Resumen

El presente proyecto pretende diseñar la instalación de climatización de un hotel en el núcleo urbano de la ciudad de Lleida con la finalidad de ofrecer las condiciones de confort deseadas. Es necesario mencionar que el hotel se construirá rehabilitando las ruinas del antiguo convento del Roser en el casco antiguo de la ciudad, hecho que ha influenciado fuertemente en la toma de algunas decisiones.

Con la voluntad de conseguir un sistema de climatización óptimo para el edificio, buscando un compromiso entre estética, técnica y coste, se realiza un estudio detallado de las condiciones que influyen en el diseño. El edificio se divide en varias zonas en las que se incluyen comedores, salas de conferencias, zonas comunes, despachos y habitaciones. Para todas se realiza un estudio detallado y un estudio global del edificio.

En la memoria se presentan las condiciones iniciales del proyecto, el método de diseño, los cálculos realizados, el dimensionado de conductos y elementos de difusión, la elección de elementos de ejecución (entre ellos la maquinaria necesaria, elementos de difusión, etc.), el impacto medioambiental y coste de la solución diseñada.

Como conclusión a los cálculos realizados y a las reuniones con el arquitecto, la empresa constructora y la propiedad del hotel, se decide implantar en el hotel un sistema de climatización con la producción térmica centralizada en la planta bajo cubierta del edificio. allí se instala una planta enfriadora mono-tornillo que funciona con refrigerante R-410 (producción de agua fría), una caldera de alta eficiencia que funciona con gas natural (producción de agua caliente) y un sistema integral de micro-cogeneración como sistema de alta eficiencia energética que produce la cantidad necesaria de ACS para todo el hotel. El sistema de micro-cogeneración incluye un kit de condensación de humos para aumentar su rendimiento.

Desde la central térmica se reparte el agua por las unidades de tratamiento de aire ubicadas en las diferentes zonas del hotel. Mediante sistemas de conductos debidamente dimensionados, se realiza una correcta distribución de aire tratado en los locales así como una aportación de aire renovado exterior y una extracción de aires viciados.

Al ser este un proyecto firmado antes del año 2007 el reglamento aplicado es la versión anterior del RITE (versión de 1998) por ello no se presenta la opción de realizar recuperación de calor.
Sumario

1 GLOSARIO ... 5
 1.1 Glosario general de términos... 5
 1.2 Siglas.. 5
 1.3 Glosario de términos de refrigeración y psicometría 6
 1.4 Glosario término aire.. 6

2 PREFACIO ... 7
 2.1 Origen del proyecto.. 7
 2.2 Motivación .. 7
 2.3 Requerimientos previos .. 7

3 INTRODUCCIÓN ... 9
 3.1 Objetivos del proyecto... 9
 3.2 Abaste del proyecto... 9

4 CONDICIONES DE PARTIDA .. 11
 4.1 Estudio del edificio .. 11
 4.1.1 Ubicación... 11
 4.1.2 Descripción de la estructura interior 12
 4.1.3 Condiciones interiores.. 13
 4.2 Condiciones exteriores ... 14
 4.3 Descripción de cerramientos ... 14
 4.4 Ventilación... 15
 4.5 Comentarios generales .. 16

5 CÁLCULO DE CARGAS TÉRMICAS 17
 5.1 Ganancias térmicas instantáneas...................................... 18
 5.1.1 Calor sensible absorbido por radiación a través de ventanas ... 18
 5.1.2 Calor sensible absorbido por transmisión 18
 5.1.3 Calor interno... 20
 5.1.4 Calor aire exterior.. 22
 5.2 Cargas de refrigeración .. 23
 5.2.1 Factor de calor sensible y factor de bypass 23
 5.3 Cargas de calefacción ... 24
 5.4 Estudio de los resultados... 24
 5.4.1 Cargas máximas de cada local 25
 5.4.2 Simultaneidad .. 26
 5.5 Análisis cargas habitaciones.. 26
 5.5.1 Tratamiento aire exterior .. 26
5.5.2 Potencia total de la instalación ... 28

6 EJECUCIÓN Y SELECCIÓN DE MAQUINARIA ___________________________ 31
6.1 Circuito primario .. 31
6.2 Circuito secundario .. 32
 6.2.1 Comedores .. 32
 6.2.2 Salas polivalentes .. 33
 6.2.3 Zonas comunes ... 33
 6.2.4 Despachos .. 35
 6.2.5 Aseos ... 35
 6.2.6 Almacenes .. 35
 6.2.7 Habitaciones ... 36
6.3 Distribución de aire ... 36

7 CÁLCULO DE REDES ___ 39
7.1 Red de conductos de aire ... 39
7.2 Red de tuberías ... 40
 7.2.1 Elementos de regulación hidráulica ... 42

8 CONTROL DE LA INSTALACIÓN __ 45
8.1 Control de la producción .. 45
8.2 Control de las UTA ... 45
8.3 Habitaciones ... 46

9 IMPACTO MEDIOAMBIENTAL __ 47
9.1 Agentes contaminantes .. 47
9.2 Contaminación acústica ... 47
9.3 Aislamiento térmico .. 48
9.4 Impacto visual .. 48
9.5 Sistema micro-cogeneración integrado ... 48

10 MEDICIONES __ 49
10.1 Tabla de mediciones .. 51

11 OFERTA ___ 67

12 ESTUDIO DE ALTERNATIVAS __ 69
12.1 Suelo radiante en zonas comunes ... 69
12.2 VRV para las habitaciones .. 69
12.3 ACS mediante placas solares ... 69
12.4 Recuperación de calor ... 70
1 GLOSARIO

1.1 Glosario general de términos

Conducción: Transferencia de energía provocada por un gradiente de temperatura dentro de substancias homogéneas.

Radiación: Transferencia de energía mediante el fenómeno de ondas electromagnéticas. Difiere de la conducción y la convección en que no requiere medio de transmisión.

Diferencia equivalente de temperatura (\(\Delta T_{eq}\)): Diferencia entre las temperaturas de aire interior y exterior que resulta del flujo calorífico total a través de la estructura originado por la insolación variable y la temperatura exterior.

Psicrometría: Ciencia que trata de las propiedades termodinámicas del aire húmedo y del efecto de la humedad atmosférica sobre los materiales y sobre el confort humano.

1.2 Siglas

RITE: (Reglamento instalaciones térmicas de los edificios) Reglamento que establece las condiciones que deben cumplir las instalaciones destinadas a atender la demanda de bienestar térmico e higiene a través de las instalaciones de calefacción, climatización y agua caliente sanitaria, para conseguir un uso racional de la energía.

CTE: (Código técnico de la edificación) es el marco normativo que establece las exigencias que deben cumplir los edificios en relación con los requisitos básicos de seguridad y habitabilidad establecidos en la Ley 38/1999 de 5 de noviembre, de Ordenación de Ordenación de la Edificación (LOE).

ASHRAE: American Society of Heating, Refrigeration, and Air-Conditioning Engineers

UTA: (Unidad de Tratamiento de Aire) Maquina en la cual se trata el aire para climatizar los locales haciéndolo pasar a través de baterías de tubos de agua.

ACS: Agua caliente sanitaria.

PVP: Precio de venta al público
1.3 Glosario de términos de refrigeración y psicometría

<table>
<thead>
<tr>
<th>TÉRMINO</th>
<th>DEFINICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSH</td>
<td>CALOR SENSIBLE LOCAL</td>
</tr>
<tr>
<td>RLH</td>
<td>CALOR LATENTE LOCAL</td>
</tr>
<tr>
<td>RTH</td>
<td>CALOR TOTAL LOCAL</td>
</tr>
<tr>
<td>ERSH</td>
<td>CALOR EFECTIVO SENSIBLE LOCAL</td>
</tr>
<tr>
<td>ERLH</td>
<td>CALOR EFECTIVO LATENTE LOCAL</td>
</tr>
<tr>
<td>ERTH</td>
<td>CALOR EFECTIVO TOTAL LOCAL</td>
</tr>
<tr>
<td>OASH</td>
<td>CALOR SENSIBLE AIRE EXTERIOR</td>
</tr>
<tr>
<td>OALH</td>
<td>CALOR LATENTE AIRE EXTERIOR</td>
</tr>
<tr>
<td>OATH</td>
<td>CALOR TOTAL AIRE EXTERIOR</td>
</tr>
<tr>
<td>TSH</td>
<td>CALOR SENSIBLE TOTAL</td>
</tr>
<tr>
<td>TLH</td>
<td>CALOR LATENTE TOTAL</td>
</tr>
<tr>
<td>GTH</td>
<td>GRAN CALOR TOTAL</td>
</tr>
<tr>
<td>RSHF</td>
<td>FACTOR DE CALOR SENSIBLE LOCAL</td>
</tr>
<tr>
<td>ESHF</td>
<td>FACTOR DE CALOR SENSIBLE EFECTIVO</td>
</tr>
<tr>
<td>GSHF</td>
<td>FACTOR DE CALOR SENSIBLE TOTAL</td>
</tr>
</tbody>
</table>

Tabla 1.1 Términos de refrigeración

Temperatura seca: Temperatura termómetro ordinario.

Temperatura húmeda: Temperatura marcada por un termómetro cuyo bulbo está cubierto por una mecha húmeda y expuesto a una corriente rápida de aire.

Temperatura de rocío: Temperatura a la cual empieza la condensación de humedad cuando el aire se enfria.

HR: (Humedad Relativa) Relación entre la presión del vapor de agua contenido en el aire, y la presión del vapor saturado a la misma temperatura.

Volumen específico: m³ de aire húmedo que corresponden a un kg de aire seco.

\(T_{app} \): Temperatura en la cual se corta la consecución de la línea de ESHF con la curva se saturación del diagrama psicométrico.

BF: (Factor de Bypass) Facto que se usa como índice para definir la cantidad de aire que pasa por la batería en las UTA’s sin ser tratado.

\(\omega \): Humedad Absoluta

1.4 Glosario término aire

AE: (Aire exterior) Aire exterior aportado a las zonas climatizadas

Plenum: Volumen de aire a baja presión (ligeramente sobre la atmosférica) en el que el aire circula a baja velocidad.
2 PREFACIO

2.1 Origen del proyecto

Este proyecto nace de las prácticas como becario en la empresa TECNIFRED S.A. Inicialmente, el objetivo de estas prácticas en empresa no era el de realizar el proyecto del final de carrera sino para compatibilizarlas con el mismo. Posteriormente, llegó la posibilidad para TECNIFRED S.A. de realizar el proyecto de climatización de un futuro hotel en Lleida, este proyecto llevaba tiempo firmado pero la propiedad no decidió llevar a cabo su ejecución hasta el año 2011. En ese momento se me ofreció la posibilidad de realizar este proyecto y así poner en práctica los conocimientos adquiridos durante mi formación así como durante mis prácticas.

2.2 Motivación

La principal motivación para de realizar este proyecto nace de las ganas de poner en práctica los conocimientos adquiridos durante el último curso de carrera y además introducir más conocimientos técnicos y aplicados ya que muchas veces todo lo aprendido en las aulas parece alejarse cada día más de lo que sucede realmente en las empresas y en el mundo industrial.

Me pareció motivadora la posibilidad de trabajar bajo la influencia de los feedbacks del arquitecto del hotel (por cuestiones estéticas de la instalación) y la necesidad de realizar una correcta gestión económica, buscando el óptimo compromiso entre ofertas de proveedores y características técnicas de los equipos instalados finalmente.

2.3 Requerimientos previos

Ha sido necesario conocer al detalle la estructura civil del futuro hotel ya que se sitúa en el antiguo convento del Roser del cual deben permanecer intactos muchos elementos como partes estéticas. Para ello se han realizado visitas al edificio.

También ha sido necesario tener conocimientos sobre climatización, termo-energética, además de conocimientos sobre gestión de proyectos (a nivel de planning, tiempos de entregas, actas, reuniones), conocer cómo gestionar las ofertas de los proveedores, y conocimientos sobre balances de costes y beneficios.
3 INTRODUCCIÓN

3.1 Objetivos del proyecto

El objetivo final del proyecto es presentar una oferta competitiva que permita llevar a cabo la climatización del hotel a un coste razonable y ofreciendo una solución satisfactoria. Para ello, es necesario diseñar un sistema de climatización para las zonas solicitadas. Este sistema debe ser capaz de proporcionar las condiciones de confort solicitadas por el cliente. En la memoria entregada se presentan las condiciones iniciales del proyecto, es decir, los puntos de partida para realizar el diseño, se presenta la metodología de cálculo y los cálculos, materiales necesarios para la ejecución del proyecto y como resultado final los costes y el presupuesto de ejecución de la instalación diseñada para presentar una oferta al cliente.

3.2 Abaste del proyecto

El proyecto pretende abarcar el diseño de la instalación de climatización del hotel definiendo todo el material necesario para la ejecución.

Algunas de las decisiones y elecciones de material no se han basado completamente en los argumentos técnicos ya que al trabajar en un proyecto con conversaciones constantes con el cliente sus peticiones tenían el peso decisivo sobre las elecciones. Esto repercute en algunos casos como por ejemplo en la elección de los elementos de difusión, paso de los conductos, la situación de las UTA’s, diseño de los circuitos de tuberías.

En este proyecto no se reflejan todos los aspectos tratados durante la toma de decisiones que afectaron al diseño de la instalación. Cabe mencionar algunos de ellos como por ejemplo:

a) Protección contra incendios
b) Decisiones finales en la elección de UTA’s y sus ubicaciones
c) Previsión del incremento de salas a climatizar con el consecuente aumento potencia térmica de la instalación

NOTA: El proyecto realizado ha sido finalizado fuera de TECNIFRED S.A. y fuera de las peticiones del cliente. Debido a la crisis, este proyecto ha sido parado parcialmente con lo cual las partidas para climatización fueron paradas. Durante el año 2012 solo estaba prevista un 40% del total de la obra con lo cual se solicitó a TECNIFRED S.A. detener el diseño de la instalación de climatización hasta aclarar ciertas situaciones internas a la empresa constructora.
4 CONDICIONES DE PARTIDA

4.1 Estudio del edificio

Este es el proyecto de restauración del convento del Roser de Lleida para la futura ubicación de un hotel de cuatro estrellas. A continuación se presentan la ubicación del edificio y algunas de sus características estructurales necesarias para los cálculos posteriores.

4.1.1 Ubicación

El edificio a rehabilitar está situado en el centro del núcleo urbano de Lleida:
En la Figura 4.2 se observan tres zonas diferenciadas de la estructura antigua del edificio. En el nuevo proyecto de rehabilitación, la zona marcada como **convento** será la futura ubicación de las habitaciones, en la zona **patio** se situará el patio central de las habitaciones con la claraboya superior. La zona de la **iglesia** servirá para albergar los comedores así como la recepción, una sala polivalente y las oficinas de recepción, administración y dirección.

4.1.2 Descripción de la estructura interior

El hotel se divide en las siguientes salas:

1. Comedores (5 comedores)
2. Salas polivalentes (2 salas polivalentes)
3. Zonas comunes (Patio, Pasillos, Recepción, Escaleras, Entradas y Gimnasio)
4. Despachos y oficinas (4 Despachos)
5. Aseos generales (2 aseos públicos)
6. Almacenes (2 almacenes para residuos y un almacén general)
7. Habitaciones (49 habitaciones dobles simples + 2 suites)

El edificio cuenta con tres plantas donde se ubican las habitaciones. En la planta baja se ubican los comedores, recepción y una de las salas polivalentes. El gimnasio del hotel se encuentra en la planta bajo cubierta, planta en la que también se ubica la central de producción térmica del edificio.

