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Abstract  

 

This thesis is concerned with preliminary analyses of coupled Thermo-Hydro-

Mechanical (THM) processes in the ONKALO Project. It is a project of Finland and it 

will be the final disposal repository of nuclear waste. The Code_Bright finite-element 

software program is used in performing the modelling and calculations. The objective of 

the thesis was to analyse important design parameters of the project. 

The time required to reach full saturation for the buffer, the maximum temperature 

reached in buffer, deformations at the buffer-backfill interface and the stress-

deformation balance in interaction between buffer and backfill also buffer and backfill 

homogenization are the critical design criteria. 

A fundamental issue was determining corresponding thermal boundary conditions for 

the modelling task. The main reason for this is that the boundaries can not be extended 

to a distance that the thermal problem would require. Temperature on the boundaries 

considered in this study depends on the initial canister power, the fuel power decay 

characteristic and rock thermal properties. 

With regard to the hydraulic analyses, the time required to achieve full saturation is 

sensitive to vapour diffusion and heat transport, intrinsic permeability and initial 

suction. Sensitivity studies have been undertaken to determine the reliability of the used 

parameters. 

Modelling of the buffer-backfill interface is an essential element in tunnel backfill 

design. The aim of the calculations is to reveal deformations at this interface whose 

behaviour is important in connection with swelling of the buffer.  

The modelling was carried out under axisymmetric conditions, with the Barcelona Basic 

Model (BBM) being used to model performance of the bentonite buffer and backfill soil 

materials. 
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1. INTRODUCTION 

Posiva Oy has been preparing a project for the storage of final disposal of spent nuclear 

fuel in the crystalline bedrock of Finland. Preparations for nuclear waste management 

were started already in the 1970s when the first power plants were still under 

construction. In 1983, the Finnish Government confirmed a target schedule for nuclear 

waste management, in which the construction of the disposal facility was scheduled for 

the 2010s and the start of actual final disposal for the year 2020.The site for the 

repository has been chosen on the basis of site investigations. In 1999 preliminary 

investigations were finished for four sites. Olkiluoto island in Eurajoki was proposed as 

the primary site for the repository. 

Olkiluoto is a large island (about 10 km
2
) in the Baltic sea coast and separated from the 

mainland by a narrow strait. Figure 1-1 shows a detailed map of Olkiluoto island. There 

is a nuclear power plant with two reactors in operation and a third one under 

construction and a forth in planning stage also VLJ repository for low and intermediate 

waste are located in the western part of island. The final repository for the spent nuclear 

fuel is under construction and located in the central and eastern part of the island. The 

project name for the final repository is ONKALO that is an acronym based on the 

Finnish language expression for Olkiluoto Rock Characterization for Final Disposal. 

The word “Onkalo” also means cave in Finnish. 

The final repository is planned to be consisted of a system of exploratory tunnels that 

can extend to a depth of 460 m.  

The infrastructure of the site is almost completed. The concrete walls of the tunnel 

entrance, the washing hall, the fuel distribution station and the asphalting of the 

machine field and roads are completed. The site office has been built, the site perimeter 

has been fenced and site surveillance has been organized. 
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Figure 1-1.  Map of Olkiluoto site. Location of ONKALO is marked together with the location of 
deep investigation boreholes 
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The ONKALO will be a part of the final repository, which will consist of tunnels 

excavated at a depth of approximately 460 m and located at approximately 25 m from 

each other. The spent fuel will be encapsulated in final disposal canisters made of cast 

iron, enclosed in a copper shell. These canisters will be placed in holes drilled at the 

bottom of the repository tunnels and surrounded with bentonite clay, which not only 

prevents direct groundwater flow to the surface of the canister, but also protects the 

canister against minor bedrock movements. After placement of the canisters, the tunnel 

will be backfilled with a mixture of bentonite and crushed rock. 

Figure 1-2 shows the typical geologic disposal system which involves both natural and 

engineered barriers. These barriers are used to isolate the spent fuel so that it can never 

harm the organic environment also it can not be accessible to people. The depth of 

several hundreds of meters also guarantees sufficient protection against the influence of 

any future ice ages. The disposal system will be protected by bedrock against external 

influence. The bedrock also will create mechanically and chemically stable conditions 

in the repository and restrict the amount of water that can come into contact with the 

engineered barriers.  

As is shown in the Figure 1-2 the repository will consist of disposal tunnels excavated 

in the bedrock and connected by transport tunnels .The spent fuel is sealed in canisters 

at the encapsulation plant of the final disposal facility. The canisters are embedded into 

holes drilled in the tunnel floor and surrounded with bentonite clay. Bentonite is natural 

clay that swells strongly as it absorbs water. The layer of compacted bentonite separates 

the canisters from nearby processes in the bedrock. The clay not only prevents 

groundwater from flowing directly onto the canister surface, but also protects the 

canister against small movements of the bedrock. After the last canisters have been 

disposed of in the final repository, the encapsulation plant is decommissioned, the 

tunnels filled with a suitable backfilling material and the access routes sealed. The final 

facility requires no monitoring after it has been closed. 

Figure 1-3 shows the actual situation of the project. Excavation of tunnels is under 

progress. It is planned that in one panel there are 30 tunnel pairs and each tunnel pair 

has 50 canisters. Totally there are 1500 canisters. Disposing rate is 45 canisters per year. 

It takes 34 years to dispose all the canisters to one panel.  
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Figure 1-2. A possible design of the final disposal facility planned to be constructed at 

the Olkiluoto site. 
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A deposition hole subjected in this thesis is consisted of bedrock, buffer, backfill, 

pellets, canister and air gap between canister and buffer. Detailed geometry of the 

deposition hole is given in Part I Thermal Calculations  (see Figure 3-3).THM modeling 

of these elements have been performed by the aid of laboratory experiments and 

information supplied by the POSIVA researches. 

 

 
Figure 1-3. Actual excavation situation of ONKALO  

 

The reached maximum temperature in buffer, required time for saturation of buffer, 

homogenization of buffer and backfill also displacements occurred at the interface of 

buffer and backfill are the main interest of this thesis because evolution of these factors 

are the main safety requirements of the project.    

Characteristic of materials, thermal calculations and modeling, laboratory test 

simulations and finally THM evolution of deposition hole including gap is studied. 
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2. PROPERTIES OF MATERIALS 

In this section, mainly the safety requirements of materials composing deposition hole 

are studied. Main characteristics of host rock, buffer, backfill, pellets and canister is 

summarized. 

2.1. Host Rock 

The bedrock protects the disposal system against external influence such as restricting 

the amount of water that can come into contact with the engineered barriers. It creates 

mechanically and chemically stable conditions in the repository. Safety function 

indicators and associated criteria for the host rock are summarized in Table 1-1. 

 

Table 1-1. Safety function indicators and criteria for the host rock  

Safety function  indicator Criterion Rationale 

Minimum ionic strength  

 

Total divalent cation 

concentration > 10-3 M 

Avoid buffer erosion 

Limited salinity  

 

(expressed in terms of total 

dissolved solids,TDS) 

[NaCl] < 100 g/l 

Avoid detrimental effects, 

in particular on swelling 

pressure of buffer  

Limited concentration of 

detrimental agents for 

buffer, 

distance block and canister 

 

Applies to HS-, K+ and 

Fe(II) /Fe(III). The lower 

the better (no 

quantitative criterion) 

 

Avoid canister corrosion by 

sulphide, avoid illitisation 

(K+) and chloritisation (Fe) 

of buffer  

Limited rock shear at 

canister / distance block 

locations in deposition drift 

 

< 10 cm Avoid canister failure due 

to rock shear in deposition 

drift 

 

The safety functions of the host rock can be listed as: 

 Isolate the spent fuel from the biosphere. 

 Provide appropriate and predictable mechanical, geochemical and 

hydrogeological conditions for the engineered barriers. 
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  Protect them from potentially detrimental processes taking place above and near 

the ground surface, and limit and retard the inflow to and release of harmful 

substances from the repository. 

 

In this study, chemical processes are not considered. Bed rock is handled in terms of 

thermo-hydro-mechanical concept. 

2.2. Buffer 

The buffer material has been planned to use in ONKALO project is MX-80 bentonite. 

Several laboratory experiments have been performed to validate MX-80 performance as 

a buffer material. In this section main characteristic of buffer is explained. 

The main requirements of the buffer can be splitted into two functions; requirements for 

'isolation' and those requirements for 'retardation'. The isolation functions are as 

follows: 

• envelop the canister for a long period of time - 'remain in the deposition cavity' 

• bear the canister in the deposition hole 

• prevent groundwater flow  

• dissipate heat from the canister 

• resist chemical transformation for a long time 

• protect the canister by comprising a plastic protection against rock movements. 

Retardation functions can be listed as: 

• prevent flow of groundwater and thereby retard transport of radionuclides 

• resist chemical alteration for a long time 

• permit generated gas to escape 

• filter colloids. 
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The requirements of a buffer as summarized in Table 1-2 and Table 1-3 include 

providing a favorable environment for maintaining the isolation of the waste canister 

and acts as a protective layer between the canister and rock with respect to the 

mechanical and chemical forces. 

Table 1-2. Safety function indicators and criteria for buffer 

Function Properties 

canister envelopment swelling pressure; shear strength; resistance to 

alteration 

bear canister in central position swelling pressure; shear strength;  

prevent groundwater flow hydraulic conductivity; porosity 

heat dissipation thermal conductivity 

resist chemical transformation chemical composition; hydraulic conductivity 

non-compromisation of canister and 

rock functions 

chemical composition; swelling capacity; 

hydraulic 

conductivity 

protect canister from rock movements swelling capacity; rheological properties; shear 

strength 

prevent groundwater flow hydraulic conductivity; porosity 

resist chemical transformation chemical composition; hydraulic conductivity 

canister envelopment swelling pressure; shear strength; resistance to 

alteration 

allow gas escape water content; hydraulic conductivity; 

porosity; diffusion properties 

filter colloids pore volume 

This thesis mainly concentrated on the thermo-hydro-mechanical forces which have 

been considered by to affect the performance of the bentonite buffer. In this thesis 

computational modeling of bentonite behavior has progressed by means of laboratory 

test performed by B+Tech Oy. Mechanical behavior of bentonite has been investigated 

by term of re-saturation, swelling, elasticity, plasticity, failure and friction. 
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Table 1-3. General requirement for buffer material 

Function  Criterion  Rationale 

Bulk hydraulic conductivity k
Buffer 

< 10
–12

 m/s Limit mass transport to a 

diffusion 

dominated process 

 

Swelling pressure > 1 MPa Ensure tightness, 

self sealing 

Maximum temperature T
Buffer

 < 100°C Ensure that the buffer will 

retain its favorable 

properties in the long term 

Minimum temperature T
Buffer

 > –4°C Avoid freezing 

Swelling pressure around 

entire canister 

 

> 0.2 MPa Avoid canister sinking 

Buffer saturated density 

around entire canister 

 

> 1,650 kg/m
3
 Prevent colloid transport 

through buffer 

Buffer density around 

entire canister 

 

< 2,050 kg/m
3
 Ensure protection of 

canister against 

 

Many of the processes which control the mechanical properties of the bentonite buffer 

are coupled processes. Main mechanical requirements can be listed as: 

 

• Prevent the canister from sinking. 

• Protect the canister from shear deformation. 

• Resist fracture under expected repository conditions. 

• Enable fractures which may form to heal rapidly. 

• Flow and swell to infill gaps remaining after emplacement. 

• Generate a microstructure which will limit the permeability of the system. 
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2.3. Backfill 

Friedland-clay is a candidate as backfill material in this project. However, investigations 

and laboratory experiments are still going on to find the most appropriate material that 

will use in the deposition hole. In this thesis Friedland-clay was selected as a backfill 

material and modeled through laboratory tests performed on this material.  

In backfilling concept, it is planning to mix natural clay with crushed rock (30:70). The 

most important geotechnical properties for the backfill are hydraulic conductivity, 

swelling ability and compressibility and also the material should be easy to handle and 

compact. 

The main advantages of using natural clays as backfill materials are their naturally low 

hydraulic conductivity, high specific surface area and in some cases swelling ability. 

The possible disadvantages of natural clays as backfilling material can be 

compressibility, sensitivity to water content during emplacement and sensitivity to salt 

content of the groundwater in the expected repository conditions. 

Requirements for the backfill in general can be summarized as: 

 

• The backfill should be sufficiently incompressible in order to prohibit upward 

expansion of the buffer so that the density and other desired properties of the buffer 

remain unchanged. 

• The backfill should have low hydraulic conductivity and there should not be boundary 

flow between the backfill and the rock surrounding the tunnel to restrict advection of 

water transportation of radionuclides along the tunnel. 

• The backfill should contribute keeping the tunnels mechanically stable. 

• The backfill should not have any significantly harmful effect on the other barriers in 

the repository. 

• The backfill should maintain its performance under the expected repository conditions 

for a time range determined in the safety analysis. 

Table 1.4 summarized safety functions and criteria for backfill. These safety criteria are 

adopted to this study from SKB and POSIVA reports. 
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Table 1.4 Safety function indicators and criteria for backfill 

Performance target  Applicable time window Rationale 

Backfill shall limit the 

water flow so that transport 

is diffusion dominated.  

 

 

 

Hydraulic 

conductivity < 10
–10

 m/s. 

After the target state has 

been reached, up to one 

hundred thousand years at 

least. 

Backfill should contribute 

to favorable conditions for 

the buffer and canister and 

limit radionuclide transport 

in case of canister failure. 

A sufficiently low 

hydraulic conductivity is 

required to avoid 

significant advective 

transport along 

the tunnel and any essential 

change in bedrock 

hydrology. 

Backfill shall ensure a tight 

contact with the rock wall. 

 

 

Swelling pressure > 200 

kPa. 

After the target state has 

been reached, up to one 

hundred thousand years at 

least 

Backfill should contribute 

to favorable conditions for 

the buffer and canister and 

to the mechanical stability 

of the deposition tunnels 

and near-field rock.  

Backfill materials should 

have a sufficiently low 

compressibility 

After the target state has 

been reached, up to one 

hundred thousand years at 

least 

Backfill should contribute 

to favorable conditions for 

the buffer and canister and 

limit radionuclide transport 

in case of canister failure. 

The backfill should be able 

to limit the expansion of 

the buffer. It should keep 

the buffer in place so that 

the density requirements of 

the buffer are met. 
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2.4 Pellets 

In the deposition tunnel pellets are planned to locate between buffer and rock. 

Investigations and laboratory test has been performed to find out the most suitable pellet 

material for the project. In this study, pellets are modeled by the information supplied 

by B+TECH. Pellets can be produced using two basic techniques; firstly by squeezing 

through a mould (Extrusion) and secondly by roller pressing. These two techniques are 

commonly used in industry to produce compacted pellets of various materials and have 

been demonstrated to be viable for production of bentonite materials. Figure 1.4 shows 

different sizes of pellets proposed for use in filling the space between the backfill blocks 

and the rock are expected to represent a potentially significant proportion of the tunnel 

cross-section. Pellets materials required amount of swelling minerals, smectite 

composition, other minerals intentionally added, stray materials. Specifications for 

pellet material: 

 Dry density and water content of individual pellets. 

 Granule size or range of sizes. 

 

 

Figure 1-4. Examples of bentonite pellets used in repository sealing studies 
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It is expected that pellet will have a volume of 10–20% of the excavation volume 

associated with tunneling. It is also anticipated that the pre-compacted backfill blocks 

will swell and compress the pellet materials. As a result of that backfill block/pellet 

material in the tunnel should meet the performance requirements of the backfill. 

However, in this thesis backfill is considered as a homogenous material and pellets are 

only considered between buffer and rock. Detailed information is given in subsequent 

chapters. 

In many respects it can be said that the pellet component is a simple filler of the space 

between the buffer blocks and the rock. It does not permit a significant density loss of 

buffer. The pellets also provide short-term mechanical and hydraulic protection to the 

blocks by means of minimizing the potential for their mechanical disruption due to 

localized water inflow and providing for a more uniform wetting than would otherwise 

occur. The pellet materials also provide protection of erosional redistribution of buffer 

blocks that might otherwise occur during water inflow. 
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2.5. Canister 

The canister consists of two main components: the integral insert structure of nodular 

cast graphite iron and the copper over pack. Figure 1.5 shows the general features of 

canister.  

The main safety function of the canister is to ensure a prolonged period of complete 

containment of radionuclides. As long as its copper shell is not breached, a canister will 

provide complete containment of radionuclides. Therefore, the spent fuel will interact 

with the environment only by means of heat generation and low-level gamma and 

neutron radiation penetrating through the canister walls. This safety function depends 

firstly on the mechanical strength of the canister insert and the corrosion resistance of 

the copper surrounding it. 

