REHABILITACIÓ ENERGÈTICA D'UN CENTRE DOCENT. ACONDICIONAMENT ACÚSTIC-TÈRMIC I PLA DE MANTENIMENT

Projectista/es: Victor Blanco Solé
Director/s: Montserrat Bosch González
Convocatòria: Curs 2012-13 Q1 - Gener/Febrer 2013
El següent treball final de grau està orientat a millorar el comportament tèrmic i energètic dels edificis que componen un centre docent, el rendiment de les seves instal·lacions i a un millor aprofitament dels recursos energètics. Per a aquesta tasca s'ha realitzat una estudi previ sobre l'estat de l'escola actualment combinant visites al centre i simulacions amb programes informàtics del seu comportament en diferents àmbits. D'aquesta manera s'ha pogut realitzar un diagnòstic del seu funcionament tèrmic amb les conseqüents propostes per revertir aquestes situacions.

L'escola objecte d'aquest estudi és la Escuela Padre Damián de los Sagrados Corazones, ubicada a Barcelona, al barri de Sarrià. L'edifici més antic del centre és una vivenda unifamiliar del 1.898 ubicada al centre de la parcel·la, en la que s'han afegeix altres edificacions, que actualment concentren el gruix de l'activitat docent.

Totes tres edificacions han quedat desfasades respecte els paràmetres actuals mínims de la construcció i les limitacions exigibles segons la normativa aplicable de manera que ja compten amb un greu desavantatge per al seu bon funcionament tèrmic i energètic. Com es veurà en aquest estudi, les intervencions incidiran en els aspectes que perjudiquen en major mesura el bon funcionament de l'escola, que alhora presenten un potencial d'estalvi més elevat.

Aquest estudi s'emmeixa en la tendència actual a promoure un millor rendiment d'edificis existents a través de l'actualització de les seves prestacions des de la millora de la seva demanda energètica, el funcionament de les seves instal·lacions i la possible substitució de fonts energètiques per altres més sostenibles i respectuoses amb el medi ambient.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-te mà i plà de manteniment.
ÍNDICE

1. Introducción...5

2. Contingut del Projecte..7
 2.1. Metodologia..7
 2.2. Marc Normatiu...8

3. Fase 0: Prediagnosi..9
 3.1 Descripció de l'Edifici..9
 3.2. Avaluació Inicial...9
 3.3. Línies d'Actuació Generals...10

4. Fase 1: Aixecament de Dades...11
 4.1. Dades Estàtiques...11
 4.1.1. Arquitectura...11
 4.1.2. Construcció..13
 4.1.3. Instal·lacions..16
 4.1.4. Perfil d'Ús..17
 4.2. Dades Dinàmiques..21
 4.2.1. Seguiment del Consum...21
 4.2.2. Seguiment de la Intensitat d'Ús....................................21
 4.2.3. Seguiment de la Gestió..22

5. Fase 2: Avaluació...23
 5.1. Avaluació..23
 5.1.1. Demanda Tèrmica...23
 5.1.2. Demanda Luminica...26
 5.2. Anàlisi dels Sistemes...31
 5.3. Anàlisi del Funcionament...34
 5.3.1. Ocupació...34
 5.3.2. Gestió i Manteniment..35
 5.4. Anàlisi dels Consums...35
 5.4.1. Energia Elèctrica...35
 5.4.2. Gas Natural..36
 5.4.3. Gasol..36
 5.4.4. Aigua..36

6. Fase 3: Diagnòstic i Línies d'Actuació..37
 6.1. Línies d'Actuació...37
 6.2. Diagnòstic..37

7. Fase 4: Propostes d'Intervenció...43

8. Acondicionament Acústic...51

9. Pla de Manteniment..53

10. Conclusions..55

11. Bibliografia..57

12. Agraïments..59

ANNEXES

- ANNEX A: Aixecament de dades
- ANNEX B: Avaluació
- ANNEX C: Llibre de l'edifici
- ANNEX D: Documentació
Rehabilitación energética d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
1. INTRODUCCIÓ

Aquest treball segueix la línia marcada des del Departament de Construccions Arquitectòniques II, pel que fa a treballs finals de carrera sobre l'eficiència energètica en centres docents. Aquesta línia de treballs ve marcada per la necessitat actual de millorar l'eficiència energètica i disminuir les emissions de CO₂ dels edificis existents a través d'una rehabilitació energètica, i és per això, que es segueix la metodologia i mètodes d'anàlisi marcats des del departament de l'EPSEB.

Un centre escolar, és una tipologia d'edificació que s'ajusta molt bé a la finalitat docent d'aquest estudi. Com en aquest cas, l'Escola Padre Damián de los Sagrados Corazones, les escoles són edificis que compten amb una gran superfície, amb multitud de tipologies i usos dels seus espais que deriven en una gran varietat de necessitats energètiques a suplir. A més, són centres amb un gran nivell d'ocupació i intensitat d'ús, que juntament amb els aspectes anteriors, conformen un àmbit d'estudi molt divers que deriva en una gran varietat de solucions i mesures que poden convertir l'escola, en un edifici més efficient, sostenible i respectuós amb el medi ambient.

Aquest estudi comença amb un primer anàlisi de la situació actual de l'edifici. En aquest cas, com a antic alumne, tenia una lleugera avantatge, ja que coneixia l'escola i el seu funcionament. Però, no tenia cap idea d'altres aspectes, que en els meus anys al centre no m'havia plantejat, ja que no comptava amb els coneixements tècnics i constructius que he adquirit durant la carrera. Un cop l'escola va accedir a la realització de l'estudi, es van iniciar les tasques per a la realització del mateix.

La metodologia i les fases que s'han seguit són les següents:

- Fase 0: Prediagnosi
- Fase 1: Aixecament de dades
- Fase 2: Avaluació
- Fase 3: Diagnosi i línies d'actuació
- Fase 4: Propostes d'intervenció

L'objectiu de la primera fase, consisteix en realitzar una fotografia de l'estat actual del centre, començant per la memòria gráfica, que és vital per a la comprensió del centre. L'escola va proporcionar plànols de cada una de les plantes de l'escola, realitzats a ma i que daten del 1994, de manera que no reflectien les últimes modificacions realitzades a l'escola, tot i que són de poca importància. No hi havia tampoc a la documentació facilitada, plànols d'alçats ni seccions ni cap tipus de memòria constructiva.

És per això que durant aquesta fase es van haver de fer visites regulars per realitzar amidaments i per inventariar els elements dels diferents sistemes de l'edifici. També es van realitzar visites a l'Arxiu Contemporani de la Ciutat de Barcelona, per tal de trobar informació constructiva dels edificis de l'escola, però, no ha estat possible trobar documentació de tots ells.

Un cop s'ha definit físicament l'edifici, és moment d'avaluar les demandes generades de les seves característiques constructives i arquitectòniques, tan de calefacció i refrigeració, com d'il·luminació del centre. Per a aquesta tasca, s'han utilitzat diverses informàtiques per generar un model del comportament i el rendiment energètic de l'escola.

Per últim, un cop finalitzada la intervenció i acondicionament de l'edifici i s'han exposat els resultats, s'introdueix el Llibre de l'edifici com a eina per controlar el funcionament dels sistemes de l'escola i així afavorir un bon rendiment dels seus elements, elevant l'eficiència energètica del seu funcionament.

La següent fase consisteix en anàlitzar els resultats obtinguts als passos anteriors, per tal de trobar deficiències i mals funcionaments dels sistemes i així poder establir unes actuacions que reduïxien aquests defectes. Aquests resultats s'han de valorar de manera crítica ja que no s'ajusten a un model exacte del nostre edifici, però són útils per fer-nos una idea del rendiment de la nostra escola i per servir-nos una base sobre la que realitzar les propostes destinades a millorar el funcionament de l'escola.

Aquests intervencions són el resultat final de l'estudi i es valoraran, no només econòmicament, sinó que també es farà un balanç de l'estalvi en concepte d'emitions de CO₂. Aquesta valoració, no és la que determinarà la viabilitat de les propostes però és un aspecte a tenir en compte si l'objectiu de l'estudi es aconseguir un edifici més eficient i sostenible. Per últim, un cop finalitzada la intervenció i acondicionament de l'edifici i s'han exposat els resultats, s'introdueix el Llibre de l'edifici com a eina per controlar el funcionament dels sistemes de l'escola i així afavorir un bon rendiment dels seus elements, elevant l'eficiència energètica del seu funcionament.

Para ser considerado en la estrategia de sostenibilidad y respeto al medio ambiente, se ha realizado la rehabilitación energética del edificio, que comprende la utilización de lámparas de iluminación de bajo consumo, conforme a la legislación en vigor, y la implementación de medidas para la mejora del aislamiento térmico del edificio. La escola ha proporcionado planos de cada una de las plantas de la escola, realizados a mano y que datan del 1994, de manera que no reflejan las últimas modificaciones realizadas a la escuela, aunque son de poca importancia. No había tampoco en la documentación facilitada, planos de alzados ni secciones ni ningún tipo de memoria constructiva.

Es para ello que durante esta fase se han hecho visitas regulares para realizar aseos y para inventariar los elementos de los diferentes sistemas de la edificio. También se han realizado visitas a la Arxiu Contemporani de la Ciutat de Barcelona, para poder encontrar información constructiva de los edificios de la escuela, pero, no se ha podido realizar documentación de todos ellos.

Un vez que se ha definido físicamente el edificio, es momento de evaluar los demandas generadas de sus características constructivas e arquitectónicas, tanto de calefacción y refrigeración, como de iluminación del centro. Para esta tarea, se han utilizado diversas informáticas para generar un modelo del comportamiento y el rendimiento energético de la escuela.

Con el programa LIDER, se ha determinado el balance energético de los edificios de la escuela, en función de la composición de la seva envolvent per poder comparar los resultados con las exigencias recogidas en el CTE DB-HE1. Amb l'europa Calener VyP, s'obtienen parámetros de eficiencia y sostenibilidad de los sistemas de la escuela, que supleen los déficits energéticos derivados de la anotación de la seva envolvent.

Para finalmente, para evaluar la demanda luminica del centro, se ha utilizado el programa de simulación de iluminación DiaLux, para obtener los niveles de luz que proporcionen las lámparas de la escuela y el complemento de los límites establecidos al CTE DB-HE3.

También se incluyó en este apartado un seguimiento del consumo de recursos energéticos y d'aigua de los últimos cinco años, a través de los factores que va proporcionar la escuela.

La escola ha proporcionado los planos de cada una de las plantas de la escola, realizados a mano y que datan del 1994, de manera que no reflejan las últimas modificaciones realizadas a la escuela, aunque son de poca importancia. No había tampoco en la documentación facilitada, planos de alzados ni secciones ni ningún tipo de memoria constructiva.

Es para ello que durante esta fase se han hecho visitas regulares para realizar aseos y para inventariar los elementos de los diferentes sistemas de la edificio. También se han realizado visitas a la Arxiu Contemporani de la Ciutat de Barcelona, para poder encontrar información constructiva de los edificios de la escuela, pero, no se ha podido realizar documentación de todos ellos.

Un vez que se ha definido físicamente el edificio, es momento de evaluar los demandas generadas de sus características constructivas e arquitectónicas, tanto de calefacción y refrigeración, como de iluminación del centro. Para esta tarea, se han utilizado diversas informáticas para generar un modelo del comportamiento y el rendimiento energético de la escuela.

Con el programa LIDER, se ha determinado el balance energético de los edificios de la escuela, en función de la composición de la seva envolvent per poder comparar los resultados con las exigencias recogidas en el CTE DB-HE1. Amb l'europa Calener VyP, s'obtienen parámetros de eficiencia y sostenibilidad de los sistemas de la escuela, que supleen los déficits energéticos derivados de la anotación de la seva envolvent.

Para finalmente, para evaluar la demanda luminica del centro, se ha utilizado el programa de simulación de iluminación DiaLux, para obtener los niveles de luz que proporcionen las lámparas de la escuela y el complemento de los límites establecidos al CTE DB-HE3.

También se incluyó en este apartado un seguimiento del consumo de recursos energéticos y d’aigua de los últimos cinco años, a través de los factores que va proporcionar la escuela.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i plà de manteniment.
2. CONTINGUT DEL PROJECTE

2.1. Metodologia:

Una avaluació energètica requereix, com qualsevol altre tipus d'estudi, un ordre en les tasques a desenvolupar. Aquest ha de ser lògic, coherent i directament enfocat a una correcta i ordenada realització del treball.

Per altra banda, aquestes tasques ens vindran donades pels objectius que pretenguem assolir amb la realització de l'estudi, l’àmbit en el que aquest pertany i la profunditat amb que es vulgui tratar el tema.

No cal oblidar que aquests objectius hauran d’estar a l’abast dels nostres mitjans, possibilitats i coneixements; de manera que el contingut del treball no només depindrà de les nostres ambicions o inquietuds, sinó també d’altres factors aliens a la nostra voluntat.

En aquest cas, s’ha seguit la metodologia exposada en el llibre "Avaluació energètica d’edificis. L’experiència de la UPC, una metodologia d’anàlisi" escrit per Montserrat Bosch (tutora d’aquest TFG), Fabian López, Inmaculada Rodríguez i Galdric Ruiz.

El llibre sorgeix de la voluntat de la UPC d’elaborar i posteriorment aplicar del Pla d’Eficiència en el Consum de Recursos (PECR) per tal de contribuir a la sostenibilitat i eficiència energètica dels centres de la UPC; i també per tal de contribuir a una racionalització del consum de recursos energètics (tèrmics i pla de manteniment) en aquests centres.

Un dels primers passos en l’elaboració del PECR consisteix en realitzar avaluacions energètiques dels edificis objecte per tal de determinar quin és el seu comportament energètic i així marcar quins objectius es pretenen assolir vers la sostenibilitat i la eficiència energètica dels centres de la UPC.

Aquesta voluntat es va desenvolupar des de l’Escola Politècnica Superior d’Edificació de Barcelona (EPSEB) una sèrie de projectes finals de carrera que consistien en la realització d’aquestes avaluacions prèvies.

El llibre que ha servit com a model d’aquest treball, és una recull d’aquestes avaluacions, de les que s’ha extret una metodologia general i vàlida per a l’anàlisi energètica de centres docents de tot tipus.

Al llibre es presenta un esquema de treball organitzat en cinc fases diferents, la primera de les quals serveix per definir la situació inicial en la que es contextualitzarà la resta de l’estudi. Aquestes fases són:

> Fase 0: Prediagnosi
> Fase 1: Aixecament de dades
> Fase 2: Avaluació
> Fase 3: Diagnosi i linies d’actuació
> Fase 4: Propostes d’intervenció

Fase 0: Prediagnosi

La prediagnosi serveix per establir quin és l’estat en què s’inicia l’estudi i per determinar amb una primera avaluació quins objectius es pretenen assolir amb la realització de l’estudi.

També ens servirà per determinar quins factors, del tipus que siguin, juguen a favor o en contra del consum de recursos energètics i per tant de l’eficiència i sostenibilitat de centre.

Fase 1: Aixecament de dades

Amb la recollida de dades d’aquesta fase es pretén obtenir informació per tal d’especificar el punt de partida de l’avaluació energètica, així com per entendre com funciona el nostre edifici i per poder quantificar quin és el seu comportament energètic i quin consum de recursos genera.

La importància d’aquesta fase resideix en que ens servirà com a referència per a la resta de fases del projecte així com per al resultat final.

És essencial, en aquest aspecte, una col·laboració dels usuaris i gestors del centre per obtenir la sufficient informació per tal de poder delimitar els valors que serviran com a base per a la resta del treball.

Les dades recollides es poden separa en dos grups:

> Dades estètiques
> Dades dinàmiques

S’entén per dades estètiques totes aquelles característiques de l’edifici que es mantenen inamovibles al llarg del temps. Són dades referents a la arquitectura de l’edifici, sobretot sobre la seva composició constructiva en quant a materials de construcció.

Per altra banda, les dades dinàmiques són aquelles que no es mantenen constants, tal com la ocupació de l’edifici i la intensitat d’ús dels diferents espais de l’escola.

És vital obtenir el major nombre de dades possibles referents al nostre edifici per tal de que el treball sigui el més fàcil i fidel a la realitat possible. Un cop obtingudes, cal organitzar-les i presentar-les de manera que la seva comprensió sigui més fàcil i intuitiva, no només per nosaltres sinó també pels destinataris de l’avaluació o possibles lectors.

Fase 2: Avaluació

Un cop ordenades les dades, és moment de tractar-les per tal de poder avaluar diferents conceptes relacionats amb l’estudi energètic del centre.

Aquests valors ens serviran per especificar aspectes de l’edifici tal com la demanda energètica de l’edifici (tant tèrmica com lumínica) als aparells i sistemes dels que es val el centre per suprir aquesta demanda, a les condicions de funcionament d’aquests aparells i per últim, al seu consum de recursos energètics.

Els resultats es poden resumir en valors numèrics, anomenats índexs o valors significatius que ens permeten caracteritzar l’edifici.

Cada un d’aquests factors ens permet estudiar diferents aspects de l’edifici que incideixen en el consum final de recursos i en la quantificació de la seva eficiència.

El càlcul de la demanda teòrica comparat amb el seu consum real ens servirà per fer una avaluació energètica general de l’edifici i per establir el potencial d’estalvi de les mesures que es preguin al final de l’estudi.

L’estudi del sistema de gestió i del manteniment de les maquinàries permet detectar el mal funcionament de les instal·lacions del centre, que podrien explicar la diferencia entre la demanda energètica teòrica i la real de l’edifici.

Per últim, cal remarcar que tots aquests aspectes queden supeditats al confort dels últims usuaris del centre. Cal saber si aquestes necessitats de confort queden suplertes i si els recursos emprats a tal efecte, reflecteixen un funcionament eficient o no de la maquinària del centre.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.

Fase 3: Diagnosi i línies d'actuació

Un cop es disposa dels resultats de l'avaluació, ja es pot realitzar un diagnòstic del funcionament de l'edifici i determinar quines són les seves mancances o disfuncions.

Aquesta tasca s'ha de realitzar també en els diferents àmbits en que s'ha centrat el treball. De la mateixa manera que s'han avaluat els sistemes que regeneixen l'edifici per separat, ara s'ha de valorar on falla cadascun d'ells.

En aquesta fase es pot començar ja a traçar quin serà el pla d'actuació de manera general, organitzat-lo en diferents línies d'actuació que agrupin actuacions específiques sobre cadascun dels sistemes avaluats a la diagnosi. D'aquesta manera es poden diferenciar actuacions destinades a modificar l'envoltant de l'edifici, modificacions en les instal·lacions de l'edifici i els sistemes que componen o actuacions relacionades amb la gestió o ús dels recursos energètics.

Fase 4: Propostes d'intervenció

Aquesta última fase és la culminació de l'estudi energètic de l'escola. Després de determinar l'eficiència de l'edifici i diagnosticar les mancances o mals funcionaments dels seus sistemes i instal·lacions, es pretén en aquesta fase exposar possibles actuacions concretes per solucionar els diferents errors detectats.

Aquestes intervencions estaran organitzades en funció del seu àmbit d'incidència, agrupats ens les línies d'actuació generals exposades a la Fase 4.

2.2. Marc Normatiu

A finals de l'any 2002, es va aprovar al Parlament Europeu la Directiva 2002/91/CCE, relativa a l'eficiència energètica i que obligava als països membres a impulsar lleis destinades a:

- Tipificar uns requisits mínims d'eficiència energètica per edificis nous i grans
- Introduir la certificació energètica d'edificis
- Programar inspeccions periòdiques de sistemes de climatització

Aquesta iniciativa europea es veu recollida a Espanya en diferents normatives:

- El Reial Decret 1027/2007 del 20 de juliol de 2007, pel qual s'aprova el Reglament d'instal·lacions tèrmiques als edificis que deroga al Reglament d'instal·lacions Tèrmiques en els Edificis (RITE), vigent des del 1998.
- El Reial Decret 47/2007 del 19 de gener de 2007 pel qual s'aprovava la Certificació Energètica d'edificis nous. En aquest decret es numeren els factors de major impacte en el consum energètic i el procediment bàsic a seguir per calcular la qualificació energètica de l'edifici.

A nivell autonòmic també s'han pres mesures per assolir alguns dels objectius plantejats per la normativa europea. La Generalitat de Catalunya va aprovar el Decret 21/2006 del 14 de febrer de 2006 en que regula criteris d'eficiència energètic en els edificis.
3. FASE 0: PREDIAGNOSI

En aquest apartat es recullen algunes dades importants de caràcter general de l’edifici i els primers indits de possibles disfuncions en els sistemes de l’escola. Es va realitzar visites al centre, de caràcter general, per tal de poder comprovar en quin estat es trobaven l’edifici i els seus sistemes, i intentar detectar grans deficiencies o lesions.

En aquestes visites es van detectar alguns indits de possibles disfuncions o mals usos dels sistemes de l’escola, però pendents de realitzar un examen més exhaustiu. Per altra banda, també es van poder detectar, no lesions, però solucions a l’envolta de l’edifici que podrien repercutir en la demanda d’energia.

3.1 Descripció de l’Edifici

L’escola objecte d’aquest estudi es troba al barri de Sarrià, al districte de Sarrià-Sant Gervasi, a la ciutat de Barcelona. La parcel·la la ocupa 10.944 m² i es troba delimitada al sud-oest pel Passeig de la Reina Elsíndra de Montcada, on es troba a més, l’entrada principal de l’escola. Al nord-oest, la parcel·la arriba fins al Carrer de Ramón Miquel Planas, al sud-oest fins a la Avinguda de J.V. Foix i al nord-est pel Carrer de la Duquessa d’Orleans.

El clima a la comarca del Barcelonès és mediterrani i específicament, litoral central. Recullen unes pluges annals mitjanes de 600 mm que es concentren sobretot en els mesos de tardor i primavera. Els hiverns són suaus amb temperatures mitjanes entre els 9°C i els 11°C. Els estius són calorosos amb temperatures entre els 23°C i els 24°C de mitjana.

Aquestes són algunes de les dades climatològiques més importants, recollides a l’observatori de Zona Universitària a 79 m per sobre del nivell del mar, durant l’any 2011.