Todas las características estructurales necesarias para cada local se encuentran en el Anexo A, detalladas en una tabla.

NOTA: En las características estructurales del proyecto en ningún momento se habla de la cocina, la lavandería, SPA y la sala polivalente 3. Estas salas no entran dentro del proyecto inicial del hotel, ya que todavía no se había decidido si iban a ser climatizadas o si se iban a incluir en el edificio, pero se solicitó expresamente aumento final de la potencia de la planta enfriadora estimando un 50% superior a la carga calculada para la instalación.

Al ser un edificio rehabilitado, las dificultades para realizar una correcta climatización han sido muchas. Por exigencias arquitectónicas, las soluciones adoptadas para la distribución de aire y ubicación de las tuberías de agua no siempre han sido las deseadas pero siempre se ha intentado buscar la opción óptima, buscando el compromiso entre los criterios técnicos, estéticos y las posibilidades físicas y estructurales del edificio.
4.1.3 Condiciones interiores

Las condiciones interiores de confort deseadas son:

<table>
<thead>
<tr>
<th>Temp. Verano</th>
<th>HR</th>
<th>Temp. Invierno</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 °C</td>
<td>55 %</td>
<td>21 °C</td>
</tr>
</tbody>
</table>

Tabla 4.1 – Condiciones interiores de confort térmico

Estas son las condiciones aproximadas de confort térmico deseadas en el interior de las zonas climatizadas del edificio.

La Tabla 4.2 presenta brevemente las condiciones de proyecto que aparecen posteriormente en el diagrama psicométrico.

<table>
<thead>
<tr>
<th>C.I.</th>
<th>C.E. v</th>
<th>C.E. i</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>33</td>
<td>-5</td>
</tr>
<tr>
<td>17,9</td>
<td>26,1</td>
<td></td>
</tr>
<tr>
<td>50,21</td>
<td>77,94</td>
<td></td>
</tr>
<tr>
<td>0,85558</td>
<td>0,8918</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>10,2442</td>
<td>15,8452</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.2 – Condiciones interiores y exteriores en invierno y verano

Gráfico 4.1 – Diagrama psicométrico con las condiciones de proyecto
4.2 Condiciones exteriores

Las condiciones exteriores de proyecto, necesarias para realizar los cálculos de las cargas para la climatización del hotel se toman de la tabla 1 de condiciones de proyecto del Manual de aire acondicionado ([2], 1980). De ahí se obtiene:

<table>
<thead>
<tr>
<th>CIUDAD</th>
<th>(T_{\text{ext , verano}})</th>
<th>(T_{\text{h , ext , verano}})</th>
<th>(\text{HR}_{\text{ext}})</th>
<th>Oscilación. térmica diaria</th>
<th>(T_{\text{ext , invierno}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLEIDA</td>
<td>33 (^\circ) C</td>
<td>24,5 (^\circ) C</td>
<td>50 %</td>
<td>14 (^\circ) C</td>
<td>-5 (^\circ) C</td>
</tr>
</tbody>
</table>

Tabla 4.3 – Condiciones climáticas exteriores de proyecto

Estas son las condiciones exteriores de proyecto para Lleida, estas condiciones se consideran a las 15 h solar del mes de Julio.

Para optimizar el cálculo de las cargas, estas condiciones exteriores de proyecto se corregen mediante las tablas 2 y 3 del Manual ([2], 1980) que permiten calcular las condiciones exteriores de proyecto para diferentes meses y horas a las citadas anteriormente.

4.3 Descripción de cerramientos

Partiendo de las condiciones exteriores y las de las condiciones interiores deseadas es necesario conocer los locales a climatizar. Para ello a continuación se describen los tipos de cerramientos generales del edificio. Algunos de los cerramientos no habían sido completamente decididos en el momento de la solicitud del proyecto de climatización con lo cual se tomaron como referencia los casos más desfavorables para no correr el riesgo de diseñar una instalación que no cubriera las necesidades térmicas del edificio.

Seguidamente se definen los tipos de cerramientos de la estructura del edificio para la posterior obtención de los coeficientes de transmisión.

- **Muros exteriores:** Muros de ladrillo macizo ordinario de 300 mm de espesor mínimo con capa de revestimiento interior de yeso de 10 mm con enlucido ligero. El peso aproximado de este tipo de muro es de 600 \(kg/m^2 \) de muro (aprox.)
- **Tabiques interiores:** Tabique de doble pared (enlucido por las dos caras) con revestimiento por ambos lados de yeso de 10 mm.
- **Techos:** Techo exterior de tejas planas sobre panel de contra-placado de 8 mm con panel aislante de 25 mm con enlucido de arena. El peso aproximado de este tipo de techumbres es de 300 \(kg/m^2 \) de techo (aprox.)
- **Suelo (Pavimentos):** Suelos de parquet sobre superficie de cemento con enlucido ligero de 12 mm.
- **Ventanas y cristales:** Cristales doble sin protección.
Tras conocer la descripción de los cerramientos, se obtienen los coeficientes de transmisión global del Manual de aire acondicionado ([2], 1980). Estos coeficientes de transmisión serán aplicados a todo el edificio ya que son los casos más críticos. En el momento de realizar el proyecto todavía había decisiones a tomar en cuanto a paredes, muros y tabiques por ello se toman estos valores como globales para el edificio.

<table>
<thead>
<tr>
<th>Tipo de cerramiento</th>
<th>Tabla nº</th>
<th>K</th>
<th>Coeficiente de transmisión global $[\text{kcal/h \cdot m^2 \cdot ^\circ C}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro exterior</td>
<td>21</td>
<td>K_m</td>
<td>1,02</td>
</tr>
<tr>
<td>Tabique</td>
<td>25</td>
<td>K_r</td>
<td>1,66</td>
</tr>
<tr>
<td>Techo</td>
<td>28</td>
<td>K_T</td>
<td>0,93</td>
</tr>
<tr>
<td>Suelo</td>
<td>30</td>
<td>K_s</td>
<td>1,32</td>
</tr>
<tr>
<td>Ventanas</td>
<td>16</td>
<td>K_{v1}</td>
<td>0,98</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>K_{v2}</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Para el cálculo de los coeficientes de transmisión, se recomienda utilizar la tabla 4.4 que presenta los valores correspondientes.

Tabla 4.4 – Coeficientes de transmisión global

4.4 Ventilación

La Tabla 4.5 que aparece a continuación define los caudales mínimos según la norma UNE 100-011-91. Para cada local se instala el valor máximo del caudal calculado según su superficie y ocupación.

<table>
<thead>
<tr>
<th>Caudal $[\text{m}^3/\text{h}]$</th>
<th>x persona</th>
<th>x m2</th>
<th>x local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenes</td>
<td></td>
<td></td>
<td>2,7</td>
</tr>
<tr>
<td>Aseos individuales</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Aseos Públicos</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Comedores</td>
<td>36</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Gimnasios</td>
<td>43,2</td>
<td>14,4</td>
<td></td>
</tr>
<tr>
<td>Habitación de hotel</td>
<td>36</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Oficinas</td>
<td>36</td>
<td>3,6</td>
<td></td>
</tr>
<tr>
<td>Reuniones (salas de)</td>
<td>36</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Zonas de paso y salas de espera</td>
<td>36</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.5 – Caudal de aire según el uso del local (UNE 100-011-91)

Siguiendo los valores de la Tabla 4.5 se realiza el cálculo de aire exterior mínimo necesario para todos los locales a climatizar y/o ventilar del Parador. Los resultados para este cálculo se presentan en las tablas del Anexo B.
4.5 Comentarios generales

En este apartado se comentan algunas generalidades que han servido como base para escoger los sistemas de climatización:

a) *Patio central y pasillos:* En el caso del patio central y los pasillos de las habitaciones, estos forman un espacio común para el cual se ha tomado como decisión considerar la carga debida al aire exterior en el local “Patio central” mientras que en las zonas “Pasillos” solo se evaluarán las cargas interiores y exteriores sin valorar el calor aportado por el aire exterior.

b) *Aseos:* Se consideran los aseos como fuera de la zona de confort con lo cual no se realizará una climatización en verano, no obstante, sí que se instalarán radiadores para su calefacción en invierno.

c) *Almacenes:* Los almacenes de residuos se refrigerarán por solicitud de la propiedad. No así el almacén general en el cual solo se realizará extracción.

Tras definir los elementos estructurales para obtener los coeficientes de transmisión de los cerramientos, conocer los índices de ventilación para los locales sobre los cuales se va a trabajar y explicadas algunas de las condiciones del hotel, es posible realizar el cálculo de las cargas térmicas del edificio para poder seleccionar los equipos de climatización.
5 CÁLCULO DE CARGAS TÉRMICAS

Tras haber realizado el estudio del edificio, a continuación se describe el método usado para el cálculo de cargas térmicas, necesarias para la selección de los equipos de climatización del edificio.

Para llevar a cabo este cálculo, se ha programado mediante Microsoft Excel® una serie de tablas que permiten el cálculo de las cargas máximas para cada local, en función de la hora del día y el mes. El método seguido es el desarrollado por ASHRAE ([1]) que se basa en el cálculo de las ganancias instantáneas. Este método esta desarrollado y explicado también en el Manual de Aire Acondicionado de Carrier ([2], 1980), libro del cual se han extraído las tablas de referencia para la realización del cálculo. En este cálculo se tienen en cuenta factores como:

I. Características constructivas y orientaciones de las fachadas
II. Protección de las superficies acristaladas
III. Horarios de funcionamiento de los subsistemas
IV. Ganancias de calor internas
V. Ocupación
VI. Índices de ventilación

El cálculo se efectúa independientemente para cada local para posteriormente realizar un estudio de los datos obtenidos independientemente y diseñar una instalación a medida de las necesidades térmicas del edificio por zona, mes y horario. Para ello se siguen las siguientes pautas:

❖ Obtención de parámetros básicos:
 ➢ Fijar el uso de los locales
 ➢ Establecer el nivel de bienestar
 ➢ Determinar las zonas a climatizar
 ➢ Obtener las características constructivas de los locales (tamaño, cerramientos,…)
❖ Cálculo la carga térmica:
 ➢ Determinar el calor incorporado por radiación a través de ventanas
 ➢ Determinar el calor incorporado por transmisión a través de ventanas, paredes, techos, tabiques.
 ➢ Determinar el calor asociado a ventilación e infiltraciones
❖ Estudio las variaciones de las cargas:
 ➢ Variación a lo largo del día en intervalos de 1h (entre las 8h y las 22h) y durante los meses de mayor carga calorífica exterior (desde Mayo hasta Setiembre)
 ➢ Consolidar los cálculos para determinar la franja horaria más desfavorable
 ➢ Obtener la potencia necesaria de la instalación, teniendo en cuenta la simultaneidad de cargas.
5.1 Ganancias térmicas instantáneas

5.1.1 Calor sensible absorbido por radiación a través de ventanas

El calor sensible aportado al local desde el exterior como consecuencia de la radiación solar directa sobre sus ventanas exteriores, en cada momento, se calcula mediante la ecuación:

\[Q_{rad} = (R_{rad} \times S_v \times K_{cor}) \times \frac{1}{0,86} \ [W] \]

Donde:

- \(Q_{rad} \): Calor absorbido por radiación a través de la ventana [W]
- \(R_{rad} \): Coeficiente de radiación solar recibido sobre la ventana [kcal/h/m²]
- \(S_v \): Superficie de la ventana [m²]
- \(K_{cor} \): Coeficiente de corrección [-]

Los valores de \(R_{rad} \) se obtienen de la tabla 15 de ([2], 1980).

5.1.2 Calor sensible absorbido por transmisión

El calor sensible absorbido por transmisión se calcula como la suma de los diferentes calores que inciden en el local siguiendo la siguiente ecuación:

\[Q_{trans} = Q_m + Q_v + Q_{ts} + Q_{tab} + Q_{suel} \ [W] \]

A continuación se detalla cada uno de los valores de la Ec. 5.2.

5.1.2.1 Transmisión por ventanas y muros

La transmisión de calor sensible a través de los acristalamientos de las ventanas para cada momento se calculan según:

\[Q_m = (K_m \times S_m \times \Delta T_{eq}) \times \frac{1}{0,86} \ [W] \]

\[Q_v = (K_v \times S_v \times \Delta T_{eq}) \times \frac{1}{0,86} \ [W] \]

Ec. 5.3

Ec. 5.4
Donde:

\[Q_m / Q_v : \text{Calor absorbido por transmisión (muro o ventana)} \quad [W] \]

\[K_m / K_v : \text{Coeficiente de transmisión (muro o ventana)} \quad [kcal/h/\text{m}^2 \cdot \circ\text{C}] \]

\[S_m / S_v : \text{Superficie (muro o ventana)} \quad [\text{m}^2] \]

\[\Delta T_{eq} : \text{Diferencia equivalente de temperatura entre exterior e interior} \quad [{\circ\text{C}}] \]

La transmisión de calor sensible a través de los acristalamientos de las ventanas para cada hora del día es función de los valores definidos anteriormente. Para la obtención del valor de \(K_m \) es necesario conocer la densidad del muro \(\text{en} \quad [kg/\text{m}^2] \) y la orientación del muro, con ello se puede encontrar el valor necesario en las Tablas 21~25 del Manual ([2], 1980).

La diferencia equivalente de temperatura en el caso de las ventanas es la diferencia de temperaturas interior y exterior para el momento deseado mientras que para los muros este valor se obtiene de la Tabla 19 ([2], 1980). Esta tabla permite obtener \(\Delta T_{eq} \) en función de la orientación, densidad del muro y hora del día. Para realizar la corrección necesaria de este valor, se toma la Tabla 20.A ([2], 1980) y se busca el valor de corrección.