The basic design requirements of the canister for nuclear waste disposal can be listed as: 

 The canister must not be penetrated by corrosion during the first 100 000 years 

after disposal. 

 The minimum cooling time of the assemblies should be 20 years. 

 Canister voids should prevent water filling. 

 The surface temperature shall not be more than + 100 ºC to guarantee the 

chemical stability of the surrounding bentonite. 

 The canister must be designed to resist the loads caused by disposal at a depth of 

300 to 700 m, which requires an evenly distributed load of 7 MPa hydrostatic 

pressures from ground water and 10 MPa pressure of bentonite swelling 

pressure. 

 The canister should have a sufficient strength in non-symmetric bentonite 

swelling conditions or in a case of additional hydrostatic load caused by 3 

kilometers of ice during a glaciation. 

 The strength of the copper over pack is checked for handling and operational 

loads and the tolerance of the gap between the copper over pack and the iron 

insert is limited in such a way that the plastic or creep strain in copper will be 

less than 5 % in case the copper over pack is pressed against insert. 

These main design requirements of canister are adopted by POSIVA and SKB reports. 
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Figure 1-5. Disposal canister for the spent fuel from the Loviisa 1–2 (VVER-440), 

Olkiluoto 1–2 (BWR) and Olkiluoto 3 (EPR) reactors (from left to right). All versions 

of the canister have the same outer diameter of 1.050 m. The heights are 3.6 m, 4.8 m, 

and 5.25 m (from left to right). (Raiko 2005a) 
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Table 1.5 shows the general safety functions for canister design. In the current reference 

design, the canisters have a design lifetime of at least 100,000 years. The canisters are 

designed to maintain their collectivity taking into account the processes and events that 

take place in the repository over period of 100,000 years. Extreme conditions will give 

rise to earlier canister failures, and these possibilities must be considered in connection 

with safety assessment. If the copper shell is breached, then a canister is considered to 

have failed, even though it may continue to offer some resistance to the ingress of water 

and the release of radionuclides for a significant period thereafter. 

 

Table 1.5 Safety function indicators and criteria for the canister 

Safety function  indicator Criterion Rationale 

Minimum copper thickness  

 

> 0 mm Zero copper thickness 

anywhere on the copper 

surface would allow 

relatively rapid water 

ingress to the canister 

interior and radionuclide 

release 

Isostatic pressure on 

canister 

 

 

< pressure for isostatic 

collapse (varies between 

canisters, but probability of 

collapse at 44 MPa is 

vanishingly small) 

An isostatic pressure on the 

canister greater than 44 

MPa would imply a more 

significant possibility of 

failure due to isostatic 

collapse 

Shear stress on canister 

limit  

 

< rupture A shear stress on the 

canister greater than the 

rupture limit would imply 

failure due to rupture 

 

In this thesis, the heat flow from canister was main interest. In chapter 3, thermal 

calculations for the canister are detailed. 
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3. PART I - THERMAL CALCULATIONS 

In this chapter, it has been concentrated on thermal analysis of the deposition tunnel. A 

2D-axisymmetric solution for thermal analyses of a single canister has been performed. 

Having an appropriate boundary condition for the boundaries was a main interest of this 

chapter. The material properties considered in this chapter are based on investigations 

and Posiva reports. 

In this chapter firstly it is described the geometry of the tunnel and canister area and an 

appropriate geometry for 2D-modelling is proposed. Secondly, it has been handled 

residual power calculation of disposed canister and residual heat due to decay of 

radioactive products.  

Although the maximum temperature permitted in the canister surface under disposal 

conditions is 100ºC, as indicated by Ikonen (2005), the maximum permitted bentonite 

temperature is set to 90ºC. This permits an additional safety margin which covers 

uncertainties in thermal parameters, heterogeneities and other uncertainties. It has been 

considered 2D-modelling and so the temperature on the canister surface can be limited 

by increasing the tunnel spacing and the canister spacing. The pre-cooling time of 

canister (fuel age) also influences the maximum temperature achieved for a given 

geometry. Another problem discussed is the distance from the canister to the upper and 

lower boundaries where a thermal boundary condition should be imposed.  

The program CODE_BRIGHT (Olivella et al, 1996) is used to perform comparative 

analysis to reach a proposed model. A thermal calculation which gives realistic 

temperatures is a previous step to carry out THM calculations for which it is convenient 

to consider a relatively reduced domain in order to avoid excessive number of elements 

or high different size between the elements in the buffer and the ones in the rock far 

away from the disposal drift. 

Despite the fact that gaps between buffer and canister and as well as canister 

emplacement on the repository have importance for the thermal results, they have not 

been analysed in this chapter. Gap modelling is given in subsequent chapters. 
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3.1- Introduction 

The main objective of this part of the thesis is to describe the thermal behaviour of a 

single canister and propose a 2D-modelling for thermal solutions which will be used 

later for THM calculations. Figure 3-1 shows the principal lay-out of the repository 

system. 

 

Figure 3-1.  Layout of Spent Nuclear Final Disposal Facility 

From Ikonen (2005) it is known that the repository is at a depth of 400 m and the initial 

ambient rock temperature is +10.5°C. 

In order to perform thermal analyses of the modelled area it has been used the finite 

element program CODE BRIGHT. In this part of the thesis, backfill, rock and a single 

canister which is surrounded by buffer have been modelled in terms of thermal analysis. 
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The spacing of canisters and tunnels should be as small as possible to minimise the 

repository area. It has been considered an axisymmetric geometry taking into account 

tunnel and canister spacing separately.  

A power of 1700 W for each canister is considered as a reference value from Ikonen 

(2005) and received project data. A decay of heat canister power is considered to 

represent the decrease of activity. It has been involved an exponential function with 

different parameters corresponding to four intervals. 

A 1700 W of canister power, 25 m of tunel spacing and 11 m of canister spacing and 

constant temperature of 10.5 ºC are selected as parameters for a  the reference model. 

As it is shown in Figure 3-2 there is two alternative disposal conditions of the spent 

fuel. In one of them the canisters are disposed in a horizontal position in the horizontal 

tunnels. In the alternative disposal method, the canisters are emplaced vertically in 

boreholes excavated in horizontal tunnels. The two methods have some common 

specifications such as the use of buffer and backfill material, the first surrounding the 

canister and the second to fill the horizontal drift. 

 

                

 

Figure 3-2. The KBS-3V (left) and KBS-3H (right) alternative realizations of the 

KBS-3 spent fuel disposal method (modified from Posiva 2009a) 
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3.2. Geometry of Canister Area 

Figure 3-3 shows the dimensions and layout of the disposal hole and tunnel as well as 

the general geometry which has been drawn using GID, including the considered 

materials. In the thermal analyses included in this report, for the BWR fuel canister the 

height of the canister has been set to 4.8 m and the external diameter has been set to 

1.05 m.  Buffer blocks height is 1.2 and 0.8 m respectively and the backfilled tunnel has 

a height of 4.4 m.  

 

      
 

Figure 3-3.  Dimensions (cm) of final disposal hole and tunnel 
 

Despite the gaps between materials that may play a role in the thermal analysis neither 

air gap between canister and bentonite nor water gap between bentonite and bedrock are 

not taken into account in this chapter. These will be considered in the coupled analyses. 
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As a reference scheme of Posiva, it has been proposed that a reasonable canister and 

tunnel spacing is 11 m and 25 m, respectively (Figure 3-4). If a 2D modelling under 

axisymmetric conditions is considered, an equivalent radius is required. The 

axisymmetric model implies the same spacing in both directions. The same volume 

between tunnel and canister is considered. This is achieved with a value of 8.3 m for the 

equivalent radius (diameter 16.6 m) to be considered for the axisymmetric model. As it 

has been mentioned before, spacing between adjacent canisters and adjacent tunnels are 

fundamental parameters on the maximum design temperature of 100ºC. 

 

 

Figure 3-4. Schematics of tunnel and canister spacing 

 

Figure 3-5 shows the respective situation for adjacent tunnel and canisters. The 

appropriate geometry where the tunnel and canister spacing have an equivalent radius of 

8.3 m is determined as reference model equivalent spacing. 

Tunnel Spacing 25 

m 

Canister 

spacing 11 m 
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5.5 m

37.2 m

5.5 m

37.2 m

12.5 m12.5 m 8.3 m8.3 m
 

Figure 3-5.  Schematics of tunnel and canister spacing. The view with 5.5 m width 

shows the tunnel longitudinally while the view with 12.5 m width shows the cross 

section of the tunnel. The axisymmetric approximation implies an axisymmetric cavity. 
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3.3. Thermal Properties Of Materials 

Figure 3-6 and 3-7 show a scheme of the repository and the main components of the 

canister. The thermal model needs only thermal properties of the four components 

considered in the model. 

 

 

Figure 3-6. Materials in deposition tunnel 

 

The main materials considered are represented in figure 3-6 which are: 

1- The backfill of the drift 

2- The buffer made of bentonite 

3- The canister 

4- The bedrock or host rock 

In this chapter, the material data considered are based on Posiva reports. As it will be 

explained in the table 3.1, the buffer and backfill have some common specifications.  
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For the thermal analysis, only the thermal conductivity (λ), the specific heat (cs) and the 

density (ρnat) are the parameters for the materials. The dry density can be calculated as a 

function of solid density and porosity. Table 3-1 summarizes the thermal properties of 

these materials.  

Table 3-1. Thermal properties of materials 

Materials  Thermal Properties 

Solid 

density  

(kg/m
3
) 

Porosity Natural 

density 

(kg/m
3
) 

Specific 

Heat 

(J/kgK) 

Thermal 

Conductivity 

(W/mK) 

Rock 2749 0.02 2749 784 2.61 

Canister 7800 0.01 7847 450 390 

Backfill 2780 0.4604 1720 1208 0.544 

Bentonite 2780 0.438 1830 1287 0.906 

 

Despite the fact that, there have been proposals on backfill material alternatives such as 

mixture of bentonite and ballast, friedland-clay etc, in this chapter the specifications 

supplied by Posiva for backfill have been considered. The canister is assumed with a 

high thermal conductivity associated with the copper. 
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3.4. Canister Power 

Regarding the canister power evolution, there are two main parameters playing a 

fundamental role which are the residual power at the time of deposition and decay rate. 

The work by Hökmark and Fäith (2009) is taken into account as a reference for the 

calculation of the power and the decay heat rate. 

Following the work by Clay Technology, the power as a function of time belonged to  

an individual canister can be expressed as: 

 
7

1

( ) (0) exp /i i

i

P t P a t t


   

 

(3-1) 

 

In this expression P(0) is the canister power at the time of deposition and ai, ti  are 

parameters related to time. Table 3-2 shows two parameter sets from SKB power data. 

A burn-up of 38M Wd/kgU is used as a reference. The coefficients given in Table 3-2 

are valid for an initial power of 1837.3 W (in the case of 30 year old fuel) and an initial 

power of 1545.3 W (in case of 40 year old fuel). 

Table 3-2. Parameters for the exponential expression (equation 3.1) 

i   i  

(years) 

ai 

(30 years) 

ai  

(40 years) 

1 20 0.070 0.049 

2 50 0.713 0.696 

3 200 -0.051 -0.059 

4 500 0.231 0.271 

5 2000 0.024 0.027 

6 5000 -0.009 -0.010 

7 20000 0.022 0.026 

 

For 30 year old fuel P (0) = 1837.3 W. For 40 year old fuel P(0) = 1545.3 W 

The presently performed work is targeting a 1700 W of initial power at the time of 

deposition. The power for different times is shown in Table 3-3. 
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Table 3-3. Canister power data corresponding a 1700 W of power at the time of 

deposition 

 

As Code_Bright uses single exponential functions to represent the power as a function 

of time, the heat power is approximated in this way. The parameters that have been 

adjusted are shown in Table 3-4. The two power functions are sufficiently similar as 

shown in Figure 3-8. The temperature obtained from thermal calculations based on a 

large model (described later) is shown in Figure 3-7 and 3-8. The evolution of power 

displayed in Figure 3-7 will be considered in the modelling. It is a function defined in 4 

intervals and uses the parameters shown in Table 3-4. 
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Figure 3- 7. Power of canister as a function of time using different approximations 

 

 

Years                                        Power (W) 

30 year old fuel 40 year old fuel Interpolated 

0 1700 1700 1700 

60 725 751 726 

100 502 533 514 

200 320 347 316 

1000 105 105 101 
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Table 3-4. Point source heat flow and decay of heat flow corresponding to three 

individual injected heat source point on the canister surface. 

Intervals Source Heat flow (J/s) Decay of heat flow (1/s) 

0-60 566 4.4x10
-10

 

60-100 385 2.45x10
-10

 

100-200 275 1.5x10
-10

 

200-1000 140 4.51x10
-11

 

 

Figure 3-9 show the temperature evolution for a model with an equivalent tunnel and 

canister spacing of 8.3 m and a top and bottom boundary sufficiently far from the drift.  

In the subsequent section of thermal analysis proposed model will be explained. 
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Figure 3-8. Temperature evolution of the proposed model 
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3.5. Reference Model 

A reference model is defined in this chapter to carry out comparative thermal analyses. 

The reference model will be compared with other cases.  

The reference model is defined with a radius of 8.3 m, (equivalent to 11 m of canister 

spacing and 25 m of tunnel spacing), three single heat source points on the canister 

surface to simulate inflow heat from canister, 1700 W of heat power at the time of 

deposition, with decay rate as defined in Table 3-4 and constant temperature on the top 

and bottom boundaries (Figure 3-9). As the thermal conductivity of the canister is very 

high, the temperature distribution is practically uniform within the area representing the 

canister. 

8.3 m

37.2 m

8.3 m

37.2 m

  
 

Figure 3-9.  General geometry, boundary conditions and canister heat flow conditions 

of the reference model 
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3.6. Thermal Conditions 

There have been taken into account three conditions to simulate thermal behaviour of a 

single canister which are:  

a) Initial surface temperature condition (10.5 C) 

b) Boundary flow rate conditions (constant temperature) 

c) Heat flow from canister (power decreasing with time) 

As the initial temperature of the rock is +10.5°C, this temperature is assigned as a 

boundary condition on the top and bottom boundaries of the rock in the case of the 

reference model. The heat inflow from the canister takes into account the decay due to 

the degradation of the spent fuel.  

There are two ways of defining heat flow from canister area, one of them using a 

compound line source by specifying canister surface as a volumetric heat flux source 

the other is known as injecting some point heat sources on the canister surface. The 

power J (J/s) is the point source of heat flow at some points in the canister, P is the 

canister power (W) and Np is the number of points: 

 expoJ J t   (3.2) 

As the power is injected in the canister at some individual points, the power 

/o o pJ P N  (3.3) 

In order to compute conductive heat flux Fourier's law is used:  

c T  i  (3.4) 

where λ is the equivalent thermal conductivity and it can be calculated using a 

geometric mean approximation using the values of dry and saturated thermal 

conductivities:  

 
(3-5) 

where λsat and λdry are the thermal conductivities of soil in saturated and dry conditions 

respectively and Sl the degree of saturation. 
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3.7. Comparative Analyses 

Calculations have been performed with the 2D axi-symetric model of one single canister 

to reach a proposed model which has realistic thermal behaviour. Different parameters 

have been taken into consideration, these are: 

 Effect of tunnel and canister spacing 

 Effect of boundary distance 

All of these effects are need to be handled carefully. Comparative analyses have been 

performed by the CODE_BRIGHT (Olivella et al., 1996) program which has been 

developed for a variety of geo-mechanical analyses.  

3.7.1 Effect of  Tunnel and Canister Spacing  

It is important to have a spacing of canisters and tunnels as small as posible in order to 

minimise the repository area. Thermal analyses have been performed using 2D 

axisymmetric longitudinal section.   

Basically it has been carried out a study to highlight the effect of spacing on the 

temperature. In Figure 12 “TCS” refers to tunnel and canister spacing. The values of 25 

m and 11 m of tunnel and canister spacing are considered.  

It is obvious from the calculations that bigger spacing gives lower temperatures around 

the canister. Figure 3-10 and Figure 3-11 show the evolution of temperature.  

The temperature evolution shows a very rapid decay and this is motivated by the 

constant temperature imposed on the boundary. From these models it seems that the 

spacing of 11 m could accomplish the requirement of maximum temperature below 100 

ºC. However, as it will be shown in the next section, the distance between the 

boundaries plays also an important role in the achieved maximum temperatures. 
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12.5 m12.5 m
 

 

                  TCS 11 Reference Case TCS 25  

Figure 3-10. Temperature (ºC ) distribution of different models after 60 years depending 

of tunnel and canister spacing 
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Figure 3-11. Temperature evolution of single canister relating different equivalent 

spacing 

 

3.7.2 Effect of Boundary Distance 

 

To perform THM calculations in a favourable way, the domain should not be too large. 

