

Títol: Web i Model de negoci d'una companyia social.

Socialpackers.com

Autor: Xavier Cases Camats

Data: 20 de juny de 2013

Director: Miquel Barceló Garcia

Departament del director: Departament Enginyeria de Serveis i Sistemes

d'Informació

Titulació: Enginyeria Informàtica Tècnica de Gestió

Centre: Facultat d'Informàtica de Barcelona (FIB)

Universitat: Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

i

i. Table of Contents

0. Preamble .. 1

1. Introduction .. 2

1.1. What is SocialPackers.com? .. 2

1.2. Objectives .. 2

1.3. Main goal .. 2

2. Planning ... 4

2.1. Phases .. 4

2.1.1. Definition Phase ... 4

2.1.2. Design Phase ... 4

2.1.3. Development Phase .. 4

2.1.4. Documentation Phase .. 5

2.2. Time estimation ... 5

2.3. Risk analysis .. 8

2.3.1. Planning times inaccurate .. 8

2.3.2. External causes ... 8

2.3.3. Low quality .. 8

3. Requirements analysis .. 9

3.1. Interested parts ... 9

3.2. Scope .. 9

3.3. Functional requirements .. 9

3.3.1 Actions in projects. ... 9

ii

3.3.1 Actions in roadmap. .. 10

3.3.1 Actions in tips. ... 10

3.4. Non functional requirements ... 10

4. Specification .. 11

4.1. Conceptual Model ... 11

4.2. Actors .. 13

4.3. Use Cases ... 13

4.3.1. Log In ... 13

4.3.2. Register ... 15

4.3.3. Newsletter Subscribe .. 16

4.3.4. Contact .. 17

4.3.5. Tips .. 18

4.2.5.1. Publish ... 18

4.3.5.2. Filter ... 19

4.3.5.3. Like ... 20

4.3.5.4. Favourite .. 21

4.3.5.5. Delete Favourite ... 22

4.3.6. Projects ... 23

4.3.6.1. Create .. 23

4.3.6.1. Edit ... 24

4.3.6.2. Filter ... 25

4.3.6.3. Publish ... 26

iii

4.3.6.4. Validation (ADMIN) .. 27

4.3.6.5. Signup .. 28

4.3.6.6. Signup approval/denial .. 29

4.3.7. Roadmap .. 31

4.3.7.1. Add budget .. 31

4.3.7.2. Add country ... 32

4.3.7.3. Delete country ... 33

4.3.7.4. Set status ... 34

4.3.7.5. Add pictures .. 35

4.3.8. Users ... 36

4.3.8.1. Edit Profile ... 36

4.3.8.2. Filter ... 37

4.3.8.3. Friendship request ... 38

4.3.8.4. Manage friends requests .. 39

4.4 Contracts ... 40

4.5 State diagrams ... 49

5. Design .. 50

5.1. Physical view ... 50

5.2. Logic architecture: Layer design .. 51

5.2.1. 3-layer design ... 51

5.2.2. X-layer design .. 51

5.2.2.1. Used technologies in each layer .. 53

iv

5.2.3. View layer design .. 56

5.2.3.1. Landing page .. 56

5.2.3.2. Tips page ... 59

5.2.3.3. Project page .. 60

5.2.3.4. Users page .. 61

5.2.3.5. Roadmap page ... 62

5.2.3.6. Profile page ... 64

5.2.3.7. Footer ... 64

5.2.3.8. Contact ... 65

5.2.4. Model layer design .. 66

5.2.3.8. Sequence diagrams ... 66

5.2.5. Data layer design ... 70

6. Implementation ... 71

6.1. Development environment .. 71

6.1.1. Installation ... 71

6.1.2. Development .. 71

7. Conclusions ... 72

1

0. Preamble

The document contains the Technical Development of Socialpackers.com , a website

of a social business that will be launched in 2013 by two FIB students, Albert Vellvé i

Olivares and Xavier Cases Camats.

The following pages -in conjunction with the project lead by Albert Vellvé i Olivares,

which will contain the business plan of the webpage-, hold the final thesis of both

students, worth 22.5 credits each, that matches to the Technical Engineering in

Computer Management requirements’ policy. Therefore, the reader is requested to

read in parallel the final project of Albert Vellvé i Olivares in order to have a holistic

overview of the business.

As it will be stated in detail on the financial part of the project, we are meant to put our

effort so we can make this project sustainable in the long term. Due to this, we have

studied all the possible revenue streams that will have an impact on the business. But

for now, let us do a quick calculation of the investment that both, Xavier and I have

done so far on Socialpackers.com :

Hours Xavier 576

Hours Albert 550

Total Hours 1126

Cost of hour € 15

Total cost Hours € 16,890

Domains € 20

Server (1 year) € 35

Total Investment € 16,945

2

1. Introduction

SocialPackers.com is a free web application that provides lots of social projects

around the world. It helps people to find social projects in the destiny of their

trips and get a reward for it, helping to along the trip.

1.1. What is SocialPackers.com?

For a user, SocialPackers.com is a social network between travellers and

entrepreneurs, a social network were the main goal is share vital experiences

with local people wherever they are.

1.2. Objectives

Often the people that travel around want to be in touch with others that

experienced something similar, they do not know how to do something in that

country or what do they need to cross frontiers, or which are the most

meaningful sites in that other place that books and agencies did not mention.

Often entrepreneurs want to do something that they are not capable of,

because lack of resources, because lack of knowledge, and they are willing to

give food, accommodation or other things in exchange for help.

With this project we intend to connect these two kinds of people to help each

other, let they interact, comment and share projects, experiences, tips and so

on.

1.3. Main goal

We want to help travellers on their day by day, putting them in touch with other

travellers and with people searching for volunteers and mixing individuals with

common interests. SocialPackers.com will also be a place to share acquired

knowledge, tips and tricks, curiosities, etc.

3

We offer a daily tracking tool for users and social organizations where they can

check not only the tasks accomplished in the past, but also plan the tasks they

want to accomplish in the future.

Don’t forget the main goal of SocialPackers.com . How do we put in touch

people from here and there?

First, ‘here’ is where you, the social traveller, are and ’there’ is where they, the

people with a social project, are. Or not. Maybe ‘here’ is where you, a social

organization, are and ‘there’ is where they, the social travellers, are.

The main technical goal of this application is to make easy the publishing of a

social project online and to make easy the process of a user to find and

subscribe to it.

4

2. Planning

Here we will show you the initial planning for the project.

2.1. Phases

We separated the planning in four phases. If we look at the Gantt diagram, we

can see that some tasks overlaps others, in this planning we take into account

different roles as could be Analyst, Developer, Manager and Architect although

only one resource is available for all tasks.

2.1.1. Definition Phase

December 3th – February 3th Project Definition

Here we decided the main goals of the web application; we did the planning and

decided the end date.

January 1st – February 28th Technology Search /Learning Curve

Find the best matching technologies for our purpose. Find and read some

documentation and learn a bit about the technologies chosen.

2.1.2. Design Phase

February 4th – March 1st Web design and Database model

Decide the entities stored in the database model and the look and feel of the

web application.

2.1.3. Development Phase

February 12th – April 23th Development

Create the needed entities and make it interact. Create all decided

functionalities by iterations.

5

April 24th – May 23th Testing

Create and execute some test to validate the main functionalities of the web

application.

2.1.4. Documentation Phase

May 24th – June 8th Documenting

Create and complete the documentation. Prepare for the presentation of the

web application.