5.1.2.2 Transmisión por techos

En el caso de los techos, primero hay que considerar si se trata de techos soleados o bien son techos separadores de un local superior. En el caso de los techos soleados, el procedimiento es similar al de los muros, siendo la expresión:

\[Q_{ts} = (K_{ts} x S_t x \Delta T_{eq}) x \frac{1}{0.86} \quad [W] \]

Donde:

\[Q_{ts} : \text{Calor absorbido por transmisión a través del techo soleado} \quad [W] \]

\[K_{ts} : \text{Coeficiente de transmisión del techo} \quad [kcal/h/\text{m}^2 \cdot \circ\text{C}] \]

\[S_{ts} : \text{Superficie del techo} \quad [\text{m}^2] \]

\[\Delta T_{eq} : \text{Diferencia equivalente de temperatura entre exterior e interior} \quad [{\circ\text{C}}] \]

En el caso de que el techo sea de separación con un local superior no climatizado, el cálculo se realizará del mismo modo que el cálculo de suelos y tabiques (descrito a continuación)
5.1.2.3 Transmisión por suelos y tabiques

El caso de transmisión desde suelos y tabiques, para obtener el valor máximo de carga, se calcula el caso en que los locales colindantes no estén climatizados. La expresión para realizar el cálculo es:

\[
Q_{\text{tab o suel}} = \left(K_{\text{tab o suel}} \times S_{\text{tab o suel}} \times \frac{\Delta T_{eq}}{2} \right) \times \frac{1}{0.86} \quad [W]
\]

Donde:

\[
Q_{\text{ts}} : \text{Calor absorbido por transmisión a través del techo soleado} \quad [W]
\]

\[
K_{\text{ts}} : \text{Coeficiente de transmisión del techo} \quad \left[\frac{kcal/h}{m^2 \cdot ^\circ C} \right]
\]

\[
S_{\text{ts}} : \text{Superficie del techo} \quad [m^2]
\]

\[
\Delta T_{eq} : \text{Diferencia equivalente de temperatura entre exterior e interior} \quad [^\circ C]
\]

5.1.3 Calor interno

5.1.3.1 Ocupantes

El calor generado por las personas que se encuentran dentro de cada local depende del tipo de actividad que lleven a cabo en ese lugar. El efecto de las personas a nivel de calor es tanto sensible como latente. Las ganancias (tanto sensibles como latentes) se calculan según multiplicando la cantidad de ocupantes por los valores que aparecen en la Tabla 5.1

<table>
<thead>
<tr>
<th>Ocupación</th>
<th>Latente</th>
<th>Sensible</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAJA ACTIVIDAD</td>
<td>52</td>
<td>61</td>
</tr>
<tr>
<td>GIMNASIO</td>
<td>96</td>
<td>156</td>
</tr>
<tr>
<td>RESTAURANTE</td>
<td>68</td>
<td>71</td>
</tr>
</tbody>
</table>

Tabla 5.1 – Ganancias de calor debidas a los ocupantes

Los valores de la Tabla 5.1 han sido extraídos de la tabla 48 ([2], 1980) para una temperatura seca interior de 24 ºC.

\[
Q_{\text{ocup}} = N^o \text{ personas} \times Q_{n^\circ} \times \frac{1}{0.86} \quad [W]
\]

Donde:

\[
Q_{\text{ocup}} : \text{Calor producido por el efecto ocupación, tanto sensible como latente} \quad [W]
\]

\[
Q_{n^\circ} : \text{Calor aportado por el metabolismo en función de la actividad} \quad \left[\frac{kcal/h \cdot \text{pers}}{h \cdot \text{pers}} \right]
\]
5.1.3.2 Iluminación

La Tabla 5.2 refleja los índices de iluminación instalados en los diferentes tipos de locales.

<table>
<thead>
<tr>
<th>Local</th>
<th>Iluminación [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almacenes</td>
<td>15</td>
</tr>
<tr>
<td>Aseos individuales</td>
<td>15</td>
</tr>
<tr>
<td>Aseos Públicos</td>
<td>15</td>
</tr>
<tr>
<td>Comedores</td>
<td>15</td>
</tr>
<tr>
<td>Gimnasios</td>
<td>25</td>
</tr>
<tr>
<td>Habitación de hotel</td>
<td>15</td>
</tr>
<tr>
<td>Oficinas</td>
<td>25</td>
</tr>
<tr>
<td>Reuniones (salas de)</td>
<td>25</td>
</tr>
<tr>
<td>Zonas de paso y salas de espera</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabla 5.2 – Potencia térmica debida a la iluminación para los espacios solicitados

Estos se toman como valores de referencia para realizar el cálculo de las cargas térmicas de refrigeración, siendo posible la instalación final de menor potencia lumínica en los locales.

\[
Q_{it} = S_{suel} \times \text{Iluminación} \times 1.25 \text{ si fluorescente} \quad [W] \quad \text{Ec. 5.8}
\]

Donde:

\[S_{suel} : \text{Superficie del suelo del local [m}^2\text{]}\]

\[\text{Iluminación} : \text{Calor aportado por la iluminación instalada [W/m}^2\text{]}\]

5.1.3.3 Aparatos eléctricos

<table>
<thead>
<tr>
<th>Aparato</th>
<th>Potencia calorífica equivalente [W/ud]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordenador</td>
<td>200</td>
</tr>
<tr>
<td>TV</td>
<td>250</td>
</tr>
</tbody>
</table>

Tabla 5.3 – Potencia calorífica de aparatos eléctricos del hotel

\[
Q_{el} = \text{No aparatos} \times \text{Potencia calorífica equivalente} \quad [W] \quad \text{Ec. 5.9}
\]

Donde:

\[Q_{el} : \text{Calor del local debido a los aparatos eléctricos interiores [W]}\]

Definidas y calculadas las aportaciones externas de calor y las ganancias internas, siguiendo el método de cálculo descrito en el Manual ([2], 1980) es posible calcular la carga total del local en cada instante como la suma de las cargas mencionadas, así se refleja en las Ec. 5.10 y Ec. 5.11.
Para el cálculo final de la carga térmica del local se aplica un coeficiente de seguridad de un 10% respecto a las cargas descritas hasta el momento.

5.1.4 Calor aire exterior

El calor aportado por el aire exterior es:

\[OASH = 0,29 \times V_{AE} \times (T_{ext} - T_{int}) \]
\[OALH = 0,71 \times V_{AE} \times (\omega_{ext} - \omega_{int}) \]

Donde:

\[V_{AE} \] : Caudal de aire exterior aportado a la sala \([m^3/h]\]

\((T_{ext} - T_{int}) \): Diferencia entre la temperatura exterior e interior

\((\omega_{ext} - \omega_{int}) \): Diferencia entre la humedad absoluta exterior e interior

Las Ec. 5.12 y Ec. 5.13 dan el calor sensible y latente aportado por el aire exterior.
5.2 Cargas de refrigeración

Con los resultados de las cargas instantáneas se realiza un estudio de las cargas en cada local en función del mes y la hora del día para obtener el máximo de carga global del local. Se busca obtener:

\[GTH_{\text{max}}(\text{mes}_{\text{max}}, \text{hora}_{\text{max}}) = TSH(\text{mes}, \text{hora}) + TLH(\text{mes}, \text{hora}) \ [W] \]

Donde:

\[TSH(\text{mes}, \text{hora}): \text{Calor sensible total, } RSH + OASH \ [W] \]

\[TLH(\text{mes}, \text{hora}): \text{Calor latente total, } RLH + OALH \ [W] \]

5.2.1 Factor de calor sensible y factor de bypass

Con los datos anteriores es posible calcular tanto el factor de calor sensible del local como el total, así:

\[RSHF = \frac{RSH}{RSH + RLH} \]

\[GSHF = \frac{TSH}{GTH} \]

Para calcular el caudal de aire necesario a tratar se aplicará la relación existente entre el ESHF, la \(T_{\text{ADP}} \) y el BF.

El ESHF proviene de las ganancias efectivas del local, que son las ganancias propias de dicho local aumentadas en la cantidad de calor sensible y latente correspondiente al caudal de aire que pasa por la batería sin que su estado se modifique. Las siguientes ecuaciones se usan para obtener el Factor de calor sensible efectivo del local (ESHF):

\[ESHF = \frac{ERSH}{ERSH + ERLH} \]

\[ERSH = RSH + OASH \cdot BF \]

\[ERLH = RLH + OALH \cdot BF \]

Partiendo la tabla 62 ([2], 1980) que refleja algunos valores de BF para diferentes aplicaciones, se adopta el BF de 0,1 para todos los locales del hotel. Para obtener el valor de la \(T_{\text{ADP}} \) se usa la tabla 65 ([2], 1980) para unas condiciones interiores de 24 °C. Esta tabla da el valor del \(T_{\text{ADP}} \) en función del ESHF.
Para calcular el caudal de aire tratado necesario para climatizar la sala, se usa la expresión:

\[\dot{V} = \frac{ERSH}{0.29 \cdot (1 - BF) \cdot (T_{int} - T_{ADP})} \quad [m^3/h] \]

Ec. 5.20

\(\dot{V} \) es el caudal de aire necesario a tratar para conseguir las condiciones interiores deseadas en el local.

5.3 Cargas de calefacción

El método para el cálculo de las necesidades de calefacción utilizado contempla la existencia de dos cargas térmicas, la carga térmica por transmisión de calor a través de los cerramientos hacia los locales no climatizados o el exterior, y la carga térmica por enfriamiento de los locales por la ventilación e infiltración de aire exterior en los mismos. La suma de las equivalentes a las ecuaciones Ec. 5.2 y Ec. 5.12 aplicadas a la temperatura mínima exterior de invierno dan el valor del calor necesario para cubrir las necesidades térmicas en invierno.

5.4 Estudio de los resultados

Tras definir el método de cálculo de las cargas instantáneas, este se lleva a cabo para cada local a climatizar del hotel. Así se obtiene las cargas de cada local en función del mes y de la hora, de ahí, se encuentra el máximo de la carga en cada local.

A partir de los cálculos realizados en las hojas de cargas, se observa que en las habitaciones del hotel el calor latente debido a la ocupación y a la ventilación representa una parte muy pequeña del total de calor que es necesario compensar para conseguir las condiciones de confort adecuadas, debido a su baja ocupación (como máximo 2 personas). Por tanto, en locales en los que la ocupación o el caudal de aire exterior necesario sean bajos, se obtienen valores parecidos de calor interior y de calor total. Cabe destacar que el caudal de aire tratado se calcula a partir de la carga interior del local, y no del calor total, como podría pensarse, debido a que la diferencia entre ambos es provocada por la introducción de aire exterior en el local. Este hecho puede conllevar a errores en cuanto a lo que el dimensionamiento de las unidades interiores se refiere, puesto que no es suficiente con que dicha unidad suministre la potencia necesaria al local sino que debe asegurarse que el caudal de aire que pueda tratar sea como mínimo el que demanda la dependencia. Si no se cumplen ambas solicitudes, no se podrán conseguir las condiciones de confort adecuadas. Es especialmente importante considerar este hecho en lo relativo a locales interiores, cerrados y con baja ocupación.

Este cálculo de cargas se realiza para todas las horas del día entre las 8 de la mañana y las 22 de la noche y para los meses de Mayo, Junio, Julio, Agosto y Septiembre (considerados los meses más calurosos).
5.4.1 Cargas máximas de cada local

Las cargas obtenidas aparecen en el Anexo C, así como también aparece el resumen total de cargas en el Anexo D. Allí se observan las cargas máximas para cada local así como la hora a la cual se dan las mismas. Como resumen de esos resultados se obtienen los siguientes gráficos:

Gráfico 5.1 – Repartición de cargas por zona (verano)

<table>
<thead>
<tr>
<th>Zona</th>
<th>GTH [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comedores</td>
<td>132</td>
</tr>
<tr>
<td>Salas Polivalentes</td>
<td>50</td>
</tr>
<tr>
<td>Zonas Comunes</td>
<td>173</td>
</tr>
<tr>
<td>Despachos</td>
<td>13</td>
</tr>
<tr>
<td>Aseos</td>
<td>0</td>
</tr>
<tr>
<td>Almacenes</td>
<td>2</td>
</tr>
<tr>
<td>Habitaciones</td>
<td>184</td>
</tr>
<tr>
<td>TOTAL</td>
<td>554</td>
</tr>
</tbody>
</table>

Gráfico 5.2 – Repartición de cargas por zona (invierno)

<table>
<thead>
<tr>
<th>Zona</th>
<th>GTC [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comedores</td>
<td>162</td>
</tr>
<tr>
<td>Salas Polivalentes</td>
<td>61</td>
</tr>
<tr>
<td>Zonas Comunes</td>
<td>202</td>
</tr>
<tr>
<td>Despachos</td>
<td>20</td>
</tr>
<tr>
<td>Aseos</td>
<td>13</td>
</tr>
<tr>
<td>Almacenes</td>
<td>0</td>
</tr>
<tr>
<td>Habitaciones</td>
<td>294</td>
</tr>
<tr>
<td>TOTAL</td>
<td>752</td>
</tr>
</tbody>
</table>

Los gráficos anteriores, Gráfico 5.1 y Gráfico 5.2, muestran la repartición de las cargas máximas sin aplicar ningún tipo de coeficiente de simultaneidad sobre las cargas.
5.4.2 Simultaneidad

Con la finalidad de disminuir el coste de la instalación, se realiza un estudio de la simultaneidad de las cargas según la fecha y la hora de los máximos de las cargas.

Observando el Gráfico 5.3 decide aplicarse sobre el general de las cargas un 25% de simultaneidad lo que repercute en una disminución de la potencia total necesaria para cubrir las necesidades frigoríficas de la instalación. Posteriormente se muestra la repercusión sobre la selección de maquinaria.

5.5 Análisis cargas habitaciones

Realizando un análisis más detallado de las habitaciones decide valorarse la posibilidad de realizar un tratamiento previo del aire exterior y aumentar el coeficiente de simultaneidad para conseguir con ello una disminución de la potencia total necesaria a instalar, hecho que repercute directamente sobre el coste económico de ejecución del proyecto.

5.5.1 Tratamiento aire exterior

Es interesante valorar la opción de realizar un tratamiento del aire exterior previo para disminuir así la potencia de las unidades terminales instaladas en las habitaciones.
Gráfico 5.4 – Comparación de la carga sin y con tratamiento previo de aire exterior

El Gráfico 5.4 muestra la potencia necesaria para climatizar todas las habitaciones en el caso de combatir toda la carga térmica desde cada local por separado y en el caso de realizar un tratamiento previo del aire para así repartir las cargas.

Tras ver los resultados del estudio, se decide llevar aceptar la variante propuesta, hecho que repercute directamente en la potencia total necesaria de la instalación global.

5.5.1.1 Simultaneidad de la carga, criterio orientaciones

Las habitaciones del hotel están claramente divididas en tres orientaciones (respecto a su cara exterior), Norte, Oeste, Sur.

[Diagrama con orientaciones Norte, Oeste, Sur y datos de potencia]

Figura 5.1 – Plano en planta del convento a rehabilitar

Analizando las cargas (sin considerar la carga de aire exterior comentada en el apartado 5.5.1) se puede observar que las cargas máximas que se obtienen en las habitaciones de cada orientación son:

<table>
<thead>
<tr>
<th>Orientación</th>
<th>Mes y hora</th>
<th>GTH [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norte</td>
<td>Julio a las 15h</td>
<td>27</td>
</tr>
<tr>
<td>Oeste</td>
<td>Julio a las 16h</td>
<td>59</td>
</tr>
<tr>
<td>Sur</td>
<td>Agosto a las 14h</td>
<td>44</td>
</tr>
<tr>
<td>Norte-Este (Suites)</td>
<td>Julio a las 15h</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>145</td>
</tr>
</tbody>
</table>

Tabla 5.4 – Instante de carga máxima por orientaciones de las habitaciones
Se desea estudiar cuál es la carga en las horas de carga máxima de cada orientación para el total de las habitaciones. El Gráfico 5.5 muestra los resultados del estudio:

Gráfico 5.5 – Carga global habitaciones por orientación

El momento de mayor carga se da a las 14h del mes de Agosto, esta queda un 12% bajo la carga máxima total por lo que se decide aplicar un coeficiente de simultaneidad sobre el global de las habitaciones de un 10% más del que ya se había aplicado sobre el global de la instalación.

5.5.2 Potencia total de la instalación

En los Gráfico 5.1 y Gráfico 5.2 se puede observar que la suma de las potencias máximas de todos los locales sin tener en cuenta la simultaneidad de las cargas en el global del edificio reflejaba unos valores que han sido reducidos sustancialmente tras el estudio detallado del global de la instalación.

