 0 \cdot \frac{470}{7} + 1034 \quad (23)
\]

\[
POSX1 = 1034 \quad (24)
\]

Para aplicar la corrección en la aproximación, se ha elegido la coordenada de X menor a 750, que es aproximadamente el punto medio entre Home y la primera posición posible de los agujeros. De esta forma, para una X superior a 750 el modelo actúa sin corrección, pero para valores del potenciómetro X inferiores a 750 va forzando el resultado para aproximar más a la posición correcta de Home en pantalla.

\[
H = \text{Coordenada del Bitmap en Home} + 2,433628 - 0,00671^* (X>=750)^*X - 0,00424^*Y - 0,000004259^*X^*Y
\]

\[
H = \text{Coordenada del Bitmap en Home} + 2,433628 - 0,00671^* (X>=750)^*X - 0,00671^* (X<750)^* (a+b^*X) - 0,00424^*Y - 0,000004259^*X^*Y
\]

Se han añadido dos restricciones:
- Para valores de X superiores a 750, utilizar X sin alterar su valor
- Para valores de X inferiores a 750, introducir un valor que varíe linealmente hasta conseguir que para X igual a 495 (que es la coordenada de Home), la imagen bitmap se encuentre en la posición exacta de Home.
Para facilitar el cálculo se ha retirado de momento la variable “Coordenada_del_Bitmap_en_Home”.

\[H = \text{Coordenada_del_Bitmap_en_Home} + H' \]

\[H' = 2,433628 \]
\[-0,00671*(X>=750)*X - 0,00671*[(X<750)*(a+b*X)]\]
\[-0,000004259*X*Y - 0,00424*Y\]

\[H' \text{ (en Home)} = 2,433628 - 0,00671*[a+b*495] - 0,000004259*495*542 - 0,00424*542\]

Para la posición de Home, la X vale 495, y puesto que no se cumple la condición X>=750, esa parte de la ecuación queda anulada. El valor de Y en Home es 542.

Lo que se busca es que H' en Home valga cero, de forma que H tenga exactamente el valor de la Coordenada_del_Bitmap_en_Home.

\[0 = 2,433628 - 0,00671*[a+b*495] - 0,000004259*495*542 - 0,00424*542\]
\[a + b * 495 = -150,0893\]

Lo otra condición que se busca es que la transición sea suave en el momento que X pasa de inferior a 750 a superior. Esto se traduce en exigir que las condiciones antes del cambio sean las mismas que las de después.

Antes de haber superado los 750, la H' será aproximadamente:

\[H' = 2,433628 - 0,00671*[a + b * 750] - 0,000004259*X*Y - 0,00424*Y\]

Al llegar a los 750, la H' será:

\[H' = 2,433628 - 0,00671*750 - 0,000004259*X*Y - 0,00424*Y\]

Con lo cual, lo que se desea es que

\[-0,00671*750 = -0,00671*[a + b * 750]\]

Es decir:

\[750 = a + b * 750\]
Por tanto, las dos condiciones del sistema son:

\[
\begin{align*}
 a + b \times 495 &= -150,0893 \\
 a + b \times 750 &= 750
\end{align*}
\]

Resolviendo:

\[
\begin{align*}
 a &= -1897,3215 \\
 b &= 3,529762
\end{align*}
\]

El modelo de las coordenadas horizontales queda:

\[
H = \text{Coordenada del Bitmap en Home} + 2,433628 \\
- 0,00671*(X>=750)*X - 0,00671*((X<750)*(-1897,3215 + 3,529762*X)) \\
- 0,000004259*X*Y - 0,00424*Y
\]

De esta forma se fuerza que \(H\) a medida que se vaya acercando a \(X=750\) vaya tomando valores más parecidos a los de la propia \(X\), pues a partir de \(X = 750\) la parte de la fórmula que seguirá funcionando será - 0,00671 \(*\ X\).

6.5.6.3 Implementación con el iFix

Para implementar este modelo con el iFix, se ha seguido el siguiente método. Lo primero es hacer un cambio en la forma de definir las condiciones de transición. Esto es necesario pues no es posible multiplicar resultados booleanos con número reales. Una forma sería convirtiendo el resultado booleano en entero con una instrucción como ésta: INT(X>=750).