2.2. Time estimation

• Definition Phase

Project Definition 45days * 3hours = 135h

Technology Search /Learning Curve 43days * 3 hours = 129h

• Design Phase

Web design and Database model 20days * 3 hours = 60h

• Development Phase

Development 51days * 3 hours = 153 h

Testing 22days * 3 hours = 66h

• Documenting Phase

Documenting 11 days * 3 hours = 33h

6

In total we have 576 hours of work. See the following Gantt diagram for a

detailed view.

7

8

2.3. Risk analysis

2.3.1. Planning times inaccurate

It is possible that in the development phase the tempos will be inaccurate. The

developer is learning a new programming language, different from any other

used before in the career or work.

Probability: High

Impact: Low if it is detected soon, high otherwise

Solution: Add resources, cut the scope of the project. Do a new planning.

2.3.2. External causes

Because the need of spare more time at work, because an illness

Probability: Low

Impact: Low

Solution: Plan in short term. For long periods, cut the scope of the project and

do a new planning.

2.3.3. Low quality

The website does not comply with specifications.

Probability : Very low

Impact: Critical

Solution: Redo the specification and the design. Check for deviations and do a

new planning if required.

9

3. Requirements analysis

3.1. Interested parts

Travellers. Users want to be capable of find projects of their interest, and

contact to the owner to get more information about. The users want to share

and be able to search on reliable site the information related to the trip they are

doing.

Entrepreneurs. Users want to be capable of publish projects to accomplish their

goals, to help their community.

3.2. Scope

The application has to allow the traveller to create the roadmap of his/her trip,

search and find what he/she needs; projects, relevant information and people

with the same interests. The application also has to allow creating a project and

publishing it in a way it can be found.

3.3. Functional requirements

3.3.1 Actions in projects.

• Projects management has to allow the owner to:

- Create projects inserting name, description, tasks and images.

- Edit pictures and all text inputs.

- Publish projects to be shown in internet.

- Access or deny a user signing up to the project.

• Projects use has to allow the user to:

- See all the information about the project.

- Sign up to a project he/she is interested.

10

- In case of sign up approval, write comments on it.

3.3.1 Actions in roadmap.

• Roadmap management has to allow the owner to:

- Add and delete countries of the roadmap.

- Change the budget.

- Add a new status or upload pictures.

- Manage the friendship requests.

• Roadmap use has to allow the user to:

- See countries of the roadmap.

- Request friendship.

- If they are friends, add comments or pictures to the roadmap.

3.3.1 Actions in tips.

• Tips management has to allow the owner to:

- Add and delete tips.

• Tips use has to allow the owner to:

- Like tips.

- Put tips in his/her backpack for future visualization.

- Delete tips from his/her backpack.

3.4. Non functional requirements

1. The application has to work in the majority of browser to allow people

around access to the web.

2. The web has to be extensible to make it grow with new functionalities.

3. The user interface has to be usable and comfortable.

4. Has to be delivered a first phase by June 20th.

4. Specification

4.1. Conceptual Model

Following the conceptual model that illustrates in a simply way the concepts in

real life.

Integrity restrictions:

• A user cannot own a project and participates to it.

• Admin has to be unique.

External key

• User: e-mail

• Country: code

• Period: start date, end date

11

the conceptual model that illustrates in a simply way the concepts in

A user cannot own a project and participates to it.

unique.

Period: start date, end date

the conceptual model that illustrates in a simply way the concepts in

12

• Task: num

The other objects use the internal identification (id) as a primary key.

• Project

Represents a project and it contains a name, description and tasks.

• Task

Represents a specific part of a project, it contains, a num, a name,

description, reward, start date, end date

• User

Represent a user of the application. A part of the name and the e-mail, it

contains date of birth, gender, language, etc...

• Traveller

Represents a user role: Traveller.

• Entrepreneur

Represents a user role: Entrepreneur.

• Admin

Represent the role of admin.

• Roadmap

Represents the list of countries the user wants to visit.

• Country

Represents a country.

• Period

Represents a period of time between start date and end date.

4.2. Actors

The actors Traveller and Entrepreneur interact with each other, and both extend

from the same concept, it may be confusing

Traveller and Entrepreneur

This is also a special user, the Adm

only with some restricted functionalities to do some concrete tasks.

4.3. Use Cases

Now we will define the interaction between actors and the system.

4.3.1. Log In

13

Traveller and Entrepreneur interact with each other, and both extend

from the same concept, it may be confusing due to any user can act

Traveller and Entrepreneur depending on the actions we will distinguish them.

This is also a special user, the Admin. The admin is going to be a superuser,

only with some restricted functionalities to do some concrete tasks.

Now we will define the interaction between actors and the system.

Traveller and Entrepreneur interact with each other, and both extend

due to any user can act as a

distinguish them.

in. The admin is going to be a superuser,

only with some restricted functionalities to do some concrete tasks.

Now we will define the interaction between actors and the system.

A user of SocialPackers.com logs in to the web

Actors: User

Starting point: This use case starts when a SocialPackers.com user is not

logged in to the application and

Precondition: The user is not logged in

Main flow:

1. The System prompts the user for a username and password

2. The user enters his/her username and password and click Login.

3. SocialPackers.com validates the entered username and password,

making sure that the entered username is a valid username, and t

required password is entered for the entered username.

4a. Success: The User is authenticated and SocialPackers.com displays the

roadmap page.

4b. Failure: SocialPackers.com redirects the user to the landing page.

14

A user of SocialPackers.com logs in to the web application.

This use case starts when a SocialPackers.com user is not

logged in to the application and clicks to login.

The user is not logged in

The System prompts the user for a username and password

s his/her username and password and click Login.

SocialPackers.com validates the entered username and password,

making sure that the entered username is a valid username, and t

required password is entered for the entered username.

Success: The User is authenticated and SocialPackers.com displays the

SocialPackers.com redirects the user to the landing page.

This use case starts when a SocialPackers.com user is not

The System prompts the user for a username and password to login.

s his/her username and password and click Login.

SocialPackers.com validates the entered username and password,

making sure that the entered username is a valid username, and that the

Success: The User is authenticated and SocialPackers.com displays the

SocialPackers.com redirects the user to the landing page.

4.3.2. Register

A user of SocialPackers.com creates an account.

Actors: Guest

Starting point: This use case starts when a SocialPackers.com user is not

registered in to the application and

Precondition: The user is not registered

Main flow:

1. SocialPackers.com prompts the guest for a username and password

create a new account.

2. The guest enters in their information

3. SocialPackers.com verifies information and creates account.

4a. Success: SocialPackers.com displays the

4b. Failure: SocialPackers.com redirects the user to the landing page.

15

SocialPackers.com creates an account.

This use case starts when a SocialPackers.com user is not

registered in to the application and clicks to login/registration.

The user is not registered

SocialPackers.com prompts the guest for a username and password

new account.

The guest enters in their information and click to Register.

SocialPackers.com verifies information and creates account.

Success: SocialPackers.com displays the roadmap page.

SocialPackers.com redirects the user to the landing page.

This use case starts when a SocialPackers.com user is not

SocialPackers.com prompts the guest for a username and password to

SocialPackers.com verifies information and creates account.

SocialPackers.com redirects the user to the landing page.

4.3.3. Newsletter Subscribe

A guest of the SocialPackers.com subscribes to newsletters.

Actors: Guest/User

Main flow:

1. The footer has a

2. The guest enters his/her e

3. SocialPackers.com verifies information and adds the email to the list.

16

Subscribe

A guest of the SocialPackers.com subscribes to newsletters.