Gráfico 5.6 – Potencia total de la instalación
El Gráfico 5.6 muestra la reducción de la potencia total necesaria para climatizar la instalación tras realizar un estudio más global del edificio optimizando así la solución escogida. Se puede observar que la potencia total necesaria se reduce en un 31% en verano y en un 29% en invierno. Esto permite entonces una disminución de la potencia tanto de la planta enfriadora como de la caldera.

Como conclusión del estudio de las cargas térmicas se obtiene que la potencia necesaria a instalar para cubrir las necesidades térmicas del edificio sea:

<table>
<thead>
<tr>
<th>Potencia térmica necesaria para el hotel</th>
<th>Verano</th>
<th>Invierno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>381 kW</td>
<td>534 kW</td>
</tr>
</tbody>
</table>

NOTA Como se ha comentado con anterioridad en el apartado 3.2 Abaste del proyecto, la potencia de producción instalada finalmente será superior a la calculada para la posible futura creación de espacios a refrigerar.
6 EJECUCIÓN Y SELECCIÓN DE MAQUINARIA

Para la ejecución del proyecto se seleccionaron todos los equipos tras valorar las ofertas de varios proveedores para cumplir con las necesidades térmicas del edificio. Se estudiaron las ofertas de marcas como Daikin, Hitecsa, Climaveneta, CIATESA y Dimatek, aunque finalmente se tomó la decisión de instalar equipos de la marca Termoven. A continuación se explican de manera descriptiva y a nivel cualitativo el diseño general de la instalación, analizado por zonas. También se describen los sistemas de distribución de aire usados en cada local. En los anexos se presentan las características tanto de la maquinaria como de los elementos de distribución de aire.

6.1 Circuito primario

El diseño final se compone de un sistema de producción de frío y calor centralizado. La central térmica está compuesta por una planta enfriadora aire-agua (solo frío), una caldera y un sistema integral de micro-cogeneración para cubrir la necesidad de ACS del hotel. La central térmica se ubica en la planta bajo cubierta del edificio. Desde ese punto se realizará la distribución del agua a través de un sistema de tuberías aisladas, el agua será impulsada mediante bombas hidráulicas colocadas también en la zona de producción de frío y calor. En la central de producción se instalarán los siguientes elementos:

- **Producción de frío**: Planta enfriadora (para la producción de agua fría) que trabajará con el agua de impulsión a 7ºC y el retorno a 12ºC, dando así un salto térmico de 5ºC.
- **Producción de calor**: Caldera que trabaja con un salto térmico de 15ºC entre 70ºC y 85ºC.
- **Producción de ACS**: Sistema integral de micro-cogeneración compuesto de una caldera para generar ACS y energía eléctrica. El ACS se almacenará en dos depósitos de dos 3000 litros de capacidad cada uno. Este será un sistema autónomo con respecto a la instalación de climatización.

En la misma planta se ubican las bombas que distribuyen el agua a través de 3 circuitos secundarios. Mediante 6 bombas se implantará un sistema de 4 tubos en todo el edificio distribuido en los circuitos General, Zonas comunes y Habitaciones.
6.2 Circuitos secundarios

La climatización de los locales se realiza mediante climatizadores, fancoils potenciados, fancoils de suelo con envolvente, fancoils ubicados en falsos techos y unidades tipo cassettes. En los siguientes apartados se detalla el tipo de unidad y la distribución de aire que se realiza en cada local. En los anexos se presentan los datos técnicos de todas las UTA’s instaladas así como las zonas en las cuales se ubican. A continuación se explican algunos de los detalles de cada zona climatizada.

6.2.1 Comedores

Los comedores 1, 2 y 3 se climatizan bajo los mismos criterios:

<table>
<thead>
<tr>
<th>Comedores 1, 2 y 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo UTA</td>
</tr>
<tr>
<td>Difusión</td>
</tr>
<tr>
<td>Retorno</td>
</tr>
<tr>
<td>Aportación</td>
</tr>
<tr>
<td>Extracción</td>
</tr>
<tr>
<td>Descripción general</td>
</tr>
</tbody>
</table>

Por las características de los comedores 4 y 5 se realizará otro tipo de distribución:

<table>
<thead>
<tr>
<th>Comedor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo UTA</td>
</tr>
<tr>
<td>Difusión</td>
</tr>
<tr>
<td>Retorno</td>
</tr>
<tr>
<td>Aportación</td>
</tr>
<tr>
<td>Extracción</td>
</tr>
<tr>
<td>Descripción general</td>
</tr>
</tbody>
</table>
Comedor 5

<table>
<thead>
<tr>
<th>Tipo UTA</th>
<th>Difusión</th>
<th>Retorno</th>
<th>Aportación</th>
<th>Extracción</th>
<th>Descripción general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climatizador (sin cámara de mezcla)</td>
<td>Toberas</td>
<td>Reja línea</td>
<td>Compuerta de regulación de aire exterior en conducto</td>
<td>El climatizador se coloca en la terraza exterior de tercera planta. La impulsión de aire se realiza mediante toberas, orientadas hacia el comedor, situadas en tercera planta. Se retorna mediante una rejilla situada en la pared a la misma altura que el climatizador. Este conducto es de chapa aislada interiormente ya que circula por una zona exterior. Sobre el conducto de retorno se instala una compuerta que regula el caudal y permite la entrada de aire nuevo exterior al retorno del climatizador. Se extrae el aire por la misma red de conductos de extracción que el resto de comedores, mediante una rejilla situada en la pared de segunda planta.</td>
</tr>
</tbody>
</table>

6.2.2 Salas polivalentes

Las **salas polivalentes** se climatizan mediante fancoils potenciados colocados en los falsos techos de las mismas salas. Para ambas salas se opta por una la misma opción de distribución de aire:

<table>
<thead>
<tr>
<th>Sala polivalente 1 y 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo UTA</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6.2.3 Zonas comunes

Para la climatización del espacio compuesto por el **patio central** y los **pasillos**, se realizara la difusión de aire desde la parte de arriba del patio central, tratando el aire mediante a dos climatizadores e impulsando el aire a través de toberas. Este aire será recuperado por cada planta y conducido mediante la red de conductos hasta el retorno de los climatizadores. Además se instalarán fancoils de suelo con envolvente en los **pasillos** como apoyo para combatir las cargas.
Patio central y pasillos

<table>
<thead>
<tr>
<th>Tipo UTA</th>
<th>Dos Climatizadores con cámara de mezcla + Fancoils de suelo con envolvente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difusión</td>
<td>Toberas</td>
</tr>
<tr>
<td>Retorno</td>
<td>Reja lineal</td>
</tr>
<tr>
<td>Aportación</td>
<td>Aportación independiente a la cámara de mezcla de los climatizadores</td>
</tr>
<tr>
<td>Extracción</td>
<td>Rejilla lineal en patio central</td>
</tr>
</tbody>
</table>

Descripción general
Se realizará una impulsión de aire tratado a través de unas toberas de difusión situadas en el techo del patio central en dirección a planta baja. El retorno se realizará por cada planta mediante rejas lineales colocadas en los pasillos. Se extraerá el aire directamente desde el local por la zona superior.

La **recepción y la entrada oeste** también siguen los mismos criterios estéticos y técnicos de los comedores y salas polivalentes, se climatizan mediante fancoils potenciados situados en los falsos techos.

Recepción

<table>
<thead>
<tr>
<th>Tipo UTA</th>
<th>Fancoil potenciado, en falso techo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difusión</td>
<td>Difusores rotacional en falso techo</td>
</tr>
<tr>
<td>Retorno</td>
<td>Reja lineal</td>
</tr>
<tr>
<td>Aportación</td>
<td>Al retorno del fancoil</td>
</tr>
<tr>
<td>Extracción</td>
<td>Rejilla lineal en el interior de la sala</td>
</tr>
</tbody>
</table>

Descripción general
Situada bajo la sala polivalente 2, la recepción sigue el mismo tipo de distribución de aire e incluso comparte son la sala polivalente la red de conductos de aportación y extracción de aire.

Entrada Oeste

<table>
<thead>
<tr>
<th>Tipo UTA</th>
<th>Fancoil potenciado, situado a la vista en el almacén 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difusión</td>
<td>Difusores rotacional en falso techo</td>
</tr>
<tr>
<td>Retorno</td>
<td>Reja lineal</td>
</tr>
<tr>
<td>Aportación</td>
<td>Al retorno del fancoil desde reja exterior en fachada de planta baja</td>
</tr>
<tr>
<td>Extracción</td>
<td>No se extrae</td>
</tr>
</tbody>
</table>

Descripción general
Como se desea realizar una ligera sobrepresión en todos los locales para evitar así las infiltraciones y siendo que este local contiene una puerta de entrada y salida, no se extrae aire de este local sino que tan solo se aporta aire al retorno para sobre presionar el local con aire tratado.

La **escalera principal** se climatiza mediante una UTA situada en la planta bajo cubierta, impulsando desde allí al centro de las escaleras para que el aire climatizado se distribuya por el espacio. Para ayudar a la buena distribución de este, el aire se retorna por todas las plantas.
Escalera Principal

<table>
<thead>
<tr>
<th>Tipo UTA</th>
<th>Climatizador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difusión</td>
<td>Toberas</td>
</tr>
<tr>
<td>Retorno</td>
<td>Reja lineal en cada planta, red de conductos</td>
</tr>
<tr>
<td>Aportación</td>
<td>Independiente, reja en fachada</td>
</tr>
<tr>
<td>Extracción</td>
<td>Reja de retorno, desde planta baja dirigida hasta cubierta</td>
</tr>
<tr>
<td>Descripción general</td>
<td>La distribución de aire en la escalera se realiza de la misma manera que en el patio central, al ser los dos zonas de más altura a climatizar, se opta por la opción de impulsar el aire desde la parte superior mediante toberas direccionadas hacia planta baja y retronando el aire por cada planta para reconducirlo al climatizador.</td>
</tr>
</tbody>
</table>

Para combatir las cargas generadas en el ** Gimnasio ** se prevé la instalación de dos fancoils en el falso techo.

<table>
<thead>
<tr>
<th>Tipo UTA</th>
<th>Dos fancoils potenciados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difusión</td>
<td>Rejas lineales</td>
</tr>
<tr>
<td>Retorno</td>
<td>Rejas lineales, plenum de aire</td>
</tr>
<tr>
<td>Aportación</td>
<td>Aportación a los retornos de los fancoils</td>
</tr>
<tr>
<td>Extracción</td>
<td>Extracción mediante reja lineal</td>
</tr>
<tr>
<td>Descripción general</td>
<td>Se realiza una distribución de aire mediante a rejillas lineales colocadas en el techo del Fancoil que se distribuyen a lo largo del gimnasio.</td>
</tr>
</tbody>
</table>

6.2.4 Despachos

Para todos los ** despachos ** se sigue el mismo criterio, se instala un fancoil de suelo con envolvente para combatir la carga. Para la ventilación, se realiza la extracción del local y se aporta el aire nuevo al retorno del fancoil.

6.2.5 Aseos

Los ** aseos ** serán calefaccionados por radiadores. Se extraerá el aire de los aseos mediante bocas de extracción incorporadas en los falsos techos y se conducirá el aire hasta el exterior saliendo estos por el tejado del edificio.

6.2.6 Almacenes

Los almacenes de ** residuos ** serán refrigerados mediante unidades tipo cassette sin aportación de aire exterior y con extracción mediante rejillas situadas en el falso techo. El almacén no refrigerado contará con extracción a través de rejilla situada en conducto visto.
6.2.7 Habitaciones

A continuación se muestra el esquema de la distribución de aire en las habitaciones:

Figura 6.1 – Esquema de distribución de aire en las habitaciones

Para las habitaciones se instalarán fancoils en el falso techo. Además los lavabos de las habitaciones contarán con un toallero “tipo mural” de pared eléctrico que combatirá el frío.

Como se refleja en los resultados del apartado 5.5.1, la aportación de aire exterior a las habitaciones se realiza tras su tratamiento en una unidad de tratamiento de aire situado en la planta bajo cubierta que impulsa el aire al retorno de todos los fancoils de las habitaciones para que así reducir la potencia necesaria de los mismos. La extracción del aire viciado de las habitaciones se realiza a través de la extracción en los lavabos. Una caja de extracción situada en la planta bajo cubierta extrae todo el aire de las habitaciones al exterior.

6.3 Distribución de aire

El esquema general de distribución de aire se explica a continuación, describiendo los tipos de aire. El caudal de aire recirculado y el caudal de aire exterior para la renovación de aire vienen detallados en las hojas de cargas térmicas. El caudal extraído (EXR) será un 20% inferior al caudal exterior aportado (EXT) para generar una sobrepresión en los locales que evite las infiltraciones.

Tabla 6.1 – Acrónimos UNE-EN 13779

La Tabla 6.1 presenta la nomenclatura usada para denominar a los caudales de aire que se muestran en la siguiente figura.
Tipos de conductos:
Existen cuatro tipos de redes de conductos:

1) Impulsión de aire acondicionado de las unidades terminales a los distintos locales

2) Retorno de aire viciado procedente de las dependencias a las unidades mencionadas.

En los casos 1 y 2, los conductos se construyen en plancha de fibra mineral con recubrimiento exterior e interior de aluminio, y deben cumplir la norma UNE 100.105./84. El cálculo de sus secciones se realiza según se indica posteriormente, dependiendo de las necesidades térmicas, del caudal de aire a tratar y de la velocidad de circulación de éste. Los retornos de aire a las unidades climatizadoras se llevan a cabo mediante conductos de características similares a los de impulsión, o bien mediante plenum, de forma que se vuelva a iniciar el ciclo de trabajo, previa mezcla con aire exterior de ventilación. Se escoge esta opción por su coste y la facilidad de su montaje. En los falsos techos existirá la restricción de altura máxima de estos conductos.

3) Renovación de aire que proviene del exterior para aportar aire fresco al local

4) Extracción del aire viciado del local.

A continuación, la Tabla 6.2 sintetiza los tipos de conductos de la instalación y el uso de estos. No obstante los criterios de la Tabla 6.2 serán los seguidos a excepción de aquellas situaciones en las cuales sea imposible llevar a cabo este tipo de montaje.
Memoria

Uso del conducto	Tipo de conducto
IMP Interior | Conducto rectangular de fibra (+ terminaciones en flexible aislado si es necesario)
EXT Exterior | Chapa rectangular aislada interiormente
REC Interior | Conducto rectangular de fibra (+ terminaciones en flexible aislado si es necesario)
EXR Exterior | Chapa rectangular aislada interiormente
EXT Interior | Chapa helicoidal
EXR Exterior | Chapa helicoidal

Tabla 6.2 – Tipos de conducto usados según la tipo de aire

- **Elementos de difusión (IMP y EXT):**
 Para introducir el aire a las salas se usarán diferentes sistemas de difusión de aire dependiendo de las necesidades del local. Entre ellos se encuentran serán rejas de impulsión, rejas lineales, difusores rotacionales y toberas.

- **Elementos de retorno de aire (REC y EXR):**
 Los elementos para retornar el aire serán rejas de retorno, rejas lineales y bocas de extracción.

- **Ventilación mecánica:**
 Se instalarán ventiladores en los conductos de aportación y extracción para los cuales sea necesario.