Domain proposed in the reference model (37.2 m) will be used later for THM 

calculations. However, the top and bottom boundaries of this model are too close so 

boundaries can not have constant temperature. In order to find an appropriate boundary 

condition for the top and bottom boundaries, thermal analysis has been performed in 

larger geometries. The model is enlarged considering boundaries which are at distances 

10 and 20 times bigger than the reference model. Table 3-4 summarises the geometry of 

the cases studied. 
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Table 3-4. Effect of boundary distance on the achieved maximum temperatures 

Models 

Lenght of free rock (m) Maximum 

temperature on 

canister 

surface 

Backfill to Upper 

Boundary 

Buffer to Lower 

Boundary 

Reference model 9 m 16 m 78 

Factor 10  90 m 160 m 85 

Factor 20  180 m 320 85 

 

Figures 3-12 and 3-13 show the distribution of temperatures for the different geometries 

after 200 days of canister emplacement. Figure 3-14 shows the evolution of temperature 

on the canister surface. The maximum temperature is same for the Factor 10 and Factor 

20 models and remains below 90 
o
C but the so called reference model has lower 

maximum temperature. It can be seen that in a limited domain, dissipation of heat takes 

place so that proposing constant temperature at the boundaries are not realistic and it 

causes to underestimation of temperature in the considered domain as it is depicted in 

Figure 3.12.  It is obvious that after a certain factor, the maximum temperature in the 

canister is not affected by the boundary distance. The boundries of the 20 times larger 

model can be proposed as the most realistic case because the deposition hole will have a 

depth of 400 m. 
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Reference case 

262.2 m262.2 m

 

Factor 10 

512.2 m512.2 m

 

Factor 20 

 

Figure 3-12. Temperature (ºC) distribution in the canister, buffer and backfill 

after 200 years for the three models. 
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Reference case Factor 10 Factor 20  

 

   

 

Figure 3-13. Temperature (ºC) distribution in the canister, buffer and backfill after 

200 years for the three models. 
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Figure 3-14. Temperature evolution of  canister surface as a factor of distance from 

canister to boundaries. 

It is clear that, all three models meet the safety requirement for the maximum 

temperature on the canister surface. However, temperature evolution of Factor 20 is 

more realistic. In all three models temperature increases sharply but in models Factor 10 

and 20 it does not decrease vigorously. As reference model has a limited domain and 

constant temperature on the boundaries, heat dissipation takes place and causing 

underestimated temperatures. Therefore, a proposed model has to be defined and it must 

have relevant thermal boundary condition which is presented in subsequent section. 
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3.8. Proposed Model  

To overcome the problem of heat dissipation in limited domain, which causes to 

underestimation of temperature achieved in the concerned domain, a model that has 

relevant thermal boundary condition have to be proposed. It has been shown that 

constant temperature of 10.5 ºC  is far away to simulate realistic temperature in the 

domain because there is excessively heat outflow through these boundaries.  

There are two ways to deal with this problem. One of them is to use an analytical 

solution and the other one is the numerical solution. In this thesis, numerical solution 

has been used by means of imposing a variable temperature on the boundary which 

corresponds to model Factor 20 that has a 20 times large domain compares to reference 

model. The temperature evolution at the corresponding distance of the model Factor 20 

is imposed for the boundaries of the reference model. 

Figure 3-15 shows the temperature distribution at 200 years for the reference case, the 

enlarged case (Factor 20) and the proposed model. The proposed model is obtained by 

prescribing the temperature values of enlarged model at the corresponding distance. 

This means that less heat flux takes place on the top and bottom boundaries because the 

gradient is smaller.  

Finally, Figure 3-16 shows the evolution of canister surface temperature for the 

reference model and for the proposed model. It is clear that the domain with a close 

boundary gives realistic temperatures only if the special boundary condition is implied.  
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Figure 3-15. Temperatures (ºC) after 200 years of disposal for the reference model 

(left), x20 model (centre) and proposed model (right). 
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Figure 3-16. Temperature evolution of reference and proposed model 

It is shown that reference model underestimates the temperatures achieved in the 

domain. By means of proposed model that have variable temperature on the boundaries, 

it can be possible to simulate realistic temperature in a limited domain. These boundary 

conditions also will have importance in THM calculations that will be explained in 

subsequent chapters. 
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3.9. Conclusions for Thermal Calculations 

The main objective of this part of the thesis was to study the main effects on the reached 

maximum temperature on the canister surface. The study consisted of specification of 

material properties and performing analysis by taking into account different impacts.  

It has been shown that tunnel and canister spacing, initial canister power and decay 

characteristic and also thermal boundary conditions have an importance on the reached 

maximum temperature in the domain. Therefore comparative analyses are held to 

validate the performance of proposed model. 

A 1700 W of canister power, 25 m of tunnel spacing and 11 m of canister spacing and 

variable temperature on the boundaries are the reached modelling parameters to perform 

THM calculations.  

It has been demonstrated that in the proposed model that does not cause heat dissipation 

from boundaries and has an equivalent radius combining tunnel and canister spacing, 

achieved maximum temperature on the canister surface remains below 90 ºC and meets 

thermal safety requirement for buffer. 

After reaching suitable power function, decay characteristic and geometry in terms of 

adjacent tunnel and canister spacing and also the relevant thermal boundary condition, it 

can be passed to THM calculations safely. 
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 4. MODELLING OF BUFFER MATERIAL BY MEANS OF 

OEDOMETER AND INFILTRATION TESTS 

It is known that various types of bentonite have been investigated in many countries as 

buffer materials in high-level radioactive waste disposal concepts. In Finland, MX-80 

bentonite is considered one of the best candidates to be used as buffer material for the 

construction of the multiple barrier disposal site for spent nuclear fuel repository. In 

order to investigate the hydro-mechanical behavior of MX80 bentonite, a series of 

laboratory tests have been started up by B+TECH. Two types of tests have been 

performed: oedometer tests and infiltration tests. These tests have been modelled using 

the finite element code Code_Bright. The Barcelona Basic Model (BBM) (Alonso et al., 

1990) has been used to model the mechanical constitutive behaviour of the material.  

4.1. Introduction 

The multiple barrier concept is envisaged in most of the proposed schemes for 

underground disposal of radioactive wastes. The concept invokes a series of barriers, 

both engineered and natural, between the high level radioactive waste canister and the 

surface. In almost all countries with a high-level radioactive waste management 

program, Bentonite, in the form of dry compacted blocks will be used as a buffer 

material. 

 

In Finland, Olkiluoto was chosen as final disposal site of spent nuclear fuel. One 

element of the site investigations conducted at Olkiluoto is the excavation of the 

underground rock characterization facility (ONKALO) that will be extended to the final 

disposal depth. One of the methods that are studied for the final placement of the 

radioactive waste considers the vertical deposition of the copper canisters in holes lined 

with bentonite clay. The tunnel will then be sealed with compressed clay blocks in 

pellets. Figure 4.1 shows a schematic representation of the deposition holes.  
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The long term performance of the repository as a whole (canister, buffer, host rock, 

backfill, pellets and gaps), and in particular, that of the bentonite buffer is of great 

importance. MX-80 bentonite, is considered one of the best candidates to be used as 

buffer material, due to its physical and chemical properties which is explained in 

previous chapters.  

 

 
 

Figure 4-1. Scheme of the repository 

 

 

 

Understanding the thermo-hydro-mechanical behavior of bentonite buffer (MX-80 

bentonite) is one of the objectives in this chapter. An experimental program has been set 

up to get insight into the material behaviour. The set of tests that have been performed 

consists of oedometer and infiltration tests. 

In order to analyse the hydro-mechanical behaviour of MX80 bentonite, the above 

mentioned tests are modelled using the finite element code Code_Bright. The Barcelona 

Basic Model (BBM) (Alonso et al., 1990) has been used to model the mechanical 

constitutive behaviour of the material. The purpose of this work is to determine and 

calibrate BBM parameters of MX80 bentonite clay according to the available tests data. 

 

1-The backfill of the drift 
2-The buffer made of bentonite 
3-The canister 
4-Bedrock 
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4.2. Oedometer Tests 

As mentioned above, two types of tests have been performed on compacted samples (i) 

oedometer tests under humidity controlled conditions and (ii) an infiltration test. 

In this section the experimental and modelling results of the oedometer tests performed 

on three samples of MX80 bentonite will be described. 

 

4.2.1 Experimental results 

 

In order to characterize the effect of suction on compressibility of MX-80 bentonite, 

three oedometer tests under controlled humidity conditions, considering different stress 

paths, have been carried out. The experimental set-up is shown in Figure 4-2.  

 

 

Figure 4-2. Oedometer test cell  

 

The samples (50 mm diameter and 19.05 mm high) were compacted at a dry density 

around16 kN/m
3
 and at constant water content around 6%. Table 4-1 completes the 

information of the initial conditions of the three tested samples. 
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Table 4-1. Initial properties of MX80 bentonite sample 

(Oedometer tests) 
 

 100212c_oedometer 

(Test/Sample A) 

101222a_oedometer 

(Test/Sample B) 

100212a_oedometer 

(Test/Sample C) 

Solid Density 

(kN/m
3
)  

16 15.9 16 

Water content (%) 6.04 5.98 6.04 

Porosity 0.375 0.375 0.375 

Initial suction(MPa) 153 219 153 

*A, B and C is a notation for this report. 

 

The tested samples were subjected to different suction and stress paths. Once compacted 

the samples were placed in the oedometer cell and the following steps were followed  

For samples A and B (100212c_oedometer and 101222a_oedometer): 

 Wetting path at a low vertical stress:  the specimens were inundated to reach 

saturated condition, that is, zero suction. For both cases the swelling deformation 

were measured.   

 

 Loading-unloading at constant suction s=0 MPa (saturated conditions). The pre 

and post yield compressibility parameters for changes in vertical stress, as well 

as the yield stress, were determined for each suction level. 

 For sample C (100212a_oedometer): 

 Loading-unloading at constant suction s=153 MPa (dry conditions).  

 

Different constant loading steps were applied on the samples. Each loading step was 

applied instantaneously and maintained for some time. For each test different loading-

unloading steps were considered. The vertical displacement for each loading step was 

recorded as a function of time. However, consolidation effects are not simulated and 

therefore the time evolution of deformations is not discussed here. Table 4-2 

summarizes the different suction conditions and loading/unloading steps for each test.  
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Table 4-2. Suction and loading-unloading conditions in the tests 
 

The coupled hydro-mechanical response of the MX80 bentonite samples subjected to 

the hydraulic and stress paths described previously are depicted in Figures 4-3 to 4-6. 

Figure 4-3 shows the measured vertical stress-strain relationship for the three tested 

specimens. As mentioned previously, samples A and B (100212c_oedometer and 

101222a_oedometer) were initially inundated and allowed to swell at a constant axial 

stress. For sample A (100212c_oedometer) hydrated under σv = 0.23 MPa, a swelling 

deformation around 0.4 is measured.  Afterwards, the sample was subjected to a loading 

up to 4.88 MPa followed by unloading up to 0.95 MPa. Sample B, hydrated under σv 

=0.196 MPa shows lower swelling (0.2) as compared to sample A. In this case after 

loading up to 5.24 MPa, the sample was unloaded up to 0.196 MPa and then subjected 

to an additional loading/unloading cycle where the maximum vertical stress reached 

4.119 MPa. 

100212c_oedometer 

(Test A) 

101222a_oedometer 

(Test B) 

100212a_oedometer 

(Test C) 

Vertical 

Load (MPa) 

Suction 

(MPa) 

0.23 153 

0.23 0 

0.39 0 

0.95 0 

2.63 0 

4.88 0 

2.63 0 

0.95 0 

 

Vertical 

load (MPa) 

Suction 

(MPa) 

0.196 219 

0.196 0 

0.476 0 

1.877 0 

3.559 0 

5.240 0 

1.597 0 

0.476 0 

0.196 0 

1.877 0 

4.119 0 

1.877 0 

 

Vertical 

Load (MPa) 

Suction 

(MPa) 

0.392 153 

0.73 153 

1.6 153 

3.2 153 

6.6 153 

3.2 153 

1.6 153 

0.84 153 
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The post-yield compressibility parameter    v

es



ln

  for the case of sample A 

and for the case of sample B is rather similar. The elastic compressibility parameter  

   v

es



ln

  is also similar between samples A and B.  
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Figure 4-3. Axial stress_strain relationship for the three tested samples. 

 

Sample C (100212a_oedometer) tested under dry conditions (s=153 MPa) shows a quite 

different behaviour. In this case the sample was loaded up to 4.88MPa. In spite of this 

high vertical stress, the sample showed little deformation (0.009). The slope  s of the 

normal compression line showed a significant drop when suction was reduced to zero. 

The normal compression line for zero suction (saturated conditions) fell considerably 

below the normal compression line for s=153 MPa. This variation of  s is consistent 

with the proposals of Alonso et al. (1990) who proposed a monotonic decrease of 

 s with increasing suction so that the normal compression line for different values of 

suction diverged with increasing the vertical net stress. 

 

Plots in the conventional stress path p:q and σv: σh  planes are depicted in Figures 4-4 

and 4-5. In Figure 4-4 the mean effective stress (p) is calculated as   32 31  p and 

the deviatoric stress (q) is calculated as 31  q where
1  and 3  

are principal 

A 

B 

C 
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stresses. The results of the oedometer tests in terms of radial stress versus axial stress 

are displayed in Figure 4-5. When suction is reduced under constant axial stress 

(samples A and B) the material experiences a swelling tendency resulting in a sharp 

increase of the radial stresses. 
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Figure 4-4. Plots in the conventional stress path p:q 

 

 

Radial stress is given as increments. Another important parameter that can be deduced 

from the oedometer tests results is the lateral earth pressure coefficient K0 calculated 

as vhK ''0  . Figure 4-6 shows the data plotted in form of K0 against σv for the three 

tested samples. For samples A and B (100222a_oedometer and 100212c_oedometer) 

swelling under constant axial stress provokes a sharp increase of the horizontal stresses 

causing an increase of lateral earth pressure coefficient (K0>1). Therefore by the end of 

the hydration phase both samples were over-consolidated.  During unloading, axial 

stress decreases faster than horizontal stress and consequently an increase of K0 is 

observed. For samples A and C (100212c_oedometer and 100212a_oedometer) K0 at the 

end of the test reaches a value of 0.8 and 0.65 respectively.  

 

A 

B 
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Figure 4-5. Axial stress_radial stress relationship for the three tested samples. 
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Figure 4-6. Comparison of tests results represented in terms of lateral earth pressure 

coefficient versus axial stress. 
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4.2.2 Model geometry and initial conditions  

In order to analyse the hydro-mechanical behaviour of MX80 bentonite, the above 

mentioned tests are modelled using the finite element code Code_Bright.  Figure 4-7 

shows the model geometry together with the applied boundary conditions. Along the 

vertical boundaries of the domain, horizontal displacements are restricted to represent 

the oedometric conditions. Along the horizontal upper boundary a constant axial stress 

is imposed. Several time intervals were considered in the simulation and for each one 

the imposed vertical stress was varied to simulate the loading/unloading steps followed 

in the experiments. As mentioned in the previous section, the oedometer tests were 

performed under controlled humidity conditions. For two tests (100212c_oedometer and 

101222a_oedometer) the samples were hydrated to reach zero suction and for one test 

(100212a_oedometer) the suction were maintained constant (s=153 MPa). To simulate 

this, hydraulic boundary conditions was imposed on the top and on bottom boundaries. 

The Barcelona Basic Model (BBM)  has been used to model the mechanical constitutive 

behaviour of the material. A brief description of the model equations and of the 

parameters is included in Appendix I.  

 

 

 
Figure 4-7. Model geometry and boundary conditions 
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4.2.3. Modelling results of tests 100212c_oedometer (A) and 

101222a_oedometer (B) 

Table 4-3 shows the parameters of the BBM model for MX80 bentonite used for the 

calibration of the two tests (100212c_oedometer and 101222a_oedometer). The table 

includes the values of non-linear elasticity and elasto-plasticity parameters. The 

parameters have been calibrated to simulate the experiment performed with sample A 

(100212c_oedometer) (see Table 4-2 for suction and stress paths). The same parameters 

were used to simulate the experimental results of sample B (101222a_oedometer).  