<table>
<thead>
<tr>
<th>MES</th>
<th>GEN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPERATURA MITJANA MENSUAL (°C)</td>
<td>9</td>
<td>10,3</td>
<td>11,8</td>
<td>16,3</td>
<td>19</td>
<td>20,7</td>
<td>22,5</td>
<td>24,6</td>
<td>22,8</td>
<td>19</td>
<td>14,7</td>
<td>10,8</td>
</tr>
<tr>
<td>TEMPERATURA MÍNIMA MITJANA MENSUAL (°C)</td>
<td>13,9</td>
<td>15,7</td>
<td>16,5</td>
<td>21,3</td>
<td>24,1</td>
<td>25,5</td>
<td>27,3</td>
<td>29,8</td>
<td>28,6</td>
<td>24,8</td>
<td>19,3</td>
<td>15,9</td>
</tr>
<tr>
<td>TEMPERATURA MÀXIMA MITJANA MENSUAL (°C)</td>
<td>36,5</td>
<td>24,9</td>
<td>152,9</td>
<td>13,3</td>
<td>63,3</td>
<td>113,2</td>
<td>99,6</td>
<td>4,6</td>
<td>8,3</td>
<td>86,7</td>
<td>230,6</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Fig. 3.2 Quadrant de resum de dades meteorològiques. Font: MeteoCat.

Aquestes dades seran exposades més endavant, a l’apartat de Dades Estàtiques.

Alhora que realizava l’aixecament de dades, anava annotant diferents aspectes relacionats amb l’edifici que creia podria ser important o repercutir en menor o major mesura al comportament hipotermic del nostre edifici. Des de defectors constructius o d’execució fins a factors ambientals que afecten la climatització del centre.

Fig. 3.1 Imatge de la situació de l’escola. Font: Google Maps.

En aquesta, es troba un apartat per a la llluminació en què es quantificaven el tipus de lluminària i la seva potència. Per completar les dades, s’annotaven a l’apartat d’Elements de Força la resta d’aparells electrònics que consumeixen energia (ordinadors, equips de música, impresores,...).

El complex es troba orientat a l’estàtic de la cantonada nord de l’escola, orientat cap al sud, per tal de rebre la major irradiació solar possible. Malauradament, l’edificació aïllada original es troba dins l’angle recte esmentat i actua com a un element d’obstrucció per a la llum solar que reben els altres dos edificis. En funció de l’època de l’any i l’alçada de l’escola, s’ordena per a l’apartat Dades Estàtiques.

El complex de l’escola està orientat en conjunt cap al sud i les seves dues vessants, deixant a l’esquena la Serralada Litoral de Collserola.

3.2. Avaluació Inicial

Com a antic alumne de l’escola, ja coneixia l’edifici i el seu funcionament a grans trets, però no recordava amb massa clares d’aspectes de la seva construcció degut a que durant els meus anys a l’escola no tenia els coneixements per valorar-los.

Es van realitzar quatre visites per realitzar visites a tota l’escola i per comprovar aquelles zones en les quals algunes algunes no podien entrar-hi, a més d’altres espais de l’edifici que actualment compen un ús esporàdic o estan en desús. També es van recórrer els espais que alberguen al seu interior sistemes de climatització i de producció d’aigua calenta sanitària.

Aquest recorrregut es va realitzar també per realitzar l’inventari de punts finals de consum de recursos energètics. Tots aquests elements s’anaven notant a una taula definida abans de l’inici de les visites.
També s’han detectat aspectes a millorar en quant a l’ús dels recursos i el consum d’energia, començant per la falta de sectorització del sistema d’il·luminació, que permetria gestionar millor la llum artificial, en funció de la llum natural. També, tot i que són de menor incidència, es van notar comportaments dels usuaris del centre, com deixar una llum o un ordinador encès quan ja no es necessita, que tindrien una fàcil solució.

D’és d’un punt de vista constructiu, no es detecta cap problema relacionat amb les composicions de les envoltants dels tres edificis, ni degut a la seva execució material. Només s’han detectat algunes fissures o desprengiments de material de recobriment (arrebossats o pintures) de poca importància, que a més tenen una baixa repercussió en el comportament general de l’edifici i del tancament en si.

Per altra banda però, les fusteries donen la impressió de jugar un paper molt important en la demanda tèrmica de l’edifici. Els materials amb que estan fabricades no assoleixin el rendiment que s’espera avui en dia d’un tancament, ni per la seva transmissió tèrmica, ni per proporcionar un tancament estanc i impermeable. Totes elles compten només amb un vidre senzill com a part translúcida.

Algunes de les finestres de menors dimensions orientades al nord, a l’edifici B, estan tancades amb maons ceràmics amorterats i acabat de guix a l’interior; però no sembla que compleixin tampoc amb les exigències mínimes d’un tancament opac.

Per últim, durant aquestes primeres visites, no es va detectar cap element de la instal·lació, tant de fontaneria com de climatització, que suposessin un evident mal funcionament del sistema degut al seu mal estat de conservació.

3.3. Línies d’Actuació Generals

Després de comprovar l’estat en que es troba l’edifici, de valorar els sistemes de climatització amb que està dotat i quines situacions podrien jugar en contra del bon funcionament dels dos aspectes anteriors, es pot avançar quines seran les línies d’actuació generals destinades a millorar el rendiment energètic dels edificis. Aquestes es poden classificar segons l’àmbit de l’edifici en el que pretenen inadir.

Es poden agrupar en actuacions relacionades amb el tipus d’energia consumida. Això podria suposar la substitució de fonts d’energia o valorar la incorporació de fonts d’energia renovables.

També sobre la gestió que es fa dels recursos, realitzant un seguiment al llarg del temps del consum d’energia i quin cost suposa per l’escola. Un cop avaluades les dades es podria redactar un pla per tal de reduir el consum final d’energia de l’escola.

Les actuacions de caràcter constructiu sobre l’edifici tant el l’estructura i tancaments com als sistemes i les instal·lacions de l’edifici.
4. FASE 1: AIXECAMENT DE DADES

A continuació s'exposarà tota la informació recollida referent a l'edifici. Una explicació de l'emplaçament de l'edifici, l'orientació, la proporció de buits de les façanes fins a concretar els tancaments de l'edifici i les altres tipologies constructives del conjunt.

A continuació s'especificaran els components i les característiques dels sistemes i instal·lacions de l'edifici i el perfil d’ús dels espais de l'edifici en funció de l'activitat que es desenvolupi en ells.

En un altre grup, es farà un seguiment del consum de recursos energètics dels últims anys per comprovar si reflecteixen algun mal funcionament dels instal·lacions per per quantificar el consum real del sistema. També, quins nivells d'intensitat d’ús tenen cada una de les zones de l'edifici per saber com pot incidir l’ocupació en el consum de recursos energètics, i quina gestió es duu terme per controlar l'evolució d’aquest consum.

4.1. Dades Estàtiques

4.1.1. Arquitectura

En aquest apartat, intentarem situar l'edifici dins del seu context i des del seu fonomenal funcionament durant la seva vida utilitzada, tal com l'orientació i la relació entre els tres volums que conformen l'escola. El complex consta de tres edificis separats. Dos d’ells formen un angle gairebé recte a la cantonada nord i l’altre es troba pràcticament al límit de l’edifici i el perfil d’ús dels espais de l’edifici.

La parcel·la en què s’ubica l’escola és molt amplia, amb espais oberts i abundància de zones verdes. Consta de dues zones d’aparcament amb les corresponents zones de circulació de vehicles.

Al límit sud-oest de la parcel·la es troba, a més de l’entrada principal de l’escola i l’entrada de vehicles, una de les pistes esportives i una zona d’aparcament. Al límit de l’Avinguda J.V. Foix el recorre un passeig amb arbres i vegetació que arriba fins a l’altre zona esportiva al límit de la parcel·la nord-est. Finalment, a la cantonada formada per les dues façanes orientades al nord es troben els dos edificis construïts durant les ampliacions formant una angle gairebé recte.

> Edifici A

Aquesta és l'edificació original del centre. A la planta baixa que es troba semicircular hi troben un part del menjador d'alumnes i el menjador de professors, a més de totes les estances de la cuina i la sala de caïderes de l'edifici. Des del menjador es pot accedir per unes escales a la part de dalt que es troba a la planta primera.

A la planta primera es mantenen les estances originals de la casa de 1898 que s’usen com a despòsits o aules polivalents. També hi ha un accés secundari a la part del darrere de la capella i una sortida per la part del darrere de l’edifici a través d’unes escales.

A través d’una escala, s’arriba al distribuïdor de la segona planta. Aquesta té una menor superfície i compta amb una gran terrassa a la part nord de l’edifici. En aquesta planta hi ha una gran nombre d’aules i alguns espais amb diferents usos, un bany i l’escala d’accés a la tercera planta a sobre de la capella, es troben els antics dormitoris de les monges que actualment es troben inutilitzats, de manera que no incideixen en el consum d’energia però sí en el comportament tèrmic de l’edifici.

La planta tercera alberga les golfes de la casa que estan habilitades per l'ús però que no compten amb cap ús actualment.

Les façanes orientades al sud compten amb grans finestres que il·lumen el menjador de la planta baixa, algunes sales de la planta primera, entre elles la principal i tres aules de la planta segona. Aquestes obertures suposen un 15% d’obertures en aquestes façanes.

La façana orientada al nord-oest, en canvi disposa de finestres de menor envergadura (24% d’obertures en façana) que il·lumen els despòsits de la planta primera i aules a la planta segona.

La parcel·la que s’ubica l’escola és molt amplia, amb espais oberts i abundància de zones verdes. Consta de dues zones d’aparcament amb les corresponents zones de circulació de vehicles.

Al límit sud-oest de la parcel·la es troba, a més de l’entrada principal de l’escola i l’entrada de vehicles, una de les pistes esportives i una zona d’aparcament. Al límit de l’Avinguda J.V. Foix el recorre un passeig amb arbres i vegetació que arriba fins a l’altre zona esportiva al límit de la parcel·la nord-est. Finalment, a la cantonada formada per les dues façanes orientades al nord es troben els dos edificis construïts durant les ampliacions formant una angle gairebé recte.

> Edifici A

Aquesta és l'edificació original del centre. A la planta baixa que es troba semi-circular hi troben un part del menjador d'alumnes i el menjador de professors, a més de totes les estances de la cuina i la sala de caïderes de l'edifici. Des del menjador es pot accedir per unes escales a la part de dalt que es troba a la planta primera.

A la planta primera es mantenen les estances originals de la casa de 1898 que s’usen com a despòsits o aules polivalents. També hi ha un accés secundari a la part del darrere de la capella i una sortida per la part del darrere de l’edifici a través d’unes escales.

A través d’una escala, s’arriba al distribuïdor de la segona planta. Aquesta té una menor superfície i compta amb una gran terrassa a la part nord de l’edifici. En aquesta planta hi ha una gran nombre d’aules i alguns espais amb diferents usos, un bany i l’escala d’accés a la tercera planta a sobre de la capella, es troben els antics dormitoris de les monges que actualment es troben inutilitzats, de manera que no incideixen en el consum d’energia però sí en el comportament tèrmic de l’edifici.

La planta tercera alberga les golfes de la casa que estan habilitades per l’ús però que no compten amb cap ús actualment.

Les façanes orientades al sud compten amb grans finestres que il·lumen el menjador de la planta baixa, algunes sales de la planta primera, entre elles la principal i tres aules de la planta segona. Aquestes obertures suposen un 15% d’obertures en aquestes façanes.

La façana orientada al nord-oest, en canvi disposa de finestres de menor envergadura (24% d’obertures en façana) que il·lumen els despòsits de la planta primera i aules a la planta segona.
Fig. 4.8 i 4.9 Façana sud-oest del l’edifici a les zones amb cota més baixa i alta respectivament. Font: Elaboració pròpia.

Fig. 4.7 Façanes nord dels edificis B i C, units pel pas a nivell. Font: Elaboració pròpia.

Fig. 4.8 i 4.9 Entrada a l’edifici C i façana nord de l’edifici C. Font: Elaboració pròpia.

Fig. 4.10 i 4.11 Façana sud-est, que compta amb grans obertures i porxo de l’edifici C, Font: Elaboració pròpia.

Fig. 4.12 Vista de la façana sud-oest de l’edifici C i la pista esportiva. Font: Elaboració pròpia.

L’edifici B discorre paral·lel al límit nord-est de la parcel·la des de la pista esportiva fins que es troba amb l’edifici C. El terreny té un lleu pendent en sentit a la pista esportiva i l’edifici es desenvolupa seguint la línia marcadament pel terreny. La planta soterrani ocupa la meitat de la planta total de l’edifici en el costat de la pista esportiva on el terreny t’ha la cota més baixa. En aquesta planta es troben unes poques aules i alguns laboratoris, a més d’un petit despau lateral. Hi ha una pati interior amb vegetació a l’interior a l’espai entre les aules. A la zona sense finestres, que es troben sota el terreny, hi ha entre altres un bany i la sala de la caldera, una habilitació per al manteniment i altres estances d’emmagatzematge. La planta baixa ocupa la superfície completa de l’edifici i va perdent superfície de façana a mesura que guanya cota el terreny per la banda sud de l’edifici. En canvi, a la banda nord, la façana es troba completament descoberta cap al Carrer de la Duquessa d’Orleans. La planta està dividida al centre per la recepció de l’escola i l’accés a la sala d’actes. La banda sud s’usa únicament per a aules. La banda nord però es troba en una mitja alçada inferior de manera que es generen uns espais de grans alçades que s’ubiquen el gimnàs i més aules. Sobre el gimnàs i les aules de la planta baixa, s’acomiada la planta primera i la planta segona, que tenen exactament la mateixa superfície, en que destaquen dos patis interiors. Un d’ells és practicable, ja que s’hi troba una escala per pujar a la planta segona. A la planta primera hi ha els departaments i la sala dels professors i algunes aules d’ús no continu. A la planta segona, hi ha una segona aula de professors, la biblioteca de l’escola i aules d’usos diversos. En aquesta planta es troba el pas elevat fins a un dels extrems de l’edifici C. Destaca en la volumetria de l’edifici el gran cub que és la sala d’actes que sorgeix darrere de l’entrada de l’escola.

Les façanes més calentes de la planta soterrani i la planta baixa tenen grans finestres que il·luminen les zones de les aules, que recorren tota la façana, mentre que a l’altre banda, la nord, la superfície d’obertures és menor a les aules i laboratoris d’aquella zona de l’edifici. A la planta baixa també, un dels tancaments de l’entrada principal es completament de vidre, just a sobre de l’escala que baixa a la planta soterrani. La zona del semi-soterrani del gimnàs, té unes obertures a gran alçada que es troben a peu de terreny a la façana. Les façanes orientades a nord compten amb un 19% i 14% d’obertures. Gràcies a una reculada excavada, les finestres aporten llum natural a l’interior del gimnàs. A les aules de la banda de est, com que no tenen l’obstrucció del terreny, disposen de grans finestres a les aules. Les façanes de les plantes primera i segona són molt poroses. El conjunt de les façanes orientades al sud-oest compten amb un 24% d’obertures. Es repeteixen dos tipus de finestres, unes altes i primes, les altres de dimensions més reduïdes.

> Edifici C

L’edifici C és el de menor volum i es situa sobre una solera de formigó, que està pràcticament lliure. Això es deu a que la planta baixa està composada només pels vestuaris de l’escola i dos banys per una banda; i per l’altre, la caixa d’escala per accedir als pisos superiors. Aquesta zona coberta s’utilitza a l’hora del pati.

Un cop s’arriba a la segona planta, un passadís conduceix a les diferents aules de la planta. Als extrems del passadís hi ha també unes petites sales, en una de les quals hi ha la caldera de l’edifici. A la sala més a l’est de l’edifici, és no arriba el pas elevat procedent de l’edifici B. La segona planta segueix la mateixa distribució de la planta primera però només fins a la meitat de la planta. L’altre està coberta per una terrassa transitable.

Les façanes orientades al sud, compten amb grans finestres que omplen les aules de llum natural, que ocupen un 39% de la superfície. La caixa d’escala, situada a la banda nord de l’edifici, compta amb una obertura de pavés a cada planta i una de majors dimensions a la planta baixa, que rep la llum des del porxo. Algunes de les sales del final dels passadissos, compten amb petites finestres. Aquestes petites obertures suposen menys d’un 5% de les façanes orientades al nord.
4.1.2. Construcció

A continuació s’especificaran els materials que componen els tancaments i les particions dels edificis de l’escola. Aquest s’ordenen sempre d’exterior a interior. També s’inclourà la transmissitòria tèrmica d’aquestes solucions constructives, calculades segons el programa LIDER.

Malauradament, els tancaments de l’edifici A són suposicions que s’han fet de la seva possible composició. No s’ha pogut trobar informació, ni en forma de memòria constructiva, ni en forma de plànols, a l’Arxiu Històric de Barcelona ni a la documentació facilitada per l’escola. Aquestes suposicions s’han fet segons el tipus de sistemes constructius més utilitzats a l’època. Els tancaments recollits a les taules són les adaptacions utilitzades al programa informàtic LIDER, en funció de quina categoria de les utilitzades al programa s’encabien els suposats materials dels tancaments:

Aquests són els tancaments i particions verticals de l’edifici A:

<table>
<thead>
<tr>
<th>Partició Interior</th>
<th>2,55 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,015</td>
</tr>
<tr>
<td>- Envà de maó buit doble</td>
<td>0,07</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tancament exterior de façana</th>
<th>1,41 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Arrebossat de morter de ciment</td>
<td>0,02</td>
</tr>
<tr>
<td>- Paret de maó massís mètric</td>
<td>0,30</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre Interior</th>
<th>1,34 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Marbre</td>
<td>0,025</td>
</tr>
<tr>
<td>- Morter de ciment</td>
<td>0,015</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
<td>0,35</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,1</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre in contacte amb el terreny</th>
<th>1,47 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Marbre</td>
<td>0,025</td>
</tr>
<tr>
<td>- Morter de ciment</td>
<td>0,015</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
<td>0,35</td>
</tr>
<tr>
<td>- Morter</td>
<td>0,07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coberta inclinada</th>
<th>1,73 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Teula ceràmica porcellànica</td>
<td>0,015</td>
</tr>
<tr>
<td>- Morter de ciment</td>
<td>0,05</td>
</tr>
<tr>
<td>- sostre unidireccional ceràmic</td>
<td>0,25</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coberta plana catalana</th>
<th>1,06 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Plaqueta ceràmica</td>
<td>0,015</td>
</tr>
<tr>
<td>- Plaqueta ceràmica</td>
<td>0,015</td>
</tr>
<tr>
<td>- Plaqueta ceràmica</td>
<td>0,015</td>
</tr>
<tr>
<td>- Cambra d’aire no ventilada</td>
<td>0,05</td>
</tr>
<tr>
<td>- Morter</td>
<td>0,06</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
<td>0,30</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Fig. 4.13, 4.14 i 4.15 Taules de la composició dels tancaments verticals de l’edifici A. Font: Elaboració pròpia.

Aquests són els tancaments i particions horitzontals de l’edifici A:

<table>
<thead>
<tr>
<th>Tancament exterior en contacte amb el terreny (Edificis A i B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Morter de ciment</td>
</tr>
<tr>
<td>- Paret de maó massís mètric</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre interior (Edificis A i B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Morter de ciment</td>
</tr>
<tr>
<td>- Morter de ciment</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre en contacte amb el terreny (Edificis A i B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Morter de ciment</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
</tr>
<tr>
<td>- Morter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coberta plana catalana</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Plaqueta ceràmica</td>
</tr>
<tr>
<td>- Plaqueta ceràmica</td>
</tr>
<tr>
<td>- Plaqueta ceràmica</td>
</tr>
<tr>
<td>- Cambra d’aire no ventilada</td>
</tr>
<tr>
<td>- Morter</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
</tr>
</tbody>
</table>

Fig. 4.16, 4.17 i 4.18 Taules de composició dels tancaments horitzontals de l’edifici A. Font: Elaboració pròpia.

Fig. 4.20, 4.21, 4.22, 4.23 i 4.24 Seccions constructives de tancaments. Font: Elaboració pròpia.
Rehabilitació energètica d’un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.

<table>
<thead>
<tr>
<th>Coberta inclinada (Edifici A)</th>
<th>espessors expressats en cm.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Coberta de la sala d’actes (Edifici B)</th>
<th>espessors expressats en cm.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Coberta plana catalana (Edificis A, B i C)</th>
<th>espessors expressats en cm.</th>
</tr>
</thead>
</table>

| Tancament exterior (Edifici B) | espessors expressats en cm. |

| Tancament exterior (Edifici C) | espessors expressats en cm. |

| Els tancaments i particions verticals de l’edifici B els componen els següents materials: |
| (els espessors estan expressats en m) |

<table>
<thead>
<tr>
<th>Partició interior</th>
<th>2,55 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,015</td>
</tr>
<tr>
<td>- Envà de maó buit doble</td>
<td>0,07</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,02</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tancament exterior de façana</th>
<th>1,43 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Parel de maó massís mètric</td>
<td>0,30</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tancament exterior en contacte amb el terreny</th>
<th>1,15 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Morter</td>
<td>0,06</td>
</tr>
<tr>
<td>- Parel de maó massís mètric</td>
<td>0,40</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

| Aquests són els tancaments i particions horitzontals de l’edifici B: |
| (els espessors estan expressats en m) |

<table>
<thead>
<tr>
<th>Sostre interior</th>
<th>1,34 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Marbre</td>
<td>0,025</td>
</tr>
<tr>
<td>- Morter de ciment</td>
<td>0,015</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
<td>0,30</td>
</tr>
<tr>
<td>- Guix d’alta duresa</td>
<td>0,01</td>
</tr>
<tr>
<td>- Enlluït de guix</td>
<td>0,005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre en contacte amb el terreny</th>
<th>1,47 W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Marbre</td>
<td>0,025</td>
</tr>
<tr>
<td>- Morter de ciment</td>
<td>0,015</td>
</tr>
<tr>
<td>- Sostre unidireccional ceràmic</td>
<td>0,35</td>
</tr>
<tr>
<td>- Morter</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Fig. 4.25, 4.26, 4.27, 4.28, 4.30 i 4.31 Seccions constructives de tancaments.
Font: Elaboració pròpia.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment

Fig. 4.35, 4.36, 4.37 i 4.38 Taules de composició dels tancaments horitzontals de l'edifici B.