Los recorridos que deben realizar los diferentes conductos deben tener el mínimo número posible de curvas, y si las tienen, que sean lo más suaves posibles, puesto que éstas conllevan una gran pérdida de carga que penaliza el funcionamiento y la dimensión de dicho conducto. En los casos en que el extractor se encuentra muy alejado del punto extremo de la instalación es especialmente importante, ya que se debe comprobar minuciosamente que el ventilador plasmado es capaz de soportar dicha pérdida; en caso contrario, no cumpliría las funciones para las cuales ha sido proyectado. Puesto que la pérdida de carga depende de la velocidad del aire que atraviesa el conducto y de la dimensión de éste, se debe conseguir un equilibrio coherente entre los tres factores a fin de que el funcionamiento de la instalación sea el óptimo en cada caso.
7 CÁLCULO DE REDES

A continuación se detalla la metodología usado en el cálculo de redes de conductos de aire y de tuberías de agua. Los resultados de estos cálculos se encuentran en los anexos. También se describen los materiales usados así como los aislamientos. Las características de estos materiales se encuentran en los anexos.

7.1 Red de conductos de aire

Las redes de conductos citadas en el apartado 6.3 se calculan por el método de pérdida de carga por fricción constante. Dichas pérdidas son debidas a fricción simple del aire en el propio conducto, a los cambios de dirección, a los cambios de sección y a los accesorios instalados. Para determinar estas pérdidas se usan las fórmulas y ábacos indicados en el Manual([2], 1980), que relacionan las pérdidas de carga en un conducto con el caudal de aire en circulación, su velocidad y el diámetro del conducto circular equivalente a uno de sección rectangular.

Para los conductos de clima en las habitaciones, se ha optado por una sección rectangular puesto que esta solución permite regular su altura al falso techo máximo que los interioristas establecen. Una vez escogida la sección se calcula la velocidad a la que circula el aire por el conducto y la pérdida real correspondiente a la sección considerada. Las ecuaciones que relacionan las variables mencionadas son las siguientes:

\[PdC_L = 6,61 \times \frac{v^{1,924}}{D_e^{1,281}} \quad [\text{mmCa/m}] \]

Ec. 7.1

Donde:

- \(PdC_L \): Perdida de carga lineal por cada metro longitudinal de conducto [\text{mmCa/m}]
- \(v \): Velocidad del aire a través del conducto [\text{m/s}]
- \(D_e \): Diámetro equivalente, este valor será igual al diámetro en casos de conducto circular, y para conductos rectangulares su valor se calcula mediante la ecuación Ec. 7.2:

\[D_e = 1,3 \times \frac{(a \times b)^{3/8}}{(a + b)^{1/4}} \quad [\text{cm}] \]

Ec. 7.2

Donde:

- \(a \) y \(b \) son las medidas del rectángulo de sección de los conductos [\text{mm}]
Las pérdidas de carga debidas a los cambios de dirección se calculan por el sistema de aproximación porcentual a la perdida de carga general del conducto, aplicando así un porcentaje de pérdida de carga extra (entre un 5% y un 20%) sobre los conductos.

La velocidad operativa del aire en el caso de los conductos principales y secundarios es la recomendada para los sistemas de baja velocidad (menor de 12 m/s), que se halla en la tabla 7 del capítulo 2 ([2], 1980) no sobrepasando en ningún momento los límites máximos recomendados por el fabricante del material en que estén construidos. Como norma general, se limita la velocidad de los tramos principales a un máximo de 8 m/s, mientras que la de los ramales secundarios se limita a 4 m/s.

El caudal de aire impulsado en cada tramo final se estima de forma que se establezca un reparto proporcional de éste en el local.

Con estos cálculos se seleccionan los conductos más adecuados, en que las medidas de la sección serán estándares y se recalcule la perdida de carga y la velocidad con los conductos que finalmente se instalarán.

Debido a la colocación de los conductos en falsos techos en la mayoría de ocasiones ha existido la condición de la altura. En cualquier caso, la proporción entre costados de la sección de los conductos nunca ha superado 4:1 ya que las pérdidas térmicas en estos conductos superan los límites deseados; además de que este aspecto también incrementa el coste de la instalación.

7.2 Red de tuberías

La producción de agua fría y caliente se realiza en la central térmica en la planta bajo cubierta del edificio (con la planta enfriadora ubicada en el exterior de la cubierta). Para la distribución de agua hacia las unidades terminales se divide en tres circuitos. Con ello se obtiene una red de un circuito primario de frío y uno de calor y tres circuitos secundarios de frío y tres de calor, además del circuito autónomo de producción de ACS.

Para los circuitos primarios son necesarias las siguientes bombas:

1. BF1: Circuito primario producción frío – Planta enfriadora
2. BC1: Circuito primario producción calor - Caldera
3. BC5: Circuito primario producción ACS – Modulo de micro-cogeneración
Los circuitos secundarios dividen la instalación del siguiente modo:

1. **Climatizadores**: frío y calor. Incluye:
 a. Comedores 1, 2, 3, 4 y 5
 b. Salas polivalentes 1 y 2
 c. Despachos de recepción 1, 2 y 3
 d. Aseso (solo calor)
 e. Almacenes de residuos 1 y 2

2. **Zonas comunes**: frío y calor. Incluye:
 a. Patio central
 b. Pasillos
 c. Recepción
 d. Escalera principal
 e. Entrada oeste
 f. Gimnasio

3. **Habitaciones**: frío y calor. Incluye:
 a. Aire exterior de habitaciones
 b. Habitaciones y suites

El caudal de impulsión de estas bombas se calcula mediante a la potencia de las UTA’s. El caudal de la planta enfriadora y de la caldera viene dado en sus respectivas hojas técnicas.

Para calcular el caudal que debe circular por cada UTA’s se realiza el siguiente cálculo:

\[
Caudal_f = \frac{P_f[W] \cdot 0.86 [\text{kcal/h} / W]}{\Delta T_{a.f.}} \quad [\text{l/h}]
\]

\[
Caudal_c = \frac{P_c[W] \cdot 0.86 [\text{kcal/h} / W]}{\Delta T_{a.c.}} \quad [\text{l/h}]
\]

Donde:

\(Caudal_f\) y \(Caudal_c\) : Caudales de agua fría y caliente que pasa por la UTA \([l/h]\)

\(P_f\) y \(P_c\) : Potencia frigorífica y calorífica de la UTA \([W]\)

\(\Delta T_{a.f.}\) y \(\Delta T_{a.c.}\) : Variación de la temperatura del agua entre la impulsión y el retorno

\[\Delta T_{a.f.} = T_{imp} - T_{ret} = 12 - 7 = 5^\circ C\]

\[\Delta T_{a.c.} = T_{imp} - T_{ret} = 85 - 70 = 15^\circ C\]
En la Tabla 7.1 se presentan los caudales impulsados por cada bomba. En los anexos aparece detallado el cálculo de estos caudales:

<table>
<thead>
<tr>
<th>Nombre del circuito</th>
<th>Caudal de agua [l/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuito primario frío</td>
<td>103200</td>
</tr>
<tr>
<td>Circuito primario caldera</td>
<td>33300</td>
</tr>
<tr>
<td>Circuito climatizadores frío</td>
<td>33900</td>
</tr>
<tr>
<td>Circuito climatizadores calor</td>
<td>14700</td>
</tr>
<tr>
<td>Circuito zonas comunes frío</td>
<td>29800</td>
</tr>
<tr>
<td>Circuito zonas comunes calor</td>
<td>11700</td>
</tr>
<tr>
<td>Circuito habitaciones frío</td>
<td>24700</td>
</tr>
<tr>
<td>Circuito habitaciones calor</td>
<td>15100</td>
</tr>
</tbody>
</table>

Tabla 7.1 – Caudal de agua de las bombas hidráulica

7.2.1 Elementos de regulación hidráulica

Para el correcto funcionamiento de la canalización de agua es importante hacer una correcta previsión de los elementos de regulación de las tuberías. Para el cálculo de los diámetros de tubería que llegan a cada conectan llegan a las bombas y a las UTA y se siguen los valores la Tabla 7.2. Esta tabla da los valores máximos de caudal para cada diámetro de tubería determinado, teniendo en cuenta que las pérdidas de carga en la tubería no superen $30 \text{ mmCa}/\text{m.l.}$ y que la velocidad no supere los 2 m/s.

<table>
<thead>
<tr>
<th>DIÁMETROS</th>
<th>FRIO</th>
<th>CALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>DN 15</td>
<td>100</td>
</tr>
<tr>
<td>3/4"</td>
<td>DN 20</td>
<td>500</td>
</tr>
<tr>
<td>1"</td>
<td>DN 25</td>
<td>1500</td>
</tr>
<tr>
<td>1"1/4</td>
<td>DN 32</td>
<td>3000</td>
</tr>
<tr>
<td>1"1/2</td>
<td>DN 40</td>
<td>4500</td>
</tr>
<tr>
<td>2"</td>
<td>DN 50</td>
<td>9000</td>
</tr>
<tr>
<td>2"1/2</td>
<td>DN 65</td>
<td>15000</td>
</tr>
<tr>
<td>3"</td>
<td>DN 80</td>
<td>35000</td>
</tr>
<tr>
<td>4"</td>
<td>DN 100</td>
<td>50000</td>
</tr>
<tr>
<td>5"</td>
<td>DN 125</td>
<td>90000</td>
</tr>
<tr>
<td>6"</td>
<td>DN 150</td>
<td>140000</td>
</tr>
<tr>
<td>8"</td>
<td>DN 200</td>
<td>250000</td>
</tr>
</tbody>
</table>

Tabla 7.2 – Diámetro tubería en función del caudal de agua
Siguiendo los valores de la Tabla 7.2, se selecciona el diámetro de los elementos de regulación de la red de tuberías como son:

- Filtros coladores
- Manguitos anti vibración
- Válvulas de corte
- Válvulas de regulación de caudal (TA)
- Válvulas de control de e vías
- Válvulas de seguridad
- Válvulas anti-retorno

7.2.1.1 Bomba

La Figura 7.1 muestra un esquema de los elementos de grifería necesarios para la correcta instalación de cada una de las bombas. Esta configuración será la presente en todas las bombas.

![Figura 7.1 – Esquema de regulación de bomba](image)

La Tabla 7.3 muestra la cantidad de cada elemento para cada una de las bombas, las válvulas de corte de ¾” son para la instalación en paralelo de los presostatos.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtros coladores</td>
<td>1</td>
</tr>
<tr>
<td>Manguito anti vibración</td>
<td>2</td>
</tr>
<tr>
<td>Válvula de corte</td>
<td>2</td>
</tr>
<tr>
<td>Válvula de corte (de ¾”)</td>
<td>2</td>
</tr>
<tr>
<td>Válvulas de regulación de caudal</td>
<td>1</td>
</tr>
<tr>
<td>Válvula anti-retorno</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 7.4 – Elementos de regulación de las bombas hidráulicas
7.2.1.2 UTA

En la Figura 7.2 se observa un esquema de instalación hidráulica de las UTA's

![Esquema de instalación hidráulica de las UTA's](image)

Figura 7.2 – Esquema de regulación hidráulica de UTA

En este esquema se observan tanto los elementos hidráulicos como el resto de elementos de control.

La Tabla 7.5 es un resumen de los elementos que aparecen en la Figura 7.3.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frio</td>
<td></td>
</tr>
<tr>
<td>Válvula de corte</td>
<td>2</td>
</tr>
<tr>
<td>Manguito anti vibración</td>
<td>2</td>
</tr>
<tr>
<td>Válvulas de regulación de caudal</td>
<td>1</td>
</tr>
<tr>
<td>Filtros coladores</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 7.6 – Elementos de regulación hidráulica de las UTA's

Las válvulas de tres vías para la regulación del caudal que pasa por la batería se incluyen en el control de la instalación (así como los elementos de control de la UTA).
8 CONTROL DE LA INSTALACIÓN

A continuación se detallan los puntos de control de la instalación. El anexo K contiene tabulados todos los puntos de control de la instalación necesarios para poder controlar los conceptos que se detallan a continuación.

8.1 Control de la producción

Se realizará el control de la temperatura, y el caudal de agua impulsada. Para ello se instalarán válvulas de tres vías motorizadas así como válvulas reguladoras de caudal. También se instalarán presostatos y termostatos que se conectarán a los paneles de control. Algunos de los puntos importantes de control de la producción son:

- Estado de la planta enfriadora y caldera
- Control de las temperaturas de impulsión y retorno
- Control de paro/marcha de las bombas
- Control del caudal de agua
- Control de la temperatura nivel de los depósitos acumuladores

8.2 Control de las UTA

Para garantizar el correcto funcionamiento del sistema de climatización es necesario controlar el encendido y paro de las unidades, las temperaturas de impulsión y retorno del aire, un control del estado de los filtros y poder controlar la temperatura del agua que circula por la batería.

En la lista de los anexos se presenta en detalle los elementos necesarios para llevar a cabo este control.
8.3 Habitaciones

El control de las habitaciones se realiza desde el interior mediante un termostato integral que controla el Fancoil. A continuación se presenta de manera esquemática cuales son las variables que entran en juego para el control de los fancoils de las habitaciones.

Se puede observar como se prevé un control de la ventana y de la colocación de la tarjeta de apertura de la puerta y que todas las habitaciones van conectadas entre ellas para poder en última instancia ser controladas desde los paneles de control que permitirán a su vez conocer el estado de las habitaciones.

![Esquema de conexión de Fancoil de habitaciones](image)

Figura 8.1 – Esquema de conexionado de Fancoil de habitaciones

Como puntos fuertes del sistema de control cabe destacar la posibilidad que proporciona de poder controlar toda la instalación desde el PC situado en la sala de Control en planta baja.
9 IMPACTO MEDIOAMBIENTAL

La ejecución de este proyecto conlleva la rehabilitación de las ruinas del convento del Roser de Lleida. Esto significa de partida modificar la estética del edificio y de la zona en general. Entrando en detalle a los impactos que tiene el sistema de climatización diseñado sobre el edificio y su entorno, aquí se presentan algunos de los más importantes.

9.1 Agentes contaminantes

Las fuentes más destacadas de agentes contaminantes que pueden surgir del uso de la instalación son los gases de combustión de la caldera y el sistema de micro-cogeneración, el refrigerante de la planta enfriadora y los aceites y grasas de los elementos mecánicos como los compresores de la planta enfriadora, las bombas hidráulicas y los elementos de ventilación mecánica.

En el caso de los gases contaminantes no se prevé ningún tipo de tratamiento posterior de los mismos. No obstante, para el correcto funcionamiento de la caldera, es necesario realizar revisiones periódicamente para verificar que la combustión de la misma se da de manera óptima y así reducir al máximo la polución de las emisiones.

Por parte del sistema de micro-cogeneración, según estudios presentados por el proveedor del sistema, se observa que la producción de energía eléctrica “in-situ” da como balance general del sistema una disminución considerable del CO₂ emitido a la atmósfera respecto a las emisiones que se darían para transportar la energía eléctrica al edificio.

La planta enfriadora instalada usa el refrigerante R-410 el cual no tiene efecto dañino sobre la capa de ozono.

El nuevo refrigerante R410A no contiene cloro, que daña la capa de ozono terrestre y produce el mínimo daño a nuestro medio ambiente. El ODP (el Potencial de destrucción de Ozono) es 0.0 mientras que en el refrigerante convencional R-22 el ODP es 0.055.

