Abastiment energètic en instal·lació rural. Energia solar fotovoltaica d’autoconsum amb balanç net i biomassa tèrmica per a calefacció i ACS

MEMORIA

Autor: Joaquim Comes i Pon
Director: Miguel Villarrubia
Convocatòria: Semestre TARDOR

Màster Interuniversitari UB-UPC
d’Enginyeria en Energia
Resum

Aquest projecte pretén fer un estudi sobre les necessitats energètiques d’unes instal·lacions rurals situades al poble de Gurp (Pallars Jussà) i valorar una possible opció tècnica per a realitzar l’abastiment, mitjançant energies renovables, d’electricitat i energia tèrmica per a calefacció i ACS d’un complex format per un campament juvenil, uns apartaments rurals i una vivenda unifamiliar.

L’opció tècnica escollida per a la generació elèctrica és una instal·lació solar fotovoltaica d’autoconsum connectada a xarxa, de la qual es realitza el dimensionament per tal d’adequar-lo a la proposta de Reial Decret del 18 de novembre de 2011 pel que s’一站leix la regulació de les condicions administratives, tècniques i econòmiques de la modalitat del subministrament d’energia elèctrica en “balanç net”.

Pel que fa a l’abastiment d’energia tèrmica, s’opta per la instal·lació d’una caldera de biomassa, aprofitant l’entorn forestal de l’emplaçament i les necessitats de realització d’una gestió adequada d’aquest entorn, que permeti un ús energètic de proximitat dels resultats d’aquesta gestió.
Índex

1. Introducció ... 1
 1.1. Producció energètica distribuïda .. 1
 1.2. Descripció de les instal·lacions .. 1
 1.3. Objectiu de la instal·lació .. 3
2. Anàlisi de l’emplaçament .. 4
 2.1. Ubicació geogràfica .. 4
 2.2. Entorn demogràfic i orogràfic .. 6
 2.3. Característiques climàtiques de la zona .. 6
3. Instal·lació de calefacció i ACS mitjançant biomassa .. 10
 3.1. Introducció .. 10
 3.2. Recurs biomàssic ... 10
 3.3. Caracterització dels biocombustibles ... 11
 3.4. Anàlisi del recurs biomàssic .. 14
 3.4.1. Sistema forestal de la zona .. 14
 3.4.2. Espais Naturals Protegits .. 15
 3.4.3. L’explotació forestal i aprofitament energètic de la biomassa a la comarca 16
 3.4.4. Aprofitament energètic d’actuacions forestals properes ... 17
 3.5. Normativa aplicable en instal·lacions de biomassa .. 19
 3.6. Habitabilitat de les vivendes ... 19
 3.7. Demanda d’Aigua Calenta Sanitària ... 20
 3.8. Càrregues tèrmiques ... 24
 3.8.1. Condicions tèrmiques interiors ... 24
 3.8.2. Condicions tèrmiques exteriors ... 25
 3.8.3. Càlcul de càrregues .. 25
 3.9. Determinació de la potència de la caldera ... 34
 3.9.1. Caldera ... 36
 3.10. Sistema hidràulic .. 38
 3.10.1. Acumulador ... 38
 3.10.2. Circuit hidràulic ... 38
 3.11. Situació de la instal·lació .. 40
 3.12. Sistema d’emmagatzematge i alimentació .. 40
 3.12.1. Sistema d’emmagatzematge ... 40
 3.12.2. Transport i alimentació del combustible .. 41
 3.12.3. Consum i autonomia .. 42
4. Instal·lació solar fotovoltaica .. 43
 4.1. Introducció .. 43
 4.1.1. Balanç net ... 43
 4.1.2. Opció tècnica ... 44
 4.2. Recurs solar .. 45
 4.2.1. Radiació solar ... 45
 4.3. Anàlisi del recurs solar .. 46
 4.3.1. Energia solar a la comarca .. 47
 4.4. Característiques generals d’una instal·lació ... 47
 4.4.1. Tensions de treball .. 47
 4.4.2. Arquitectura dels inversors ... 48
 4.4.3. Connectivitat elèctrica .. 49
 4.4.4. Equipaments d’interconnexió .. 49
 4.5. Descripció general de la instal·lació ... 50
 4.6. Anàlisi de la demanda elèctrica .. 51
 4.6.1. Estimació del consum anual ... 54
 4.7. Components de la instal·lació ... 55
 4.7.1. Generador fotovoltaic ... 56
 4.7.2. Inversor .. 57
 4.7.3. Comptador bidireccional ... 58
 4.7.4. Punt de connexió ... 58
 4.7.5. Estructura de fixació dels panells ... 59
 4.7.6. Proteccions elèctriques .. 59
 4.8. Configuració elèctrica .. 63
 4.9. Avaluació pèrdues .. 64
 4.9.1. Factors de pèrdues .. 64
 4.10. Orientació i inclinació ... 66
 4.11. Incidència d’ombres .. 67
 4.11.1. Ombres properes .. 67
 4.11.2. Ombres llunyanes .. 68
 4.11.3. Separació entre panells .. 69
 4.12. Càlcul energètic .. 70
 4.13. Instal·lació elèctrica .. 73
 4.14. Evacuació de l’energia i rases cablejat ... 76
 4.15. Normativa aplicable en instal·lacions solars fotovoltaiques .. 76
 5. Impacte ambiental ... 78
 6. Pressupost .. 82
 6.1.1. Pressupost instal·lació biomassa .. 82
6.1.2. Pressupost instal·lació fotovoltaica ... 83
7. Conclusions ... 84
8. Bibliografia ... 86
9. Annexos .. 88
9.1. Plànols .. 88
9.2. Catàlegs tècnics ... 100
1. Introducció

1.1. Producció energètica distribuïda

Actualment la major part de l’energia es genera de forma centralitzada en grans centrals productores. Això genera al consumidor una total dependència energètica, un major cost de transport i distribució, pèrdues d’energia a la xarxa en el cas de les elèctriques, entre d’altres.

La generació distribuïda, el consum de recursos propers, i la possibilitat de que els consumidors generin la seva pròpia energia, aporten sostenibilitat al sistema de generació, distribució i consum, i obre el camí cap a un canvi de model energètic.

L’avenç de les tecnologies renovables, i la determinació d’una regulació administrativa específica pot permetre la implantació d’instal·lacions distribuïdes de microgeneració, que poden rellevar part de la producció de les grans centrals convencionals alimentades en bona part per combustibles fòssils, provinents en gran mesura de zones geopolítics poc estables.

En el sistema elèctric s’avança cap a un model orientat a l’autoconsum mitjançant energies renovables, que podria ser una alternativa als actuals sistemes de generació. Aquest tipus de petites plantes productes promourà aquesta generació distribuïda, aportant nombrosos avantatges per al sistema i per al consumidor. Pot suposar menys pèrdues energètiques a la xarxa, reducció de costos en transport i distribució, i també un estalvi d’energia primària. A més, dota d’autonomia energètica al consumidor, contribuint a la disminució de la dependència exterior, i proporcionant, també, una major seguretat de subministrament.

1.2. Descripció de les instal·lacions

Les instal·lacions en les quals es pretén realitzar l’actuació d’abastiment energètic estan formades per un campament juvenil, uns apartaments rurals i una casa unifamiliar.
El campament juvenil té capacitat per albergar unes 60 persones i consta d’una zona d’acampada lliure i una zona d’equipaments contigua, situats en una antiga nau agrícola condicionada per a integrar-hi lavabos i dutxes. Aquestes instal·lacions suposen una demanda important d’aigua calenta sanitària. Pel que fa a necessitats elèctriques només hi ha instal·lades iluminàries a la zona d’equipaments.

Pel que fa als apartaments rurals, hi ha quatre vivendes independents de 46 m² cada una, amb capacitat per a quatre persones.

La vivenda unifamiliar consta de dues plantes amb una superfície total aproximada de 94 m², amb habitabilitat per a quatre persones. Més endavant es detalla la demanda elèctrica i tèrmica aproximada per a aquestes instal·lacions.¹

Aquestes instal·lacions tenen uns requeriments energètics variables, depenent de l’estacionalitat d’ús de cada una d’elles i del volum d’ocupació degut bàsicament al mateix ús estacional.

La única instal·lació que romandrà permanentment ocupada és la vivenda unifamiliar. Tant l’activitat del campament juvenil com dels apartaments rurals anirà lligada bàsicament a l’existència d’uns conditionants climatològics favorables. El campament juvenil restarà obert durant els mesos més càlids, allargant la temporada des del mes d’abril fins a finals del mes d’octubre. Durant aquest període només gaudirà de plena activitat en els mesos de juliol i agost. En el cas dels apartaments rurals, es preveu un ús de cap de setmana durant l’època hivernal, i la plena activitat també es centrarà en els mesos de juliol i agost.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Vivenda unifamiliar</th>
<th>Apartaments rurals</th>
<th>Campament Juvenil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Febrer</td>
<td>28</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Març</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Maig</td>
<td>31</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Juny</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Juliol</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Agost</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Setembre</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Novembre</td>
<td>30</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Desembre</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Taula 1. Dies d’ús mensual de les instal·lacions

¹ En l’Annex de plànols s’inclou els detalls constructius i la distribució interna tant dels apartaments com de la vivenda unifamiliar per a la determinació de les càrregues tèrmiques de calefacció.
1.3. Objectiu de la instal·lació

L’objectiu és dissenyar un sistema autosufficient, pel que fa a energia elèctrica i tèrmica de calefacció i ACS, mitjançant fonts d’energia renovable en el conjunt descrit; format per un campament juvenil, una casa rural i una vivenda unifamiliar. Tal i com s’esmenta en aquesta introducció, també es pretén donar un pas endavant cap a un model de generació energètica distribuïda que permeti la deslocalització de la producció per a generar un model de consum energètic de proximitat. Coneixent els requeriments del conjunt es procedeix a realitzar una avaluació de les possibilitats en funció dels factors que determinin la seva viabilitat. Les tecnologies escollides s’han analitzat tenint en compte les característiques de l’entorn, l’impacte sobre aquest, i el rendiment i rendibilitat de cada una d’elles.

Així, per la instal·lació elèctrica, s’ha optat per l’ús d’energia solar fotovoltaica. Tenint en compte que existeix la possibilitat de connexió a xarxa, és a dir que no es tracta d’un sistema aïllat, i amb la possibilitat de que tiri endavant la proposta de Reial Decret del 18 de novembre de 2011 pel que s’estableix la regulació de les condicions administratives, tècniques i econòmiques de la modalitat del subministrament d’energia elèctrica en “balanç net”, s’ha optat per dissenyar la instal·lació de forma que es pugui realitzar un autoconsum connectat a xarxa, amb el qual posteriorment es faci el balanç de consum i generació en un període de 12 mesos. Degut a que una vegada fet el balanç no es recompensarà per l’energia excedentària, el disseny de les instal·lacions de generació ha de realitzar-se amb una potència tal que situi l’energia generada tant a prop com sigui possible del consum previst.

Per a la instal·lació de calefacció s’ha optat per la biomassa tèrmica, afavorida per l’entorn forestal de l’emplaçament, on es pot obtenir combustible en forma d’estella arran de la gestió dels boscos de la zona, promovent així l’ús dels recursos propers, i impulsant que la gestió forestal es dugui a terme permanentment i de forma efficient.

D’altra banda, tot i que no es desenvolupà en aquest projecte, tenint en compte l’ús final de les instal·lacions, i que bona part del públic potencial estarà comprès en una franja d’edat d’entre 7 i 16 anys, s’ha valorat la possibilitat de crear un espai didàctic on es mostrin els beneficis d’aquest model energètic i on es reflecteixin les diferències comparatives entre la solució energètica proposada i un model convencional, connectat directament a xarxa i amb utilització de caldera de gas/gasoil. En aquest sentit, es valora positivament una iniciativa com aquesta, degut a la certesa de que el coneixement, la visualització (en forma de monitorització, per exemple) i conscienciació directa de les persones permet reduir de forma considerable el consum energètic.
2. Anàlisi de l'emplaçament

2.1. Ubicació geogràfica

El poble de Gurp es troba a la comarca del Pallars Jussà, a 7,5 quilòmetres al nord-oest de Tremp, la seva capital. Fins al 1970 formava municipi propi, però actualment és un nucli agregat al terme municipal de Tremp. Està situat a 918 m d’alçada, a la capçalera del barranc de Seròs. Es troba sota un espadat format al nord-est per la Roca de les Vedrines i al sud-oest, per la Roca dels Corrals, que constitueixen els vessants sud-orientals de la Serra de Gurp, de 1.437,8 m.

Figura 2. Situació de la població de Gurp (Pallars Jussà)

Està situat prop de la zona PEIN de la Serra de Sant Gervàs, dins del municipi de Tremp, considerada com a espai d’interès natural per ser un conjunt orogràfic notable, representant de les serres prepirinenques interiors més occidentals de Catalunya. Presenta un interès particular per entrar en contacte amb les muntanyes de l’Alta Ribagorça, de les quals se’n separen per la Vall de Llevata.

Les instal·lacions descrites es troben en un espai obert just sota el poble de Gurp.
La parcel·la en la qual es realitza l’actuació és de 1,298 ha, classificada segons planejament urbanístic del municipi com a rústica i les seves dades de localització són:

Provincia:	LLEIDA
Municipi:	TREMP
Polígon:	020
Parcel·la:	0063

Els fiters de la finca són:

- Nord: Polígon: 20 Parcel·les: 35 i 189
- Sud: Polígon: 20 Parcel·la: 62, 79 i 80
- Est: Polígon: 20 Parcel·les: 37, 38 i 39
- Oest: Polígon: 20 Parcel·les: 64 i 78

Les coordenades cartogràfiques:

\[\text{UTM-X} = 322.347 \]
\[\text{UTM-Y} = 4.676.692 \]

Coordenades geogràfiques:

- Latitud: \(42^\circ13'25.91'' \) N,
- Longitud: \(0^\circ50'51.87'' \) E

\[\text{Figura 3. Parcel·la on es realitza l’actuació} \]
2.2. Entorn demogràfic i orogràfic

En les comarques de muntanya tant la demografia com l’orografia són aspectes importants en qualsevol àmbit, i també en l’energètic. Així doncs, la baixa densitat de població i els relleus muntanyosos, fan que el consum energètic distribuït i de proximitat prengui molt de sentit.

El Pallars Jussà compta amb 14 municipis i 146 nuclis de població, repartits en 1.343,2 km². És una de les comarques amb una de les densitats de població més baixes de Catalunya, amb 10,3 hab/km² i una població total de 13.840 habitants, segons el padró del 2009. Els termes municipals es caracteritzen per ser força extensos. Tremp, és el municipi més poblat, amb 6.228 habitants.

Pel que fa al seu relleu, el Pallars Jussà és una comarca pirinenca que ocupa un territori que s’estén des de la conca mitjana de la Noguera Pallaresa i els seus afluents, el Flamisell i el Conques, fins a la serra del Montsec. Comprèn també una part important de les terres de la riba oriental de la Noguera Ribagorçana, que separa el Pallars Jussà de l’Aragó. Està formada per diverses unitats bàsiques i ben diferenciades pel que fa al relleu, el clima i la vegetació. Aquestes són la Vall Fosca, la conca de Tremp (que es sol subdividir en la conca de Dalt i la conca de Baix), i la Terreta a la conca de la Noguera Ribagorçana. En conjunt, el Pallars Jussà es pot considerar un territori de muntanya mitjana, en què més de la meitat de la superfície se situa per sota dels 1.000 metres d’altitud. Així, la major part de la Conca de Tremp, que és on hi ha més població, es troba a cotes al voltant dels 500 metres. El sector de la Terreta és força més elevat que la conca, ja que la majoria de nuclis estan per sobre dels 700 metres, i a la Vall Fosca trobem un entorn de més alta muntanya.

2.3. Característiques climàtiques de la zona

A la comarca del Pallars Jussà s’oposan dos climes diferents: un a la Vall Fosca i l’altre a la Conca de Tremp. La Vall Fosca presenta un clima alpí i subalpí, amb temperatures baixes, sobretot als punts elevats. A la Conca de Tremp, en canvi, hi ha un clima mediterrani d’alta muntanya, la mitjana de temperatura a l’agost és semblant a les mediterrànies (23,9°C), malgrat que pot glaçar set mesos l’any. Les oscil·lacions tèrmiques molt pronunciades a causa de les baixes temperatures hivernals produïdes per la inversió tèrmica provoquen boires molt abundants.

Les precipitacions, sovint en forma de neu, també varien molt. Així com a la Vall Fosca la pluja o neu cau regularment cada mes, a Tremp hi ha dos màxims marcats: el de maig-juny i el de setembre, i dues estacions seques: desembre-abril i juliol-agost.

Segons l’Atles Climàtic de Catalunya, a la comarca del Pallars Jussà hi predomina el clima Mediterrani Prepirinenc Occidental. Aquest clima es caracteritza per:

- Precipitació Mitjana Anual entre 850 i 1.100 mm.
- Règim Pluviomètric Estacional, màxim a l’estiu o a la primavera i mínim a l’hivern.
- Temperatura Màxima Anual entre 9 i 12 ºC.
- Amplitud Tèrmica Anual entre 16 i 19 ºC.
D’altra banda, a la comarca hi ha instal·lades tres estacions meteorològiques, situades a:
- Sant Romà d’Abella (Isona i Conca Dellà)
- Montsec d’Ares (Sant Esteve de la Sarga)
- Pobla de Segur (Pobla de Segur)

Aquestes estacions formen part de la Xarxa d’Estacions Meteorològiques Automàtiques que gestiona el Servei Meteorològic de Catalunya del Departament de Medi Ambient i Habitatge.

El Codi Tècnic de l’Edificació determina la zona climàtica de les diferents províncies espanyoles i ho corregix en funció de la diferència d’alçades entre la capital de província de referència i l’emplaçament a estudiar.

Figura 4. Zones climàtiques. Font: CTE

Gurp té com a referència la ciutat de Lleida (131m), que pertany a la zona climàtica D3. Tenint en compte que la diferència d’alçades entre els dos emplaçaments és propera als 800 metres, es determina que la zona climàtica de Gurp pertany a la zona E1.

Les característiques climàtiques corresponents a temperatura, humitat i hores de sol dels diferents mesos de l’any s’han obtingut a partir de valors normals extrets de les dades per a un any tipus d’una estació meteorològica automàtica (XEMA) propera a la zona, l’estació de la Pobla de Segur, a 513 metres d’alçada.

L’elecció d’aquesta estació s’ha fet tenint en compte criteris de proximitat, però a més, s’ha aplicat una correcció per la variació d’alçada entre l’estació i les instal·lacions. En aquesta zona prepirinenca l’altitud i l’orografia del terreny és un factor important en la determinació de la climatologia.

Habitualment, el decreixement del gradient vertical de temperatura a la troposfera s’aproxima a 0,65°C cada 100 metres. Així doncs, assumirem aquesta variació per a determinar la temperatura final a l’altitud desitjada, sense tenir en compte la possibilitat de que es produeixin inversions tèrmiques en determinats dies de l’any.
Pel que fa a la humitat relativa, habitualment es diu que manté una relació lineal i inversa a la temperatura. Aquesta relació és deguda a que quan augmenta la temperatura, el nivell de saturació de vapor d'aigua a l'atmosfera també creix. El límit del contingut de vapor d'aigua necessari per a la saturació creix a mesura que augmenta la temperatura, conseqüentment, la humitat relativa té una fluctuació oposada a la de la temperatura.

Per a aproximar els valors de la humitat relativa amb les noves temperatures, es pot utilitzar una taula psicromètrica, que relaciona els valors de la temperatura de l'aire (termòmetre sec), amb la diferència entre els valors del temperatura seca i humida. En el nostre cas, mitjançant aquesta taula, podem trobar la temperatura humida de l'estació de la Pobla de Segur, però tenint en compte que la diferència entre temperatures no es manté constant al disminuir la temperatura de l'aire, assumirem els mateixos valors d'humitat relativa de l'estació meteorològica de la Pobla de Segur per tal de no allunyar-nos excessivament de la realitat acumulant error basats en presumpcions.

En quant a la velocitat i direcció del vent, i la quantitat i els dies en què es produeixen precipitacions, mantindrem les mateixes dades de l'estació meteorològica de la Pobla de Segur.

A les següents taules es mostren les dades climàtiques més rellevants de l'estació meteorològica automàtica de la Pobla de Segur, i les dades corregides a partir d'aquesta per a la població de Gurp.

<table>
<thead>
<tr>
<th></th>
<th>TMm (°C)</th>
<th>TXm (°C)</th>
<th>TNm (°C)</th>
<th>PPM (mm)</th>
<th>Dies precipitació</th>
<th>Vm (m/s)</th>
<th>Direcció Dominant</th>
<th>HRm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>1,9</td>
<td>8,2</td>
<td>-2,5</td>
<td>18,5</td>
<td>8</td>
<td>0,6</td>
<td>SE</td>
<td>81</td>
</tr>
<tr>
<td>Febrer</td>
<td>5,1</td>
<td>13,5</td>
<td>-1,3</td>
<td>7,6</td>
<td>5</td>
<td>0,9</td>
<td>S</td>
<td>68</td>
</tr>
<tr>
<td>Març</td>
<td>8,7</td>
<td>16,2</td>
<td>2,4</td>
<td>70,4</td>
<td>12</td>
<td>1,1</td>
<td>S</td>
<td>69</td>
</tr>
<tr>
<td>Abril</td>
<td>15,1</td>
<td>23,4</td>
<td>7,4</td>
<td>22,9</td>
<td>9</td>
<td>1,1</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Maig</td>
<td>18,1</td>
<td>26,4</td>
<td>10,8</td>
<td>56,5</td>
<td>13</td>
<td>1,3</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Juny</td>
<td>20,3</td>
<td>27,8</td>
<td>13,2</td>
<td>87,7</td>
<td>11</td>
<td>1,2</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Juliol</td>
<td>22,3</td>
<td>30,2</td>
<td>14,7</td>
<td>37,8</td>
<td>11</td>
<td>1,3</td>
<td>S</td>
<td>53</td>
</tr>
<tr>
<td>Agost</td>
<td>24,6</td>
<td>33,4</td>
<td>16,5</td>
<td>6,7</td>
<td>5</td>
<td>1,4</td>
<td>S</td>
<td>49</td>
</tr>
<tr>
<td>Setembre</td>
<td>21,2</td>
<td>29,6</td>
<td>13,4</td>
<td>11,7</td>
<td>6</td>
<td>1,1</td>
<td>S</td>
<td>54</td>
</tr>
<tr>
<td>Octubre</td>
<td>14,9</td>
<td>22,9</td>
<td>8,1</td>
<td>32,9</td>
<td>3</td>
<td>1</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Novembre</td>
<td>9,1</td>
<td>14,5</td>
<td>5,3</td>
<td>74,5</td>
<td>16</td>
<td>0,6</td>
<td>N</td>
<td>87</td>
</tr>
<tr>
<td>Desembre</td>
<td>2,1</td>
<td>8,7</td>
<td>-2</td>
<td>0,4</td>
<td>1</td>
<td>0,6</td>
<td>NW</td>
<td>84</td>
</tr>
<tr>
<td>ANY</td>
<td>13,7</td>
<td>21,3</td>
<td>7,2</td>
<td>427,6</td>
<td>100</td>
<td>1</td>
<td>S</td>
<td>66</td>
</tr>
</tbody>
</table>

Taula 2. Dades climàtiques en un any tipus de l’estació meteorològica automàtica de la Pobla de Segur. Font: Servei Meteorològic de Catalunya

Decreixement total de temperatura per alçada:

\[
\frac{405 \text{ m}}{100 \text{ m}} \cdot 0,65^\circ C = 2,63^\circ C \approx 2,7^\circ C
\]
<table>
<thead>
<tr>
<th>Mes</th>
<th>TMm (°C)</th>
<th>TXm (°C)</th>
<th>TNm (°C)</th>
<th>PP (mm)</th>
<th>Dies precipitació</th>
<th>Vm vent (m/s)</th>
<th>Direcció Dominant</th>
<th>HRm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>-0,8</td>
<td>5,5</td>
<td>-5,2</td>
<td>18,5</td>
<td>8</td>
<td>0,6</td>
<td>SE</td>
<td>81</td>
</tr>
<tr>
<td>Febrer</td>
<td>2,4</td>
<td>10,8</td>
<td>-4</td>
<td>7,6</td>
<td>5</td>
<td>0,9</td>
<td>S</td>
<td>68</td>
</tr>
<tr>
<td>Març</td>
<td>6</td>
<td>13,5</td>
<td>-0,3</td>
<td>70,4</td>
<td>12</td>
<td>1,1</td>
<td>S</td>
<td>69</td>
</tr>
<tr>
<td>Abril</td>
<td>12,4</td>
<td>20,7</td>
<td>4,7</td>
<td>22,9</td>
<td>9</td>
<td>1,1</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Maig</td>
<td>15,4</td>
<td>23,7</td>
<td>8,1</td>
<td>56,5</td>
<td>13</td>
<td>1,3</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Juny</td>
<td>17,6</td>
<td>25,1</td>
<td>10,5</td>
<td>87,7</td>
<td>11</td>
<td>1,2</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Juliol</td>
<td>19,6</td>
<td>27,5</td>
<td>12</td>
<td>37,8</td>
<td>11</td>
<td>1,3</td>
<td>S</td>
<td>53</td>
</tr>
<tr>
<td>Agost</td>
<td>21,9</td>
<td>30,7</td>
<td>13,8</td>
<td>6,7</td>
<td>5</td>
<td>1,4</td>
<td>S</td>
<td>49</td>
</tr>
<tr>
<td>Setembre</td>
<td>18,5</td>
<td>26,9</td>
<td>10,7</td>
<td>11,7</td>
<td>6</td>
<td>1,1</td>
<td>S</td>
<td>54</td>
</tr>
<tr>
<td>Octubre</td>
<td>12,2</td>
<td>20,2</td>
<td>5,4</td>
<td>32,9</td>
<td>3</td>
<td>1</td>
<td>S</td>
<td>61</td>
</tr>
<tr>
<td>Novembre</td>
<td>6,4</td>
<td>11,8</td>
<td>2,6</td>
<td>74,5</td>
<td>16</td>
<td>0,6</td>
<td>N</td>
<td>87</td>
</tr>
<tr>
<td>Desembre</td>
<td>-0,6</td>
<td>6</td>
<td>-4,7</td>
<td>0,4</td>
<td>1</td>
<td>0,6</td>
<td>NW</td>
<td>84</td>
</tr>
</tbody>
</table>

ANY

Taula 3. Dades meteorològiques al poble de Gurp en un any tipus aplicant correcció a T. Font: elaboració pròpia

TMM: Temperatura mitjana
TXm: Temperatura màxima mitjana
TNm: Temperatura mínima mitjana
PP: Precipitació mensual
Vm vent: Velocitat mitjana del vent a 10 m.
HRm: Humitat relativa mitjana

Finalment, per la determinació de la irradiació solar, s’ha consultat l’Atlas de radiació solar de Catalunya, i els valors s’han extret de la base de dades elaborada per la Comissió Europea, anomenada PVGIS, sistema d’informació geogràfica sobre energia fotovoltaica.

Figura 5. Mapa d’irradiació global diària al Pallars Jussà, mitjana anual (MJ/m2). Font: Agenda 21 del Pallars Jussà

<table>
<thead>
<tr>
<th>Irradiació global diària</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mes</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Gen</td>
</tr>
<tr>
<td>Feb</td>
</tr>
<tr>
<td>Març</td>
</tr>
<tr>
<td>Abr</td>
</tr>
<tr>
<td>Maig</td>
</tr>
<tr>
<td>Jun</td>
</tr>
<tr>
<td>Jul</td>
</tr>
<tr>
<td>Jul</td>
</tr>
<tr>
<td>Agost</td>
</tr>
<tr>
<td>Set</td>
</tr>
<tr>
<td>Oct</td>
</tr>
<tr>
<td>Nov</td>
</tr>
<tr>
<td>Des</td>
</tr>
</tbody>
</table>

Taula 4. Dades mensuals d’irradiació global a la població de Gurp. Font: PVGIS
3. Instal·lació de calefacció i ACS mitjançant biomassa

3.1. Introducció

Les immediacions del poble de Gurp, i el Pallars Jussà en general, són una zona amb grans extensions forestals. Sovint no es realitza una gestió adequada d’aquests boscos, bàsicament pel poc valor que se n’extreu, però no per això deixa de ser una qüestió transcendental. La neteja del sotabosc, l’aclariment de zones superpoblades, les podes, etc. són accions necessàries per mantenir un sistema forestal sa i alhora evitar el risc de possibles incendis. L’ús de la biomassa com a recurs energètic pot donar valor a aquesta gestió, i el fet de consumir-la en instal·lacions properes a l’extracció encara li dóna més sentit.

3.2. Recurs biomàssic

La biomassa engloba tot el conjunt de la matèria orgànica renovable d’origen vegetal o animal, o procedent de la seva transformació natural o artificial i que es pot utilitzar per a finalitats energètiques. En aquest projecte, la biomassa s’entén com a font d’energia per a equips generadors de calor per a produir calefacció i aigua calenta sanitària, així doncs delimitem la definició de biomassa a aquells combustibles sòlids orgànics d’origen renovable del tipus llenyós.

La biomassa es pot classificar segons el seu origen. Així tenim:

- **Origen forestal**: subproductes utilitzables com a combustibles com, per exemple:
 - Arbres no valoritzables en l’activitat de la indústria forestal, com poden ser els arbres de diàmetre petit, bifurcats, morts en peu i torts.
 - Serradures i capçades, branques, escorça, soques i arrels que les activitats de les indústries forestals no aprofiten.

- **Origen agrícola**: subproductes provinents d’activitats agroalimentàries i explotacions i processos agrícoles.

- **Cultius energètics**.

- **Residus de fusta**.

També podem classificar-la en funció del producte final, així, els principals biocombustibles sòlids que ens podem trobar al mercat són:

- **Pèl·let de fusta**: biocombustible sòlid format per la compactació de subproductes provinents de la indústria de la fusta, majoritàriament serradures i encenalls. La compactació es dóna com a resultat d’una aplicació combinada de calor i alta pressió en una màquina que força el pas de la matèria primera,
prèviament homogeneïtzada, a través d’un motlle amb forats de la mida que es vulgui. Aquest és un procés de densificació, amb el qual incrementem el valor energètic per unitat de volum. La seva homogeneïtat i característiques físiques permeten una manipulació i emmagatzematge fàcil, donant-li unes característiques ideals com a combustible per a calderes i estufes de biomassa.

- **Estella forestal**: prové de la trituració de material llenyós procedent del bosc o bé del subproduto de l’activitat de les serradores i altres indústries forestals. La qualitat de l’estella forestal ve determinada principalment per l’espècie, la humitat, la granulometria i el contingut en cendres.

- **Llenya i briquetes**: La llenya és un combustible poc utilitzat en les calderes de biomassa actuals per la necessitat d’alimentació manual. És una bona opció per als usuaris que tenen fusta a l’abast i, alhora, espai per a instal·lar un sistema d’emmagatzematge. Les briquetes són cilindres de fusta compactada amb dimensions més grans que el pèl-let de fusta. Són poc conegudes al mercat actual i sovint una solució a problemes d’emmagatzematge de serradores i encenalls a les fusteries.

- **Subproductes agroindustrials**: provinents de l’activitat industrial, al mercat actual hi ha una gran varietat de subproductes agrícoles. Els més destacats són el pinyol d’oliva, la closca dels fruits secs i, en l’àmbit més industrial, hi ha el granet i la brisa del raïm, el marro del cafè, la palla dels cereals o el canyís.

3.3. Caracterització dels biocombustibles

La caracterització dels biocombustibles sòlids ve determinada, de manera general, per un seguit d’aspectes que els són propis. La qualitat i la caracterització dels biocombustibles és un aspecte de vital importància.

3.3.1. Granulometria

La dimensió del producte és un paràmetre important que especifica el fabricant de la caldera i del sistema d’alimentació. En productes com l’estella forestal, és un dels aspectes més importants. El fet de garantir unes dimensions d’estella és necessari per a evitar problemes d’alimentació en els equips.

La granulometria del producte també és un aspecte important per a preveure’n la disposició i la capacitat de fer piles piramidals. El producte pot afectar la capacitat real de la sitja i per això cal aplicar els factors correctors segons el tipus de biomassa.

3.3.2. Contingut d’humitat

El contingut d’humitat dels biocombustibles és un aspecte fonamental que marca la qualitat energètica del producte. Les calderes tenen un límit d’acceptació de percentatge màxim d’humitat. En calderes d’estella forestal aquest límit és habitualment del 30%, encara que alguns equips de gran potència ariben a tolerar fins a un 50% d’humitat.
Per aconseguir biomassa amb percentatges d’humitat sobre base humida per sota del 20% cal fer servir sistemes d’assecatge forçats amb diferents tecnologies.

El pèl·let és un exemple de biomassa assecada forçadament. L’assecatge és indispensable per a garantir una fusta d’un alt poder calorífic i aconseguir una compactació adequada (el pèl·let amb humitat per sobre del 12% en base humida es desfà i queda esquerdat).

La humitat també és un factor que té incidència en els problemes d’auto ignició. En l’emmagatzematge d’estella i serradures humides es pot arribar a temperatures tan elevades que s’encengui la fusta. També és un procés que afavoreix la descomposició de la biomassa. Aquesta activitat dels fongs sobre la fusta no solament implica la degradació de la lignina i, per tant, la disminució del PCI, sinó també un augment de la concentració d’espesores en l’ambient.

3.3.3. Poder calorífic inferior (PCI)

El poder calorífic determina la quantitat d’energia tèrmica per unitat de massa d’un combustible, tenint en compte el seu contingut d’aigua.

El poder calorífic superior (PCS) és la quantitat d’energia obtinguda de la combustió completa d’una unitat de massa, tenint en compte la calor despresa de la condensació del vapor d’aigua originat.