Table 4-3. BBM parameters for tests  100212c_oedometer and 101222a_oedometer 

Parameters Symbols Units Values 

Poisson’s ratio υ (-) - 0.35 

Parameters for elastic volumetric 

compressibility against mean stress change 

i0 - 0.05 

i - -0.003 

Parameters for elastic volumetric 

compressibility against suction change 

s0 - 0.25 

sp - -0.145 

Elasto-plastic volumetric compressibility  - 0.15 

 

Parameters to define LC yield curve 

r MPa 
-1

 0.8 

  0.02 

Reference stress p
c MPa 0.01 

Initial porosity 0  0.375 

Preconsolidations stress po* MPa 0.75 

Strength parameter M - 1.07 

 

Figures 4-8 a and b show the vertical stress-strain and the vertical stress-void ratio 

relationships for 100212c_oedometer and 101222a_oedometer tests respectively. The 

plots show comparisons between the experimental data and the numerical simulations. 

For both tests, the modeled results fit quite well with the experimental data (taking into 

account that the model parameters have been calibrated with 100212c_oedometer). The 

model predicts well the swelling deformations that occur during the wetting phase. The 

calculated swelling deformations for 100212c_oedometer (0.3) are in the same order of 

magnitude as the measured value (0.4). For experiment 101222a_oedometer, the 

swelling is over predicted by the model. The sharp increase of the lateral stresses 

observed during swelling under constant axial stress is also quite well captured by the 

model (Figure 4-9).The model does not predict very well the variation of the lateral 
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stresses that occurs during loading/unloading phase (Figure 4-9). These discrepancies 

could be attributed to uncertainties that occurred during the experiment, as it is difficult 

to measure lateral stresses in an oedometer.  

Figure 4-10 shows test 100212c_oedometer plotted in form of K0 against σv. The plots 

show that swelling under constant axial stress causes an increase of lateral earth 

pressure coefficient (K0>1). Therefore by the end of the hydration phase the sample was 

over-consolidated.  During unloading, axial stress decreases faster than horizontal stress 

and consequently an increase of K0 is observed.  

 

4.2.4. Modelling results of test 100212a_oedometer (C) 

As described in Section 4-1, in this test the sample were tested under nearly dry 

conditions. In fact, suction was maintained constant and equal to 153 MPa during the 

loading/ unloading phase. Sample C (100212a_oedometer) tested under dry conditions 

(s=153 MPa) shows a quite different behaviour. In this case the sample was loaded up 

to 4.88MPa. In spite of this high vertical stress, the sample showed little deformation 

(0.009).  Table 4-4 shows the parameters of the BBM model used for the calibration of 

this test (100212a_oedometer). In this case, the calibrated elastic parameters were 10 

times lower than those obtained for calibration of tests 100212c_oedometer and 

101222a_oedometer. For the properties considered, the model reproduced quite well the 

experimental results in terms loading/unloading induced deformations (Figure 4-11). 
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Figure 4-8. Modelling and experimental results. 

 

Axial stress_strain relationship for 100212c_oedometer (A) 

Axial stress_strain relationship for 101222a_oedometer (B) 
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Figure 4-9. Axial stress_radial stress relationship for  100212c_oedometer (A) and 

101222a_oedometer (B) 
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Figure 4-10. 100212c_oedometer (A) represented in terms of lateral earth pressure 

coefficient versus axial stress. 

 

 
 

Table 4- 4. Material parameters for test 100212a_oedometer  
 

Parameters Symbols Units Values 

Poisson’s ratio υ (-) - 0.2 

Parameters for elastic volumetric 

compressibility against mean stress change 

i0 - 0.005 

i - -0.003 

Parameters for elastic volumetric 

compressibility against suction change 

s0 - 0.025 

sp - -0.145 

Elasto-plastic volumetric compressibility  - 0.02 

 

Parameters to define LC yield curve 

r MPa 
-1

 0.7 

  0.02 

Reference stress p
c MPa 0.1 

Initial porosity 0  0.375 

Preconsolidation stress Po* MPa 0.75 

Strength parameter M - 1.07 

 

 

100212c_oedometer 

A 
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Figure 4-11. Calculated and measured strain during the loading/unloading phase 

 

Figure 4-12 shows the modeling results in term of K0 versus σv. In Figure 4-13 the stress 

path in p: q plane is shown. Some differences are observed between the model and the 

experimental results.  
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Figure 4-12. Model lateral earth pressure coefficient 
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Figure 4-13. Mean effective stress versus deviatoric stress. Experimental and modelling results 
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4-3. Infiltration Test 

In order to explore the behaviour of bentonite buffer upon hydration under confined 

conditions, an infiltration test was performed on MX80 bentonite. The samples were 

compacted at a dry density d=17 kN/m
3
 and at constant water content w= 5.33%. 

Table 4-5 completes the information of the initial conditions of the tested sample.  

 

Table 4-5. Initial properties of MX80 bentonite sample 

(Infiltration test) 
 

Dry density(kN/m
3
)  17 

Water Content (%) 5.33 

Degree of saturation (%) 23.34 

Porosity  0.375 

Intrinsic permeability m

 5.59x10

-21
 

Initial suction (MPa) 243 

 

A schematic drawing of the infiltration test cell is presented in Figure 4-14. The lower 

face of the sample is maintained in contact with a porous stone. The hydration inlets are 

connected to a standard pressure/volume controller which is a water pressure source and 

volume change gauge. Water is then collected into a reservoir. 
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Figure 4-14. Scheme of infiltration test device 
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4.3.1 Modelling results  

The infiltration test is modelled using the finite element code Code_Bright.  Figure 4-15 

shows the model geometry together with the applied boundary conditions. The test is 

performed under confined conditions. Along the vertical and horizontal boundaries of 

the domain, displacements are restricted. Water inflow, is allowed at lower boundary of 

the domain. 

 

 
Figure 4-15. Model geometry and boundary conditions 

 

The Barcelona Basic Model (BBM) (Alonso et al., 1990) has been used to model the 

mechanical constitutive behaviour of the material. The same model parameters as for 

the simulation of tests 100212c_oedometer and 101222a_oedometer were used (Table 

4-3) except for the pre-consolidation pressure which was set to 12 MPa (value 

corresponding to the fabrication pressure). 
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Figure 4-16 shows the time evolution of water pressure within the simulated sample. As 

mentioned previously, the initial suction the sample is s=243 MPa. Water is then driven 

by advection into the sample because of the gradient of suction existing between the 

water filling partially the soil and the external reservoir (Figure 4-17). As a consequence 

there is dissipation of the negative pore pressure prevailing initially into the simple 

pores (Figure 4-16).  
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Figure 4-16. Liquid pressure evolution (centre of the sample)  

 

The inflow of water into the sample induces the swelling of the material. Since the 

infiltration test is performed under confined conditions (constant volume) an increase of 

the total stresses into the sample is observed. Figure 4-18 shows the evolution with time 

of the calculated and measured stresses into three representative points (at the top, base 

and at the center of the sample). The modeling results are in the range of the 

measurements. 
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Figure 4-17. Comparison of volume inflow 
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Figure 4-18. Comparison of stresses 

 
Figure 4-19 shows the evolution of the porosity at two selected points. At the bottom of 

the sample the inflow of water causes the wetted layers to swell. As a result, porosity 

increases at the layers near to the hydration surface. Simultaneously, since the test is 

performed under constant volume conditions, compressed upper layers inducing a 

decrease of porosity at this related zone as it is depicted in Figure 4-19.
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Figure 4-19. Porosity evolution at different points of the sample 

 
The porosity profiles obtained after 0.1, 1, 10, and 100 days are displayed in Figure 4- 

20. The maximum porosity is obtained near the hydration surface. The maximum peak 

is followed by a continuous and pronounced decrease of the porosity when progressing 

in the depth of the sample (upper layers). Permeability k has been considered as a 

function of porosity. Profiles of intrinsic permeability after 0.1, 1, 10, and 100 days are 

presented in Figure 4-21. The plots show that permeability increases and reaches a 

maximum near to the hydration surface. After 100 days, porosity increases and reaches 
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a maximum value of 0.48 at the bottom layers and decreases to a value of 0.34 at the 

upper layers (Figure 4-20). For the same period, the permeability varies between 5×10
–

21
 m² and ~1×10

–21
 m² when progressing deeper in the sample (Figure 4-21). 
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Figure 4-20. Profiles of porosity 

 

As for all unsaturated materials, hydraulic conductivity is also strongly dependent on 

the degree of saturation. The relative permeability of the liquid phase (krl) is given by 

 

lrls

rll

eerl
SS

SS
SASk




 ;                                                                                        (1)                                                                                                        

 

Where A is a constant, degree and λ is power Se is the effective degree of saturation  

Profiles of relative permeability at several times are shown in Figure 4-22. Initially 

water is driven into the sample to dissipate the gradient of suction existing between the 

sample and the external reservoir. As a consequence the degree of saturation of the 

hydrated layers starts increasing. At early times, a small increase of kr takes place at the 

outer most layers. As the hydration progresses in the front, degree of saturation 

increases and results in an increase of kr. 
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Figure 4-21. Profiles of intrinsic  permeability 
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Figure 4-22. Profiles of relative permeability 
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Figure 4-23 shows some variables of the simulation at the end of the test period. As it is 

shown, mean effective stress reaches to 10 MPa, at the moment the sample is fully 

saturated. Radial and axial stresses reach 10 MPa as well, so the stress state is nearly 

isotropic. Overall it can be said that the entrance of water provokes an increase of the 

porosity and a decrease of the dry density in the sections closer to the hydration surface due 

to the swelling of the clay. In contrast, at sections far from the hydration point are 

compressed.   

It is clear that modeling tasks for infiltration test are achieved by using the calibrated BBM 

parameters. The obtained results from the model have a strong analogy with the test results. 
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Figure 4-23. Generated stresses (MPa) and degree of saturation at the end of the test .
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4.4. Concluding Remarks For Modelling Of  Laboratory Test   

In this chapter of the thesis experimental and numerical results on the hydro-mechanical 

behaviour of MX80 bentonite have been presented. Three oedometer tests and an 

infiltration test have been done by B+Tech. These tests have been modelled using the 

finite element code Code_Bright. The Barcelona Basic Model (BBM) has been used to 

model the mechanical constitutive behaviour of the material. The parameters have been 

calibrated according to 100212c_oedometer test data. The same parameters were used 

for the simulation of 101222a_oedometer test and of the infiltration test. Reasonably 

good estimates of the evolution of the deformation for the two oedometer tests have 

been obtained as well as of the evolution of stresses in the infiltration test (constant 

volume). Table 4-6 summarizes the parameters of the BBM model for MX80 bentonite. 

The table compares the calibrated parameter and the parameters for MX80 and FEBEX 

for BBM found in the literature.  
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Table 4-6. Elastic and elastoplastic parameters of MX80 bentonite calibrated. 

Comparison to BBM parameters of FEBEX bentonite  
 

Parameters Symbols Units MX80 
(this report) 

MX80 
(*) 

FEBEX 
(**) 

Poisson’s ratio υ (-) - 0.35 0.2 0.4 

Parameters for elastic 

compressibility against 

mean stress change 

i0 - 0.05 0.06 0.05 

i - -0.003 - -0.003 

Parameters for elastic 

volumetric 

compressibility against 

suction change 

s0 - 0.25 0.3 0.25 

sp - -0.145 - -0.161 

ss  0 - 0 

pref MPa 0.01 0.01 0.01 
Elasto-plastic 

volumetric 

compressibility 

 - 0.15 0.15 0.9 

Parameters to define LC 

yield curve 
r MPa 

-1 0.8 0.925 0.75 

  0.02 0.05 0.03 

Reference stress p
c MPa 0.01 0.2 0.5 

Slope of critical state M - 1.07 1 1 

Parameter for the plastic 

potential 
 - 0.53 1 0.53 

Initial pre-consolidation 

stress for saturated 

conditions 

po* MPa 12 3 12 

Initial void ratio e0 - 0.6 0.579 0.63 

These parameters will be used to perform thermo-hydro-mechanical modeling of the in 

situ repository disposal site.  

 
(*) MX80 “Mechanical modelling of MX80 – Quick tools for BBM parameter analysis” 

O. Kristenson, M. Akesson. Clay Technology. 

 

(**) FEBEX “2010 Code_Bright Course Tutorial_VII_THM_Mockup_test 
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5. THM ANALYSIS FOR DEPOSITION HOLE 

This chapter concerns preliminary analyses of coupled Thermo-Hydro-Mechanical 

(THM) processes in the POSIVA ONKALO Project. The Code_Bright finite-element 

software program is used in performing the modelling calculations. The objective was 

to study a number of fundamental design parameters. 

 

The time required for the buffer to reach full saturation, the maximum temperature 

reached in canisters, deformations in the buffer-backfill interface and the stress-

deformation balance in interaction between buffer and backfill are the critical design 

criteria. 

 

A fundamental issue was determining corresponding thermal boundary conditions for 

the modelling task. The main reason for this is that the boundaries cannot be extended 

to a distance that the thermal problem would require. As discussed in Chapter III 

Thermal Analysis, the temperature on the boundaries considered in this study depends 

on the initial canister power, the fuel power decay characteristic and rock thermal 

properties. 

 

With regard to the hydraulic analyses, the time required to achieve full saturation is 

sensitive to vapour diffusion and heat transport, intrinsic permeability and initial 

suction. A sensitivity study is undertaken to determine the reliability of the Reference 

case and how it corresponds to actual conditions.  

 

Modelling of the buffer-backfill interface is an essential element in tunnel backfill 

design. The aim of the calculations is to reveal deformations at this interface whose 

behaviour is important in connection with swelling of the buffer.  

 

The modelling was carried out under axisymmetric conditions, with the Barcelona Basic 

Model (BBM) being used to model performance of the bentonite buffer and backfill soil 

materials. Annex I contains a description of the formulae used in CODE_BRIGHT. 
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5.1. Introduction 

Planning and investigating of the Olkiluoto site for use as a repository for spent fuel 

elements from Finnish nuclear power stations is currently in progress. The repository 

consists of a series of tunnels and deposition holes located deep in the bedrock. The 

canisters containing spent fuel will be surrounded by bentonite buffer rings. The 

modelling geometry and mesh are shown in Figure 5-2. 

 

MX80 bentonite will be used as the buffer material providing a protective and isolating 

barrier between the canisters and the surrounding host rock. Specific properties of this 

buffer material include low permeability to minimise the advective transport of 

radionuclides, stress-deformation properties that allow for reasonably large rock 

movements without harmful loads being transferred to the canister, and the capacity to 

swell in order to fill any gaps that remaining after canister emplacement. 

 

Friedland clay is considered to be one of the candidates best suited for use as backfill 

material to meet the long-term performance requirements set for backfilling disposal 

tunnels in the repository. Current plans envisage 60-80% of the total volume of 

deposition tunnels being backfilled with pre-compacted blocks of Friedland clay and the 

remaining space being backfilled with bentonite pellets. One of the most important 

requirements for a deposition tunnel is that the backfill should be so stiff that when it is 

compressed as the buffer swells, the buffer density should not decrease significantly. 

Low hydraulic conductivity, high specific surface area and, in some cases, swelling 

ability are other necessary characteristics of backfill material.  

 

One essential functional requirement for a deposition tunnel is the maximum 

temperature achieved. Even though the maximum canister temperature permitted during 

disposal is 100ºC, Ikonen (2005) states that the maximum permitted canister 

temperature should be 90ºC to provide an additional safety margin covering 

uncertainties in thermal conditions, heterogeneities and other unknowns. This subject is 

discussed in Chapter III. 
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In the initial conditions, the buffer will not be fully saturated because of the 

manufacturing and transportation processes. Estimation of the time required for 

hydration is therefore important. In its initial unsaturated condition, the buffer will not 

transfer heat efficiently and relatively-high canister temperatures will be the result. 

Saturation of the buffer is an important issue. 

 

Another important concept is the mechanical behaviour of the interaction between 

buffer and backfill. The stress – deformation balance at this interface is one of the 

critical design considerations.  