En la parte de aceites y grasas si que se prevé gestionar correctamente durante el proceso de mantenimiento de la instalación en que se velara por el correcto funcionamiento de la maquinaria y la gestión de residuos líquidos que estas puedan generar.

9.2 Contaminación acústica

La planta enfriadora es el único elemento exterior del proyecto de climatización que podría generar molestias al entorno del hotel pero como se puede observar en su ficha técnica, la presión sonora es de solo 74 dB.
9.3 Aislamiento térmico

Para cumplir con el correcto aislamiento térmico y minimizar así las pérdidas de energía que acarrearían un mayor consumo, tanto los conductos como las máquinas instaladas cumplen con las normativas vigentes en este apartado. En el CD se incluyen las fichas técnicas de todos los elementos para justificar que estos presentan los certificados que acreditan sobre su eficiencia térmica.

9.4 Impacto visual

Tanto la rehabilitación del edificio como la ejecución del proyecto de clima se han basado en el gran compromiso con la integración estética del edificio en su entorno y de obtener unos resultados interiores limpios en el los todos los sistemas formen una continuidad en el diseño. Prueba de ello es la poca cantidad de modelos diferentes de elementos de difusión y retorno de aire que intentan crear una línea de diseño constante en todo el edificio.

9.5 Sistema micro-cogeneración integrado

El principio de micro-cogeneración (CHP) es extremadamente simple. Del mismo modo que una caldera calienta agua en un sistema de calefacción, el motor CHP se alimenta por el retorno a baja temperatura del sistema de calefacción y lo calienta hasta aproximadamente 80°C, antes de devolverlo al sistema. Adicionalmente el motor actúa sobre un generador eléctrico, siendo esta económica producción energética el atractivo de la unidad de micro-CHP. Programando la unidad micro-CHP como la caldera principal, la energía generada es más barata de producir y se evitan los arranques innecesarios de las calderas de calefacción.

El equipo DACHS, alimentado por Gas Natural o GLP, entrega una potencia eléctrica en 3 fases de 5,5 kW y 12,5 kW de potencia térmica. El controlador integral MSR-2 ofrece un funcionamiento simple para el usuario y se puede programar para una secuencia de control de hasta 10 unidades múltiples. Un módem integrado permite la comunicación a distancia, y la interfase a red se encuentra incluida ofreciendo la conexión directa de las 3 fases al cuadro de distribución eléctrica del edificio. La electricidad generada por el DACHS se distribuye directamente a los circuitos del edificio o bien se exporta a la red (RD 661/2007).

El condensador de los gases de combustión opcional, incrementa la potencia térmica en hasta 3 kW más. Los gases de combustión son conducidos desde el condensador mediante tubería plástica, con una gran sencillez de instalación.
10 MEDICIONES

A continuación se presenta todo aquel material que está previsto en el coste de la instalación diseñada. Previo a presentar el estado de mediciones se presentan y justifican algunas de las partidas y las cantidades que aparecen:

- **Producción:** Comprende:
 - Maquinaria de producción de agua fría y caliente
 - Bombas hidráulicas
 - Tuberías de producción
 - Colectores de agua
 - Depósitos
 - Vasos de expansión
 - Valvulería de producción

- **Unidades terminales:** Contiene todas las unidades de tratamiento de aire que se instalaran en el edificio. Climatizadores, fancoils y cassetes

- **Conductos y rejas:** Se incluyen todos los conductos, aislamientos para conductos, elementos de difusión de aire, retorno, extracción. También se incluye la maquinaria de ventilación mecánica. Para realizar la medición de conductos se ha aplicado un 20% de suplemento sobre en concepto de desperdicio. También contiene dentro de esta medición las embocaduras tanto a maquinara como a elementos terminales. En los anexos se presentan las tablas justificativas de las mediciones realizadas.

- **Tuberías:** Contiene tuberías y aislamientos, así como también los elementos de regulación del circuito hidráulico de la instalación, excepto las válvulas de tres vías que se engloban en el apartado de control. Estas mediciones son una estimación realizada teniendo en cuenta la potencia de la instalación y de las unidades terminales. Los espesores de aislante son los requeridos por el RITE que se presentan a continuación:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>AGUA FRÍA INTERIO</th>
<th>AGUA FRÍA EXTERIOR</th>
<th>AGUA CALIENTE INTERIO</th>
<th>AGUA CALIENTE EXTERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro</td>
<td>ESPESORES DEL AISLAMIENTO EN mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6"</td>
<td>44</td>
<td>64</td>
<td>44</td>
<td>54</td>
</tr>
<tr>
<td>5"</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>4"</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>3"</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2 1/2"</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>2"</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>1 1/2"</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>1 1/4"</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1"</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3/4"</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>1/2"</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3/8"</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabla 10.1 – Espesor de aislamiento para tuberías de acero negro según RITE julio 1998
- **Micro-cogeneración:** En esta partida se presentan los elementos necesarios para la producción de ACS mediante el sistema integral de micro-cogeneración de energía térmica y eléctrica. No contiene en este sub-capítulo las partidas de tubería de conexión ya que están consideradas como fontanería y no se incluyen en este proyecto.

- **Control:** Para el control se detallan en sub-apartados los conceptos generales que aparecían en la oferta del proveedor.
10.1 Tabla de mediciones

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCIÓN UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COSTES HOTEL LLEIDA</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>INSTALACIÓN DE CLIMATIZACIÓN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01.01</td>
<td>CENTRAL TÉRMICA (C. Primario)</td>
</tr>
<tr>
<td>01.01.001</td>
<td>U</td>
<td>Planta enfriadora para la producción de agua fría con condensación por aire con ventiladores axiales potenciados, de 600 kW de potencia frigorífica a 35º C exterior, y un COP entre 3 y 4 en frío, alimentación trifásica de 400 V, y fluído refrigerante R-134 A, situada en el exterior de la sala de máquinas, marca McQuay modelo McEng Evo 177.2.CIA-XN.</td>
</tr>
<tr>
<td>01.01.002</td>
<td>U</td>
<td>Caldera de alto rendimiento. Marca: Baxi-Roca, Modelo: CPA500, de gas natural, 580 kw de potencia calorífica útil, de plancha de acero para calefacción de 5 bar y 90º C.</td>
</tr>
<tr>
<td>01.01.003</td>
<td>U</td>
<td>Contador de agua, para velocidad, de latón, con uniones roscadas de diámetro nominal 1"1/4, para conectar a la batería o al ramal</td>
</tr>
<tr>
<td>01.01.004</td>
<td>U</td>
<td>Suministro y montaje de vaso de expansión de 425 l, totalmente montado, incluso soporteria y accesorios, con membrana recambiable.</td>
</tr>
<tr>
<td>01.01.005</td>
<td>U</td>
<td>Suministro y montaje de vaso de expansión de 150 l, totalmente montado, incluso soportería y accesorios, con membrana recambiable.</td>
</tr>
<tr>
<td>01.01.006</td>
<td>U</td>
<td>Suministro y montaje de separador de microburbujas de aire y lodos, con armazón de acero designación 1S235JR según UNE-EN 10027, con conexiones soldadas de 125 mm de diámetro nominal, para un caudal de hasta 30 m³/h, para una presión máxima de 10 bar y una temperatura máxima de fluído de 110º C, con cuerpo filtrante de malla de cobre, con depósito decantador de lodos en la parte inferior con válvula de extracción, válvula de purga automática en la parte superior y válvula de extracción de grandes cantidades de aire montado en el cuerpo, montada entre tubos y con todas las conexiones hechas.</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>01.01.007</td>
<td>Suministro y montaje de separador de microburbujas de aire y lodos, con armazón de acero designación 1S235JR según UNE-EN 10027, con conexiones soldadas de 200 mm de diámetro nominal, para un caudal de hasta 30 m³/h, para una presión máxima de 10 bar y una temperatura máxima de fluido de 110º C, con cuerpo filtrante de malla de cobre, con depósito decantador de lodos en la parte inferior con válvula de extracción, válvula de purga automática en la parte superior y válvula de extracción de grandes cantidades de aire montada en el cuerpo, montada entre tubos y con todas las conexiones hechas.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.01.008</td>
<td>Depósito acumulador de inercia AS 3000-IN E Acumulador vertical para almacenamiento y producción de a.c.s. sin serpentín de intercambio interior, marca BAXIROCA. Calentamiento del agua efectuado mediante intercambiadores exteriores. Volumen de acumulación 3000 litros. Boca de inspección de diámetro 480 mm. Acumulador de acero esmaltado. Aislamiento con espuma de poliuretano de 100 mm, envuelto con una capa externa de PVC, libre de CFC. Ánodo de magnesio incluido. Termómetro incluido. Presión máxima en a.c.s. 8 bar.</td>
<td>2,00</td>
</tr>
<tr>
<td>01.01.009</td>
<td>Envoltura depósito acumulador 3000 litros (para interior)</td>
<td>2,00</td>
</tr>
<tr>
<td>01.01.010</td>
<td>Suministro y montaje de válvula mezcladora termostática para agua caliente sanitaria PN 10, totalmente montada incluso soportería y accesorios de DN 40</td>
<td>2,00</td>
</tr>
<tr>
<td>01.01.011</td>
<td>Suministro y montaje de bomba in-line de 1.450 rpm, protección eléctrica IP-54, clase de aislamiento F, totalmente montada, incluso soportería, accesorios, juntas y bridas, marca GRUNDFOS, modelo TP 125-130/4</td>
<td>1,00</td>
</tr>
<tr>
<td>01.01.012</td>
<td>Suministro y montaje de bomba in-line de 1.450 rpm, protección eléctrica IP-54, clase de aislamiento F, totalmente montada, incluso soportería, accesorios, juntas y bridas, marca GRUNDFOS, modelo TP 80-340/4</td>
<td>7,00</td>
</tr>
<tr>
<td>01.01.013</td>
<td>Colector formado por tubo de acero negro estirado sin soldadura, de 6" DN 150 mm de diámetro, de 6 m, con 1 conexión de entrada y 3 conexiones de salida, con plancha flexible de espuma elastomérica, de 50 mm de espesor.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.01.014</td>
<td>Colector formado por tubo de acero negro estirado sin soldadura, de 4" DN 100 mm de diámetro, de 6 m, con 1 conexión de entrada y 3 conexiones de salida, con plancha flexible de espuma elastomérica, de 50 mm de espesor.</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Total sub-capítulo 01.01

01.02 CONDUCTOS Y REJAS
<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCION UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.02.001</td>
<td>Conducto autoportante rectangular para la distribución de aire climatizado formada por panel rígido de alta densidad de lana de vidrio Climaver Neto "ISOVER", según UNE-EN 13162, de 25 mm de espesor, revestido por un complejo triplex aluminio visto + malla de fibra de vidrio + kraft por el exterior y un tejido de vidrio acústico de alta resistencia mecánica (tejido NETO) por el interior.</td>
<td>1030,00</td>
</tr>
<tr>
<td>01.02.002</td>
<td>Conductos de chapa galvanizada de 0,7 mm de espesor, juntas transversales con vainas, para conductos de dimensión mayor hasta 300 mm.</td>
<td>318,00</td>
</tr>
<tr>
<td>01.02.003</td>
<td>Suministro y montaje de aislamiento de espuma elastomérica negra autoadhesiva, para conductos de chapa circular, montada interiormente de 10 mm de grueso, tipo Armaflex AF (o equivalente) (con barrera de vapor), coeficiente conductividad térmica 0,038 w (m.k) a 20º C a una temperatura de uso de 45º C a -105º C, totalmente montado incluidos accesorios.</td>
<td>41,00</td>
</tr>
<tr>
<td>01.02.004</td>
<td>Tubo flexible de 102 mm de diámetro, sin aislamiento.</td>
<td>62,00</td>
</tr>
<tr>
<td>01.02.005</td>
<td>Tubo flexible de 315 mm de diámetro, con aislamiento incorporado.</td>
<td>30,00</td>
</tr>
<tr>
<td>01.02.006</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 100 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>424,80</td>
</tr>
<tr>
<td>01.02.007</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 150 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>49,70</td>
</tr>
<tr>
<td>01.02.008</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 200 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>288,60</td>
</tr>
<tr>
<td>01.02.009</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 250 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>32,00</td>
</tr>
<tr>
<td>01.02.010</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 300 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>127,60</td>
</tr>
<tr>
<td>01.02.011</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 350 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>46,40</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>01.02.012</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 400 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>90,80</td>
</tr>
<tr>
<td>01.02.013</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 450 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>36,10</td>
</tr>
<tr>
<td>01.02.014</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 500 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>14,00</td>
</tr>
<tr>
<td>01.02.015</td>
<td>Suministro y montaje de conducto helicoidal circular de plancha de acero galvanizado, de 700 mm de diámetro (s/UNE_EN 1506), de grueso 0,5 mm y montado superficialmente, totalmente montado incluso accesorios</td>
<td>25,40</td>
</tr>
<tr>
<td>01.02.016</td>
<td>Suministro y montaje de tobera de aire de gran caudal, totalmente montada incluso soporteria y accesorios, marca AIRFLOW, modelo TEI+CC 14" (con cuello)</td>
<td>29,00</td>
</tr>
<tr>
<td>01.02.017</td>
<td>Suministro y montaje de difusor rotacional de espigas radiales, incluido plenum de montaje y regulación, totalmente montado marca AIRFLOW, modelo DFR-FCI-RR-DO-600/48</td>
<td>34,00</td>
</tr>
<tr>
<td>01.02.018</td>
<td>Suministro y montaje de reja lineal, con lamas fijas, con regulación de 1.000x100 mm, totalmente montada incluso soporteria y marco de montaje, marca AIRFLOW, modelo GLP-BE+1+O AA 1000x100</td>
<td>64,00</td>
</tr>
<tr>
<td>01.02.019</td>
<td>Suministro y montaje de reja lineal, con lamas fijas, con regulación de 1.000x150 mm, totalmente montada incluso soporteria y marco de montaje, marca AIRFLOW, modelo GLP-BE+1+O AA 1000x150</td>
<td>4,00</td>
</tr>
<tr>
<td>01.02.020</td>
<td>Suministro y montaje de reja lineal, con lamas fijas, con regulación de 1000x200 mm, totalmente montada incluso soporteria y marco de montaje, marca AIRFLOW, modelo GLP-BE+1+O AA 1000x200</td>
<td>7,00</td>
</tr>
<tr>
<td>01.02.021</td>
<td>Suministro y montaje de reja lineal, con lamas fijas, con regulación de 1500x100 mm, totalmente montada incluso soporteria y marco de montaje, marca AIRFLOW, modelo GLP-BE+1+O AA 1500x100</td>
<td>108,00</td>
</tr>
<tr>
<td>01.02.022</td>
<td>Suministro y montaje de reja lineal, con lamas fijas, con regulación de 1500x200 mm, totalmente montada incluso soporteria y marco de montaje, marca AIRFLOW, modelo GLP-BE+1+O AA 1500x200</td>
<td>4,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>01.02.023</td>
<td>Suministro y montaje de reja de retorno de lamas fijas a 45º, construidas con perfil de aluminio anodizado. Lamas fijas horizontales 400x300 mm, totalmente montada incluidos accesorios. Marca AIRFLOW, modelo RH+O+M+FC AA 400x300</td>
<td>2,00</td>
</tr>
<tr>
<td>01.02.024</td>
<td>Suministro y montaje de reja de retorno de lamas fijas a 45º, construidas con perfil de aluminio anodizado. Lamas fijas horizontales 900x200 mm, totalmente montada incluidos accesorios. Marca AIRFLOW, modelo RV+O+M+FC AA 900x300</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.025</td>
<td>Boca de ventilación en ejecución redonda adecuada para extracción, Marca AIRFLOW, modelo BEC - 100, de 100 mm de diámetro, con regulación del aire mediante el giro del disco central.</td>
<td>69,00</td>
</tr>
<tr>
<td>01.02.026</td>
<td>Suministro y montaje de compuerta de regulación de caudal de aire con aletas aerodinámicas de aluminio extruido, de medidas 612x1012 mm, totalmente montado incluso soportería y accesorios, marca AIRFLOW modelo CRA-MS 612x1012</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.027</td>
<td>Suministro y montaje de regulador de caudal constante de aire, tipo circular, totalmente montado incluso soportería y accesorios de DN 100, marca MADEL modelo SKC-C/ MA 100</td>
<td>51,00</td>
</tr>
<tr>
<td>01.02.028</td>
<td>Suministro y montaje de regulador de caudal constante de aire, tipo circular, totalmente montado incluso soportería y accesorios de DN 200, marca MADEL modelo SKC-C/ MA 200</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.029</td>
<td>Suministro y montaje de regulador de caudal constante de aire, tipo circular, totalmente montado incluso soportería y accesorios de DN 300, marca MADEL modelo SKC-C/ MA 315</td>
<td>4,00</td>
</tr>
<tr>
<td>01.02.030</td>
<td>Suministro y montaje de regulador de caudal constante de aire, tipo circular, totalmente montado incluso soportería y accesorios de DN 400, marca MADEL modelo SKC-C/ MA 400</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.031</td>
<td>Suministro e instalación de ventilador helicoidal para tejado, con hélice de plástico reforzada con fibra de vidrio, cuerpo y sombrerete de aluminio, base de acero galvanizado y motor para alimentación monofásica a 230 V y 50 Hz de frecuencia, con protección térmica, aislamiento clase F, protección IP 65, Marca: S&P, modelo HCTB/4-560-B, de 1300 r.p.m., con malla de protección contra la entrada de hojas y pájaros. Incluso accesorios y elementos de fijación. Totalmente montado, conexionado y probado.</td>
<td>2,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>01.02.032 U</td>
<td>Suministro e instalación de ventilador helicoidal para tejado, con hélice de plástico reforzada con fibra de vidrio, cuerpo y sombrerete de aluminio, base de acero galvanizado y motor para alimentación monofásica a 230 V y 50 Hz de frecuencia, con protección térmica, aislamiento clase F, protección IP 65, Marca: S&P, modelo HCTB/4-40-B, de 1300 r.p.m., con malla de protección contra la entrada de hojas y pájaros. Incluso accesorios y elementos de fijación. Totalmente montado, conexionado y probado.</td>
<td>4,00</td>
</tr>
<tr>
<td>01.02.033 U</td>
<td>Suministro y montaje de ventilador helicecentrífrugo de bajo perfil con caja de bornes externa, cuerpo-motor desmontable, Marca: S&P, modelo: TD-6000/400.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.034 U</td>
<td>Suministro y montaje de ventilador helicecentrífrugo de bajo perfil con caja de bornes externa, cuerpo-motor desmontable, Marca: S&P, modelo: TD-4000/355.</td>
<td>6,00</td>
</tr>
<tr>
<td>01.02.035 U</td>
<td>Suministro y montaje de ventilador helicecentrífrugo de bajo perfil con caja de bornes externa, cuerpo-motor desmontable, Marca: S&P, modelo: TD-100/160.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.036 U</td>
<td>Suministro y montaje de caja de ventilación axial, fabricada en chapa galvanizada, con aislamiento interior ignífugo (M0) de fibra de vidrio de 25 mm de espesor, motor trifásico IP55 clase F a 230V/50Hz. Marca: S&P, modelo: CGT/4-500+6/12-0,75</td>
<td>1,00</td>
</tr>
<tr>
<td>01.02.037 U</td>
<td>Suministro y montaje de caja de ventilación axial, fabricada en chapa galvanizada, con aislamiento interior ignífugo (M0) de fibra de vidrio de 25 mm de espesor, motor trifásico IP55 clase F a 230V/50Hz. Marca: S&P, modelo: CGT/4-500+6/38-0,55</td>
<td>2,00</td>
</tr>
</tbody>
</table>