El poder calorífic inferior (PCI) és la quantitat d’energia obtinguda de la combustió completa d’una unitat de massa, sense tenir en compte la calor latent del vapor d’aigua.

De manera genèrica, s’acostuma a expressar aquest valor en watts, calories o joules, per unitat de massa (kW/kg, kcal/kg, MJ/kg).

A la pràctica s’utilitza habitualment el PCI, ja que la calor de condensació no s’acostuma a aprofitar.

3.3.4. Contingut en cendres

El contingut en cendres és un paràmetre limitant que determina el manteniment i la periodicitat en la neteja de la caldera i també l’eficiència que té. Els equips que no disposen d’un sistema eficient de neteja dels seus bescanviadors acostumen a ser menys eficients a causa dels dipòsits de cendres, que disminueixen la capacitat de transmissivitat tèrmica del bescanviador.

La composició química de les cendres també és un aspecte molt important, a més de la temperatura de fusibilitat de les cendres, que és la temperatura a la qual les cendres es fonen i formen elements minerals, podent produir incrustacions. Aquest fenomen està estretament lligat a la quantitat d’àlcalis que té la fusta juntament amb altres elements problemàtics com són el clor i el sofre.

La formació d’incrustacions i dipòsits sobre la graella i els bescanviadors de calor de les calderes en fa disminuir el rendiment, pel fet que hi ha menys bescanvi de calor. També
reduceix el pas dels gasos sobre els conductes afectats per les incrustacions i és la causa de fenòmens de corrosió.

L’emissió de partícules en suspensió està lligada al contingut en cendres dels biocombustibles. És important ressenyar que les cendres estan formades per minerals, en la majoria dels casos adents per a ser utilitzats com a adobs en horts domèstics. A escala industrial, la gestió de les cendres passa per una anàlisi que determina la possibilitat de retornar-les al bosc o a terres agrícoles. Aquesta gestió és inviable només en casos particulars de concentracions de materials pesants.

En la majoria dels casos, les cendres es podran utilitzar com a fertilitzant, en funció de la composició que tinguin. Només en els casos en què les cendres continguin elements químics que siguin perjudicials per als cultius, caldrà tractor-les com un residu i fer-ne la gestió o el tractament adient.

3.3.5. Contingut en fins

Tal com passa amb el contingut de cendres, el contingut en fins és un paràmetre determinant en calderes i estufes d’alta eficiència que treballin amb combustible de qualitat elevada. Els continguts alts en pols afecten la combustió perquè les partícules petites i disgregades cremen més ràpidament en tenir un major contacte amb el carburant. Això també fa augmentar el risc d’explosió, ja que la caldera pot vaporitzar ràpidament i arribar a concentracions explosives de gasos combustibles.

A la següent taula es mostra una comparativa entre diferents combustibles, amb les seves característiques més destacades:

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Humitat (%)</th>
<th>PCI (kWh/kg)</th>
<th>Densitat (kg/m³)</th>
<th>Cendres (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pèl·let de fusta</td>
<td>10</td>
<td>4,8</td>
<td>650</td>
<td><0,5</td>
</tr>
<tr>
<td>Estella forestal</td>
<td>25</td>
<td>4,0</td>
<td>250</td>
<td>1-2</td>
</tr>
<tr>
<td>Escorça forestal</td>
<td>25</td>
<td>4,2</td>
<td>200</td>
<td>1-2</td>
</tr>
<tr>
<td>Closca de fruits secs</td>
<td>10</td>
<td>4,2</td>
<td>350</td>
<td>2-3</td>
</tr>
<tr>
<td>Pinyol d’oliva</td>
<td>8</td>
<td>4,2</td>
<td>630</td>
<td>2-3</td>
</tr>
<tr>
<td>Pinyola</td>
<td>8</td>
<td>4,3</td>
<td>610</td>
<td>3-4</td>
</tr>
<tr>
<td>Granet de raïm</td>
<td>8</td>
<td>4,7</td>
<td>600</td>
<td>1-2</td>
</tr>
<tr>
<td>Farina de polpa de raïm</td>
<td>8</td>
<td>4,3</td>
<td>600</td>
<td>2-3</td>
</tr>
<tr>
<td>Gasoil</td>
<td>-</td>
<td>11,8</td>
<td>850</td>
<td>-</td>
</tr>
<tr>
<td>Gas natural</td>
<td>-</td>
<td>13,5</td>
<td>0,74</td>
<td>-</td>
</tr>
<tr>
<td>Propà</td>
<td>-</td>
<td>12,0</td>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

Taula 5. Taula comparativa de combustibles
3.4. Anàlisi del recurs biomàssic

Tal i com veiem més endavant, la proximitat de les zones forestals i la major facilitat de transformació i transport fan que el combustible més adequat sigui l’estella forestal.

La humitat és una de les característiques més controvertides de l’estella forestal, per la seva heterogeneïtat. L’estella de qualitat té una humitat inferior al 30% sobre base humida. Per tal d’arribar a aquest percentatge necessita una bona logística i un procés d’assecatge natural (els sistemes industrials d’assecatge encareixen el producte).

<table>
<thead>
<tr>
<th>Estella forestal</th>
<th>Humitat (%)</th>
<th>PCI (kWh/kg)</th>
<th>Densitat (kg/m³)</th>
<th>Cendres (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>4,0</td>
<td>250</td>
<td>1-2</td>
</tr>
</tbody>
</table>

La fusta verda acabada de tallar pot tenir fins a un 55% d’humitat sobre base humida. L’assecatge natural del tronc apilat en un ambient mediterrani pot fer disminuir la humitat fins a un 35% el primer any, i un 25% el segon. Aquest assecatge de l’estella de forma natural s’accelera amb l’ajuda de sistemes de ventilació i transpiració.

L’estella forestal de qualitat manté una granulometria constant gràcies a un procés de garbellament. Les estelles amb dimensions superiors a les especificades poden col·lapsar i avariar els sistemes d’alimentació de la caldera.

L’estella forestal és més econòmica que els combustibles d’origen fòssil. Per contra, la seva densitat baixa en limita l’ús, per un cost de transport alt, la necessitat de més espai per a emmagatzemar-la i sistemes especials per a evitar problemes d’alimentació entre la sitja i la caldera.

Un cop emmagatzemades, les estelles poden formar un efecte de volta entre elles que en dificulta el moviment formant cabanes i espais d’aire. Per tal d’evitar aquest efecte de volta, cal dotar la sitja de remenadors que agitin les estelles i desfacin les voltes. És recomanable evitar que l’estella contingui fulles i parts verdes, ja que això pot fer augmentar els nivells de cendres, volàtils i emissions de NOx.

Mantenint la filosofia de la producció energètica distribuïda i de proximitat, la biomassa en forma d’estella necessària per abastir les instal·lacions descrites en aquest projecte pot ésser subministrada àmpliament mitjançant els productes derivats de la gestió forestal dels boscos propers.

3.4.1. Sistema forestal de la zona

La comarca del Pallars Jussà té una superfície forestal total de 103.150 hectàrees, que representa un 80,00% del total de la comarca. Pel que fa a la titularitat de la superfície forestal, aquesta és quasi igual entre pública (49,62 %) i privada (50,38 %); i poc més de la meitat de la superfície forestal és arbrada (57.664 ha).
Pel que a fa les diferents espècies vegetals que conformen la superfície forestal a la comarca del Pallars Jussà, l’Inventari Ecològic i Forestal de Catalunya (IEFC) descriu les següents distribucions arbòries:

L’espècie arbòria predominant a la superfície forestal del Pallars Jussà és el roure, amb 12.550 ha ocupades per aquesta espècie, que representen el 29,85 % de la superfície forestal. El pi roig és la següent amb més presència en el territori, ocupant 8.158 ha, que representen el 19.40 % de la superfície forestal. La resta de la superfície forestal està formada per una variada llista, on s’hi pot trobar, entre d’altres, l’alzina o el pi negre.

Pel que fa a la titularitat dels boscos de la comarca del Pallars Jussà, la gran majoria són de titularitat municipal (24,10%), seguits pels boscos de titularitat de les Entitats Municipals Descentralitzades (7,5%) i dels de la Generalitat (6,8%). I per últim, els de titularitat privada (2,20%).

Els instruments d’ordenació forestal (IOF) de les finques privades existents són el Pla Tècnic de Gestió i Millora Forestal (PTGMF) i el Pla Simple de Gestió Forestal (PSGF). A la comarca del Pallars Jussà hi ha 9 PTGMF, que ocupen un superfície forestal privada de 3.018 ha, i no hi ha cap PSGF. La superfície forestal privada ordenada ocupa un 5,8 % de la comarca.

3.4.2. Espais Naturals Protegits

A la comarca del Pallars Jussà conviuen 3 figures de protecció d’espais naturals.

- La superfície de la comarca classificada dins el Pla d’Espais d’Interès Natural de Catalunya (PEIN) ocupa el 34,76% de la comarca (46.687,22 ha). Al Pallars Jussà hi ha 9 espais inclosos dins aquesta figura de protecció, els quals formen part, al mateix temps, de la Xarxa Natura 2000 (a excepció de l’espai anomenat Filià).

- La Xarxa Natura 2000 (XN2000) va ser aprovada pel Govern Català el 5 de setembre de 2006. Aquesta aprovació inclou tots els espais que ja en formaven part amb anterioritat a aquesta data i també l’ampliació d’alguns, així com la creació de nous espais. A la comarca del Pallars Jussà hi ha delimitats 5 espais, 4 dels quals són zones LIC (Lloc d’importància comunitària) i ZEPA (Zones d’especial protecció per a les aus) al mateix temps, i un que és només LIC.
A més, part del territori de la comarca forma part d’un espai natural de protecció especial (Parc Nacional), que també forma part de la XN2000: el Parc Nacional d’Aigüestortes i Estany de Sant Maurici. Té una extensió total de 40.852 ha i s’estén per les comarques del Pallars Sobirà, l’Alta Ribagorça, el Pallars Jussà i la Vall d’Aran. És un dels dotze parcs nacionals existents a l’Estat espanyol i l’únic d’aquesta categoria existent a Catalunya. El Parc Nacional compta amb dues categories de protecció: la zona interna de protecció, i la zona perifèrica de protecció. La comarca del Pallars Jussà té una part de territori dins la zona perifèrica de protecció, que representa el 3% de la superfície comarcal, al terme municipal de la Torre de Cabdella.

![Figura 7. Distribució d'espais natural protegits (PEIN, Xarxa Natura 2000 i ENPE's)](image)

La zona PEIN representa un 34,76% de la superfície de la comarca, seguida de la superfície ocupada per Xarxa Natura 2000, que correspon a un 33,99%. I per últim la superfície ocupada per Parcs Naturals que correspon a un 3,00 % de la superfície total comarcal. A més a més, el Pla Territorial Parcial de l’Alt Pirineu i Aran protegeix el territori en funció de les següents figures: connectors biològics, sòl de valor agrícola, sòl de protecció preventiva, sòl de protecció territorial.

3.4.3. L’explotació forestal i aprofitament energètic de la biomassa a la comarca

Tot i aquest potencial, actualment l’explotació forestal és baixa i se n’extreu poc rendiment. Per part d’algunes de les administracions que tenen boscos de titularitat municipal, s’aprecia un interès per la possibilitat d’aprofitar els recursos forestals com a font d’energia renovable, i així, recuperar la rendibilitat del sector.

Es constata que l’aprofitament silvícola ha davallat molt en els darrers anys. En molts dels boscos privats no s’hi realitza cap aprofitament forestal, s’han abandonat les pràctiques tradicionals silvícoles, i juntament amb l’abandonament de les pastures i camps de conreu, comporten un creixement de la superfície boscosa amb el consequent increment del risc.
d’incendi forestal. En els boscos públics hi ha instruments d’ordenació per mantenir les masses forestals, així com encara els veïns i veïnes del municipi hi fan aprofitaments a partir de l’ús comunal. Tot i així, hi ha boscos comunals en zones molt marginals i allunyades de zones habitades de les quals no se n’està fent cap aprofitament, bàsicament perquè no surt rentable. En general, es té la percepció de que els boscos estan bruts, amb un creixement considerable del sotabosc. A més, algunes de les accions de gestió finalitzen deixant les restes vegetals al bosc, esdevenint un possible combustible, a més de no aprofitar-se com a recurs.

Per tot això, per aprofitar la biomassa del sotabosc, reduir el risc d’incendi forestal i obtenir un rendiment dels boscos, existeix l’interès per fer un aprofitament energètic de la biomassa forestal. En aquest sentit, alguns ajuntaments de la comarca ja estan elaborant estudis i projectes de viabilitat per a l’aprofitament de la massa forestal dels boscos de la seva titularitat.

La comarca té potencial en l’aprofitament de la biomassa com a font d’energia, ja que es disposa del recurs necessari, en tant que hi ha molta superfície forestal de propietat comunal o municipal. Actualment el rendiment econòmic de les explotacions forestals no és satisfactori i per tant, l’aprofitament de la biomassa com a font energètica podria ser una oportunitat per donar continuïtat i sortida a les explotacions forestals. A la vegada, un altre benefici derivat seria el manteniment de les masses forestals. A nivell de projectes d’ús de biomassa com a font d’energia, l’ajuntament de Tremp ha començat a sondejar aquesta possibilitat i en aquest sentit, ha realitzat un estudi d’avaluació de la disponibilitat de biomassa forestal al Pallars Jussà. També tenen un projecte en fase inicial per tal d’instal·lar una caldera de biomassa, en l’àrea residencial estratègica de la ciutat, contemplada en el POUM.

3.4.4. Aprofitament energètic d’actuacions forestals properes

Gurp és un nucli agregat al terme municipal de Tremp des de 1970, i és l’ajuntament d’aquest darrer l’encarregat de realitzar actuacions de gestió forestal en algunes de les zones més properes al poble.

Per tal d’abastir unes instal·lacions com les descrites, es necessitaria un volum de biomassa que es podria extreure sense dificultats de les forests més properes, assegurant així un consum de proximitat i evitant el consum associat a la distribució.

En les immediacions del poble s’han realitzat diferents actuacions que, juntament amb d’altres previstes, podrien suposar ampliament l’abastiment de la instal·lació, a més d’endegar l’aprofitament energètic de la gestió forestal per a altres instal·lacions futures. A continuació es descriuen algunes d’aquestes actuacions:
- **Treballs forestals de millora.** Aclarides, podes i trituració de restes vegetals. La Terreta, serres de Lleràs i Sant Gervàs. Gestió forestal a diferents boscossos de la Terreta i a les serres de Lleràs i Sant Gervàs, en les quals s’han fet aclarides, esporques i trituració de matolls i restes vegetals a les pineses. Als alzinars i rouredes selecció de rebrots, esporques i trituració de restes. Als matollars s’hi ha fet trituració de matolls per recuperar antigues zones de pastura.

- **Projecte d’ordenació forestal a la forest d’Ordials i Graller (CUP L-232-2) i la serra de Sant Adrià. Serra de Lleràs.** Aclarides en pineses de pi roig en una superfície de 50 ha amb un volum total a extreure d’uns 2800 m³. Sanejament i protecció de les repoblacions fetes amb alzina la dècada de 1980.

- **Projecte d’ordenació forestal a la muntanya de Castellet t (CUP L-228). Serra de Castellet.** Treballs forestals a alzinars i pineses amb l’objectiu de prevenció d’incendis i foment de fagedes.

- **Projecte d’ordenació forestal a la forest de Costa i Obac (CUP L-224). Serra de Sant Gervàs.** Primera aclarida en bosc regular amb una superfície de 64 ha. Estassada de matolls amb una superfície de 9 ha.
3.5. **Normativa aplicable en instal·lacions de biomassa**

En general, la normativa que afecta les instal·lacions de biomassa és la mateixa que afecta altres equips generadors de calor per a donar servei d’ACS i calefacció a un edifici. Aquestes són:

- Reial decret 1027/2007 de 20 de juliol, pel qual s’aprova el Reglamento de Instalaciones Térmicas de los Edificios (RITE) i les instruccions tècniques corresponents (ITE).
- Código Técnico de la Edificación (CTE) i els seus documents bàsics (DB), especialment el d’habitabilitat i eficiència (DB-HE), en els capítols DB-HE2 (rendiment de les instal·lacions tèrmiques) i DB-HE4 (aportació solar mínima d’ACS). En aquest últim tenim que en la instal·lació d’una caldera de biomassa tota la calor consumida és d’origen renovable, amb la qual cosa no és obligatori instal·lar sistemes solars tèrmics.
- Decret 21/2006, de 14 de febrer, pel qual es regula l’adopció de criteris ambientals i d’ecoeficiència als edificis (DOGC 4574-16/02/2006). Igualment que en el cas del CTE, segons l’article 4.4 d’aquest decret, el fet d’instal·lar una caldera de biomassa que produeixi aigua calenta sanitària, fa que no sigui obligatori instal·lar sistemes solars tèrmics.
- Reial decret 842/2002, de 2 d’agost, pel qual s’aprova el Reglamento Electrotécnico para Baja Tensión (REBT), i les seves instruccions tècniques complementàries corresponents (ITC BT).
- Reial decret 2060/2008, de 12 de desembre, pel qual s’aprova el reglament d’equips a pressió i les seves instruccions tècniques complementàries corresponents.
- Les possibles ordenances municipals solars.
- La legislació vigent pel que fa a emissions a l’atmosfera i a soroll.
- Les normes UNE que es mencionen en les normatives i reglamentacions anteriors.
- Ordenances i planejament municipal segons ajuntament.

3.6. **Habitabilitat de les vivendes**

Per estandarditzar el número de persones que habiten les vivendes, es pot seguir les indicacions del Codi Tècnic de l’Edificació que realitza una assignació de persones per vivenda en funció del nombre de dormitoris.

<table>
<thead>
<tr>
<th>Número de dormitoris</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Més de 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de persones</td>
<td>1,5</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>Número de dormitoris</td>
</tr>
</tbody>
</table>

Taula 7. Mínim de persones per vivenda. Font: CTE

El mínim de persones per vivenda seria de 3 per ambdós casos, tant per la vivenda unifamiliar com per cada un dels apartaments rurals.
Tot i això, tenint en compte les característiques de les vivendes podem tenir:

\[
\text{Vivenda de 2 dormitoris} \times \frac{4 \text{ persones}}{\text{Vivenda}} + 4 \text{ Vivendes de 2 dormitoris} \times \frac{4 \text{ persones}}{\text{Vivenda}} = 20 \text{ persones}
\]

El campament juvenil pot albergar fins a 60 persones.

Com ja hem comentat, aquestes instal·lacions, menys la vivenda unifamiliar, tenen un ús estacional. El campament juvenil restarà obert durant els mesos més càlids, allargant la temporada des del mes d’abril fins a finals del mes d’octubre. Durant aquests mesos només gaudirà de plena activitat en els mesos de juliol i agost. En el cas dels apartaments rurals, es preveu un ús de cap de setmana durant l’època hivernal, i la plena activitat també es centrarà en els mesos de juliol i agost.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Vivenda unifamiliar</th>
<th>Apartaments rurals</th>
<th>Campament Juvenil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Febrer</td>
<td>28</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Març</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Maig</td>
<td>31</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Juny</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Juliol</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Agost</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Setembre</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Novembre</td>
<td>30</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Desembre</td>
<td>31</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Taula 8. Dies d'utilització mensual de les instal·lacions

3.7. Demanda d’Aigua Calenta Sanitària

El càlcul de la demanda d’aigua calenta sanitària depèn del consum realitzat en cada una de les instal·lacions anteriorment descrites.

Es podria establir una temperatura d’aigua calenta de 45°C, però al Document Tècnic d’Instal·lacions en l’Edificació (DTIE 1.01), en el qual es detalla la preparació d’aigua calenta per a usos sanitaris, s’indica que per a edificis destinats a ús residencial amb sistemes dotats d’acumulació, la temperatura final serà de 60°C, en compliment de les recomanacions de la norma UNE 1000.030.

Amb això, es calcula la demanda d’ACS a partir de la secció HE 4 del Codi Tècnic de l’Edificació, on s’estableixen els valors mínims de demanda i d’on s’extreu la informació de la següent taula sobre la demanda d’ACS a 60°C.
<table>
<thead>
<tr>
<th>Criteri de demanda</th>
<th>Litres ACS/dia a 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivendes unifamiliars</td>
<td>30 per persona</td>
</tr>
<tr>
<td>Vivendes multifamiliars</td>
<td>22 per persona</td>
</tr>
<tr>
<td>Hospitals i clíiques</td>
<td>55 per liit</td>
</tr>
<tr>
<td>Hotel ****</td>
<td>70 per liit</td>
</tr>
<tr>
<td>Hotel **</td>
<td>55 per liit</td>
</tr>
<tr>
<td>Hotel/Hostal **</td>
<td>40 per liit</td>
</tr>
<tr>
<td>Càmping</td>
<td>40 per emplaçament</td>
</tr>
<tr>
<td>Hostal/Pensió *</td>
<td>35 per liit</td>
</tr>
<tr>
<td>Residència (avis, estudiants, etc.)</td>
<td>55 per liit</td>
</tr>
<tr>
<td>Vestuaris/dutxes col·lectives</td>
<td>15 per servei</td>
</tr>
<tr>
<td>Escoles</td>
<td>3 per alumne</td>
</tr>
<tr>
<td>Casernes</td>
<td>20 per persona</td>
</tr>
<tr>
<td>Fàbriques i tallers</td>
<td>15 per persona</td>
</tr>
<tr>
<td>Administratius</td>
<td>3 per persona</td>
</tr>
<tr>
<td>Gimnàsos</td>
<td>20 a 25 per persona</td>
</tr>
<tr>
<td>Bugaderies</td>
<td>3 a 5 per kg de roba</td>
</tr>
<tr>
<td>Restaurants</td>
<td>5 a 10 per àpat</td>
</tr>
<tr>
<td>Cafeteries</td>
<td>1 per àpat</td>
</tr>
</tbody>
</table>

Taula 9. Demanda de referència a 60°C. Font: CTE

Així doncs, per tal de calcular la demanda d’ACS de les diferents instal·lacions, tenim en compte l’ús final de les mateixes; una vivenda unifamiliar, un allotjament rural equiparable a un hostal de dues estrelles, i les instal·lacions d’acampada amb demanda equiparable a la d’un gimnàs.

Tot i això, tenint en compte els consums habituals de la quotidianitat, prendrem uns valors més elevats per tal d’ajustar-nos de forma més fidel a la realitat.

\[
\dot{V}_{ACS} = \dot{V}_{vivenda\ uni} + \dot{V}_{vivenda\ multi} + \dot{V}_{campaments}
\]

Estiu:

\[
\begin{align*}
4\text{ pers} \cdot 40 & \cdot \frac{l\ ACS}{\text{ pers i dia}} + 16\text{ pers} \cdot 40 & \cdot \frac{l\ ACS}{\text{ pers i dia}} + 60 \cdot 30 & \cdot \frac{l\ ACS}{\text{ pers i dia}} = 2600 \frac{\text{litres ACS}}{\text{dia}} \\
\end{align*}
\]

Hivern:

\[
\begin{align*}
3\text{ pers} \cdot 40 & \cdot \frac{l\ ACS}{\text{ pers i dia}} + 12\text{ pers} \cdot 40 & \cdot \frac{l\ ACS}{\text{ pers i dia}} = 800 \frac{\text{litres ACS}}{\text{dia}} \\
\end{align*}
\]

Així doncs, veiem que durant els mesos d’hivern aquesta demanda es veu reduïda a aproximadament **800 litres**, ja que el campament juvenil roman tancat des del novembre fins a principis d’abril.
A més existeixen principalment dos factors més que fan que la demanda d’ACS durant l’any no sigui constant:

- La variabilitat de la temperatura de l’aigua de la xarxa d’abastiment al llarg de l’any.
- La temperatura de demanda d’aigua a l’estiu és menor.

Així doncs, tenim que la demanda d’ACS fluctua en funció de l’època de l’any. Al document DTIE 1.01 sobre la preparació d’aigua calenta per a usos sanitaris, obtenim la següent gràfica en la qual es representa la variació mitja del consum mensual.

![Gràfic 1. Variació mitjana del consum mensual (%). Font: DTIE 1.01](image)

I d’on obtenim els factors de correcció del consum mensual que es detallen a continuació.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,12</td>
<td>1,08</td>
<td>1,03</td>
<td>1,09</td>
<td>1,04</td>
<td>1,02</td>
<td>0,90</td>
<td>0,79</td>
<td>0,91</td>
<td>0,94</td>
<td>1,02</td>
<td>1,08</td>
</tr>
</tbody>
</table>

Taula 10. Variació mitja del consum anual d’ACS a habitatges. Font: DTIE 1.01

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Taula 11. Temperatura mínima mitjana de l’aigua de xarxa general a Lleida, en ºC. Font: IDAE

Amb aquests valors podem determinar la demanda energètica d’ACS mitjançant les següents fórmules:

Consum mitjà mensual:

\[
\dot{m} \left[\frac{kg}{s} \right] = \frac{V_{ACS} \left[\frac{l}{dia} \right] \cdot \Delta_{ACS} \cdot \rho_{aigua} \left[\frac{kg}{l} \right]}{8 \left[\frac{h}{dia} \right] \cdot 3600 \left[\frac{s}{h} \right]} \]
Demanda energètica:

\[Q_{ACS}[W] = \dot{m} \left[\frac{kg}{s} \right] \cdot C_p \left[\frac{J}{kg \cdot K} \right] \cdot (T_{\text{subministre}} - T_{\text{xarxa}})[K] \]

S’ha estimat un perfil de consum horari, en el qual es determina una punta de demanda a primera hora del matí, moment en el qual es fa ús de les dutxes. Aquest perfil varia molt dependent de l’estacionalitat, ja que en els mesos més freds el campament juvenil resta tancat, amb la conseqüent reducció de demanda d’aigua calenta sanitària.

Per tal de determinar la potència final de la caldera i el volum d’acumulació, s’ha procurat fer un ajustament d’aquests dos elements a partir de les necessitats demandades. Així doncs, tal i com es veu en els gràfics de perfil de consum horari aproximat, tenim que és necessari cobrir la demanda punta matinal, que estaria al voltant d’uns 1500 litres.

Aquest perfil ens permet fer-nos una idea del volum d’acumulació necessari per tal de realitzar un dimensionat conjunt amb la caldera. Després de realitzar diversos ajustaments amb diferents configuracions de caldera i acumulador, elegirem un dipòsit de 1500 litres que es carregarà amb 8 hores de funcionament de caldera.
A la següent taula es recull la demanda energètica mensual d’ACS, la qual determina la potència necessària per cobrir les necessitats tenint en compte el volum d’acumulació:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Demanda (l/dia)</th>
<th>Variació demanda</th>
<th>$T_{subministrev}$ (°C)</th>
<th>T_{xarxa} (°C)</th>
<th>Consum (kg/s)</th>
<th>Q_{ACS} (W)</th>
<th>Q_{ACS} (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>800</td>
<td>1,12</td>
<td>60</td>
<td>5</td>
<td>0,0311</td>
<td>7159,29</td>
<td>7,16</td>
</tr>
<tr>
<td>Febrer</td>
<td>800</td>
<td>1,08</td>
<td>60</td>
<td>6</td>
<td>0,0300</td>
<td>6778,08</td>
<td>6,78</td>
</tr>
<tr>
<td>Març</td>
<td>800</td>
<td>1,03</td>
<td>60</td>
<td>8</td>
<td>0,0286</td>
<td>6224,86</td>
<td>6,22</td>
</tr>
<tr>
<td>Abril</td>
<td>2600</td>
<td>1,09</td>
<td>60</td>
<td>10</td>
<td>0,0984</td>
<td>20585,86</td>
<td>20,59</td>
</tr>
<tr>
<td>Maig</td>
<td>2600</td>
<td>1,04</td>
<td>60</td>
<td>11</td>
<td>0,0939</td>
<td>19248,72</td>
<td>19,25</td>
</tr>
<tr>
<td>Juny</td>
<td>2600</td>
<td>1,02</td>
<td>60</td>
<td>12</td>
<td>0,0921</td>
<td>18493,28</td>
<td>18,49</td>
</tr>
<tr>
<td>Juliol</td>
<td>2600</td>
<td>0,9</td>
<td>60</td>
<td>13</td>
<td>0,0813</td>
<td>15977,65</td>
<td>15,98</td>
</tr>
<tr>
<td>Agost</td>
<td>2600</td>
<td>0,79</td>
<td>60</td>
<td>12</td>
<td>0,0713</td>
<td>14323,23</td>
<td>14,32</td>
</tr>
<tr>
<td>Setembre</td>
<td>2600</td>
<td>0,91</td>
<td>60</td>
<td>11</td>
<td>0,0822</td>
<td>16842,63</td>
<td>16,84</td>
</tr>
<tr>
<td>Octubre</td>
<td>2600</td>
<td>0,94</td>
<td>60</td>
<td>10</td>
<td>0,0849</td>
<td>17752,94</td>
<td>17,75</td>
</tr>
<tr>
<td>Novembre</td>
<td>800</td>
<td>1,02</td>
<td>60</td>
<td>8</td>
<td>0,0283</td>
<td>6164,43</td>
<td>6,16</td>
</tr>
<tr>
<td>Desembre</td>
<td>800</td>
<td>1,08</td>
<td>60</td>
<td>5</td>
<td>0,0300</td>
<td>6903,60</td>
<td>6,90</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,7520</td>
<td>156455</td>
<td>156,45</td>
</tr>
</tbody>
</table>

3.8. Càrregues tèrmiques

Per tal de determinar la demanda de calefacció cal fer una estudi aproximat de les càrregues de les instal·lacions, tenint en compte l’orientació, els tancaments, els envidraments, etc. Aquestes pèrdues determinaran la demanda final de calefacció.

S’han considerat com a zones calefactables tots els espais de la vivenda. Així doncs, es contempla com a zones a avaluar tots aquells espais amb algun contacte amb elements exteriors.

3.8.1. Condicions tèrmiques interiors

El Reglament d’Instal·lacions Tèrmiques als Edificis (RITE) estableix certes exigències de disseny tèrmic interior. Per això, el dimensionat de la instal·lació ha de satisfar un conjunt de paràmetres que defineixen el benestar tèrmic, com ara la temperatura seca de l’aire, la humitat relativa o la velocitat mitjana de l’aire.

<table>
<thead>
<tr>
<th>Estació</th>
<th>Temperatura interior (°C)</th>
<th>Humitat relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hivern</td>
<td>21-23</td>
<td>40-50</td>
</tr>
<tr>
<td>Estiu</td>
<td>23-25</td>
<td>45-60</td>
</tr>
</tbody>
</table>

Taula 12. Paràmetres de confort hivern-estiu. Font: RITE

Per al disseny de la instal·lació de calefacció prendrem com a valor de confort tèrmic una temperatura (T_{int}) de 21°C, i una humitat relativa interior (HR_{int}) de 40%.
3.8.2. Condicions tèrmiques exteriors

Les condicions exteriors d’un emplaçament es defineixen per diversos paràmetres els quals no són constants ni al llarg del dia ni al llarg de l’any. Així doncs, és habitual l’assignació de valors típics per cada més i cada emplaçament.

Per al dimensionament de la instal·lació prendrem la mitjana de les temperatures mínimes exteriors dels mesos en els quals, presumiblement, es farà ús del sistema de calefacció.

Aquestes dades, i com ja hem comentat anteriorment, provenen del valors corregits per alçada de l’estació meteorològica de la Pobla de Segur, la més propera a les instal·lacions.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>-5,2</td>
<td>-4</td>
<td>-0,3</td>
<td>4,7</td>
<td>8,1</td>
<td>10,5</td>
<td>12</td>
<td>13,8</td>
<td>10,7</td>
<td>5,4</td>
<td>2,6</td>
<td>-4,7</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Taula 13. Temperatures mínimes mitjanes de la població de Gurp. Font: Servei Meteorològic de Catalunya

Un altre paràmetre que caracteritza les condicions exteriors és la velocitat del vent. En aquest cas, també s’han obtingut els valors a partir de les dades registrades a l’estació meteorològica de la Pobla de Segur.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vm vent (m/s)</td>
<td>0,6</td>
<td>0,9</td>
<td>1,1</td>
<td>1,1</td>
<td>1,3</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,1</td>
<td>1</td>
<td>0,6</td>
<td>0,6</td>
<td>1</td>
</tr>
</tbody>
</table>

Taula 14. Velocitats mitjana del vent a la població de Gurp. Font: Servei Meteorològic de Catalunya

3.8.3. Càlcul de càrregues

La càrrega tèrmica és la potència de calefacció o refrigeració que requereix una instal·lació, en un instant determinat, per a mantenir unes condicions interiors específiques. El disseny d’una instal·lació tèrmica requereix determinar de la forma més precisa possible la potència tèrmica necessària per a cobrir la demanda requerida per la instal·lació.

Així doncs, el concepte de càrrega tèrmica engloba tot aquell fenomen que tendeix a modificar la temperatura i la humitat de l’habitacle. Si només es modifica la temperatura seca de l’aire, parlem de càrrega sensible. Si es modifica la quantitat de vapor d’aigua, parlem de càrrega latent.

Aquest càlcul consisteix en realitzar un balanç de pèrdues i guanys de les instal·lacions sotmeses a estudi.

En funció de la zona climàtica, el CTE quantifica uns valors màxims referents a les característiques de l’envolvent tèmic.
3.8.3.1. Càrregues tèrmiques de transmissió

Les càrregues tèrmiques de transmissió es determinen d’acord amb la següent expressió:

\[Q_{\text{trans}} = U \cdot A \cdot \Delta T_e \]

On

\(U \): Coeficient global de transmissió (W/m²°C).
\(A \): Superfície del tancament a través del qual es produeix la transferència de calor (m²).
\(\Delta T_e \): Diferència de temperatura equivalent.