The footer has an input text to enter the e-mail.

The guest enters his/her e-mail and clicks Subscribe.

SocialPackers.com verifies information and adds the email to the list.

SocialPackers.com verifies information and adds the email to the list.

4.3.4. Contact

A guest/user of SocialPackers.com contacts with SocialPackers.com.

Actors: Guest/User

Starting point: This use case starts when a guest

goes to contact page.

Main flow:

1. SocialPackers.com

complains or congrats.

2. The guest/user enters the required information

3. SocialPackers.com verifies information and sends an email.

17

A guest/user of SocialPackers.com contacts with SocialPackers.com.

This use case starts when a guest/user clicks on contact and

SocialPackers.com shows the user/guest a form to send suggestions,

complains or congrats.

The guest/user enters the required information and clicks to Send

SocialPackers.com verifies information and sends an email.

A guest/user of SocialPackers.com contacts with SocialPackers.com.

clicks on contact and

the user/guest a form to send suggestions,

clicks to Send button.

SocialPackers.com verifies information and sends an email.

4.3.5. Tips

4.2.5.1. Publish

A logged user of SocialPackers.com publish a Tip

Actors: User

Starting point: This use case starts when a user goes to the tips section.

Precondition: The user is logged in

Main flow:

1. SocialPackers.com shows the user a form to publish

list of tips.

18

A logged user of SocialPackers.com publish a Tip

This use case starts when a user goes to the tips section.

The user is logged in

SocialPackers.com shows the user a form to publish/search

This use case starts when a user goes to the tips section.

/search a tip and a

2. The user enters the information for a new tip.

3. SocialPackers.com give hints to the user with the Country and the

Categories.

4. The user clicks on Publish button.

5. SocialPackers.com creates a tip and refreshes the page.

4.3.5.2. Filter

A guest of SocialPackers.com filter

Actors: Guest

Starting point: This use case starts when a

Main flow:

1. SocialPackers.com shows the

list of tips.

2. The user enters the filters in the boxes to search for his/her preferences.

3. SocialPackers.com gives hints to the user with the Country and the

Categories.

19

The user enters the information for a new tip.

SocialPackers.com give hints to the user with the Country and the

clicks on Publish button.

SocialPackers.com creates a tip and refreshes the page.

of SocialPackers.com filters tips from a list.

This use case starts when a guest goes to the tips section.

SocialPackers.com shows the guest a form to publish/search a tip and

The user enters the filters in the boxes to search for his/her preferences.

SocialPackers.com gives hints to the user with the Country and the

SocialPackers.com give hints to the user with the Country and the

goes to the tips section.

/search a tip and a

The user enters the filters in the boxes to search for his/her preferences.

SocialPackers.com gives hints to the user with the Country and the

4. The user clicks on Filter button.

5. SocialPackers.com filters the list matching the information entered for

the user.

4.3.5.3. Like

A logged user of SocialPackers.com likes tips from a list.

Actors: User

Starting point: This use case starts when a user goes to the tips section.

Precondition: The user is logged in

Main flow:

1. SocialPackers.com shows the user a form to publish

list of tips.

2. The user click “Like

3. SocialPackers.com registers that

from the tip. (The counts of Likes of the Tip increments by 1.)

20

user clicks on Filter button.

SocialPackers.com filters the list matching the information entered for

A logged user of SocialPackers.com likes tips from a list.

This use case starts when a user goes to the tips section.

The user is logged in

SocialPackers.com shows the user a form to publish/search a tip and

Like” button next to a tip he/she likes.

ackers.com registers that “Like” and refreshes the information

from the tip. (The counts of Likes of the Tip increments by 1.)

SocialPackers.com filters the list matching the information entered for

This use case starts when a user goes to the tips section.

/search a tip and a

the information

from the tip. (The counts of Likes of the Tip increments by 1.)

4.3.5.4. Favourite

A logged user of SocialPackers.com put a tip on his backpack.

Actors: User

Starting point: This use case starts when a user goes to the tips section.

Precondition: The user is logged in

Main flow:

1. SocialPackers.com shows the user a form to publish

list of tips.

2. The user click Favourite button next to a tip he/she think is u

3. SocialPackers.com puts this Tip into the User’s backpack.

21

A logged user of SocialPackers.com put a tip on his backpack.

This use case starts when a user goes to the tips section.

The user is logged in

SocialPackers.com shows the user a form to publish/search

The user click Favourite button next to a tip he/she think is u

SocialPackers.com puts this Tip into the User’s backpack.

This use case starts when a user goes to the tips section.

/search a tip and a

The user click Favourite button next to a tip he/she think is useful.

SocialPackers.com puts this Tip into the User’s backpack.

4.3.5.5. Delete Favourite

A logged user of SocialPackers.com delete

Actors: User

Starting point: This use case starts when a user goes to the tips section.

Precondition: The user is logged in

Main flow:

1. The user clicks to Backpack tab.

2. SocialPackers.com shows the user a list of tips.

3. The user click Delete button next to a tip he/she wants to delete.

4. SocialPackers.com delete

22

Delete Favourite

A logged user of SocialPackers.com deletes a tip from his/her backpack.

This use case starts when a user goes to the tips section.

The user is logged in

The user clicks to Backpack tab.

SocialPackers.com shows the user a list of tips.

The user click Delete button next to a tip he/she wants to delete.

SocialPackers.com deletes the Tip from the User’s backpack.

backpack.

This use case starts when a user goes to the tips section.

The user click Delete button next to a tip he/she wants to delete.

the Tip from the User’s backpack.

4.3.6. Projects

4.3.6.1. Create

A logged user of SocialPackers.com creates a Project

Actors: User

Starting point: This use case starts when a user goes to the projects section

and clicks the tab Create Project.

Precondition: The user is logged in

Main flow:

1. SocialPackers.com shows the user a form to create a project and the

option of add task dynamically.

2. The user enters the information for a new project.

3. SocialPackers.com gives hints to the user with the Country and other.

4. The user clicks

a. Create button.

23

A logged user of SocialPackers.com creates a Project

This use case starts when a user goes to the projects section

and clicks the tab Create Project.

The user is logged in

SocialPackers.com shows the user a form to create a project and the

option of add task dynamically.

The user enters the information for a new project.

SocialPackers.com gives hints to the user with the Country and other.

The user clicks

button. Goes to Step 5

This use case starts when a user goes to the projects section

SocialPackers.com shows the user a form to create a project and the

SocialPackers.com gives hints to the user with the Country and other.

b. Add Task.

5. SocialPackers.com creates a project with the validated

flag to FALSE

4.3.6.1. Edit

A logged user of SocialPackers.com edit a Project

Actors: User

Starting point: This use case starts when a user goes to the projects section

and clicks the tab of an owned Project.

Precondition: The user is logged in

Main flow:

1. SocialPackers.com shows the user a form to edit a project and the

option of add task dynamically.

2. The user enters the information for a new project.

3. SocialPackers.com gives hints to the user with the Country and other.

4. The user clicks

a. Create button. Goes to Step 5

24

Add Task. Goes to Step 2.

SocialPackers.com creates a project with the validated

 in a new tab.

A logged user of SocialPackers.com edit a Project

This use case starts when a user goes to the projects section

and clicks the tab of an owned Project.

The user is logged in

SocialPackers.com shows the user a form to edit a project and the

option of add task dynamically.

user enters the information for a new project.