Total sub-capítulo 01.02

01.03 UNIDADES TERMINALES

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCION UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.03.001 U</td>
<td>Suministro y montaje de climatizador horizontal para un caudal de aire hasta 8500 m³/h, con una bateria de agua fría de 85 kW y batería de agua caliente de 83 kW de 15 mm.c.d.a., con filtro y sección mezcla de aire, totalmente montado incluso soportería y accesorios, marca TERMOVEN model CLA 2015/2, para ubicación interior.</td>
<td>2,00</td>
</tr>
<tr>
<td>01.03.002 U</td>
<td>Suministro y montaje de climatizador horizontal para un caudal de aire hasta 10200 m³/h, con una bateria de agua fría de 64,1 kW y batería de agua caliente de 82,5 kW de 10 mm.c.d.a., con filtro, totalmente montado incluso soportería y accesorios, marca TERMOVEN model CHW-640, para ubicación exterior.</td>
<td>1,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>01.03.003</td>
<td>Suministro y montaje de climatizador horizontal para un caudal de aire hasta 5800 m³/h, con una batería de agua fría de 35,6 kW y batería de agua caliente de 46,2 kW de 10 mm.c.d.a., con filtro, totalmente montado incluso soportería y accesorios, marca TERMOVEN model CHW-355, para ubicación interior.</td>
<td>2,00</td>
</tr>
<tr>
<td>01.03.004</td>
<td>Suministro y montaje de climatizador horizontal para un caudal de aire hasta 3700 m³/h, con una batería de agua fría de 30 kW y batería de agua caliente de 34 kW de 15 mm.c.d.a., con filtro, totalmente montado incluso soportería y accesorios, marca TERMOVEN model CLA-2010/H, para ubicación interior.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.03.005</td>
<td>Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 30,8 kW de potencia frigorífica máxima y 36,7 kW de potencia calorífica máxima, alimentación monofásica de 230 V, para un caudal de aire de hasta 5150 m³/h de 10 mm.c.d.a, colocado empotrado en falso techo, marca TERMOVEN, modelo CF-51 totalmente montado incluso accesorios.</td>
<td>2,00</td>
</tr>
<tr>
<td>01.03.006</td>
<td>Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 23,2 kW de potencia frigorífica máxima y 27,7 kW de potencia calorífica máxima, alimentación monofásica de 230 V, para un caudal de aire de hasta 3880 m³/h de 12 mm.c.d.a, colocado empotrado en falso techo, marca TERMOVEN, modelo CF-41 totalmente montado incluso accesorios.</td>
<td>5,00</td>
</tr>
<tr>
<td>01.03.007</td>
<td>Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 14,8 kW de potencia frigorífica máxima y 18 kW de potencia calorífica máxima, alimentación monofásica de 230 V, para un caudal de aire de hasta 2720 m³/h de 12 mm.c.d.a, colocado empotrado en falso techo, marca TERMOVEN, modelo CF-31 totalmente montado incluso accesorios.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.03.008</td>
<td>Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 11,8 kW de potencia frigorífica máxima y 14,2 kW de potencia calorífica máxima, alimentación monofásica de 230 V, para un caudal de aire de hasta 1972 m³/h de 12 mm.c.d.a, colocado empotrado en falso techo, marca TERMOVEN, modelo CF-21 totalmente montado incluso accesorios.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.03.009</td>
<td>Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 6,43 kW de potencia frigorífica máxima y 8,51 kW de potencia calorífica máxima, alimentación monofásica de 230 V, colocado empotrado en falso techo, marca TERMOVEN, modelo FLS 1150-TFV totalmente montado incluso accesorios.</td>
<td>2,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>01.03.010</td>
<td>U Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 5,49 kW de potencia frigorífica máxima y 7,36 kW de potencia calorífica máxima, alimentación monofásica de 230 V, colocado empotrado en falso techo, marca TERMOVEN, modelo FLS 850-TFV totalmente montado incluso accesorios.</td>
<td>16,00</td>
</tr>
<tr>
<td>01.03.011</td>
<td>U Suministro y montaje de fan-coil vertical de suelo con envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 3,1 kW de potencia frigorífica máxima y 4,2 kW de potencia calorífica máxima, alimentación monofásica de 230 V, colocado empotrado en la pared, marca TERMOVEN, modelo FLS 350-P totalmente montado incluso accesorios.</td>
<td>5,00</td>
</tr>
<tr>
<td>01.03.012</td>
<td>U Suministro y montaje de fan-coil horizontal sin envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 3,1 kW de potencia frigorífica máxima y 4,2 kW de potencia calorífica máxima, alimentación monofásica de 230 V, colocado empotrado en la pared, marca TERMOVEN, modelo FLS 350-P totalmente montado incluso accesorios.</td>
<td>33,00</td>
</tr>
<tr>
<td>01.03.013</td>
<td>U Suministro y montaje de fan-coil vertical de suelo con envolvente, para trabajar en sistemas de distribución de agua de 4 tubos, de 1,49 kW de potencia frigorífica máxima y 2,22 kW de potencia calorífica máxima, alimentación monofásica de 230 V, colocado empotrado en la pared, marca TERMOVEN, modelo FLS 150-P totalmente montado incluso accesorios.</td>
<td>12,00</td>
</tr>
<tr>
<td>01.03.014</td>
<td>U Fan-coil de techo tipo cassette para trabajar en sistemas de distribución de agua de 2 tubos, de 4 vías de salida de aire, de 2,3 kW de potencia frigorífica máxima, de 100 W de potencia eléctrica total absorbida, alimentación monofásica de 230 V, colocado empotrado en falso techo, marca TERMOVEN, modelo FCSA-20-2T totalmente montado incluso accesorios.</td>
<td>2,00</td>
</tr>
<tr>
<td>01.03.015</td>
<td>U Radiador de aluminio para instalaciones de agua caliente, Marca: Roca, Modelo: JET80 con compostición de 12 elementos para trabajar con hasta 6 bar y 110 °C o vapor a baja presión hasta 0,5 bar. Incluyendo accesorios de montaje, purgadores y válvulas.</td>
<td>6,00</td>
</tr>
</tbody>
</table>