 

Table 5-1. BBM parameters used for the buffer and backfill 

 

Parameters Symbols Units  Buffer 

(MX80) 
Backfill 

(*) 

Poisson’s ratio υ (-) - 0.35 0.35 

Parameters for elastic 

compressibility against 

mean stress change 

i0 - 0.05 0.05 

i - -0.003 -0.003 

Parameters for elastic 

volumetric 

compressibility against 

suction change 

s0 - 0.25 0.025 

sp - -0.145 -0.145 

ss  0 0 

pref MPa 0.01 0.01 
Elasto-plastic volumetric 

compressibility 
 - 0.15 0.3 

Parameters to define LC 

yield curve 
r MPa 

-1 0.8 0.8 

  0.02 0.02 

Reference stress p
c MPa 0.01 0.01 

Slope of critical state M - 1.07 1.07 

Parameter for the plastic 

potential 
 - 0.53 0.53 

Initial pre-consolidation 

stress for saturated 

conditions 

po* MPa 12 0.5 

Initial void ratio e0 - 0.6 0.6 

 

The BBM parameters used for the buffer and backfill are shown in Table 5-1. These 

parameters have been obtained from simulated laboratory tests. The calibration process 

and a comparison of model predictions against the experimental results can be found in 

Chapter IV. These parameters were calibrated by modelling the oedometer and 

infiltration tests carried out by POSIVA.  
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There are differences between the buffer and backfill material properties in the BBM 

material model. Firstly, the elasto-plastic volumetric compressibility which is 

obtained in the oedometer test on Friedland clay carried out by SKB has a value of 0.3. 

Another parameter that is different is the initial pre-consolidation stress for saturated 

conditions which is set to 0.5 MPa for the reference case. A comparative study has been 

performed where the backfill pre-consolidation stress has a value of 2 MPa. Finally, the 

swelling potential has been reduced by a factor of 10. Figure 5-1 shows predicted main 

processes at the canister scale during the early post-closure period (unsaturated 

conditions). 

 

 

.  

Figure 5.1 Main processes in the canister near field after closure of the repository 

unsaturated conditions. 
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 These are the main conditions expected and possible variations during this period.  It 

has been anticipated complex couplings among the thermo-hydro-mechanical and 

chemical processes occurring after the repository is closed. However, chemical process 

is not included in this thesis. 

 

It is expected that the rock temperature will gradually increase and reache its maximum 

value within the first hundred years after closure. Rock movements along existing 

fractures continue as the rock adapts to the thermal load from the canister and to the 

swelling pressure from the backfilling and the buffer.  

The mechanical load to the canister increases since groundwater pressure reaches its 

equilibrium pressure (4-5 MPa) at the same time the buffer begins to swell. Uneven 

buffer swelling during the unsaturated period might cause additional mechanical loads 

to the canister so deformation of the copper shell.  

 

Canister corrosion continues during the early post-closure period via general corrosion 

as long as oxygen is present. Corrosion rates slow down when oxygen is consumed and 

the environment becomes reducing. “Even during the one million year overall 

assessment period, expected corrosion of the canister for an assumed temperate climate 

would cause corrosion depths of the order of a few millimetres (SKB 2006a).” 

However, canister corrosion is not a subject of this thesis. 

 

After a certain period of time the system evolves to a quasi-steady state in which 

thermal, hydraulic, mechanical and chemical conditions at the repository depth are 

subject to much slower changes. The buffer and the backfill are expected to be saturated 

in this period and so they will be more efficient. In this period, the convective flow 

caused by thermal gradients will disappear.  Swelling pressure of the bentonite and 

residual stress relaxation might cause in changes of the rock stress field in this period. 



78 

 

Table 5-2. Hydraulic and phase properties of materials in the buffer, backfill and rock 

 

 Buffer Backfill Rock 

Solid phase densitys 

(kg/m
3
) 

2779 2781 2749 

Intrinsic permeability k (m
2
) 5.59e-21 1.0e-18 1.0e-17 

Initial porosity 0.37 0.368 0.02 

Initial suction(MPa) -41 -40.2 - 

 

Rock was modelled as a linear elastic material with a Young’s Modulus, E, of 6300 

MPa and a Poisson’s ratio, υ, of 0.25. Thermal parameters for these three materials are 

given in Chapter III. 

 

 

 

 
Figure 5-2. The axisymmetric domain, mesh and materials under consideration  
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In the models presented in this study, four materials are used in the deep geological 

disposal of high-level nuclear waste in a final repository. Figure 5-2 shows these four 

materials. In the geometry shown in Figure 5-2, the buffer is considered to be a 

homogenous material and neither the gap between canister and the buffer nor the gap 

between the buffer and rock are taken into account. The stages of the excavation process 

have been shown in the Figure 5-3.  

 

 
Figure 5-3. Excavation process 

 

The rock in contact with the buffer and backfill is considered to be at atmospheric 

pressure and saturated before the buffer and backfill materials are placed. The 

atmospheric pressure condition for the excavation wall is removed as the different 

materials (buffer, canister and then backfill) are installed. 
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5.2. Base case THM analyses 

 

 
 

Figure 5-4. Representative points used for materials 

 

 

 Backfill 

 Backfill-buffer interface 

 Buffer 

 Canister-buffer interface 

 Buffer-rock interface 

 

For plotting purposes in the THM analyses, five representative points are used. Figure 

5-4 shows their position. As already indicated, the parameters used in the reference case 

are given in Table 5-1 and Table 5-2. 
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30 years 60 years 200 years 1000 years 

  

 

 

 

 
 

Figure 5-5. Temperature (ºC) changes in the buffer and backfill materials 
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Figure 5-6. Temperature evolution at the five representative points. 

 

 

In the ONKALO Project, the maximum allowable calculated canister temperature and a 

fundamental parameter in planning, dimensioning and operating the repository is set as 

90ºC. While the primary factor influencing this temperature is the canister power at 

disposal, the distances between adjacent tunnels and to neighbouring canisters also play 

a vital role. A detailed explanation of the thermal analyses is given in Chapter III . 

 

Figure 5-6 shows that the maximum temperature of 80ºC is reached at the buffer-

canister interface after 30 years. After 1000 years, the model reaches a stable condition 

with both materials at the same temperature, approximately 42ºC.  
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1 year 5 years 10 years 1000 years 

    

 

 

Figure 5-7. Liquid pressure (MPa) changes in the buffer and backfill materials. 
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Figure 5-8. Evolution of liquid pressure at the five representative points. 

 

Liquid pressure is affected by heating, with a strong decrease near the canister as water 

is evaporated.  Figure 5-7 indicates that the buffer will be almost fully saturated after 10 

years.  

 

The evolution of liquid pressure shown in Figure 5-8 shows drying of the buffer 

adjacent to the canister as heat is being generated. The representative point closest to the 

canister has the highest suction. At the buffer-canister interface the liquid pressure drops 

to -50 MPa after one year and its evolution follows a different trend line. In the backfill, 

liquid pressure increases with time and reaches a steady-state condition in three years. 

This suction behaviour has an important influence on the time required for the buffer 

and backfill to become fully saturated. 
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Figure 5-9. Changes in total mean stress (MPa) in the buffer and backfill 
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Figure 5-10. Evolution of total mean stress at two representative points 

 

One of the objectives in this study was to identify the dominant forces on the buffer and 

backfill materials and their values. One of the main design requirements is that the 

backfill should hold the buffer material in place, preventing a significant loss of density 

through upwards swelling. As the backfill is compressible and has a lower swelling 

pressure than the buffer material, some upwards swelling is expected. Stresses 

generated in the buffer and backfill materials have a role to play in this connection. 

 

Total mean stress increases over time and reaches 10 MPa at the buffer-canister 

interface. As shown in Figure 5-10, the model calculations indicate that total mean 

stress becomes stable after a period of time and then remains constant.  
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Figure 5-11. Evolution of effective mean stress at two representative points 

 

The buffer load capacity and the rate at which a canister will sink through the buffer 

material to the base of a deposition hole is a mechanical case that needs to be handled. 

Resistance to canister sinking is also one of the buffer requirements to be assessed. The 

time required for full saturation of the buffer material gives an indication of the time 

when full swelling pressure will occur. Swelling pressure is an important property in 

this connection and the effective mean stress ratio is therefore a critical modelling 

parameter. 

 

Effective mean stresses initially increase due to hydration of the swelling materials. At 

the buffer-canister interface, the effective mean stress reaches 8 MPa and then starts to 

fall. It becomes constant after a period of time. 
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As the bentonite in the buffer expands due to hydration, it compresses the backfill in the 

deposition tunnel. Bentonite swells as a result of absorbing water during the saturation 

process and this is expected to fill voids in the buffer material. The long-term 

performance of the buffer will therefore be critically affected by both the amount of 

swelling and the speed at which it takes place. Swelling of the buffer material is 

primarily controlled by the hydraulic conductivity of the rock. One of the main reasons 

for using bentonite as buffer material in a final repository is the material's low hydraulic 

conductivity. 

 

 

1 year 5 years 10 years 1000 years 

 
  

 

 

Figure 5-12. Changes in porosity levels in the buffer and backfill materials 
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Figure 5-13. Evolution of porosity and dry density at five representative points 

 

When a canister is placed in a deposition, drying will take place in the buffer space as 

result of heating by the canister. Evaporation of water caused by heat from the canister 

will induce a reduction in porosity next to the canister. At the rock wall, hydration and a 

porosity increase will occur. Dry density changes accordingly to porosity changes. 

 

A high buffer density creates a high swelling pressure and makes the bentonite more 

resistant to deformation. On the other hand, bentonite of lower density could result in 

canister sinkage. Buffer density is therefore an important design parameter. One of the 

most important requirements for a deposition tunnel is that the backfill should be stiff 

enough to prevent a significant decrease in buffer density even when it is compressed by 
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the swelling of buffer material. Figure 5-13 shows that the modelling results indicate 

good agreement with this backfill requirement. 
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Figure 5-14. Future degree of saturation of buffer and backfill materials. 
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Figure 5-15. Evolution of degree of saturation for the five representative points 

 

Manufacturing and engineering constraints mean that buffer material is placed in the 

repository in a compacted, unsaturated state. This in turn means that the intrinsic 

properties of the bentonite will only provide an effective buffer when it has become 

saturated. The unsaturated period also affects the performance of buffer long after it has 

become saturated. The time required to achieve full buffer saturation is therefore very 

important in the modelling process.  

 

Temperature has a significant influence on saturation of the materials in the model. 

Intrinsic permeability and vapour diffusion rates also play an important role in the time 

required to achieve full saturation. As the rock permeability is high, saturation of the 

buffer and backfill will take place in approximately five years.  

 

The buffer space between the rock wall and the canister will be saturated 4-5 years after 

deposition of the canister. The maximum buffer temperature will be reached after 30 
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years, long after the buffer is fully saturated. Figure 5-15 shows desaturation of the 

buffer material close to the canister surface.  

 

 

1 year 5 years 10 years 1000 years 

    
 

 

Figure 5-16. Future axial effective stress (MPa) in buffer and backfill materials 
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Figure 5-17. Evolution of axial effective stress for five representative points 

 

The stress-deformation balance at the buffer and backfill interface is one of the most 

important parameters in repository design. A fundamental functional parameter for the 

deposition tunnel is backfill stiffness. Even though the buffer materail swells and 

compresses the backfill that holds it in place, the density of the buffer must not suffer a 

significant reduction. The degree of saturation of both the buffer and backfill has a role 

to play in the balance between stress and displacement at the buffer-backfill interface. 

 

The axial effective stress increases initially as a result of several effects, then falls to a 

constant level. At the buffer-canister interface it reaches a level of 6 MPa. 
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Figure 5-18. Future radial effective stress (MPa) in buffer and backfill materials  
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Figure 5-19. Evolution of radial effective stress at the five representative points 

 

One of the objectives of this study was to achieve an understanding of the mechanical 

response of the bentonite buffer in the repository. Figure 5-19 indicates the radial stress 

situation at different times in the future.  

 

Radial effective stress develops in a similar manner to axial stress, decreasing after a 

period of time and becoming stable. The maximum radial stress generated on the buffer 

is 9 MPa, but this falls somewhat in the longer term and the maximum stable value is of 

the order of 8 MPa.  
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Figure 5-20. Future vertical displacement (m) of buffer and backfill materials 
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Figure 5-21. Evolution of vertical displacement for two representative points 

 

Figure 5-20 shows the distribution of vertical displacement. Displacements are 

considered to be a critical element in the design of the ONKALO Project. Figure 5-20 

and Figure 5-21 both indicate that the bentonite-backfill interface moves upwards as the 

bentonite buffer swells.   

 

As buffer drying takes place during the initial phases, the backfill will move down to 

some extent because of contraction. When swelling takes place, the buffer material 

begins to move up and compress the backfill. The final vertical displacement of the 

buffer-backfill interface is approximately 8 cm. 
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5.3. Sensitivity analyses 

A series of sensitivity calculations to understand the effect of different parameters on 

model performance have been carried out. While the time required for full saturation of 

the bentonite buffer mainly depends on the hydrological conditions around deposition 

holes, it is also connected with the bentonite material model.  

 

The first step in these sensitivity analyses was to choose parameters for the buffer 

material model which give a better understanding of bentonite hydration in repository 

deposition holes. The second step was to consider the mechanical aspects: the backfill 

pre-consolidation pressure is increased to generate stiffer conditions through better 

compaction, with the aim of determining its effect on the results obtained. (The cases 

and parameters are summarised in Table 5-3.  

 

Liquid flux and vapour flux control saturation of the buffer. Relevant formulae are 

given below, and the liquid and vapour flux parameters are varied when performing the 

sensitivity analyses.  

 

The Darcy flux q is given by: 

 

 q
k

g





 
   

k
P

r
                                                                                                                5.1                                                                                                                                                                                                                                     

 

where viscosity, density and relative permeability are defined in other laws 

 

For the relative permeability, a generalized power law is assumed: 

 

k ASrl e 
                                                                                                                                           5. 2 

 

In which λ is the power.  

 

The intrinsic permeability is a function of porosity: 
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The diffusive vapour flux is driven by the vapour mass: 

 

  i i i

mS D      i I                                                                                                               5.4 

 

Where   is the tortuosity factor. 

 

 

Table 5-3. Parameters employed in the sensitivity analyses 

 

 

Models 

Parameters 

Intrinsic 

Permeability of 

Rock (k) 

Power in the 

relative 

permeability 

law (λ) 

Coefficient of 

tortuosity for 

molecular diffusion 

() 

Pre-

consolidation 

pressure of 

backfill (p0*) 

Reference 

case  

1e-17 m
2 

3 0.4 0.5 Mpa 

Case A 1e-17 m
2
 6 0.4 0.5 Mpa 

Case B 1e-18 m
2
 3 0.4 0.5 Mpa 

Case C 1e-17 m
2
 3 0.8 0.5 Mpa 

Case D 1e-18 m
2
 6 0.8 0.5 Mpa 

Case E 1e-17 m
2 

3 0.4 2 Mpa 

 

The intrinsic permeability of the rock, power in the relative permeability law (λ), the 

coefficient of tortuosity () corresponding to the buffer material and the pre-

consolidation pressure of the backfill (p0*) have all been considered in the sensitivity 

analyses.  
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5.3.1 Comparison of evolution of temperature 

Figures 5-22 to 5-26 show that both the maximum temperature reached and temperature 

behaviour do not differ greatly between the reference case and the other cases. The 

hottest point in buffer material which is in contact with a canister has a temperature of 

80ºC.  It can be seen that the maximum buffer temperature is not affected by incomplete 

buffer saturation in the initial stages. 
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Figure 5-22. Evolution of temperature (Reference case above, Case A below) 
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Figure 5-23. Evolution of temperature (Reference case above, Case B below) 
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Figure 5-24. Evolution of temperature (Reference case above, Case C below) 
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Figure 5-25. Evolution of temperature (Reference case above, Case D below) 
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Figure 5-26. Evolution of temperature (Reference case above, Case E below) 
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5.3.2 Comparison of the evolution of liquid pressure 

Liquid pressure is an essential aspect of hydration. The figures 5-27 to 5-31 show how 

its behaviour depends on changes in permeability and vapour diffusivity. In general 

terms, Case B and Case D exhibit similar trends because the same value for intrinsic 

permeability is employed. Although the coefficient of tortuosity for molecular diffusion  

(τ) and power in the relative permeability law (λ) do not have a great influence on the 

time required for full saturation of the buffer, they affect the value of liquid pressure 

achieved close to the canister. 
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Figure 5-27. Evolution of liquid pressure (Reference case above, Case A below) 
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Figure 5-28. Evolution of liquid pressure (Reference case above, Case B below) 
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Figure 5-29. Evolution of liquid pressure (Reference case above, Case C below) 
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Figure 5-30. Evolution of liquid pressure (Reference case above, Case D below) 
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Figure 5-31. Evolution of liquid pressure (Reference case above, Case E below) 
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5.3.3 Comparison of the evolution of total mean stress 

From a mechanical viewpoint, the total mean stresses that will develop on the buffer 

material are important and need to be analysed. Even though there are some small 

differences in the transient response between the Base case, Case B and Case D, the 

maximum value of stress achieved is almost the same in all cases as it is shown Figure 