SocialPackers.com gives hints to the user with the Country and other.

The user clicks

Create button. Goes to Step 5

SocialPackers.com creates a project with the validated and published

This use case starts when a user goes to the projects section

SocialPackers.com shows the user a form to edit a project and the

SocialPackers.com gives hints to the user with the Country and other.

b. Add Task.

5. SocialPackers.com edits the project with the validated and publishe

flag to FALSE.

4.3.6.2. Filter

A guest of SocialPackers.com filters projects from a list.

Actors: Guest

Starting point: This use case starts when a guest goes to the projects section.

Main flow:

1. SocialPackers.com shows the guest a form to search a

of projects.

2. The user enters the filters in the boxes to search for his/her preferences.

3. SocialPackers.com gives hints to the user with the Country.

4. The user clicks on Filter button.

5. SocialPackers.com filters the list matching the inform

the user.

25

Add Task. Goes to Step 2.

SocialPackers.com edits the project with the validated and publishe

flag to FALSE.

A guest of SocialPackers.com filters projects from a list.

This use case starts when a guest goes to the projects section.

SocialPackers.com shows the guest a form to search a project and a list

The user enters the filters in the boxes to search for his/her preferences.

SocialPackers.com gives hints to the user with the Country.

The user clicks on Filter button.

SocialPackers.com filters the list matching the information entered for

SocialPackers.com edits the project with the validated and published

This use case starts when a guest goes to the projects section.

project and a list

The user enters the filters in the boxes to search for his/her preferences.

SocialPackers.com gives hints to the user with the Country.

ation entered for

4.3.6.3. Publish

A logged user of SocialPackers.com

Actors: User

Starting point: This use case starts when a user goes to the projects section

and clicks the publish button for a project.

Precondition: The user is logged in.

FALSE.

Main flow:

1. SocialPackers.com shows the user a form to

option of add task dynamically.

2. The user clicks the Publish button.

3. SocialPackers.com

FALSE.

26

A logged user of SocialPackers.com publish a Project

This use case starts when a user goes to the projects section

publish button for a project.

The user is logged in. Project must exist with published flag to

SocialPackers.com shows the user a form to modify a project and the

option of add task dynamically.

clicks the Publish button.

SocialPackers.com publishes the project with the validated flag to

This use case starts when a user goes to the projects section

Project must exist with published flag to

a project and the

project with the validated flag to

4.3.6.4. Validation (ADMIN)

An admin user of SocialPackers.com checks a list of projects pending of

approval.

Actors: Admin

Starting point: The admin user goes to Project Validation section.

Precondition: The user is logged in as admin.

Main flow:

1. SocialPackers.com shows the admin user a list of projects pending of

approval.

2. The admin user checks the information and clicks Approve or Deny.

3. If Approve a. If Deny b.

a. SocialPackers.com changes the status of the pr

b. SocialPackers.com changes the status of the project to Denied.

4. SocialPackers.com informs the user with the new status.

27

alidation (ADMIN)

An admin user of SocialPackers.com checks a list of projects pending of

The admin user goes to Project Validation section.

user is logged in as admin.

SocialPackers.com shows the admin user a list of projects pending of

The admin user checks the information and clicks Approve or Deny.

If Approve a. If Deny b.

SocialPackers.com changes the status of the project to Approved.

SocialPackers.com changes the status of the project to Denied.

SocialPackers.com informs the user with the new status.

An admin user of SocialPackers.com checks a list of projects pending of

SocialPackers.com shows the admin user a list of projects pending of

The admin user checks the information and clicks Approve or Deny.

oject to Approved.

SocialPackers.com changes the status of the project to Denied.

4.3.6.5. Signup

A logged user of SocialPackers.com requests a signup to a project.

Actors: Admin

Starting point: This use case starts when a user goes to the search project

section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com shows the user a list of projects.

2. The user click Signup button next to a project he/she likes.

28

A logged user of SocialPackers.com requests a signup to a project.

This use case starts when a user goes to the search project

The user is logged in.

SocialPackers.com shows the user a list of projects.

The user click Signup button next to a project he/she likes.

A logged user of SocialPackers.com requests a signup to a project.

This use case starts when a user goes to the search project

The user click Signup button next to a project he/she likes.

3. SocialPackers.com regis

the request.

4.3.6.6. Signup approval

A logged user of SocialPackers.com approves or denies a request of signup.

Actors: User

Starting point: This use case starts when a user goes to the owned project

section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com shows the user a list of projects owned by him/her

with a list of signups request from users.

2. The user click Approve

3. SocialPackers.com links the User and Project and informs the user

about the approval

29

SocialPackers.com registers that Signup and informs the owner about

Signup approval /denial

A logged user of SocialPackers.com approves or denies a request of signup.

This use case starts when a user goes to the owned project

The user is logged in.

SocialPackers.com shows the user a list of projects owned by him/her

with a list of signups request from users.

The user click Approve/Deny button next to a user request.

SocialPackers.com links the User and Project and informs the user

about the approval or it deletes the request in case of denial.

ters that Signup and informs the owner about

A logged user of SocialPackers.com approves or denies a request of signup.

This use case starts when a user goes to the owned project

SocialPackers.com shows the user a list of projects owned by him/her

button next to a user request.

SocialPackers.com links the User and Project and informs the user

or it deletes the request in case of denial.

30

4.3.7. Roadmap

4.3.7.1. Add budget

A logged user of SocialPackers.com

Actors: User

Starting point: This use case starts when a user goes to the roadmap section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com shows the user an input box to add the budget for the

roadmap bars.

2. SocialPackers.com registers the budget

clicks to add, and push the info to the corresponding bar.

31

A logged user of SocialPackers.com adds the budget to the roadmap.

This use case starts when a user goes to the roadmap section.

The user is logged in.

SocialPackers.com shows the user an input box to add the budget for the

com registers the budget dynamically or when the user

and push the info to the corresponding bar.

to the roadmap.

This use case starts when a user goes to the roadmap section.

SocialPackers.com shows the user an input box to add the budget for the

dynamically or when the user

4.3.7.2. Add country

A logged user of SocialPackers.com

Actors: User

Starting point: This use case starts when a user goes to the roadmap section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com

2. SocialPackers.com shows a row with inputs to enter

country, date and

3. SocialPackers.com registers the

clicks to save.

32

user of SocialPackers.com adds a country to his/her roadmap.

This use case starts when a user goes to the roadmap section.

The user is logged in.

SocialPackers.com clicks to the AddCountry button.

SocialPackers.com shows a row with inputs to enter information, the

 budget.

SocialPackers.com registers the country dynamically or when de user

adds a country to his/her roadmap.

This use case starts when a user goes to the roadmap section.

information, the

country dynamically or when de user

4.3.7.3. Delete country

A logged user of SocialPackers.com deletes a country to his/her roadmap.

Actors: User

Starting point: This use case starts when a user goes to the roadmap section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com clicks to the “X” button next to the country

2. SocialPackers.com deletes the row.

3. SocialPackers.com deletes the country dynamically or when de user

clicks to save.

33

A logged user of SocialPackers.com deletes a country to his/her roadmap.

This use case starts when a user goes to the roadmap section.

The user is logged in.

SocialPackers.com clicks to the “X” button next to the country

SocialPackers.com deletes the row.

SocialPackers.com deletes the country dynamically or when de user

A logged user of SocialPackers.com deletes a country to his/her roadmap.

This use case starts when a user goes to the roadmap section.