La diferència de temperatura equivalent es defineix de la següent forma:

- Paret, porta o envidrament que donin a l’exterior: \(\Delta T_e = T_{SE} - T_{SL} \)
- Sostre o paret en contacte amb un local no condicionat: \(\Delta T_e = \frac{T_{SE}-T_{SL}}{2} - T_{SL} \)

On

\(T_{SE} \): Temperatura seca exterior de projecte (°C).
\(T_{SL} \): Temperatura seca del local (°C).

A més, s’aplica un factor corrector en funció de l’orientació de la façana que correspongui. Aquest és un factor adimensional que té en compte l’absència de radiació solar i la presència de vents dominants sobre els murs, en funció de la seva orientació. En els murs de separació amb altres locals o en tancaments no verticals no es té en compte. Normalment s’utilitzen els següents valors:

<table>
<thead>
<tr>
<th>Exposició</th>
<th>Posició de l’element</th>
<th>Orientació</th>
<th>(U) en W/m²°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><0,6</td>
</tr>
<tr>
<td>Abrigada</td>
<td>vertical</td>
<td>N / N / E</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W / NW / SE</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S / SW</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>horitzontal</td>
<td>qualsevol</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N / N / E</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W / NW / SE</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S / SW</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>horitzontal</td>
<td>qualsevol</td>
<td>1,16</td>
</tr>
<tr>
<td>Normal</td>
<td>vertical</td>
<td>N / N / E</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W / NW / SE</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S / SW</td>
<td>1,16</td>
</tr>
<tr>
<td></td>
<td>horitzontal</td>
<td>qualsevol</td>
<td>1,16</td>
</tr>
</tbody>
</table>

Taula 15. Factor corrector per orientació en funció de l’exposició, l’orientació i els valors del coeficient U del tancament. Font: Llibre “Calefacció”
També es pot tenir en compte un suplement per interrupció del servei, provocat per qüestions destalvi energètic o d’ocupació del local calefactat. Aquesta aturada, exigeix un subministrament extra de calor per a calentar de nou els locals i que es pot aproximar als següents valors:

<table>
<thead>
<tr>
<th>Material del tancament</th>
<th>Horari de servei</th>
<th>Continuu</th>
<th>14 hores/dia</th>
<th>10 hores/dia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formigó / pedra natural</td>
<td></td>
<td>1,10</td>
<td>1,20</td>
<td>1,30</td>
</tr>
<tr>
<td>Totxana ceràmica</td>
<td></td>
<td>1,07</td>
<td>1,15</td>
<td>1,20</td>
</tr>
<tr>
<td>Forjats normals</td>
<td></td>
<td>1,05</td>
<td>1,10</td>
<td>1,15</td>
</tr>
<tr>
<td>Finestres, portes, cubertes i façanes lleugeres</td>
<td></td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Taula 16. Suplement per interrupció en funció del material de tancament i de les hores de servei. Font: Llibre “Calefacció”

El coeficient global de transmissió de calor és funció de les resistències tèrmiques i dels coeficients de convecció interior i exterior, seguint la següent expressió:

\[
U = \frac{1}{h_{ext}} + \frac{1}{h_{int}} + \sum e_i \lambda_i \left[\frac{W}{m^2 K} \right]
\]

On

- \(h_{ext} \) : Coeficient de convecció de l’aire exterior \(\left[\frac{W}{m^2 K} \right] \)
- \(h_{int} \) : Coeficient de convecció de l’aire interior \(\left[\frac{W}{m^2 K} \right] \)
- \(e_i \) : Espessor de la capa de material tipus i \([m] \)
- \(\lambda_i \) : Conductivitat tèrmica del material tipus i \(\left[\frac{W}{m K} \right] \)

Els valors de les resistències tèrmiques superficials de tancaments en contacte amb l’aire s’han obtingut del CTE.
Façanes

Considerem que la composició de les paretserà la mateixa tant per les particions interiors com les paretser que els separin de l’exterior (façanes).

<table>
<thead>
<tr>
<th>espessor [m]</th>
<th>Morter</th>
<th>Totxana perforada</th>
<th>Llana de vidre</th>
<th>Totxana doble forat</th>
<th>Morter</th>
<th>Arrebossat de guix</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,025</td>
<td>0,25</td>
<td>0,05</td>
<td>0,1</td>
<td>0,025</td>
<td>0,49</td>
<td>1,4</td>
<td>0,3</td>
</tr>
<tr>
<td>0,018</td>
<td>0,329</td>
<td>1,515</td>
<td>0,04</td>
<td>0,018</td>
<td>0,067</td>
<td>2,151</td>
<td></td>
</tr>
</tbody>
</table>

Taula 17. Composició de les paret, espessors i conductivitats tèrmiques parets exteriors.

Coeficients de convecció dels tancaments verticals:

\[
\frac{1}{h_e} = 0,04 \frac{W}{m^2K}
\]

\[
\frac{1}{h_i} = 0,13 \frac{W}{m^2K}
\]

Amb aquestes dades, tenim que el coeficient global de transferència de calor és per la façana és:

\[
U_{façana} = 0,431 \frac{W}{m^2K}
\]

Particions interiors

Es considera una composició similar a la de les façanes exteriors, així que només varia el valor dels coeficients de convecció.

\[
\frac{1}{h_e} = 0,13 \frac{W}{m^2K}
\]

\[
\frac{1}{h_i} = 0,13 \frac{W}{m^2K}
\]

Tenim:

\[
U_{Int} = 0,415 \frac{W}{m^2K}
\]
Sostre

En aquest cas es calcula el coeficient de la teulada en contacte amb l’exterior.

<table>
<thead>
<tr>
<th></th>
<th>Parquet</th>
<th>Llana de vidre</th>
<th>Taula de fusta</th>
<th>Teula</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>espessor [m]</td>
<td>0,02</td>
<td>0,04</td>
<td>0,025</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>λ [W/mK]</td>
<td>0,21</td>
<td>0,033</td>
<td>0,21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$\frac{e}{\lambda}$ [m2 K/W]</td>
<td>0,095</td>
<td>1,21</td>
<td>0,12</td>
<td>0,02</td>
<td>1,445</td>
</tr>
</tbody>
</table>

Taula 18. Composició, espessors i conductivitats tèrmiques sostre apartaments rurals.

Coeficients de convecció per a particions horitzontals i flux de calor ascendent.

Així doncs,

$$U_{\text{sostre}} = 0,63 \frac{W}{m^2K}$$

Terra

<table>
<thead>
<tr>
<th></th>
<th>Gres</th>
<th>Morter</th>
<th>Formigó amb àrids lleugers</th>
<th>Enfoscat de ciment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>espessor [m]</td>
<td>0,015</td>
<td>0,05</td>
<td>0,05</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>λ [W/mK]</td>
<td>1</td>
<td>1,4</td>
<td>0,33</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>$\frac{e}{\lambda}$ [m2 K/W]</td>
<td>0,015</td>
<td>0,036</td>
<td>0,152</td>
<td>0,077</td>
<td>0,28</td>
</tr>
</tbody>
</table>

Taula 19. Composició, espessors i conductivitats tèrmiques terra.

Coeficients de convecció per a particions horitzontals i flux de calor descendent:

$$\frac{1}{h_e} = 0,17 \frac{W}{m^2K}$$

$$\frac{1}{h_e} = 0,17 \frac{W}{m^2K}$$

Tenim,

$$U_{\text{terra}} = 1,61 \frac{W}{m^2K}$$
Portes exteriors

Les portes exteriors són de fusta i opaques, amb la qual cosa tenim:

\[
U_{\text{portes ext}} = 3,5 \frac{W}{m^2K}
\]

Portes interiors

Les portes interiors també són de fusta opaca:

\[
U_{\text{portes int}} = 2 \frac{W}{m^2K}
\]

Finestres

Les finestres són de fusta amb envidrament doble i càmera d’aire de 6mm, i els hi correspon el següent valor de coeficient de transmissió tèrmica:

\[
U_{\text{finestres}} = 3,3 \frac{W}{m^2K}
\]

A la taula següent es resumeixen els valors calculats de l’àrea i el coeficient global de transferència de calor per a les diferents cares de la vivenda unifamiliar i dels apartaments rurals, tenint en compte el coeficient d’orientació i exposició.

Els apartaments rurals són iguals dos a dos. Dos d’ells tenen tres parets exteriors, i els altres dos només dues. Cal tenir en compte la pendent de la teulada, d’uns 12°, aproximadament. Els dos apartaments interiors només tenen pèrdues per les cares sud i nord, en canvi els exteriors cal sumar-hi la cara est i oest respectivament.

| Vivenda unifamiliar |
|---------------------|-------------------|-------------------|
| | Superfície (m²) | Coeficient U (W/m²K) |
| **Cara sud-est** | | |
| Finestral | 6 | 3,3 |
| Finestres | 6 | 3,3 |
| Paret ext. | 39,43 | 0,431 |
| **Cara sud-oest** | | |
| Porta ext. | 2,1 | 3,5 |
| Paret ext. | 18,6 | 0,431 |
| **Cares nord** | | |
| Paret ext. | 72,13 | 0,431 |
| **Terra** | | |
| Terra | 46,92 | 1,61 |
| **Sostre** | | |
| Sostre ext. | 47,932 | 0,63 |
Apartaments rurals 1 i 4

<table>
<thead>
<tr>
<th>Cara sud</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finestres</td>
<td>15</td>
<td>3,3</td>
</tr>
<tr>
<td>Paret ext.</td>
<td>19,425</td>
<td>0,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cara nord</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porta ext.</td>
<td>4,2</td>
<td>3,5</td>
</tr>
<tr>
<td>Finestra</td>
<td>3,38</td>
<td>3,3</td>
</tr>
<tr>
<td>Paret ext.</td>
<td>38,39</td>
<td>0,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cara Est</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finestres</td>
<td>3,38</td>
<td>3,3</td>
</tr>
<tr>
<td>Paret ext.</td>
<td>24,84</td>
<td>0,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cara Oest</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finestres</td>
<td>3,38</td>
<td>3,3</td>
</tr>
<tr>
<td>Paret ext.</td>
<td>24,84</td>
<td>0,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terra</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra</td>
<td>91,8</td>
<td>1,61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sostre ext.</td>
<td>93,84</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Apartaments rurals 2 i 3

<table>
<thead>
<tr>
<th>Cara sud</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finestres</td>
<td>15</td>
<td>3,3</td>
</tr>
<tr>
<td>Paret ext.</td>
<td>19,425</td>
<td>0,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cara nord</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porta ext.</td>
<td>4,2</td>
<td>3,5</td>
</tr>
<tr>
<td>Finestra</td>
<td>3,38</td>
<td>3,3</td>
</tr>
<tr>
<td>Paret ext.</td>
<td>38,39</td>
<td>0,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terra</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra</td>
<td>91,8</td>
<td>1,61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostre</th>
<th>Superfície (m²)</th>
<th>Coeficient U (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sostre ext.</td>
<td>93,84</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Taula 20. Resum de superfícies i coeficients globals de les diferents cares de les vivendes.

Amb les dades de la taula anterior i considerant els increments de temperatura equivalent adequats a cada cara del local, s’obtenen els següents valors:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{trans} (KW)</td>
<td>-23,35</td>
<td>-22,8</td>
<td>-18,98</td>
<td>-14,53</td>
<td>-11,50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-13,9</td>
<td>-16,4</td>
<td>-22,9</td>
<td></td>
</tr>
</tbody>
</table>

Taula 21. Càrregues tèrmiques de transmissió. Font: elaboració pròpia
3.8.3.2. Càrregues tèrmiques per radiació

Les càrregues tèrmiques de raciació són aquelles que fan referència a la transferència tèrmica de calor per radiació solar a través de les superfícies envidrades.

Aquest tipus de càrregues suposen un guany de calor, sent així favorables a assolir les condicions de confort. Per tant, no es consideren en els càlculs de les càrregues per calefacció, ja que cal tenir en compte les condicions més desfavorables.

3.8.3.3. Càrregues tèrmiques internes

Les càrregues tèrmiques internes tenen en compte les càrregues produïdes per les diferents fonts de calor de l’interior d’un espai. Les més comunes són els ocupants del mateix, les fonts d’il·luminació i els equips elèctrics i electrònics.

Aquestes càrregues també suposen un guany de calor, amb la qual cosa no s’inclouen al càlcul de càrregues de calefacció.

3.8.3.4. Càrregues tèrmiques ventilació

En les instal·lacions de calefacció, també cal preveure una certa renovació de l’aire a l’interior per tal d’assegurar la seva qualitat (eliminar olors, introduir oxigen, etc.)

L’aire introduït serà compensat amb el mateix cabal d’aire extret o expulsat per portes i finestres.

\[Q_{Ventilació} = V_{vent} \cdot \rho \cdot C_p \cdot (T_{SE} - T_{SI}) \]

On:

- \(V_{vent} \) Cabal de ventilació introduït al local [m³/s]
- \(\rho \) Densitat de l’aire de ventilació [kg/m³]
- \(C_p \) Calor específic de l’aire \(\left[\frac{J}{kgK} \right] \)
- \(T_{SE} \) Temperatura seca exterior [K]
- \(T_{SI} \) Temperatura seca interior [K]

El cabal de ventilació depèn del nombre de persones que ocupin l’espai a calefactar o de la superfície del mateix. Aquesta dada es pot extreure del Codi Tècnic d’Edificació.

A més, el CTE estableix que l’aire ha de circular des dels locals secs cap als humits, amb la qual cosa, els menjadors, les sales d’estar i dormitoris han de disposar d’obertures d’admissió. Per
contra, les cuines i els banys han de disposar d’obertures d’extracció. Les particions situades entre els locals amb admissió i locals amb extracció han de disposar d’obertures de pas.

<table>
<thead>
<tr>
<th>Vivenda unifamiliar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Menjador</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{vent}}) [l/persona·s]</td>
<td>(V_{\text{vent}}) [m(^3)/s]</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Habitacions</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Cuina</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{vent}}) [l/m(^2)·s]</td>
<td>(V_{\text{vent}}) [m(^3)/s]</td>
</tr>
<tr>
<td>Banys</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{vent}}) [l/s]</td>
<td>(V_{\text{vent}}) [m(^3)/s]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apartaments rurals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Menjador</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{vent}}) [l/persona·s]</td>
<td>(V_{\text{vent}}) [m(^3)/s]</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Habitacions</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Cuina</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{vent}}) [l/m(^2)·s]</td>
<td>(V_{\text{vent}}) [m(^3)/s]</td>
</tr>
<tr>
<td>Bany</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{vent}}) [l/m(^2)·s]</td>
<td>(V_{\text{vent}}) [m(^3)/s]</td>
</tr>
</tbody>
</table>

Així doncs, el cabal introduït serà de 0,26 m\(^3\)/s.

A l’interior dels habitatges s’estableixen els següents valors

\[T_{\text{se}} = 21^\circ \text{C} \]

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{se}}) (°C)</td>
<td>-5,2</td>
<td>-4</td>
<td>-0,3</td>
<td>4,7</td>
<td>8,1</td>
<td>10,5</td>
<td>12</td>
<td>13,8</td>
<td>10,7</td>
<td>5,4</td>
<td>2,6</td>
<td>-4,7</td>
</tr>
</tbody>
</table>

Aplicant les dades i amb les expressions anteriors:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Ag</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{ventilació}}) (KW)</td>
<td>-8,22</td>
<td>-7,84</td>
<td>-6,68</td>
<td>-5,11</td>
<td>-4,04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-4,89</td>
<td>-5,77</td>
<td>-8,06</td>
<td></td>
</tr>
</tbody>
</table>
3.8.3.5. Càrregues tèrmiques infiltració

Per a la determinació de les càrregues tèrmiques per infiltració farem ús d’una fórmula empírica que ens permet aproximar els resultats a la realitat d’una forma prou precisa sense necessitat de realitzar els llargs processos de càlcul per a determinar-ho amb exactitud. Així doncs, tenim:

\[Q_{\text{infiltració}} = V \cdot \rho \cdot C_p \cdot n \cdot (T_{SE} - T_{SI}) \]

On:

- \(V \) Volum del local \([\text{m}^3]\)
- \(\rho \) Densitat de l’aire \([\text{kg/m}^3]\)
- \(C_p \) Calor específic de l’aire \([\text{kJ/kgK}]\)
- \(T_{SE} \) Temperatura seca exterior \([\text{K}]\)
- \(T_{SI} \) Temperatura seca interior \([\text{K}]\)
- \(n \) número de renovacions per hora

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Ag</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{infiltració}}) (KW)</td>
<td>-5,9</td>
<td>-5,63</td>
<td>-4,8</td>
<td>-3,67</td>
<td>-2,91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-3,52</td>
<td>-4,15</td>
<td>-5,79</td>
<td></td>
</tr>
</tbody>
</table>

Amb això, tenim que les càrregues totals són les següents:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Ag</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{Total}}) (KW)</td>
<td>-37,47</td>
<td>-36,27</td>
<td>-30,46</td>
<td>-23,31</td>
<td>-18,45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-22,31</td>
<td>-26,32</td>
<td>-36,75</td>
<td></td>
</tr>
</tbody>
</table>

3.9. Determinació de la potència de la caldera

Per a estimar la potència de la caldera, sumarem la màxima demanda de calefacció de la vivenda unifamiliar i dels apartaments, resultat de la suma de les càrregues tèrmiques totals de calefacció i de la màxima demanda d’aigua calenta sanitària en els mesos més desfavorables.
A la següent taula es mostra el resum de la demanda tèrmica de les instal·lacions:

<table>
<thead>
<tr>
<th>Mes</th>
<th>Q_{ACS} (kW)</th>
<th>Q_{Calefacció} (kW)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gen</td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td></td>
<td>7,16</td>
<td>6,78</td>
<td>6,22</td>
</tr>
<tr>
<td></td>
<td>37,47</td>
<td>36,27</td>
<td>30,46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>44,63</td>
<td>43,05</td>
<td>36,68</td>
</tr>
</tbody>
</table>

Així doncs, la determinació de la potència de la caldera es realitza analitzant els mesos més desfavorables en els quals existeix una major demanda de potència. En aquest cas tenim que els mesos més desfavorables són el gener i el desembre, degut bàsicament a la demanda de calefacció, i l’abril, mes en el qual s’inicia l’activitat del campament juvenil, cosa que fa augmentar substancialment la demanda d’aigua calenta sanitària, juntament amb els requeriments de calefacció.

Per a determinar l’estimació de la demanda energètica anual per a la producció d’ACS es farà tenint en compte els criteris de demanda del Codi Tècnic de l’Edificació, tal i com fins ara. En quant a la calefacció tenim que només funciona de manera estacional, durant unes hores determinades al dia, que s’aproximen a 8 hores diàries i que actua amb un coefici d’intermitència que s’estableix en el 85%.

Amb això tenim,

<table>
<thead>
<tr>
<th>Mes</th>
<th>ACS (kWh)</th>
<th>Calefacció (kWh)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>1776,37</td>
<td>7898,68</td>
<td>9675,05</td>
</tr>
<tr>
<td>Febrer</td>
<td>1519,03</td>
<td>6905,81</td>
<td>8424,84</td>
</tr>
<tr>
<td>Març</td>
<td>1544,52</td>
<td>6420,97</td>
<td>7965,49</td>
</tr>
<tr>
<td>Abril</td>
<td>4943,02</td>
<td>4754,36</td>
<td>9697,38</td>
</tr>
<tr>
<td>Maig</td>
<td>4776,02</td>
<td>3888,37</td>
<td>8664,39</td>
</tr>
<tr>
<td>Juny</td>
<td>4440,56</td>
<td>0,00</td>
<td>4440,56</td>
</tr>
<tr>
<td>Juliol</td>
<td>3964,40</td>
<td>0,00</td>
<td>3964,40</td>
</tr>
<tr>
<td>Agost</td>
<td>3553,90</td>
<td>0,00</td>
<td>3553,90</td>
</tr>
<tr>
<td>Setembre</td>
<td>4044,21</td>
<td>0,00</td>
<td>4044,21</td>
</tr>
<tr>
<td>Octubre</td>
<td>4404,88</td>
<td>4703,35</td>
<td>9108,23</td>
</tr>
<tr>
<td>Novembre</td>
<td>1480,19</td>
<td>5369,28</td>
<td>6849,47</td>
</tr>
<tr>
<td>Desembre</td>
<td>1712,93</td>
<td>7746,90</td>
<td>9459,83</td>
</tr>
<tr>
<td>TOTAL ANY</td>
<td>38160,03</td>
<td>47687,71</td>
<td>85847,74</td>
</tr>
</tbody>
</table>

Taula 22. Demanda tèrmica anual
Tenint en compte les necessitats tèrmiques, l’aplicació del factor de seguretat, i analitzant el models de mercat, s’ha optat per escollir una caldera de 60kW.

3.9.1. Caldera

Existeix una gran varietat de calderes de biomassa amb característiques similars. L’elecció final de la caldera ve determinada bàsicament per la potència requerida, el combustible utilitzat, automatització del sistema i el preu del conjunt. Tenint en compte aquests factors s’ha optat per una caldera **KWB Multifire USV ZI de 60 kW**, amb un contenidor intermedi de combustible de 200 litres. Aquest contenidor permet allargar la vida del sistema d’alimentació i minimitza els costos d’energia, ja que el sistema d’alimentació funcionarà amb menys freqüència.

El sistema d’aquesta caldera permet utilitzar tant estelles de fusta G30, W30 en conformitat amb ÖNORM M7133 o B1, P16B, en conformitat amb EN14961-1, com pelets de fusta de 6mm o 8 mm de diàmetre en conformitat amb ÖNORM M7135 o DIN Plus i pelets de fusta del nivell de qualitat A1 i A2 en conformitat amb EN14962-1. En funció del combustible a utilitzar, el rendiment de la caldera pot variar considerablement. En aquest cas el combustible utilitzat és l’estella.

Les principals característiques de la caldera són:

1. **Bescanviador de calor** vertical amb sistema automàtic de neteja amb turbuladors especials.
2. **Sistema de combustió.** Gasificador amb alimentació inferior amb cremador en forma d’anell amb injector d’aire, cúpula de distribució de gasos d’alta temperatura, zona de combustió completa en règim turbulent.
3. **Sistema de seguretat** contra la tornada de la combustió, disposa d’un obturador hermètic i de tancament automàtic i d’un sistema antiretorn de flama operat tèrmicament.

4. **Sistema d’extracció de cendres.** Extracció automàtica, compactació de cendres i supervisió del nivell d’ompliment. Contenidor de cendres mòbil.

5. **Sistema d’alimentació** per vis sens fi mecànic amb control de seguretat de la flama.

6. **Control KWB Comfort 3.**

7. **Vis Sens fi d’alimentació.** Espires d’acer inoxidable amb revestiment de metall dur.

Figura 10. Parts caldera KWB USV 60

<table>
<thead>
<tr>
<th>Caràcterística</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència nominal</td>
<td>60,0 kW</td>
</tr>
<tr>
<td>Càrrega parcial</td>
<td>17,0 kW</td>
</tr>
<tr>
<td>Rendiment de la caldera a potència nominal</td>
<td>91,1 %</td>
</tr>
<tr>
<td>Rendiment de la caldera a càrrega parcial</td>
<td>92,2 %</td>
</tr>
<tr>
<td>Potència calorífica de consum a potència nominal</td>
<td>66,0 kW</td>
</tr>
<tr>
<td>Potència calorífica de consum a càrrega parcial</td>
<td>18,4 kW</td>
</tr>
</tbody>
</table>

Taula 23. Característiques tècniques de la caldera KWB USV 60
3.10. Sistema hidràulic

3.10.1. Acumulador

S'ha optat per instal·lar un acumulador inercial de 1000l i un dipòsit d’ACS de 1500l.

El primer permet a la caldera funcionar de forma regular, evitant interrupcions degudes a una demanda insuficient d’energia per part del sistema de calefacció. En aquestes condicions, en lloc de quedar bloquejada la combustió o reescalfar l’ambient, la caldera pot seguir treballant emmagatzemant l’energia en el dipòsit d’acumulació. El funcionament sense interrupcions redueix el fum i les males combustions de la caldera, la protegeix contra formacions nocives de quitrà i augmenta el seu rendiment global.

També constitueix un volant tèrmic per al sistema de calefacció i fa augmentar en gran mesura el confort de l’exercici, fent un funcionament molt més lineal. D’aquesta manera s’assegura algunes hores de calefacció inclús amb la caldera apagada. També permet que la caldera treballi amb interval molt més llargs, optimitzant la combustió.

Habitualment, en les calderes de biomassa es calcula una acumulació d’uns 15l per kW nominal de potència, la qual cosa ens fa optar per un dipòsit de 1000l.

Resumint els avantatges de la instal·lació d’aquests dipòsits tenim que:

- Menys parades i arrencades, allargant la vida útil de la caldera.
- Millor combustió, el que recau en una menor emissió de partícules, redueix el consum de combustible i disminueix significativament les cendres produïdes.
- Reducció dràstica de sutges en el sistema d’extracció de fums.
- Major grau de confort en els espais a calefactar.
- Es disposa de la màxima potència en el moment de calefactar els espais.

Pel que fa al dipòsit d’ACS, ve determinat per les necessitats en hores de màxima demanda. És per això que s’opta per un dipòsit de 1500 litres.

3.10.2. Circuit hidràulic

El sistema hidràulic es divideix en dos circuit bàsics, el de la sala de calderes o primari i el sistema de calefacció, secundari. El primari és el que connecta la caldera amb el dipòsit acumulador.

Les canonades d’aquest circuit primari seran de coure de 1”1/2 amb brides i estaran degudament aïllades segons l’aprovació de l’actual RITE i el document bàsic DB-HEI. Els aïllaments mínims per instal·lacions en l’interior de l’edifici són els següents:
<table>
<thead>
<tr>
<th>Diàmetre exterior (mm)</th>
<th>Temperatura màxima del fluid (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40...60</td>
</tr>
<tr>
<td>D ≤ 35</td>
<td>25</td>
</tr>
<tr>
<td>35 < D ≤ 60</td>
<td>30</td>
</tr>
<tr>
<td>60 < D ≤ 90</td>
<td>30</td>
</tr>
<tr>
<td>90 < D ≤ 140</td>
<td>30</td>
</tr>
<tr>
<td>140 < D</td>
<td>35</td>
</tr>
</tbody>
</table>

Taula 24. Característiques aïllaments en canonades interiors

Per a l’exterior de les vivendes:

<table>
<thead>
<tr>
<th>Diàmetre exterior (mm)</th>
<th>Temperatura màxima del fluid (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40...60</td>
</tr>
<tr>
<td>D ≤ 35</td>
<td>35</td>
</tr>
<tr>
<td>35 < D ≤ 60</td>
<td>40</td>
</tr>
<tr>
<td>60 < D ≤ 90</td>
<td>40</td>
</tr>
<tr>
<td>90 < D ≤ 140</td>
<td>40</td>
</tr>
<tr>
<td>140 < D</td>
<td>45</td>
</tr>
</tbody>
</table>

Taula 25. Característiques aïllaments en canonades exteriors

En el sistema de canonades es disposaran els següents elements auxiliars:

- **Vàlvula de 3 vies.** Serà una vàlvula monitoritzada que crearà un by-pass anterior a la connexió de l’acumulador. Permet mantenir una temperatura mínima de funcionament en l’interior de la caldera i regular la temperatura de l’acumulador.

- **Bomba de recirculació.** Es controla que la temperatura de l’aigua de la caldera sigui sempre superior als 55°C per evitar possibles problemes de condensació.

- **Vàlvula antiretorn.** Es col·locarà una vàlvula antiretorn per evitar possibles canvis de sentit en el circuit.

- **Equips de control.** Manòmetre i termòmetre.

- **Vàlvula de seguretat.** Tarada a 3 bars i evitarà sobrepressions en el sistema hidràulic.

- **Aixeta de buidat.** Per tal de poder buidar el circuit en cas que sigui necessari.

- **Filtre.** A l’entrada de l’escomesa es col·locarà un filtre per evitar la possible entrada de partícules en l’interior del circuit. Aquest disposarà també d’una vàlvula de tall.

- **Vas d’expansió.** S’instal·la als circuits tancats d’aigua per absorbir les variacions de volum del fluid caloportador del circuit al variar la seva temperatura, mantenint la pressió entre els límits preestablerts i impedint pèrdues i reposicions de la massa del fluid. Es dimensiona el sistema d’expansió segons la norma UNE100.157 i UNE100.155. Aquest té en compte per al seu càlcul el coeficient d’expansió de l’aigua en el circuit i el volum total. Normalment s’utilitza un mínim d’un 5% (mètode simplificat) del volum total.
3.11. Situació de la instal·lació

La sala de calderes s’ubicarà a la nau existent entre la vivenda unifamiliar i els apartaments rurals. Aquesta nau té una superfície de 75 m² amb una altura de 3,0 m a la part baixa i de 4,20 a la més alta. En aquesta mateixa nau es preveu l’emplaçament del sistema d’emmagatzematge, contigu a la sala de calderes, i on es podrà accedir fàcilment per a operacions de recàrrega o per a operacions de manteniment.

Figura 11. Ubicació de la sala de calderes i la zona d’emmagatzematge

3.12. Sistema d’emmagatzematge i alimentació

3.12.1. Sistema d’emmagatzematge

Com ja s’ha comentat, el sistema d’emmagatzematge s’integrarà en una nau ja construïda, en la qual també s’hi ubicarà la sala de calderes. Gaudeix de bona accessibilitat tant per a realitzar les operacions de recàrrega com per a les operacions de manteniment. El desnivell del terreny permet contemplar l’opció de realitzar la càrrega per la part superior de la nau, mitjançant camió-bolquet, adequant la coberta de la nau per a aquest requeriment.

El sistema d’emmagatzematge disposarà d’una sitja formigona de 5x5x2,5m amb les següents característiques:

- Reixa de ventilació de 60x60cm.
- Porta d’accés de 80x120cm.
- Porta corredera per a càrrega de 300x200cm.
- Terra de fusta inclinat amb ventilació inferior.
- Fixació del sistema d’alimentació.
Les dimensions de la sitja seran les següents:

<table>
<thead>
<tr>
<th>Alçada (m)</th>
<th>2,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplada (m)</td>
<td>5</td>
</tr>
<tr>
<td>Profunditat (m)</td>
<td>5</td>
</tr>
<tr>
<td>Volum construit (m³)</td>
<td>62,5</td>
</tr>
<tr>
<td>Volum útil (m³)</td>
<td>50</td>
</tr>
<tr>
<td>Capacitat (tn)</td>
<td>12,5 tn</td>
</tr>
</tbody>
</table>

Per al disseny de la sitja es té en compte les següents consideracions:
- Impermeabilització total de la sitja. Evitar categòricament humitats dins la sitja.
- Idoneitat de sitges amb un alt grau d’estanquitat per a evitar pols en la descàrrega.
- Presa de terra a les boques de càrrega i sortida per a evitar qualsevol espurna a causa de l’electricitat estática.
- Posar gomes amortidors a la paret que suportin la pressió de les descàrregues.
- Evitar instal·lacions elèctriques dins la sitja.
- Visor o sensor per a indicar la quantitat de combustible dins la sitja.
- Cal dotar la sitja d’un registre ignífug (normalment una porta per on pugui accedir un operari a l’interior de la sitja per a fer reparacions) capaç de suportar la pressió que el biocombustible hi exerceix. Caldrà col·locar fustes protegint el registre per la part interior de la sitja per a evitar aquestes sobrecàrregues i també per a evitar que el biocombustible vessi quan la sitja estigui plena i s’obri el registre.
- Utilització de filtres d’aire per la pols i/o extracció forçada.

3.12.2. Transport i alimentació del combustible

El transport del combustible des de la sitja fins la caldera es realitzarà mitjançant una ballesta mòbil. La ballesta és un sistema de braços flexibles o articulats, ubicats dins la sitja, que van removent el fons del dipòsit. D’aquesta manera es trencar l’efecte volta que pugui formar l’estella. Així, la ballesta és un bon sistema d’alimentació quan el biocombustible és estella. Aquest sistema també és compatible amb biocombustibles granulats i garanteix una bona alimentació del vis sens f.

Amb un sistema de ballestes, la sitja no necessita afegir pendants per a garantir que el biocombustible es desplaci correctament al vis sens f, tot i això afegir-lo també millora l’alimentació.

Així doncs, optem per la instal·lació d’una ballesta de 5 m de diàmetre, amb una inclinació de 10° i connectada mitjançant un vis sens f directament a la caldera. La paret disposarà d’un passa murs de 100x80 i estarà aïllat tèrmicament i acústica. A més disposarà d’una barrera anti-incendi abans de l’entrada a la caldera.

Per tal d’evitar que el motor de la ballesta quedis dins de la sitja, i s’hagin de tenir en consideració les especificacions del RITE, les quals no permeten cap instal·lació elèctrica dins el dipòsit de combustibles, s’opta per induir el moviment de la ballesta mitjançant un reductor
mecànic pel moviment de l’eix del vis sens fi. Això permet que el motor quedi fora de la sitja i estigui més accessible.

L’energia continguda en la sitja és:

\[E_{\text{total}} = \rho_{\text{combustible}} \times \text{PCI}_{\text{combustible}} \times V_{\text{sitja}} \times F_{\text{combustible}} \]

En què:

- \(E_{\text{total}} \), és l’energia total que conté la sitja (kWh).
- \(\rho_{\text{combustible}} \), és la densitat aparent del combustible (kg/m\(^3\)).
- \(\text{PCI}_{\text{combustible}} \), és el poder calorífic inferior del combustible (kWh/kg).
- \(V_{\text{sitja}} \), és el volum de la sitja tenint en compte les rampes (m\(^3\)).
- \(F_{\text{combustible}} \), és el factor de correcció segons la disposició del combustible dins la sitja.

\[E_{\text{total}} = 35000 \text{ kWh} \]

\[\text{Demanda anual} = 85.848 \text{ kWh/any} \]

\[\text{PCI combustible} = 4 \text{ kWh/kg} \]

\[\text{Rendiment caldera} = 0.91 \]
Així doncs, podem estimar el consum de combustible un unes 24 tones l’any. Amb aquestes dades, i tenint en compte les dimensions del sistema d’emmagatzematge podem dir que tenim una autonomia aproximada de:

<table>
<thead>
<tr>
<th>Capacitat sitja</th>
<th>12,5 tn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consum diari mes més desfavorable</td>
<td>88 kg/dia</td>
</tr>
<tr>
<td>Autonomia mínima</td>
<td>142 dies útils</td>
</tr>
</tbody>
</table>

Aquest dimensionament ens permetrà realitzar només dues càrregues anuals, minimitzant també els costos de transport.