5-32 to Figure 5-36. 
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Figure 5-32. Evolution of total mean stress (Reference case above, Case A below)  
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Figure 5-33. Evolution of total mean stress (Reference case above, Case B below) 
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Figure 5-34. Evolution of total mean stress (Reference case above, Case C below) 
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Figure 5-35. Evolution of total mean stress (Reference case above, Case D below) 
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Figure 5-36. Evolution of total mean stress (Reference case above, Case E below) 
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5.3.4 Comparison of the evolution of effective mean stress  

While some differences can be noted in the different cases as regards mean effective 

stress, it behaves in the same way in all of them as it is shown Figure 5-37 to Figure 5-

41. It is known that the balance between stress and displacement in the buffer zone 

depends on the degree of saturation in the buffer and in the backfill. While changes in 

the permeability and vapour diffusivity have an important effect on saturation, but not 

on effective mean stress. 
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Figure 5-37. Evolution of mean effective stress (Reference case above, Case A below) 
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Figure 5-38. Evolution of mean effective stress (Reference case above, Case B below) 
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Figure 5-39. Evolution of mean effective stress (Reference case above, Case C below) 
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Figure 5-40. Evolution of mean effective stress (Reference case above, Case D below) 
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Figure 5-41. Evolution of mean effective stress (Reference case above, Case E below) 
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5.3.5 Comparison of the evolution of porosity  

Permeability plays a significant role in total inflow into the deposition hole, and 

consequently affects the time required for the buffer to reach full saturation. Even 

though the behaviour of porosity is similar in all cases because the general processes are 

the same, the calculated values differ slightly as it is shown Figure 5-42 to Figure 5-46. 
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Figure 5-42. Evolution of porosity (Reference case above, Case A below) 
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Figure 5-43. Evolution of Porosity (Reference case above, Case B below) 
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Figure 5-44. Evolution of porosity (Reference case above, Case C below) 

 



123 

 

 

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.01 0.1 1 10 100 1000

P
o
ro

s
it
y

Time ( y )

Backfill

Buffer_Backfill_Interface

Buffer_Rock_Interface

Buffer_Canister_Interface

Buffer

 

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.01 0.1 1 10 100 1000

P
o
ro

s
it
y

Time ( y )

Backfill

Buffer_Backfill_Interface

Buffer_Rock_Interface

Buffer_Canister_Interface

Buffer

 
Figure 5-45. Evolution of porosity (Reference case above, Case D below) 
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Figure 5-46. Evolution of porosity (Reference case above, Case E below) 
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5.3.6 Comparison of the evolution of the degree of saturation  

As explained in the previous section, the time required to achieve full saturation is a 

fundamental part of the hydration problem. Intrinsic permeability is an important 

parameter. Figure 5-47 to Figure 5-51 show evolution of degree of saturation. 
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Figure 5-47. Evolution of the degree of saturation (Reference case above, Case A 

below) 
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Figure 5-48. Evolution of the degree of saturation (Reference case above, Case B 

below) 
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Figure 5-49. Evolution of the degree of saturation (Reference case above, Case C 

below) 
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Figure 5-50. Evolution of the degree of saturation (Reference case above, Case D 

below) 
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Figure 5-51. Evolution of the degree of saturation (Reference case and Case E) 

Changing the permeability leads to different times for reaching full saturation. As 

explained in Section 3.2, even though the coefficient of tortuosity for molecular 

diffusion (τ) and power in the relative permeability law (λ) do not have a great influence 

on the time required for full saturation of the buffer, they affect the level of desaturation 

close to the canister. 
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 5.3.7 Comparison of the evolution of axial effective stress  

Figure 5-52 to Figure 5-57 show evolution of axial effective stress. It can be seen that 

there are no significant differences between the cases in terms of axial effective stress. 

Results for Case B and Case D are the most similar. 
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Figure 5-52. Evolution of axial effective stress (Reference case above, Case A below) 
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Figure 5-53.  Evolution of axial effective stress (Reference case above, Case B below) 
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Figure 5-54. Evolution of axial effective stress (Reference case above, Case C below) 
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Figure 5-55. Evolution of axial effective stress (Reference case above, Case D below) 
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Figure 5-56. Evolution of axial effective stress (Reference case above, Case E below) 

 

 The excavation process is also simulated. As the figures show, there is no stress 

generation during the first year. After materials have been placed, stresses are generated 

and increase. When saturation is complete, axial effective stress starts decreasing at the 

buffer representative point and then becomes stable. At the canister-buffer interface, 

axial effective stress increases and then becomes stable after a period of time.
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5.3.8 Comparison of the evolution of radial effective stress  

Figure 5-57 to Figure 5-61 shows evolution of axial effective stress in five models. 
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Figure 5-57. Evolution of radial effective stress (Reference case above, Case A below) 
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Figure 5-58. Evolution of radial effective stress (Reference case above, Case B below) 

 



137 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.01 0.1 1 10 100 1000

R
a
d

ia
l_

E
ff
e

c
ti
v
e
_

S
tr

e
s
s
 (

k
P

a
)

Time ( y )

Canister_Buffer_Interface

Buffer

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.01 0.1 1 10 100 1000

R
a

d
ia

l_
E

ff
e

c
ti
v
e

_
S

tr
e

s
s
 (

k
P

a
)

Time (y)

Canister_Buffer_Interface

Buffer

 
Figure 5-59. Evolution of radial effective stress (Reference case above, Case C below) 
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Figure 5-60. Evolution of radial effective stress (Reference case above, Case D below) 
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Figure 5-61. Evolution of radial effective stress (Reference case above, Case E below) 

 

These figures also simulates the excavation process.. The maximum values that stresses 

achieve in the buffer space are an important functional requirement of the repository. 

The figures in this section show that there are no significant differences between the 

five cases and the Reference case. 
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5.3.9 Comparison of the evolution of vertical displacements  

Figure 5-62 to Figure 5-66 shows vertical displacement in two representative point in 

the five models. 
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Figure 5-62. Evolution of vertical displacements (Reference case above, Case A below) 
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Figure 5-63. Evolution of vertical displacements (Reference case above, Case B below) 
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Figure 5-64. Evolution of vertical displacements (Reference case above, Case C below) 
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Figure 5-65. Evolution of vertical displacements (Reference case above, Case D below) 

 

 
 



144 

 

 

-4

-2

0

2

4

6

8

10

0.01 0.1 1 10 100 1000

V
e

rt
ic

a
l 
D

is
p

la
c
e
m

e
n
t 

(c
m

)

Time (y)

Buffer_Canister_Interface

Buffer_Backfill_Interface

 

-4

-2

0

2

4

6

8

0.01 0.1 1 10 100 1000

V
e

rt
ic

a
l 
D

is
p

la
c
e
m

e
n
t 

(c
m

)

Time (y)

Buffer_Canister_Interface

Buffer_Backfill_Interface

 
Figure 5-66. Evolution of vertical displacements (Reference case above, Case E below) 

 

As they are a mechanical factor, vertical displacements deserve special attention. It is 

clear from the figures that Case B and Case D exhibit different behaviour. In both cases, 

the low intrinsic permeability of the rock affects the drying and swelling behaviour of 

the buffer material. In the other cases, the backfill initially moves down because it 

compresses the buffer, but starts moving upwards as soon as the buffer begins to swell. 
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5.4. Conclusions for THM modelling of deposition hole 

Fundamental functional parameters of critical design parameters for a deposition tunnel 

of repository were investigated. The thermal calculations and the BBM parameters used 

in simulating THM evolution are explained in the previous chapters.  

In connection with understanding the relative importance of intrinsic permeability, the 

power parameter in the relative permeability law [Eq. (5-2)], the tortuosity factor in the 

molecular diffusivity law [Eq. (5-4)] and pre-consolidation stress in the backfill were 

examined in the sensitivity analyses. Even though these parameters do not have a strong 

influence on the time required to achieve full saturation of the buffer, they do have some 

effect on liquid pressure, and thereby desaturation, close to the canister. It was seen that 

the maximum temperature achieved in the buffer is not affected by the fact that the 

buffer being unsaturated in its initial state. 

The maximum canister temperature is reached 30 years after deposition. The maximum 

temperature of 80ºC determined for the canister-buffer interface meets this design 

criterion for the canister. 

The buffer space between the canister and the rock wall is fully saturated after 4-5 

years. Heating results in variations in liquid pressure, and it decreases strongly near the 

canister. Evaporation of water occurs. When the heating process starts, evaporation 

induces a porosity reduction near the canister. 

Total stress increase as the buffer hydrates. If pore pressure becomes positive, total 

stress increases accordingly. Effective stress also increases.  

The density of the buffer around the canister depends on the stress-displacement balance 

at the buffer surface and is a functional requirement. Modelling results indicate that 

vertical displacements in the buffer-backfill interface will be in the range 7-8 cm. When 

the canister is first deposited, the buffer material will dry out because of heating and the 

buffer-backfill interface will move down. Once swelling begins, the buffer-backfill 

interface will start moving upwards. 

In its initial stages, the POSIVA ONKALO Project concept envisages gaps between the 

canister and the buffer material, and between the buffer material and the rock wall. In 
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this chaptery, the whole of the buffer was considered to be a homogeneous space and no 

account was taken of the effects of gaps or any initial lack of homogeneity. Additional 

simulations have been carried out in the subsequent chapter to examine these effects 

using a more detailed geometry in the vicinity of the canister. 
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6. GAP EFFECT ON THM ANALYSIS  

This chapter of thesis describes the effect of the existence of an air-filled gap located 

between the canister and the bentonite buffer on the long term Thermo-Hydro-

Mechanical (THM) behavior of the future nuclear waste repository in Olkiluoto. 

The presence of the 10 mm air gap has some influence on the thermal, hydraulic and 

mechanical response of the deposition tunnel. The closure of the gap is controlled by the 

swelling deformation developed as the bentonite buffer saturates. Under unsaturated 

conditions, the buffer will not transfer heat efficiently and that may disturb heat 

dissipation and leads to somewhat higher canister temperature. 

The water supply is affected by the permeability of the different elements and in 

particular by the permeability of the host rock formation. Hence, hydraulic conductivity 

of the rock also influences the gap closure time. A coupled Thermo-Hydro-Mechanical 

(THM) analysis of the deposition tunnel has been performed including the gap element. 

The finite element program Code_Bright is used to perform the modeling calculations. 

THM modeling of air gap element is performed in two stages. A sensitivity analysis has 

been performed in order to explore the effect of the permeability of the host rock. 
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6.1. Introduction 

The repository will consist of a series of deposition holes in the bedrock. Bentonite 

buffer rings will surround the copper canisters containing spent fuel. As a protecting 

and isolating barrier between the waste canisters and the surrounding host rock, MX80 

bentonite will be used as buffer material. Friedland clay is considered one of the best 

candidates to be used as drift backfill material to meet the long-term performance 

requirements set for backfilling of a disposal tunnel in the repository. Figure 3-2 shows 

a cross section of the spent nuclear final disposal facility. There are two alternative 

disposal conditions of the spent fuel. The first alternative envisages that the canisters 

will be disposed horizontally in the horizontal tunnels. The second alternative envisages 

the vertical emplacement of the canisters in boreholes excavated in horizontal tunnels.  

The time required for reaching full saturation, maximum temperature reached in 

canister, deformations in the buffer-backfill interface and stress-deformation balance in 

this interaction were the main issues addressed of the Chapter V. In the previous 

chapters, it has been explained thermal calculations to identify appropriate boundary 

conditions and modeling laboratory experiments to calibrate material parameters for the 

buffer.  

A fundamental issue in modeling was to determine relevant thermal boundary 

conditions so that the details of THM-behavior could be captured by defining proper 

near-field thermal boundaries. In the Chapter III, it has been shown that temperature on 

the considered close boundaries depends on initial canister power, fuel power decay 

characteristic and rock thermal properties. The thermal boundary conditions fixed at the 

THM modeling have been calculated solving the thermal problem for the entire 

repository with the numerical solution. 

With regard to the hydraulic analyses, it has been shown in the Chapter V that the time 

required for full saturation is sensitive to vapor diffusion, hydraulic conductivity and 

water retention curve of the buffer and the hydraulic conductivity of the rock. A 

sensitivity study was a part of the first report to investigate the base case performance 

and its correspondence with realistic conditions. 
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The modeling process of buffer-backfill interface is an important part of tunnel backfill 

design. The calculations aimed to find out deformations in this interface whose behavior 

is important for the buffer swelling. In order to investigate the hydro-mechanical 

behavior of MX80 bentonite which is the buffer material, a series of laboratory tests 

have been started up by POSIVA and carried out at B+TECH laboratory. Two types of 

tests have been performed: oedometer tests and infiltration tests. These tests have been 

modeled using the finite element code Code_Bright for model calibrations. The 

Barcelona Basic Model (BBM) (Alonso et al., 1990) has been used to model the 

mechanical behavior of the material. Calibrations of these tests were given in the 

Chapter IV. 

In this chapter, thermo-hydro-mechanical calculations are performed regarding the 

presence of a 10 mm air-filled gap between canister and the buffer ring according to 

reference design. The closure of the gap depends on the bentonite buffer saturation and 

expansion. If the saturation of buffer is delayed, the gap will not close and will disturb 

heat dissipation causing higher canister temperatures.  

The main object of this work is to show the influence of the presence of the air-filled 

gap on the THM behavior of the engineered barrier. Several cases were considered in 

order to see the influence of the permeability of the rock on gap closure. The Base Case 

without gap is also included in order to make the comparison easier. The results 

presented here are the evolution of temperature, displacement, liquid pressure, liquid 

saturation and stresses. 
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6.2. Geometrical and Physical Properties of the Problem 

The concept for storage considered in this study is based on parallel vertical boreholes 

excavated in horizontal tunnels. The canister placed in each borehole will be surrounded 

by MX80 bentonite buffer rings. According to the reference design, a 10 mm air-filled 

gap exists between the canister and the buffer rings. The hydro-mechanical behavior the 

Bentonite buffer is of great importance. In fact, the closure of the gap is controlled by 

the swelling deformation developed as the bentonite buffer saturates.  The HM behavior 

of MX80 bentonite has been extensively investigated and the elasto-plastic properties of 

this material have been determined by calibration of the experimental tests (Table 6- 1).  

Table 6-1. Parameters for elasto-plastic constitutive model (MX80 bentonite) 

Parameters Symbols Units Values 

Poisson’s ratio υ (-) - 0.35 

Parameters for elastic 

volumetric compressibility 

against mean stress change 


i0
 - 0.05 


i
 - -0.003 

Parameters for elastic 

volumetric compressibility 

against suction change 


s0

 - 0.25 


sp

 - -0.145 

Elasto-plastic volumetric 

compressibility 
(0) - 0.15 

Parameters to define LC yield 

curve 
r MPa 

-1

 0.8 

  0.02 

Reference stress p
c

 MPa 0.01 

Initial porosity 
0
  0.375 

Preconsolidations mean 

effective stress 
P

o
* MPa 0.75 

Strength parameter M - 1.07 

 

Friedland clay is envisaged as backfill material for the disposal tunnel. The Backfill 

material plays two main roles, to limit the upward movement of the strongly expansive 
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buffer in the deposition holes by having a low compressibility and to provide support to 

the roof and walls of the deposition tunnels by applying an effective pressure on them. 

According to current disposal option, 60-80% of the total volume of the deposition 

tunnel will be backfilled with pre-compacted blocks (Friedland clay) and the remaining 

space will be backfilled with bentonite pellets. Table 6-2 shows properties of the 

different materials.  

 

Table 6-2. Material properties 

Materials Dry density (kg/m³) Porosity Intrinsic 

permeability (m²) 

Bentonite Rings 1761 0.367 5.59x10
-21

 

Bentonite discs 1701 0.388 5.59x10
-21

 

Pellets 919 0.669 5.59x10
-21

 

Backfill 1758 0.367 10
-18

 

 

6.2.1 Gap Properties 

The gap is modeled as a material with very high porosity and permeability (several 

orders of magnitude larger than the other materials) (Table 6-3). Intrinsic permeability 

is assumed to be a function of porosity. The following expression has been used: 
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(6-1) 

 

For retention curve the van Genuchten model is used (Equation 2). 
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(6-2) 

 

The dependence of the retention curve on density or porosity has been taken into 

account considering Equation 3.  