SocialPackers.com clicks to the “X” button next to the country

SocialPackers.com deletes the country dynamically or when de user

4.3.7.4. Set status

A logged user of SocialPackers.com sets a status on his roadmap.

Actors: User

Starting point: This use case starts when a user goes to the roadmap sect

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com writes text to the status input on the beginning of the

roadmap section.

2. The user clicks the button to submit the sentence.

3. SocialPackers.com publish

34

A logged user of SocialPackers.com sets a status on his roadmap.

This use case starts when a user goes to the roadmap sect

The user is logged in.

SocialPackers.com writes text to the status input on the beginning of the

The user clicks the button to submit the sentence.

SocialPackers.com publishes the sentence to the roadmap.

A logged user of SocialPackers.com sets a status on his roadmap.

This use case starts when a user goes to the roadmap section.

SocialPackers.com writes text to the status input on the beginning of the

the sentence to the roadmap.

4.3.7.5. Add pictures

A logged user of SocialPackers.com upload pictures on his roadmap.

Actors: User

Starting point: This use case starts when a user goes to the roadmap section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com drag

section.

2. The user clicks the button to upload pictures.

3. SocialPackers.com publishes the pictures to the roadmap.

35

A logged user of SocialPackers.com upload pictures on his roadmap.

This use case starts when a user goes to the roadmap section.

The user is logged in.

SocialPackers.com drag pictures on the beginning of the roadmap

The user clicks the button to upload pictures.

SocialPackers.com publishes the pictures to the roadmap.

A logged user of SocialPackers.com upload pictures on his roadmap.

This use case starts when a user goes to the roadmap section.

pictures on the beginning of the roadmap

4.3.8. Users

4.3.8.1. Edit Profile

A logged user of SocialPackers.com edits his/her profile of

Actors: User

36

A logged user of SocialPackers.com edits his/her profile of SocialPackers.com

SocialPackers.com

Starting point: This use case starts when a user clicks on Profile contact and

goes to profile page.

Precondition: The user is logged in

Main flow:

1. SocialPackers.com prompts the user a form to edit his/her personal data

and picture.

2. The user enters the information he/she wants to change and clicks to

Modify button.

3. SocialPackers.com verifies information and save the new information for

the logged user and reload the profile page.

4.3.8.2. Filter

A logged user of SocialPackers.com filters users from a list.

Actors: User

Starting point: This use case starts when

Precondition: The user is logged in.

37

This use case starts when a user clicks on Profile contact and

The user is logged in

SocialPackers.com prompts the user a form to edit his/her personal data

The user enters the information he/she wants to change and clicks to

SocialPackers.com verifies information and save the new information for

the logged user and reload the profile page.

SocialPackers.com filters users from a list.

This use case starts when the user goes to the user

The user is logged in.

This use case starts when a user clicks on Profile contact and

SocialPackers.com prompts the user a form to edit his/her personal data

The user enters the information he/she wants to change and clicks to

SocialPackers.com verifies information and save the new information for

user section.

Main flow:

1. SocialPackers.com shows the user a form to search users and a list of

them.

2. The user enters the filters in the boxes to search for his/her preferences.

3. The user clicks on Filter button.

4. SocialPackers.com filters the list matching the information entered for the

user.

4.3.8.3. Friendship request

A logged user of SocialPackers.com

Actors: User

Starting point: This use case starts when a user goes to the

Main flow:

1. SocialPackers.com shows the user a form to search users and a list

of them.

2. The user clicks the “Friendship request” next to the user.

3. SocialPackers.com

38

SocialPackers.com shows the user a form to search users and a list of

The user enters the filters in the boxes to search for his/her preferences.

The user clicks on Filter button.

SocialPackers.com filters the list matching the information entered for the

Friendship request

A logged user of SocialPackers.com requests friendship to another user.

This use case starts when a user goes to the user

SocialPackers.com shows the user a form to search users and a list

clicks the “Friendship request” next to the user.

SocialPackers.com sends the request to the destiny user.

SocialPackers.com shows the user a form to search users and a list of

The user enters the filters in the boxes to search for his/her preferences.

SocialPackers.com filters the list matching the information entered for the

requests friendship to another user.

 section.

SocialPackers.com shows the user a form to search users and a list

clicks the “Friendship request” next to the user.

sends the request to the destiny user.

4.3.8.4. Manage friends requests

A logged user of SocialPackers.com accept/deny friendship to another user

Actors: User

Starting point: This use case starts when a user goes to the roadmap section.

Precondition: The user is logged in.

Main flow:

1. SocialPackers.com clicks on the envelope on the top of the roadmap

section.

2. SocialPackers.com shows a list of requests.

3. The user can Deny/Accept f

39

.4. Manage friends requests

A logged user of SocialPackers.com accept/deny friendship to another user

his use case starts when a user goes to the roadmap section.

The user is logged in.

SocialPackers.com clicks on the envelope on the top of the roadmap

SocialPackers.com shows a list of requests.

The user can Deny/Accept friendship.

A logged user of SocialPackers.com accept/deny friendship to another user

his use case starts when a user goes to the roadmap section.

SocialPackers.com clicks on the envelope on the top of the roadmap

4.4 Contracts

Function getLogin(): login

Get the login page

Preconditions: -

Postconditions: Returns the login page

Function login(user : String

Authenticates the user as a logged user.

Preconditions: User and password

Postconditions: Returns true if the users exists in database, otherwise returns false.

Function getRegister(): register

40

Function getLogin(): login

Postconditions: Returns the login page

: String , password :String)

Authenticates the user as a logged user.

User and password are not empty.

Returns true if the users exists in database, otherwise returns false.

Function getRegister(): register

Returns true if the users exists in database, otherwise returns false.

41

Get the register page

Preconditions: -

Postconditions: Returns the register page

Function register(email: String, password :String)

Creates a user with the email and password

Preconditions: The email and the password are not empty.

Postconditions:

1. Creates a User with email and password.

2. Sends an email to the given email

Function subscribeNewsletter(email :String)

Subscribes the email to the newsletter.

Preconditions: The email is not empty

Postconditions: Creates a new entry in newsletter

Function getContact(): contact

Get the contact page

Preconditions: -

Postconditions: Returns the contact page

Function contact (name :String, email :String, mess age :String)

Sends an email to the web administrator

Preconditions: Name, email and message are not empty

42

Postconditions: An email is send to the web administration with the email, name and

message

Function getTips(): tips

Get the tips page

Preconditions: -

Postconditions: Returns the tips page

Function publishTip(message :String, country :Strin g, categories :String)

Publish a new tip.

Preconditions: The message are not empty

Postconditions: Creates a tip with the message and add country and categories if they

are not empty

Function filterTips(country :String, categories :S tring): tips

Filter the list of tips of the page

Preconditions: This is at least one parameter informed

Postconditions: Return a list of tips that match with the informed parameters.

Function likeTip(tip : Tip)

Likes a tip

Preconditions: tip is not empty and exists.

Postconditions: The number of likes of the tip increases by one.

Function favouriteTip(tip : Tip)

Adds the tip to the backpack of the user

43

Preconditions: tip is not empty and exists

Postconditions: The tip is added to the backpack of the logged use.

Function deleteFavouriteTip(tip : Tip)

Deletes a tip from the backpack of the user

Preconditions:

1. tip is not empty, exists

2. tip exists in the backpack of the logged user.

Postconditions: The tip is deleted from the backpack of the logged user logged.