4. Instal·lació solar fotovoltaica

4.1. Introducció

L’objectiu de la instal·lació fotovoltaica és permetre l’autoabastiment energètic de les instal·lacions descrites. En aquest sentit, tal i com ja s’ha comentat amb la biomassa, tenint en compte la situació energètica actual, adquireix molt sentit la producció local d’energia en el punt de consum, per tal de descentralitzar la producció i donar peu a un model de generació distribuïda, reduint la dependència energètica i realitzar un consum de proximitat al punt de generació.

4.1.1. Balanç net

La proposta de Reial Decret del 18 de novembre de 2011 pel que s’estableix la regulació de les condicions administratives, tècniques i econòmiques de la modalitat del subministrament d’energia elèctrica en “balanç net”, permetria la possibilitat de connexió a xarxa podent produir fins a 100 kW d’energia dins la pròpia instal·lació de consum i fer el balanç en un període de 12 mesos entre el consum i la generació. De forma lògica, la proposta és no recompensar l’excedent d’energia, amb la qual cosa cal dissenyar les instal·lacions de producció de manera que l’energia generada sigui el més propera possible al consum previst.

A més de la viabilitat tècnica de la opció, també gaudiria de viabilitat econòmica, ja que la reducció dels costos de les tecnologies fa que progressivament el cost del kWh generat, s’aproximi cada vegada més al cost de compra de l’energia per part de l’usuari final,
possibilitant l’autoconsum d’energia i amb una justificació econòmica per sí mateix, sense necessitat de primes ni subvencions, punt conegut com a *paritat de xarxa*.

Amb tot això, seria necessari una simplificació del procés administratiu. En principi no caldrà cap registre de preassignació, com en el cas del règim de primes, i els punts de generació no seran considerats *productors d’energia*, amb la qual cosa no caldrà donar-se d’alta d’autònom ni declarar impostos. En principi només s’haurà de demanar permís d’accés a l’empresa distribuïdora.

Tot i no conèixer el règim econòmic que s’aplicarà sobre el balanç net, una bona opció seria premiar l’energia generada i consumida en el mateix moment.

![Diagrama](Imatge 1. Esquema d’autoconsum connectat a xarxa)

4.1.2. Opció tècnica

Així doncs, per les característiques de les instal·lacions i per els avantatges que suposa l’autoconsum en balanç net, s’ha optat per dimensionar la instal·lació tenint en compte aquests paràmetres.

El dimensionament s’haurà de realitzar, doncs, aproximant al màxim la generació energètica al consum estimat de les instal·lacions. En aquest sentit, el dimensionament és més similar a una instal·lació fotovoltaica aïllada. Aquest sistema ens permet, a més, l’eliminació de les bateries, amb la conseqüent reducció econòmica i el manteniment que aquestes requereixen.
4.2. Recurs solar

4.2.1. Radiació solar

La radiació solar té el seu origen en les reaccions nuclears que es produeixen al sol, sent l’energia solar que arriba a la superfície terrestre unes 10.000 vegades major que l’energia consumida al planeta.

La radiació és la transferència d’energia per ones electromagnètiques que es produeix a partir de la font en totes direccions. Aquestes ones no necessiten un medi material per a propagar-se.

La longitud d’ona i la freqüència de les ones electromagnètiques són importants per determinar la seva energia, la visibilitat i el poder de penetració. Totes les ones electromagnètiques es desplacen en el buit a una velocitat de 299.792 km/s.

La major part d’aquesta radiació emesa es troba dins de l’espectre compres entre l’infraroig i l’ultraviolat, estant aproximadament el 47% de l’energia dintre de l’espectre visible.

En l’atmosfera extraterrestre, la radiació que arriba del sol té un valor pràcticament constant i igual a 1367 W/m². Aquest valor es denomina constant solar, G₀, i representa l’energia emesa per el sol per unitat de temps i rebuda en una superfície d’1m², considerant la radiació solar perpendicular a la superfície. El valor de la constant solar varia en funció dels cicles solars (±0,02%) i degut a la excentricitat de l’orbita terrestre que fa que la distància Terra-Sol sigui variable. Aquesta variació està al voltant d’un 3%.

Al travessar l’atmosfera, aquesta radiació es modifica i atenys degut als fenòmens d’absorció, dispersió i reflexió atmosfèrica, de manera que, al nivell del mar, la radiació màxima que es rep es d’uns 1000 W/m², valor al qual només sol arribar-se en zones tropicals i subtropicals, a les 12h del migdia solar, i en unes condicions d’atmosfera clara, neta i seca.

En funció de com reben la radiació solar els objectes situats en la superfície terrestre, es poden distingir aquests tipus de radiació:

- **Radiació directa**, que és la que arriba directament del Sol sense haver sofert cap canvi en la seva direcció. Aquest tipus de radiació es caracteritza per projectar una ombra definida dels objectes opacs que la intercepten.

- **Radiació difusa.** Part de la radiació que travessa l’atmosfera és reflectida i dispersada. Aquesta radiació, sofreix canvis de direcció com a conseqüència de les reflexions i absorcions, no només dels núvols sinó de les partícules de pols atmosfèrica, muntanyes, arbres, edificis, el propi sòl, etc.

- **Radiació reflectida**, és aquella reflectida per la superfície terrestre. La quantitat de radiació depèn del coeficient de reflexió de la superfície, també anomenat albedo.
Les superfícies horitzontals no reben cap radiació reflectida, perquè no veuen cap superfície terrestre i les superfícies verticals són les que més radiació reflectida reben.

- **Radiació global.** És la radiació total, suma de les tres anteriors.

4.3. Anàlisi del recurs solar

Per a conèixer el recurs solar disponible en un emplaçament i la producció fotovoltaica derivada del mateix, les dades bàsiques són la mesura de la radiació solar, i la temperatura ambient.

Pel que fa a la primera s'ha fet ús de la base de dades elaborada per la Comissió Europea, anomenada PVGIS, que és el sistema d’informació geogràfica sobre energia fotovoltaica. Aquesta base de dades ens ofereix mesures de radiació solar per a diferents inclinacions, a més d’oferir-nos la inclinació òptima per a cada mes de l’any.

Per la determinació de les temperatures, com ja s’ha comentat, per la manca de dades concretes de la població de Gurp, s’ha pres com a referència l’Estació Meteorològica de la Pobla de Segur. S’ha escollit per qüestions de proximitat i similitud climatològica, aplicant una correcció a les temperatures per la diferencia d’alçada.

A la següent taula es mostren les dades d’irradiació diària amb mitjana mensual per al poble de Gurp per a diversos graus d’inclinació:

<table>
<thead>
<tr>
<th>Mes</th>
<th>0°</th>
<th>15°</th>
<th>25°</th>
<th>40°</th>
<th>Irrad. en angle òptim</th>
<th>0°</th>
<th>15°</th>
<th>25°</th>
<th>40°</th>
<th>Irrad. en angle òptim</th>
<th>Inclinació Òptima (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>1840</td>
<td>2420</td>
<td>2750</td>
<td>3120</td>
<td>3030</td>
<td>6,62</td>
<td>8,71</td>
<td>9,9</td>
<td>11,23</td>
<td>10,91</td>
<td>63</td>
</tr>
<tr>
<td>Febrer</td>
<td>2650</td>
<td>3270</td>
<td>3590</td>
<td>3920</td>
<td>3860</td>
<td>9,54</td>
<td>11,77</td>
<td>12,92</td>
<td>14,11</td>
<td>13,90</td>
<td>55</td>
</tr>
<tr>
<td>Març</td>
<td>4060</td>
<td>4670</td>
<td>4960</td>
<td>5160</td>
<td>5140</td>
<td>14,62</td>
<td>16,81</td>
<td>17,86</td>
<td>18,58</td>
<td>18,50</td>
<td>4</td>
</tr>
<tr>
<td>Abril</td>
<td>4910</td>
<td>5250</td>
<td>5340</td>
<td>5250</td>
<td>5300</td>
<td>17,68</td>
<td>18,9</td>
<td>19,22</td>
<td>18,9</td>
<td>19,08</td>
<td>28</td>
</tr>
<tr>
<td>Maig</td>
<td>5700</td>
<td>5830</td>
<td>5780</td>
<td>5470</td>
<td>5580</td>
<td>20,52</td>
<td>20,99</td>
<td>20,81</td>
<td>19,70</td>
<td>20,09</td>
<td>15</td>
</tr>
<tr>
<td>Juny</td>
<td>6320</td>
<td>6360</td>
<td>6230</td>
<td>5790</td>
<td>5930</td>
<td>22,75</td>
<td>22,90</td>
<td>22,43</td>
<td>20,84</td>
<td>21,35</td>
<td>9</td>
</tr>
<tr>
<td>Juliol</td>
<td>6490</td>
<td>6600</td>
<td>6500</td>
<td>6090</td>
<td>6230</td>
<td>23,36</td>
<td>23,76</td>
<td>23,4</td>
<td>21,92</td>
<td>22,43</td>
<td>13</td>
</tr>
<tr>
<td>Agost</td>
<td>5700</td>
<td>6000</td>
<td>6050</td>
<td>5850</td>
<td>5930</td>
<td>20,52</td>
<td>21,6</td>
<td>21,78</td>
<td>21,06</td>
<td>21,35</td>
<td>23</td>
</tr>
<tr>
<td>Setembre</td>
<td>4630</td>
<td>5210</td>
<td>5460</td>
<td>5580</td>
<td>5580</td>
<td>16,67</td>
<td>18,76</td>
<td>19,66</td>
<td>20,09</td>
<td>20,09</td>
<td>39</td>
</tr>
<tr>
<td>Octubre</td>
<td>3070</td>
<td>3690</td>
<td>4000</td>
<td>4300</td>
<td>4240</td>
<td>11,05</td>
<td>13,28</td>
<td>14,4</td>
<td>15,48</td>
<td>15,26</td>
<td>51</td>
</tr>
<tr>
<td>Novembre</td>
<td>2060</td>
<td>2660</td>
<td>2990</td>
<td>3350</td>
<td>3270</td>
<td>7,42</td>
<td>9,58</td>
<td>10,76</td>
<td>12,06</td>
<td>11,77</td>
<td>60</td>
</tr>
<tr>
<td>Desembre</td>
<td>1690</td>
<td>2300</td>
<td>2650</td>
<td>3040</td>
<td>2950</td>
<td>6,08</td>
<td>8,28</td>
<td>9,54</td>
<td>10,94</td>
<td>10,62</td>
<td>65</td>
</tr>
<tr>
<td>Any</td>
<td>4100</td>
<td>4530</td>
<td>4690</td>
<td>4750</td>
<td>4760</td>
<td>14,76</td>
<td>16,31</td>
<td>16,88</td>
<td>17,1</td>
<td>17,14</td>
<td>36</td>
</tr>
</tbody>
</table>

Taula 26. Irradiació diària (mitjana mensual) per a diferents inclinacions al poble de Gurp (Wh/m²). **Font:** PVGIS
4.3.1. Energia solar a la comarca

Pel que fa a l’energia solar fotovoltaica, històricament s’ha associat a una forma autònoma d’obtenció d’energia elèctrica, molt apropiada per als masos o nuclis aïllats, que no tenien accés a la xarxa de subministrament elèctric. Aquestes zones aïllades són abundants a la comarca, amb la qual cosa ha tingut un ús relativament important. Amb les polítiques de primes es van endegar alguns projectes de parcs solars promoguts per particulars als ajuntaments d’Isona i Conca Dellà, de Salàs de Pallars, de Sant Esteve de la Sarga i de Talarn, tot i que finalment no s’han dut a terme.

Des de les administracions locals s’apunta l’interès per promocionar el desenvolupament de les energies renovables en general, i de la fotovoltaica en particular, tot i que la gran majoria avui per avui no tenen ordenances locals que fomentin i regulin l’ús d’energies renovables en els edificis ni ofereixen algun tipus d’incentiu als particulars per a aquesta finalitat. Només des de l’Ajuntament de Tremp es contempla a través del POUM l’ús de l’energia fotovoltaica en els edificis de nova construcció. També des d’aquest ajuntament es preveu dotar els edificis municipals de plaques solars. Així, en el marc dels ajuts del Pla d’Iniciatives de Dinamització Comarcal de la Generalitat de Catalunya, l’ajuntament de Tremp ha instal·lat dues plantes fotovoltaiques en els pavellons d’esports, per a produir electricitat i injectar-la a la xarxa de distribució.

4.4. Característiques generals d’una instal·lació

Una instal·lació solar d’autoconsum en balanç net connectada a la xarxa té només tres elements bàsics: un grup de plaques solars fotovoltaiques ubicades sobre la teulada d’un edifici o integrades en qualsevol element estructural del mateix edifici; o que poden estar disposades directament sobre qualsevol terreny proper a la xarxa elèctrica. Un altre equip necessari a les instal·lacions connectades a la xarxa és l’ondulator o inversor-convertidor elèctró que transforma l’energia en forma de corrent continu que proporcionen les plaques solars, en corrent altern d’igual tipus i valor que el transportat per la xarxa elèctrica; i, per últim, el quadre d’interconnexió amb la xarxa comercial. El circuit solar produeix energia elèctrica en funció de la radiació solar incident en cada moment del dia; per tant, els valors de generació enregistrats variaran segons l’hora del dia, l’època de l’any i la meteorologia. Una part d’aquesta energia és consumida, i la sobrant, comptabilitzada i injectada a la xarxa comercial per tal de balancejar els resultats en un període determinat.

4.4.1. Tensions de treball

Les instal·lacions de petita potència es regulen en el seu conjunt, excepte especificacions concretes, pel Reglamento Electrotécnico para Baja Tensión (REBT). Els sistemes fins a 5 kW, pel fet de ser sistemes de poca potència, es poden connectar a xarxa en Baixa Tensió, monofàsica, a 230 VCA i, per a potències superiors, es dissenyen amb una connexió trifàsica.

A la part solar, de voltatge en corrent continu (DC), hi ha diferents configuracions possibles en les connexions sèrie-paral·lel dels mòduls per a obtenir valors de treball adequats en corrent
continu. Depenent de l’inversor escollit, els voltatges de treball poden ser, des dels 12 V fins al 600 VCC. En tot cas, per a optimitzar el sistema, es tendeix a voltatges mitjans propers a les tensions de connexió a la xarxa (260 – 420 VCC).

4.4.2. Arquitectura dels inversors

En qualsevol projecte fotovoltaic de connexió a la xarxa, l’inversor és el cor del sistema. És molt important tenir-ne clares les característiques tècniques: potència, rangs de treball, tensió DC-AC, freqüència i potència màxima assolida. Recordem que la potència acumulada per la quantitat d’inversors determinarà la potència nominal de la planta en qualsevol sistema fotovoltaic connectat a la xarxa. Per a cada sistema fotovoltaic de connexió a la xarxa, podem trobar tot un ventall d’equips (en potències nominals) per a la seva utilització. Bàsicament, s’escullen els equips que tinguin en les seves característiques tècniques els màxims de les proteccions establertes per la normativa actual, de manera que derivi en un augment de la seguretat del sistema i redueixi costos d’instal·lació en general. Aquestes proteccions són:

- Separació galvànica. Aquest condicionant pot ser assolit fora del convertidor mateix, bàsicament perquè, per necessitats tècniques de connexió a la xarxa, es dissenyi la instal·lació d’un transformador que faci a la vegada aquesta funció.
- Relé de control de tensió de la xarxa.
- Relé de control de la freqüència de la xarxa.
- Temporització en la reconexió.
- Si es verifiquen aquestes proteccions, certificat del fabricant on s’especifiqui que els valors determinats en normativa no poden ser modificats per qualsevol persona, via software d’equip.
- Certificat de no-funcionament en illa.
- Certificat d’emissió d’harmònics i de compatibilitat electromagnètica.
- El factor de potència de l’energia subministrada ha d’estar al més a prop possible del valor 1.
- Senyalització on/off del sistema.

També, i encara que no ho especifiqui la normativa, es valoren molt els equips que incorporen visualització, monitorització i control de les dades i paràmetres de funcionament de tot el sistema. El display de visualització en els equips i el software per monitorització en l’ordinador són cada vegada més importants.

La ubicació de la instal·lació o situació física dels inversors poden ser de les següents formes:

- Instal·lats dins el mateix camp solar, a la intempèrie i amb caixa amb qualitat estanca IP65.
- Instal·lats al camp solar dins d’una caseta o d’un armari IP65 adequat per a incloure-hi els equips.
- Instal·lats en una sala específica molt adient en temperatura, ambient i espai, accessible per als tècnics de manteniment i l’usuari/propietari.
- Instal·lats a la sala caseta o al lloc a cobert dins les especificacions del punt anterior, però amb la inclusió a prop dels comptadors i quadre de proteccions.

4.4.3. Connectivitat elèctrica

Per a desenvolupar la interconnexió de tot el sistema, es prendran les mesures a les instal·lacions, incident especialment en la minimització de les pèrdues derivades de les connexions, tant en DC com en AC.
- Interconnexió mòduls.
- Connexió dels mòduls fins als inversors.
- Connexió dels inversors al quadre de proteccions i comptadors d’energia.
- Punt de connexió a xarxa.

Algunes especificacions comunes de tota la instal·lació:
- Terra unificat de tota la instal·lació. No pot coincidir mai amb la presa de terra del neutre de la companyia.
- Dispositius automàtics generals de seccionament + diferencial accessible per a l’empresa distribuïdora.
- Doble comptador. Lectures d’energia emesa a la xarxa i consumida.

4.4.4. Equipaments d’interconnexió

En tota instal·lació fotovoltaica, s’instal·larà un quadre d’interconnexió amb la xarxa. Aquest quadre pot incloure el total dels dispositius de protecció definits per la normativa o els establerts com a essencials. D’altra banda, aquests equipaments poden incloure els comptadors de mesurament i els transformadors de tensió per a l’adaptació a la tensió de xarxa.

Definim els dos tipus de quadre d’interconnexió:
1. Quadre d’interconnexió complet. Conjunt de dispositius definits per la normativa especificada per a la interconnexió a xarxa. D’aquesta manera, es podrien incloure altres elements que no s’inclouen per normativa, però que es podrien valorar com a importants des d’un punt de vista de qualitat d’instal·lació. En aquest cas, és lògic pensar que els inversors no necessiten que unes de les seves característiques tècniques siguin les proteccions de normativa.
2. Quadre d’interconnexió bàsic. Quadre compost essencialment per dos elements: seccionador automàtic (contactor-magnetotèrmic) i diferencial. Han de ser accessibles per a la companyia elèctrica conjuntament amb els comptadors, seccionador manual i fusibles d’entrada a la instal·lació. En aquest punt, es reuneixen les connexions derivades dels diferents inversors generadors. És el punt de connexió de tot el sistema.

Algunes normes generals d’aplicació per a definir una unió perfecta a la xarxa són les següents:
- La potència màxima de la planta no pot excedir més del 50% de la potència nominal del transformador de la subestació elèctrica o de la capacitat de la mateixa xarxa definida a la zona de la connexió.
- No s’acceptaran connexions d’instal·lacions que produeixin caigudes de tensió provocades per la connexió-desconnexió que siguin superiors al 2%. Evidentment, aquests punts d’unió a la xarxa comercial s’han de dissenyar de manera que les pèrdues de rendiment acumulades per la planta solar en tot el periple que es pot produir des que es genera un quilovat-hora fins que s’injecta a la xarxa elèctrica siguin minimitzats. L’elecció d’equips inversors, cables i connexions, transformadors i control en la reducció de les hores de paralització de la planta per diversos factors han d’estar ben gestionats i informats. Els armaris de proteccions i/o quadre de connexions tenen la funció d’incloure els instruments de mesura de l’energia produïda i consumida, així com les proteccions elèctriques (dispositius d’acció automàtica) que demana la normativa vigent. Aquests elements de protecció poden duplicar els que ja incorporen els mateixos inversors en el seu disseny, per tal d’evitar tant els danys a la xarxa elèctrica com la pertorbació de la producció solar i també els danys que el mateix sistema pugui produir a l’equipament interconnectat i a la resta d’usuaris de la xarxa.

4.5. Descripció general de la instal·lació

La instal·lació fotovoltaica es dimensiona per tal de generar suficient energia com per poder abastir totes les instal·lacions. Cal tenir en compte que aquest consum no es realitza sempre en el moment en que es genera l’energia, per això es dissenya la instal·lació de forma que pugui estar connectada a xarxa per tots els moments en que el consum superi la generació, o aquesta directament no existeixi. Al mateix temps, també cal tenir en compte que tota l’energia produïda no es consumeix instantàniament, amb la qual cosa aquesta energia pot ser injectada a xarxa per a després comptabilitzar-la a l’hora de fer el balanç d’energia extreta/injectada.

S’ha dimensionat per abastir les instal·lacions prèviament descrites. Una vivenda unifamiliar, quatre apartaments rurals i la zona d’instal·lacions (banys i dutxes) del campament juvenil. La vivenda unifamiliar estarà habilitada permanentment, però la resta d’instal·lacions tenen un ús estacional, ja que els apartaments i el campament juvenil centraran la seva activitat en els mesos més càlids. De totes formes, durant la resta de l’any, els apartament rurals seguiran mantenint certa activitat, promoguda per la dinamització d’activitats hivernals al territori.
Així doncs, com es determina més endavant, es col·locaran 16 mòduls de 240 Wp que entregaran una potència pic de 3840 Wp. Es configuraran de forma que quedin 8 mòduls en sèrie i dos en paral·lel amb una inclinació de 25°. La instal·lació es realitza sobre una coberta formada per plaques metàl·liques de coberta tipus sandvíx de 3 cm de gruix d’aïllament. Aquesta coberta, amb orientació 18° respecte al sud, té una superfície de 183 m², on s’instal·laran les plaques inclinades 25°.

Per tant oferirà una potència pic de **3,84 kWp** i una potència nominal de **3,8kW**.

4.6. Anàlisi de la demanda elèctrica

Per tal d’analitzar la demanda elèctrica de les instal·lacions, s’ha realitzat un inventari dels aparells consumidors, i s’ha fet una estimació de les hores d’ulització en funció de de l’època de l’any.

En les següents taules es resumeixen els aparells consumidors amb la seva potència, hores de funcionament i consum d’energia diari:
CONSUM DIARI INSTAL·LACIONS ESTIU (ABRIL-SETEMBRE)

<table>
<thead>
<tr>
<th>Element</th>
<th>Tipus de consum</th>
<th>Unitats</th>
<th>Potència unitària (W)</th>
<th>Potència instal·lada (W)</th>
<th>Utilització (h/dia)</th>
<th>Energia diaria (Wh/dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Làmpares</td>
<td>CA</td>
<td>12</td>
<td>24</td>
<td>288</td>
<td>4</td>
<td>1152</td>
</tr>
<tr>
<td>Televisió</td>
<td>CA</td>
<td>1</td>
<td>150</td>
<td>150</td>
<td>3</td>
<td>450</td>
</tr>
<tr>
<td>Ordinador</td>
<td>CA</td>
<td>1</td>
<td>150</td>
<td>150</td>
<td>3</td>
<td>450</td>
</tr>
<tr>
<td>Microones</td>
<td>CA</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>0,5</td>
<td>500</td>
</tr>
<tr>
<td>Nevera</td>
<td>CA</td>
<td>1</td>
<td>120</td>
<td>120</td>
<td>8</td>
<td>960</td>
</tr>
<tr>
<td>Rentadora</td>
<td>CA</td>
<td>1</td>
<td>1250</td>
<td>1250</td>
<td>1</td>
<td>1250</td>
</tr>
<tr>
<td>Congelador</td>
<td>CA</td>
<td>1</td>
<td>120</td>
<td>120</td>
<td>8</td>
<td>960</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5722</td>
</tr>
<tr>
<td>Apartaments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Làmpares</td>
<td>CA</td>
<td>28</td>
<td>24</td>
<td>672</td>
<td>4</td>
<td>2688</td>
</tr>
<tr>
<td>Televisió</td>
<td>CA</td>
<td>4</td>
<td>150</td>
<td>600</td>
<td>3</td>
<td>1800</td>
</tr>
<tr>
<td>Ordinador</td>
<td>CA</td>
<td>4</td>
<td>150</td>
<td>600</td>
<td>3</td>
<td>1800</td>
</tr>
<tr>
<td>Microones</td>
<td>CA</td>
<td>4</td>
<td>1000</td>
<td>4000</td>
<td>0,5</td>
<td>2000</td>
</tr>
<tr>
<td>Nevera</td>
<td>CA</td>
<td>4</td>
<td>120</td>
<td>480</td>
<td>8</td>
<td>3840</td>
</tr>
<tr>
<td>Rentadora</td>
<td>CA</td>
<td>4</td>
<td>1250</td>
<td>5000</td>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16528</td>
</tr>
<tr>
<td>Campament juvenil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Làmpares</td>
<td>CA</td>
<td>10</td>
<td>24</td>
<td>240</td>
<td>2</td>
<td>480</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5482</td>
</tr>
</tbody>
</table>

CONSUM DIARI INSTAL·LACIONS HIVERN (OCTUBRE-MARÇ)

<table>
<thead>
<tr>
<th>Element</th>
<th>Tipus de consum</th>
<th>Unitats</th>
<th>Potència unitària (W)</th>
<th>Potència instal·lada (W)</th>
<th>Utilització (h/dia)</th>
<th>Energia diaria (Wh/dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Làmpares</td>
<td>CA</td>
<td>12</td>
<td>24</td>
<td>288</td>
<td>5</td>
<td>1440</td>
</tr>
<tr>
<td>Televisió</td>
<td>CA</td>
<td>1</td>
<td>150</td>
<td>150</td>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>Ordinador</td>
<td>CA</td>
<td>1</td>
<td>150</td>
<td>150</td>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>Microones</td>
<td>CA</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>0,5</td>
<td>500</td>
</tr>
<tr>
<td>Nevera</td>
<td>CA</td>
<td>1</td>
<td>120</td>
<td>120</td>
<td>7</td>
<td>840</td>
</tr>
<tr>
<td>Rentadora</td>
<td>CA</td>
<td>1</td>
<td>1250</td>
<td>1250</td>
<td>1</td>
<td>1250</td>
</tr>
<tr>
<td>Congelador</td>
<td>CA</td>
<td>1</td>
<td>120</td>
<td>120</td>
<td>7</td>
<td>840</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6070</td>
</tr>
<tr>
<td>Apartaments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Làmpares</td>
<td>CA</td>
<td>28</td>
<td>24</td>
<td>672</td>
<td>5</td>
<td>3360</td>
</tr>
<tr>
<td>Televisió</td>
<td>CA</td>
<td>4</td>
<td>150</td>
<td>600</td>
<td>4</td>
<td>2400</td>
</tr>
<tr>
<td>Ordinador</td>
<td>CA</td>
<td>4</td>
<td>150</td>
<td>600</td>
<td>4</td>
<td>2400</td>
</tr>
<tr>
<td>Microones</td>
<td>CA</td>
<td>4</td>
<td>1000</td>
<td>4000</td>
<td>0,5</td>
<td>2000</td>
</tr>
<tr>
<td>Nevera</td>
<td>CA</td>
<td>4</td>
<td>120</td>
<td>480</td>
<td>7</td>
<td>3360</td>
</tr>
<tr>
<td>Rentadora</td>
<td>CA</td>
<td>4</td>
<td>1250</td>
<td>5000</td>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18520</td>
</tr>
<tr>
<td>Campament juvenil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Làmpares</td>
<td>CA</td>
<td>10</td>
<td>24</td>
<td>240</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5532</td>
</tr>
</tbody>
</table>
La determinació de la potència dels aparells i les seves hores de funcionament, s’ha fet tenint en compte les necessitats dels consumidors, però alhora, intentant reduir-les al màxim, tant per motius ambientals i d’eficiència com per motius tècnics.

Les hores de funcionament mostrades en la taula són generals. Així i tot, s’ha intentat ajustar aquelles càregues que poden modificar-se al llarg de l’any a causa de la climatologia o les hores solars, si bé és veritat que també depenen del factor consumidor, el qual dificilment es pot preveure.

També s’ha realitzat un perfil de consum diari, en el qual es mostra una aproximació de la distribució d’aquest consum al llarg del dia, considerant constants el de les neveres i congelador. En aquests consums s’observen tres pics de consum concentrats al matí, migdia i a la nit.

![Diagrama de consum estiu](image1)

![Diagrama de consum hivern](image2)
El perfil horari estacional és molt similar. Tenint en compte el diferent ús de les diverses instal·lacions i els diferents perfiles de consumadors (només en el cas de la vivenda unifamiliar es mantindrà estable) es fa difícil realitzar una estimació pròxima a la realitat.

4.6.1. Estimació del consum anual

Es pot dir que, per si sol, el consum estacional no varia considerablement. Però en aquest aspecte s'ha de tenir en compte la diferència d’ús de les instal·lacions en funció de l’època de l’any. Com ja s’ha comentat anteriorment, només la vivenda unifamiliar restarà habitada permanentment. L’ús dels apartaments rurals depèn bàsicament de la climatologia i de l’interès turístic de la zona, amb la qual cosa seran les èpoques estiuencs durant les quals tindran una major demanda. Pel que fa al campament, es concentra la seva activitat des del mes d’abril fins al mes d’octubre, tenint plena ocupació en els mesos de juliol i agost.

A la següent taula es desglossen els consums mensuals per les diferents instal·lacions i es fa una estimació dels dies en què seran utilitzats, per a, finalment, obtenir una estimació del consum anual.

<table>
<thead>
<tr>
<th></th>
<th>Gen</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consum diari vivenda unifamiliar (kWh)</td>
<td>6,07</td>
<td>6,07</td>
<td>6,07</td>
<td>5,72</td>
<td>5,72</td>
<td>5,722</td>
<td>5,72</td>
<td>5,72</td>
<td>5,72</td>
<td>5,72</td>
<td>6,07</td>
<td>6,07</td>
</tr>
<tr>
<td>Consum diari apartaments rurals (kWh)</td>
<td>18,52</td>
<td>18,52</td>
<td>18,52</td>
<td>16,53</td>
<td>16,53</td>
<td>16,53</td>
<td>16,53</td>
<td>16,53</td>
<td>16,53</td>
<td>16,53</td>
<td>18,52</td>
<td>18,52</td>
</tr>
<tr>
<td>Consum diari campament juvenil (kWh)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0,48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Consum diari total (kWh)</td>
<td>24,59</td>
<td>24,59</td>
<td>24,59</td>
<td>22,73</td>
<td>22,73</td>
<td>22,73</td>
<td>22,73</td>
<td>22,73</td>
<td>22,73</td>
<td>22,73</td>
<td>24,59</td>
<td>24,59</td>
</tr>
<tr>
<td>Dies al mes (Vivenda/Apartaments/ Campament)</td>
<td>31</td>
<td>28</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>31</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Consum total mes (kWh)</td>
<td>410,4</td>
<td>392,2</td>
<td>410,4</td>
<td>375,8</td>
<td>381,5</td>
<td>511,8</td>
<td>704,6</td>
<td>704,6</td>
<td>511,8</td>
<td>381,5</td>
<td>404,3</td>
<td>410,4</td>
</tr>
</tbody>
</table>

Habitualment, en el cas d’una instal·lació aïllada, es dimensiona a partir del mes més desfavorable, per tal de poder cobrir al màxim les necessitats en aquell període de menys radiació. En el cas que ens ocupa, és interessant poder cobrir els consums amb generació instantània, però no és imprescindible, ja que el balanç es realitzarà passat un període de temps (12 mesos). Així doncs, el que ens interessa és cobrir la demanda anual d’una forma equilibrada.

Per fer-ho tenim en compte el consum diari de les instal·lacions i la distribució estacional del seu ús.

Així doncs, amb aquesta distribució estacional, tenim un consum anual de 5599 kWh, que ens porta a uns 15,34 kWh diaris de mitjana. Per determinar el nombre de panells necessaris, s’utilitza la radiació solar i un rendiment aproximat d’un 85%. El panells instal·lats seran de 240
Wp de la marca Shüco (més endavant es detallen les característiques dels components de la instal·lació).

\[N = \frac{E_{\text{necessària}} [\text{Wh/dia}]}{P_{\text{mòdul}} \cdot \eta \cdot H [\text{HSP/dia}]} \approx 16 \text{ mòduls fotovoltaics} \]

S’estima que per a cobrir els requeriments de demanda és necessari instal·lar un total de 16 panells de 240 Wp. Més endavant, es determina la producció energètica de la instal·lació (confirmant el nombre de panells) i es compara amb la demanda energètica, per tal de fer-ne un balanç.

De totes formes cal avançar, que després de realitzar diverses aproximacions i un cop analitzada l’energia produïda, s’ha optat per una configuració formada per 16 panells disposats en dues rames de 8 panells en sèrie. Cal esmentar que aquesta configuració no genera l’energia suficient per cobrir la totalitat de la demanda, però en el cas que ens ocupa ens interessa subdimensionar sensiblement la instal·lació, ja que els excedents injectats a xarxa després de realitzar el balanç no seran compensats econòmicament.

4.7. Components de la instal·lació

Com ja s’ha comentat, la instal·lació consta bàsicament de tres elements principals: un grup de plaques solars fotovoltaiques ubicades sobre la teulada de la zona d’equipaments del campament juvenil. Un altre equip necessari a les instal·lacions connectades a la xarxa és l’ondułador o inversor-convertidor electrònic que transforma l’energia en forma de corrent continu que proporcionen les plaques solars, en corrent altern d’igual tipus i valor que el transportat per la xarxa elèctrica; i, per últim, el quadre d’interconnexió amb la xarxa.
A més d’aquest elements principals, és necessària la instal·lació d’un comptador bidireccional, per a comptabilitzar l’energia excedent injectada a xarxa i la que es consumeix de la mateixa, per tal de balancejar ambdues dins un cert període temporal.