 

 (6-3) 

 
     -aPP ooo exp
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A function with very low initial capillary pressure (Po =0.001 MPa) is considered for 

retention curve (Table 6-3). This implies that saturation takes place sharply as capillary 

pressure vanishes. For relative permeability the following function has been adopted: 

 

 (6-4) 

The mechanical response of the gap is achieved using two different stiffness values 

depending on the opening. When the gap is open, the elastic modulus is 1 MPa (i.e. very 

low stiffness). On the contrary when it is closed the elastic modulus is 1000 MPa (i.e. 

high stiffness) (Table 6- 3). In this way relative displacement of the air gap boundaries 

(nodes) stops when closure takes place because closure leads to stiffness increase. 

Heat transfer across the gaps will take place by conduction, radiation and convection. 

For a gap with a thickness d, subjected to a temperature gradient (Figure 1), the radiant 

heat flux (qr) can be calculated as follows: 

 

(6-5) 

 

Where e is surface emissivity, T1 and T2 are temperature on both sides of the gap and σ 

is Stefan-Bolzmans constant. 

Table 6-3. Gap Parameters 

Thermal parameters 

λdry (W/(mk)*) 0.045  

λsat (W/(mk)) 0.6   

Hydraulic parameters 

k0 intrinsic permeability (m
2
) 10

-16
 

o porosity (-) 0.8 

λ Van Genuchten (-) 0.5 

Po  0.001 

a Van Genuchten 10 

Mechanical Properties ** 

Ec (MPa) 1000 

Eo (MPa) 1.0 

ɛv limit (-) 0.95 

 (-) 0.3 

*This effective conductivity is chosen according to SKB technical report TR - 03 – 09 
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** When gap is closed, linear elastic model is used with parameters of  and Ec. 

 

 

For the conductive flux the Fourier law is used: 

 

ic T   (6-6) 

 

In this study the combined effects of conduction and radiation are included in 

conductive flux using an equivalent conductivity. Thermal conductivity changes with 

saturation between two extreme values. When the gap is full of gas, thermal 

conductivity of 0.045 W/mK (gas mixture of air and vapor) is considered while when it 

is full of water the value of 0.6 W/mK (water) is considered (Table 6-3). 

 
Figure 6.1. Heat transfer across the gap 
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6.3. Initial and Boundary Conditions 

As mentioned previously, the closure of the gap is controlled by swelling deformations 

developed as the bentonite buffer saturates. Since permeability of the rock plays an 

important role on the saturation time of the backfill material and so on gap closing three 

cases have been analyzed (Table 6-4). For case A, permeability of the host rock is 

assumed to be one order of magnitude higher than for case B. Case C is similar to case 

B except for the air-filled gap which is not simulated here. 

Table 6-4. Models for comparative study 

Models A B C 

Rock Permeability 10
-18

 m
2 

10
-19

 m
2
 10

-19
 m

2
 

Initial pressure of barrier materials -41 MPa -41 MPa -41 MPa 

Gap Closing time (approx..) 2 years 4 years No air gap 

 

The analysis has been assumed under axis-symmetric conditions. Figure 6-1b shows the 

mechanical boundary conditions applied. An initial confining stress of 10.63 MPa has 

been considered for the host rock. This confining pressure has been used as boundary 

condition (applied on the horizontal upper boundary). The excavation process has also 

been simulated. The initial water pressure for all the material in the deposition hole is -41 

MPa (Figure 6-1a). Initial porosities are shown in Figure 6-1d. The initial temperature is 

10.5 
o
C throughout the domain modeled.  

A fundamental issue in modeling was to determine relevant thermal boundary 

conditions so that the details of THM-behavior could be captured by defining proper 

near-field thermal boundaries. This was already discussed in Chapter II and implies that 

appropriate boundary conditions for thermal dissipation are considered for the top and 

bottom boundary conditions. 
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Figure 6-1. Initial and Boundary conditions. (a)  Initial pressure and temperature, (b) 

mechanical boundary conditions, (c) prescribed pressure and (d) initial porosity 

(a) (b) 

(c) 
(d) 
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6.4. THM Analysis Including Gap Effect 

In the analyses discussed in this chapter, i.e. cases A and B, a 10 mm gap has been 

considered between the bentonite-buffer and the canister. The properties of the gap have 

been described in section 6.1. This gap closes due to swelling of clay. The gap has been 

simulated by means of an air element, which is able to close completely as the bentonite 

swells. The presence of this air gap has effects on the thermal, hydraulic and mechanical 

behavior of buffer. Table 6-5 and Figure 6-2 show the different representative points 

considered for comparison of the results for the different cases. 

 

 

 

Figure 6-2. Details of the geometry and mesh and representative nodes for 

representation of results. 

697

818

481 480 478 472
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Table 6-5. Representative points for materials. 

Materials Point considered 

Backfill 818 

Bentonite disc 697 

Gap canister side 481 

Gap bentonite ring side 480 

Bentonite ring 478 

Pellets 472 

6.4.1. Model A - Permeability of rock 10-18 m² 

The design criteria for the repository establish that the maximum allowed temperature 

for bentonite buffer is 90 ºC. According to the model predictions of the model that is 

based on an adopted disposition of canisters, the maximum temperature is reached after 

about 30 years and it is about 80 ºC.  

 

 
Figure 6-3.  Evolution of temperature Temp 30 years 
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Figure 6-4 shows the effect on temperature of the existing air gap between the canister 

and the bentonite buffer. At both sides of the gap, temperature is not the same until a 

certain time. As the gap closes, its thermal conductivity increases. Actually, the contact 

between the two sides of the gas will produce in reality a high effective conduction (but 

this is not accounted by the model). Although the model does not account for the 

contact, it is observed that as the gap closes and saturates, the temperature differences 

vanish. 

The insulating capacity of the gap produces an increment of the temperature in the 

canister at early times. Since the increment of temperature takes place before the 

temperature peak, the maximum temperature reached during all the calculation is 

practically not altered by the presence of the gap (a comparison of cases is carried out 

latter). 

 

 
Figure 6-4. Evolution of liquid pressure 3 years 
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Figure 6-4 shows the evolution of liquid pressure at representative points of the disposal 

materials. High suction values (i.e. low water pressure) are observed close to the 

canister resulting from temperature increment induced by the heat generation through 

the canister. The temperature increase produces higher vapor content in the gas phase 

which leads to vapor diffusion from hotter to colder regions. In fact, the representative 

point for the air gap at the side of canister (it is a point on the canister) reaches a suction 

value of 95 MPa. The reached value highly depends not only on temperature but also on 

the rock hydraulic conductivity, and in general on the thermo-hydrological conditions.  

 

 

Figure 6-5.  Evolution of degree of saturation 3 years 
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causes the initial desaturation of bentonite buffer. The effect of air gap is considerable 

during the first year until the full saturation of the bentonite is achieved; because the gap 

permits lower water pressures to develop near the canister. This is due to the low 

capillarity capacity of the gap. So, water in the gap is not subjected to large capillary 

forces as it happens in the buffer, and therefore the water pressure decreases to very low 

values. In other words, the presence of the gap permits a much higher drying of the 

vicinity of the canister during heating. As the gap closes it also saturates. 

 

 

Figure 6-6. Evolution of volumetric deformation 10 years 
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deformation is equal to 0.12. One of the requirements for the backfill material is to have 

a low compressibility in order to limit the upward movement; otherwise the swelling of 

the bentonite could be excessive thus leading the compromising hydraulic properties. 

Figure 6-7 shows the evolution of mean effective stress in the materials. Maximum 

effective stress reached in the bentonite buffer is equal to 9 MPa and tends to the 

swelling pressure of this material.  

 

 

Figure 6-7. Evolution of mean effective stress 10 years 
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The presence of the 10 mm air gap has an effect on the thermal, hydraulic and 

mechanical response of the disposal site. This effect diminishes as the bentonite buffer 

saturates, expands and causes the closure of the gap.  

Figure 6-8 and 6-9 show the evolution of the gap closure. In 4 years, horizontal 

displacement reaches a value of 10 mm and this implies that the gap can be considered 

totally closed. The closure time strongly depends on swelling of the buffer as it 

saturates. The kinetics of water supply will basically be controlled by the permeability 

of the host clay formation. Hence, hydraulic conductivity of rock has an important role 

to play on gap closure time. 

 

 

 

Figure 6-8. Horizontal displacements in the air gap element 

3 years 
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Figure 6-9. Illustration of gap closure. It is worth to remark that the amplification factor 

for displacement in this figure is equal to 1. 

 

The model described in this section considers a host rock permeability of 10
-18

 m
2
. In 

the following section, the same case is considered but the permeability of the host rock 

is decreased by one order of magnitude. This must imply a slower saturation rate. 

Canister
Air gap

Bentonite Ring
2.13 years 3.13 years 
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6.4.2. Model B - Permeability of rock 10
-19

 m² 

In this case, the rock hydraulic conductivity is reduced 10 times as compared with case 

A. The rest of conditions and materials parameters are kept same as Model A. 

 

 

 

Figure 6-10. Evolution of temperature 

30 years 

 

Figure 6-10 shows the effect on temperature of the existing air gap between the canister 

and the bentonite buffer. The maximum temperature is reached in the buffer bentonite 

and it is less than 80 ºC. No significant temperature variations are observed. This is 

normal as the thermal problem received small influence of the hydraulic one. The main 

couplings are heat advection and thermal properties varying with water content. Heat 

advection is small in this problem as the materials have, in general, low hydraulic 

conductivity. The thermal conductivity variations with water content may induce some 
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differences as the hydration process is delayed. However, thermal conductivity 

variations of a porous material with respect to water content are very moderate.  

 

 

 

Figure 6-11.  Evolution of liquid pressure 3 years 

 

 

The evolution of liquid pressure at representative points of the disposal materials is 

shown in Figure 6-11. High suction values are observed close to the canister. Suction on 

the canister reaches a maximum value of about 100 MPa after 1 year of the deposition 

of the canister. At early times large difference in liquid pressure is observed between the 

two sides of the air gap. In fact, suction at the selected point of the gap element close to 

the bentonite ring is lower compared to other side close to the canister.  
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Figure 6-12. Evolution of degree of saturation 

3 years 

 

In this case B, as the rock is less permeable than in case A, the water supply from rock 

requires more time. Hence, saturation of bentonite is delayed (Figure 6-12). Saturation 

of the bentonite buffer causes the material to swell and as a result the backfill material 

compresses (Figure 6-13). 
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Figure 6-13. Evolution of volumetric deformations 10 years 

 

 

Figure 6-14 shows the evolution of mean effective stress in the materials. Maximum 

mean effective stresses reached in the bentonite ring are in the range of 9-10 MPa. 

As for the previous case, the presence of the 10 mm air gap has an effect on the thermal, 

hydraulic and mechanical response of the disposal site. This effect diminishes as the 

bentonite buffer saturates, expands and causes the closure of the gap.  
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Figure 6-14. Evolution of mean effective stresses 10 years 

 

 

Figures 6-15 and 6-16 show the evolution of the closure of the gap. It can be seen that 

the gap is totally closed after 5 years that is 1 year later than for the previous case 

(Model A). This is a direct consequence of the lower permeability of the host rock 

considered in this case. 
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Figure 6-15.  Evolution of horizontal displacements 

 

5 years 

 

 

 

Figure 6-16. Simulation of gap closing 
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6.4.3. Model C Permeability of rock 10
-19

 m² (without gap) 

It has been indicated in the preceding sections that the gap had an effect on the thermo-

hidro-mechanical processes. In this section, quantification is done by calculation of 

Model C, which is equal to Model B except for the air gap which is not
 
considered now. 

In practice, the gap elements have been changed in order to have the properties of the 

buffer. 

 

 

Figure 6-17. Evolution of temperature 30 years 

 

Figure 6-17 shows the evolution of the temperature for the different materials. The 

maximum temperature in the bentonite buffer is reached after 30 years and is less than 

80 ºC. As there is no air gap, the selected points on both side of the gap element evolve 

in the same way. The temperature in the canister shows the effect of saturation of the 

buffer and the associated change in thermal conductivity. The water saturation of a 
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porous material implies an increase in thermal conductivity because the water is more 

conductive than the air. 

 

 

 

Figure 6-18. Evolution of liquid pressure 

3 years 

 

 

Figure 6-18 shows the evolution of the liquid pressure with time. Maximum suction is 

obtained close to the canister and reaches a value of 50 MPa. Although the desaturation 

of bentonite buffer takes place due to heat generation, there is no significant difference 

at the selected nodes on both sides of the gap element in comparison to Models A and 

B.  
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Figure 6-19.  Evolution of degree of saturation 

3 years 

 

 

Strong heat generation causes to desaturation close to canister surface as it is depicted in 

Figure 6-19. Reaching to full saturation takes about 50 years.  In Chapter 5, it has been 

discussed the parameters that have effect on degree of saturation. Hydraulic 

conductivity of rock is one of the most important parameter relating to saturation of 

bentonite buffer and backfill whereas effect of gap is not so important relatively.
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Figure 6-20.  Evolution of volumetric deformations 

10 years 

 

 

As for the previous cases, saturation of the bentonite buffer causes the material to swell 

and as a result the backfill material compresses (Figure 6-20). In fact, no significant 

differences are observed in terms of volumetric deformations of the bentonite disc and 

the buffer between this model and the other two models that have air gap.  
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Figure 6-21 shows the evolution of mean effective stress in the materials. Maximum 

mean effective stresses reached after 10 years is around 9MPa. 

 

 

 

 

Figure 6-21. Evolution of mean effective stresses 

10 years 

 

 

 

0

1

2

3

4

5

6

7

8

9

10

0.01 0.1 1 10 100 1000

M
e

a
n

 E
ff

e
c
ti

v
e

 S
tr

e
s

s
 (

M
P

a
)

Time (y)

Pellets

bentonite ring

Canister wall

Bentonite disc

Backfill



175 

 

No change of the thickness of the gap element is observed (Figure 6-22) 

 

 

   

Figure 6-22. Simulation of planning gap element closure 
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6.4.4. Comparison of the results of 3 Models 

 

In this section, comparison among the 3 cases presented is included. The permeability 

of the rock considered in the different models is included in Table 6- 6 together with the 

estimated time for gap closure. 

Table 6-6. Models for comparative study 

Models A B C 

Rock Permeability 10
-18

 m
2 

10
-19

 m
2
 10

-19
 m

2
 

Initial pressure of materials -41 MPa -41 MPa -41 MPa 

Gap Closing time (approx..) 2 years 4 years No air gap 

 

For the models A, B and C, the results are presented in Figures 6-23, 24 and 25.  

The temperature evolution is not significantly different for the points in the buffer and 

pellets. However, the temperature in the canister shows a different response depending 

on the presence of the gap and the value of the rock permeability. The maximum 

temperature is not influenced but the evolution at short times is different due to the air 

gap.  

Regarding water pressure, the most important differences occur near the canister. 

Permeability of the rock affects the time evolution of pressure, at least for the values of 

permeability considered here. The time is actually controlled by the combination of 

rock, buffer and backfill permeabilities. For higher permeabilties of the rock, the time 

control will be dominated by the lower permeability of the buffer.  

Effective stress evolution is controlled by the evolution of water pressure. Therefore, the 

earlier hydration that takes place when the rock permeability is higher induces a faster 

effective stress development. However, the maximum effective stress is not 

significantly different, except for the different distribution of suction in the buffer and 

backfill which may induce a different strain and stress spatial and temporal variations.  
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Figure 6-23. Comparison of models in term of temperature 
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Figure 6-24. Comparison of models in term of liquid pressure. 
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Figure 6-25. Comparison of models in term of mean effective stress 
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6.5. Model with Final Mesh and Geometry 

In this section of the thesis, a coupled THM analysis of a deposition tunnel including 

the gap element has been performed considering an updated geometry and a more 

refined mesh (Figure 6-26). The same properties of the different material are used. 

Table 6-7 summarizes some basic properties of the bentonite buffer and the the backfill.  

  

Figure 6.26. Mesh, geometry and materials of model 
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Table 6-7. Initial density and porosity of buffer and backfill 

Materials Solid density 

(kg/m
3
) 

Initial porosity  Initial dry density 

(kg/m
3
) 

Buffer bentonite 2779 0.388 1700 

Backfill 2781 0.368 1757 

Rock permeability is chosen as 1e-20 m
2
.In the analysis, it has been assumed axis-

symmetric conditions. An initial suction of 5 MPa is imposed along the rock boundaries 

to simulate that after excavation, the drift and the deposition hole walls undergo certain 

drying. Table 6-8 and Figure 6-27 show the different representative points considered for 

comparison of the results. 
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Figure 6.27  Represantatives nodes for materials. 