Function getProfile(): profile

Get the profile page

Preconditions: The user is logged in.

Postconditions: Returns the profile page for the user logged.

Function editPorfile(name :String, middle_name :String, last_name :String, em ail

:String, birth_date :Date, about :String, what :Str ing, gender :String)

Edits the profile of the logged user.

Preconditions: email is not empty

Postconditions: Modifies the profile of the logged user.

Function getUsers() : users

Get all users

Preconditions: -

Postconditions: Returns a list of users

44

Function filterUsers(country: String, name: String) : users

Get the list of users matching the values of the parameters.

Preconditions: -

Postconditions: Returns a list of users matching the values of the parameters.

Function friendshipRequest(user: User)

Sets a request to friendship

Preconditions: user is not empty and exists.

Postconditions: Creates a request of friendship from user logged to user as a

parameter

Function approveFriendshipRequest(user: User)

Set a friendship request to TRUE.

Preconditions: A request from the user exists.

Postconditions: Set the friendship request to TRUE.

Function denyFriendshipRequest(user: User)

Delete a friendship request.

Preconditions: A request from the user exists.

Postconditions: Deletes the friendship request from the system.

Function getProjects(): projects

Get all projects

Preconditions: -

45

Postconditions: Returns a list of all projects.

Function createProject(name, country, description, picture)

Creates a project.

Preconditions: name is not empty.

Postconditions: Creates a project with name, country, description and picture with the

flags approved and published to FALSE

Function editProject(name, country, description, pi cture): project

Edits a project

Preconditions: name is not empty

Postconditions: Edits a project with name, country, description and picture and set the

flags approved and published to FALSE

Function getApprovedProjects() : projects

Get the projects that has been approved.

Preconditions: -

Postconditions: Returns a list of projects that has been approved (has the approved

flag FALSE)

Function filterProjects(country: String) : projects

Get the projects matching the country

Preconditions:

Postconditions: Returns a list of projects matching the country, if it is informed.

Function getOwnedProjects(): projects

46

Get the projects owned by the logged user.

Preconditions:

Postconditions: Returns a list of projects owned by the logged user.

Function publishProject(project: Project)

Publish a project.

Preconditions: project is not empty and exists.

Postconditions: the flag publish of the project is set to TRUE.

Function signupToProject(project:Project)

Makes a request to sign up to a project.

Preconditions: project is not empty and exists.

Postconditions:A request to sign up to project is created.

Function approveSignupToProject(project: Project, u ser:User)

Approve the request to sign up from the user to the project.

Preconditions:

1. project is not empty and exists

2. user is not empty and exists

Postconditions: The request to sign up to project is approved.

Function denySignupToProject(project: Project)

Denies the request to sign up from the user to the project.

Preconditions: -

47

1. project is not empty and exists

2. user is not empty and exists

Postconditions: The request to sign up to project is denied.

Function getPublishedNonApprovedProjects() :project s

Get the projects that has been published but not approved.

Preconditions: -

Postconditions: Returns a list of projects that has been published but not approved.

Function approveProject(project: Project)

Approves the project

Preconditions: project is not empty and exist

Postconditions:The flag approved of project is setted to TRUE

Function disapproveProject(project: Project)

Approves the project

Preconditions: project is not empty and exist

Postconditions:The flag approved of project is set to TRUE

Function getRoadmap() : roadmap

Get the roadmap for the logged user.

Preconditions: -

Postconditions: Returns the roadmap associated to the logged user.

Function updateBudget(budget: Integer)

48

Updates the budget of the roadmap

Preconditions: budget is not empty

Postconditions: Updates the buget of the roadmap of the logged user.

Function addCountry(country: String, startdate: Dat e, enddate: Date, budget:

num) :country

Add a country to the roadmap

Preconditions: country is not empty

Postconditions: A Country with country, startdate, enddate and budget is created and

associated to roadmap.

Function deleteCountry(country: Country)

Deletes a country of the roadmap

Preconditions country is not empty and exists

Postconditions: Deletes the country of the roadmap of the logged user.

Function setStatus(message: String)

Get the login page

Preconditions: message is not empty

Postconditions: the message is saved and linked to the roadmap of the logged user.

Function uploadPictures(pictures: Array[Pictures])

Upladod pictures to the roadmap

Preconditions: pictures is not empty

Postconditions: the pictures are uploaded to the filesystem and linked to the roadmap

of the logged user.

4.5 State diagrams

The next illustration shows the state diagram of a project.

49

the pictures are uploaded to the filesystem and linked to the roadmap

The next illustration shows the state diagram of a project.

the pictures are uploaded to the filesystem and linked to the roadmap

5. Design

5.1. Physical view

Here explained what we have to run the web application.

It is called LAMP because of Linux + Apache + MySQL + PHP.

Take into account:

We will have a MySQL 5.x database installed in a different Server (provided by

the hosting). This way we assure that

At the moment we will use the filesystem of the app server to store multimedia

files. We are searching more options.

50

Here explained what we have to run the web application.

It is called LAMP because of Linux + Apache + MySQL + PHP.

We will have a MySQL 5.x database installed in a different Server (provided by

the hosting). This way we assure that no data will be lost.

the moment we will use the filesystem of the app server to store multimedia

We are searching more options.

We will have a MySQL 5.x database installed in a different Server (provided by

the moment we will use the filesystem of the app server to store multimedia

51

5.2. Logic architecture: Layer design

5.2.1. 3-layer design

We decided to use a 3-layer design.

 Browser Application
Server

 Database
Server

Presentation

Domain

Data

Data
Manager

The browser only has a thin part of the presentation layer. The application

server has part of the presentation layer and the domain and data layers. The

database server has the database manager installed.

5.2.2. X-layer design

The application is following the 3-layer design, but we separated it in a

conceptual way to keep all easy to understand and to have an easy-

maintenance -way.

Following we can see an illustration of what we have.

Added the Responsive layer, the Language layer and the Security layer.

Client view layer

To manage and implement this layer we used

framework.

Responsive layer

With the help of Twitter Bootstrap framework

adapt the webpage to different screen sizes, from

Language layer

We detect the language of the user's browser (if the user has not one set) and if

we support it we load the files to show the webpage with the language desired.

52

To manage and implement this layer we used JavaScript

Twitter Bootstrap framework we achieved the hard task to

adapt the webpage to different screen sizes, from

We detect the language of the user's browser (if the user has not one set) and if

we support it we load the files to show the webpage with the language desired.

JavaScript with jQuery

we achieved the hard task to

We detect the language of the user's browser (if the user has not one set) and if

we support it we load the files to show the webpage with the language desired.

53

Security layer

Custom implemented layer that validates the authenticity of the credentials of

the session of the user.

View layer

Set of classes that dynamically creates the HTML showed to the user.

Codeigniter framework helps us to manage it.

Controller layer

This layer is one that interacts between the view and the model making all the

logic needed for the task to be completed. Codeigniter framework helps us to

manage it.

Model layer

The model layer has all the classes that interact directly with the database. This

is automatically created by Doctrine 2.

5.2.2.1. Used technologies in each layer

• View Layer

o JavaScript + jQuery framework + Twitter Bootstrap framework.

• Controller Layer

o PHP + Codeigniter framework.

• Model layer

o PHP + Doctrine 2 framework.