Font: Elaboració pròpia.

Els tancaments i particions horitzontals de l'edifici B

Espessors expressats en cm

<table>
<thead>
<tr>
<th>Tancament horitzontal</th>
<th>Espessors</th>
<th>Descripció</th>
</tr>
</thead>
</table>
| Coberta plana catalana | 1,06 W/m²K | - Plaquia ceràmica 0,015
- Plaiqueta ceràmica 0,015
- Cambra d'aire no ventilada 0,05
- Morter 0,05
- Sostre unidireccional ceràmic 0,30
- Guix d'alta duresa 0,01
- Enlluït de guix 0,005 |

L'edifici C es compon de les següents particions i tancaments

Espessors expressats en cm

| Partició interior | 2,55 W/m²K | - Enlluït de guix 0,005
- Guix d'alta duresa 0,015
- Envà de maó bult doble 0,07
- Guix d'alta duresa 0,01
- Enlluït de guix 0,005 |

| Partició vestuaris | 2,58 W/m²K | - Plaiqueta ceràmica 0,015
- Morter de guix 0,01
- Envà de maó bult doble 0,07
- Morter de guix 0,01
- Plaiqueta ceràmica 0,015 |

| Tancament exterior vestuaris | 1,42 W/m²K | - Arrebossat de morter de ciment 0,015
- Paret de maó massís mètric 0,30
- Morter de guix 0,01
- Plaiqueta ceràmica 0,015 |

Sostre interior (Edifici C)

Espessors expressats en cm

| Sostre interior | 2,51 W/m²K | - Marbre 0,025
- Morter de ciment 0,02
- Sostre bidireccional de formigó 0,30
- Guix d'alta duresa 0,01
- Enlluït de guix 0,005 |

Sostre exterior (Edifici C)

Espessors expressats en cm

| Sostre exterior | 2,68 W/m²K | - Marbre 0,025
- Morter de ciment 0,02
- Sostre bidireccional de formigó 0,30
- Arrebossat de morter de ciment 0,01 |

Coberta plana catalana

<table>
<thead>
<tr>
<th>Espessors</th>
<th>Descripció</th>
</tr>
</thead>
</table>
| 1,06 W/m²K | - Plaiqueta ceràmica 0,015
- Plaiqueta ceràmica 0,015
- Cambra d'aire no ventilada 0,05
- Morter 0,05
- Guix d'alta duresa 0,01
- Enlluït de guix 0,005 |

Sostre en contacte amb el terreny (Edifici C)

Espessors expressats en cm

| Sostre en contacte amb el terreny | 2,17 W/m²K | - Marbre 0,025
- Morter de ciment 0,02
- Formigó armat 0,30
- Morter 0,07 |

Fig. 4.39, 4.40, 4.41 i 4.42

Taules de composició dels tancaments verticals de l'edifici C.

Font: Elaboració pròpia.
A continuació s'exposaran quins són els sistemes d'instal·lacions que donen resposta a les demandes dels usuaris en quant a il·luminació, calefacció, aigua calenta i ventilació. L'escola no compta amb sistema de climatització, el que suposa un gran estalvis d'energia.

> Sistema d’il·luminació

La demanda d’il·luminació de l'escola es basa quasi exclusivament en làmpades fluorescentes de superfície de diversos voltatges. En menor mesura troben també làmpades incandescentes, làmpades halògenes i làmpades fluorescents de superfície de diversos voltatge i capacitat. Aquestes últimes no es limita a les zones interiors sinó que també es troben àrea de sales, així com les zones exteriors com a conseqüència del canvi d’ús que han patit algunes de les zones de les sales.

Aquestes il·luminàries es controlen mitjañant interruptors, col·locats a cada una de les sales. Diversos dels espais més grans, com la sala de professors o la sala d’informàtica, compten amb una sectorització de les il·luminàries, derivada del canvi d’ús que han patit algunes de les zones de l’escola, ja que aquests són el resultat de la unificació d’antics espais més petits. D’aquesta manera, es manté la separació del sistema d’il·luminació, mentre que s’ha unificat l’espai físic. Aquesta manera es poden produir més incongruències entre la superfície d’un espai i la seva respectiva il·luminació actual.

L’ús esporàdic de les làmpades de baix consum es deu a que aquestes van substituint poc a poc les làmpades incandescentes a mesura que van arribant al final de la seva vida útil.

> Sistema de calefacció

Com s’ha explicat anteriorment, l’escola es producte de vàries ampliacions. Com a conseqüència cada un dels tres edificis compta amb el seu propi sistema de calefacció. Aquesta situació suposa un increment de les tasques de manteniment i control per part de l’escola.

Malauradament, molts dels components del sistema de climatització són molt antics i no s’ha pogut trobar suficient informació, com ha estat amb dues de les calderes i un dels tipus de radiadors presents a l’escola.

A la planta baixa de l’edifici A, entre la zona de cuina i del menjador de professors, es troba la sala de calderes.

Aquí hi ha instal·lada una caldera de gasoil que abasteix els radiadors de tot l’edifici, incloent-hi la capella. Aquesta caldera no comptava amb cap tipus d’identificació ni xapa amb les seves característiques, però sí que va ser possible concretar el model i característiques del cremador que hi tenia incorporat.

Un cop identificat el cremador (ROCA Crono 25-3), es va buscar una caldera que fos compatible i de característiques similars a la nostra caldera, sobretot pel que fa al combustible i l’any de fabricació. Pel que fa a la potència de la caldera escol·litida, es va agafar com a referència la potència total dels radiadors per tal de que aquesta no estigués sobredimensionada i alterés notablement la valoració de l’eficiència del sistema. La caldera que finalment s’ha contemplat per al projecte és una caldera ROCA TD-95 de (96,85 kW)

També formen part del sistema, una bomba per al gasoil, un acumulador hidropneumàtic IBAIONDO de 200 litres que fa les funcions d’un vasp d’expansió i una bomba de circulació per a l’aigua calenta. A l’edifici es troben també tres dipòsits de mil litres cadascun, que abasteixen la caldera.

Pel que fa al conjunt del sistema, cal dir que està sectoritzat en tres ramals diferents: un que alimenta els radiadors de la capella, un altre per a les estances de l’escola i l’últim que abasteix l’anticà comunitat de monges del segon pis.

Totes les conduccions del sistema que distribueixen l’aigua calenta són de ferro colat, així com els dos models de radiadors que trobem en aquest edifici. Del més antic dels models, dels quals hi ha tres tamanys diferents, no s’ha trobat cap tipus de full de característiques, ja que son els radiadors originals de la vivenda. Aquests estan compostos per uns elements realment robusts, i alguns d’ells de gran alçada.

La sala de calderes de l’edifici B es troba a la planta soterrani, just a sota de la zona de recepció. De la mateixa manera que a l’edifici A, trobem una caldera de gasoil i uns components auxiliars molt similars als anteriors, a més de la resta de la instal·lació.

Es tracta d’una caldera ROCA GO-300-10l de 274,4 kW, que compta també amb un cremador de gasoil ROCA Presomatic 32-GO, un vas d’expansió ZILMET Cal-Pro de 130 litres i una bomba de circulació de l’aire calenta. El dipòsit d’aquest edifici, es subterrani i no hi ha constància de la seva capacitat. Les conduccions fins a les unitats terminals, així com els mateixos radiadors, són de ferro fos com a l’edifici A.

Per últim, com ja s’ha comentat, l’edifici C es val de la seva pròpia caldera per a climatització, que es troba en una petita sala ventilada del primer pis. En aquest cas, tampoc ha estat possible determinar de quin model de caldera es tracta i s’ha procedit de la mateixa manera que en el primer sistema. Finalment, s’ha dotat l’edifici d’una caldera FERROLI Pegasus F-251 de 56 kW que utilitza el gas natural com a combustible. A més de la caldera, componen el sistema un vas d’expansió ZILMET Cal-Pro de 24 litres i un circulador ROCA PC-1030 de dues velocitats. En aquest cas, la caldera no compta amb un cremador extern.

Com al altres dos edificis de l’escola, les canonades de l’aigua són de ferro fos, i els radiadors amb que està dotat el sistema, també. De fet, són el mateix model que al sistema anterior però només s’utilitzen dos dels tres tipus diferents.

> Sistema d’aigua calenta sanitària

Aquest sistema s’ha d’adaptar a una demanda d’aigua calenta sanitària molt petita per al que s’esperaria de qualsevol edificació de superfície similar.

L’únic punt de consum d’aigua calenta es troba als vestuaris de l’escola. Aquests consten de sis ductes de pulsador cadascun, un masculí i l’altre femení. La remodelació dels vestuaris és l’última intervenció que s’ha realitzat a l’escola.

Per suplir la petita demanda d’aigua calenta sanitaria, es va instal·lar una caldera ACV Heat Master 60N de 62,9 kW de potència que porta incorporat un cremador ACV BG 2000-560 i un vas d’expansió ZIMET Cal-Pro de 8 litres. Aquesta caldera es troba en una petita zona exterior, resguardada dels elements i fora de l’abast dels alumnes, molt propera als vestuaris.

Al contrari que amb la resta d’instal·lacions de l’escola, aquesta es compta amb conductes de coure per canalitzar l’aigua fins a les ductes.

> Sistema de ventilació

La ventilació dels espais de l’escola es realitza a través de les abundants finestres de les que disposa. No tots els espais gaudeixen de ventilació natural, però si que totes les aules i sales amb un ús regular compten amb obertures de façana que a més contribueixen amb aportació de llum solar.
4.1.4. Perfil d’Ús

A continuació s’exposarà quina és la distribució interior de l’escola, atenent a quin ús se li dona a cada un dels espais i amb quina intensitat i freqüència s’hi desenvolupen les activitats que deriven de la seva funció.

Seguint aquests criters, s’han dividit aquests espais en diverses categories. Segons la freqüència amb que s’hi desenvolupen activitats, s’han diferenciat els espais sense ús, dels espais amb un ús esporàdic, dels espais amb un ús regular. Aquest últim grup, s’ha dividit alhora en espais en què s’hi desenvolupa una activitat de manera poc intensa i altres en què es de manera intensa. S’ha creat un grup a part, per poder indicar on és situen les sales de caldes dels tres edificis.

A continuació, una petita llegenda que serveix de resum de les anteriors categories i que mostra el codi de colors seguit en aquest apartat:

<table>
<thead>
<tr>
<th>Espais d’ús regular</th>
<th>Intens</th>
<th>Poc intens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espais d’ús esporàdic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espais sense ús determinat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales de calderes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La planta baixa de l’edifici A es destina a acollir els menjadors d’alumnes i de professors, a més de la cuina, la sala del rentaplats i la sala de la caldera de l’edifici.

Cal especificar que el menjar que es serveix als alumnes a l’hora de dinar, el proveeix una empresa externa de càtering, de manera que a l’escola només es tracten per servir-los. Això suposa que no és necessària una zona de cuina, dotada amb fogons, forn i altres aparells que suposen un consum d’energia i aigua, que indubtablement suposa una major intensitat d’ús de l’espai. Simplement la zona del rentaplats, en la que es recullen les safates de l’alumne, no és necessària.

A la planta primera, l’única zona amb un ús regular diari, és la planta superior del menjador (que segueix el mateix patró que la planta inferior). La resta són aules polivalents i despatxos que no tenen un ús específic, ni continuat, sinó que es col·locen de manera espacial per a l’escola. Aquesta planta serveix bàsicament de pas per a les aules de la planta segon i a la planta superior del menjador (que segueix el mateix patró que la planta inferior). La resta són aules polivalents i despatxos que no tenen un ús específic, ni continuat, però en que destaca la sala principal de l’antiga vivenda per ser la de major superfície. També es troba la capella de l’escola, que s’usa en comptades ocasions al llarg de l’any.

Fig. 4.49 Plànol de la planta baixa de l’edifici A. Zonificació segons la intensitat d’ús. Font: elaboració pròpia.

Fig. 4.50 Gràfic de la proporcio de superfícies corresponent a cada ús de la planta baixa de l’edifici A. Font: Elaboració pròpia.

Fig. 4.51 Gràfic de la proporcio de superfícies corresponent a cada ús de la planta primera de l’edifici A. Font: Elaboració pròpia.

Fig. 4.52 Llegenda de colors dels plànols de zonificació segons la intensitat d’ús. Font: Elaboració pròpia.

Fig. 4.53 Plànol de la planta primera de l’edifici A. Zonificació segons la intensitat d’ús. Font: elaboració pròpia.

A la planta primera, l’única zona amb un ús regular diari, és la planta superior del menjador (que segueix el mateix patró que la planta inferior). La resta són aules polivalents i despatxos que no tenen un ús específic, ni continuat, però en que destaca la sala principal de l’antiga vivenda per ser la de major superfície. També es troba la capella de l’escola, que s’usa en comptades ocasions al llarg de l’any. Aquesta planta serveix bàsicament de pas per a les aules de la planta segona de l’escola.

És pot dir d’aquesta planta que no té cap ocupació programada al llarg del dia, sense tenir en compte la zona del menjador. Esporàdicament s’usa alguna de les aules per realitzar entrevistes entre pares d’alumnes i els seus tutors o per realitzar algunes activitats relacionades amb alguna assignatura de l’escola o alguna activitat de catequesi.
La planta segona és la que concentra la major càrrega d'activitat de l'edifici. En aquest pis hi ha cinc aules, que absten la major superfície d'ús de la planta, en que s'imparteixen les assignatures de batxillerat, dues petites sales sense ús específic, un bany i una galeria que dona accés a la terrassa. A sobre de la capella, hi ha la zona dels dormitoris que estan en desús i amb totes les instal·lacions inhabilitades.

Tota la ocupació es concentra llavors en les hores lectives dels dos cursos. Des de les vuit del matí fins a les onze, des de les onze i mitja fins a la una i mitja, i finalment des de les tres fins a les cinc, la ocupació es reduïx al voltant d'un 50% ja que s'altemen les tardes lliures entre els dos cursos.

Per últim, la planta tercera que eren les antigues golpes de la casa unifamiliar es troben també en desús. Es van reformar per que fossin habitables, i algunes de les estances compten amb radiadors, però tot i així, actualment, ni tan sols s'utilitzen.

> Edifici B

La planta soterrani de l'edifici B, es separa en dues unitats molt diferenciades, a banda i banda de l'escala que dona accés a la planta des de la recepció de l'escola: en una es troba la sala de calderes i les habitacions destinades a les tasques de manteniment de l'escola, a més de zones d'emmagatzematge; mentre que a l'altre hi ha una concentració important d'aules i laboratoris, de diferents disciplines que s'imparteixen a l'escola, completat amb un petit despatx. És molt important en aquesta zona el pati de llums interior, ja que proveeix de llum natural als laboratoris que estan orientats al nord-est i que reben molt poca llum a través de les obertures de la façana

Pel que fa a l'ocupació d'aquests espais, és molt diferenciada. La zona de manteniment i la sala de calderes no compta gairebé amb activitat durant el dia. Normalment, només l'encarregat de manteniment transita per aquests espais de la planta. Contrasta fortament l'altre zona d'aules, en que pràcticament hi ha una gran càrrega de gent durant la majoria d'hores lectives del dia
La planta baixa en canvi, és molt més homogènia. Hi ha zones que aglutinen molta activitat diària, on es concentren les aules, però també hi ha la zona de recepció de l’escola que suposa un punt important de concentracions de gent, però no mantingudes al llarg de tot el dia.

Destaquen però en aquesta planta el gimnàs i la sala d’actes. Tots dos figuren com a espais d’ús esportàdic: el gimnàs s’utilitza només els dies de pluja i en altres ocasions molt específiques com succeeix amb la sala d’actes. Això és molt sobtat ja que són dos dels espais volumètricament més grans del centre. També es troben en aquesta planta, a l’entrada del gimnàs, els antics vestuaris, que han estat substituïts pels de l’edifici C i que ara es troben en desús. Les instal·lacions de fontaneria (dubxes) han estat inhabilitades en aquest punt, però es mantenen les de climatització.

Fig. 4.58 Plànol de la planta baixa de l'edifici B. Zonificació segons la intensitat d’ús. Font: elaboració pròpia.

Fig. 4.59 Plànol de la planta primera de l'edifici B. Zonificació segons la intensitat d’ús. Font: elaboració pròpia.

A continuació, a sobre del gimnàs hi trobem la primera planta, en que a més també s’inclou el pis de dalt de la sala d’actes, que compota amb uns quants seients més. Com es pot observar a la planta, en aquesta zona es manté una mínima ocupació, però perllongada al llarg del dia. Això es deu a que en aquesta zona es troben els diferents departaments de l’escola, una sala de professors i algunes aules.

Concretament l’aula de dibuix tècnic i l’aula de música. Al contrari que la resta d’aules, aquestes no tenen una intensitat tan elevada com la resta ja que els alumnes s’hui desplacen només quan els pertoca. Com a la planta soterrani, és molt important la funció dels dos pats interiors que il·luminen les zones amb més dificultats per rebre llum a través de la façana, a més de proporcionar un mecanisme més de ventilació per a l’edifici.

Referent a la proporció d’espais destinats a cada ús de la primera planta de l’edifici B, aquesta es reparteix gairebé al 50% entre les aules de dibuix i de música que tenen una major superfície que les aules de tutories (66,21 i 52,75 m^2 respectivament) i els departaments i sala de professors.
Per últim, a la planta segona, ens trobem uns espais molt més amplis que a la planta anterior. Aquestes espais són la biblioteca de l'escola, l'escolania, una altra sala de professors i dues aules amb funcions variables. Aquesta zona no té ocupació durant el dia, a excepció de la sala de professors, ja que la biblioteca roman tancada a excepció de les èpoques d'exàmens.

Es pot observar a més com a través del pati interior practicable es pot accedir en aquesta planta. És en aquesta zona on s'uneixen els edificis B i C a través el pas elevat.

La superfície de la planta segona es ocupada en gran part (32%) per la biblioteca de l'escola, en un sol espai. Les altres dues terceres parts es divideixen entre una segona sala de professors, l'escolania i algunes aules usades per periodicament.

> Edifici C

Finalment, al més petit dels edificis, trobem a la planta baixa un gran porxo per on s'accedeix a la caixa d'escales per pujar al primer pis i a més, dos banys i els vestuaris operatius de l'escola. Aquesta zona no es pot comptabilitzar pràcticament en termes d'ocupació ja que en els pocs espais tancats que trobem, aquesta és molt baixa.

Cal afegir que a sota l'escala exterior que hi ha a la part del darrere dels vestuaris, es troba la caldera que supleix la demanda d'aigua calenta sanitària dels mateixos vestidors.

Un cop s'arriba a la primera planta però, s'observa que la majoria de la superfície de la planta de l'edifici l'ocupen espais d'una alta intensitat d'ús, ja que aquests són aules. A més, una de les petites habitacions que es troben als extrems del passadís de la planta és la sala de la caldera encarregada d'alimentar els radiadors de l'edifici.

Óbviament, aquesta és una de les plantes que compta amb més ocupació en relació a la seva superfície. És difícil preveure com afectarà aquesta elevada ocupació al comportament de l'edifici i com afectarà al confort dels usuaris d'aquesta zona.

A la planta segona, la superfície es reduixe a la meitat, i la intensitat d'ús també es veu reduïda. En aquesta zona s'ubica l'aula d'informàtica que, tal i com passava amb les aules de dibuix i de música, no compten amb una ocupació perlongada d'alumnes. A aquests afectes,
4.2. Dades Dinàmiques

4.2.1. Seguiment del Consum

Aquestes dades i posterior valoració del consum de l'escola ens servirà més endavant per comprovar en quin grau s'ajusta el consum real de l'escola al consum teòric d'un edifici de les seves característiques. D'aquesta manera podrem valorar quina és l'eficiència energètica de la nostra escola.

> Electricitat

Els elements de l'escola que demanden energia elèctrica per al seu funcionament es poden agrupar en dos grup. Les destinades a l'ús d'il·luminació i les de força.

El sistema d'il·luminació és el que copsa la major part del consum d'electricitat. Això es degut a que l'escola no compta amb un sistema de climatització d'aire condicionat, que augmentaria en gran mesura les dades del consum elèctric, i perquè el consum dels aparells de força no és comparable amb la potència demandada pel la gran quantitat e llinàmiers distribuïdes per l'escola.

A la factura de la companyia subministradora, consta que la potència contractada per l'escola és de 50kWh. A continuació, amb les dades de consums mensuals, desglossats en electricitat activa, reactiva i punta, s'ha pogut extraure uns indicadors del consum d'energia que comporteixen gas natural a l'escola. És per això que el consum de gas natural és molt reduït.

En aquests casos, s'ha procedit de la mateixa manera que en l'apartat anterior, obtenint a partir de les dades dels consum de gas el consum diari mitjà de cada un dels períodes en kWh/dia. També, el mateix seguiment comparatiu del consum de gas per períodes, mitjançant gràfiques. Aquests indicators s'exposen a l'apartat 5.4 a la secció 5.4.2. Gas Natural.

> Gas natural

Les dues calderes que cobreixen la demanda de calefacció i d'aigua calenta sanitària de l'edifici C són els únics elements que consumeixen gas natural a l'escola. És per això que el consum de gas natural és molt reduït.

El consum de gasoil del centre es reparteix entre dues calderes destinades a sistemes de calefacció. Són les dues que es troben a l'edifici A i B. Al contrari que amb la resta de fonts energètiques, el subministrament de gasoil no el realitza cap companyia i és per això que no es pot realitzar un seguiment mensual del consum. L'escola comparteix amb dos dipòsits que s'omplen, normalment, per primera vegada, entre l'octubre i el novembre.

> Aigua

L'aigua és el recurs que té un consum més dispers. Aquest es divideix entre els aparells de bany dels tres edificis, les dutxes dels vestuaris, el rentaplats de la cuina, les fonts dels patis, entre altres.

De la mateixa manera que en tots els apartats anteriors, s'han organitzat les dades en taules i s'ha estret l'indicador del consum per dia mitjà de cada trimestre (m³/dia) i gràfiques consum-temps dels cinc cursos. Segons les facts de la companyia, el caudal contractat és de 6,30 m³/h.

4.2.2. Seguiment de la Intensitat d'Ús

En aquesta part del treball s'estudia quin és el grau d'ocupació dels diferents espais de l'escola a través de la distribució de persones al llarg del dia com a mesura de la intensitat de l'espai.