4.7.1. Generador fotovoltaic

Un generador fotovoltaic està format per un conjunt de panells que transformen la radiació solar directament en electricitat de corrent continu. Aquests panells són l’element principal d’un sistema fotovoltaic, el rendiment dels quals depèn d’algunes variables externes com la radiació solar, la temperatura de funcionament i l’orientació d’aquests respecte al sol, a més, de la qualitat de fabricació i altres paràmetres relacionats amb el manteniment com la brutícia, envelliment, etc.

Els materials típicament utilitzats en les cel·les fotovoltaiques que formen els panells són:

- Silici Monocristal·lí: amb un rendiment fins a 15 - 17 %.
- Silici Policristal·lí: amb un rendiment fins a 12 - 14 %.
- Silici Amorf: amb un rendiment menor del 10 %.
- Altres materials: Arseniúr de gali, diseleniur d’indi y coure, tel·luri de cadmi.

Per a formar el que s’anomena generador fotovoltaic, els panells s’han d’agrupar en conjunts amb idèntic nombre de panells i de les mateixes característiques elèctriques, anomenat sèrie o string. La sèrie es configura amb el nombre de panells que permeti assolir un voltatge en circuit obert (Voc) inferior al voltatge màxim admès per l’inversor i un voltatge en el punt de màxima potència (Vmpp o Vmax) que estigui dins el rang de tensions de funcionament del seguidor del punt de màxima potència de l’inversor. Una vegada configurada la sèrie inicial de mòduls que compleixin els requisits anteriors, la resta de panells s’han d’agrupar de manera idèntica per tal d’oferir a la part CC de l’inversor els mateixos valors de voltatge i intensitat del corrent elèctric. Aquesta última (Impp o Imax) haurà de ser inferior a la màxima intensitat admissible per l’inversor. La potència total del generador fotovoltaic hauria de ser entre 1 i 1,3 vegades la potència nominal de l’inversor per tal que aquest pugui realitzar una transformació eficient amb una potència el més propera possible a la seva potència nominal.

Sovint és la limitació de l’espai disponible a les cobertes allò que condiciona la potència del camp fotovoltaic. No obstant això, s’haurà de trobar l’inversor que millor s’ajusti al generador seguint els criteris anteriors.

Per a la realització d’aquest projecte es proposa la utilització del mòdul Schüco, o similar, de 240Wp fabricat amb cél·lules de silici policristal·lines d’elevat rendiment. S’instal·laran amb una configuració de 8 panells en sèrie i 2 rames en paral·lel, assolint una potència pic de 3840Wp.
Les característiques del mòdul són les següents:

<table>
<thead>
<tr>
<th>Característiques físiques del mòdul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplada (mm)</td>
</tr>
<tr>
<td>Altura (mm)</td>
</tr>
<tr>
<td>Gruix (mm)</td>
</tr>
<tr>
<td>Pes (kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Característiques elèctriques del mòdul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potència</td>
</tr>
<tr>
<td>Corrent de curtcircuit (I_sc)</td>
</tr>
<tr>
<td>Corrent de màxima potència (I_{MPP})</td>
</tr>
<tr>
<td>Tensió de circuit obert (V_{OC})</td>
</tr>
<tr>
<td>Tensió màxima potència (U_{MPP})</td>
</tr>
</tbody>
</table>

Aquest mòduls es situaran sobre la coberta de la nau on s’albergen les instal·lacions del campament juvenil amb una orientació de 18° i una inclinació de 25°. Aquesta coberta té una superfície de 183 m², i està formada per plaques metàl·liques de coberta tipus sandvitx de 3 cm de gruix d’aïllament. Els panells ocuparan uns 40 m².

4.7.2. Inversor

L’inversor de CC/CA és l’element encarregat de transformar el corrent continu produït pels panells fotovoltaics en corrent altern de les mateixes característiques de tensió i freqüència que la xarxa elèctrica de distribució a la qual s’acobra.

Treballen connectats pel seu costat DC a un generador fotovoltaic, i pel seu costat AC a un transformador que adapta la tensió de sortida de l’ondulador a la de la xarxa. Aquest transformador permet a més, l’aïllament galvànic entre la part DC i la AC.

Disposa d’un microprocessador encarregat de garantir una corba sinodal amb una mínima distorsió. La lògica de control emporda garanteix un funcionament automàtic complet i el seguiment del punt de màxima potència (MPP) i evita les possibles pèrdues durant períodes de repòs.

Així, poden transformar en corrent alterna i lliurar tota la potència que el generador fotovoltaic genera a cada instant, funcionant a partir d’un llindar mínim de radiació solar. A més, permet la desconexió-connexió automàtica de la instal·lació fotovoltaica en cas de pèrdua de tensió o freqüència de la xarxa, evitant el funcionament en illa, garantia de seguretat per als operaris de manteniment de la companyia elèctrica distribuïdora. Els llindars permesos són:

- En freqüència.- 51 a 49 Hz
- En tensió.- 1.1 Um a 0,85 Um
També actua com un controlador permanent d’aïllament per a la desconnexió-connexió automàtica de la instal·lació fotovoltaica en cas de pèrdua de resistència d’aïllament. Juntament amb la configuració flotant per al generador fotovoltaic garanteix la protecció de les persones.

Per a aquest projecte s’ha optat per la instal·lació d’un inversor SolarMax 4200S, les característiques del qual es resumeix a la següent taula:

<table>
<thead>
<tr>
<th>Característiques</th>
<th>Inversor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>SolarMax 4200S</td>
</tr>
<tr>
<td>Pmàx (W)</td>
<td>4.180</td>
</tr>
<tr>
<td>Pnom (W)</td>
<td>3.800</td>
</tr>
<tr>
<td>Vmín MPP (V)</td>
<td>100</td>
</tr>
<tr>
<td>Vmàx MPP (V)</td>
<td>550</td>
</tr>
<tr>
<td>Vmàx (V)</td>
<td>600</td>
</tr>
<tr>
<td>Unom (V)</td>
<td>230</td>
</tr>
<tr>
<td>η europeu (%)</td>
<td>95,8</td>
</tr>
<tr>
<td>Dimensions (MM)</td>
<td>545x290x185</td>
</tr>
<tr>
<td>Pes (kg)</td>
<td>15</td>
</tr>
<tr>
<td>Distorsió armònica (%)</td>
<td><3</td>
</tr>
<tr>
<td>Factor de potència</td>
<td>1 (seleccionable)</td>
</tr>
<tr>
<td>Consum en repòs (W)</td>
<td>0</td>
</tr>
<tr>
<td>Imàx, entrada</td>
<td>22</td>
</tr>
<tr>
<td>IP</td>
<td>IP - 54</td>
</tr>
</tbody>
</table>

4.7.3. Comptador bidireccional

Aquest element permet comptabilitzar l’energia generada per la instal·lació i la que consumeix; per tant, aquest element realitza una lectura en dues direccions.

4.7.4. Punt de connexió

Aquest és el punt on es connecta la instal·lació fotovoltaica amb la xarxa de distribució de baixa tensió. La ubicació i característiques del punt de connexió és competència directa de la companyia elèctrica i això implica que la petició d’aquest punt és un dels primers tràmits administratius que s’han de realitzar quan es vol muntar una instal·lació fotovoltaica connectada a xarxa.

De manera general, sempre se situarà a la xarxa de distribució o a la connexió general de l’abonat; no obstant això últim, serà la companyia la que en determini la ubicació i condicions tècniques que ha de complir.

Pel que fa a la potència fotovoltaica a connectar, aquesta serà com a màxim un 50% de la potència de dissipació (capacitat d’absorció) de la connexió elèctrica o, si no n’hi ha, la de l’estació transformadora que alimenti la línia.
4.7.5. Estructura de fixació dels panells

És l'encarregada d'assegurar un bon ancoratge del generador solar, facilita la instal·lació i manteniment dels panells, a la vegada que proporciona no només l'orientació necessària, sinó també l’angle d’inclinació idoni per a un millor aprofitament de la radiació. El generador es col·locarà inclinat sobre la coberta inclinada de la nau. Primerament, es col·locaran les guies orientades al sud, dues filades de guies per cada fila de panells, que aniran collades sempre sobre algun element estructural de la coberta. A continuació es col·locaran carrils verticals o guies per tal de poder orientar correctament els panells. A aquestes guies s’hi incorporen les grapes de fixació o escaires, que subjectaran els panells fotovoltaics. Les grapes seran d’alumini i la tornilleria estarà preparada per resistir a la intempèrie.

4.7.6. Proteccions elèctriques

Les instal·lacions elèctriques, incloses les instal·lacions solars fotovoltaiques autònomes i de connexió a xarxa, han de disposar de les proteccions següents:

- Protecció contra sobreintensitat (sobrecàrregues) ITC-BT-22.
- Protecció contra sobreintensitat (curtcircuits) ITC-BT-22.
- Protecció contra sobretensions ITC-BT-23.
- Protecció contra contactes directes ITC-BT-24.
- Protecció contra contactes indirectes ITC-BT-24.
- Presa de terra ITC-BT-18, 19, 26.

Presa de terra

La connexió a terra és la unió elèctrica directa, d’una part del circuit elèctric o d’una part conductora que en condicions normals no es troba en tensió, mitjançant una presa de terra amb un elèctrode enterrat. Mitjançant la instal·lació de presa de terra s’haurà d’aconseguir que es permeti el pas a terra de les corrents de defecte o les de descàrrega d’origen atmosfèric. A més, ha de ser independent de la xarxa de distribució.

El dimensionament de les línies de terra es realitza d’acord amb allò especificat al REBT ITC-BT-18, ITC-BT-19 i ITCBT-26 així com en els punts més significatius d’altres instruccions tècniques complementàries.

Protecció contra contactes directes

La protecció per a contactes directes està detallada a la ITC-BT-24 i ve garantida per uns índexs de protecció dels equips adequats i per la correcta instal·lació i muntatge dels mateixos.

Per a prevenir qualsevol contacte directe s’han de prendre les següents mesures:
- Aïllament de les parts actives.
- Inaccessibilitat a la zona de generadors fotovoltaics a persones no autoritzades mitjançant tancaments apropriats i cartells d’avis.
- Als armaris i quadres elèctrics només s’hi podrà accedir mitjançant claus o eines específiques, que només tindran el personal autoritzat.

En cada element existeixen elements de protecció específics:
- Mòduls fotovoltaics: borns de connexió a l’interior de les caixes, amb la tapa cargolada i premsaestopes a l’entrada de cables, connexió entre mòduls mitjançant connectors ràpids amb protecció dels contactes.
- Caixes de connexió amb doble aïllament en el camp de panells: born a l’interior de la caixa, amb la tapa cargolada.
- Armaris de comptadors de doble aïllament.
- Inversor: borns de connexió interiors.
- Gran Prat de la instal·lació es protegirà mitjançant tubs.
- Instal·lació degudament acordonada per a evitar l’entrada de personal no autoritzat.

Protecció contra contactes indirectes

Consistirà en la presa de terra dels elements metàl·lics de la instal·lació que normalment no estan en tensió però que podrien estar-ho en cas d’avaria.

En la zona de corrent continu tenim les següents proteccions:
- Caixes de doble aïllament.
- Detector de fallada d’aïllament amb parada de l’inversor.
- Xarxa de terra.
- Estructures de suport dels mòduls fotovoltaics i carcasses dels inversors connectats a terra.

A la zona de corrent altern a s’hi instal·la un diferencial general de la instal·lació amb una sensibilitat de 30mA.

Protecció contra sobrecàrregues

El límit d’intensitat de corrent admissible en un conductor ha de quedar garantida en tot cas pel dispositiu de protecció utilitzat.

El dispositiu de protecció podrà estar constituït per un interruptor automàtic de tall omnipolar amb corba tèrmica de tall, o per tallacircuits fusibles calibrats de característiques de funcionament adequades.

En la part de continua:
- Línies de cada grup protegida mitjançant fusible.
- Línia des de la caixa de connexió en camp de panells fins a la caixa de protecció contra sobretensions i sobreintensitats a la caseta de l’inversor protegida.

En la part d’alterna:
- Magnetotèrmic a l’inversor.
- Fusible a la sortida de l’inversor.
- Magnetòtermic a la sortida de l’inversor.
- Magnetotèrmic a l’armari de protecció i mesura.
- Fusible de sortida.

Protecció contra curtcircuits

En l’origen de tot circuit s’establirà un dispositiu de protecció contra curtcircuits la capacitat de tall del qual estarà d’acord amb la intensitat de curtcircuit que pugui presentar-se en el punt de connexió. S’admeten com a dispositius de protecció contra curtcircuits els fusibles calibrats de característiques de funcionament adequades i els interruptors automàtics amb sistema de tall omnipolar. La intensitat nominal d’interruptors automàtics i fusibles es tria de manera que compleixin:

\[I_B \leq I_N \leq I_Z \]

On
- \(I_B \) és la intensitat nominal de la carga.
- \(I_N \) és la intensitat nominal del dispositiu de protecció.
- \(I_Z \) és la màxima intensitat admesa pel cable.

Complint la primera desigualtat s’assegura que en condicions normals no passi pel dispositiu una intensitat superior a la nominal. Amb la segona s’assegura la protecció del cable contra sobreintensitats.

El Reial decret 1663/2000, de 29 de setembre, sobre connexió d’instal·lacions fotovoltaiques a la xarxa en baixa tensió estableix l’obligació de col·locar un interruptor automàtic per a la protecció contra sobreintensitats en la línia d’alterna que connecta els inversors amb la xarxa. Aquest s’anomena interruptor frontera o interruptor general manual, i ha de ser accessible per a l’empresa distribuïdora de manera que pugui realitzar una desconexió manual.
Altres proteccions

Aïllament galvànic

Separació de la instal·lació fotovoltaica i la xarxa de distribució mitjançant transformador (UNE 60.742), integrat en l'inversor, en compliment amb la normativa vigent.

Control d’harmònics i compatibilitat electromagnètica

Control d’harmònics i compatibilitat electromagnètica segons el que disposa el Reial Decret 1663/2000 i RBT ITC-BT 40. D’això se n’encarrega el propi inversor.

Variacions de tensió i freqüència a la xarxa

Tots els inversors realitzen de forma automàtica, mitjançant un relé, la desconnexió i connexió de la instal·lació en cas de pèrdua de tensió o freqüència de la xarxa mitjançant un software, adequant-se als valors Reial decret 1663/2000, no podent ser modificats per l’usuari.

- Mínima i màxima tensió: entre 0,85 i 1,1 vegades la nominal. amb reconexió automàtica.

- Mínima i màxima freqüència: entre 49 Hz i 51 Hz Amb reconexió automàtica.

Contra el funcionament en illa

La potència que subministra un inversor fotovoltaic de connexió a xarxa es pot resumir amb la fórmula: \(S_R = P_R + Q_R \), però el factor de potència amb què treballen és molt proper a 1, amb la qual cosa ens queda que \(S_R = P_R \). D’altra banda les càrregues que tenim en una xarxa responen a:

\[
S_R = P_R + Q_R = \frac{V^2}{R} + \frac{V^2}{w \cdot L} - \frac{V^2}{1/w \cdot C}
\]

En aquestes condicions, davant una fallada de xarxa, tenim que:

- Si la potència consumida és menor que la generada pel sistema fotovoltaic, la tensió variarà pujant i ens sortirem del rang de 460 V fent que l’inversor s’aturi.

- Si la potència consumida és major que la generada, tindrem una caiguda de tensió i sortirem del rang 360 V fent que l’inversor s’aturi.

- Si la potència generada és igual a la consumida i aquesta és una càrrega amb component inductiva o capacitiva (cosa habitual en una xarxa), tindriem \(V_2/\omega L = V_2 / (1/\omega C) \) amb un augment de freqüència amb càrrega inductiva (sortint-se del marge de 50,5 Hz) o una reducció de freqüència amb càrrega capacitiva (sortint del marge 49,5 Hz) amb la qual cosa l’inversor es pararia.
Si la potència generada és igual a la consumida i aquesta és una càrrega resistiva pura (cosa molt poc probable en una xarxa), hi ha un desplaçament en la freqüència per circuiteria interna de l'inversor que ho fa parar, en sortir del rang de freqüència (entre 50'5 Hz i 49'5 Hz), ja que l'inversor té un filtre que fa que la fase estigui una mica moguda en la lectura (microsegons per cicle), suficient com perquè al trobar-se amb una càrrega resistiva es surti de freqüència. A més, és altament improbable que la radiació solar i el consum es mantinguin estables i que si un varia l’altre també ho faci. Si coincidissin, el temps que podrien estar funcionant en illa és molt petit. De tota manera excepte en simulacions en un laboratori, aquest cas en una xarxa és pràcticament impossible i el més normal és que l'inversor no tingués en consideració aquest cas, però tot i així, els inversors incorporen una protecció per reduir encara més la possibilitat que es doni aquesta situació.

4.8. Configuració elèctrica

Per tal de realitzar el disseny elèctric de la instal·lació, es parteix de certs paràmetres que s’han d’ajustar als criteris de configuració de la instal·lació. Així doncs, caldrà tenir en compte el compliment dels paràmetres d’entrada a l’inversor, dissenyant una configuració sèrie-paral·lel dels panells que compleixin les restriccions de tensió, corrent i potència.

La instal·lació consta de 16 mòduls de 240 Wp. La tensió màxima del generador la estableix la tensió màxima d’entrada a l’inversor, que en aquest cas és de 600 V.

Per a realitzar la distribució elèctrica del camp de panells s’ha de tenir en compte la Vmpp i la Impp del mòdul fotovoltaic.

<table>
<thead>
<tr>
<th>CARACTERÍSTIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MÒDULS SOLARS</td>
</tr>
<tr>
<td>Vmpp (V)</td>
</tr>
<tr>
<td>Impp (A)</td>
</tr>
<tr>
<td>Voc (V)</td>
</tr>
<tr>
<td>Isc (A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALORS ENTRADA INVERSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rang de tensió d’entrada</td>
</tr>
<tr>
<td>Intensitat màxima</td>
</tr>
</tbody>
</table>

Els valors al punt de màxima potència són:

\[V_{\text{inv}} = n_{\text{sèrie}} \cdot U_{\text{mpp}} = 8 \cdot 29,9 = 239,2 \text{ V} (> 100; < 550) \]

\[I_{\text{inv}} = n_{\text{Paral-lel}} \cdot I_{\text{mpp}} = 2 \cdot 8,03 = 15,06 \text{ A} (< 22) \]
La suma de las tensiones del total de módulos ha de estar dentro del rango de tensión de entrada de
la inversora. La tensión utilizada en este caso será la del caso más desfavorable, es decir, a la
temperatura mínima.

\[V_{minT} = V_{oc} - n_{sèrie} \cdot (T_{Voc} \cdot (T_{CN} - T_{min})) \]

- \(V_{minT} \): Tensión a mínima temperatura
- \(V_{oc} \): Tensión a circuito abierto x \(n_{sèrie} \)
- \(n_{sèrie} \): número de paneles en serie
- \(T_{Voc} \): Coeficiente de temperatura sobre tensión a circuito abierto (V/°C)
- \(T_{CN} \): Temperatura a condiciones normales
- \(T_{min} \): Temperatura mínima de trabajo

\[V_{minT}(-15°C) = (37 \cdot 8) - 8 \cdot (-0,34 \cdot (25 - (-15))) \] = 404,8 V

\[l = l_{max} \cdot n_{paral·lel} = 8,59 \cdot 2 = 17,18 \ A \]

La configuración de 8 paneles en serie y 2 en paralelo compleja los parámetros establecidos.

A partir del panel solar, sortirá el cablejado hacia la caja de protecciones de corriente continua, y
allí arribarán los cables correspondientes al final de series de paneles en la cubierta. De la salida
de la caja de protecciones de continua, sortirá el cablejado hacia la entrada de la inversora.

Un cop es surt de l’inversor, es porta el cablejado hacia la caja de protecciones de corriente alternativa. En
la caja de protecciones de continua, sortirà el cablejado fins a l’entrada de l’equip inversor.

Finalmente, es conduira l’escomesa d’alternància fins al quadre general de protecciones de las
instalaciones de consumo, on s’evacua l’energia generada per a que la propietat pugui fer-ne el
consum adecuat.

4.9. Avaluació pèrdues

4.9.1. Factors de pèrdues

Tots els sistemes fotovoltaics tenen pèrdues energètiques originades per diversos factors. Aquests
afecten directament a la disminución de l’energia solar incident respecto a la real generada pel sistema fotovoltaic i injectada a la xarxa:

- **Pèrdues per desviació de la potència nominal.**
 Es deu bàsicament a la diferència entre mòduls deguda a la fabricació.

- **Pèrdues de connexió**
 Són les pèrdues originades per la connexió de mòduls fotovoltaics de potències
 lleugerament diferents per a formar el generador fotovoltaic. Amb la connexió en
 sèrie es produirà una limitació de corrent a la d’aquell panell que disposi de menor
potència d’entre tots els connectats. De la mateixa forma, amb la connexió en paral·lel, el mòdul amb menor potència, limitarà la tensió del conjunt.

- **Pèrdues per pols i brutícia**
 Degudes a la presència de pols i brutícia a la superfície dels mòduls.

- **Pèrdues angulars i espectrals**
 Donades les condicions estàndard d’un mòdul, és coneix que l’espectre AM 1.5 G, però igual que les demés CEM, no és constant al llarg de tot el temps d’operació del sistema.

- **Pèrdues per caigudes òhmiques al cablejat**
 Pèrdues originades per les caigudes de tensió al cablejat. Les pèrdues principals del cablejat es poden calcular sabent la secció dels cables i la seva longitud.

- **Pèrdues per temperatura**
 La temperatura d’operació dels mòduls depèn de la irradiància, temperatura ambient i la velocitat del vent. Contrari al que se sol pensar, un mòdul a menors temperatures, té un major rendiment.
 Al panell fotovoltaic es produeixen pèrdues de potència de l’ordre d’un 4-5% per cada 10°C d’aument de la seva temperatura d’operació.

- **Pèrdues per rendiment AC/DC de l’inversor**
 És important seleccionar un inversor d’alt rendiment en condicions nominals d’operació i també tenir en compte la potència de l’inversor en relació amb la donada pel generador. Serà convenient no sobredimensionar l’inversor, ja que el rendiment es redueix.

- **Pèrdues per rendiment de seguiment del punt de màxima potència del generador fotovoltaic**
 L’inversor treballa per realitzar en tot moment un seguiment del punt de màxima potència. Però a causa de les condicions ambientals (irradiació i temperatura), a les ombres projectades al generador o la deposició de brutícia sobre els mòduls, el punt de màxima potència pot patir variacions.

- **Pèrdues per ombres del generador fotovoltaic**
 Si col·loquem un sistema fotovoltaic en el nucli d’una població o no tenim en compte la distància correcta entre panells, és inevitable que a certes hores del dia es produeixin ombres sobre el panells, que produiran pèrdues energètiques causades per la disminució de la captació de la irradiació solar.
4.10. Orientació i inclinació

L’orientació idònia dels mòduls és la més propera al sud, amb azimut igual a 0°, i dependerà de les característiques físiques i geomètriques de l’emplaçament.

La teulada en la qual es realitza la instal·lació compta amb una orientació de 18° respecte el sud.

Pel que fa a la determinació de la inclinació més idònia, aquesta s’obté analitzant la radiació incident sobre superfícies amb diversos graus d’inclinació i elegint aquella amb la qual s’obté una major radiació al llarg de l’any per tal d’optimitzar la generació energètica. Prèviament, en l’anàlisi del recurs solar, i mitjançant l’aplicatiu del PVGIS, hem obtingut les dades d’irradiació per a diversos angles, i on es determinava com a angle òptim el de 36°.

A mode d’aproximació també es pot determinar la inclinació idònia a partir de la següent expressió:

$$\beta_{opt} = 3,7 + 0,69 \phi \quad \text{on } \phi \text{ és la latitud de l’emplaçament}$$

Gurp es troba a una latitud de 42,2°, amb la qual cosa resulta una inclinació òptima de 33°. Tot i això s’acaba optant per una inclinació de 25°, ja que la diferència d’irradiació és poc substancial i alhora es valora un angle menor per qüestions tècniques de muntatge estructural.

Després d’això es pot comprovar si amb aquests valors d’orientació i inclinació estan d’acord a les pèrdues màximes permissibles.
Aquestes pèrdues venen determinades en funció de l’angle d’inclinació β i per l’angle d’azimut, α, (0° per a mòduls orientats al sud, -90° per a mòduls orientats a l’est i 90° per a mòduls orientats a l’oest.

Figura 14. Orientació i inclinació dels mòduls

Segons el CTE, les pèrdues per orientació i inclinació queden delimitades al 10%, en el cas general, del 20% en cas de superposició i 40% en integració arquitectònica.

En el següent diagrama es pot analitzar el percentatge de pèrdues degudes a orientació i inclinació, i s’extreu un límit màxim i mínim aproximat.
Per a un angle azimut de 0° i un latitud de 41° s’extreuen els següents valors aproximats:

- Inclinació màxima - 60°
- Inclinació mínima - 7°

Amb les correccions degudes a la latitud en que es troba el poble de Gurp (42,2°), es constata que una inclinació de 25° està dins dels paràmetres limitants.

4.11. Incidència d’ombres

Per a assolir el màxim aprofitament d’un sistema d’energia solar, s’haurà de tenir cura de la incidència de possibles ombres sobre els panells, tant les properes (objectes que tapen momentàniament la radiació directa del Sol) com les ombres llunyanes (elements de l’orografia i/o paisatge que oculten el Sol de la zona on se situa la instal·lació solar). L’efecte de les ombres s’ha d’avaluar amb força cura a l’hora de determinar la ubicació dels panells, ja que les ombres als panells produeixen una minva important de la producció, sobretot si es produeixen a les hores de màxima insolació.

4.11.1. Ombres properes

Per tal d’avaluar la incidència d’ombres d’obstacles propers, s’observarà l’entorn pròxim comprès en la franja est–oest, en que no hi ha d’haver cap obstacle que pugui produir ombres sobre els panells solars per un període mínim de 4 hores de sol entorn al migdia del solstici d’hivern.
En el caso de nuestra instalación, situada en espai obert sobre una teulada de 3,35 metros en la zona más baja y 4,70 m en la superior, no ha habido ningún problema de sombras debido a obstáculos propios.

4.11.2. Ombres llunyanes

El hecho de conocer cómo pueden afectar el relieve del paisaje a una instalación solar puede ser clave a la hora de decidir aspectos tan importantes como el montaje o la inclinación de los paneles para aprovechar los meses de insolación directa o la misma ubicación en paneles solares con diferentes posibilidades.

Para poder conocer si durante el año algún elemento de la zona más o menos lejano afectará la insolación del campo de captación, se tendrá que conocer cómo evoluciona las trayectorias que describe el Sol a lo largo de los diferentes meses del año.

Estas trayectorias se pueden consultar en diferentes documentos de referencia. También una mayoría de los programas de cálculo de energía solar basados en modelos de simulación tienen algunas de cálculo para dibujar-les y/o representar-les.

El CTE facilita el ábac, por lo que es cómo estimar el efecto de las sombras llunyanas. En este ábac se ha representado las alturas solares (expresadas en ángulos de elevación) en el eje vertical y el azimuth en el eje horizontal.

![Figura 16. Ábac representativo del círculo solar. Font: CTE](image)
La comparació del perfil d’obstacles amb el diagrama de trajectòries del Sol permet calcular les pèrdues per ombres de la irradiació solar global que incideix sobre la superfície dels panells en el decurs de l’any.

En el cas que se situï algun obstacle en aquesta franja, s’haurà de fer un estudi d’ombres i avaluar-ne la incidència sobre els panells.

Com ja hem comentat, la instal·lació es troba en un punt elevat d’espai obert, en el qual no existeix cap interferència causada per elements orogràfics o construccions elevades. Amb la qual cosa no hi ha afectació per ombres.

4.11.3. Separació entre panells

La separació entre fileres de panells ha de garantir la no-superposició d’ombres entre les fileres de panells els mesos del solstici d’hivern/estiu.

En el cas que ens ocupa, on la ubicació dels panells es realitza sobre una superfície inclinada, per a determinar la longitud de l’ombra s’haurà de sumar l’angle d’inclinació de la coberta amb el de l’alçada solar:

\[
H' : \text{Alçada solar total} \\
\varphi : \text{Alçada solar} \\
\alpha : \text{Incl. respecto l'horitzontal} \\
d : \text{Distància captadors} \\
\alpha : \text{Inclinació total captadors} \\
\beta : \text{inclinació captadors}
\]

Figura 17. Distància entre mòduls

Per a determinar la separació entre la part posterior d’una fila i el començament de la següent utilitzem la següent expressió:

\[
d = \frac{h}{\tan H'}
\]

L’altura solar aproximada és de 25°, amb la qual cosa tenim que la distància mínima necessària tenint en compte les dimensions del panells és de 0,26 metres.
4.12. Càlcul energètic

Amb les dades d’irradiació i dels elements de la instal·lació, es calcula l’energia produïda pel generador fotovoltaic.

Irradiació i Hores Sol Pic a l’angle desitjat (25°)

<table>
<thead>
<tr>
<th>Mes</th>
<th>Gen</th>
<th>Feb</th>
<th>Març</th>
<th>Abr</th>
<th>Maig</th>
<th>Jun</th>
<th>Jul</th>
<th>Agost</th>
<th>Set</th>
<th>Oct</th>
<th>Nov</th>
<th>Des</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wh/m²</td>
<td>2750</td>
<td>3590</td>
<td>4960</td>
<td>5340</td>
<td>5780</td>
<td>6230</td>
<td>6500</td>
<td>6050</td>
<td>5460</td>
<td>4000</td>
<td>2990</td>
<td>2650</td>
<td>4690</td>
</tr>
<tr>
<td>MJ/m²</td>
<td>9,9</td>
<td>12,92</td>
<td>17,86</td>
<td>19,22</td>
<td>20,81</td>
<td>22,43</td>
<td>23,4</td>
<td>21,78</td>
<td>19,66</td>
<td>14,4</td>
<td>10,76</td>
<td>9,54</td>
<td>16,88</td>
</tr>
<tr>
<td>HSP</td>
<td>2,75</td>
<td>3,59</td>
<td>4,96</td>
<td>5,34</td>
<td>5,78</td>
<td>6,23</td>
<td>6,5</td>
<td>6,05</td>
<td>5,46</td>
<td>4</td>
<td>2,99</td>
<td>2,65</td>
<td>4,69</td>
</tr>
</tbody>
</table>

Taula 27. Irradiació diària i hores sol pic per a l’angle desitjat de 25°.

Es calcula la producció per a cada un dels mesos de l’any, per tal d’obtenir el valor de la producció anual esperada.

Els paràmetres utilitzats, són:

- **H**: energia en MJ/m², que incideix sobre un metre quadrat de superfície horitzontal en un dia mitjà de cada mes. A la taula següent s’introduceix directament el valor d’H per a una superfície inclinada 25°.

- **HSP**: hores solar pic. Magnitud equivalent a la quantitat d’energia rebuda amb una radiació de 1000 W/m²

- **K**: factor de correcció degut a la inclinació del panell, depenent del mes, de la latitud i de la inclinació del panell (25°). Representa el quocient entre la energia total incident en un dia en una superfície orientada cap a l’Equador i inclinada un angle determinat, i una altra horitzontal.

- **FP**: factor que engloba les pèrdues per pol·lució, ombrejat, pèrdues en continua, pèrdues en alterna, dispersió, etc.

- **FInv**: Rendiment de l’inversor.

- **Ftemp**: Rendiment dels panells per temperatura.

- **PRG**: performance ratio global. Factor que representa l’eficiència global de la instal·lació. Pot apreciar-se un descens clar en els mesos més càlids, degut a la disminució en el rendiment dels panells per efecte de la temperatura.
- **HSP modificada:** hores solar pic aprofitades per la instal·lació.

- **Energia:** producció total en cada un dels mesos.