Sin embargo, se ha preferido por otro tipo de cambio, uno que varía progresivamente en lugar de hacerlo de golpe. Se utilizó el cambio de variable que se muestra a continuación, en la cual \(A\) deberá variar entre 0 y 1.

\[
A = (X < 750) \\
(1-A) = (X >= 750)
\]

\[
H = \text{Coordenada del Bitmap en Home} + 2,433628 \\
- 0,00671*(1-A)*X - 0,00671*(A)*(-1897,3215 + 3,529762*X) \\
- 0,000004259*X*Y - 0,00424*Y
\]

Se restan las \(X\) multiplicadas por \(A\) y por - 0,00671

\[
H = \text{Coordenada del Bitmap en Home} + 2,433628 \\
- 0,00671*X - 0,00671*A*(-1897,3215 + 2,529762*X) \\
- 0,000004259*X*Y - 0,00424*Y
\]
Y finalmente se saca factor común.

\[H = \text{Coordenada del Bitmap en Home} + 2,433628 \]
\[\quad - 0,00671 \ast [A \ast (-1897,3215+2,529762\ast X) + X + 0,0006347\ast X\ast Y + 0,63189\ast Y] \]

\[H' = 2,433628 \]
\[\quad - 0,00671 \ast [A \ast (-1897,3215+2,529762\ast X) + X + 0,0006347\ast X\ast Y + 0,63189\ast Y] \]

El valor de A se encuentra mediante la ecuación de una recta, de forma que para X=495 la A debería valer 1, y para X=750 la A debería valer 0.

\[A = 2,941176 - 0,003922 \ast X \]

Debido a las restricciones de los bloques de cálculo, que sólo pueden trabajar con ocho variables de entrada, se tuvo que fraccionar la operación en tres partes. En la primera parte se calculó el valor de A, con el tag MESA_H_1:

A: MESA_SENSOR_REAL_X_1
B: 2,941176
C: -0,003922
Y el cálculo es: (B+(C*A))

El tag MESA_SENSOR_REAL_X_1 es un Analog Input enlazado a la dirección PLC1:IR:101, que corresponde al potenciómetro del Eje X. En la segunda parte se calculó el siguiente fragmento de la expresión de H', con el tag MESA_H_2:

\[-0,00671\ast[A\ast(-1897,3215+2,529762\ast X) + X + 0,0006347\ast X\ast Y + 0,63189\ast Y] \]

A: MESA_H_1
B: MESA_SENSOR_REAL_X_1
C: MESA_SENSOR_REAL_Y
D: -0,00671
E: -1897,3215
F: 2,529762
G: 0,0006347
H: 0,63189
Y el cálculo es: (D*(((A*(E+(F*B)))+B)+((G*B)*C))+(H*C)))

El tag MESA_SENSOR_REAL_Y es un Analog Input enlazado a la dirección PLC1:IR:102, que corresponde al potenciómetro del Eje Y.
En la tercera parte se calculó el lo que faltaba de la expresión de H', con el tagMESA_H_3:

\[H' = 2,433628 + MESA_H_2 \]

A: MESA_H_2
B: 2,433628
Y el cálculo es: (A+B)

De forma que para el movimiento horizontal de las imágenes que conforman la mesa móvil, sólo hay que introducir la expresión

Coordenada_del_Bitmap_en_Home + MESA_H_3

Y en el lugar de **Coordenada_del_Bitmap_en_Home** se escribirá la coordenada horizontal de esa imagen en la posición que tiene en pantalla cuando no está corriendo.
6.5.6.4 Movimiento vertical de la mesa