A l'escola Padre Damián de los Sagrados Corazones s'imparteix els quatre cursos de l'Educació Secundària Obligatòria i els dos cursos de Babilateral. Aquests són cursos en que la assistència és primordial per al seguiment de les classes i l'escola està molt implicada en el seu control.

És per això que s'han pres com a dades d'ocupació, les llistes d'alfuberes dels diferents cursos amb els seus horaris ja que suposen les majors concentracions de persones. També perquè l'ocupació és molt constant al llarg de tot el curs. S'ha tingut en compte, però de manera més general, aquelles zones amb una ocupació que oscil·la entre uns marges molt estrets i es mantenen pràcticament constants.

D'aquesta manera s'han pogut extreure uns patrons d'ocupació representats en gràfiques temporals i una classificació de zones que tenen una ocupació similar. Aquestes zones són les següents:

- Zones d'aules: aquestes tenen un ocupació elevada, constant durant tots els dies de la setmana. Són aquelles aules on es reben les assignatures comuns de cada classe.

- Zones comuns: aquí es manté també una ocupació constant però més baixa que a les aules. Inclouen les sales de professors i els diferents departaments dels professors de l'escola, i aquelles aules en que s'imparteixen assignatures específiques com dibuix o música.

- Zones sense ús: que engloben aquells espais que no compten amb un ús previst i simplement s'utilitzen esporàdicament i aquells espais que no s'utilitzen o estan inhabilitats. Són majoritàriament sales en que s'emmagatzema mobiliari o que no s'usen. També s'inclou la biblioteca i la sala d'informàtica. La biblioteca compta amb un ús molt baix i a la sala d'informàtica s'hi realitzien classes poc freqüentment.
4.2.3. Seguiment de la Gestió

Aquest subapartat, contempla si per part de l'escola, es duu a terme algun mecanisme de control sobre el consum d'energia i recursos. Tenir en compte aquests mètodes permetrà fer un estudi més exhaustiu del consum de recursos derivats del funcionament de l'escola. Aquests mecanismes es poden englobar, en funció d'en quina àrea pretenen incidir, en unes àrees generals que són:

- **Control dels sistemes:** són mecanismes destinats a controlar el consum d'energia del centre i prendre mesures i planificar rutines per fer més eficient el sistema de climatització i d'il·luminació. Aquestes mesures es veuran molt afectades pels horaris d'ocupació dels espais.

- **Control de l'envolupant:** aquestes mesures es centren en revisar i mantenir les característiques constructives de les edificacions i garantir d'aquesta manera el seu correcte funcionament.

- **Mesures de manteniment:** i també contemplar mesures de reducció de la demanda energètica del centre i per controlar el bon funcionament de totes les instal·lacions.

En el cas de l'escola Padre Damián de los Sagrados Corazones, un dels treballadors del centre, responsable de manteniment, gestiona el funcionament integral de les instal·lacions i s'encarrega de garantir un bon estat general de l'escola en els aspectes esmentats.

Es realitzen inspeccions al llarg del curs per tal de detectar possibles lesions en l'envolupant de la façana, a més d'intervencions de poca envergadura. En el cas que sigui una intervenció massa complicada, també gestiona el contacte amb les persones encarregades de la reparació. També s'encarrega de realitzar petites obres com la instal·lació dels altaveus i projectors que hi ha a les aules o tasques de pintura.

L'escola, compta amb mecanismes per gestionar el consum d'energia de manera eficient. Els sistemes de calefacció estan programats per encendre's a les set del matí i s'apaguen manualment al voltant de l'hora del migdia, en funció de la temperatura exterior.

Una de les mesures més importants és la zonificació per zones de la calefacció en els edificis A i B, els dos que utilitzen el gasoil com a combustible dels sistemes. A l'edifici A trobem les diferents zones:

- **zona d'aules:** composada per la totalitat de les plantes de la vivenda unifamiliar, que compta amb els radiadors de ferro fos originals.

- **zona de la capella:** en aquest altre circuit es troben els radiadors que hi ha a la capella de l'escola, instal·lats durant la primera ampliació de l'escola.

- **zona de residència:** que regula els radiadors de l'annex de dormitoris que es troba just a sobre de la capella. Actualment, la clau que alimenta aquest circuit està tancada, ja que la zona està en desús.

A l'edifici B, en canvi, les zones en que estan dividides les diferents plantes, es reparteixen en:

- **zona de classes:** en aquesta zona s'inclouen les zones d'aules i el gimnàs de l'escola.

- **zona de seminaris:** aquesta zona la componen les dues plantes que es troben a sobre del gimnàs.

- **zona de la sala d'actes:** que regula els radiadors d'aquest únic espai.
5. Fase 2: Avaluació

5.1. Avaluació

5.1.1. Demandària Tèrmica

Arribats a aquest punt de l’estudi, ens disposem a valorar quins són els guanyos i les pèrdues a través de la pell de l’edifici com a conseqüència de les seves característiques constructives, de la composició de la seva envoltant i d’altres factors com l’orientació o el clima, exposats a l’apartat 4.1. Dades estàtiques.

A fi de quantificar aquest comportament, es comprovarà a través de l’eina LIDER si els tres edificis compleixen amb la Limitació de la demanda tèrmica segons la metodologia exposada al DB HE-1 sobre l’opció general de càlcul per avaluar la envolupant de l’edifici, apartat 3.3. Opció general.

Aquesta avaluació es realitza mitjançant la comparació entre el nostre edifici objecte i un edifici de referència igual al d’objecte però limitada la transmitància tèrmica de l’envolupant de l’edifici, per a cada un dels diferents tancaments. També, avaluà la probabilitat de patir condensacions, en superfícies o intersticials i les pèrdues energètiques per infiltracions d’aire dins l’escola.

Per verificar l’adequació a la norma del nostre edifici, el programa comprova que la demanda energètica, en concepte de càl·facció i climatització, es inferior a l’edifici de referència. La desviació d’aquesta demanda ens aporta més informació a l’hora d’avaluar el sistema de climatització de l’edifici i la seva eficiència. També comprova els valors d’humitat relativa mitjana mensual, per eliminar la probabilitat de condensacions superficials i que la humitat acumulada als tancaments durant l’any sigui evaporada. Per últim també avaluà la permeabilitat a l’aire de les fusteries de les obertures.

El procés de càlcul utilitzat pel programa avaluà el comportament tèrmic de l’envolupant de l’edifici, tenint en compte les condicions extersiors i les demandes interiors, hora a hora i considerant els efectes de la inèrcia tèrmica dels tancaments que componen l’envolupant.

> Resultats LIDER (DB HE-1 Limitació de la demanda energètica)

Un cop executat el programa LIDER, el resultat ens indica que cap dels tres edificis compleix amb les exigències minimes del DB HE-1 Limitació de la demanda energètica.

Gràcies a les dades proporcionades per el programa, ara podem avaluar en quina mesura s’ajusten els nostres tancaments als valors especificats a la norma, quines zones requereixen una major demanda energètica per a la seva climatització i comprovar el comportament del nostre edifici en punts conflicteu com punts tèrmics o obertures a la façana.

A continuació es presenten quin són aquells tancaments que no compleixen amb la transmitància tèrmica límit (\(U_{\text{lim}}\)) recollida al DB HE-1. Primer els elements exteriors i després els interiors, tant horitzontals, com verticals. Aquests càlculs estan realitzats segons la composició exposada a les dades estàtiques, adaptats als materials disponibles al programa LIDER.

<table>
<thead>
<tr>
<th>Tancament exterior A</th>
<th>(U_{\text{lim}})</th>
<th>(U_{\text{CTE}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,41</td>
<td>0,85</td>
<td></td>
</tr>
<tr>
<td>Tancament exterior B</td>
<td>1,43</td>
<td>0,85</td>
</tr>
<tr>
<td>Tancament exterior C</td>
<td>1,39</td>
<td>0,85</td>
</tr>
<tr>
<td>Tancament exterior vestuari</td>
<td>1,42</td>
<td>0,85</td>
</tr>
<tr>
<td>Mur en contacte amb el terreny</td>
<td>1,15</td>
<td>0,85</td>
</tr>
<tr>
<td>Sostre en contacte amb el terreny A,B</td>
<td>1,47</td>
<td>0,85</td>
</tr>
<tr>
<td>Sostre en contacte amb el terreny C</td>
<td>2,17</td>
<td>0,65</td>
</tr>
<tr>
<td>Sostre exterior A</td>
<td>1,38</td>
<td>0,85</td>
</tr>
<tr>
<td>Sostre exterior C</td>
<td>2,68</td>
<td>0,65</td>
</tr>
<tr>
<td>Coberta inclinada</td>
<td>1,73</td>
<td>0,53</td>
</tr>
<tr>
<td>Coberta plana catalana</td>
<td>1,06</td>
<td>0,53</td>
</tr>
<tr>
<td>Coberta sala d’actes</td>
<td>0,98</td>
<td>0,53</td>
</tr>
</tbody>
</table>

Fig. 5.1 Taula de resum del compliment de les transmitàncies límit del CTE DB HE.

Font: Elaboració pròpia.

<table>
<thead>
<tr>
<th>Partició interior</th>
<th>(U_{\text{lim}})</th>
<th>(U_{\text{CTE}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,55</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Sostre interior A, B</td>
<td>1,34</td>
<td>1,0</td>
</tr>
<tr>
<td>Sostre exterior C</td>
<td>2,51</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Fig. 5.2 Taula de resum del compliment de les transmitàncies límit del CTE DB HE.

Font: Elaboració pròpia.

Com es pot comprovar a la taula, cap de les composicions utilitzades per als tancaments de façanes, es troba per sota els valors màxims marcats al CTE. També és lògic comprovar que els valors de transmitsàncies d’aquests tancaments es troben tots al voltant d’una valor similar, degut a que la seva composició és molt similar. Aquests són els tancaments mes importants de l’escola ja que són aquells que suposen una major part de l’envolupant i han d’alzar més volum d’espais habitables.

Recordem que els tres edificis són antics, especialment l’A, i que estan construïts segons tècniques constructives que dificilment poden donar compliment a les exigències exposades a la taula.

Ens trobem en els tancaments en contacte amb el terreny, en la mateixa tèstissura que en el cas anterior. Són tancaments que amb l’augment de les exigències requerides, no són capaços de complir els nous límits. Tot i així, el mur en contacte amb el terreny no es troba massa allunyat del límit en comparació amb els altres elements presents a la taula.

En aquest apartat d’elements en contacte amb el terreny, és molt notable la diferència entre els sostres en contacte amb el terreny dels diferents edificis. Per una banda els edificis A i B compiten amb un sostre unidireccional, amb entrebigat ceràmic, com a element portant del conjunt; mentre que l’edifici C es tracta de formigó armat. Aquest simple canvi, resultat de l’evolució i expansió de l’ús del formigó armat, provoca aquest desvantatge respecte les dos tipologies.

Suceeix de la mateixa manera amb els sostres exteriors. Aquests són aquells sostres que separan un espai exterior a l’inferior, d’un interior a la part superior. A l’escola el trobem a la façana sud-oest de l’edifici A, a la zona que cobreix el p oxo; i a l’edifici C, a tota la planta baixa que es troba per sota de la primera com a zona de pati coberta.

En aquest cas, s’observa la mateixa influència del formigó en el tancament, mentre que la resta de components s’han considerat igual.

Sobre les cobertes, tampoc no hi ha cap opció que compleixi amb els valors límit. De fet, la coberta de la sala d’actes, que compta amb moltes menys capes que la composin que les altres dues, és la que es desvia menys del valor màxim, de manera que demostra una millor elecció dels materials que la componen.
Per acabar, cal matricular els resultats de les particions interiors. El tancament de partició interior dona error, només en contacte amb espais no habitables amb un nombre elevat de renovacions per hora de l'aire interior i un nivell molt baix d'estanquïtat. Aquest és el cas del rebedor que hi ha a la plaça baixa de l'edifici A, que dona accés directe des de l'exterior al menjador de professors.

A la resta de casos, aquest tancament separa dos espais habitables, entre els quals no hi ha un flux de temperatura, o un espai habitable d'un no habitable completament estanc. Es per això que només en el cas que separa un espai pràcticament exterior, suposim un punt de pèrdua de temperatura.

Després d’analitzar els tancaments opacs de l’envolupant, és moment d’avaluar el comportament dels seus components translúcids. Al centre trobem tres tipus diferents de finestres.

El primer de tots i més antic, és una finestra amb un marc de fusta pintada de color blanc amb un vidre senzill. Aquesta finestra és la original de la vivenda unifamiliar que es trobava a la parcel·la. En un cas d'aquesta adreça, la finestra practicable compta a mb un marc d'alumini dotat amb trencament de pont tèrmic d'entre 4-12 mm, i un doble vidre amb càmera d'aire. Aquesta finestra, es troba només al porxo d'accés a la terrassa de l'edifici A. Aquestes finestres es van afegir recentment ja que aquesta galeria es troba orientada al nord i requeria d'una bona protecció, sobretot a les zones de les obertures.

Per últim s'ha tingut en compte també, les diferents obertures de pavèst que es troben concretament als edificis A i C. Com ja hem comentat, a l'edifici A trobem obertures de pavèst a les façanes lliures de la capella. A la que es troba orientada al nord hi ha les vidrieres de colors amb motius religiosos, mentre que a la sud-oest, aquesta proporciona il·luminació natural a una zona recollida de la capella, tot i que segueix sent necessària la llum artificial.

L’últim tipus de finestra practicable comptà a mb un marc d'alumini dotat amb trencament de pont tèrmic d'entre 4-12 mm, i un doble vidre amb càmera d'aire. Aquesta finestra, es troba només al porxo d'accés a la terrassa de l'edifici A. Aquestes finestres es van afegir recentment ja que aquesta galeria es troba orientada al nord i requeria d'una bona protecció, sobretot a les zones de les obertures.

Per últim s'ha tingut en compte també, les diferents obertures de pavèst que es troben concretament als edificis A i C. Com ja hem comentat, a l'edifici A trobem obertures de pavèst a les façanes lliures de la capella. A la que es troba orientada al nord hi ha les vidrieres de colors amb motius religiosos, mentre que a la sud-oest, aquesta proporciona il·luminació natural a una zona recollida de la capella, tot i que segueix sent necessària la llum artificial.

Taula 5.3: Resum del compliment de les transmitàncies límit del CTE DB4RE

<table>
<thead>
<tr>
<th>Obertura</th>
<th>U_{eq} (CTE)</th>
<th>U_{opt}</th>
<th>Permeabilitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finestra marc de fusta</td>
<td>5,35</td>
<td>50,0</td>
<td></td>
</tr>
<tr>
<td>Finestra marc de ferro</td>
<td>5,70</td>
<td>50,0</td>
<td></td>
</tr>
<tr>
<td>Finestra marc d'alumini</td>
<td>2,94</td>
<td>50,0</td>
<td></td>
</tr>
<tr>
<td>Obertura de pavèst</td>
<td>5,05</td>
<td>50,0</td>
<td></td>
</tr>
</tbody>
</table>

Un cop el programa disposa de les característiques de l'envolupant recent exposades, calcula quina és la demanda energètica de cada un dels espais dels edificis, tant de calefacció com de refrigeració. El resultat final del programa és el balanç energètic del nostres edifici respecte a l'edifici de referència creat pel programa i quina és la proporció d'aquesta demanda destinades a calefacció i refrigeració. Aquests paràmetres estan expressats tots dos en tant per cent (%).

En el nostre cas s'ha introdut cada un dels edificis per separat i així obtenir un resultat individual per a cadascun i així poder avaluar-los més específicament. A més, les dades que genera el programa derivades del càlcul de la demanda, ens permeten fer una valoració de l'origen d’aquesta demanda i com es distribueix pels diferents espais. Ara s'exposaran els resultats finals del programa LIDER i a continuació es realitzarà una valoració d'aquests resultats.
El resultat final de l'edifici A és que aquest no compleix amb les especificacions mínimes recollides al DB HE-1. Segons el programa LIDER, aquest edifici requereix un 34,4% més d'energia per a calefactor l'edifici, que a més suposaria un 89,4% de l'energia consumida, en concepte de climatització, per el nostres edifici al llarg d'un any.

En canvi, el nostre edifici objecte demanda un 43,3% menys d'energia en climatització, que suposaria el 10,6% d'energia consumida anualment.

La refrigeració en canvi, es manté més constant en totes les plantes. El valor de la planta baixa no augmenta tant com en la calefacció, degut a que compta amb elements que generen ombra a les seves dues façanes més calents. A més, la planta superior del menjador d'alumnes, que és l'espai amb més ús de la planta primera, està orientada al nord i es manté protegida durant els mesos d'estiu. Cal afegir que les proteccions solars de les finestres proporcionen una bona barrera per les radiacions solars durant els mesos més calorosos.

Segons el programa LIDER, la demanda energètica anual de l'edifici A és de 44,29 kWh/m² per a calefacció i de 5,24 kWh/m². La demanda de calefacció es distribueix des del novembre fins al maig. La de refrigeració entre el juliol i el setembre. Els mesos de juny i octubre no requereixen de climatització. La diferència entre la demanda de calefacció i refrigeració és bastant pronunciada i és una situació que es produeix a tots els edificis del centre.

El programa ens permet estudiar també com es distribueix la demanda energètica mensualment i segons es destina a calefacció i refrigeració. Els mesos en que més energia es consumeix són els més fred de l'any, gener i desembre, amb una demanda teòrica de 10,57 i 9,19 kWh/m². El mes en que més refrigeració es requereix és el juliol, i es va reduir durant l'agost i el setembre.

La planta primera és la que més energia consumeix de calefacció amb una demanda anual de 38,291 kWh. En aquesta planta trobem la capella de l'escola annexa a la zona d'aules polivalents. També trobem la sala principal de la vivenda. És una planta amb els sostres molt alts i amb alguns espais molt grans (capella i la sala principal). A més a la sala principal hi ha uns grans finestrats amb marc de fusta que com hem vist, són un punt de perdutes energètiques. De la mateixa manera, a la capella hi ha els grans finestrats de pàvies.

El programa ens permet estudiar també com es distribueix la demanda energètica anual de calefacció per planta.

<table>
<thead>
<tr>
<th>Planta</th>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta baixa</td>
<td>11,382</td>
<td>0,06</td>
</tr>
<tr>
<td>Planta primera</td>
<td>38,291</td>
<td>4,592</td>
</tr>
<tr>
<td>Planta segona</td>
<td>22,460</td>
<td>4,403</td>
</tr>
<tr>
<td>Planta tercera</td>
<td>6,827</td>
<td>354</td>
</tr>
</tbody>
</table>

La següent planta amb més demanda energètica de calefacció és la segona, en que trobem totes les aules de les que disposa aquest edifici. Tot i que també compta amb uns grans finestrats, com els de la planta inferior, la demanda es reduïx degut a la major càrrega interna que suposa la presència gairebé continuada d'alumnes a les aules.

La planta tercera és la que més energia consumeix de refrigeració amb una demanda anual de 9,349 kWh. En aquesta planta trobem la capella de l'escola annexa a la zona d'aules polivalents. També trobem la sala principal de la vivenda. És una planta amb els sostres molt alts i amb alguns espais molt grans (capella i la sala principal). A més a la sala principal hi ha uns grans finestrats amb marc de fusta que com hem vist, són un punt de perdutes energètiques. De la mateixa manera, a la capella hi ha els grans finestrats de pàvies.

El programa ens permet estudiar també com es distribueix la demanda energètica anual de refrigeració per planta.

<table>
<thead>
<tr>
<th>Planta</th>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta baixa</td>
<td>11,382</td>
<td>0,06</td>
</tr>
<tr>
<td>Planta primera</td>
<td>38,291</td>
<td>4,592</td>
</tr>
<tr>
<td>Planta segona</td>
<td>22,460</td>
<td>4,403</td>
</tr>
<tr>
<td>Planta tercera</td>
<td>6,827</td>
<td>354</td>
</tr>
</tbody>
</table>
El segon edifici, es troba en una situació pràcticament igual a l'edifici A, tot i que s'accentuen una mica els valors anteriors. En aquest cas, l'edifici objecte demanda un 44,5% més de demanda de calefacció, mentre que només suposa una demanda del 65,3% de l'edifici de referència.

Com a l'edifici A, en aquest edifici, la calefacció suposa la major despesa energètica de climatització anual amb un 85,1% del total, per el 14,9% restant de climatització. La valoració final del programa es que l'edifici B, no compleix la limitació de la demanda energètica.

La zona que més energia de calefacció necessita és efectivament el gimnàs, que es troba completament soterrat, a excepció d'una franja d'un metre aproximadament en que es van practicar les finestres que proporcionessin llum a l'interior. A més, la resta d'espais de la planta baixa, a la mitja alçada en que es troba el gimnàs, es troben orientats al sud. Els que miren al nord tenen uns valors més elevats de demanda de refrigeració.

L'edifici B es el més gran del complex i es aquell que suposa una major demanda per a l'escola. La calefacció suposa un consum anual teòric de 130.882 kWh. Com a edifici anterior, la refrigeració suposa una menor part de la despesa anual en energia, que en aquest edifici augmenta fins els 22.857 kWh. El mes de juny és l'únic en que no es necessita cap font de climatització per tal de garantir el confort a l'interior. La refrigeració és necessària des de llavors fins al setembre. La resta de l'any es precisa de l'aportació del sistema de calefacció.

> Edifici B

L'edifici B és el més gran del complex i es aquell que suposa una major demanda per a l'escola. La calefacció suposa un consum anual teòric de 130.882 kWh. Com a edifici anterior, la refrigeració suposa una menor part de la despesa anual en energia, que en aquest edifici augmenta fins els 22.857 kWh. El mes de juny és l'únic en que no es necessita cap font de climatització per tal de garantir el confort a l'interior. La refrigeració és necessària des de llavors fins al setembre. La resta de l'any es precisa de l'aportació del sistema de calefacció.