• Data layer

54

o MySQL 5.x

JavaScript

Is an interpreted programming language originally created to interact with the

DOM in client side. Therefore, nowadays there are applications that have all the

logic in the JavaScript.

jQuery

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like

HTML document traversal and manipulation, event handling, animation, and

Ajax much simpler with an easy-to-use API that works across a multitude of

browsers. With a combination of versatility and extensibility, jQuery has

changed the way that millions of people write JavaScript.1

Twitter Bootstrap

Twitter Bootstrap is a free collection of tools for creating websites and web

applications. It contains HTML and CSS-based design templates for

typography, forms, buttons, charts, navigation and other interface components,

as well as optional JavaScript extensions.

It helps to look and behave great in the latest desktop browsers (as well as

IE7!), but in tablet and smartphone browsers via responsive CSS as well.

PHP

1 definition from http://www.jquery.com

55

Is an interpreted programming language by a web server with a PHP processor

module which generates dynamic web pages: PHP commands can be

embedded directly into an HTML source document rather than calling an

external file to process data.

CodeIgniter

CodeIgniter is a powerful PHP framework with a very small footprint, built for

PHP coders who need a simple and elegant toolkit to create full-featured web

applications. If you're a developer who lives in the real world of shared hosting

accounts and clients with deadlines, and if you're tired of ponderously large and

thoroughly undocumented frameworks, then CodeIgniter might be a good fit.2

Doctrine 2

It is a persistence framework. For one side it has a Object Relational Mapper

(ORM) and in the other side the Database Abstraction Layer (DBAL).

DBAL is a powerful database abstraction layer with many features for database

schema introspection, schema management and PDO abstraction.

ORM if sits on top of a DBAL. One of its key features is the option to write

database queries in a proprietary object oriented SQL dialect called Doctrine

Query Language (DQL), inspired by Hibernates HQL. This provides developers

with a powerful alternative to SQL that maintains flexibility without requiring

unnecessary code duplication.

2 Full or part of the text was extracted from http://ellislab.com/codeigniter

56

MySQL 5.x

SocialPackers.com uses MySQL 5.x as a data base management system.

MySQL can use several engines for database implementation. In the case of

SocialPacker.com we use InnoDB; it allows us to deal with referential integrity

better than the MyISAM engine.

5.2.3. View layer design

We decided to make tips and projects visible to outsiders to attract people,

because what we want is to have people interested in travel, interested in social

projects.

We decided to make projects and tips public to let people see and try the

possibilities, a part of let search robots index our projects info to make us more

visible on the web.

We also would like to have several public pages in the footer that allows people

to see who we are, see the new features and news related to

Socialpackers.com in the blog, contact us to suggest or comment anything,

subscribe to our newsletter to keep up to date information about

Socialpackers.com events and novelties.

They could also read our privacy and terms and condition notes.

5.2.3.1. Landing page

In the landing page we can see that we already have access to the Tips (1) and

Projects(2) section. They are partially public. The people can search and see

Projects and Tips, but if they want to interact somehow with them, it redirects to

the landing page, that propose to Login or register.

We also can see that we can switch between languages (3), we can login(4)

and we can register (5).

(1) If we click to Tips we go to the tip section. Point 5.1.2 of this document.

(2) If we click to Projects we go to the projects section. Point 5.1.3 of this

document.

(4) (5) If we click to Login or Register we can see the following popups.

1 2

57

We also can see that we can switch between languages (3), we can login(4)

If we click to Tips we go to the tip section. Point 5.1.2 of this document.

If we click to Projects we go to the projects section. Point 5.1.3 of this

(5) If we click to Login or Register we can see the following popups.

3

 5

 4

We also can see that we can switch between languages (3), we can login(4)

If we click to Tips we go to the tip section. Point 5.1.2 of this document.

If we click to Projects we go to the projects section. Point 5.1.3 of this

(5) If we click to Login or Register we can see the following popups.

 5

 4

Login popup

We have to inputs to introduce the email(1) and the password(2).

We are going to close the popup if we click to the X(3) or if we click everywhere

else outside the window.

If we click to Login(4), we submit the form to

correct.

If we click to Forgot password?(5) we will be redirected to a page that will help

us to create a new password.

If we click to Log in with Facebook(6), a popup of Facebook is raised and the

credentials are going to be validated by Facebook.

If we click to Register(7), we change the popup for the following.

58

We have to inputs to introduce the email(1) and the password(2).

We are going to close the popup if we click to the X(3) or if we click everywhere

else outside the window.

If we click to Login(4), we submit the form to check if the credentials entered are

If we click to Forgot password?(5) we will be redirected to a page that will help

us to create a new password.

If we click to Log in with Facebook(6), a popup of Facebook is raised and the

to be validated by Facebook.

If we click to Register(7), we change the popup for the following.

1

5

 3

2

6

 7

4

We are going to close the popup if we click to the X(3) or if we click everywhere

check if the credentials entered are

If we click to Forgot password?(5) we will be redirected to a page that will help

If we click to Log in with Facebook(6), a popup of Facebook is raised and the

Register popup

Here like in the Login popup the behaviour is the same.

5.2.3.2. Tips page

Only for the record, here we can see the Tips section from a

because if we look at the header menu, it appears Roadmap(1), Users(2),

Profile(3), Logout(4)

1

5

8 9

59

Here like in the Login popup the behaviour is the same.

Only for the record, here we can see the Tips section from a logged user

because if we look at the header menu, it appears Roadmap(1), Users(2),

2 3

6 7

10

logged user

because if we look at the header menu, it appears Roadmap(1), Users(2),

4

We can publish a tip writing on the big box(5) and tagging it with the country

and categories we like. Then press the Publish button(6) to submit it.

If we want to search what we have to do is type a country or categories

separated by semicolon and push the Filter button (7).

We also could click to the Like button (8) to make this tip more visible for

or/and click to Favourite button(9) to add the item in the backpack(10).

5.2.3.3. Project page

We can find three tabs, the Search(1) tab to search and dig, the Subscribed(2)

tab to see the projects we have signed up and approved and the Create

Project(3) tab to create projects.

If we want to search we have to introduce the parameters(4) we desire and click to

Filter button(5)

We can then, from the list of projects, select one to see More(7) or Sign up (6)

1

 2

4

60

We can publish a tip writing on the big box(5) and tagging it with the country

like. Then press the Publish button(6) to submit it.

If we want to search what we have to do is type a country or categories

separated by semicolon and push the Filter button (7).

We also could click to the Like button (8) to make this tip more visible for

or/and click to Favourite button(9) to add the item in the backpack(10).

We can find three tabs, the Search(1) tab to search and dig, the Subscribed(2)

tab to see the projects we have signed up and approved and the Create

ect(3) tab to create projects.

If we want to search we have to introduce the parameters(4) we desire and click to

We can then, from the list of projects, select one to see More(7) or Sign up (6)

3

5

7 6

We can publish a tip writing on the big box(5) and tagging it with the country

like. Then press the Publish button(6) to submit it.

If we want to search what we have to do is type a country or categories

We also could click to the Like button (8) to make this tip more visible for users

or/and click to Favourite button(9) to add the item in the backpack(10).

We can find three tabs, the Search(1) tab to search and dig, the Subscribed(2)

tab to see the projects we have signed up and approved and the Create

If we want to search we have to introduce the parameters(4) we desire and click to

We can then, from the list of projects, select one to see More(7) or Sign up (6) directly.

Create Project tab

Here we can create a project with its subtasks. To do so, we have to fill the

inputs(1) of the project. Then we can press the Create button(2) or add a Task

(3) and fill the task info(4),

Create button(2).

If we have lots of tasks we can collapse each task clicking the arrow(5).