 

 

Table 6-8. Representative nodes for materials 

Materials Point considered 

Backfill 1233 

Bentonite disc 1033 

Gap canister side  727 

Gap bentonite ring side 725 

Bentonite ring 721 

Pellets 716 
 

 

 
 

Figure 6-28.Evolution of temperature 

30 years 
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Figure 6-28 shows the evolution of the temperature for the different materials. The 

Maximum temperature remains under 90 ºC as in the preceding cases A, B and C. 

However, the increase of temperature due to the presence of the gap, takes place later 

because hydration evolves in a slower way. This implies that the maximum temperature 

increases somewhat, still remaining under the maximum design value of 90 
o
C.   

 

 

 

Figure 6-29. Evolution of liquid pressure 

30 years 

 

 

Figure 6-29 shows the evolution of the liquid pressure with time. Maximum suction is 

obtained close to the canister and reaches a value of 90 MPa. A big difference is 

observed at the selected nodes on both sides of the gap element. 
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The evolution of the dry density of both the backfill and the buffer are shown in Figure 

31. The dry density requirement for the buffer is 1950 kg/m
3
 according to working 

report 2088-88 “Finite Element Modeling of Deformation of Unsaturated Backfill Due 

to Swelling of the Buffer”. The plots show that dry density of buffer and backfill does 

not exceed this reference value.  

 

 
 

Figure 6-30. Evolution of dry density 

30 years 

 

As for the previous cases, saturation of the bentonite buffer causes the material to swell 

and as a result the backfill material compresses (Figure 6-30). Three points have been 

considered in the interface of the buffer and the backfill (Figure 6-31). A vertical 

displacement of 16 cm has been calculated at node 1213. Vertical displacements reduce 

in the direction of the arrow represented in the Figure 6-31. 

 

1700

1750

1800

1850

1900

1950

0.01 0.1 1 10 100 1000

D
ry

 D
e
n

s
it

y
 k

g
/m

³

Time (y)

Backfill

Bentonite ring



185 

 

 

 

 

 

 

 

 

 

Node 1114 :  Interface point 1 

Node 1163: Interface point 2 

Node1213: Interface point 3 
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Figure 6-31. Evolution of vertical displacements 

 

30 years 
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Figure 6-32 shows the evolution of mean effective stress at the selected points. A 

maximum mean effective stress reached is around 9.2MPa. Stresses increase during the 

hydration process and then remain stable as the material is fully saturated. 

 

 

 

 

Figure 6-32. Evolution of mean effective stresses 

30 years 

 

Figure 6-33 shows desaturation of points close to canister. The effect of air gap can be 

seen as well. A sharp desaturation is observed at the point of the gap element close to 

the canister. In this case achieving full saturation of all buffer components takes about 

50 years. 

Figure 6-34 shows the evolution of the closure of the gap. It is observed that 20 years 

are needed for the gap to close totally. When the gap closes, horizontal displacements 

do not reduce anymore and effective horizontal stresses keep increasing after closure of 

the gap (Figure 6-35). 
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Figure 6-33. Evolution of degree of saturation 

30 years 

 

Desaturation of buffer takes place due to strong heating of canister. Time need to full 

saturation of buffer depends on water supply from the rock. As it has been discussed in 

previous sections, rock intrinsic permeability is a crucial parameter for the saturation of 

the buffer.  Figure 6-33 demonstrates evolution of saturation degree of representative 

points considered for materials. It can be seen that 
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Figure 6-34. Horizontal displacements in the air gap element 30 years 
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Figure 6-35. Horizontal effective stress – horizontal displacement relation in air gap. 
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The model results show that rock permeability has an effect on gap closing time. Gap 

closure can be demonstrated by the horizontal displacement achieved on the buffer wall 

touching to canister. 

The maximum temperature does not reach 90 ºC of maximum allowed design 

temperature in any of the cases presented.  

Higher suction values close to buffer are observed for the models including air gap. The 

reason is that the gap has low retention capacity. This high suction does not imply 

significant changes on the evolution of pressures in the clay buffer and backfill as 

shown when the model with gap was compared with the model without gap. The 

evolution of stresses induced by swelling was similar as well. With regard to 

temperature, the gap induces an increment of the temperature in the canister. 

It can be said that the presence of the gap does not affect significantly the buffer and 

backfill and only induces an increment of temperature of the canister smaller than 10 

degrees.   

Desaturation of buffer takes place induced by the heating but the effect of the gap on the 

desaturation of the buffer is not relevant because the total volume of the gap is small 

compared with the volume of the barrier. Therefore, even a large desaturation of gap is 

observed, it will re-saturate easily as its volume is small and the large suction developed 

induces an efficient gradient that attracts water. Closure reduces even more its volume 

and leads to negligible differences.  

Total stress increases as the buffer hydrates. Effective stress also increases. As the 

buffer swells, buffer –backfill interface moves upwards. Total stress is the sum of the 

swelling pressure and the water pressure. For this reason, the total stress calculated is 

higher than the swelling pressure. Dry density of buffer and backfill is affected by the 

porosity changes.  Swelling of these materials will cause to loss of dry density. 
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7. CONCLUSIONS  

In this thesis THM (thermo-hydro-mechanical) modeling of a deposition tunnel in a 

under construction nuclear waste repository is presented.   

Firstly thermal calculations have been carried out in order to set up appropriate thermal 

boundary conditions. Secondly, laboratory tests were modeled in order to determine the 

BBM parameters of buffer and backfill. Finally, THM calculations were performed 

considering different effects and geometries (for example air gap between canister and 

buffer). 

Maximum temperature, time need to full saturation, homogenization and swelling 

pressure of bentonite buffer and displacements occurred at the interface of buffer and 

backfill are the main interest of the thesis. 

 Table 7.1 Evolution of important parameters 

Analyzed parameters Reached values 

Maximum temperature in buffer ~ 82 ºC 

Time to reach full saturation of buffer ~ 50 years 

Achieved maximum suction in buffer 85 MPa 

Dry density of buffer 1700-1750 kg/m
3
 

Swelling pressure of buffer 6-9 MPa 

Displacements at the interface of buffer-

backfill 

10 -16 cm 

  

The most important results have been obtained in the thesis for buffer material (in the 

final geometry where buffer disc, buffer ring, backfill, pellet, rock and air-gap are 

considered as the components of deposition tunnel) is summarized in the Table 7.1. 

These results are in the range of safety requirement for buffer which has been explained 

in the second chapter.  

THM response of backfill, pellet, rock and air-gap has been presented in details. 

However, laboratory tests for these materials have been going on and therefore a further 

study is to be performed to validate BBM parameters used for these materials. 
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Annex I. Description of basic THM formulation 

A brief description of CODE_BRIGHT is included here. The reader may find more 

details in the references given below.  

AI.1. General features of computer code 

 

Name of code: CODE_BRIGHT 

Method used: FEM 

Dimensionality; 1D, 2D & 3D 

Processes: Coupled THM 

Previous application cases: CATSIUS CLAY, BAMBUS I and II, FEBEX I and II, 

RESEAL I and II, HE-B, EBS, NF-PRO, Prototype, TBT, DECOVALEX-III, 

THERESA 

 

AI.2. Some features important to THM modeling of repositories 

 

The code has options that allow to solve uncoupled or coupled problems, for instance, 

M, H, T, HM, TM, TH, and THM. The types of analyses can be 1D (uni-axial confined 

strain and axisymmetric), 2D (plane strain and axisymmetric) and fully 3D. The 

constitutive laws are defined by a set of parameters with alternative types of relations 

for different application cases.   

 

The types of boundary conditions are: 

- Mechanical problem: forces and displacement rate in any spatial direction. 

- Hydraulic problem: mass flow rate of water and air prescribed and liquid/gas pressure 

prescribed. 

- Thermal problem: heat flow rate prescribed and temperature prescribed. 

 

The convergence criteria are defined by tolerances for absolute and relative error 

independent for each unknown, and tolerance for residual convergence of each problem 

(mechanical, hydraulic, etc.). 

 

The output options include spatial distribution of variables at user defined time points, 

and time evolution of variables at user defined space points 

 

AI.3. Mathematical representation of mechanical processes 

 

AI.3.1 Equations of motion 

 

The equation of equilibrium of stresses, the mass balance and the energy balance are: 

 
   b 0     
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(1) 

 

Where:  
NOTATION: 

 

: porosity b: body forces, 

: density : mass fraction, 

j: total mass flux : mass content per unit volume of 

phase,  

i: non-advective mass flux E: specific internal energy 

q: advective flux ic: conductive heat flux 

u: solid displacements jE: energy fluxes due to mass motion 

: stress tensor  

Sl, Sg: degree of saturation of liquid and gas phases i.e., fraction of 

pore volume occupied by each phase. 

Superscripts w and a refer to water and air, respectively  

Subscripts s, l and g refer to solid, liquid and gas phase, respectively. 
 

 

 
(Note: Bold non italic symbols mean vector or tensor) 

 

AI. 3.2 Mechanical Constitutive models 

 

The viscoplasticity is assumed for bentonite as unsaturated soils based on Basic 

Barcelona Model, and linear elasticity behaviour is assumed for other materials. 

 

The strain terms are defined as: 

 
e VP ε ε ε ;         1;  e stress thermal suction stress   ε ε ε ε ε D σ  

 















σ
ε

G
FVP )(  (Perzyna model)                          (2) 

 

where e
ε  is the elastic strain tensor (with stress, temperature and suction terms), D  the 

elasticity tensor, 
vp
ε  the viscoplastic strain rate tensor,  is the viscoplastic parameter, 

 F  the plastic flow function, F  is the yield surface, and G  is the plastic potential 

function.    0

N
F F F   F0 is a reference stress to normalise F, N is a parameter of 

the model, and the Makulay brackets are used.  

 

The model uses the effective stress and suction as state variables. Effectives stress is 

defines as:  ' max ,g lP P   .  
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The thermal expansion of materials is considered. The parameters of the constitutive 

laws change with temperature and suction. The elastic terms in equation (2) related to 

temperature and suction are represented by a nonlinear function as in BBM.  

 

Integration of (2) gives the stress increments as a function of the strain increments, 

temperature increments and suction increments.  

 

The triaxial yield surface and plastic potential functions to be used in (2) are given by: 

 

        0,, 22  pspsppMqsqpF os
   (4) 

 

        0,, 22  pspsppMqsqpG os    (5) 

 

where p  is the net average stress, q  is the deviatoric stress, s  is the matrix suction, M  

is the slope of critical state shear strength,   is the parameter that defines the non-

associative of plastic potential (with  = 1.0 indicating an associate flow rule), 

sksp ss )( , and sk  the material parameter that controls the increase in cohesion 

with suction, respectively. Parameter P0 represents the loading-collapse curve (LC), is 

given by  

 


















)(

)0(

* s

c

o
co

p

p
psp     (6) 

where cp  is the reference stress of the loading-collapse curve, *op  is the initial yield 

mean net stress, and  )0(  is the virgin compressibility for saturated condition, with 

)0(  being the slope of the virgin elastic compressibility for saturated condition and   

the slope of the unload-reload line. The parameter (s) is the volumetric compressibility 

index, written as 

 

        rsrs   exp10      (7) 

 

where r is the parameter that establishes the minimum value of the compressibility 

index for high values of suction, and  is the parameter that controls the rate of increase 

in stiffness with suction. 

 

The hardening law is given as 

 
 

p
v

o
o d

pe
dp 

 




0

1 *
*      (8) 

 

where e  is the void ratio, and 
p
vd  is the plastic volumetric strain increment. 
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AI-4.  Mathematical representation of fluid flow processes. 

 

The fluid flow is governed by Darcy´s law, given as 

 

 g
k

q 



 


 P

kr
           (9) 

 

3

2

2

3 )1(

)1( o

o
o







 


 kk      (10) 

 

where q is the flux vector along porous media, k  is the intrinsic permeability tensor at 

porosity  , ok  is the intrinsic permeability at porosity o , rk  is the phase relative 

permeability, r  is the viscosity of the fluid, P  is the pressure of the fluid, and   is 

the density of the fluid. Gravity is represented by the vector g. Parameters o  and   are 

defined as before.  

 

The fluid density changes with temperature and with pressure. The intrinsic 

permeability changes with porosity. The hydraulic conductivity is affected by fluid 

viscosity that changes with temperature. The density of water is calculated as:  

    0 0 0exp l lP P T T         where  is the fluid compressibility,  is a 

volumetric expansion coefficient; and the viscosity is calculated as:  

  exp / 273.15l A B T  A=2.1x10
-2 

MPa, B=1808.5 K
-1

. For the gas phase, the 

ideal gases law is used. 

 

Relative permeability is considered with the van Genuchten function or a power of 

degree of saturation:     
2

1/1 1 ;
n

r l l r lk S S k S   




  . A coupling of flow and 

deformations is achieved by Kozeny equation (10) and the thermal coupling is achieved 

considered the changes of fluid properties with temperature. However, primary 

couplings appear from balance equations.   

   

Advection of water and air in gas and liquid phases is calculated by means Darcy’s law. 

Non advective fluxes include diffusion and dispersion (see below), 

 

 

AI.5. Mathematical representation of heat transfer processes. 

 

The heat transfer process is governed by Fourier´s law, given as the heat flux vector: 

 

Tc  i       (11) 

with 
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 ldrylsat SS  1      (12) 

or 
ll S

dry
S

sat
 1)()(              (13) 

 

where ci  is the conductive flux vector of heat, T  is the temperature,   is the thermal 

conductivity, sat  is the thermal conductivity of the water-saturated porous medium, 

dry  is the thermal conductivity of the dry porous medium, and Sl is the degree of 

saturation.  

 

The heat is transport by liquid or gas flow and by vapour diffusion. The thermal 

conductivity is modified by liquid and gas flows that change the degree of saturation Sl 

in equation (12) and (13). The thermal conductivity changes with porosity that affects 

the saturation degree Sl as well.  

 

Conduction is one of the heat transfer process considered in Equation (1), the other are 

advection due to mass movements. 

 

 

AI.6. Some special features of the code 

 

AI.6.1 Retention curve 

 

For bentonite and rock interfaces, the hydraulic conductivity of the materials considered 

depends on their degree of saturation. The retention curve (Van Genuchten Model) is 
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


      (15) 

 

where Se is the degree of saturation of porous media, Sl is the degree of saturation of 

liquid, Srl is the residual degree of saturation, Sls is the maximum degree of saturation, 

Pg is the gas pressure, Pl is the liquid pressure,  is the shape function coefficient for the 

retention curve, Po is the pressure of air entrance at a reference temperature, and o is 

the surface tension at a temperature at which Po was measured.  is the surface tension 

at a temperature T. (Pruess,1987).  
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AI.6.2 Molecular Diffusion  

 

The molecular diffusion is governed by Fick’s law 

 

  iii DS    Ii     (16) 

 

where i

i  is the non-advective mass flux vector,   is the porosity of porous media,   

is the density of the phase , S  is the degree of saturation of the phase  , iD  is the 

diffusion coefficient, i

  is the mass fraction
(i)

, respectively. I is the identity tensor.  

The superindex i  refers to species and the subindex   refers to phases.  

 

The diffusion coefficient of vapour is given by 

 

 273.15
n

vapor v

g

g

T
D D

P

 
   

 
 

     (17) 

 

where   is the tortuosity and vD  is the coefficient of diffusion, where D
v
 = 5.9x10

-6 

m
2
/s/K

-n
Pa. The typical value for n is 2.3. 

 

The diffusion coefficients of dissolved salt and air are given by 

 

exp
(273.15 )

air or solute

l

Q
D D

R T

 
   

 
    (18) 

where R  is the ideal gas constant, D = 1.1x10
-4

 m
2
/s, and Q =24530 J/mol are model 

parameters.  

 

For bentonite and rock interfaces, the vapour pressure depends on temperature, liquid 

and gas flow through suction changes (psychometric law). 

 

Mass fractions and densities of the gas phase are calculated using ideal gases law. 

Vapour pressure as a function of temperature and suction is obtained as: 

     , ,v c v cP T P P T F P T   

 
5239.7

136075exp
273
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c w
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l

P M
F P T

R T 
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(19) 

Where Pc capillary pressure, Mw (0.018 kg/mol) is the molar mass of water, T is the 

temperature absolute and R is the gas constant (8.31 J/mol/K). 

 

AI. 6.3 Mechanical Dispersion. 

 

The mechanical dispersion is governed by Fick’s law, given by 

 

 'i i  i D          (20) 
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where i

i  is the non-advective mass flux vector, with superindex i  refers to species and 

the subindex   refers to phase,   is the density of phase  , '

D  is the mechanical 

dispersion tensor and i

  is the mass fraction, respectively. 

 

Note that diffusion and dispersion have similar mathematical form (based on Fick’s 

law) and can be added up together in a single nonadvective flux vector (Eq 16 and 20). 
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