<table>
<thead>
<tr>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>index energètic per superfície de mitjana anual (kWh/m²)</td>
<td>41,66</td>
</tr>
<tr>
<td>demanda total anual edifici A (kWh)</td>
<td>130.882</td>
</tr>
<tr>
<td>demanda total anual per plantes (kWh)</td>
<td>- Planta soterrani 14.555</td>
</tr>
<tr>
<td></td>
<td>- Planta baixa 89.805</td>
</tr>
<tr>
<td></td>
<td>- Planta primera 13.320</td>
</tr>
<tr>
<td></td>
<td>- Planta segona 11.805</td>
</tr>
</tbody>
</table>

És important tenir en compte a l'hora d'avaluar els resultats que molts espais de l'edifici C estan soterrats. Aquesta situació realment influeix en l'aspecte que estem valorant ja que suposa un gran aïllament i una massa important amb molta inèrcia tèrmica.

La planta baixa és en general la que més energia de climatització, tant per calefacció com per refrigeració, consumeix. No només per què és la més gran, sinó perquè també és la que té més superfície en contacte amb el terreny, cosa que fa que es dispari la diferència respecte les altres plantes en quant a calefacció. En canvi, a la climatització, sembla que aquesta característica la aproja al consum de la resta de plantes, tot i que no arriba a posar-se al mateix nivell.

Just per sobre del gimnàs, a les plantes primera i segona, es diferencia molt les diferències entre els espais orientats al nord i els que es troben orientats al sud. Els que miren al nord tenen uns valors més elevats de demanda de calefacció, però més reduïts en climatització que els de la banda sud.

És important comprovar que la sala d'actes, no suposa una demanda energètica massa elevada respecte a la de la resta d'espais de l'edifici, de la manera en que succeeix amb la capella de l'edifici A. Tots dos són espais amb una gran superfície i que no s'usen amb massa assiduïtat, però el rendiment tèrmic de la capella es veu molt perjudicat pels grans finestrats de pavè que cobreixen gairebé una façana sencera, mentre que la sala d'actes és un espai molt més hermètic i sense obertures.
> Edifici C

Per últim, l’edifici C no compleix tampoc amb les exigències recollides al CTE. En aquest edifici, s’equilibra una mica la demanda relativa de calefacció i refrigeració tot i que continua sent molt desproporcionada. En aquest cas la calefacció suposa un 73,1% de la demanda energètica, en vers el 26,9% destinat a refrigeració.

Per altra banda però, l’edifici C augmenta la proporció energètica de calefacció respecte l’edifici de referència a gairebé el doble (93,7%) i pràcticament s’equipara en quant a refrigeració, ja que la demanda objecte suposa un 87,7% de la demanda de referència.

<table>
<thead>
<tr>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de referència</td>
<td>193,7</td>
</tr>
<tr>
<td>proporció relativa calefacció-refrigeració</td>
<td>73,1</td>
</tr>
</tbody>
</table>

Fig. 5.16 Resum de resultats. Font: LIDER (DB HE–1 Limitación de la demanda energética)

Els resultats del programa LIDER mostren que l’edifici C requereix de 18.935,06 kWh l’any per calefactor les zones de les aules. És aproximadament el triple del valor que requereix la climatització, 6.955,97 kWh anuals. La calefacció és necessària des de l’octubre fins a l’abril, mentre que durant la resta de mesos es precisa de climatització.

Les úniques zones calefactades són les aules distribuïdes al llarg de la façana sud en totes dues plantes. Aquestes compten amb uns grans finestral amb els marcs de fusta. Aquest serà un factor decisiu en la demanda tèrmica de l’edifici ja que el comportament d’aquest tipus de fusteres no és adequat a les condicions de l’ambient.

Fig. 5.17 Evolució anual de la demanda anual calefacció–refrigeració. Elaboració pròpia.

També és un factor en contra de la demanda de calefacció, les ombres que l’edifici A, pel seu emplaçament, pot causar sobre la façana en la que es situen les aules de l’edifici.

Aquest efecte el reduceix el fet que les aules s’hagin elevat sobre el terreny formant el pòrtic del pati. A més, incideix en menor mesura a la planta segona. La demanda de la primera planta és de 14.989 kWh i aquesta té el doble de la superfície que la planta segona. En canvi, la demanda es reduceix en major proporció fins als 3.896 kWh.

Referent a la refrigeració, no sembla que la major ombra produïda per l’edifici A, sobre la planta primera, permet que redueixi la seva demanda de refrigeració ja que l’índex per superfície de la demanda de cada espai és molt similar: 16,80 kWh/m² de la planta primera, pels 20,61 kWh/m² de la planta segona.

Referent a la refrigeració, no sembla que la major ombra produïda per l’edifici A, sobre la planta primera, permet que redueixi la seva demanda de refrigeració ja que l’índex per superfície de la demanda de cada espai és molt similar: 16,80 kWh/m² de la planta primera, pels 20,61 kWh/m² de la planta segona.

Fig. 5.18 Quadre de resum de les demandes de l’edifici C. Elaboració pròpia

<table>
<thead>
<tr>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índex energètic per superfície de mitjana anual (kWh/m²)</td>
<td>49,08</td>
</tr>
<tr>
<td>Demanda total anual edifici A (kWh)</td>
<td>18.885</td>
</tr>
<tr>
<td>Demanda total anual per plantes (kWh)</td>
<td>- Planta primera 14.989</td>
</tr>
<tr>
<td>- Planta segona 3.896</td>
<td>2.662</td>
</tr>
</tbody>
</table>

Fig. 5.19 Model en 3D de l’edifici C. Façanes principal orientada a sud-est. Font: LIDER.

Fig. 5.20 i 5.21 Model en 3D de l’edifici C. Façanes orientades a nord. Font: LIDER.
5.1.2. Demanda Luminica

En aquest fase de l'estudi, ens disposem a analitzar la demanda lumínica d'alguns espais de l'escola segons la seva geometria i les il·luminàries de les quals disposa. Es comprovarà l'adequació de la il·luminació dels espais a vaires normatives.

En aquest cas, em centrat l'estudi lumínic en diferents aules dels tres edificis, amb diferent orientació i tipus de làmpades. Una d'elles és l'aula en que s'imparteix les classes de dibuix tècnic, en que s'han de complir uns requisits més estrictes. Per les seves característiques aquestes són les aules més representatives.

A la taula 2.1 del DB HE-3 es recullen els valors d'eficiència energètica VEEI (W/m²/100 lux) per a la potència de les làmpades en funció de la superfície. També els nivells d'il·luminació mitjana mantinguda (Eₘ) en lux i els valors límit de l'índex d'enlluernament (UGR) segons el que diu la Norma Europea UNE-EN 12464-1.

<table>
<thead>
<tr>
<th>VEEI (W/m²/100 lux)</th>
<th>Eₘ (lux)</th>
<th>UGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aules:</td>
<td>≤ 4,0</td>
<td>300</td>
</tr>
<tr>
<td>Aula de dibuix:</td>
<td>≤ 4,0</td>
<td>750</td>
</tr>
<tr>
<td>Pissarra:</td>
<td></td>
<td>300</td>
</tr>
</tbody>
</table>

Per quantificar els valors dels diferents espais s'ha utilitzat el programa informàtic DIALux. En un model tridimensional de les aules, s'ubiquen les il·luminàries i els diferents objectes que hi ha a l'espai. El programa també té en compte altres factors com l'orientació, la claredat de les paret i sostres de les aules i la potència de les il·luminàries instal·lades.

Al pla útil situat a setanta-dos centímetres del terra, es pot observar com a les taules centrals de l'aula s'arriben a nivells d'il·luminació gairebé 500 lux. Mentre que a les zones de les cantonades aquest nivell es redueix a la zona de la pissarra i a les cantonades del final de l'aula fins els 350-480 lux.

Aquest efecte es veuria reduir a la façana paral·lela a la taula del professor ja que els dos finestres proporcionen aquestes zones un afgest d'il·luminació.

La façana orientada al sud és la que compta amb una obertura que dona accés a un petit balcó. L'aula compta amb vuit làmpades fluorescentes d'36W al sostre i dues més adossades a la parel de la pissarra.

Aquesta aula es troba a la plata segona de l'edifici A. La façana on es troben les finestrals està orientada a l'est i dona accés a la terrassa de la façana principal. Consta de sis làmpades fluorescentes de 56W cadascuna, adossades al sostre de l'aula.

Com es pot observar al gràfic de colors falsos, a l'alçada del pla útil, es proporciona la suficient llum, ja que s'obtenen uns valors de 440 lux, excepte a la zona del final de la sala, en que es redueix el nivell d'il·luminació mitjana als 330 lux aproximadament.

Per altra banda, a la taula del professor, com que està més elevada, el mitjana d'il·luminació augmenta fins gairebé els 500 lux, que és un valor excessiu. Succeix igual a la part superior de la pissarra, en que el muntatge adossat de les làmpades provoca un excés d'il·luminació.

La finestrà de l'aula a més, faria augmentar aquests valors ja que rep la radiació encaixada al sud i a l'hivern, amb els rajos baixos, aquests incideixen més perpendiculars.
El següent espai és el destinat a l’aula de dibuix. La façana que compta amb les finestres està orientada al sud-est i té un alt percentatge de buits.

La instal·lació d’il·luminació consta de cinc làmpades fluorescentes al llarg de la classe adossades al sostre i un tub més a sobre de la pissarra.

Aquesta és una de les aules que estan orientades a la pista esportiva, i compta amb obertures a les seves cares est i sud. Hi ha instal·lades sis làmpades fluorescentes circulars de 40W distribuïdes en camp, i dos tubs fluorescentes de 36W a la paret de la pissarra.

Aquesta façana compta amb obertures a les façanes nord i oest, que dóna a un pati interior. Per suplir les necessitats d’il·luminació hi ha instal·lades sis làmpades fluorescentes circulars de 40W i dos tubs fluorescentes més de 36W a la cara est de la classe.
Aquesta és l'aula més representativa de l'edifici C, ja que està a la planta primera i per tant es troba a menor alçada que la resta i per tant rep menys llum solar. L'aula compta amb sis tubs fluorescents de 58W disposats en camp i dos més que il·luminen la píssarra.

La potència de les làmpades de 58W, aporta uns nivells concèncrics di nivells d’il·luminació mitjana sobre les taules dels alumnes d’entre 420 i 350 lux. A la zona d’explicació del professor, influeixen els fluorescents adossats a la paret, uns nivells pròxims al 500 lux. Aquesta col·locació, repercuteix com en casos anteriors sobre la il·luminació de la píssarra.

S’ha de comptar també amb les obertures de gran tamany orientades a l’est que proporcionen gran il·luminositat durant les primeres hores del dia. La columna de taules enfrontades a la píssara del professor són les grans beneficiades de les finestres, tot i que permeten que entri una gran quantitat de llum dins de l’aula.

<table>
<thead>
<tr>
<th>C_Aula_P1_2</th>
<th>VEEI (W/m²*100 lux)</th>
<th>Ec* (lux)</th>
<th>UGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normativa aules:</td>
<td>≤ 4,0</td>
<td>300</td>
<td>≤ 19,0</td>
</tr>
<tr>
<td>Normativa píssara:</td>
<td>-</td>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>Aula_P1_2</td>
<td>1,61</td>
<td>202</td>
<td>30</td>
</tr>
</tbody>
</table>

Fig. 5.39 Resum de resultats. Font: Elaboració pròpia.

Fig. 5.40 Model en 3D de l’aula. Font: DIALux

Fig. 5.41 Gràfic de colors falsos. Font: DIALux.
5.2. Anàlisi dels Sistemes

En aquest apartat es valorarà la eficiència dels diferent sistemes dels que està dotat l'edifici. Aquests sistemes han de respondre a la demanda energètica de l'edifici, en aquells aspectes en què les seves característiques arquitectòniques i constructives no el permeten garantir les condicions de confort mínimes requerides.

La primera font d'informació a consultar són els consums finals i amb el seu valor econòmic que proporcionen les companyies subministradores a les factures. Tot i i ser una informació molt important, és alhora escassa i poc específica. Per obtenir més dades sobre el consum de l'escola, s'ha utilitzat l'eina CalenerVyP, que està dissenyat segons les directrius marcades a la Directiva 2002/91/CE, a nivell europeu, i al Real Decreto 47/2007 en la legislació espanyola.

El programa Calener realitza una valoració de l'eficiència energètica dels sistemes de climatització i il·luminació en edificis del sector terciari. Com a resultat final, realitza un còmput global entre la demanda de l'edifici i del seu consum. Aquest consum es basa en la font d'energia del sistema i en què és el seu consum final. Finalment, també quantifica l'impacte del consum energètic vers les emissions de CO₂.

Tenint en compte els valors obtinguts en els diferents índex d'eficiència energètica, de cada edifici s'estreuix un índex general d'eficiència energètica. Aquest s'expressa en lletres i pren valors de la A fins la G, començant pels edificis més eficients i baixant fins als que ho són menys.

És important aclarir també, que l'objectiu del nostre estudi no és obtenir una bona qualificació energètica. Sinó per obtenir les dades que el programa genera, durant el procés de càlcul d'eficiència de les nostres instal·lacions. Podrem comparar aquests valors amb les dades reals del consum de l'escola i podrem analitzar en quin grau és eficient el nostre edifici, en funció de quin sigui el desviament del nostre consum.

Arribats en aquest, punt, sorgeix un problema i és que l'edifici de referència que genera el programa, que consta d'una interfície igual a la del programa LIDER, es calcula segons uns nivells d'ús esdeví que el sector terciari, en que sí ho estan incloses les escoles, però que poden no ajustar-se als nivells reals en un centre escolar. Poden sorgir dades que s'allunya molt del perfil d'ús de l'escola i que hauran de ser descartats.

El programa, com en el cas de la instalació d'il·luminació, pren com a valors de referència, els màxims exigits a la normativa, de manera que s'obté un sistema sobredimensionat. Això provoca que en la comparació amb l'edifici objecte, el seu sistema d'il·luminació sembi molt més eficient ja que s'ha comparat amb un sistema que consumeix més i amb un perfil d'ús molt diferent.

Tot i així, es tindran en compte les dades dels rendiments dels equips, de la demanda dels sistemes i el seu consum per poder avaluar el grau d'eficiència del nostre edifici. Els càlculs que realitza el programa en el càlcul de la demanda, ens serveixen per establir quina és la demanda mensual dels equips de l'escola. Aquest grau d'eficiència ens vindrà donat per la formula:

\[
	\text{CEE} = \frac{\text{Energia consumida / Energia necessària}}{100}
\]

SI CEE < 100% : EFICIENT
SI CEE > 100% : INEFICIENT

* però en el cas de la comparació entre la demanda i els consums reals, es donarà un marge del 20%, degut a problemes de rendiment i tasques de manteniment, a més de la seva antiguitat.

A continuació s'exposaren les dades dels diferents sistemes de l'edifici; les seves demandes de calefacció o aigua calenta sanitària i el consum final de combustible. Els gràfics es troben a la mateixa escala per tal de poder comparar quina és la seva respectiva influència en el consum final i únic de l'edifici.

Com es recollia a la Fase 1: Aixeament de dades, a l'edifici A, una caldera ROCA TD-85 que utilitza el gasoil com a combustible, cobreix la demanda tèrmica de calefacció de l'edifici. La instal·lació comptava amb conduccions i radiadors de ferro de molta antiguitat i un acumulador hidropneumàtic IBAlONDO 200l CMF.

Es pot observar al gràfic adjunt, com la demanda de calefacció, es distribueix des de l'octubre fins al maig. Aquesta arriba al punt més alt al gener, amb un valor de 10.778,46 kWh, tot i que el desembre demanda un quantitat similar d'energia. També és molt clar, com el consum de combustible, es troba per sobre de la demanda teòrica de l'edifici de calefacció. Probablement, el rendiment de la caldera i del sistema en general, hagi diminuït degut al pas del temps.

El programa Calener VyP no contempla la possibilitat de dividir el consum de calefacció per aigua calenta en zones, i poder així assignar una intensitats d'ús a cada un. En aquests edificis, ens trobem amb el cas de la capella. És un espai climatitzat però que s'utilitza en comptades ocasions durant l'any. Es per això que s'han eliminat les unitats terminals d'aquest espai, ja que sinó comptaria que s'utilitzin a diari, i en un espai tan gran, tindria una repercussió molt gran en el consum de combustible.

<table>
<thead>
<tr>
<th>TOTAL ANUAL (kWh)</th>
<th>Demandà CÀL</th>
<th>Consum Combustible</th>
<th>Eficiència CEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.384,92</td>
<td>79.090,49</td>
<td>135,53</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.42 Resum de resultats d'eficiència energètica de l'edifici A. Font: Elaboració pròpia.

Fig. 5.43 Evolució anual de la demanda de calefacció i del consum de combustible. Font: Elaboració pròpia.
> Edifici B

Aquest és l’edifici més gran i és obvi com suposa la major part del consum de l’escola. El sistema consta d’una caldera ROCA GO-300-10/ que funciona amb gasoli. Aquesta caldera comparteix amb un cremador ROCA Prosmartic 32-GO i un quadre de control ROCA CC-102. Completan la instal·lació un vas d’expansió ZILMET CAL-Pro130 i els elements emissors de calor recollits a la Fase 1: Aixecament de dades.

De la mateixa manera que en l’edifici A, l’edifici requereix de la caldera de calefacció des de l’octubre fins al maig. Per altra banda, la diferència entre la demanda i el consum de combustible sembla més desproporcionada. Aquesta és un sistema molt antic i tampoc es capaç d’ofereir un bon rendiment degut al seu funcionament. La major exigència a la caldera del sistema, pronuncia aquesta diferència i disminueix la quota d’eficiència d’aquest sistema en particular.

A l’edifici B trobem la sala d’actes de l’escola. Aquest espai es troba en una situació igual a la capella de l’edifici A. És molt important tenir-ho en compte ja que el consum teòric de calefactor la sala d’actes a diari, podria invalidar els resultats finals d’eficiència del sistema.

TOTAL ANUAL (kWh)

<table>
<thead>
<tr>
<th>Demanda</th>
<th>Consum</th>
<th>Eficiència</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
<td>122.630,65</td>
<td>178.442,99</td>
</tr>
</tbody>
</table>

De la mateixa manera que en l’edifici A, l’edifici requereix de la caldera de calefacció del sistema de calefacció de l’edifici. En aquest cas, tots dos funcionen amb gas natural.

La caldera del sistema de calefacció es va suposar que era una caldera FERROLI Pegasus F-251, amb un vas d’expansió ZILMET CAL-Pro/24 i un circulador ROCA PC-1030. Les canonades del sistema son de ferro fos, així com els emissors emissors de calor. Aquest edifici és el que té un menor nombre de radiadors i una superfície menor d’espai a calefactor de manera que la potència de sistema de calefacció és la més baixa de l’escola.

S’observa com clarament és l’edifici amb una menor quota de consum d’energia de l’escola. Aquest edifici segueix la mateixa distribució de la demanda de calefacció que els altres dos edificis. Degut a que són els mesos més fred de l’any, en aquest cas també es requereix una major quantitat d’energia en els mesos de gener i desembre, amb això d’un màxim de 4.653,86 kWh.

TOTAL ANUAL (kWh)

<table>
<thead>
<tr>
<th>Demanda</th>
<th>Consum</th>
<th>Eficiència</th>
</tr>
</thead>
<tbody>
<tr>
<td>19:192,63</td>
<td>28.667,76</td>
<td>149,36</td>
</tr>
</tbody>
</table>

Fig. 5.44 Resum de resultats d’eficiència energètica de l’edifici B. Font: Elaboració pròpia.

Fig. 5.45 Evolució anual de la demanda de calefacció i del consum de combustible. Font: Elaboració pròpia.

Fig. 5.46 Resum de resultats d’eficiència energètica de l’edifici C. Font: Elaboració pròpia.

Fig. 5.47 Evolució anual de la demanda de calefacció i del consum de combustible. Dades referents a la caldera FERROLI Pegasus F-251. Font: Elaboració pròpia

Fig. 5.48 Resum de resultats d’eficiència energètica de l’edifici C. Font: Elaboració pròpia.

Fig. 5.49 Evolució anual de la demanda d’aigua calenta sanitària i del consum de combustible. Dades referents a la caldera ACV Heat Master N 60. Font: Elaboració pròpia
A l’hora de valorar els resultats generals cal tenir en compte les circumstàncies exposades anteriorment. Aquesta no deixa de ser una simulació virtual d’un edifici que existeix a la realitat. La fidelitat dels resultats depènira en directa mesura de l’adequació d’aquesta maqueta a l’edifici real. No només en els seus elements constructius sinó en els components i al gestió que es pugui fer en el programa del sistema de climatització.

Malauradament el programa Calener VyP, no dona masses opcions per adaptar els sistemes de calefacció d’aigua calenta. Les opcions de calefacció unizona i multizona compten amb les mateixes característiques sense donar la possibilitat de gestionar les diferents zones del sistema per separat.

El resultat del sistema de calefacció de l’escola és INEFICIENT. Cal tenir en compte que la demanda d’aigua calenta sanitària hauria de ser més reduïda ja que durant molts mesos de l’any, no s’utilitzen les dues de l’escola i hauria de tenir un impacte menor en el consum de combustible.

<table>
<thead>
<tr>
<th>TOTAL ANUAL (kWh)</th>
<th>Demanda CAL</th>
<th>Demanda ACS</th>
<th>Consum Combustible</th>
<th>Eficiència CEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.178,20</td>
<td>153.810,02</td>
<td>479.721,63</td>
<td>135,51</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.50 Resum de resultats d’eficiència energètica a nivell edifici. Font: Elaboració pròpia.

A les taules de resum dels resultats del programa Calener VyP, s’expressen les repercussions de les diferents demandes energètiques en producció de CO₂ (kgCO₂/m² i kgCO₂/any).

La valoració final dels diferents edificis feta per el programa, pot diferir de la que haguem obtingut anteriorment. Això es deu a que el resultats del programa té en compte de manera general el sistema d’il·luminació, a més d’arrossegar els problemes comentats anteriorment. La valoració exposada a aquest apartat, és individual per a cada un dels sistemes de calefacció i aigua calenta sanitària, representats en el seu element més important, com és la caldera de cada un.

<table>
<thead>
<tr>
<th>Classe</th>
<th>kW/hm²</th>
<th>kW/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>D</td>
<td>59,7</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>C</td>
<td>3,40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions CO₂ calefacció</td>
<td>C</td>
<td>12,70</td>
</tr>
<tr>
<td>Emissions CO₂ refrigeració</td>
<td>A</td>
<td>0,00</td>
</tr>
<tr>
<td>Emissions CO₂ ACS</td>
<td>A</td>
<td>0,00</td>
</tr>
<tr>
<td>Emissions CO₂ il·luminació</td>
<td>C</td>
<td>9,70</td>
</tr>
<tr>
<td>Emissions CO₂ TOTALS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 5.52 Quadre de resum dels resultats de l’edifici A del programa Calener VyP. Font: Calener VyP.