Para las posiciones verticales primero se colocaron los bitmaps del taladro, y del cilindro de pistones, en la posición que ocuparían si estuviesen extendidos. Luego se colocó el bitmap de la placa negra debajo de ellos de forma que los agujeros estuviesen en cada posición separados la misma distancia de la punta del taladro (en las posiciones 1, 2 y 3) y de la punta del cilindro de pivotes (en las posiciones 4, 5 y 6). Se añadió un offset de 2 a todas ellas pues es aproximadamente la distancia hasta la mesa donde iría la placa verticalmente y se hizo una primera interpolación con esos datos. Se utilizó la coordenada de Home en lugar de la posición uno, pues la posición de Home en pantalla quedó bien definida al tener la horizontal y el agujero donde debería encajar.

\[
V = 39,6881 - 6,477*\frac{X}{100000} + 0,00432*Y - 1,007*\frac{X*Y}{1000000} - 3,486*\frac{Y*Y}{10000000}
\]

Este modelo sirvió como primera aproximación. Adelantó el proceso para encontrar mediante prueba y error las posiciones exactas de la imagen del tornillo sin fin (el bitmap30), de forma que encajase en cada posición con el agujero de la corredera. Se interpolaron las coordenadas encontradas y el resultado se muestra a continuación.

<table>
<thead>
<tr>
<th>V placa</th>
<th>X</th>
<th>Y</th>
<th>Y²</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOME</td>
<td>41,62276346</td>
<td>495</td>
<td>542</td>
<td>293.764</td>
</tr>
<tr>
<td>POS2</td>
<td>41,85049625</td>
<td>1.303</td>
<td>834</td>
<td>695.556</td>
</tr>
<tr>
<td>POS3</td>
<td>42,68551649</td>
<td>1.107</td>
<td>1.059</td>
<td>1.121.481</td>
</tr>
<tr>
<td>POS4</td>
<td>43,44462581</td>
<td>1.048</td>
<td>1.392</td>
<td>1.937.664</td>
</tr>
<tr>
<td>POS5</td>
<td>43,6723586</td>
<td>1.235</td>
<td>1.616</td>
<td>2.611.456</td>
</tr>
<tr>
<td>POS6</td>
<td>44,46942338</td>
<td>1.048</td>
<td>1.842</td>
<td>3.392.964</td>
</tr>
</tbody>
</table>

Tabla 6.43

<table>
<thead>
<tr>
<th>V (tornillo sin fin X)</th>
<th>X</th>
<th>Y</th>
<th>Y²</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>44,19965956</td>
<td>495</td>
<td>542</td>
<td>293.764</td>
<td>268290</td>
</tr>
<tr>
<td>44,27099954</td>
<td>1303</td>
<td>834</td>
<td>695.556</td>
<td>1086702</td>
</tr>
<tr>
<td>44,84867376</td>
<td>1107</td>
<td>1059</td>
<td>1121481</td>
<td>1172313</td>
</tr>
<tr>
<td>45,67663049</td>
<td>1048</td>
<td>1392</td>
<td>1937664</td>
<td>1458816</td>
</tr>
<tr>
<td>45,72905949</td>
<td>1235</td>
<td>1616</td>
<td>2611456</td>
<td>1995760</td>
</tr>
<tr>
<td>46,67519035</td>
<td>1048</td>
<td>1842</td>
<td>3392964</td>
<td>1930416</td>
</tr>
</tbody>
</table>

Tabla 6.44
V = Coordenada_del_Bitmap - 3,288155815
+ (4819*X + 34000*Y - 17,12*X*Y + 2,069*Y**Y)/10000000

Se repitió el proceso del modelo horizontal para mejorar las aproximaciones cercanas a Home.

V = Coordenada_del_Bitmap - 3,288155815
+ (4819 * \[(X >= 750)*X + (X < 750)*(c + d * X) \] + 34000*Y - 17,12*X*Y + 2,069*Y**Y)/10000000

V = Coordenada_del_Bitmap - 3,288155815
+ (4819 * \[(1-A)*X + (A)*(c + d * X) \] + 34000*Y - 17,12*X*Y + 2,069*Y**Y)/10000000

V' = - 3,288155815
+ (4819 * \[(X >= 750)*X + (X < 750)*(c + d * X) \] + 34000*Y - 17,12*X*Y + 2,069*Y**Y)/10000000

V' (en Home) = - 3,288155815
+ (4819*(c+d*495) + 34000*542 - 17,12*495*542 + 2,069*542*542)/10000000