A les següents taules es detallen aquests valors i s’extreu l’energia anual produïda:

<table>
<thead>
<tr>
<th>Mes</th>
<th>H_{25° (MJ)</th>
<th>HSP</th>
<th>$K(25;0)$</th>
<th>FP</th>
<th>Finv</th>
<th>Tmitjana</th>
<th>Ftemp</th>
<th>PRG</th>
<th>HSP modificada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>9,9</td>
<td>2,75</td>
<td>1,49</td>
<td>89</td>
<td>96,2</td>
<td>-0,8</td>
<td>98</td>
<td>0,84</td>
<td>2,31</td>
</tr>
<tr>
<td>Febrer</td>
<td>12,924</td>
<td>3,59</td>
<td>1,35</td>
<td>90</td>
<td>96,2</td>
<td>2,4</td>
<td>97</td>
<td>0,84</td>
<td>3,01</td>
</tr>
<tr>
<td>Març</td>
<td>17,856</td>
<td>4,96</td>
<td>1,22</td>
<td>92</td>
<td>96,2</td>
<td>6</td>
<td>95</td>
<td>0,84</td>
<td>4,17</td>
</tr>
<tr>
<td>Abril</td>
<td>19,224</td>
<td>5,34</td>
<td>1,09</td>
<td>93</td>
<td>96,2</td>
<td>12,4</td>
<td>94</td>
<td>0,84</td>
<td>4,49</td>
</tr>
<tr>
<td>Maig</td>
<td>20,808</td>
<td>5,78</td>
<td>1,01</td>
<td>94</td>
<td>96,2</td>
<td>15,4</td>
<td>92</td>
<td>0,83</td>
<td>4,81</td>
</tr>
<tr>
<td>Juny</td>
<td>22,428</td>
<td>6,23</td>
<td>0,98</td>
<td>97</td>
<td>96,2</td>
<td>17,6</td>
<td>90</td>
<td>0,84</td>
<td>5,23</td>
</tr>
<tr>
<td>Juliol</td>
<td>23,4</td>
<td>6,5</td>
<td>1</td>
<td>97</td>
<td>96,2</td>
<td>19,6</td>
<td>88</td>
<td>0,82</td>
<td>5,34</td>
</tr>
<tr>
<td>Agost</td>
<td>21,78</td>
<td>6,05</td>
<td>1,06</td>
<td>96</td>
<td>96,2</td>
<td>21,9</td>
<td>88</td>
<td>0,81</td>
<td>4,92</td>
</tr>
<tr>
<td>Setembre</td>
<td>19,656</td>
<td>5,46</td>
<td>1,18</td>
<td>95</td>
<td>96,2</td>
<td>18,5</td>
<td>90</td>
<td>0,82</td>
<td>4,49</td>
</tr>
<tr>
<td>Octubre</td>
<td>14,4</td>
<td>4</td>
<td>1,30</td>
<td>92</td>
<td>96,2</td>
<td>12,2</td>
<td>93</td>
<td>0,82</td>
<td>3,29</td>
</tr>
<tr>
<td>Novembre</td>
<td>10,764</td>
<td>2,99</td>
<td>1,45</td>
<td>90</td>
<td>96,2</td>
<td>6,4</td>
<td>95</td>
<td>0,82</td>
<td>2,46</td>
</tr>
<tr>
<td>Desembre</td>
<td>9,54</td>
<td>2,65</td>
<td>1,57</td>
<td>89</td>
<td>96,2</td>
<td>-0,6</td>
<td>97</td>
<td>0,83</td>
<td>2,20</td>
</tr>
<tr>
<td>Any</td>
<td>16,884</td>
<td>4,69</td>
<td>1,225</td>
<td>92,83</td>
<td>96,2</td>
<td>10,917</td>
<td>92</td>
<td>0,82</td>
<td>3,85</td>
</tr>
</tbody>
</table>

Taula 28. Factors per a la determinació de l’energia anual produïda.
<table>
<thead>
<tr>
<th>Mes</th>
<th>Dies mes</th>
<th>HSP mod</th>
<th>P pic (kWp)</th>
<th>Energia (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>31</td>
<td>2,31</td>
<td>3,84</td>
<td>274,6735031</td>
</tr>
<tr>
<td>Febrer</td>
<td>28</td>
<td>3,01</td>
<td>3,84</td>
<td>324,1701486</td>
</tr>
<tr>
<td>Març</td>
<td>31</td>
<td>4,17</td>
<td>3,84</td>
<td>496,4335215</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>4,49</td>
<td>3,84</td>
<td>517,3442307</td>
</tr>
<tr>
<td>Maig</td>
<td>31</td>
<td>4,81</td>
<td>3,84</td>
<td>572,415664</td>
</tr>
<tr>
<td>Juny</td>
<td>30</td>
<td>5,23</td>
<td>3,84</td>
<td>602,7397609</td>
</tr>
<tr>
<td>Juliol</td>
<td>31</td>
<td>5,34</td>
<td>3,84</td>
<td>635,3832376</td>
</tr>
<tr>
<td>Agost</td>
<td>31</td>
<td>4,92</td>
<td>3,84</td>
<td>585,2983099</td>
</tr>
<tr>
<td>Setembre</td>
<td>30</td>
<td>4,49</td>
<td>3,84</td>
<td>517,3522099</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>3,29</td>
<td>3,84</td>
<td>391,9212012</td>
</tr>
<tr>
<td>Novembre</td>
<td>30</td>
<td>2,46</td>
<td>3,84</td>
<td>283,3119245</td>
</tr>
<tr>
<td>Desembre</td>
<td>31</td>
<td>2,20</td>
<td>3,84</td>
<td>261,9845045</td>
</tr>
<tr>
<td>Any</td>
<td></td>
<td>3,85</td>
<td>3,84</td>
<td>5463,028216</td>
</tr>
</tbody>
</table>

Taula 29. Energia anual produïda

Amb el dimensionament proposat tenim una energia generada a l’any de **5463 kWh/any**.
A les gràfiques anteriors s’observa el perfil de producció i de consum de les instal·lacions. En la majoria dels mesos l’energia produïda té valors similars a l’energia demandada. Tot i això en els mesos de major consum elèctric i en aquells en que es produeix menys radiació, l’energia generada no cobreix la totalitat de les necessitats, i és necessari consumir de la xarxa elèctrica. La resta de l’any (març, abril, maig, juny, octubre) es produeixen certs excedents que s’injecten a la xarxa, utilitzant-la com a element d’emmagatzematge. Així doncs, tenim que anualment es produeixen aproximadament 5463 kWh i es consumeix 5599 kWh. El balanç anual esperat, situa l’energia produïda sensiblement per sota de la demandada, cosa que ens interessa tenint en compte que els excedents no són compensats de cap forma.

4.13. Instal·lació elèctrica

Des de cada pol positiu i negatiu de les sèries de panells, es traça un cable (final de sèrie) fins al quadre de proteccions de corrent continu CC, abans d’arribar a l’inversor. Aquest cablejat serà unipolar tipus RV-k de 6mm² de secció. El cablejat es condueix per la coberta amb canal reixada amb tapa o en tub, collada sobre les guies de la pròpia estructura de panells. El quadre de CC es troba pròxim a l’inversor. Aquest quadre de CC es composa d’un fusible per cada final de sèrie positiu i per cada final de sèrie negatiu. El quadre el composen sis fusible tipus 10x38 de 10 Acc.

De l’inversor surt una escomesa elèctrica tipus RZ1-k de secció 3x6mm² (fase, neutre i terra) que arriba a la caixa de proteccions de corrent altern CA. Cada inversor queda protegit amb un magnetotèrmic adequat a la intensitat que evacuarà i al dimensionament del cablejat descrit (20A). Amés d’aquesta protecció, també existeixen diferencials que protegeixen contra contactes indirectes i fugues a terra de la instal·lació. En aquest cas un diferencial de 40A 300mA, de 2 pols.

El quadre d’alterna presenta un interruptor general que actua sobre tota la instal·lació (IGA) de 10A 2p. A continuació es resumeixen les proteccions de CA descrites:

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Protecció de</th>
<th>Intensitat i poder de tall</th>
<th>Quantitat</th>
<th>Tipus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetotèrmic</td>
<td>SolarMax 4200S</td>
<td>25A, 4,5kA</td>
<td>1</td>
<td>2p</td>
</tr>
<tr>
<td>Diferencial</td>
<td>SolarMax 4200 S</td>
<td>40A, 300mA</td>
<td>1</td>
<td>2p</td>
</tr>
<tr>
<td>IGA-Magnetotèrmic</td>
<td>General instal·lació</td>
<td>25A, 10kA</td>
<td>1</td>
<td>2p</td>
</tr>
</tbody>
</table>

D’aquest quadre de CA es surt amb la escomesa general d’evacuació que arribarà al quadre de proteccions existent de les instal·lacions. Fins a aquest armari o quadre s’hi arriba amb una canalització nova, de canal amb tapa o tub. La secció del cable de CA serà 3x6 mm2 de coure, tipus RZ1-k. Existeix, a part dels cablejats esmentats el cablejat de terra. Es portarà cable de terra dels del camp generador fins a la regleta de terres situada en la sala de l’ondulador on es connectaran, així mateix, la carcassa de l’equip ondulador. La posta a terra es realitzarà
mitjancant una piqueta fixada al paviment interior de la vivenda, tal que la resistència de terra haurà de ser com a màxim de 30Ω.

Canalitzacions elèctriques:

TRAM CC

<table>
<thead>
<tr>
<th>TRAMS PANELL / CAIXA</th>
<th>TRAM: Entre Mòduls</th>
<th>2 x Sèrie</th>
<th>Collat sota panells</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAM: Final Sèrie – Caixa Protecció CC</td>
<td>2 x Sèrie</td>
<td>Collat sota panells / Sota canaleta reixada amb tapa 60 x 100</td>
<td></td>
</tr>
<tr>
<td>TRAM: Caixa Protecció CC – Entrada CC Inversor</td>
<td>2 x Sèrie</td>
<td>Sota canaleta plàstic amb tapa 60 x 100</td>
<td></td>
</tr>
</tbody>
</table>

TRAM CA

TRAM: Inversor – Caixa Protecció CA	1 circuit / inversor	Sota canaleta plàstic amb tapa 60 x 200
TRAM: Caixa Protecció CA – Escomesa general	1 circuit / inversor	Sota canaleta plàstic amb tapa 60 x 200
TRAM: Escomesa general – Comptador	1 circuit / inversor	Canalització soterrada en tub D160mm

En qualsevol cas, la secció interior és, com a mínim, igual a 2,5 cops la secció ocupada pels conductors. Per als trams accessibles (alçades respecte al terra inferiors a 2,5 m), el cablejat s’instal·larà sota tub de protecció mecànica 4, seguint el que s’especifica en la ITC BT-06 punt 3.1.1 i ITC BT-11 punt 1.2.1.

Cable de terra:

Segons el RD 842/2002, que fixa les condicions tècniques per a la connexió d’instal·lacions fotovoltaiques a la xarxa de BT, la posada a terra es realitzarà de forma que no alteri la de la companyia elèctrica distribuïdora, amb la finalitat de no transmetre defectes a aquesta.

Així mateix, les masses de la instal·lació fotovoltaica estaràn connectades a un terra independent de la del neutre de l’empresa distribuïdora d’acord amb el Reglament Electrotècnic per a baixa tensió. Segons el Reglament de Baixa Tensió en la ITC-BT-021, les prescripcions generals dels conductors de protecció són les següents.

- **Relació entre les seccions dels conductors de protecció i les de fase**

<table>
<thead>
<tr>
<th>Secció dels conductors de fase de la instal·lació S (mm²)</th>
<th>Secció mínima dels conductors de protecció Sp (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ≤ 16</td>
<td>Sp = S</td>
</tr>
<tr>
<td>16 < S ≤ 35</td>
<td>Sp = 16</td>
</tr>
<tr>
<td>S > 35</td>
<td>Sp = S/2</td>
</tr>
</tbody>
</table>

74
Si l’aplicació de la taula condueix a valors no normalitzats, s’han d’utilitzar conductors que tinguin la secció normalitzada superior més pròxima.

- **Conductors de terra**

La secció dels conductors de terra han de satisfer les prescripcions de l’apartat anterior i, quan estiguin enterrats, hauran d’estar d’acord amb els valors de la següent taula. La secció no serà inferior a la mínima exigida pels conductors de protecció.

<table>
<thead>
<tr>
<th>TIPUS</th>
<th>PROTEGIT MECÀNICAMENT</th>
<th>NO PROTEGIT MECÀNICAMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protegit contra la corrosió*</td>
<td>Segon apartat anterior</td>
<td>16mm² Coure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16mm² Acer galvanitzat</td>
</tr>
<tr>
<td>No protegit contra la corrosió*</td>
<td>25mm² Coure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50mm² Ferro</td>
<td></td>
</tr>
</tbody>
</table>

*La protecció contra la corrosió pot obtenir-se mitjançant una envolvent

En aquesta instal·lació, complint amb les taules anteriors, es cableja el sistema de terres de la següent manera:

- Cable de terra en coberta, per unió dels marcs dels panells: 1x4mm² Aïllat groc – verd.
- Cable de terra en coberta, per unió d’estructura metàl·lica: 1x6mm² Aïllat groc – verd.
- Cable de terra en coberta, ramal general baixada a zona inversor: 1x6mm² Aïllat groc – verd.
- Cable de terra en zona per inversors: 1x6mm² Aïllat groc – verd.
- Cable general de terra en zona inversors, per unió a registre de terres: 1x10mm² Aïllat groc – verd.
- Terres des de registre en caseta fins a piques de terra: 1x6mm² Aïllat groc - verd
4.14. Evacuació de l’energia i rases cablejat

L’evacuació de l’energia a la xarxa elèctrica es realitzarà en el punt de subministrament més proper a les zones de consum, concretament en un armari situat prop del transformador que subministra tensió i potència a tota la població de Gurp.
Es proposa evacuar l’energia situant l’armari d’inversors a l’interior de la mateixa nau del campament on es realitza la instal·lació, concretament a la paret nord-est d’aquesta. Tot seguit, es realitzaran les següents dos rases per transportar l’energia fins a la xarxa de distribució:

Rasa 1: Armari d’inversors -Armari de comptadors.

De l’armari d’inversors situat a l’interior de la nau fins a l’armari de comptadors tipus TMF-1 es realitzarà una rasa d’uns 75 metres amb un cablejat format per quatre conductors (RV 4x1x35 mm Cu) complint amb la normativa vigent per a instal·lacions enterrades de BT.

Rasa 2: Armari de comptadors- Punt de Transformació.

L’armari de comptadors tipus TMF1 estarà situat molt a prop del Punt de Transformació (PT) ja existent. Es farà mitjançant una rasa amb cablejat RV 3x1x240 Al mm2 + RV 1x1x150 Al mm2, 0.6/1kV i de 2m de longitud.

En els dos casos, els conductors de coure es col·locaran dins un tub de polietilè de 160 mm de diàmetre a una profunditat de 0.7 metres. Aquest tub anirà recobert de formigó uns 6 cm per la part superior i 3 cm per la inferior per tal de dotar de seguretat la instal·lació subterrània degut al creuament de dues vies rurals en el recorregut d’aquesta.
Les dues rases es realitzaran segons les especificacions incloses en aquest apartat, segons el RBT, ITCBT-07:
La rasa presentaria una profunditat mínima de 0,6 m. El cable es col·locarà en un tubular corrugat per canalització soterrada elèctrica, que es cobrirà amb un gruix de formigó d’uns 20 cm com a mesura de protecció.
Per sobre del tub formigonat es dipositarà una protecció mecànica (formigó) i la senyalització de l’existència de cable elèctric de BT amb cinta.

4.15. Normativa aplicable en instal·lacions solars fotovoltaiques

- RD 1699/2011, de 18 de novembre, per el què es regula la connexió a la xarxa d’instal·lacions de producció d’energia elèctrica de petita potència.
- Reglament Electrotècnic de Baixa Tensió (REBT) segons el D. 842/2002, de 2 d’agost.
- Instruccions Tècniques Complementàries ITC BT 02, 03, 04, 05, 08, 10, 18, 19, 20, 21, 22, 23, 24, 30 i 40.
- Instrucció 7/2003 de 9 de setembre de la Direcció General i Mines sobre procediment administratiu per a l’aplicació del Reglament Electrotècnic per a Baixa Tensió
mitjançant la intervenció de les Entitats d’Inspecció i Control de la Generalitat de Catalunya.

- Reial Decret 2818/1998, de 23 de setembre, sobre producció d’energia elèctrica per instal·lacions alimentades per recursos o fonts d’energia renovables, residus i cogeneració.
- Resolució de 31 de maig de 2001, de la Direcció General de Política Energètica i Mines, per la que s’estableixen el model de contracte tipus i el model de factura per a instal·lacions solars fotovoltaïques connectades a la xarxa de baixa tensió.
- Decret 352/2001, de 18 de desembre, sobre el procediment administratiu aplicable a les instal·lacions d’energia solar fotovoltaica connectades a la xarxa elèctrica.
- Reial Decret 1663/2000, de 29 de setembre, sobre connexió d’instal·lacions fotovoltaïques a la xarxa de baixa tensió.
- Llei 54/1997 de 27 de Novembre del Sector Elèctric
- RD 436/2004 de 12 de març sobre la metodologia i sistematització del règim jurídic i econòmic de l’activitat de producció d’energia elèctrica en règim especial
- RD 661/2007 de 25 de Maig sobre la metodologia i sistematització del règim jurídic i econòmic de l’activitat de producció d’energia elèctrica en règim especial l) RD 6/2009, de 30 de Abril, pel que s’adopten determinades mesures en el sector energètic i s’aprova el bono social.
- RD 1955/2000 d’1 de Desembre, per el que es regulen les activitats de transport, distribució, comercialització, subministrament i procediments d’autorització d’instal·lacions d’energia elèctrica.
- RD 3490/2000 de 29 de Desembre pel que s’estableix la tarifa elèctrica per al 2001
- Norma Básica de l’edificació, NBE
- Ordenança municipal.
- Especificacions tècniques específiques de la companyia elèctrica distribuïdora
- Normes UNE d’aplicació.
- Altres normes i disposicions projectista
5. Impacte ambiental

Entenem per contaminació atmosfèrica l’abocament a l’atmosfera de gasos, vapor, aerosols, etc., i també l’emissió de soroll, radiacions ionitzades i radiacions d’altres fonts energètiques (electromagnètiques, infraroques, etc.) que, o bé són aliens a la composició natural de l’aire atmosfèric i a les seves característiques químiques i/o físiques, o bé es troben en concentracions tan elevades que agredeixen directament o indirecta la biosfera, sigui per la seva toxicitat, sigui pels seus efectes sobre l’equilibri natural.

Aquesta contaminació, és provocada, en bona part, a conseqüència dels processos de combustió generats en sectors industrials, entre d’altres.

Dels gasos produïts en la combustió de combustibles fòssils per a generació d’energia tèrmica i elèctrica, se’n destaca principalment, la producció de diòxid de carboni (CO₂). Bona part de la generació de CO₂ té l’origen en la combustió de combustibles fòssils. La quantitat de CO₂ que s’emet en el procés de combustió depèn del contingut en carboni del combustible. Ara bé, per poder fer una comparació entre les emissions provocades per l’ús de diferents combustibles en aplicacions energètiques, resultarà més indicatiu si es calcula la relació entre la quantitat de CO₂ generada i l’energia que es pot obtenir en la combustió.

Així doncs, l’ús de les energies renovables pren tot el sentit com a substitut d’aquestes formes d’energia ambientalment nocives, i a més, poden suposar un canvi de model energètic no només en el tipus de font energètica, sinó en la forma en què aquesta es produeix i es consumeix. A més però, estem en un punt en que aquelles energies fins avui imprescindibles estan a punt de tocar sostre.

Per valorar de forma precisa l’impacte ambiental de les instal·lacions descrites caldria fer un anàlisi exhaustiu del seu cicle de vida, tenint en compte també totes aquelles variables que depenen de factors difícilment ponderables prèviament a la finalització de la seva vida útil.

Tot i això, el que sí resulta senzill és realitzar una aproximació de la reducció d’emissions deguda a l’ús d’energies renovables en front d’altres fonts d’energia, com els combustibles fòssils. Així doncs, es fa una aproximació de la reducció d’emissions deguda a les instal·lacions de generació d’energia tèrmica mitjançant biomassa i al generador fotovoltaic en front de les dades d’emissions associades a les fonts d’energia convencionals. En aquest prenem com a referència el mix elèctrí espanyol i el gas.

Cal remarcar que en els darrers anys les emissions associades a un kWh elèctric s’han reduït considerablement degut a la variació en el mix elèctric espanyol, on ha augmentat la presència de les energies renovables i al fet que l’energia nuclear no computa en relació a les emissions. Així doncs, prenem com a valor de les emissions associades a l’electricitat l’any 2012 el proporcionat per l’”Observatorio de la Electricidad” de WWF, que és de 0,273kg CO₂/kWh elèctric.
Pel que fa a les emissions associades al gas s’ha pres com a valor de referència constant 0,2 kg CO₂/kWh, calculat per UPCO₂.

<table>
<thead>
<tr>
<th>Energia tèrmica produïda amb biomassa (kWh)/any</th>
<th>Emissions (kg CO₂/kWh)</th>
<th>Emissions anuals evitades (kg de CO₂/any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.522,02</td>
<td>0,2</td>
<td>16.304,4</td>
</tr>
</tbody>
</table>

Taula 30. Emissions de CO₂ anuals evitades per l’ús de biomassa en la caldera tèrmica de les instal·lacions

<table>
<thead>
<tr>
<th>Energia elèctrica produïda amb solar fotovoltaica (kWh)/any</th>
<th>Emissions (kg CO₂/kWh)</th>
<th>Emissions anuals evitades (kg de CO₂/any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.463,03</td>
<td>0,273</td>
<td>1.491,91</td>
</tr>
</tbody>
</table>

Taula 31. Emissions de CO₂ anuals evitades per l’ús d’un sistema fotovoltaic per a la generació de l’energia elèctrica de les instal·lacions

Així doncs, el volum aproximat de CO₂ que es deixarà d’emetre amb l’ús d’aquestes instal·lacions ascendeix a 18.325,72 kg de CO₂ a l’any, i que es reparteixen mensualment tal i com es mostra a les gràfiques següents, en funció de la demanda de cada una d’elles en les diferents estacions.
Per a la instal·lació fotovoltaica següent amb les dades del WWF també s’han trobat dades que permeten aproximar les emissions evitades de SO₂ i NOₓ. Les equivalències en aquest cas són de 0,01652 kgSO₂/kWh elèctric i 0,00583 kgNOₓ/kWh elèctric.

<table>
<thead>
<tr>
<th>Energia elèctrica produïda amb solar fotovoltaica (kWh)/any</th>
<th>Emissions (kg SO₂/kWh)</th>
<th>Emissions (kg NOₓ/kWh)</th>
<th>Emissions anuals evitades (kg de SO₂/any)</th>
<th>Emissions anuals evitades (kg de NOₓ/any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.463,03</td>
<td>0,000583</td>
<td>0,000413</td>
<td>3,18</td>
<td>2,26</td>
</tr>
</tbody>
</table>

Taula 32. Emissions de SO₂ i NOₓ anuals evitades per l’ús d’un sistema fotovoltaic per a la generació de l’energia elèctrica de les instal·lacions

En quant als impactes ambientals ocasionats per la implantació d’aquestes instal·lacions, tenim que en l’ús de la biomassa com a combustible es genera energia tèrmica mitjançant un procés
de combustió. La combustió suposa la generació de productes contaminants en major o menor grau, depenent dels reactius o de les tecnologies utilitzades. En els processos de transformació de la biomassa, també es produeix un consum energètic que es tradueix en emissions de gasos d’efecte hivernacle. Però l’emissió de contaminants es pot veure reduïda amb l’ús de tecnologies eficients. A més, a diferència dels combustibles fòssils, el diòxid de carboni originat en el procés de combustió de la biomassa és equivalent al que aquesta pren de l’atmosfera durant el seu creixement, assolint un balanç zero.

Cal tenir en compte, també, que l’ús de la biomassa com a combustible ha d’anar lligat a un procés d’aprofitament dels recursos existents, ja sigui a partir de la gestió forestal, de residus agrícoles, de residus industrials, etc.

Pel que fa a l’impacte d’un generador fotovoltaic, es considera que l’efecte principal es produeix en les operacions extractives de les matèries primeres per a la fabricació dels generadors. Tot i que les cèl·lules fotovoltaiques es fabriquen principalment amb silici, material obtingut a partir de l’arena i per tant molt abundant a la natura, és necessari transformar-lo fins a silici de grau solar mitjançant processos que exigeixen un consum important d’energia. Un cop finalitzada la seva vida útil cal dur a terme els mecanismes establerts de reutilització o retirada dels elements fotovoltaics.

Pel que fa a l’impacte visual, aquest es veu molt reduït quan s’integra arquitectònicament a elements ja existents. Em aquests, els efectes sobre la flora i la fauna, ja sigui per ocupació territorial, sorolls, vibracions o afectació hidrològica, també són molt reduïts.
6. Pressupost

En aquest apartat es pressuposta de forma aproximada el preu de les instal·lacions projectades.

6.1.1. Pressupost instal·lació biomassa

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>DESCRIPCIÓ</th>
<th>QUANTITAT</th>
<th>UNITAT</th>
<th>PREU UNITARI</th>
<th>PREU TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALDERA</td>
<td>Caldera de biomassa KWB Multifire de 60kW</td>
<td>1</td>
<td>u</td>
<td>15.112 €</td>
<td>15.112,0 €</td>
</tr>
<tr>
<td>Complements caldera</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.087,0 €</td>
</tr>
<tr>
<td>Instal·lació caldera i acumuladors/Posta en marxa</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.300,0 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.499,0 €</td>
</tr>
<tr>
<td></td>
<td>Acumulació ACS 1500l</td>
<td>1</td>
<td>u</td>
<td>3157,0 €</td>
<td>3157,0 €</td>
</tr>
<tr>
<td></td>
<td>Grup Bomba alimentació amb control de temperatura</td>
<td>1</td>
<td>u</td>
<td>310,0 €</td>
<td>310,0 €</td>
</tr>
<tr>
<td></td>
<td>Acumulació calefacció 1000 l</td>
<td>1</td>
<td>u</td>
<td>1.349,0 €</td>
<td>1.349,0 €</td>
</tr>
<tr>
<td></td>
<td>Accessoris, bombes i valvuleria per acumulació i ACS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.912,95 €</td>
</tr>
<tr>
<td></td>
<td>Instal·lació en coure d’accessoris</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.011,0 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.739,95 €</td>
</tr>
<tr>
<td></td>
<td>Unitat motriu de 0.55 kW</td>
<td>1</td>
<td>u</td>
<td>936,0 €</td>
<td>936,0 €</td>
</tr>
<tr>
<td></td>
<td>Canal amb bi sen fi d'alimentació</td>
<td>1</td>
<td>u</td>
<td>567,5 €</td>
<td>567,5 €</td>
</tr>
<tr>
<td></td>
<td>Agitador de 5m de diàmetre</td>
<td>1</td>
<td>u</td>
<td>2.224,0 €</td>
<td>2.224,0 €</td>
</tr>
<tr>
<td></td>
<td>Canal ascendent i unitat motriu de 0.75 kW</td>
<td>1</td>
<td>u</td>
<td>3.512,0 €</td>
<td>3.512,0 €</td>
</tr>
<tr>
<td></td>
<td>Mòdul del sistema d'alimentaci</td>
<td>1</td>
<td>u</td>
<td>407,0 €</td>
<td>407,0 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.645,5 €</td>
</tr>
<tr>
<td></td>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td></td>
<td>37884,45 €</td>
</tr>
<tr>
<td></td>
<td>IVA 21%</td>
<td></td>
<td></td>
<td></td>
<td>7.955,73 €</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>45.840,18 €</td>
</tr>
</tbody>
</table>
6.1.2. Pressupost instal·lació fotovoltaica

<table>
<thead>
<tr>
<th>PARTIDA</th>
<th>DESCRIPCIÓ</th>
<th>QUANTITAT</th>
<th>UNITAT</th>
<th>PREU UNITARI</th>
<th>PREU TOTAL</th>
</tr>
</thead>
</table>
| **ENGINYERIA I TRAMITACIÓ** | - Gestió de punt de connexió amb companyia elèctrica.
- Projecte visat i gestió de permisos administratius | 1 | - | 356,73 € | 356,73 € |
| **MATERIAL FOTOVOLTAIC** | Panell fotovoltaics de silici cristal·lí de la marca Schüco | 16 | u | 176,05 € | 2.816,80 € |
| | Ondulador de 3,8 kWn Solarmax 4200S | 1 | u | 920,60 € | 920,60 € |
| **EXECUCIÓ D'OBRA** | Estructura:
- Subministrament i muntatge de carrils i escaires d'alumini | - | - | 1.426,93 € | 1.426,93 € |
| | Muntatge dels panells sobre l'estructura | - | - | 407,69 € | 407,69 € |
| | Material elèctric:
- Caixa de proteccions DC
- Caixa de proteccions AC
- Cablejat elèctric i material accessorii de fixació i posada a terra
- Unitat de centralització de comptadors amb comptador bidireccional i mòdem per telelectura | - | - | 970,31 € | 970,31 € |
| | Instal·lació elèctrica | - | - | 407,69 € | 407,69 € |
| **DIRECCIÓ D'OBRA I POSADA EN MARXA** | Direcció d'Obra Facultativa
Assumpció de direcció d'obra visat
Coordinació de Seguretat i Salut
Certificat final d’obra visat | - | - | - | 764,43 € |
| **ALTRES SEGURETAT I IMPREVISTOS** | Partida alçada de Seguretat i Salut
Partida alçada de lloguer de maquinària | - | - | - | 152,89 |
| **SUBTOTAL** | | | | | 8.224,27 € |
| **IVA 21%** | | | | | 1.727,10 € |
| **TOTAL** | | | | | 9.951,37 € |
7. Conclusions

Com s’ha comentat al llarg del projecte, l’objectiu d’aquest era realitzar un estudi sobre les necessitats energètiques de les instal·lacions descrites i valorar l’opció tècnica escollida per a realitzar el seu abastiment. A més, fer-ho de forma que s’adeqüés a un sistema de generació local distribuïda, i de consum de proximitat.

Finalment, havent escollit les tecnologies a implantar (una caldera de biomass per a calefacció i ACS i un sistema solar fotovoltaic d’autoconsum amb balanç net per a l’electricitat) s’ha obtingut que el dimensionament adequat de les instal·lacions per a fer front a la demanda del complex rural seria, pel que fa als requeriments tèrmics, una caldera d’estella de 60 kW amb suport d’un acumulador inercial de 1000 litres per a calefacció i un dipòsit d’aigua calenta sanitària de 1500 litres, que faran front a una demanda tèrmica de 85848 kWh anuals.

S’ha analitzat el recurs biomàssic per tal de poder realitzar un consum de combustible proper, resultat de la gestió forestal dels boscos del voltant, abundants a la zona. Això permet reduir despeses i energia associada al transport i distribució del combustible, alhora que incentiva i valoritza la gestió d’aquests boscos.

En aquesta instal·lació també es veuen reduïts els problemes associats a l’ús d’estella forestal. El consum de proximitat, fa que la seva baixa densitat no sigui tant problemàtica ja que el transport es mínim i es compta amb espai construït suficient per a l’adaptació d’una sitja d’emmagatzematge amb una capacitat de 12,5 tones que ens proporcionarà una autonomia d’uns 142 dies útils, fent necessàries dues càrregues anuals.

Els problemes d’alimentació entre la sitja i la caldera degut a l’efecte volta de l’estella, es solucionen amb la instal·lació d’agitadors dins la sitja, per tal de desfer aquestes voltes. El posterior transport i alimentació es realitza amb vis sens fi.

En quant a l’abastiment elèctric s’ha dimensionat el sistema per tal d’adecuar-lo al model d’autoconsum amb balanç net en base a la proposta de Reial Decret del 18 de novembre de 2011 on s’estableixen les condicions per a regular-lo. Així doncs, les instal·lacions consten de 16 panells fotovoltaics de 240 Wp, amb una configuració de 8 panells en sèrie i dos fileres en paral·lel, que ens proporciona una potència pic de 3,84 kW i una potència nominal de 3,8 kW, establerta per la potència de l’inversor.

Aquesta configuració permet una producció de 5463 kWh anuals en front d’una demanda aproximada de 5599 kWh. S’ha intentat aproximar al màxim el punt de generació al de consum, per tal d’assolir un balanç zero, amb un lleuger subdimensionament degut a que l’energia excedentària no rep compensació.

Encara que es segueix desconeixent el règim econòmic aplicable sobre el balanç net, una bona opció seria premiar l’energia generada i consumida instantàniament, tal i com es fa en altres països europeus.
Una altre aspecte desconegut és si es permetrà la instal·lació de sistemes d’acumulació d’energia entre el punt de generació i el de connexió. El fet d’ajustar més l’energia generada a la consumida, amb risc de generar excedents no compensats, quedaria pal·liat amb l’ús de bateries per emmagatzemar aquesta energia excedentària.
8. Bibliografia

- Proposta de Reial Decret 1699/2011, de 18 de novembre, pel que es regula la connexió a xarxa d’instal·lacions de producció d’energia elèctrica de petita potencia.

- Comentaris al RITE-ITE10 Instruccions específiques. IDAE.

- Dades de la Xarxa d’Estacions Meteorològiques Automàtiques de Catalunya. Servei Meteorològic de Catalunya.

- Instal·lació de calderes de biomassa en edificis. Col·lecció Quadern Pràctic núm 5. Institut Català de l’Energia (ICAEN). Generalitat de Catalunya.

- Calefacció. Martín Llorens. Edicions CEAC.

- Pla estratègic d’aprofitament energètic dels boscos del Pallars Sobirà. Centre Tecnològic forestal de Catalunya (CTFC), Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) i Servei de Gestió Forestal (DMAH).

- Aprofitament i processat de biomass forestal amb finalitats energètiques. Consorci Forestal de Catalunya (CTFC).

- Instalaciones solares fotovoltaicas. Enrique Alcor Cabrerizo. PROGENSA

- Instal·lacions d’energia solar fotovoltaica. Plec de Condicions Tècniques d’Instal·lacions Aïllades de xarxa. Instituto para la Diversificación y Ahorro de la Energía (IDEA).

Pàgines web

- Portal ambiental de l’Ajuntament de Tremp
- Pàgines de fabricants de components
 - http://www.caldiaiedalessandro.it/ita/
 - http://www.hargassner.es/
9. Annexos

Els Annexos s’inclouen en la versió digital en format CD del projecte.