<table>
<thead>
<tr>
<th>Classe</th>
<th>kW/hm²</th>
<th>kW/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>D</td>
<td>60,00</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>C</td>
<td>5,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions CO₂ calefacció</td>
<td>D</td>
<td>18,50</td>
</tr>
<tr>
<td>Emissions CO₂ refrigeració</td>
<td>A</td>
<td>0,00</td>
</tr>
<tr>
<td>Emissions CO₂ ACS</td>
<td>A</td>
<td>0,00</td>
</tr>
<tr>
<td>Emissions CO₂ il·luminació</td>
<td>C</td>
<td>8,60</td>
</tr>
<tr>
<td>Emissions CO₂ TOTALS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 5.54 Quadre de resum dels resultats de l’edifici B del programa Calener VyP. Font: Calener VyP.

<table>
<thead>
<tr>
<th>Classe</th>
<th>kW/hm²</th>
<th>kW/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>59,50</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>D</td>
<td>14,80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions CO₂ calefacció</td>
<td>C</td>
<td>10,80</td>
</tr>
<tr>
<td>Emissions CO₂ refrigeració</td>
<td>A</td>
<td>0,00</td>
</tr>
<tr>
<td>Emissions CO₂ ACS</td>
<td>B</td>
<td>155,40</td>
</tr>
<tr>
<td>Emissions CO₂ il·luminació</td>
<td>C</td>
<td>8,70</td>
</tr>
<tr>
<td>Emissions CO₂ TOTALS</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 5.56 Quadre de resum dels resultats de l’edifici C del programa Calener VyP. Font: Calener VyP.
5.3. Anàlisi del Funcionament

En aquesta fase del treball, l'objectiu és determinar quin pot ser l'impacte de l'ús que es fa dels diferents sistemes sobre la demanda i el consum final d'energia. Fins ara, només ens remetíem a les dades tècniques dels components dels sistemes i a les característiques constructives i arquitectòniques de l'edifici. A partir d'aquí, es podrà determinar en quins aspectes de la gestió dels sistemes es pot actuar per tal de fer que sigui més eficient.

5.3.1. Ocupació

L'escola Padre Damián de los Sagrados Corazones és un centre en què s'imparteixen els cursos de la Educació Secundària Obligatòria i de Batxillerat. Com s'ha exposat al Seguiment de la Intensitat d'Ús, aquests són cursos en què la assistència a classe és primordial per a l'eficiència.

És per això que la ocupació de l'escola, és una constant que es repeteix setmanalment. El gruix de la ocupació ve donat per el nombre d'alumnes que assisteixen a diari a l'escola i per els seus horaris:

> ESO: de dilluns a divendres, de 9:00-13:30h i de 15:00-17:00h
> 1r de Batxillerat: dilluns, de 8:00-14:30h dimarts i dijous, de 8:00-13:30h i de 15:00-17:00h
dimecres i divendres, de 8:00-13:30
> 2n de Batxillerat: dilluns, dimecres i divendres, de 8:00-13:30h
dimarts i dijous, de 8:00-13:30h i de 15:00-17:00h

La concentració de persones als diferents espais de l'escola al llarg d'una setmana, provoca una diferent ocupació global en aquest espais. Sobre aquesta ocupació:

> els espais destinats a les aules on s'imparteixen les assignatures troncals o comuns, són els espais amb una ocupació més alta i mantinguda al llarg de la setmana.

> a la zona del departaments del professorat, l'ocupació és més baixa però també és manté pràcticament constant. Aquesta zona es troba a la planta primera de l'edifici B i es produeix un flux constant d'ocupació, mantingint un marge de professors que es manté als departaments.

> els tres espais destinats a menjador són els que tenen una major intensitat d'ús. Això es deu, a que registren dos franges d'ocupació molt elevades al dia. La primera és durant l'hora d'esbarjo del matí, en que el menjador està obert als alumnes, i a l'hora del dinar, en que al menjador es manté al màxim de la seva ocupació durant el temps que s'allarga el dinar.

> les aules de matèries específiques, com les de música i dibuix tècnic i l'aula d'informàtica, tenen una ocupació puntual a les hores en que s'imparteix classe. Són aules que tenen un menor aprofitament que les aules de grups de tutoria però que són necessàries per a l'escola. Dins d'aquest grup també es poden incloure els vestuaris de l'escola, que no compten amb una ocupació perdurable, però que concentra grans ocupacions en moments específics.

> els laboratoris científics, la capella de l'escola, el gimnàs, la biblioteca i la sala d'actes de l'escola es poden agrupar en una sola tipologia d'ús. Aquests espais tenen un ús molt específic ja que compten amb les instal·lacions i equips destinats a l'activitat que s'hi desenvolupa i una superfície major a la resta d'espais ja que s'utilitzen en molt poques ocasions al llarg del curs escolar.

> a l'escola trobem molts espais que es troben sense ús i que per tant tenen una ocupació negligible. S'inclouen també espais que han estat inhabilitats o als que no es permet l'entrada dels alumnes, com les golpes de l'edifici A i els antics dormitoris situats a sobre de la capella.

La concentració de persones als diferents espais de l'escola al llarg d'una setmana, provoca una diferent ocupació global en aquest espais. Sobre aquesta ocupació:

> els espais destinats a les aules on s'imparteixen les assignatures troncals o comuns, són els espais amb una ocupació més alta i mantinguda al llarg de la setmana.

> a la zona del departaments del professorat, l'ocupació és més baixa però també és manté pràcticament constant. Aquesta zona es troba a la planta primera de l'edifici B i es produeix un flux constant d'ocupació, mantingint un marge de professors que es manté als departaments.

> els tres espais destinats a menjador són els que tenen una major intensitat d'ús. Això es deu, a que registren dos franges d'ocupació molt elevades al dia. La primera és durant l'hora d'esbarjo del matí, en que el menjador està obert als alumnes, i a l'hora del dinar, en que al menjador es manté al màxim de la seva ocupació durant el temps que s'allarga el dinar.

> les aules de matèries específiques, com les de música i dibuix tècnic i l'aula d'informàtica, tenen una ocupació puntual a les hores en que s'imparteix classe. Són aules que tenen un menor aprofitament que les aules de grups de tutoria però que són necessàries per a l'escola. Dins d'aquest grup també es poden incloure els vestuaris de l'escola, que no compten amb una ocupació perdurable, però que concentra grans ocupacions en moments específics.

> els laboratoris científics, la capella de l'escola, el gimnàs, la biblioteca i la sala d'actes de l'escola es poden agrupar en una sola tipologia d'ús. Aquests espais tenen un ús molt específic ja que compten amb les instal·lacions i equips destinats a l'activitat que s'hi desenvolupa i una superfície major a la resta d'espais ja que s'utilitzen en molt poques ocasions al llarg del curs escolar.

> a l'escola trobem molts espais que es troben sense ús i que per tant tenen una ocupació negligible. S'inclouen també espais que han estat inhabilitats o als que no es permet l'entrada dels alumnes, com les golpes de l'edifici A i els antics dormitoris situats a sobre de la capella.

Com es pot observar, el centre obre les portes entre les set i les vuit del matí, just abans de l'inici de les classes de batxillerat. De vuit a nou, segueix augmentant l'ocupació fins a arribar al màxim d'ocupació de 511 persones.

Després es produeix una vall a l'hora de l'esmorzar, ja que alguns alumnes de batxillerat i professors, surten a esmorzar a fora del centre de l'escola. L'escola compta amb 32, que s'imparteixen totes les assignatures que s'imparteixen al centre, i també amb 10 persones més, encarregades del servei de cuina i neteja, manteniment i administració.

Fig. 5.57 Gràfic de la ocupació mitjana diària en persones. Font: Elaboració pròpia.

Al gràfic, es mostra l'evolució de la ocupació al recinte al llarg d'un dia. Això inclou els alumnes de tots els cursos, el professorat i el personal de l'escola. L'escola compta amb 32, que s'imparteixen totes les assignatures que s'imparteixen al centre, i també amb 10 persones més, encarregades del servei de cuina i neteja, manteniment i administració.

Com es pot observar, el centre obre les portes entre les set i les vuit del matí, just abans de l'inici de les classes de batxillerat. De vuit a nou, segueix augmentant l'ocupació fins a arribar al màxim d'ocupació de 511 persones.

Després es produeix una vall a l'hora de l'esmorzar, ja que alguns alumnes de batxillerat i professors, surten a esmorzar a fora del centre de l'escola. Des de les onze i mitja, fins a la una i mitja, es torna a mantenir l'ocupació màxima durant el segon torn de les classes del matí.

Quan arriba la pausa del dinar (13:30h), es queden només al centre els alumnes de la ESO i una part del professorat, fins que a les tres de la tarda, es reprenen les classes. La ocupació torna a asendir, però no fins el màxim, sinó que es reduix fins les quatre-centes seixanta persones. Això es deu a que els alumnes de batxillerat, compten amb tres tardes llargues.

A partir de les cinc de la tarda, l'ocupació es reduirà dràsticament amb el final del dia escolar i la sortida dels alumnes. Fins a les vuit de la tarda, continua reduint-se lleument a mesura que van marxant els professors i el personal de l'escola.
5.3.2. Gestió i Manteniment

Com s'ha exposat anteriorment, a l'escola es compta amb sistemes per a gestionar el consum i el funcionament de les instal·lacions.

La mesura més favorable, és la programació de l'encesa del sistema de calefacció durant els mesos d'hivern. Encenent el sistema a les set del matí, es garanteix un increment de temperatura a les aules en el moment en que s'inicien les classes a les 8 del matí. En el moment en que va creixent la ocupació del centre, s'afegeix al rendiment del sistema, els guanys per càrrega interna i la radiació derivats del funcionament del centre. Des de l'hora de dinar, l'apagada del funcionament del sistema, pretén aprofitar l'energia residual continguda al sistema i l'acumulació de temperatura per radiació solar. Seguir aquesta rutina, suposa un comportament molt responsable i eficient a l'hora de controlar el consum final d'energia.

La zonificació dels sistemes de calefacció dels edificis A i B, també suposa un gran estalvi del consum final d'energia. La divisió dels sistemes en diferents circuits, permet diferenciar l'encesa de la climatització d'espais molt grans com la capella i la sala d'actes. Malauradament, no succeeix el mateix amb l'espai del gimnàs, que acumula una gran demanda de calefacció per a gestionar el consum i el funcionament de les instal·lacions.

Vers les tasques de manteniment, és vital la presència d'una persona responsable al centre, que concentri totes les tasques de control dels sistemes i del manteniment de les instal·lacions. Això suposa una agilització de les feines necessàries, per assolir i garantir un bon rendiment del centre i una major eficiència en el consum final d'energia.

5.4. Anàlisi dels Consums

En aquest apartat del treball, ens disposem a realitzar un anàlisi de les dades reals de consum de fonts energetiques i recursos, proporcionades per l'escola a través de les factures de les companyies subministradores. Mitjançant la representació en gràfiques d'aquestes dades, és molt fàcil visualitzar l'evolució de cada un dels recursos al llarg del temps.

Aquestes gràfiques, ens permeten analitzar com influeixen les activitats docents a les que esta destinada l'escola en el consum de recursos i també detectar possibles anomalies o files del rendiment dels sistemes, per tal de trobar-hi una solució.

Abans de començar amb l'anàlisi cal dir que no ha estat possible obtenir totes les dades de consum de l'escola, de manera que en alguns cursos escolars no es disposa del consum real de tots els períodes de facturació. És per això que aquestes gràfiques no representen la realitat amb total fidelitat, però si mostren la tònica general de demanda de recursos derivada del funcionament del centre. A les taules, la falta de dades es representa amb un valor de consum de 0.

5.4.1. Energia Elèctrica

Com es pot observar en el gràfic següent, el consum d'energia elèctrica ha seguit una tendència a l'açà, degut al major nombre d'elements que consumeixen electricitat amb que s'ha dotat l'escola.

Al curs 2007-2008, el consum d'energia elèctrica es situava al voltant dels 45.000 kWh. Des de llavors, s'ha equipat cada aula de l'escola amb un projector i uns altaveus, per tal de poder introduir elements multimèdia a la explicació de les assignatures. A més, els alumnes també tenen la possibilitat de seguir les classes amb ordinadors portàtils, que suposa un afegit més a la demanda d'energia elèctrica.

Aquest valor s'estabilitzarà, si es pren com a referència l'últim any escolar, a la franja entre els 50.000 i 60.000 kWh anuals. El valor màxim de consum d'energia elèctrica es va assolir al curs 2009-2010, en que es va arribar al valor de 57.806 kWh, mentre que el més baix es va produir el curs següent, en que es van consumir al voltant dels 40.000 kWh.
5.4.2. Gas Natural

En el cas de l’escola Padre Damián de los Sagrados Corazones, el consum de gas depèn realment de molts pocs factors, que a més són molt estables. Aquest, es regeix per la demanda d’aigua calenta sanitària dels vestuaris, com a consum constant al llarg del curs, i de la climatologia, que regirà el funcionament del sistema de calefacció. Quant més s’allargui l’hivern i més fredes siguin les temperatures, es pot esperar un major consum de gas a l’escola.

En aquest gràfic del consum mensual de gas, separa, en funció del curs escolar, es pot apreciar com es reparteix el mateix patró de consum en tots els anys. La demanda de gas natural comença al setembre, amb l’inici de les classes i amb l’ús de les dutxes dels vestuaris, després de la classe d’Educació Física. Entre l’octubre i el novembre, amb l’arran de la freda, el consum de gas s’accentua, ja que es deuen començar a utilitzar els radiadors cap al final de periode. Però és al desembre i al gener quan s’assoleix el major consum de gas de l’any, degut a les temperatures.

La línia que marca el curs 2010-2011 no es en absolut representativa. A les factures proporcionades, es facturava el gas consumit en el curs, en només una mensualitat, que no hi ha possibilitat de saber quina és la corresponent proporció mensual d’aquest consum.

5.4.3. Gasoil

Com s’ha comentat a l’apartat 4.2 Dades Dinàmiques, no es pot realitzar un seguiment sobre el consum de gasoil, ja que no hi ha cap empresa que facturi el consum periòdicament. Segons les dades de l’escola, el consum mitjà anual de gasoil es troba entre els 8.000 i els 10.000 litres. Un litre de gasoil equival a 10,1 kWh, de manera que anualment es generen entre 80.800-101.000 kWh.

No es pot realitzar un seguiment del consum de gasoil, però amb les dades del programa Calener VyP, podem realitzar una gràfica que reflecteixi la demanda de gasoil. Tot i que no és una informació exacte, ens dona una idea d’en quina proporció es reparteix el consum de gasoil.

Com es pot observar al gràfic de la demanda teòrica de gasoil, aquest es distribueix entre els mesos d’octubre i maig. El mes amb un major consum és gener (34.971,05 kWh) seguit pel desembre. El consum de gasoil, s’adapta a l’evolució de les temperatures i de l’estació hivernal.

5.4.4. Aigua

Al gràfic de consums per curs, s’observa com als tres últims anys, aquest s’ha estabilitzat al voltant dels 950 m³. Entre els mesos de novembre i gener de l’any 2008, es va registrar un consum realment alt de 2.892 m³.

La facturació de l’aigua es realitza en períodes trimestrals, el que suposa obtenir només quatre dades del consum anual d’aigua. A priori no ens permetria realitzar una anàlisi exhaustiu de com i quan es consumeix l’aigua, però en aquest cas no ha estat així. Els resultats mostren una evolució del consum trimestral d’aigua constant al llarg de l’any. Queda patent que l’any 2007-2008 és el que registra un consum inferior i el valor extraordinari del segon trimestres del curs 2008-2009.

A les gràfiques s’observa com el consum augmenta als trimestres més calorosos fins els 300 m³, mentre que als mesos d’hivern, aquest es reduïx i es manté constant en un valor mitjà de 200 m³.
6. Fase 3: Diagnòstic i Línies d’Actuació

Arrivats en aquesta fase del treball, ja podem definir quins són els factors que poden condicionar el comportament de l’edifici, minvant les seves característiques i altres aspectes a tenir en compte per millorar el funcionament dels sistemes de l’edifici i el seu funcionament general.

6.1. Línies d’Actuació

Les línies d’actuació agrupen les possibles intervencions en l’edifici en els diferents àmbits sobre els que s’ha fet aquest estudi. Al següent apartat, 6.2 Diagnòstic, s’exposaran els problemes i disfuncions específics, que poden perjudicar el funcionament dels sistemes de l’escola i el seu rendiment. També s’inclouen altres aspectes que tot i que no tenen repercussió en el nostre ventall d’anàlisi, poden afavorir el bon funcionament de l’escola. Les Línies d’actuació es poden dividir en:

- actuacions sobre l’envolupant: aquestes actuacions estan destinades a millorar les característiques dels elements que conformen l’envolupant de l’edifici. Sobretot a millorar el comportament tèrmic de tancaments i obertures, garantir l’estanqueïtat dels espais i reduir les pèrdues d’energia. L’objectiu final és reduir la demanda energètica, en concepte de climatització dels espais de l’escola, gràcies a la possibilitat de l’envolupant de mantenir les condicions d’habitabilitat.

- actuacions sobre els sistemes: aquest tipus d’intervencions, pretenen millorar el funcionament dels sistemes de l’edifici i el seu grau d’eficiència. D’aquesta manera es reduiria el consum final de combustible i la seva repercussió econòmica. En aquest apartat, es contempla la possibilitat d’introduir les energies renovables, que no només millorin les prestacions dels sistemes sinó que reduixin els índex d’emissions de CO₂.

- actuacions relacionades amb la gestió dels recursos energètics: en aquest apartat, més que actuacions sobre l’edifici, es tracta de implantar rutines de comportament i millores en la gestió dels recursos. D’aquesta manera es contribueix, al marge dels aspectes físics i característics dels sistemes, a reduir la demanda i funcionament de les instal·lacions, i per tant, el consum de recursos.

6.2. Diagnòstic

A continuació ens disposem a definir quines són les deficiències o lesions que minven les propietats dels edificis, i que suposen una càrrega negativa per al consum eficient que es realitza de les fonts energètiques.

Les lesions o errors que s’exposaran, són aquelles que incideixen en els àmbits en que s’ha realitzat aquest estudi. Per exemple, comprovar si l’edifici manté la seva capacitat portant, no és un tipus de lesió o patologia que tingui una repercussió directe sobre l’eficiència energètica, tot i que per això no és menys important.

Aquestes lesions ens poden ajudar a justificar els resultats obtinguts amb els programes utilitzats no només de sistemes o tancaments, sinó també del funcionament de l’escola a nivell general. A partir d’aquest punt, es podran definir actuacions concretes que influíxin en els tres aspectes que es recullen a l’apartat anterior: les intervencions sobre l’envolupant, els sistemes i la gestió dels recursos energètics. Aquestes, es definiran més endavant, a la Fase 4: Propostes d’intervenció.

Tancaments extènirs de façana: Com s’ha exposat anteriorment en aquest treball, els materials i la composició dels tancaments extènirs de l’envolupant no compleixen amb les exigències mínimes marcades a la normativa. Els edificis de l’escola són de construcció antiga i han quedat endarrerits respecte a l’evolució i les condicions dels edificis actuals.

Els resultats dels programes utilitzats, ens han demostrat que gran part dels tancaments dels tres edificis, sobrepassen els límits de transmilitància tèrmica recollides al BB HE-1 Limitació de la demanda energètica.

Les tres tipologies de façana exterior, compostes a base de fàbriques de maó, superen entre un 45-50% els valors màxims de transmilitàncies tèrmiques. Aquest gran déficit en les propietats dels murs, comporten unes grans pèrdues tèrmiques cap a l’exterior, especialment durant l’hivern. També repercuteix en un major consum de combustible per part del sistema climatització, reduint la seva eficiència.

Com s’ha comentat anteriorment, l’objectiu d’aquest treball és precisament, millorar l’ús de les energies i el consum final de combustible de manera que aquest serà un àmbit de l’edifici, objecte d’intervencions. Poden suposar una gran disminució de la demanda energètica anual de climatització per la gran superfície d’envolupant que representen aquests tancaments.
Particions horitzontals interiors:

Els resultats del programa LIDER mostren també que algunes de les particions horitzontals i verticals interiors dels edificis no compleixen tampoc amb els límits establerts al DB HE-1 del CTE.

Els sostres interiors unidireccionals amb peces ceràmiques de l'edifici A i B superen en un 34% el valor límit de la transmitància màxima per a sostres, mentre que els sostres de l'edifici C acumulen una desviació d'aproximadament el doble de la màxima permesa. Aquests valors tan elevats són fruit de l'increment de la demanda en quant als tancaments de l'edifici de les normatives, combinats amb l'antiguitat dels tres edificis.

Tancaments en contacte amb el terreny:

Ja siguin tancaments horitzontals de solera o verticals com a murs de contenció de terres, superen els valors límits que es recullen al DB HE-1, com s'ha comentat en apartats anteriors. El sostre unidireccional en contacte amb el terreny dels edificis A i B i el reticular de formigó de l'edifici C doblen amb escreix els límits de transmitància tèrmica exigits. Per altra banda, el mur en contacte amb el terreny del gimnàs, supera el límit de transmitància tèrmica en un 20%.

Com succeixe amb altres elements de l'envolupant, sense una intervenció posterior per millorar les capacitats tèrmiques dels tancaments, aquestes no han estat capaces de garantir les condicions de confort interior establertes avui en dia.

Tipologies d'obertures:

El mateix programa LIDER, ha donat com a resultats que tres dels quatre tipus de finestres de l'escola, que suposen la gran majoria, no compleixen tampoc amb les exigències de la Limitació de la demanda energètica. Els marcs de les obertures de fusta i ferro, no compten amb trencament de pont tèrmic. A més, el rendiment tèrmic del vidre senzill de les finestres, no és comparable als vidres multicapa habituals. Per altra banda, les quatre finestres amb marc d'alumini de l'edifici A, són les úniques que compleixen les directrius de la normativa. Tot i així, en el cas de les finestres, la desviació respecte al límit, no és tan elevada (entre un 15-30%).