Lo que se busca es que V' en Home valga cero, de forma que V tenga exactamente el valor de la Coordenada_del_Bitmap_en_Home.

c + d * 495 = 3826,288698

V' (en X = 750):

c + d * 750 = 750

Resolviendo:

c = 9797,91
d = -12,06388

El modelo de las coordenadas verticales queda:

V = Coordenada_del_Bitmap - 3,288155815
+ (4819 * \[(1-A)*X + (A)*(9797,91 - 12,06388 * X) \]
+ 34000*Y - 17,12*X*Y + 2,069*Y**Y)/10000000

De esta forma se fuerza que M' a medida que se vaya acercando a X=750 vaya tomando valores más parecidos a los de la propia X, pues a partir de X = 750 la parte de la fórmula que seguirá funcionando será 4819 * X.
6.5.6.5 Implementación con el iFix

Para implementar este modelo con el iFix, se ha seguido el mimo método que para el movimiento horizontal.

\[A = (X < 750) \]
\[(1-A) = (X \geq 750) \]

El valor de A se encuentra mediante la ecuación de una recta, de forma que para X=495 la A debería valer 1, y para X=750 la A debería valer 0.

\[A = 2,941176 - 0,003922 \times X \]

Debido a las restricciones de los bloques de cálculo, que sólo pueden trabajar con ocho variables de entrada, se tuvo que fraccionar la operación en tres partes. En la primera parte se calculó el valor de A, con el tag MESA_V_1:

A: MESA_SENSOR_REAL_X_2
B: 2,941176
C: -0,003922
Y el cálculo es: (B+(C*A))

El tag MESA_SENSOR_REAL_X_2 es un Analog Input enlazado a la dirección PLC1:IR:101, que corresponde al potenciómetro del Eje X. En la segunda parte se calculó el siguiente fragmento de la expresión de V', con el tag MESA_V_2:

\[4819 \times [(1-A) \times X + (A) \times (9797,91 - 12,06388 \times X)] \]

A: MESA_V_1
B: MESA_SENSOR_REAL_X_2
C: 4,819
D: 1
E: 9,797,91
F: -12,06388
Y el cálculo es: (C*(((D-A)*B)+(A*(E+(F*B)))))

En la tercera parte se calculó el lo que faltaba de la expresión de V', con el tag MESA_V:

\[V' = -3,288155815 + (MESA_V_2 + 34000*Y - 17,12*X*Y + 2,069*Y*Y)/10000000 \]
A: MESA_H_2
B: MESA_SENSOR_SIM_X
C: MESA_SENSOR_SIM_Y
D: -3,288155815
E: 34000
F: -17,12
G: 2,069
H: 10.000.000

Y el calculo es: D+(((A+(E*C))+((F*B)*C))+((G*C)*C))/H)

De forma que para el movimiento vertical de las imágenes que conforman la mesa móvil, sólo hay que introducir la expresión

Coordenada_del_Bitmap_en_Home + MESA_V

Y en el lugar de **Coordenada_del_Bitmap_en_Home** se escribirá la coordenada vertical de esa imagen en la posición que tiene en pantalla cuando no está corriendo.
6.5.6.6 Movimiento de la corredera

Se comenzó con las pendientes de los términos Y, de las expresiones H y V encontradas hasta este momento.

\begin{align*}
H &= \text{Coordenada del Bitmap} + h - 0,006348205 \times Y \\
V &= \text{Coordenada del Bitmap} + v + 0,0034 \times Y
\end{align*}

Se modificaron mediante prueba y error las constantes hasta que encajaron con la orientación correcta. El resultado final fue el que se muestra a continuación.

\begin{align*}
H &= \text{Coordenada del Bitmap} + 3,473677473 - 0,006348205 \times Y \\
V &= \text{Coordenada del Bitmap} - 1,37407337 + 0,00253519 \times Y
\end{align*}

Para la implementación con el iFix se siguió el mismo proceso que con el movimiento de la mesa, descrito en los apartados anteriores.
6.5.7 Creación de la Pantalla Calibrar

Se entiende que la creación de la pantalla Calibrar no presenta ninguna dificultad, al tener los conocimientos básicos del funcionamiento del iFix, suministrados en la guía que se creó y que se adjunta en Anexos.