9.1. Plànols

1. Ubicació geogràfica i emplaçament
 - Plànol 1. Localització i emplaçament
 - Plànol 2. Situació relativa

2. Elements constructius per a la determinació de les càrregues tèrmiques
 - Plànol 3. Distribució vivenda unifamiliar
 - Plànol 4. Alçats frontals vivenda unifamiliar
 - Plànol 5. Alçats laterals vivenda unifamiliar
 - Plànol 6. Distribució i alçats frontals apartaments rurals
 - Plànol 7. Distribució i alçats laterals apartaments rurals

3. Instal·lació de calefacció i ACS amb biomassa
 - Plànol 8. Sala de calderes i sitja d’emmagatzematge
 - Plànol 9. Esquema unifilar caldera biomassa

4. Instal·lació solar fotovoltaica
 - Plànol 10. Coberta fotovoltaica
 - Plànol 11. Esquema unifilar instal·lació fotovoltaica
LOCALITZACIÓ
PROVÍNCIA: LLEIDA
TERME MUNICIPAL
Tremp

MÀSTER ENGINYERIA EN ENERGIES
Signat: JOAQUIM COMES PON
DATA
GURP, GENER DE 2013

PLÀNOL: 4
DESCRIPCIÓ DEL PLÀNOL:
ALÇATS FRONTALS VIVENDA
UNIFAMILIAR

ESCALA: 1:50
LOCALITZACIÓ
PROVÍNCIA: LLEIDA
TERME MUNICIPAL
Tremp

MÀSTER ENGINYERIA EN ENERGIES

Signat:
JOAQUIM COMES PON

DATA
GURP, GENER DE 2013

PLÀNOL: 6
DESCRIPCIÓ DEL PLÀNOL:

DISTRIBUCIÓ I
ALÇATS FRONTALS
APARTAMENTS

ESCALA:
1:100
Planta de coberta
9.2. Catàlegs tècnics
Técnica y planificación

Calefacción con astillas de madera y pelets KWB Multifire 15 – 100 kW

¡Generamos energía para la vida!
Biomasa – El combustible del futuro

Ahorro del 50% en costes de calefacción
Para disfrutar de un ahorro permanente en la calefacción, debe utilizarse madera procedente de la silvicultura. Desde hace años, el precio de la madera se mantiene estable y no depende de los precios del mercado mundial de petróleo y gas natural.

Un suministro seguro y sin restricciones
La madera crece, incluso geográficamente. En Europa, las superficies de bosque crecen constantemente y, con ellas, también la cantidad de madera disponible como combustible. En los bosques, cada año crece más madera de la que se puede utilizar. Esto significa que siempre habrá suficientes cantidades de madera disponibles para utilizarse como combustible. Además, la plantación de especies como el sauce y el álamo en superficies agrícolas, ofrece un seguro adicional.

Protección del medio ambiente
El uso de maderas combustibles renovables para la calefacción es neutral en términos de CO₂. Esto significa que durante la combustión de madera tan solo se libera el CO₂ que un árbol absorbe de la atmósfera durante su crecimiento. Por este motivo, la madera combustible también protege el medio ambiente.

Reducción de los costes
KWB Multifire: tipos de instalaciones

La KWB Multifire, con valores de potencia nominal de entre 15 y 100 kW, es la solución óptima para el suministro de calor de casas unifamiliares o grandes edificios tanto privados como públicos (por ejemplo, instalaciones agrícolas, colegios, edificios de viviendas, instalaciones industriales, etc.) así como de redes locales de calefacción. Este sistema permite emplear tanto astillas de madera G30, W30 en conformidad con ÖNORM M7133 o B1, P16B, en conformidad con EN14961-1, como pelets de madera de DM6mm ó 8mm en conformidad con ÖNORM M7135 o DIN Plus y pelets de madera del nivel de calidad A1 y A2 en conformidad con EN14961-1. Los pelets de madera del nivel de calidad A2 no están homologados para el modelo USV GS ni para el modelo USV D con dispositivo de alimentación de pelets. (DM 8 mm no están homologados para los siguientes sistemas de alimentación: tornillo sinfín en codo, tornillo transportador sinfín con alimentación neumática)

USV D
(15–100 kW)
Con contenedor intermedio de combustible de 10 litros

USV ZI
(15–100 kW)
Con contenedor intermedio de combustible de 200 litros

USV GS
(40–100 kW)
Con contenedor intermedio de combustible de 120 litros
para el funcionamiento con pelets y alimentación neumática

USV V
(15–40 kW)
Con contenedor de almacenamiento de combustible de 1.000 litros
El multitalento robusto para una calefacción rentable

KWB Multifire 15, 25, 30, 40, 50, 60, 80 y 100 kW

1. **Intercambiador de calor**: intercambiador vertical, de limpieza automática con turbuladores especiales
2. **Sistema de combustión**: gasificador con alimentación inferior, quemador en forma de anillo con inyectores de aire, cúpula de distribución de gases de alta temperatura, zona de combustión completa en régimen turbulento
3. **Compuerta antiincendios**: hermética al gas, segura frente al retroceso del fuego, verificada
4. **Evacuación de cenizas**: extracción automática de la ceniza, compactación de cenizas y control del nivel de llenado, contenedor de cenizas móvil
5. **Sistema de alimentación**: con una técnica de transporte fiable y a la altura de las mayores exigencias individuales
6. **Manejo y regulación KWB Comfort 3**: innovador, fácil de manejar, automático y único en su género
7. **Sinfín de alimentación**: espiras de acero inoxidable con revestimiento de metal duro
Incomparable

Consumo mínimo de corriente, máximo confort

Contenedor intermedio KWB ①

El extraordinario diseño y la estabilidad del contenedor intermedio sólo puede ser de KWB. Un sistema de barreras fotoeléctricas en el contenedor regula el nivel de llenado de forma completamente automática. El contenedor intermedio aumenta la vida útil del sistema de alimentación y minimiza los costes de electricidad porque el sistema de alimentación funciona con menos frecuencia.

Dispositivo de evacuación de ceniza KWB ②

Dos tornillos sinfín para las cenizas transportan las cenizas de forma completamente automática desde la cámara de combustión hasta el contenedor de ceniza con cuatro ruedas. Donde se comprimen, para aumentar la comodidad de uso, porque de este modo sólo es necesario vaciarlo cada 2 semanas como mínimo y 10 como máximo. El control del estado de las cenizas evita que rebosen y garantiza la limpieza en la cámara de combustión.

Innovación

Plataforma de regulación KWB Comfort 3

KWB innova al presentar un manejo por menús mediante 2 botones con ruedecilla y una pantalla gráfica de fácil comprensión. Un flujo lógico de menús muestra al usuario de las instalaciones de calefacción KWB cómo se ajustan los parámetros, completamente personalizados, de los circuitos de calefacción, de los depósitos de inercia, de los acumuladores de agua caliente sanitaria etc. Otras ventajas son la posibilidad de controlar la instalación de calefacción por SMS con KWB Comfort SMS así como la opción de visualización y de mantenimiento remoto con KWB Comfort Visio. Otra novedad en la gama de productos es el software KWB Comfort InterCom, que sirve como interfaz para el intercambio de datos entre la regulación KWB y los sistemas remotos. Con la regulación KWB Comfort Solar puede regularse una instalación solar.
Sus ventajas

Eficacia probada

Tecnología de combustión KWB

Aprender de los sistemas que funcionan: bajo esta premisa se ha aplicado a la KWB Multifire el inteligente y varias veces premiado concepto de regulación de la serie Powerfire de KWB. El control lambda (sonda lambda de banda ancha), en combinación con el regulador de depresión, garantiza unas condiciones óptimas de combustión y un nivel mínimo de emisiones. Este regulador se complementa con el sistema de alimentación inferior con sensor de combustible ya probados en KWB Multifire. A partir de una potencia de caldera de 30 kW, la KWB Multifire dispone además de la ampliación de quemador KWB MultiFlex, en el que el plato de combustión dispone de un eficaz mecanismo de limpieza. De este modo se incrementa la fiabilidad de la KWB Multifire para el uso de combustibles de madera ricos en cenizas y con tendencia a la formación de escoria. Por ello, para el cliente los cuidados se reducen al mínimo, mientras que el confort se maximiza.

Rentable

Intercambiadores de calor KWB con turbuladores especiales

El sistema de limpieza del intercambiador de calor, completamente automático y probado desde hace años, se ha mejorado con el desarrollo de nuevos turbuladores. Estos turbuladores garantizan un intercambio de calor óptimo gracias a la mejora de la limpieza y a una reducción de las pérdidas de flujo. El resultado es un rendimiento alto constante con la máxima rentabilidad para el cliente.
Regulación con microprocesador KWB Comfort 3

KWB Comfort 3 es un sistema de estructura modular que sirve para utilizar y regular el sistema de calefacción con biomasa KWB.

Se pueden realizar todos los ajustes con el mando de dos botones en combinación con una ruedecilla a través de la innovadora pantalla gráfica claramente estructurada. Con el menú lógicamente estructurado se pueden configurar con facilidad los parámetros para la caldera, el circuito de calefacción, el acumulador de agua caliente sanitaria y el depósito de inercia.

El sistema de regulación adapta la potencia de la caldera automáticamente y de forma continua desde el estado de disponibilidad hasta el de plena carga en función del calor necesario. El sistema de regulación garantiza unas condiciones óptimas de combustión, pocas emisiones y la máxima rentabilidad.

Además de la regulación de la combustión se dispone también de una amplia regulación de la gestión del calor tanto para casas unifamiliares como para microrredes de calefacción. El sistema KWB Comfort puede ampliarse modularmente permitiendo controlar hasta 34 circuitos de calefacción, 17 depósitos de inercia y 17 acumuladores de agua caliente sanitaria. También es posible conectar en red varios mandos a distancia digitales o analógicos.

La plataforma de regulación consta de los siguientes componentes:

1. Placa base: Contiene todas las entradas/salidas de la regulación de la caldera, incluidos los sensores y conexiones para cableado externo. La placa base contiene también el control para un acumulador de agua caliente sanitaria y un depósito de inercia con dos sensores de temperatura.

2. Mando de control de la caldera: Este módulo se utiliza para manejar y regular la caldera, así como para la gestión del calor. Además, el mando de control de la caldera puede ser utilizado también para la visualización de datos, como termómetro interior y como unidad de control remoto.

3. Mando a distancia analógico: Para manejar con sencillez un circuito de calefacción, con sensor para el control de la temperatura ambiente. consta de una ruedecilla para la regulación de la temperatura nominal ambiente en pasos de +/- 5 °C y selector de cuatro posiciones para seleccionar uno de los programas de calefacción: modo automático, de protección antiheladas, modo de día o de noche.

4. Mando a distancia digital: Permite manejar uno o más circuitos de calefacción con sensor para el control de la temperatura ambiente, así como configurar y supervisar la gestión del circuito de calefacción, el acumulador de agua caliente sanitaria y el depósito de inercia desde las habitaciones.

5. Módulo de ampliación del circuito de calefacción: Para el control de máx. 2 circuitos de calefacción, un acumulador de agua caliente sanitaria y un depósito de inercia (con 2 sensores) por módulo. El manejo y el control se hacen a través del mando de control de la caldera u, opcionalmente, a través de las unidades de control remoto digitales.

6. KWB Comfort Solar: Mediante el regulador KWB Comfort Solar se controla la instalación de forma que la energía solar obtenida puede llegar óptimamente al acumulador. A parte de la funcionalidad y el diseño, el regulador solar destaca sobre todo por una guía de usuario totalmente intuitiva y sencilla. El instalador/especialista en calefacción dispone de un asistente para la puesta en marcha confortable.
Dimensiones de conexión

Las medidas del esquema de la izquierda se corresponden con los diferentes tamaños de construcción.

Modelo USV D / USV ZI
Medida 1: 15–25 kW
Medida 2: 30–60 kW
Medida 3: 80–100 kW

Modelo USV V
Medida 1: 15–25 kW
Medida 2: 30–40 kW

¡Los valores referidos a las distancias son valores mínimos!
* Para que la parte posterior de la caldera sea accesible, deberán mantenerse los valores mínimos indicados.

El canal de alimentación o ascender deberá estar dentro del ángulo indicado (máx. 230° horizontal, 25° inclinación, 45° inclinación en tornillos sinfín ascendentes).

Medidas de la caldera para su colocación

<table>
<thead>
<tr>
<th>Modelo</th>
<th>montada</th>
<th>desmontada</th>
</tr>
</thead>
<tbody>
<tr>
<td>USV V 15/25</td>
<td>105 x 157</td>
<td>65 x 104</td>
</tr>
<tr>
<td>USV V 30/40</td>
<td>105 x 103</td>
<td>72 x 131</td>
</tr>
<tr>
<td>USV D/ZI 15/25</td>
<td>80 x 157</td>
<td>65 x 104</td>
</tr>
<tr>
<td>USV D/ZI 30/40/50/60</td>
<td>88 x 183</td>
<td>72 x 131</td>
</tr>
<tr>
<td>USV D/ZI 80/100</td>
<td>89 x 203</td>
<td>72 x 149</td>
</tr>
<tr>
<td>USV GS 40/50/60</td>
<td>88 x 183</td>
<td>72 x 131</td>
</tr>
<tr>
<td>USV GS 80/100</td>
<td>89 x 207</td>
<td>72 x 149</td>
</tr>
</tbody>
</table>

Medidas de la caldera para su colocación

Dimensiones verticales

<table>
<thead>
<tr>
<th>Dimension</th>
<th>USV 15 / 25</th>
<th>USV 30 / 40 / 50 / 60</th>
<th>USV 80 / 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Tubo de salida de humos (variante de montaje 1)</td>
<td>1.534</td>
<td>1.794</td>
<td>2.070</td>
</tr>
<tr>
<td>B Tubo de salida de humos (variante de montaje 2+3)</td>
<td>1.307</td>
<td>1.543</td>
<td>1.844</td>
</tr>
<tr>
<td>C Admisión del dispositivo de protección térmica de salida</td>
<td>1.322</td>
<td>1.569</td>
<td>1.793</td>
</tr>
<tr>
<td>D Salida del dispositivo de protección térmica de salida</td>
<td>1.188</td>
<td>1.435</td>
<td>1.659</td>
</tr>
<tr>
<td>E Impulsión de la calefacción</td>
<td>1.321</td>
<td>1.569</td>
<td>1.844</td>
</tr>
<tr>
<td>F Retorno de calefacción</td>
<td>520</td>
<td>544</td>
<td>554</td>
</tr>
<tr>
<td>G Vaciado</td>
<td>500</td>
<td>518</td>
<td>528</td>
</tr>
<tr>
<td>H Altura total con conexión del tubo de salida de humos (variante 1)</td>
<td>1.662</td>
<td>1.967</td>
<td>2.310</td>
</tr>
</tbody>
</table>

Dimensiones horizontales

<table>
<thead>
<tr>
<th>Dimension</th>
<th>USV 15 / 25</th>
<th>USV 30 / 40 / 50 / 60</th>
<th>USV 80 / 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Separación</td>
<td>100</td>
<td>119,5</td>
<td>120</td>
</tr>
<tr>
<td>J Separación</td>
<td>460</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td>K Separación</td>
<td>100</td>
<td>120,5</td>
<td>120</td>
</tr>
<tr>
<td>L Separación conexión de tubo de salida de humos variante de montaje 1 y 2</td>
<td>325</td>
<td>359</td>
<td>433</td>
</tr>
<tr>
<td>M Separación mínima al muro de la chimenea con variante de montaje 1 y 2</td>
<td>400</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>N Separación mínima al muro de la chimenea con variante de montaje 3</td>
<td>540</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>O Prolongación del tubo de salida de humos (no se suministra)</td>
<td>0</td>
<td>19</td>
<td>128</td>
</tr>
</tbody>
</table>

* Si la aspiración de gases de humo del modelo USV 80/100 se monta en la posición “2”, deberá colgarse o apoyarse.

1. **Variante de montaje**
 - Aspiración en la caja de humos superior
2. **Variante de montaje**
 - Aspiración en la caja de humos lateral

3. **Variante de montaje**
 - Aspiración en la caja de humos trasera
Datos técnicos Funcionamiento con astillas

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Unidad</th>
<th>15</th>
<th>25</th>
<th>30*</th>
<th>40</th>
<th>50***</th>
<th>50*</th>
<th>60*</th>
<th>80</th>
<th>100***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia nominal</td>
<td>kW</td>
<td>15,0</td>
<td>25,0</td>
<td>30,0</td>
<td>40,0</td>
<td>49,5</td>
<td>50,0</td>
<td>60,0</td>
<td>80,0</td>
<td>96/101***</td>
</tr>
<tr>
<td>Carga parcial</td>
<td>kW</td>
<td>5,0</td>
<td>7,1</td>
<td>8,6</td>
<td>11,5</td>
<td>14,1</td>
<td>14,2</td>
<td>17,0</td>
<td>22,4</td>
<td>27,6</td>
</tr>
<tr>
<td>Rendimiento de la caldera a potencia nominal</td>
<td>%</td>
<td>91,3</td>
<td>90,2</td>
<td>90,4</td>
<td>90,8</td>
<td>90,9</td>
<td>90,9</td>
<td>91,1</td>
<td>91,3</td>
<td>91,1</td>
</tr>
<tr>
<td>Rendimiento de la caldera a carga parcial</td>
<td>%</td>
<td>87,7</td>
<td>89,1</td>
<td>90,1</td>
<td>92,2</td>
<td>92,2</td>
<td>92,2</td>
<td>92,2</td>
<td>92,6</td>
<td>92,6</td>
</tr>
<tr>
<td>Potencia calorífica de consumo a potencia nominal</td>
<td>kW</td>
<td>16,4</td>
<td>29,0</td>
<td>34,8</td>
<td>46,3</td>
<td>55,6</td>
<td>56,1</td>
<td>66,0</td>
<td>85,6</td>
<td>113,9</td>
</tr>
<tr>
<td>Potencia calorífica de consumo a carga parcial</td>
<td>kW</td>
<td>5,7</td>
<td>8,0</td>
<td>9,5</td>
<td>12,5</td>
<td>15,3</td>
<td>15,5</td>
<td>18,4</td>
<td>24,3</td>
<td>29,9</td>
</tr>
</tbody>
</table>

| Categoría de la caldera según EN 303-5 | – | 3 |

Circuito hidráulico

Volumen de agua	l	63	63	158	158	128	128	128	167	167
Conexión de agua de avance/retorno (rosca interior)	Pulgada	5/4	5/4	2	2	2	2	2	2	
Conexión de agua de avance/retorno (rosca exterior)	DN	32	32	50	50	50	50	50		
Protección térmica de salida (rosca exterior)	Pulgada	–								
Resistencia del circuito hidráulico a 10 K mbar	mbar	1,4	8,1	9,2	11,5	19,4	19,4	27,3	43,1	64,0
Resistencia del circuito hidráulico a 20 K mbar	mbar	0,4	2,1	2,4	3,0	5,0	5,0	6,9	10,8	16,0
Temperatura de entrada a la caldera	ºC	50 – 70								
Temperatura máxima del circuito de impulsión	ºC	95								
Presión máx. de servicio	bar	–								

Circuito de humos (para calcular las dimensiones de la chimenea)

Temperatura de la cámara de combustión	ºC	900–1100							
Presión de la cámara de combustión	mbar	–							
Toma de corriente	CEE 5 polos								
Accionamiento	W	1621	1732	1824	1824	–	–	–	–

Pesos

Carro de agua	kg	99	115	197	197	227	227	227	286	286
Cuerpo de la caldera	kg	125	142	238	238	266	266	266	327	327
Peso de la caldera USV V	kg	684	899	795	795	–	–	–	–	–
Peso de la caldera USV D	kg	528	556	705	705	768	768	768	990	997
Peso de la caldera USV Z	kg	573	601	750	750	813	813	813	1035	1042

Leyenda: véase la página 38
Datos técnicos Funcionamiento con astillas

Emisiones según el informe de ensayo

<table>
<thead>
<tr>
<th>Emisiones</th>
<th>Unidad</th>
<th>15</th>
<th>25</th>
<th>30*</th>
<th>40</th>
<th>50***</th>
<th>50*</th>
<th>60*</th>
<th>80</th>
<th>100**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de O₂ a potencia nominal</td>
<td>Vol.%</td>
<td>7,5</td>
<td>7,3</td>
<td>7,2</td>
<td>7,1</td>
<td>7,2</td>
<td>7,2</td>
<td>7,3</td>
<td>7,4</td>
<td>8,2</td>
</tr>
<tr>
<td>Contenido de O₂ a carga parcial</td>
<td>Vol.%</td>
<td>12,6</td>
<td>12,0</td>
<td>12,3</td>
<td>13,0</td>
<td>12,4</td>
<td>12,4</td>
<td>11,8</td>
<td>10,5</td>
<td>10,0</td>
</tr>
<tr>
<td>Contenido de CO₂ a potencia nominal</td>
<td>Vol.%</td>
<td>13,1</td>
<td>13,1</td>
<td>13,2</td>
<td>13,4</td>
<td>13,3</td>
<td>13,3</td>
<td>13,2</td>
<td>13,0</td>
<td>14,3</td>
</tr>
<tr>
<td>Contenido de CO₂ a carga parcial</td>
<td>Vol.%</td>
<td>8,0</td>
<td>10,0</td>
<td>9,2</td>
<td>7,7</td>
<td>8,2</td>
<td>8,3</td>
<td>9,0</td>
<td>10,0</td>
<td>10,5</td>
</tr>
</tbody>
</table>

Referencia del 11% O₂ seco (EN303-5)

<table>
<thead>
<tr>
<th>Asignatura</th>
<th>Unidad</th>
<th>15</th>
<th>25</th>
<th>30*</th>
<th>40</th>
<th>50***</th>
<th>50*</th>
<th>60*</th>
<th>80</th>
<th>100**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO a potencia nominal</td>
<td>mg/Nm³</td>
<td>100,0</td>
<td>25,0</td>
<td>93,7</td>
<td>231,0</td>
<td>215,3</td>
<td>214,5</td>
<td>199,0</td>
<td>165,0</td>
<td>18,0</td>
</tr>
<tr>
<td>CO a carga parcial</td>
<td>mg/Nm³</td>
<td>913,0</td>
<td>311,0</td>
<td>317,7</td>
<td>331,0</td>
<td>274,5</td>
<td>271,5</td>
<td>212,0</td>
<td>93,0</td>
<td>92,0</td>
</tr>
<tr>
<td>NO₂ a potencia nominal</td>
<td>mg/Nm³</td>
<td>187,0</td>
<td>173,0</td>
<td>180,7</td>
<td>196,0</td>
<td>199,6</td>
<td>199,8</td>
<td>203,5</td>
<td>211,0</td>
<td>203,0</td>
</tr>
<tr>
<td>NO₂ a carga parcial</td>
<td>mg/Nm³</td>
<td>10,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,3</td>
<td>7,3</td>
<td>5,5</td>
<td>5,5</td>
<td>2,0</td>
</tr>
<tr>
<td>OGC a potencia nominal</td>
<td>mg/Nm³</td>
<td>2,0</td>
<td>2,0</td>
<td>3,3</td>
<td>6,0</td>
<td>6,0</td>
<td>6,0</td>
<td>6,0</td>
<td>6,0</td>
<td><1</td>
</tr>
<tr>
<td>OGC a carga parcial</td>
<td>mg/Nm³</td>
<td>40,0</td>
<td>24,0</td>
<td>24,0</td>
<td>24,0</td>
<td>25,2</td>
<td>25,3</td>
<td>26,5</td>
<td>29,0</td>
<td>31,0</td>
</tr>
</tbody>
</table>

Referencia del 13% O₂ seco (Wieselburg)

<table>
<thead>
<tr>
<th>Asignatura</th>
<th>Unidad</th>
<th>15</th>
<th>25</th>
<th>30*</th>
<th>40</th>
<th>50***</th>
<th>50*</th>
<th>60*</th>
<th>80</th>
<th>100**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO a potencia nominal</td>
<td>mg/Nm³</td>
<td>90,9</td>
<td>22,7</td>
<td>85,2</td>
<td>210,0</td>
<td>195,8</td>
<td>195,0</td>
<td>189,0</td>
<td>150,0</td>
<td>17,3</td>
</tr>
<tr>
<td>CO a carga parcial</td>
<td>mg/Nm³</td>
<td>830,0</td>
<td>282,7</td>
<td>288,8</td>
<td>300,3</td>
<td>294,5</td>
<td>286,8</td>
<td>192,7</td>
<td>84,5</td>
<td>83,6</td>
</tr>
<tr>
<td>NO₂ a potencia nominal</td>
<td>mg/Nm³</td>
<td>170,0</td>
<td>157,3</td>
<td>164,2</td>
<td>178,2</td>
<td>181,4</td>
<td>181,6</td>
<td>185,0</td>
<td>191,8</td>
<td>184,5</td>
</tr>
<tr>
<td>NO₂ a carga parcial</td>
<td>mg/Nm³</td>
<td>10,0</td>
<td>9,0</td>
<td>9,0</td>
<td>9,0</td>
<td>7,3</td>
<td>7,3</td>
<td>5,5</td>
<td>5,5</td>
<td><1</td>
</tr>
<tr>
<td>OGC a potencia nominal</td>
<td>mg/Nm³</td>
<td>9,1</td>
<td>8,2</td>
<td>8,2</td>
<td>8,2</td>
<td>6,7</td>
<td>6,6</td>
<td>5,0</td>
<td>1,8</td>
<td>0,9</td>
</tr>
<tr>
<td>OGC a carga parcial</td>
<td>mg/Nm³</td>
<td>36,4</td>
<td>21,8</td>
<td>21,8</td>
<td>21,8</td>
<td>22,9</td>
<td>23,0</td>
<td>26,4</td>
<td>26,2</td>
<td></td>
</tr>
</tbody>
</table>

según § 15a-BVG de Austria

<table>
<thead>
<tr>
<th>Asignatura</th>
<th>Unidad</th>
<th>15</th>
<th>25</th>
<th>30*</th>
<th>40</th>
<th>50***</th>
<th>50*</th>
<th>60*</th>
<th>80</th>
<th>100**</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO a potencia nominal</td>
<td>mg/MJ</td>
<td>73,0</td>
<td>18,0</td>
<td>68,0</td>
<td>168,0</td>
<td>156,6</td>
<td>156,0</td>
<td>144,0</td>
<td>120,0</td>
<td>14,0</td>
</tr>
<tr>
<td>CO a carga parcial</td>
<td>mg/MJ</td>
<td>664,0</td>
<td>226,0</td>
<td>231,0</td>
<td>241,0</td>
<td>199,9</td>
<td>197,8</td>
<td>154,5</td>
<td>68,0</td>
<td>67,0</td>
</tr>
<tr>
<td>NO₂ a potencia nominal</td>
<td>mg/MJ</td>
<td>130,0</td>
<td>126,0</td>
<td>131,3</td>
<td>142,0</td>
<td>144,9</td>
<td>145,0</td>
<td>148,0</td>
<td>154,0</td>
<td>148,0</td>
</tr>
<tr>
<td>NO₂ a carga parcial</td>
<td>mg/MJ</td>
<td>1,0</td>
<td>1,0</td>
<td>2,0</td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
<td>4,0</td>
<td>2,0</td>
<td><1</td>
</tr>
<tr>
<td>OGC a potencia nominal</td>
<td>mg/MJ</td>
<td>2,9</td>
<td>18,0</td>
<td>17,3</td>
<td>18,0</td>
<td>18,7</td>
<td>18,6</td>
<td>19,5</td>
<td>21,0</td>
<td>23,0</td>
</tr>
<tr>
<td>Polvo a carga parcial</td>
<td>mg/MJ</td>
<td>17,0</td>
<td>13,7</td>
<td>7,0</td>
<td>8,4</td>
<td>8,5</td>
<td>10,0</td>
<td>12,7</td>
<td>16,4</td>
<td></td>
</tr>
</tbody>
</table>

Control de dibujo

* … Control de dibujo
** … Variantes de clasificación
*** … Valores interpolados para tamaños intermedios
**** … ≤ M25: 99 kW; M30: 94 kW
FJ-BLT … Francisco Josephinium Wieselburg Biomass Logistic Technology

mg/Nm³ ... Miligramos por metro cúbico normal (Nm³ bajo 1013 hectopascal con 0 °C)
Indicación sobre las condiciones básicas de construcción

Como usuario de una instalación de calefacción KWB, el cliente está sujeto a todas las normas legales locales vigentes relativas a la presentación de permisos de obra, a la edificación y a la ejecución. El arquitecto, el encargado de obra o las autoridades públicas competentes, por ejemplo, le pueden informar sobre dicha normativa. El cumplimiento fehaciente de las regulaciones locales vigentes es el único responsable de la correcta ejecución de las medidas constructivas. Como usuario de un sistema de calefacción por biomasa, eventualmente puede que usted tenga la posibilidad de recibir ayudas regionales específicas de fomento. Infórmese a tiempo constructivas. Como usuario de un sistema de calefacción por biomasa, eventualmente puede que usted tenga la posibilidad de recibir ayudas regionales específicas de fomento. Infórmese a tiempo sobre los plazos y los procedimientos necesarios para tramitar la solicitud de dichas ayudas. Tenga en cuenta las dimensiones indicadas en los ejemplos de montaje y en los datos técnicos. Sin pretender hacer una exposición detallada ni ignorar las disposiciones legales y apoyándose en las directivas austríacas TRVB H 118 y OKL, hojas informativas Nº 56 y Nº 66, recomendamos lo siguiente:

Sala de calderas

Solera de hormigón, en bruto o de baldosa, las irregularidades leves pueden ser niveladas con las patas de altura regulable. Todos los materiales utilizados para el suelo, paredes y techos que ser ignífugos de la clase F90*¹; las puertas de la sala de calderas (véase la tabla de medidas para la colocación de la caldera) debe ser antiincendio (T30°) abrir en la dirección de escape y cerrar automáticamente; la puerta de comunicación con el silo de combustible también debe ser antiincendio (T30°) y cerrar automáticamente. Las ventanas de la sala de calderas en G30*³ no se deben abrir; la abertura de ventilación no se deberá poder cerrar y tendrá 5 cm² por cada kW de potencia nominal de la instalación de calefacción, pero mínimo 400 cm². Para potencias de caldera > 60 kW deberá preverse una abertura de ventilación cerca del suelo y otra cerca del techo; la tubería de entrada de aire debe conducir directamente al exterior y si para ello debe cruzar otros recintos, el conducto de ventilación deberá ser revestido según F90*¹; las aberturas de ventilación hacia el exterior deben estar cerradas por fuera con una rejilla de protección con un ancho de malla < 5 mm. Hay que instalar un sistema de iluminación fijo y una línea de alimentación eléctrica a la instalación de calefacción; la luz y el interruptor de parada de emergencia debidamente señalizado de la calefacción tienen que colocarse en el exterior de la sala de calderas, en un lugar fácilmente accesible junto a la puerta de la sala de calderas. Fuera de la sala de calderas y junto a la puerta de la misma, deberá estar disponible un extintor manual (peso de llenado de 6 kg, según EN3). Tanto la sala de calderas como las tuberías de agua y de calor a distancia tienen que estar instaladas a prueba de heladas. Está prohibido almacenar sustancias inflamables en la sala de calderas fuera del silo de la calefacción, del contenedor de almacenamiento o del depósito intermedio; está prohibido que haya una conexión directa a otros recintos en los que hayan líquidos o gases inflamables (como por ejemplo, un garaje). Observe las directivas de instalación.

Silo de almacenamiento de combustible

Rigen los mismos requisitos constructivos que para la sala de calderas. En el centro del silo se coloca el agitador que se fija al suelo de hormigón con tornillos de anclaje. Al mismo nivel que el borde superior del sistema de alimentación debe montarse un suelo inclinado/falso con ventilación posterior. El pasamuros (anchura 50 cm, altura 60 cm) entre el silo y la sala de calderas para el canal de alimentación tiene que aislarse a prueba de incendios (por ejemplo, con una máquina minadora donde el silo sea bombeando astillas o los pelets, hay que montar los acoplamientos para manguera.)
condiciones básicas de construcción

competente para estas cuestiones. Es conveniente implicar a su deshollinador ya durante la fase de planificación, debido a que este profesional deberá aprobar más adelante la instalación de humos.

Montaje de la instalación de calefacción

Colocación de la calefacción

Se encargará siempre y exclusivamente a personal calificado y formado de KWB o de los socios competentes de KWB. La instalación de calefacción se introduce montada y lista para encajar si las condiciones de la obra lo permiten. En caso contrario, será desmontada y vuelta a montar en la sala de calderas. Las conexiones de la instalación de calefacción a la chimenea, al suministro de agua y al sistema eléctrico deben ser efectuadas por instaladores de calefacción y electricistas autorizados, debiendo además ser probadas debido a muchas razones como, por ejemplo, la obtención de una subvención.

Conexión del tubo de salida de humos a la chimenea

En tanto no haya sido ya exigido por las disposiciones locales, se recomienda instalar un regulador de tiro y una tapa contra deflagración en el tubo de humos en el tejado de la chimenea y disponerlos de tal manera que quede excluido un peligro para las personas. El tubo de salida de humos debe ser conducido de la manera que más corta posible hacia la chimenea y ser conectado herméticamente.

En tanto no haya sido ya exigido por las disposiciones locales, se recomienda instalar un regulador de tiro y una tapa contra deflagración en el tubo de salida de humos y la chimenea. La instalación KWB va equipada de serie con un ventilador de tiro inducido.

Conexión eléctrica de la instalación KWB Multifire

Todo el cableado interno de la instalación se efectúa en fábrica o bien está listo para ser enchufado por el personal de montaje. Localmente sólo es necesario que una empresa autorizada de instalaciones eléctricas efectúe la conexión a la red y el cableado exterior de la chimenea, así como, en caso de una red, el cableado del bus de los módulos de ampliación de los circuitos de calefacción y de los mandos ambientales digitales.

Conexiones eléctricas de la instalación

KWB Multifire

Todo el cableado interno de la instalación se efectúa en fábrica o bien está listo para ser enchufado por el personal de montaje. Localmente sólo es necesario que una empresa autorizada de instalaciones eléctricas efectúe la conexión a la red y el cableado exterior de la chimenea, así como, en caso de una red, el cableado del bus de los módulos de ampliación de los circuitos de calefacción y de los mandos ambientales digitales.