Cal afegir, que algunes de les finestres no tenen un bon tancament de manera que no asseguren una bona estanquetat dels espais. Aquesta circumstància s'ha d'afegir a les característiques tèrmiques anteriors, tot i que no se'n poden quantificar les pèrdues com en el cas de les transmitàncies.

Es pot concloure que les obertures de la escola, també centraran algunes de les propostes d'intervenció recollides a l'apartat següent.

Solució constructiva deficient:

La zona més al nord de l'edifici B, on es troben els departaments de professors, la biblioteca i les aules de dibuix i de música, compten amb una gran quantitat d'obertures, en dos dimensions diferents. Totes dos són finestres amb marc de ferro i vidre senzill.

Aquestes obertures es van tancar degut a la remodelació dels espais de l'edifici B, que es va realitzar quan es va construir l'edifici C. Abans del canvi, en aquesta zona de l'edifici es trobaven els dormitoris que van substituir els de l'edifici A, que es troben a sobre de la capella. Algunes de les obertures menor tamany, es van tancar per què en aquests espais ara són aules, o departaments de professors.
Corrosió en finestres metàl·liques:

Algunes de les finestres metàl·liques del centre mostren corrosió en alguns punts conflictius. Normalment es troba a les cantonades dels marcs, a les frontisses i a les trobades amb els murs de la façana.

Aquesta lesió provoca una pèrdua de material del marc que si es perllonga, afectaria a l’estanquitat de l’obertura i podria convertir-se en una gran pèrdua de pèrdues energètiques. Com succeeix amb el mal tancament de les obertures, aquest és un efecte que no podem quantificar, però que suposaríem una baixa percentatge del conjunt de pèrdues dels espais.

Fig. 6.9 i 6.10 Lesió del finestral al menjador de l’edifici A i corrosió a les finestres d’un pati interior de l’edifici B. Font: Elaboració pròpia.

Situció de la caldera d’aigua calenta sanitària de l’edifici C:

Com s’ha explicat a l’apartat de les Dades estatístiques, a l’edifici A hi ha dues calderes. La que abasteix d’aigua calenta les dutxes del vestuari, es troba en una petita cambra a l’exterior, per sota del pas elevat entre els edificis Bi C. És una zona en ombra i mig soterrat.

D’aquesta manera, la caldera es troba en una zona de baixes temperatures que juga en contra del rendiment de la caldera. Aquesta situació s’agreuja degut a l’estat en que es troba la caldera. La caldera no compta amb la carcassa metàl·lica exterior de manera que el vas de combustió queda al descobert a l’exterior.

Les pèrdues de temperatura poden ser molt elevades, ja que a més la demanda d’aigua calenta a les dutxes s’allarga durant tot el curs escolar, coincidint amb l’hivern.

Mal aïllament dels conductes d’aigua calenta del sistema de calefacció:

A l’edifici A, en que el sistema de calefacció utilitza les conduccions originals de la vivenda unifamiliar, aquest no transcorren emportats per la paret sinó que es troben a la vista. En el seu transcurs, els conductes de ferro de la instal·lació no porten cap tipus d’aïllament per evitar pèrdues de temperatura i podem reduir l’efectivitat de tot el sistema.
Aprofitament de la llum solar:

En la línia de l'anàlisi dels edificis del centre, el primer pas és avaluar com es comporta l'edifici i quines són les seves necessitats tenint en compte les seves característiques arquitectòniques i la seva composició constructiva. En el cas del sistema d'il·luminació, la llum artificial supleix la demanda que la llum natural no pot suplir de manera que el seu màxim aprofitament és vital per tal de reduir la demanda energètica de l'escola.

Durant una de les visites al centre, es va notar que les llumeres de la coberta que aporten llum natural a la caixa d'escala que comunica la planta soterrani amb la planta primera, proporcionaven una llum tènue i filtrada els dies que el cel no estava clar.

El material plàstic (PVC) s'ha enfosquit a causa de l'exposició perillosa a la radiació solar, de manera que no s'obté el màxim de llum natural irradiada. En aquest cas és un bon punt a reparar, ja que conjuntament amb algunes obertures a l'exterior en plantes inferiors, ens podria permetre prescindir de la il·luminació artificial.

Aprofitament de la llum natural a la caixa d'escala de l'edifici B:

Il·luminació deficient en espais de l'escola:

A la secció d'anàlisi de la demanda luminica, es va estudiar la disposició i funcionament de les aules en diferents zones i orientacions de l'escola. Tot i així, durant la inspecció prèvia de l'escola, es van detectar zones en que el sistema d'il·luminació no responia a les necessitats d'alguns dels espais.

En altres, la seva planificació no i disposició no permetia extreure el major rendiment de la potència de les lluminàries. Amb la mateixa intenció de millorar el sistema de l'apartat de l'aprofitament solar, la manera de millorar-ne l'eficiència passa per un bon dimensionat de les àmbits. No només per garantir els nivells mínims de lux en els diferents espais, sinó també per ajustar els nivells d'il·luminació artificial a les estàndards d'eficiència energètica.

Aprofitament de la llum natural a la lluerna de la caixa d'escala de l'edifici B:

Il·luminació deficient en espais de l'escola:

Aprofitament de la llum natural a la lluerna de la caixa d'escala de l'edifici B:

Aprofitament de la il·luminació i eficiència:

Durant les visites a l'escola, en algunes ocasions es van detectar mals usos i comportaments vers el sistema d'il·luminació. Aquests comportaments són tals com deixar les llums d'un passadís enceses quan no hi ha ningú en aquell moment, persianes completament baixades sense aprofitar la llum natural o llums de banys permanentment enceses. Aquest usos del sistema d'il·luminació suposen un impacte molt reduït en el consum final d'electricitat però és un consum fàcilment evitable. Ja sigui a través d'alguna mesura de millora en el sistema o fomentant el millor ús de les instal·lacions.
Minimització de les pèrdues energètiques:

També es van detectar comportaments que suposen un malbaratament d'energia a través de pèrdues tèrmiques del sistema de calefacció. En les últimes visites durant el mes de gener, es van trobar algunes portes exteriors que es trobaven obertes durant hores lectives, de manera que ningú hi transitava. Si es mantenen obertes es converteixen en un punt que acumularia moltes pèrdues de temperatura durant els dies d'hivern. Com en el cas anterior, és una situació fàcilment revertible.

Fig. 6.23 i 6.24 Exemples de portes obertes durant mesos d'hivern. Font: Elaboració pròpia.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
7. Fase 4: Propostes d'Intervenció

Aïllament interior dels tancaments exteriors de l'envolupant:

Diagnosi:

Degut a la composició dels murs exteriors dels edificis, aquests acumulen una gran quantitat de pèrdues que provoquen una elevada demanda energètica, especialment de calefacció. També, tot i que no es poden quantificar, s'han de considerar les pèrdues per irregularitats en els tancaments i en les unions amb altres elements. L'objectiu d'aquesta proposta és disminuir les transmissitències dels tancaments exteriors de l'envolupant.

Proposta d'intervenció:

La proposta consisteix en aïllar els tancaments de façana amb panells semirígids de llana de roca de 50 mm, que té unes bones característiques tèrmiques i acústiques. Aquests panells es recolzen sobre una subestructura metàlica i són de fàcil instal·lació. La proposta implica:

- Retirar l'acabat inferior dels forjats i deixar a la vista els elements estructurals.
- Instal·lació de perfiles metàl·lics com a fixació per als panells de llana de roca.
- Col·locar els panells de llana de roca de 6 cm amb acabat de guix.

Aïllament inferior dels sostres interiors:

Diagnosi:

En el cas de les particions horitzontals de l'escola, també suposeu un punt del flux de pèrdues de temperatura, amb el conseqüent augment de la demanda tèrmica, tot i que en menor mesura que els tancaments de façana. La intervenció, pretén limitar aquestes pèrdues de la mateixa manera que a les façanes, reduint les seves transmissitències.

Proposta d'intervenció:

La intervenció pretén igualar les seves característiques a les quatre finestres amb marc d'alumini i trencament de pont tèrmic, que sí que compleixen aquests valors. Aquestes compten també amb doble vidre i cambra d'aire, i el procés per a la seva substitució seria el següent:

- Retirar les finestres actuals.
- Segellar esquerdes i substituir elements de la fàbrica lesionats o trencats.
- Regularitzar els ampits de la finestra i instal·lar les noves finestres.
- Segellar les trobades amb la façana amb silicona.

Substitució del tipus d'obertures:

Diagnosi:

Aquesta intervenció es pretén retirar les finestres que comptin amb marc de fusta a l'edifici A i C; i les de marc de ferro de l'edifici B. S'ha vist als seus respectius анаlisis, que aquests elements no compleixen tampoc amb els valors límits de transmissitències tèrmiques. Tot i que, l'envolupant exterior recull unes característiques deficientes a nivell general, els punts més febles són les obertures, de manera que és molt important reduir les pèrdues a través d'aquests elements.

Proposta d'intervenció:

La intervenció pretén igualar les seves característiques a les quatre finestres amb marc d'alumini i trencament de pont tèrmic, que sí que compleixen aquests valors. Aquestes compten també amb doble vidre i cambra d'aire, i el procés per a la seva substitució seria el següent:

- Retirar l'acabat interior de les façanes i deixar la vista les fàbriques de maó.
- Instal·l·lar la subestructura de perfiles metàl·lics.
- Cargolar els panells de llana de roca i cobrir tota la superfície exterior.

Partides pressupostàries de la intervenció:

<table>
<thead>
<tr>
<th>u.m.</th>
<th>Definició</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²</td>
<td>Aïllament amb panells de llana de roca UNE-EN 13162, de densitat 66 a 85 kg/m³ de 50 mm d'espessor, amb una conductivitat tèrmica < = 0,034 W/mK, resistència tèrmica >=1,176 m²K/W i revestiment de guix laminat ref. 406P2501205 de la sèrie Edificació Tècnica de ROCKWOOL, col·locat amb fixacions mecàniques.</td>
<td>23,11</td>
</tr>
<tr>
<td>m²</td>
<td>Aïllament amb panells de llana de roca UNE-EN 13162, de densitat 86 a 95 kg/m³ de 40 mm d'espessor, amb una conductivitat tèrmica < = 0,034 W/mK, resistència tèrmica >=1,471 m²K/W i revestiment de guix laminat ref. 406P2601204 de la sèrie Edificació Tècnica de ROCKWOOL, col·locat amb fixacions mecàniques.</td>
<td>20,22</td>
</tr>
<tr>
<td>m²</td>
<td>Finestra d'alumini lacat amb ruptura de pont tèrmic, col·locat sobre premarc, amb una fulla batent, per un forat d'obra de 198,47 cm, elaborat amb perfiles de preu alt, classificació mínima 4 de permeabilitat a l'aire segons UNE-EN 12207, classificació mínima 5A d'estanqueïtat a l'aigua segons UNE-EN 12208 i classificació mínima C5 de resistència al vent segons UNE-EN 12210, sense periana.</td>
<td>198,47</td>
</tr>
</tbody>
</table>

Font: ITcC.
Resultats de la simulació:

Per tal de comprovar l’efecte que tindrien les intervencions anteriors, s’han introduït les millores en el programa LIDER i s’han tornat a calcular els tres edificis. Com succeeix en l’avaluació dels edificis en el seu estat, aquests resultats ens demanen que observem amb una mentalitat crítica. Tot i així ens permet fer-nos una idea de l’eficàcia de les mesures i la seva teòrica repercussió.

Després d’afegir els panells aïllants en els diferents tancaments de l’envolupant, aquests han disminuït degut a la baixa transmitància dels panells de llana de roca (0,034 W/mK). A més, és una solució ideal per a rehabilitacions de muntatge fàcil i senzill.

La disminució a uns nivells per sota dels límits, de les transmitàncies els elements de l’envolupant, té un impacte directe en la demanda de l’edifici. Això és degut a un millor aprofitament dels guanys exteriors, afavoreix sobretot la demanda de calefacció, mentre que incrementa la demanda de refrigeració.

Aquest millor aprofitament dels guanys exteriors, afavoreix sobretot la demanda de calefacció, mentre que incrementa la demanda de refrigeració. Tot i així, la climatització continuarà estant per sota de la demanda de referència.

La major proporció relativa de la demanda de calefacció respecte de la de refrigeració, és un aspecte que ens afavoreix a l’hora de valorar l’eficàcia de les mesures proposades. S’ha de tenir en compte que aquestes són dades teòriques, basades al model introduït al programa, de manera que els resultats ens poden servir com a orientació, però no podem dir que siguin completament vàlids, de la mateixa manera que en apartats anteriors.

Segons els resultats del programa LIDER, si es duguessin a terme les intervencions anteriors, l’edifici A reduiria la seva de demanda d’energia 45.000 kWh en concepte de climatització. La demanda de calefacció disminuiria un 28% que contrarrestaria l’augment del 20% de la demanda de calefacció. Tot i així, la climatització continuarà estant per sota de la demanda de referència.

Aquesta és la demanda que supleix una de les caloríes de gasoil de l’escola de manera que es reduirien considerablement les emissions de CO₂ al medi ambient.
Rehabilitació energètica d’un centre docent. Acondicionament acústic-termíc i pla de manteniment

> Edifici B

Gràcies a les mesures d’aïllament i canvi de finestres, l’edifici B que és el més gran de l’escola, comptaria amb una reducció del 35% en la seva demanda de calefacció anual, que suposen gairebé 50.000 kWh/any. Com en el cas anterior, la col·locació de aïllament i la reducció de les transmissàncies dels elements de l’envolupant, provoquen un augment de la demanda de refrigeració (41% més).

L’augment de les demandes de refrigeració no té un gran impacte sobre la demanda energètica global de climatització, ja que les proporcions dels elements de l’envolupant, provoquen un augment de la demanda de refrigeració.

<table>
<thead>
<tr>
<th>Estalvi energètic</th>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de referència</td>
<td>92,7</td>
<td>92,5</td>
</tr>
<tr>
<td>proporcional relativa calefacció-refrigeració</td>
<td>72,2</td>
<td>27,8</td>
</tr>
</tbody>
</table>

Dels tres edificis del centre, aquest és l’únic en que la intervenció no té un resultat completament satisfactori. En aquest cas, l’augment de la demanda de refrigeració degut a la millora de les transmitàncies tèrmiques dels elements de l’envolupant, és d’un 70%. Amb aquests increment es situa per sobre de la demanda teòrica de l’edifici de referència.

Tot i així, la proposta disminueix la demanda de calefacció a gairebé la meitat (48%) generant un estalvi anual de 13.413,66 kWh/any.

Fig. 7.8 Resum dels resultats de la simulació de l’edifici B. Font: LIDER.

<table>
<thead>
<tr>
<th>Estalvi energètic</th>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de referència</td>
<td>99,0</td>
<td>149,3</td>
</tr>
<tr>
<td>proporcional relativa calefacció-refrigeració</td>
<td>44,9</td>
<td>55,1</td>
</tr>
</tbody>
</table>

Fig. 7.11 Resum dels resultats de la simulació de l’edifici C. Font: LIDER.

<table>
<thead>
<tr>
<th>Cost energètic de la proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost energètic LabelRock 406.110 per m² (e=50 mm)</td>
</tr>
<tr>
<td>llana de roca</td>
</tr>
<tr>
<td>nilò</td>
</tr>
<tr>
<td>guix laminat</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>Cost energètic LabelRock 406.110 per m² (e=40 mm)</td>
</tr>
<tr>
<td>llana de roca</td>
</tr>
<tr>
<td>nilò</td>
</tr>
<tr>
<td>guix la minat</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>Cost energètic finestres Series 5550 RT per m²</td>
</tr>
<tr>
<td>alumini lacat</td>
</tr>
<tr>
<td>massilla de poliuretà</td>
</tr>
<tr>
<td>massilla de silicona</td>
</tr>
<tr>
<td>neoprè</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Fig. 7.14 Quadre de resum dels costos energètics de la proposta sobre l’envolupant.

Font: TéC

<table>
<thead>
<tr>
<th>Cost energètic de la proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost energètic de la proposta sobre l’edifici A</td>
</tr>
<tr>
<td>Estalvi energètic</td>
</tr>
<tr>
<td>Reducció d’emissions de CO₂ anuals</td>
</tr>
<tr>
<td>emissions de CO₂ proposta</td>
</tr>
<tr>
<td>període d’amortització</td>
</tr>
</tbody>
</table>

Fig. 7.15 Resum de la valoració ecològica de la proposta sobre l’edifici A.

Font: Elaboració pròpia.

<table>
<thead>
<tr>
<th>Cost energètic de la proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost energètic de la proposta sobre l’edifici B</td>
</tr>
<tr>
<td>Estalvi energètic</td>
</tr>
<tr>
<td>Reducció d’emissions de CO₂ anuals</td>
</tr>
<tr>
<td>emissions de CO₂ proposta</td>
</tr>
<tr>
<td>període d’amortització</td>
</tr>
</tbody>
</table>

Fig. 7.16 Resum de la valoració ecològica de la proposta sobre l’edifici B.

Font: Elaboració pròpia.

<table>
<thead>
<tr>
<th>Cost energètic de la proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost energètic de la proposta sobre l’edifici C</td>
</tr>
<tr>
<td>Estalvi energètic</td>
</tr>
<tr>
<td>Reducció d’emissions de CO₂ anuals</td>
</tr>
<tr>
<td>emissions de CO₂ proposta</td>
</tr>
<tr>
<td>període d’amortització</td>
</tr>
</tbody>
</table>

Fig. 7.17 Resum de la valoració ecològica de la proposta sobre l’edifici C.

Font: Elaboració pròpia.

<table>
<thead>
<tr>
<th>Cost energètic de la proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost energètic de la proposta sobre l’edifici C</td>
</tr>
<tr>
<td>Estalvi energètic</td>
</tr>
<tr>
<td>Reducció d’emissions de CO₂ anuals</td>
</tr>
<tr>
<td>emissions de CO₂ proposta</td>
</tr>
<tr>
<td>període d’amortització</td>
</tr>
</tbody>
</table>

Fig. 7.18 Resum de la valoració ecològica de la proposta sobre l’edifici B.

Font: Elaboració pròpia.

<table>
<thead>
<tr>
<th>Cost energètic de la proposta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost energètic de la proposta sobre l’edifici C</td>
</tr>
<tr>
<td>Estalvi energètic</td>
</tr>
<tr>
<td>Reducció d’emissions de CO₂ anuals</td>
</tr>
<tr>
<td>emissions de CO₂ proposta</td>
</tr>
<tr>
<td>període d’amortització</td>
</tr>
</tbody>
</table>

Fig. 7.19 Resum de la valoració ecològica de la proposta sobre l’edifici C.

Font: Elaboració pròpia.
Substitució de fonts energètiques:

Diagnosi:

Les dues calderes dels edificis més antics, l’A i el B, utilitzen el gasoil com a combustible. Es proposa canviar aquestes calderes, per unes altres de potència suficient per cobrir la demanda del sistema de calefacció i que funcionin amb gas natural.

Aquest canvi comportaria una millora del medi ambient.

Proposta d’intervenció:

El canvi de la caldera és una tasca complicada i complexa que genera uns treballs addicionals afegits al canvi físic de la caldera. El procés es resumeix en:

- Retirar la caldera actual de l’edifici prenent les mesures de seguretat necessàries en aquestes operacions.
- Realitzar la instal·lació de subministrament de gas natural fins a la sala de calderes i preparació de l’espai.
- Instal·lar la caldera de gas natural, fer les connexions al sistema i realitzar proves de funcionament.

Edifici A

La caldera de calefacció d’aquest edifici de l’escola és la més antiga de l’escola i utilitzava el gasoil com a combustible. Aquesta és un font energètica que està en retrocés vers el gas natural i altres fonts més sostenibles com la biomassa.

El gasoil té unes propietats calorífiques menors que les altres fonts d’energia i és un combustible més car. Tampoc compta amb la sostenibilitat ja que genera unes emissions de CO\(_2\) majors dels gas natural.

S’ha instal·lat una caldera BAXI\-ROCA Power HT-85 de 91,6 kW de potència útil. Aquesta caldera donarà resposta a la demanda de calefacció d’aquest edifici.

Aquesta intervenció pot suposar un estalvi de gairebé un 20% de consum d’energia anual i la conseqüent reducció d’emissions de CO\(_2\) (25%).

Edifici B

Juntament amb la caldera de l’edifici anterior, aquests dos elements suposen la demanda total de l’escola de gasoil, la qual es pretén substituir amb aquesta proposta. D’aquesta manera tots els sistemes de calefacció i generació d’aigua calenta sanitària utilitzaran el gas natural com a combustible.

En aquest cas, s’ha instal·lat una caldera ROCA CPA-200 de 232,6 kW de potència nominal i 5 bar de pressió. Aquesta caldera satisfà la demanda de calefacció d’espais concrets com la sala d’actes i el gimnàs de manera que ha d’obrir un bon rendiment i eficiència.

Com en el cas anterior, el consum d’energia es redueix en un 20% fins als 53,6 kWh/m\(^2\). S’accedeix igual amb les emissions de CO\(_2\) que es reduueixen un 30%.