![Figura 6.83](image-url)
6.5.8 Base de Datos

La base de datos de la aplicación es el conjunto de variables que se utilizan para el funcionamiento de todo cuanto ocurre en las pantallas. Es la que permite enlazar la máquina donde esté el SCADA con el PLC de la estación. A las variables de la base de datos se conocen como tags. En éste proyecto se han utilizado:

- tags de entrada y salida digital
- tags de entrada y salida analógica
- tags de lógica booleana
- tags de bloques de cálculo

Varios de éstos tags son simulados, es decir, no representan entradas o salidas específicas del autómata, sino que se utilizan dentro del SCADA únicamente como variables auxiliares.

6.5.8.1 Cálculo de posiciones

En la Base de Datos se haces los cálculos de la pantalla Entrar Pedido. Ellos permiten convertir las coordenadas de centímetros a decimal. Una vez están en decimal se envían al PLC, de forma que corresponden con el rango de valores con los que trabaja el diagrama de contactos.

Además de esos cálculos, la Base de Datos también realiza otros que se mostrarán a continuación, todos realizados con bloques de cálculo:

Posiciones intermedias:

Posición entre POS1 y POS2 = POS1 + 2/3 * (POS2 - POS1)

A: POS1
B: POS2
C: 0,7

Y el cálculo es: A + (C*(B-A))

El cálculo es el mismo para el resto de posiciones intermedias.
Ejes:

\[
\begin{align*}
\text{PosX4} &= \text{PosX1} - 63 \\
\text{PosX5} &= \text{PosX2} - 63 \\
\text{PosX6} &= \text{PosX3} - 63 \\
\text{PosY4} &= \text{PosY1} + 782 \\
\text{PosY5} &= \text{PosY2} + 782 \\
\text{PosY6} &= \text{PosY3} + 782
\end{align*}
\]
7 Mejoras y Conclusiones

Se debería ajustar el rango de la señal analógica de los canales de entrada de los potenciómetros X e Y, actualmente en el rango -10V a +10V, al rango de 0 a +10V. De esta forma, se lograría mejorar la resolución.

Inhibir el scan por parte de la tarjeta AD002 de los seis canales de entrada no utilizados en este proyecto, con el fin de mejorar el tiempo de conversión de la tarjeta.

Mejorar la ergonomía del botón de salida de la aplicación SCADA.

Se detecta los sensores de límite de los potenciómetros X e Y, están cableados sobre la misma entrada digital del PLC. Esto hace que no se pueda discernir cuál de los sensores de límite detecta el alcance del límite de recorrido. Como consecuencia de ello la búsqueda de Home debe realizarse mediante bloques de comparación que lean las medidas de los potenciómetros.

Se ha detectado que falta un sensor para el Cilindro F. El sensor I.07 es el único instalado en éste cilindro, y por tanto, es necesario utilizar un sistema alternativo, que sirva como referencia de que el Cilindro F está extendido. En éste proyecto se utilizó un temporizador, pero sería más eficiente utilizar un sensor.

Por último, hay que significar que un área de mejora importante sería la de migrar hacia el PLC modelo CS1G-CPU45H, el cual dispone de un conjunto de instrucciones bastante más potentes que las utilizadas en el C200.
8 Bibliografía

En Accede a nuestro Centro de Descarga buscar W370-E1-07+CS1W-CLK_+OperManual opción Datasheet.

En Accede a nuestro Centro de Descarga buscar W339-ES2-05+CJ(S)1+InstallGuide opción Datasheet.

Juan Carlos Hernández Palacín. 2.1_Instalacion_iFix50_100409.pdf

Juan Carlos Hernández Palacín. documento 2.doc

Juan Carlos Hernández Palacín. documento 3.doc