We also can delete a task clicking the x(6).

5.2.3.4. Users page

In the user’s page, we have to opportunity to co

search people filtering for some criteria(1) by writing in the inputs and clicking

the Filter button(2).

We also have a Friends tab(3) with a list of the people we are connected

already.

1

 4

61

we can create a project with its subtasks. To do so, we have to fill the

inputs(1) of the project. Then we can press the Create button(2) or add a Task

(3) and fill the task info(4), visible for the blue background, and then click to

If we have lots of tasks we can collapse each task clicking the arrow(5).

We also can delete a task clicking the x(6).

In the user’s page, we have to opportunity to connect with other people. We can

search people filtering for some criteria(1) by writing in the inputs and clicking

We also have a Friends tab(3) with a list of the people we are connected

 2 3

6 5

we can create a project with its subtasks. To do so, we have to fill the

inputs(1) of the project. Then we can press the Create button(2) or add a Task

visible for the blue background, and then click to

If we have lots of tasks we can collapse each task clicking the arrow(5).

nnect with other people. We can

search people filtering for some criteria(1) by writing in the inputs and clicking

We also have a Friends tab(3) with a list of the people we are connected

To connect with new people we can pre

detail in Detail button(5) and click “plus person” button inside.

5.2.3.5. Roadmap page

Meant for create the roadmap of a live

a destiny.

We can add a budget(1). We can Add Country(2) that it will aggregate a new

row(3) and in there we will define the destiny country and the dates/budget we

want. Then we can Click to the Save button(4). If we want to delete a country

we only have to click to th

later(4).

All that information is going to be reflected directly on the budget bar(6), where

the width of a country represent a % spent on the country of the total budget

and in the time bar(7) represents

1

 3

62

To connect with new people we can press de “plus person” button(4) or go into

detail in Detail button(5) and click “plus person” button inside.

Meant for create the roadmap of a live-time trip it allows us to add countries as

can add a budget(1). We can Add Country(2) that it will aggregate a new

row(3) and in there we will define the destiny country and the dates/budget we

want. Then we can Click to the Save button(4). If we want to delete a country

we only have to click to the X button(5) of the row, and click the Save button

All that information is going to be reflected directly on the budget bar(6), where

the width of a country represent a % spent on the country of the total budget

and in the time bar(7) represents the % of time spent against the total.

 2

4 5

ss de “plus person” button(4) or go into

time trip it allows us to add countries as

can add a budget(1). We can Add Country(2) that it will aggregate a new

row(3) and in there we will define the destiny country and the dates/budget we

want. Then we can Click to the Save button(4). If we want to delete a country

e X button(5) of the row, and click the Save button

All that information is going to be reflected directly on the budget bar(6), where

the width of a country represent a % spent on the country of the total budget

the % of time spent against the total.

We also can hide and show the detail of countries by clicking in the “List”

button(8).

In the top of the page we have three functionalities more, manage friendship

requests(9), as we intend to centralize the user activity on the roadmap.

We also can add some info in the input (10) and click the submit button (11) to

set a status that will be shown at bottom with all other activities.

If we want to aggregate images we will have to drag & drop it to the submit

button (11) and click to the submit button (12).

1

5

8

10

 12

63

We also can hide and show the detail of countries by clicking in the “List”

In the top of the page we have three functionalities more, manage friendship

requests(9), as we intend to centralize the user activity on the roadmap.

We also can add some info in the input (10) and click the submit button (11) to

e shown at bottom with all other activities.

If we want to aggregate images we will have to drag & drop it to the submit

button (11) and click to the submit button (12).

 2

 4

11

We also can hide and show the detail of countries by clicking in the “List”

In the top of the page we have three functionalities more, manage friendship

requests(9), as we intend to centralize the user activity on the roadmap.

We also can add some info in the input (10) and click the submit button (11) to

If we want to aggregate images we will have to drag & drop it to the submit

 3

7

6

9

5.2.3.6. Profile page

Here in the profile section we can modify the basic data, and

Modify button on top of the page.

5.2.3.7. Footer

Here we can see the footer where we can see the static pages like Terms and

Conditions, Privacy, Partners, but also Contact, Blog and even we can

subscribe to the newslette

button(2) or if we feel good we can make a donation.

64

Here in the profile section we can modify the basic data, and then click to the

Modify button on top of the page.

Here we can see the footer where we can see the static pages like Terms and

Conditions, Privacy, Partners, but also Contact, Blog and even we can

subscribe to the newsletter typing our email(1) and clicking the Subscribe

button(2) or if we feel good we can make a donation.

1

then click to the

Here we can see the footer where we can see the static pages like Terms and

Conditions, Privacy, Partners, but also Contact, Blog and even we can

r typing our email(1) and clicking the Subscribe

 2

5.2.3.8. Contact

In the contact section, we can Send a suggestion or a comment to the web

application administrator adding the corresponding

Send button(2).

1

2

65

In the contact section, we can Send a suggestion or a comment to the web

application administrator adding the corresponding information(1) and clicking in

In the contact section, we can Send a suggestion or a comment to the web

information(1) and clicking in

5.2.4. Model layer design

5.2.3.8. Sequence diagrams

Here we are going to put the most relevant sequence diagrams.

66

Model layer design

5.2.3.8. Sequence diagrams

we are going to put the most relevant sequence diagrams.

Login

Subscribe to Newsletter

67

Newsletter

Register

Contact

68

Create Project

69

70

5.2.5. Data layer design

To do the database design we normalized some relationships make the model as follows:

71

6. Implementation

6.1. Development environment

6.1.1. Installation

We used the WAMP Server 2.2 composed by an Apache 2.2.22, a PHP 5.3 and

a MySQL 5.5.24 over a Windows 7 Ultimate.

We added the rewrite_module to the apache to allow us to modify the URL of

the web for SEO purposes.

6.1.2. Development

What we will have on our computer to develop?

• A WAMP Server installed and working.

• A Google Chrome browser as it has become the most used browser over

the world.

o We can use the “Incognito mode” to see always a fresh website.

This mode does not have cache and does not save cookies at the

end of each session.

• Development Tools / Firebug

o Essential tool to debug JavaScript and to see all the calls to the

server.

• PSPad

o Text editor for all the files.

o It can be used a most powerful IDE, that is a developer decision.

72

7. Conclusions

Working in a team, discussing how it could be, how it will be is a very strong

and satisfactory emotion; and more if after some time (work included) it is done

and functional.

Working for a social cause motivates me a lot. It is a powerful way to make give

the maximum of a person. Think that you can help with a little, little, little thing in

society is gratefully.

I have to say I worked a lot and I am not done. I will continue with more

background, experience and with new knowledge acquired.

The general feedback is positive, but I realised how hard can be learn and do

something or even worst plan and estimate it. The part I am referring is to the

view part. We now that nowadays is almost more important how it looks than

how it works, but not only that, if you put a component in a place is not meant to

be, it can be understood in a wrong way. So yes, I learnt to give more value to

the view part, it is very important.

I have had to dedicate more than estimated time to the front end part due to

mentioned before, I know that there are parts quite pretty, but others looks

awful. So, one of the next steps will be take care of that.

And that is not all; we are already planning some new functionalities, such as:

- Let people create a test roadmap to show the powerful the application

can be.

- Improve security to make feel user save.

- Make the presentation even more dynamic.

73

- Add functionalities and more power to the roadmap.

- Make interaction between users more comfortable and easy.

- And lots more...