Conexiones de la instalación KWB Multifire

Al utilizar astillas de madera se necesita una temperatura de entrada de retorno en la caldera de 55 °C como mínimo. Si se van a emplear pellets, la temperatura debe alcanzar al menos 50 °C, en caso contrario existe el riesgo de que aumente la corrosión y, con ello, de perder los derechos de prestaciones de garantía. Desde el mando de la caldera se controla la regulación de la mezcla para el mantenimiento de la temperatura del retorno. En instalaciones hasta 60 kW también se puede realizar una elevación de la temperatura del retorno mediante una válvula termostática de regulación. KWB suministra los elementos necesarios para el aumento de la temperatura de retorno. La instalación de calefacción, excepto si se utiliza una bomba de mezcla para la elevación de la temperatura de retorno, debe estar equipada con un sistema de distribución sin presión (desvío, distribuidor, acumulador de compensación de carga, depósito de inercia, válvula de descarga térmica de seguridad … y) y en función de la normativa, con un grupo de seguridad (por ejemplo, según ÖNORM EN 12828 o EN 303). Un depósito de compensación o un depósito de inercia no son imprescindibles, pero en determinadas ocasiones son convenientes, por ejemplo, para la conexión de una instalación solar, de una caldera de leña o cuando la necesidad de calor es mínima, como por ejemplo en el período estival. ¡Su instalador le dará un asesoramiento específico! Al realizar el aislamiento acústico de las conexiones de agua deberá observarse la hermeticidad de las piezas empleadas frente al oxígeno, porque de lo contrario, existe mayor riesgo de corrosión y con ello, de la pérdida de los derechos de garantía. Si se instalan tuberías de material plástico para calefacción por suelo radiante o de calor a distancia, deberán ser protegidas adicionalmente contra las temperaturas demasiado altas mediante un termostato limitador para la bomba del circuito de calefacción. En lo referente a las características del agua de la caldera deberán ser cumplidas necesariamente las normas VDI 2035 o ÖNORM H 5195 T1 y T2, porque de lo contrario existe el riesgo de corrosión y con ello, de la pérdida de los derechos de prestaciones de garantía.

Conexiones que han de efectuar el cliente:

- Enchufe CEE de 5 polos (L1/L2/L3/N/PE) con corriente en la falta - interruptor protector y descargador de sobretensión en el armario distribuidor (recomendado como protección contra rayos), 400 VCA
- Interruptor de “Parada de Emergencia” (230 VCA, sección mín. del cable 1,5 mm²)
- Cuando se utilice KWB Comfort SMS: Caja de enchufe 230 VCA.
- Cuando se utilicen módulos del sistema de alimentación: por módulo 1 enchufe CEE de 5 polos (L1/L2/L3/N/PE), 400 VCA

<table>
<thead>
<tr>
<th>Valores característicos de la bomba del circuito de la caldera y del aumento de la temperatura de retorno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen indicado / Kit de aumento del retorno / grupo de aumento de la temperatura de retorno recomendado de la gama de productos de KWB*</td>
</tr>
<tr>
<td>Sát. volumétrico V</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>kW</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

* La recomendación es para condiciones estándar - Caldera en la sala de calderas (Suposición: pérdida de presión en tramo con variación de volumen: 50 mbar)
Contenido en el suministro:
- Opción de pedido: sin circuito de calefacción
 - Placa de caldera I/O sin circuito de calefacción
 - Mando de caldera con sensor de temperatura ambiente
 - Juego de sensores de temperatura (1 sensor para acumulador de agua caliente sanitaria, 2 sensores para depósito de inercia, 1 sensor de temperatura de retorno)*
- Opción de pedido: 1 circuito de calefacción
 - Placa de caldera I/O con un circuito de calefacción
 - Mando de control de la caldera con sensor de temperatura ambiente
 - Juego de sensores de temperatura (1 sensor para acumulador de agua caliente sanitaria, 2 sensores para depósito de inercia, 1 sensor de temperatura de retorno, 2 sensor de temperatura de impulsión y 1 sensor de temperatura exterior)*
- Opción de pedido: 2 circuitos de calefacción
 - Placa de caldera I/O con 2 circuitos de calefacción
 - Mando de control de la caldera con sensor de temperatura ambiente
 - Juego de sensores de temperatura (1 sensor para acumulador de agua caliente sanitaria, 2 sensores para depósito de inercia, 1 sensor de temperatura de retorno, 2 sensor de temperatura de impulsión y 1 sensor de temperatura exterior)*
- Opción de pedido: 1 circuito de calefacción
 - Placa de caldera I/O con un circuito de calefacción
 - Mando de control de la caldera con sensor de temperatura ambiente
 - Juego de sensores de temperatura (1 sensor para acumulador de agua caliente sanitaria, 2 sensores para depósito de inercia, 1 sensor de temperatura de retorno, 2 sensor de temperatura de impulsión y 1 sensor de temperatura exterior)*

Opcional
- Módulo de ampliación del circuito de calefacción con juego de sensores (2 sensores de impulso, 1 sensor de acumulador de agua caliente sanitaria, 2 sensores de depósito de inercia y 1 sensor de la temperatura exterior)*
- Aparatos de mando analógico y digital con sonda de interiores
- Módulo de conexión 1 para tipo USV D, USV ZI y USV V con 1 circuito de calefacción con juego de sensores (1 sensor de temperatura de alimentación) y control de una segunda caldera, en el tipo USV GS contenido de manera estándar para el control, la alimentación neumática y el control de una segunda caldera

Pueden ser conectados los siguientes aparatos:
- Opción de pedido: sin circuito de calefacción
 - 1 Bomba de caldera**
 - 1 Bomba para acumulador de agua caliente sanitaria**
 - 1 Mezclador de retorno***
- Opción de pedido: 1 circuito de calefacción
 - 1 Bomba de caldera**
 - 1 Bomba para acumulador de agua caliente sanitaria**
 - 1 Mezclador de retorno***
 - 1 Bomba para circuito de calefacción**
 - 1 Mezclador para circuito de calefacción***
- Opción de pedido: 2 circuitos de calefacción
 - 1 Bomba de caldera**
 - 1 Bomba para acumulador de agua caliente sanitaria**
 - 1 Mezclador de retorno***
 - 2 Bombas para circuito de calefacción**
 - 2 Mezclador para circuito de calefacción***

Salidas:
Contactos sin potencial con corriente máx. de conmutación de 2 A, 230 VCA
- Salida de fallos
 - Contacto indicador de fallos acumulados (por ejemplo, para dar la alarma por teléfono)
 - Fallo 1: Contacto ruptor para indicar fallos
 - Fallo 2: Contacto de cierre para indicar fallos
- Salida de potencia (las siguientes opciones pueden seleccionarse alternativamente):
 - Contacto de cierre, configurable para
 - Indicador de funcionamiento del quemador (grado de modulación entre carga parcial y carga nominal)
 - Conexión sucesiva de calderas para controlar una segunda caldera
 - Demanda del sistema de alimentación para el funcionamiento conjunto del agitador

Entradas:
Alimentación de 24 VCC para conectar contactos sin potencial
- Externo 1: Para conectar la caldera (p. ej. al usar un ventilador de tiro externo).
- Externo 2: Entrada multifunción
 - Calentar a nominal 2: Para requerir la caldera con la segunda temperatura nominal de caldera o como contacto de requerimiento para regulaciones externas de terceros (la duración del requerimiento debe ser de por lo menos 30 minutos).
 - Para el control remoto durante las vacaciones (no puede utilizarse simultáneamente con un control externo de caldera).

Parada de emergencia:
Conexión del interruptor de peligro (parada de emergencia) según prTRVB H 118 vigente

* Los sensores del acumulador de agua caliente sanitaria y del depósito de inercia son sensores de clavija de Ø 6 mm, los sensores de temperatura exterior tienen carcasa, todos los demás son sensores de temperatura de contacto.
** Conexión de las bombas: 230 CA, máx. 200 W, salida con regulación de velocidad para la bomba del circuito de la caldera (adecuada para regular la velocidad de bombas de velocidad constante).
Si se emplean bombas trifásicas para el circuito de caldera 3 x 400 V, deberá ser seleccionado un contactor de motor. La bobina auxiliar de este contactor debe tener un consumo de potencia 3 W.
*** Conexión del motor del mezclador: 230 VCA, Conectado/Desconectado/Cerrado (tres posiciones)
KWB La calefacción con biomasa

KWB Austria
KWB - Kraft und Wärme aus Biomasse GmbH
Industriestraße 235, A-8321 St. Margarethen/Raab
Tel. +43 (0) 3115 6116-0, Fax +43 (0) 3115 6116-4
office@kwb.at, www.kwb.at

KWB Alemania
KWB Alemania – Kraft und Wärme aus Biomasse GmbH
www.kwbheizung.de

Sucursal Sur
Königsberger Straße 46, D-86690 Mertingen
Tel.: +49 (0) 9078-9682-0, Fax: +49 (0) 9078-9682-7999
office-sued@kwbheizung.de

Sucursal Sudoeste
Königsberger Straße 46, D-86690 Mertingen
Tel.: +49 (0) 9078-9682-0, Fax: +49 (0) 9078-9682-7999
office-suedwest@kwbheizung.de

Sucursal Centro
Friedenbachstrasse 9, D-35781 Weilburg
Tel.: +49 (0) 6471-91262-0, Fax: +49 (0) 6471-91262-3999
office-mitte@kwbheizung.de

Sucursal Oeste
Hansestraße 41, D-48165 Münster
Tel.: +49 (0) 2501-44039-00, Fax: +49 (0) 2501-44039-4999
office-west@kwbheizung.de

KWB Francia
KWB France S.A.R.L.,
F-68000 COLMAR, 13 rue Curie
Tel.: +33 (0)3 89 21 69 65, Fax: +33 (0)3 89 21 69 83
contact@kwb-france.fr, www.kwb-france.fr

KWB Italia
KWB Italia GmbH
T.A. Edisonstraße 15, 39100 Bozen (BZ)
Tel.: +39 0 471 05 33 34, Fax: +39 0 471 05 33 34
info@kwb.it, www.kwb.it

KWB Eslovenia
KWB, moč in toplota iz biomase d.o.o.
Vrečerjeva 14, SI-3310 Žalec
Tel.: +386 (0) 3 839 30 80, Fax: +386 (0) 3 839 30 84
info@kwb.si, www.kwb.si

Distribuidores en otros países

Suiza
Jenni Energietechnik AG
Lochbachtstraße 22, CH-3414 Oberburg bei Burgdorf
Tel.: +41 (0) 34 4203000, Fax: +41 (0) 34 4203001
info@jenni.ch

Energie Service Sàrl
CH-1464 Chêne-Pâquier/VD, Móvil: +41 (0) 79 4092990
Tel.: +41 (0) 24 430-1616, Fax: +41 (0) 24 430-1943
jurg.anken@energie-service.ch

Bélgica
Ókotech Belux GmbH
Halenfeld 12a, B-4771 Amel
Tel.: +32 (0) 80 571 98-7, Fax: +32 (0) 80 571 98-8
info@oekotech.be

España
HC Ingeniería S.L
C/ San Quintín 10, 2º Izda, 28013 Madrid
Tel.: (+34) 91 548 30 25, Fax: (+34) 91 542 43 31
info@hcingenieria.com, www.hcingenieria.com

Chile
Energíadelsur
Carretera Gral. San Martín 9340 - P, Quilicura, Santiago
Tel.: +(56) 2 376 50 71, Fax: +(56) 2 443 5421, Móvil: +(56) 9 9822 5780
michael.schmidt@energiadelsur.com, www.energiadelsur.com

Irlanda
Rural Generation Ltd.
Brook Hall Estate, 65-67 Culmore Road Londonderry, BT48 8JE
Tel.: +44(0)28 71350970
info@ruralgeneration.com, www.ruralgeneration.com

Technical Energy Solutions Ltd.
Four Piers, Co. Down, BT22 6RY
Tel.: +44 (0)28 71350970
info@tes.ie, www.tes.ie

Gran Bretaña
Econergy Ltd.
Unit 8 & 9, St. George’s Tower, Hatley St. George , Sandy, Bedfordshire, SG19 3SH
T: +44 (0) 870 0545 554, F: +44 (0) 870 0545 553
info@econergy.ltd.uk, www.econergy.ltd.uk

Phase nRG Ltd
Banchory Business Centre, Burn O’Bennie Road, Banchory, AB31 5ZU
T: +44 (0) 1330 826568, F: +44 (0) 1330 820670
info@phasenrg.co.uk, www.phasenrg.co.uk

Este catálogo ha sido impreso en papel 100 % natural “GardaPat 13 Klassica” con colores vegetales Eco-Plus. La celulosa utilizada para producir el papel procede de bosques gestionados de manera sostenible.
Depósito de inercia estratificado
Depósito solar estratificado
Depósito higiénico estratificado H2
Depósito higiénico solar estratificado H3
¡El agua es el elemento primario de todas las cosas!
(Tales de Mileto)
Innovadora gestión de la energía

Es preciso que cada sistema de calefacción esté diseñado para soportar las temperaturas más bajas del año. Sin embargo, muy rara vez las calderas funcionan a plena capacidad. Durante una gran parte del periodo de calefacción en invierno, el consumo promedio de calor es inferior al 50% de la potencia térmica nominal. Es por esta razón que se ha desarrollado un depósito de inercia para aprovechar la energía de manera económica y ecológica. Este "gestor de calor" absorbe el exceso de calor y lo devuelve a la red de calefacción, si fuera necesario, sin necesidad de encender de nuevo la caldera. El depósito de estratificación de Froling permite reducir el uso de combustible, incrementa la facilidad operativa y aporta una contribución valiosa a la protección del medio ambiente.

Múltiples aplicaciones

Los depósitos de inercia estratificados de Froling son ideales para combinar con calderas de pellets, de astillas o de trozos de leña, pero también con otras fuentes de calor, como por ejemplo una caldera a gasóleo o de gas. En el depósito solar estratificado H2, así como en el depósito higiénico solar estratificado H3, existe la posibilidad de integrar una instalación de energía solar y esta instalación se tratará siempre con prioridad, aplicando la gestión de control inteligente del módulo de control Lambdatronic de Froling.
Perfecta administración de la energía

Exacta estratificación de la temperatura en el depósito

La exacta estratificación de la temperatura en el depósito es importante para un funcionamiento óptimo con el fin de poder reutilizar la mayor cantidad de energía posible. Todos los depósitos de estratificación de Froling incorporan elementos especiales para facilitar la estratificación.

Los elementos específicamente desarrollados para los depósitos Froling permiten una estratificación de la temperatura con precisión milimétrica y garantizan un rendimiento energético máximo y bajos costos de consumo.

Fácil instalación

La instalación de los depósitos de estratificación de Froling en el cuarto de calderas es sumamente sencilla gracias a sus dimensiones escogidas de manera inteligente. En espacios muy estrechos Froling es la mejor opción.

En este caso, se pueden conectar entre sí dos depósitos de poca altura y de poco diámetro que estén "comunicados". En esta solución de depósitos estratificados acoplados se distribuye el calor de forma uniforme en ambos depósitos. Otra ventaja de esta solución es su montaje sencillo y rápido a una distancia de tan solo 80 mm uno de otro.
Exacta tecnología de sistemas

Con el módulo de control original Lambdatronic, que incorporan las calderas de leña, astillas y pellets, se dispone de un gran número de posibilidades interesantes para incrementar la eficiencia. El control Lambdatronic significa administración inteligente de la energía. Toda la instalación se regula con un único módulo de control: desde la caldera, pasando por todo el sistema de depósitos y la calefacción, hasta la instalación de energía solar. Esto es algo exclusivo de Froling.

Los sistemas de depósitos estratificados de Froling

Absorción del exceso de calor	✓	✓	✓	✓
Estratificación exacta de la temperatura para un alto rendimiento energético y bajos costos de consumo	✓	✓	✓	✓
El aislamiento envolvente sin CFC ofrece un aislamiento térmico excelente	✓	✓	✓	✓
Ampliación de los depósitos comunicados en caso de espacios estrechos	✓	✓	✓	✓
Combinados con otros generadores de calor	✓	✓	✓	✓
Integración de la energía solar	✓	✓		
Acumulador de agua caliente de inercia y depósito higiénico estratificado en un mismo equipo		✓	✓	
Acumulador de agua caliente de inercia y depósito higiénico solar estratificado en un mismo equipo	✓			
Más información en...	Depósito de inercia estratificado	Depósito solar estratificado	Depósito higiénico estratificado H2	Depósito higiénico solar estratificado H3
El depósito de inercia estratificado y el depósito solar estratificado de Froling

La sofisticación está en los detalles. Froling ofrece un concepto de administración de energía que convence especialmente por el óptimo sistema de entrada y extracción de energía a través de los depósitos de inercia y los depósitos solares estratificados. El depósito solar estratificado de Froling le permite, además, una sencilla integración de la energía solar.

<table>
<thead>
<tr>
<th>Depósito de inercia estratificado/depósito solar estratificado</th>
<th>500</th>
<th>850</th>
<th>1000</th>
<th>1500</th>
<th>1800</th>
<th>2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de agua caliente de inercia [l]</td>
<td>530</td>
<td>830</td>
<td>1000</td>
<td>1400</td>
<td>1800</td>
<td>2200</td>
</tr>
<tr>
<td>Sobrepresión de trabajo permitida [bar]</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Temperatura de trabajo permitida [°C]</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Altura del depósito (sin aislamiento) [mm]</td>
<td>1650</td>
<td>1950</td>
<td>2160</td>
<td>2185</td>
<td>2190</td>
<td>2645</td>
</tr>
<tr>
<td>Altura del depósito (con aislamiento) [mm]</td>
<td>1660</td>
<td>1970</td>
<td>2180</td>
<td>2215</td>
<td>2220</td>
<td>2670</td>
</tr>
<tr>
<td>Diámetro del depósito (sin aislamiento) [mm]</td>
<td>690</td>
<td>790</td>
<td>790</td>
<td>960</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>Diámetro del depósito (con aislamiento) [mm]</td>
<td>880</td>
<td>980</td>
<td>980</td>
<td>1150</td>
<td>1290</td>
<td>1290</td>
</tr>
<tr>
<td>Superficie de intercambiador solar¹ [m²]</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Peso [kg]</td>
<td>105</td>
<td>140</td>
<td>155</td>
<td>210</td>
<td>230</td>
<td>280</td>
</tr>
<tr>
<td>Peso con intercambiador solar¹ [kg]</td>
<td>-</td>
<td>185</td>
<td>200</td>
<td>268</td>
<td>288</td>
<td>338</td>
</tr>
<tr>
<td>Altura mínima de la sala (altura de basculación) [mm]</td>
<td>1700</td>
<td>2000</td>
<td>2220</td>
<td>2250</td>
<td>2300</td>
<td>2720</td>
</tr>
</tbody>
</table>

¹) Intercambiador solar sólo en el depósito solar estratificado.
Schüco PV Modules MPE in the PG 04 Series
Technical information on the output categories 235 to 245 Wp.

The ideal PV module for large installations
The Schüco MPE modules in the PG 04 series with polycrystalline solar cells are distinguished by high cell efficiency and a positive output tolerance of +5/-0 %. Therefore, these PV modules are perfectly suited for use in large installations aimed at achieving high returns.

Comprehensive guarantee*
The modules have an extended 10-year product guarantee. In fact, the guarantee on performance values is even more comprehensive – Schüco guarantees that the MPE PV modules in the PG 04 series will deliver at least 90 % of their rated output over a 12 year period, and at least 80 % of their rated output over a 25 year period under standard test conditions. Every module is manufactured according to current quality standards.

Optimum labelling
Prior to delivery, every module is subject to an electrical quality test. The output data measured is indicated on the back of the module and on the packaging.

High level of operational reliability
Schüco PV MPE modules in the PG 04 series have a connecting box on the reverse of the module that is fitted with 3 bypass diode bridges. These prevent individual solar cells from overheating (hot-spot effect). This ensures the reliable operation of the whole system, from module fields to inverters. The connecting box, solar cables and plug systems are of the highest quality and are also certified as individual components.

Sustainable and robust
A tested snow and wind load guarantees an increased load-bearing capacity of 5400 Pa for the module frame.

* In accordance with the Schüco International KG conditions of warranty

Green Technology for the Blue Planet
Clean Energy from Solar and Windows
Schüco PV Modules MPE in the PG 04 Series*

PV modules

<table>
<thead>
<tr>
<th>Product name</th>
<th>MPE 235</th>
<th>MPE 240</th>
<th>MPE 245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schüco Art. No.</td>
<td>PG 04</td>
<td>PG 04</td>
<td>PG 04</td>
</tr>
<tr>
<td>Cell type n</td>
<td>Polycrystalline, 3 busbars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cells / cell arrangement</td>
<td>60 / 6 x 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell dimensions</td>
<td>156 x 154 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module efficiency</td>
<td>14.6 %</td>
<td>14.9 %</td>
<td>15.2 %</td>
</tr>
</tbody>
</table>

n: The colour of cells may vary between a module and between the modules.

Key electrical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MPE 235</th>
<th>MPE 240</th>
<th>MPE 245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated output (P_{max})</td>
<td>235</td>
<td>240</td>
<td>245</td>
</tr>
<tr>
<td>Output tolerance (ΔP_{max})</td>
<td>+5 / -0 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum output (P_{min})</td>
<td>235</td>
<td>240</td>
<td>245</td>
</tr>
<tr>
<td>Rated voltage (U_{max})</td>
<td>20.8</td>
<td>29.9</td>
<td>30.0</td>
</tr>
<tr>
<td>Rated current (I_{max})</td>
<td>7.90</td>
<td>8.63</td>
<td>8.17</td>
</tr>
<tr>
<td>Open-circuit voltage (U_{oc})</td>
<td>36.9</td>
<td>37.0</td>
<td>37.1</td>
</tr>
<tr>
<td>Short circuit current (I_{sc})</td>
<td>8.46</td>
<td>8.59</td>
<td>8.79</td>
</tr>
<tr>
<td>Temperature coefficient α (ΔP_{max})</td>
<td>-0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient β (U_{max})</td>
<td>-0.07</td>
<td>%/°C</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient γ (I_{max})</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient ε (U_{oc})</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Operating Cell Temperature (NOC)</td>
<td>45 ± 2 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. permissible system voltage</td>
<td>1000 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse current stability</td>
<td>15 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*2: Intensity of solar radiation 1000 W/m², air mass 1.5, cell temperature 25 °C. PV modules show electrical performance degradation over time. This occurs after commissioning, initially on a decreasing scale, then later in a linear progression.

*3: Intensity of solar radiation 800 W/m², ambient temperature 20 °C, wind speed 1 m/s. All key electrical data, with the exception of the rated output, is subject to a tolerance of ±5 %. Key electrical data is typical values based on the measurement data from a produced module. No guarantee of the accuracy of the data is to be assumed for future production batches.

Key mechanical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design of aluminium frame</td>
<td>Anodised, silver (similar to RAL 7035)</td>
</tr>
<tr>
<td>Front glass</td>
<td>Coated toughened safety glass (TSG) 3.2 mm</td>
</tr>
<tr>
<td>Module weight</td>
<td>20 kg</td>
</tr>
<tr>
<td>External dimensions (L x W x H)</td>
<td>1638 x 982 x 40 mm</td>
</tr>
<tr>
<td>Cable length</td>
<td>11.00 m</td>
</tr>
<tr>
<td>Connection system</td>
<td>MC-T4 compatible</td>
</tr>
<tr>
<td>Connecting box</td>
<td>IP65, 3 diodes</td>
</tr>
<tr>
<td>Packing unit</td>
<td>24 modules</td>
</tr>
<tr>
<td>Weight of packing unit</td>
<td>485 kg</td>
</tr>
<tr>
<td>Schüco retaining clamp</td>
<td>Type 44</td>
</tr>
</tbody>
</table>

Qualification and guarantees

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product standard</td>
<td>IEC 61215, EN 61730</td>
</tr>
<tr>
<td>Extended product guarantee</td>
<td>10 years</td>
</tr>
<tr>
<td>Output guarantee to 90 % P_{max}</td>
<td>12 years</td>
</tr>
<tr>
<td>Output guarantee to 80 % P_{max}</td>
<td>25 years</td>
</tr>
</tbody>
</table>

* Availability of the output category will be checked on request.
Inversores monofásicos
SolarMax serie S

La letra S hace referencia a sus convincentes atributos: sofisticación y solidez.

Eficiente e innovador
Se considera que una carcasa puede utilizarse en cualquier entorno cuando es capaz de resistir condiciones exteriores adversas. Por ello hemos decidido construirla con aluminio de primera calidad. Además, su perfeccionado concepto de refrigeración permite a los dispositivos alimentar al 100 por ciento de su potencia nominal, incluso a temperaturas ambiente de 45 °C. El elevado rendimiento total de los inversores monofásicos SolarMax S garantiza una mayor eficiencia. Y durante más tiempo.

Calidad superior y fiabilidad
Cada uno de los inversores monofásicos SolarMax S es un producto suizo de alta calidad que cuenta con la certificación TÜV “De tipo aprobado”. Los dispositivos disponen de un nuevo sistema de control de red que previene las desconexiones incluso en las condiciones más severas. Además, sorprenden por su atractivo precio, que no sólo incluye un servicio rápido y competente, sino también una garantía de 5 años.

Instalación sencilla y rápida
Gracias al carril de montaje, la instalación de los inversores monofásicos SolarMax S resulta sumamente sencilla. Sin olvidar su ligero peso que facilita aún más el montaje rápido. Todas las tomas pueden conectarse desde el exterior, y el interruptor de CC que prescribe las nuevas normas ya viene integrado en los dispositivos. También resulta práctico su amplio rango de tensión de entrada, el cual permite un mayor margen de interconexión de los módulos solares.

Diseño atractivo y manejable
Los inversores monofásicos SolarMax S destacan por su atractivo diseño, que además de conferirles un aspecto moderno simplifica su manejo. La pantalla gráfica ofrece una visualización clara y sistemática. Para el manejo bastan tres teclas: imposible ofrecer mayor sencillez. Además, los inversores monofásicos SolarMax S van equipados de serie con puertos RS485 y Ethernet, que garantizan en la práctica posibilidades universales para transmitir datos.

Nuestra empresa lleva más de 15 años desarrollando y produciendo inversores SolarMax. Benefíciase de esta experiencia y proteja no sólo el medio ambiente, sino también su inversión.
Especificaciones Técnicas

Lado de entrada (CC)

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Máx. potencia del generador*)</th>
<th>Rango de ajuste</th>
<th>Voltaje de entrada máximo</th>
<th>Corriente de entrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolarMax 2000S</td>
<td>2300 Wcc</td>
<td>100...550 Vcc</td>
<td>600 Vcc</td>
<td>0...11 Acc</td>
</tr>
<tr>
<td>SolarMax 3000S</td>
<td>3300 Wcc</td>
<td></td>
<td>600 Vcc</td>
<td>0...11 Acc</td>
</tr>
<tr>
<td>SolarMax 4200S</td>
<td>5000 Wcc</td>
<td></td>
<td>600 Vcc</td>
<td>0...22 Acc</td>
</tr>
<tr>
<td>SolarMax 6000S</td>
<td>6000 Wcc</td>
<td></td>
<td>600 Vcc</td>
<td>0...22 Acc</td>
</tr>
</tbody>
</table>

Lado de salida (CA)

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Potencia nominal</th>
<th>Potencia máxima</th>
<th>Tensión nominal de red/gama de ajuste</th>
<th>Factor de potencia (PF)</th>
<th>Frecuencia nominal de red/gama de ajustes</th>
<th>Factor de armónicas a potencia nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolarMax 2000S</td>
<td>1800 W</td>
<td>1980 VA</td>
<td>230 Vcc/184...300 Vcc</td>
<td>> 0.98</td>
<td>50 Hz/45...55 Hz</td>
<td>< 3 %</td>
</tr>
<tr>
<td>SolarMax 3000S</td>
<td>2500 W</td>
<td>2750 VA</td>
<td>230 Vcc/184...300 Vcc</td>
<td>> 0.98</td>
<td>50 Hz/45...55 Hz</td>
<td>< 3 %</td>
</tr>
<tr>
<td>SolarMax 4200S</td>
<td>3800 W</td>
<td>4180 VA</td>
<td>230 Vcc/184...300 Vcc</td>
<td>> 0.98</td>
<td>50 Hz/45...55 Hz</td>
<td>< 3 %</td>
</tr>
<tr>
<td>SolarMax 6000S</td>
<td>4600 W</td>
<td>5060 VA</td>
<td>230 Vcc/184...300 Vcc</td>
<td>> 0.98</td>
<td>50 Hz/45...55 Hz</td>
<td>< 3 %</td>
</tr>
</tbody>
</table>

Datos de sistema

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Consumo nocturno</th>
<th>Rendimiento máximo</th>
<th>Rendimiento europeo</th>
<th>Potencia nominal</th>
<th>Potencia máxima</th>
<th>Tensión ambiente</th>
<th>Humedad relativa del aire</th>
<th>Tipo de protección</th>
<th>Forma de conexión</th>
<th>Evacuación de calor</th>
<th>Visualización</th>
<th>Operación</th>
<th>Interruptor de CC</th>
<th>Monitoreo de la red</th>
<th>Control de corriente de falta</th>
<th>Símbolo de verificación</th>
<th>Registrador de datos</th>
<th>Comunicación de datos</th>
<th>Contacto de señal de estado</th>
<th>Dimensiones (ancho/altura/profundidad)</th>
<th>Peso</th>
<th>Carcasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolarMax 2000S</td>
<td></td>
<td>97 %</td>
<td>95.4 % @ 400 Vcc</td>
<td>94.6 % @ 300 Vcc</td>
<td>94.9 % @ 300 Vcc</td>
<td>–20 °C...+ 60 °C</td>
<td>0... 98 %, sin condensación</td>
<td>IP 54</td>
<td>Regulador digital de la corriente sinoidal, sin transformador, dos niveles (IGTB) (sin aislamiento galvanizado)</td>
<td>Convección / ventilador (ventilador recambiable desde el exterior)</td>
<td>Pantalla gráfica LCD 128 x 64 Pixel, con retroiluminación y diodo de indicación de estado</td>
<td>Tres teclas</td>
<td>Interruptor de CC integrado según VDE 0100-712</td>
<td>EN 50178, EN 61000-6-2, EN 61000-6-3, EN 61000-3-2, EN 61000-3-3</td>
<td>VDE 0126-1-1</td>
<td>certificado por TÜV Rheinland</td>
<td>RS 485 / Ethernet</td>
<td>Enchufe M12 con relé como contacto abridor / contacto de cierre</td>
<td>545 x 290 x 185 mm</td>
<td>13 kg</td>
<td>aluminio, tapa con revestimiento de polvo</td>
<td></td>
</tr>
<tr>
<td>SolarMax 3000S</td>
<td></td>
<td></td>
<td>95.5 % @ 400 Vcc</td>
<td>95.1 % @ 300 Vcc</td>
<td>95.5 % @ 300 Vcc</td>
<td></td>
<td>13 kg</td>
<td></td>
</tr>
<tr>
<td>SolarMax 4200S</td>
<td></td>
<td></td>
<td>95.8 % @ 400 Vcc</td>
<td>95.5 % @ 300 Vcc</td>
<td></td>
<td>15 kg</td>
<td></td>
</tr>
<tr>
<td>SolarMax 6000S</td>
<td></td>
<td></td>
<td>96.2 % @ 400 Vcc</td>
<td></td>
<td>15 kg</td>
<td></td>
</tr>
</tbody>
</table>

*) dimensiones recomendadas sobre el 15% (estudio de ISE Fraunhofer)

Características

- Mayor rango de voltaje de entrada
- Diseño atractivo e innovador conforme a la norma IP 54
- Carcasa de aluminio de alta calidad para su instalación tanto en interiores como exteriores
- Interruptor de CC integrado
- Todas las tomas son conectables
- Pantalla gráfica integrada para un manejo intuitivo del dispositivo
- Puertos RS 485 y Ethernet integrados
- Certificación TÜV de tipo aprobado
- FDC (Full Digital Controlled) con regulador digital de corriente sinusoidal
- Instalación sencilla mediante carril de montaje premontable
- Potencia nominal hasta 45 °C de temperatura ambiente
- Nuevo monitoreo de la red, sumamente estable e inmune a parásitos
- Hotline y servicio de cambio del inversor
- Garantía de 5 años
- Atractiva relación calidad / precio

Reservados todos los derechos. Texto sujeto a modificaciones o errores.

Data de sistema

- Consumo nocturno: 0 W
- Rendimiento máximo: 97 %
- Rendimiento europeo: 95.4 % @ 400 Vcc, 94.6 % @ 300 Vcc
- Potencia nominal: 1800 W, 2500 W, 3800 W, 4600 W
- Potencia máxima: 1980 VA, 2750 VA, 4180 VA, 5060 VA
- Tensión nominal de red/gama de ajuste: 230 Vcc, 184...300 Vcc
- Factor de potencia (PF): > 0.98
- Frecuencia nominal de red/gama de ajustes: 50 Hz/45...55 Hz
- Factor de armónicas a potencia nominal: < 3 %
- Temperatura ambiente: –20 °C...+ 60 °C
- Humedad relativa del aire: 0... 98 %, sin condensación
- Humedad relativa del aire: + 45 °C
- Tipo de protección: IP 54
- Forma de conexión: Regulador digital de la corriente sinoidal, sin transformador, dos niveles (IGTB) (sin aislamiento galvanizado)
- Evacuación de calor: Convección / ventilador (ventilador recambiable desde el exterior)
- Visualización: Pantalla gráfica LCD 128 x 64 Pixel, con retroiluminación y diodo de indicación de estado
- Operación: Tres teclas
- Interruptor de CC: Interruptor de CC integrado según VDE 0100-712
- Monitoreo de la red: EN 50178, EN 61000-6-2, EN 61000-6-3, EN 61000-3-2, EN 61000-3-3
- Control de corriente de falta: VDE 0126-1-1
- Símbolo de verificación: certificado por TÜV Rheinland
- Comunicación de datos: RS 485 / Ethernet
- Contacto de señal de estado: Enchufe M12 con relé como contacto abridor / contacto de cierre
- Dimensiones (ancho/altura/profundidad): 545 x 290 x 185 mm
- Peso: 13 kg, 13 kg, 15 kg, 15 kg
- Carcasa: aluminio, tapa con revestimiento de polvo