Partides pressupostàries

<table>
<thead>
<tr>
<th>u.m.</th>
<th>Definició</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ut</td>
<td>Desmantlage de caldera de calefacció, que utilitza el gasoil com a combustible, amb mitjans manuals i càrrega manual sobre canvi o contendor.</td>
<td>-</td>
</tr>
<tr>
<td>ut</td>
<td>Mantutlage de caldera de condensació de gas natural amb cremador, de 201 kW de potència calorífica, d’acer per calefacció, 6 bar de pressió, mantuta sobre suport amb el conjunt d’accessoris i unions.</td>
<td>4.496,79</td>
</tr>
<tr>
<td>ut</td>
<td>Mantutlage de caldera de condensació de gas natural amb cremador, de 201 kW de potència calorífica, d’acer per calefacció, 5 bar de pressió, mantuta sobre suport amb el conjunt d’accessoris i unions.</td>
<td>8.340,13</td>
</tr>
</tbody>
</table>

Cost energètic de la proposta

<table>
<thead>
<tr>
<th>Cost energètic caldera de gas (200 kW)</th>
<th>Gasoil</th>
<th>Gas natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>acer (esmaltat i inoxidable)</td>
<td>4.455 kW</td>
<td>1.221 kg CO(_2)</td>
</tr>
<tr>
<td>coure</td>
<td>5.127 kW</td>
<td>1.809 kg CO(_2)</td>
</tr>
<tr>
<td>poliuretà</td>
<td>91 kW</td>
<td>48 kg CO(_2)</td>
</tr>
<tr>
<td>PVC</td>
<td>1.421 kW</td>
<td>755 kg CO(_2)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11.094 kW</td>
<td>3.833 kg CO(_2)</td>
</tr>
</tbody>
</table>

Reducció d’emissions de CO\(_2\) i amortització ecològica

<table>
<thead>
<tr>
<th>emissions de CO(_2) proposta:</th>
<th>6.116 kg CO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>emissions de CO(_2) (gasolin):</td>
<td>110.844 kg CO(_2)</td>
</tr>
<tr>
<td>emissions de CO(_2) (gasoil):</td>
<td>53.629 kg CO(_2)</td>
</tr>
<tr>
<td>Reducció d’emissions de CO(_2) anual:</td>
<td>57.016 kg CO(_2)</td>
</tr>
<tr>
<td>període d’amortització:</td>
<td>0 anys</td>
</tr>
</tbody>
</table>

Resultats de la simulació

Fig. 7.22 Quadre de resum de les partides pressupostàries de les diferents intervencions. Font: ITc.

Quadre de resum dels costos energètics i la valoració econòmica. Font: Calener VyP.

Fig. 7.18 i 7.19 Images de les calderes de gasoil de l’edifici A i l’edifici B respectivament. Font: Elaboració pròpia.

Fig. 7.20 Comparació de consum i emissions de les dues calderes. Font: Calener VyP.

Fig. 7.21 Comparació de consum i emissions de les dues calderes. Font: Calener VyP.
Arreglar tancament d’obertures a l’edifici B:

Diagnosi:
Com es veu a les imatges, aquesta és una lesió molt exposada i ubicada en una obertures molt concretes de l’edifici B. L’ús d’una sola fila de maons perforats no proporciona un bon aïllament per a les obertures de les que es vol prescindir.

Proposta d’intervenció:
És per això que es proposa arreglar el tancament en aquests punts, completant el forat de la obertura per unificar la seva superfície amb els elements opac de l’envolupant. La intervenció constructiva seguiria el següent procés:

> Desmuntar la fàbrica que actua com a tancament a la obertura.
> Regularitzar el conjunt de la fàbrica amb peces noves, substituint les peces trencades o lesionades.
> Col·locar la fàbrica exterior vista i l’acabat de morter de ciment i enlluït de guix.

En tractar-se d’un intervenció específica sobre una lesió detectada a la façana, no se’n pot quantificar el potencial d’estalvi de la mesura, de la mateixa manera que no s’han pogut quantificar les pèrdues a través d’aquestes obertures, ja que els programes no contemplen irregularitats en els tancament exteriors.

Tot i així és una mesura necessària ja que la obertura en aquest estat és un punt molt feble de l’envolupant.

<table>
<thead>
<tr>
<th>u.m.</th>
<th>Descripció</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²</td>
<td>Paret de tancament passant de 30 28 cm d’espessor, de maó massís d’elaboració manual, HD, de 290x140x50 mm, a una cara vista, categoria I segons la norma UNE-EN 771-1, agafat amb morter industrialitzat M5 (5 N/mm²) de designació G segons la norma UNE-EN 998-2</td>
<td>64,53</td>
</tr>
</tbody>
</table>

Fig. 7.27 Quadre de resum de les partides pressupostàries de les diferents intervencions. Font: ITeC.

cost de la proposta | 377,50 €
periode d’amortització | -

Aïllament dels conductes del sistema de calefacció a l’edifici A:

Diagnosi:
En el transcurs dels conductes de la instal·lació del sistema de calefacció de l’edifici A, es va observar que aquest només comptaven amb un recobriment de pintura. El fet de que no comptin amb una protecció tèrmica provoca una pèrdua de temperatura de l’aigua i una disminució del rendiment de les unitats terminals.

Proposta d’intervenció:
És per això que es pretén recobrir aquests conductes amb una protecció de tubs flexibles de polietilè, a les zones en que es trobin exposades. No es una tasca complicada ja que el recorregut del sistema de calefacció és molt lineal i de petita envergadura. La intervenció ha de tenir en compte:

> És necessari retirar el recobriment actual de pintura i inspeccionar l’estat dels colze i altres punts conflictius de la instal·lació, a més de realitzar una revisió general.
> El tub flexible de polietilè ha d’estar fixat amb un adhesiu especial que garanteixi la seva subjecció i sigui durable.

Es proposen uns tubs basats en espumes de termoplàstics elastòmers que reduixen les pèrdues d’energia fins a un 60%. És un material flexible i resistent, amb un bon comportament vers el foc i completament reciclables i lliures de (H)CFC’s.

> Partida pressupostària

<table>
<thead>
<tr>
<th>u.m.</th>
<th>Descripció</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Recobriment d’aïllament tèrmic de tubs de coure de 20 mm de diàmetre i 7 mm d’espessor, amb grau de dificultat baix i col·locat superficialment</td>
<td>8,48</td>
</tr>
</tbody>
</table>

Fig. 7.28 Quadre de resum de les partides pressupostàries de les diferents intervencions. Font: ITeC.

cost de la proposta | 1.272,0 €
periode d’amortització | -
Millorar el funcionament de la caldera d'ACS:

Diagnosi:

La caldera d’aigua calenta sanitària de l’edifici C, es troba en una petita habitació a l’exterior ben ventilada però exposada a les temperatures exteriors. La falta de la seva carcassa metàl·lica de protecció disminueix el rendiment de la caldera per pèrdues al seu vas de combustió, agreuject per les baixes temperatures.

Proposta d’intervenció:

Per garantir unes millors condicions de treball per la caldera es proposa recuperar o reposar una nova carcassa per a la caldera, tancar l’espai en que està la caldera garantint la seva ventilació i expulsió de gasos de combustió.

- Recuperar la carcassa de la caldera original o un recanvi per a protegir la caldera.
- Col·locar una porta que tanqui l’habitatge de la caldera i el protegeixi de les condicions externores.
- Inspeccionar el seu funcionament i l’estat dels components de la instal·lació.
- Netejar i mantenir la zona del voltant de la caldera per i el seu accés. D’aquesta manera s’eviten ricsos i es genera un espai més cómode per a les tasques de manteniment.

Proposta d’intervenció:

La cúpula de metacrilat s’ajusta a les nostres necessitats, ja que el metacrilat és el plàstic més transparent que ens assegurarà una gran aportació de llum a l’interior i resisteix molt bé la incidència dels rajos solars. Es mantindrà però, la forma en cúpula de la lluerna.

- Partida pressupostària

<table>
<thead>
<tr>
<th>u.m.</th>
<th>Descripció</th>
<th>Preu (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uL.</td>
<td>lluerna quadrada de forma parabòlica, fixa, d’una llàmina de metacrilat, per a una obertura d’obra de 100x100 cm, amb sòcol prefabricat, coll locada amb fixacions mecàniques.</td>
<td>190,14</td>
</tr>
</tbody>
</table>

Instal·lació de sistemes de control de la lluminació:

Diagnosi:

Com s’ha vist a l’apartat anterior, en algunes ocasions, es mantenen llums obertes sense que sigui necessari. Suceixe sobretot en zones comuns o de pas, totes dues amb gran quantitat de lluminàries. Combinant el màxim control sobre la il·luminació i el màxim aprofitament de la llum, pot reduir en gran mesura la dependència de la llum artificial i el consum d’energia elèctrica.

Proposta d’intervenció (1):

Per optimitzar l’ús de les llàmpades, es proposa dotar les zones comuns i de pas amb sensors de presència, de manera que s’apaguin en el moment en què quedin buits. També es pretén col·locar un detector de presència a cada un dels banys de l’escola, per tal de garantir que es mantenen les llums obertes només quan sigui estrictament necessari.

Es proposa instal·lar a les zones de pas i als banys, un sistemes de detecció de presència, que encigui les llums quan detectin moviment a la zona que cobreixen els dispositius (20-25 m² individualment) i que a més adapten els nivells de lluminositat a la llum existent.

Aquest és el dispositiu OccuSwitch Wireless de la casa Philips. A les zones comuns, s’estan larar diferents dispositius connectats en xarxa, de manera que poden cobrir superfícies de fins a 160 m².

Aquest és el sistema més idoni ja que al ser un dispositiu sense fils no exigeix una nova instal·lació de cablejat.

Edifici A	planta primera	103,24 m²
Edifici A	planta segona	99,71 m²
Edifici B	planta soterrani	175,41 m²
Edifici B	planta baixa	195,88 m²
Edifici C	planta primera	151,92 m²
Edifici C	planta segona	17,74 m²
Banys	planta baixa	16,61 m²
Banys	planta primera	46,39 m²
Banys	planta segona	27,72 m²
TOTAL	-	51

| cost de la proposta | 1.500 - 2.000 € |
| període d’amortització | - |

Canvi de lluernes a la caixa d’escala de l’edifici B:

Diagnosi:

Les lluernes de la caixa d’escala estan fetes de PVC, que és un plàstic que s’enfosqueix i es trona groguenc si és exposat llargament a la radiació solar. Aquestes lluernes es troben a més, a una coberta molt exposada.

Proposta d’intervenció:

La intervenció s’orienta cap a obtenir el màxim aprofitament de la llum solar, i això passa per canviar les lluernes circulars de la caixa d’escala. Per realitzar la intervenció cal:

- Retirar la lluerna de plàstic del marc de subjecció i inspeccionar el seu estat i la presència de corrosió.
- Comprovar la impermeabilització al voltant de la obertura.
- Instal·lar la nova lluerna de metacrilat i realitzar una prova d’estanqueïtat.

Cost de la proposta: 570,42 €

| cost de la proposta | 570,42 € |
| període d’amortització | - |

| Característiques detectors LRM1020 (PHILIPS) |
| Detector de presència de muntatge en parets o sostr de sense fils |
muntatge	adossat
detecció de moviment en sostres	360º
detecció de moviment en parets	180º
nivell de llum	2 - 2.000 lux
altura de muntatge	2,0 - 4,0 m
alimentació	220 - 240 V
consum (stand-by)	≤ 1,0 W

Fig. 7.31 Característiques dels detectors de presència LRM 1020. Font: Philips.

Fig. 7.30 Quadre de resum de les partides pressupostàries de les diferents intervencions. Font: ITec.
Proposta d'intervenció (2):

Amb la primera proposta es pretenia millorar l'eficiència de la il·luminació en zones que no tenen una ocupació constant. Per tal de fer més eficient la il·luminació de les zones amb una ocupació perllongada, concretament a les aules, es proposa sectoritzar les diferents files de il·luminàries. Aquesta sectorització es farà paral·lelament a les façanes amb obertures.

Amb aquesta nova distribució de l'ènca de les il·luminàries, es pot regular l'aportació de llum artificial segons l'aportació de llum natural a través de les obertures. És important que l'ordre sigui en paral·lel a les obertures, ja que es podran il·luminar les zones amb menys disponibilitat de llum solar, allunyades de la façana sense il·luminar aquelles que ja disposen d'un nivell d'il·luminació correcte.

Substitució de làmpades:

En les visites a l'escola i durant l'inventari de les làmpades del centre, és van comptar algunes làmpades incandescentes. No suposen una gran despesa en el conjunt general de l'escola però és un aspecte fàcilment millorable.

Proposta d'intervenció:

Es per això que es proposa canviar aquelles escasses làmpades per unes altres de baix consum, que alhora garanteixin les condicions mínimes d'il·luminació. És un aspecte més a favor de millorar els sistemes de l'escola i el seu funcionament en general, encara que sigui amb una petita inversió que genera un petit estalvi.

El nombre total de làmpades incandescentes és realment reduït. Les làmpades predominants són les fluorescent, que es troben a les aules, passadisos, zones comuns i departaments de professors. El nombre total de làmpades de l'escola es detalla a la figura 7.33.

Edifici A	Planta baixa	60W x 4
Edifici B	Planta primera	100W x 18
Edifici C	Planta primera	60W x 3
Edifici D	Planta segona	60W x 14

Les làmpades que substituiran a les incandescentes són les següents:

<table>
<thead>
<tr>
<th>Lámpada incandescent</th>
<th>Lámpada de baix consum</th>
<th>ut.</th>
</tr>
</thead>
<tbody>
<tr>
<td>potència 40W</td>
<td>7W</td>
<td>10</td>
</tr>
<tr>
<td>potència 60W</td>
<td>13W</td>
<td>42</td>
</tr>
<tr>
<td>potència 100W</td>
<td>20W</td>
<td>18</td>
</tr>
<tr>
<td>potència 150W</td>
<td>32W</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 7.33 Càlcul de la potència de làmpades incandescentes de l'escola. Font: Elaboració pròpia.

Fig. 7.34 Nombre de làmpades de baix consum a instal·lar. Font: Elaboració pròpia.

| cost de la proposta | 639,0€ |
| perioide d'amortització | - |

Fig. 7.35 Càlcul del cost de la proposta. Font: Elaboració pròpia.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment

8. Acondicionament Acústic

En la construcció actual, l'acondicionament acústic és probablement el requisit d'habitabilitat que concentra menor atenció per part dels projectistes. No es que no se li doni compliment, però sí que és l'últim a la llista de prioritats en quanta a esforços i atencions prestats. Això és deu a que el soroll és també un dels paràmetres que comporta una menor complexitat per tal de reduir-lo i que té un impacte menor en el confort de les persones, respecte per exemple la temperatura i la humitat interior.

Tot i així, des de sempre s'han tingut nocions de quines mesures podien ser més o menys efectives per a la protecció vers a l'impacte dels edificis. L'únic diferència és que la Normativa actual recull uns valors mínims d'aïllament per garantir el confort dels usuaris.

Segons el CTE DH-HR, tal com es recull a l'apartat de generalitats i quantificació de les exigències, s'ha de garantir:

> aïllament acústic vers el so aeri: aquest és el so que es transmet entre els diferents espais que comparteixen una divisió en un edifici, ja sigui horitzontal o vertical.

> aïllament acústic vers el soroll d'impactes: aquest aïllament ha de procurar amortir o eliminar el soroll provocat per impactes en elements de l'edifici.

> valors límits de reverberació: aquest apartat limita el temps de permanència del so per reflexió d'uns espai, un cop la font sonora ha deixat d'emetre'l.

> soroll i vibracions de les instal·lacions

Després de realitzar un gran nombre de visites a l'escola, no es va detectar en cap moment, un excessiu nivell de soroll (dBa) que suposes una gran pertorbació per als estudiants i professors (una porta que es tanca per corrent d'aire, alguns objectes que sobradament cau,...). És per això que una intervenció en aquest aspecte no resulta prioritària.

En aquest aspecte, destaca la sala d'actes que adquireix una importància vital.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

A les aules, hi ha un gran nombre d'elements que interfereixen en la propagació del so i ajuden a dissipar-lo com són les guixetes dels alumnes, el propi mobiliari i en algunes aules de l'escola, recobriments de tela o de suro a les parets. A la biblioteca, per exemple, el gran nombre d'estanteries i llibres que recobreixen les parets, reduixen en gran mesura els temps de reverberació.

Fig. 8.1 Quadre de resum dels valors límits d'aïllament acústic per a aules. Font: CTE DH-HR.

<table>
<thead>
<tr>
<th>Valor limit d’aïllament acústic en espais protegits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aïllament acústic vers el soroll aeri: (índex global de reducció acústica)</td>
</tr>
<tr>
<td>- soroll procedent de zones comuns:</td>
</tr>
<tr>
<td>- soroll procedent de zonas comuns:</td>
</tr>
<tr>
<td>- soroll procedent de zonas comuns:</td>
</tr>
<tr>
<td>- soroll procedent de zonas comuns:</td>
</tr>
</tbody>
</table>

Quadrat de resum dels valors límits d’aïllament acústic per a aules. Font: CTE DH-HR.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
9. Pla de Manteniment

Fins ara, en el món de la construcció, no es tenia en compte en cap de les fases del disseny i posterior execució dels projectes arquitectònics, quin manteniment s'hauria de realitzar tant de l'edifici en si, com en les seves instal·lacions. Aquesta manca de planificació, condemna l'edifici a una pèrdua progressiva de propietats i disminució de les seves prestacions, ja que només s'actua sobre els elements de l'edifici en cas de detectar un problema o lesió.

L'objectiu d'establir un Pla de Manteniment és la d'intentar preveure l'aparició d'aquestes circumstàncies, no només en l'àmbit de la eficiència energètica sobre la que tracta aquest treball, sinó també en la resta d'aspectes que deriven de l'arquitectura i construcció de l'edifici. Es pot dividir llavors, en diversos capítols o apartats:

- Estructura
- Façanes
- Particions
- Instal·lacions
- Àtills i impermeabilitzacions
- Cobertes
- Revestiments
- Senyalització i equipaments
- Urbanització interior de la parcel·la

Aquest recull la totalitat d'elements que conformen l'edifici físicament i els seus sistemes, una llista amb les seues característiques, recomanacions d'ús per tal d'afavorir el seu funcionament i la periodicitat de revisió i manteniment per garantir al màxim rendiment de l'edifici.

En aquest cas, s'ha utilitzat el programa informàtic DicPla per generar un Llibre de l'Edifici que recull les tasques de manteniment dels components del nostre edifici i dels seus sistemes.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
9. Conclusions

Arrivats en aquest punt, el final del treball, es trobem en disposició de fer un balanç global del procés i dels resultats que em obtingut.

Sobre l'Escola Padre Damián de los Sagrados Corazones, es podria dir que ha compert amb la seva vida útil i funció. Des de la primera visita a l'escola, es podia entreveure quins serien els punts conflictius dels edificis i de quina manera incidir-hi en les nostres propostes.

Com s'ha exposat, el complex de l'escola està conformat per tres edificis construïts fa molt temps, que no compten en les seves solucions constructives amb elements que en la construcció d'avui en dia es consideren vitals. A més, el pas del temps ha disminuït encara més el rendiment dels tres edificis de manera que no poden donar resposta a les demandes mínimes, no només normatives, sinó també de confort.

De fet, la direcció de l'escola ha pres la decisió de traslladar els cursos d'Educació Secundària Obligatòria i de Batxillerat, al centre en que s'imparteixen els cursos de Educació Primària i de Parvulari, a l'Avinguda de Vallvidrera. Aquest centre és de construcció més recent i ja s'hi estan realitzant les obres d'ampliació per allotjar els nous alumnes.

Pel que fa als sistemes amb que estan dotats els edificis, es troben en la mateixa tessitura que l'envolupant, sobretot pel que fa al sistema de calefacció. Tres de les quatre calderes de l'edifici porten en funcionament molt de temps, afectades a més per un ús molt intens combinat amb períodes d'inactivitat. Es per això que el seu rendiment es troba molt per sota del que podien oferir en l'època de la seva instal·lació i de la demanda teòrica de climatització de l'edifici. A més, com s'ha vist, dues de les calderes encara utilitzen el gasoil com a combustible. Actualment aquest combustible ja no s'utilitza en sistemes de calefacció degut a la major comoditat i rendiment d'altres combustibles o la sostenibilitat de les fonts energètiques renovables.

L'anàlisi que s'ha realitzat en aquest estudi, ha corroborat les sospeches inicials vers les prestacions dels edificis de l'escola i també ens ha ajudat a especificar en quins punts aquestes situacions són més notables i perjudicials per al bon sistema de l'edifici. Sempre, com es remarca al llarg del treball, sota una interpretació crítica dels resultats finals, ja que aquests es basen en criteris que no s'ajusten al nostre cas específic. Tot i això, s'ha intentat realitzar una anàlisi lògica i coherent amb les resultats obtinguts, extraient conclusions generals, aplicables a la nostra escola.

Finalment, la conclusió que es pot extraure és la que ja ha pres la direcció de l'escola. Malauradament, el complex de l'escola, ja no pot garantir unes bones condicions per al desenvolupament de l'activitat docent degut al desflasament de prestacions respecte als mínims establerts causat pel pas del temps. Arribats en aquest punt, realitzar una intervenció sobre l'edifici i els seus sistemes, és una empresa tardana i arriscada. No només pel seu elevat cost econòmic sinó també perquè no és segur que s'arribi al compliment de l'amortització. Aquesta situació es veu afavorida per la possibilitat del trasllat a l'altre centre de l'escola, en que una inversió econòmica garanteix millors rendiments que en el complex antic i un millor aprofitament.
Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
10. Bibliografia

2. Código Técnico de la Edificación, CTE (en línia) disponible a: http://www.codigotecnico.org/web (acèss, gener 2013)

9. Directiva 2010/31/UE relativa a la eficiència energètica dels edificis

13. CTE-DB-HR. Document bàsic de Protecció vers el soroll.

Rehabilitació energètica d'un centre docent. Acondicionament acústic-tèrmic i pla de manteniment.
11. Agraïments

Acabat l’últim apartat del treball, és moment d’agair a totes aquelles persones, que d’una manera o altre, m’han ajudat no només en el treball, sinó al llarg de la carrera.

Primer de tot, agrair a l’escola en la que he estudiat des de petit, la possibilitat de fer aquest treball i les facilitats i atencions que han tingut amb mi des del principi. Especialment al Diego, responsable de manteniment, que m’ha ajudat en tot el que l’he demanat.

Recordo a cada un els professors que tingut al llarg d’aquests cinc anys, dels que he intentat aprendre el màxim possible però un record especial de gratitud per la Montserrat Bosch, tutora d’aquest treball, que m’ha ajudat i guiat per portar-lo endavant.

A David Gilberte i Jordi Cherta, alumnes de l’EPSEB, que em van ajudar a entendre com encaixar les peces que formen aquest treball,

D’entre tots els companys d’universitat que he tingut, agrair als meus amics el seu suport., Cris, Brian, Albert i especialment als meus dos companys durant aquest últim any, Roger i Paula. Moltes gràcies.

També a la Mireia, que sempre m’ha donat ànims per seguir endavant.

I per últim a la meva família, als meus pares i a la meva germana, que porten ajudant-me molt més temps.