Total sub-capítulo 01.03

TUBERIAS

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCION UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.04.001</td>
<td>m.l. Tubo de acero negro sin soldadura de diámetro 1/2", según la norma DIN 2440 ST-35</td>
<td>115,00</td>
</tr>
<tr>
<td>01.04.002</td>
<td>m.l. Tubo de acero negro sin soldadura de diámetro 3/4", según la norma DIN 2440 ST-35</td>
<td>852,00</td>
</tr>
<tr>
<td>01.04.003</td>
<td>m.l. Tubo de acero negro sin soldadura de diámetro 1", según la norma DIN 2440 ST-35</td>
<td>501,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>01.04.004</td>
<td>Tubo de acero negro sin soldadura de diámetro 1"1/4, según la norma DIN 2440 ST-35</td>
<td>366,00</td>
</tr>
<tr>
<td>01.04.005</td>
<td>Tubo de acero negro sin soldadura de diámetro 1"1/2, según la norma DIN 2440 ST-35</td>
<td>102,00</td>
</tr>
<tr>
<td>01.04.006</td>
<td>Tubo de acero negro sin soldadura de diámetro 2", según la norma DIN 2440 ST-35</td>
<td>152,00</td>
</tr>
<tr>
<td>01.04.007</td>
<td>Tubo de acero negro sin soldadura de diámetro 2"1/2, según la norma DIN 2440 ST-35</td>
<td>259,00</td>
</tr>
<tr>
<td>01.04.008</td>
<td>Tubo de acero negro sin soldadura de diámetro 3", según la norma DIN 2440 ST-35</td>
<td>318,00</td>
</tr>
<tr>
<td>01.04.009</td>
<td>Tubo de acero negro sin soldadura de diámetro 4", según la norma DIN 2440 ST-35</td>
<td>134,00</td>
</tr>
<tr>
<td>01.04.010</td>
<td>Tubo de acero negro sin soldadura de diámetro 6", según la norma DIN 2440 ST-35</td>
<td>122,00</td>
</tr>
<tr>
<td>01.04.011</td>
<td>Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 22 mm de diámetro exterior, de 20,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 16 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego, con grado de dificultad media y colocado superficialmente, totalmente montado incluidos accesorios. (1/2")</td>
<td>115,00</td>
</tr>
<tr>
<td>01.04.012</td>
<td>Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 28 mm de diámetro exterior, de 20,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 16 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego, con grado de dificultad media y colocado superficialmente, totalmente montado incluidos accesorios. (3/4")</td>
<td>852,00</td>
</tr>
<tr>
<td>01.04.013</td>
<td>Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 35 mm de diámetro exterior, de 20,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 16 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego, con grado de dificultad media y colocado superficialmente, totalmente montado incluidos accesorios.(1")</td>
<td>501,00</td>
</tr>
<tr>
<td>01.04.014</td>
<td>Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 42 mm de diámetro exterior, de 30,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego, con grado de dificultad media y colocado superficialmente, totalmente montado incluidos accesorios.(1"1/4)</td>
<td>366,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>01.04.015</td>
<td>m.l. Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 48 mm de diámetro exterior, de 30,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego (1"1/2)</td>
<td>102,00</td>
</tr>
<tr>
<td>01.04.016</td>
<td>m.l. Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 60 mm de diámetro exterior, de 30,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego, con grado de dificultad media y colocado superficialmente, totalmente montado incluidos accesorios (2")</td>
<td>152,00</td>
</tr>
<tr>
<td>01.04.017</td>
<td>m.l. Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 76 mm de diámetro exterior, de 30,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego (2"1/2)</td>
<td>259,00</td>
</tr>
<tr>
<td>01.04.018</td>
<td>m.l. Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 89 mm de diámetro exterior, de 30,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego (3")</td>
<td>318,00</td>
</tr>
<tr>
<td>01.04.019</td>
<td>m.l. Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 114 mm de diámetro exterior, de 40,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego (4")</td>
<td>134,00</td>
</tr>
<tr>
<td>01.04.020</td>
<td>m.l. Aislamiento termico de espuma elastomérica anticondensación para tuberias frías de acero o cobre de 165 mm de diámetro exterior, de 40,0 mm de grueso promedio, con un diámetro interior aproximado del aislamiento de 26 mm, con una conductividad térmica a 0º C de 0,035 W/mK y clasificación M1 de reacción al fuego (6")</td>
<td>122,00</td>
</tr>
<tr>
<td>01.04.021</td>
<td>U Válvula de esfera manual con rosca, de diámetro nominal de 1/2", de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cierre de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>90,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>01.04.022</td>
<td>Válvula de esfera manual con rosca, de diámetro nominal de 3/4", de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cerramiento de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>76,00</td>
</tr>
<tr>
<td>01.04.023</td>
<td>Válvula de esfera manual con rosca, de diámetro nominal de 1", de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cerramiento de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>116,00</td>
</tr>
<tr>
<td>01.04.024</td>
<td>Válvula de esfera manual con rosca, de diámetro nominal de 1"1/4, de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cerramiento de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>22,00</td>
</tr>
<tr>
<td>01.04.025</td>
<td>Válvula de esfera manual con rosca, de diámetro nominal de 1"1/2, de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cerramiento de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>10,00</td>
</tr>
<tr>
<td>01.04.026</td>
<td>Válvula de esfera manual con rosca, de diámetro nominal de 2", de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cerramiento de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>14,00</td>
</tr>
<tr>
<td>01.04.027</td>
<td>Válvula de esfera manual con rosca, de diámetro nominal de 2"1/2, de 16 bar de presión nominal, con cuerpo de fosa, bola de latón y anillos de cerramiento de teflón, tipo 2, totalmente montada incluidos accesorios.</td>
<td>6,00</td>
</tr>
<tr>
<td>01.04.028</td>
<td>Válvula de mariposa, cuerpo de aluminio, mariposa de fundición modular y junta EPDM, totalmente montada incluida soportería y accesorios (bridas y tornillería) de 3", totalmente montada incluidos accesorios.</td>
<td>10,00</td>
</tr>
<tr>
<td>01.04.029</td>
<td>Válvula de mariposa, cuerpo de aluminio, mariposa de fundición modular y junta EPDM, totalmente montada incluida soportería y accesorios (bridas y tornillería) de 4", totalmente montada incluidos accesorios.</td>
<td>3,00</td>
</tr>
<tr>
<td>01.04.030</td>
<td>Válvula de mariposa, cuerpo de aluminio, mariposa de fundición modular y junta EPDM, totalmente montada incluida soportería y accesorios (bridas y tornillería) de 6", totalmente montada incluidos accesorios.</td>
<td>10,00</td>
</tr>
<tr>
<td>01.04.031</td>
<td>Válvula de retención de clapeta con rosca, de diámetro nominal 3/4", de 16 bar de PN, de bronce, tipo 2 y montada superficialmente</td>
<td>2,00</td>
</tr>
<tr>
<td>01.04.032</td>
<td>Válvula de retención de disco partido conbridas, disco de inoxidable, cuerpo de inoxidable de diámetro nominal 2"1/2 de 16 bar de PN</td>
<td>2,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>01.04.033</td>
<td>Válvula de retención de disco partido con bridas, disco de inoxidable, cuerpo de inoxidable de diámetro nominal 3" de 16 bar de PN</td>
<td>5,00</td>
</tr>
<tr>
<td>01.04.034</td>
<td>Válvula de retención de disco partido con bridas, disco de inoxidable, cuerpo de inoxidable de diámetro nominal 4" de 16 bar de PN</td>
<td>1,00</td>
</tr>
<tr>
<td>01.04.035</td>
<td>Válvula de retención de disco partido con bridas, disco de inoxidable, cuerpo de inoxidable de diámetro nominal 6" de 16 bar de PN</td>
<td>1,00</td>
</tr>
<tr>
<td>01.04.036</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 15, totalmente montado incluidos accesorios</td>
<td>45,00</td>
</tr>
<tr>
<td>01.04.037</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 20, totalmente montado incluidos accesorios</td>
<td>24,00</td>
</tr>
<tr>
<td>01.04.038</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 25, totalmente montado incluidos accesorios</td>
<td>56,00</td>
</tr>
<tr>
<td>01.04.039</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 32, totalmente montado incluidos accesorios</td>
<td>11,00</td>
</tr>
<tr>
<td>01.04.040</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 40, totalmente montado incluidos accesorios</td>
<td>5,00</td>
</tr>
<tr>
<td>01.04.041</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 50, totalmente montado incluidos accesorios</td>
<td>7,00</td>
</tr>
<tr>
<td>01.04.042</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 65, totalmente montado incluidos accesorios</td>
<td>3,00</td>
</tr>
<tr>
<td>01.04.043</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 80, totalmente montado incluidos accesorios</td>
<td>5,00</td>
</tr>
<tr>
<td>01.04.044</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 100, totalmente montado incluidos accesorios</td>
<td>1,00</td>
</tr>
<tr>
<td>01.04.045</td>
<td>Filtro colador de agua con malla metálica, con bridas DN 150, totalmente montado incluidos accesorios</td>
<td>1,00</td>
</tr>
<tr>
<td>01.04.046</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 15</td>
<td>90,00</td>
</tr>
<tr>
<td>01.04.047</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 20</td>
<td>48,00</td>
</tr>
<tr>
<td>01.04.048</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 25</td>
<td>116,00</td>
</tr>
<tr>
<td>01.04.049</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 32</td>
<td>22,00</td>
</tr>
<tr>
<td>01.04.050</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 40</td>
<td>10,00</td>
</tr>
<tr>
<td>01.04.051</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 50</td>
<td>14,00</td>
</tr>
<tr>
<td>01.04.052</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 65</td>
<td>6,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>01.04.053</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 80</td>
<td>10,00</td>
</tr>
<tr>
<td>01.04.054</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 100</td>
<td>4,00</td>
</tr>
<tr>
<td>01.04.055</td>
<td>Suministro y montaje de manguito antivibrador de goma, totalmente montado incluso bridas, juntas y tornillería de DN 150</td>
<td>4,00</td>
</tr>
<tr>
<td>01.04.056</td>
<td>Suministro y montaje de válvula de equilibrado T.A. roscada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 15</td>
<td>45,00</td>
</tr>
<tr>
<td>01.04.057</td>
<td>Suministro y montaje de válvula de equilibrado T.A. roscada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 20</td>
<td>24,00</td>
</tr>
<tr>
<td>01.04.058</td>
<td>Suministro y montaje de válvula de equilibrado T.A. roscada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 25</td>
<td>58,00</td>
</tr>
<tr>
<td>01.04.059</td>
<td>Suministro y montaje de válvula de equilibrado T.A. roscada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 32</td>
<td>11,00</td>
</tr>
<tr>
<td>01.04.060</td>
<td>Suministro y montaje de válvula de equilibrado T.A. roscada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 40</td>
<td>5,00</td>
</tr>
<tr>
<td>01.04.061</td>
<td>Suministro y montaje de válvula de equilibrado T.A. roscada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 50</td>
<td>7,00</td>
</tr>
<tr>
<td>01.04.062</td>
<td>Suministro y montaje de válvula de equilibrado T.A. embriada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 65</td>
<td>3,00</td>
</tr>
<tr>
<td>01.04.063</td>
<td>Suministro y montaje de válvula de equilibrado T.A. embriada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 80</td>
<td>5,00</td>
</tr>
<tr>
<td>01.04.064</td>
<td>Suministro y montaje de válvula de equilibrado T.A. embriada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 100</td>
<td>1,00</td>
</tr>
<tr>
<td>01.04.065</td>
<td>Suministro y montaje de válvula de equilibrado T.A. embriada con dipositivo de vaciado, totalmente montado incluso bridas, juntas y tornillería de DN 150</td>
<td>1,00</td>
</tr>
<tr>
<td>01.04.066</td>
<td>Suministro y montaje de válvula de seguridad de recorrido corto embriado, de 32 mm de diámetro nominal, de 16 bar de PN, con palanca de comprobación precintable, con cuerpo de fosa de acero, asiento obturador y tornillo de acero inoxidable, totalmente montada incluso accesorios.</td>
<td>4,00</td>
</tr>
<tr>
<td>01.04.067</td>
<td>Suministro y montaje de manómetro para agua, con baño de glicerina, escala 0-6 kg/cm², y esfera de 100 mm, totalmente montado incluida válvula de servicio.</td>
<td>16,00</td>
</tr>
<tr>
<td>POS.</td>
<td>DESCRIPCION UD.</td>
<td>MEDICIÓN</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>01.04.068</td>
<td>Suministro y montaje de termómetro de capilla de 110x36 mm, escala 0-120, totalmente montado incluso vaina.</td>
<td>16,00</td>
</tr>
<tr>
<td></td>
<td>Total sub-capítulo 01.04</td>
<td></td>
</tr>
<tr>
<td>01.05</td>
<td>CONTROL DE CLIMATIZACIÓN</td>
<td></td>
</tr>
<tr>
<td>01.05.001</td>
<td>Suministro y montaje de instrumentación, de los elementos de campo destinados al sistema de control centralizado del edificio y conjunto de controladores (configurables y programables) y armario para la instalación. Para el control de la instalación de climatización según descripción de la memoria</td>
<td>1,00</td>
</tr>
<tr>
<td>01.05.002</td>
<td>Suministro y montaje de instrumentación, de los elementos de campo destinados al sistema de control centralizado del edificio y conjunto de controladores (configurables y programables) y armario para la instalación. Para el control de la instalación de climatización circuito de fan-coils, según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada, componentes del sistema. Totalmente instalado.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.05.003</td>
<td>Suministro y montaje de instrumentación, de los elementos de campo destinados al sistema de control centralizado del edificio y conjunto de controladores (configurables y programables) y armario para la instalación. Para el control de la instalación de climatización circuito de climatizadores, según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada. Totalmente instalado.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.05.004</td>
<td>Suministro de hardware y software con las correspondientes licencias para el control de los elementos de instrumentación de control. Completamente instalados, conectados y funcionando, entre los cuales hay un PC Pentium IV con pantalla, una impresora y targeta para conexión con la red LonWorks. Según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada. Incluye material auxiliar de montaje y arquitectura. Totalmente instalado.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.05.005</td>
<td>Gestión Bus LonWorks, con Switch Multiport LONWORKS 2x FT-10, Terminación para Bus FTT-10 y Créditos para ser usados con el SofWare LonMaker (o equivalente) (herramienta de configuración de redes con protocolo abierto LonWorks). Según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada, componentes del sistema 5.9.3.03.02. Totalmente instalado.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.05.006</td>
<td>Tareas de ingeniería, programación y puesta en marcha de las regulaciones y control. Incluyendo diseño de las pantallas de los puntos interactivos. Según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada.</td>
<td>1,00</td>
</tr>
</tbody>
</table>
01.05.007 Instalación, cableado y conexionado de todos los elementos de la instalación de control. Según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada. Totalmente instalado.

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCION UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.05.007</td>
<td>Instalación, cableado y conexionado de todos los elementos de la instalación de control. Según descripción de la memoria, en el apartado de instalación de baja tensión, sistema de gestión centralizada. Totalmente instalado.</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Total sub-capítulo 01.05

01.06 SISTEMA MICRO-COGENERACIÓN

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCION UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
</table>
| 01.06.001 | Unidad Dachs HKA G5.5 micro-CHP, combustible gas natural, adecuada para la conexión en paralelo a la red eléctrica (conexión 3 fases) con los siguientes accesorios "plug&play":
- MSR2 panel de control completo con modem integrado (opcional modem GSM).
- Metro manguera flexible de gas, con válvula de bola de cierre manual de 1/2" (BSPT hembra).
- Set mangueras flexible (ida y retorno) para agua, c/u con válvula de bola completa de 1".
- Válvula de seguridad de agua completa ajustada a 3 bar.
- Sensor de temperatura de agua en el retorno con clip fijación (para ser montada por el instalador).
- Pletina fijación de suelo y pernos de fijación para unidad micro-CHP. | 1,00 |
<p>| 01.06.002 | Condensador Dachs de humos de combustión. Contribuye a aumentar hasta 3 kW de potencia térmica adicional (salida humos plástica DN 80). | 1,00 |
| 01.06.003 | Circulador Dachs ajuste caudal automático Para presión hidráulica externa > 20 mbar (para 1-3 Dachs) | 1,00 |
| 01.06.004 | Depósito de expansión cerrado de membrana fija VASOFLEX 8/0.5, presión máx. trabajo 3 bar. | 1,00 |</p>
<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCIÓN UD.</th>
<th>MEDICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.06.005</td>
<td>U Depósito acumulador solar AS 2000-1 E (con un serpentin) Interacumulador vertical para almacenamiento y producción de a.c.s. con alta superficie de intercambio interior, marca BAXIROCA. Volumen de acumulación 2000 litros. Boca de inspección de diámetro 480 mm. Acumulador y serpentin de intercambio de acero esmaltado. Aislamiento con espuma de poliuretano de 100 mm, envuelto con una capa externa de PVC, libre de CFC. Ánodo de magnesio incluido. Termómetro incluido. Presión máxima en a.c.s. 8 bar.</td>
<td>1,00</td>
</tr>
<tr>
<td>01.06.006</td>
<td>U Envolvente depósito acumulador 2000 litros (para interior)</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Total sub-capítulo 01.06</td>
<td></td>
</tr>
</tbody>
</table>
11 OFERTA

Como conclusión de este proyecto, se realiza la valoración del coste de ejecución del mismo para poder realizar la oferta.

Sobre el estado de mediciones, se aplican los costes materiales, los costes de la mano de obra y el coeficiente de venta para obtener el coste total de la ejecución de la climatización del edificio.

En los anexos se incluye la hoja de costes en la que se pueden ver los descuentos sobre el PVP aplicados por los proveedores así como el coeficiente del 0,9 de venta. Finalmente se obtiene la oferta que se presenta en la siguiente página.

<table>
<thead>
<tr>
<th>Sub-Capítulo</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01 Producción</td>
<td>112906,56 €</td>
</tr>
<tr>
<td>01.02 Conductos y rejas</td>
<td>98026,24 €</td>
</tr>
<tr>
<td>01.03 Unidades terminales</td>
<td>48163,56 €</td>
</tr>
<tr>
<td>01.04 Tuberías</td>
<td>146363,11 €</td>
</tr>
<tr>
<td>01.05 Control del sistema</td>
<td>92068,99 €</td>
</tr>
<tr>
<td>01.06 Sistema de micro-cogeneración</td>
<td>33324,28 €</td>
</tr>
</tbody>
</table>

IMPORTE TOTAL DE EJECUCIÓN 530.852,74 €
12 ESTUDIO DE ALTERNATIVAS

Durante la toma de decisiones del diseño se plantearon varias alternativas para llevar a cabo la climatización del edificio. Seguidamente se presentan las alternativas estudiadas y el motivo por el cual se descartaron.

12.1 Suelo radiante en zonas comunes

En las primeras fases de diseño de la instalación se solicitó un presupuesto aproximado para realizar una instalación de suelo radiante en las zonas comunes de planta baja y en la sala polivalente de planta segunda, así como en las suites. Incluido dentro de este presupuesto, se solicitaba una variante con paredes radiante en la planta baja en la zona del patio central.

Tanto por cuestiones económicas, como por cuestiones técnicas se descartó esta opción. Dado a las características de los locales a climatizar, se temía por la posibilidad de que el suelo radiante podría generar condensaciones.

12.2 VRV para las habitaciones

Como alternativa a la climatización de las habitaciones mediante fancoils de agua, se realizó el estudio de un sistema autónomo de VRV para ellas. Este sistema cuenta con bastantes ventajas con respecto al sistema de agua instalado. Su instalación es más sencilla, se adapta mejor a la repartición de cargas.

El factor económico fue decisivo para descartar esta opción ya que aún y mostrando mejoras técnicas con respecto al sistema de agua, había un incremento de un 13% en el precio final debido a que por las condiciones exteriores de frío en Lleida las unidades exteriores del sistema VRV necesitaban unas características especiales que aumentaban notablemente su precio.

Además, el hecho de instalar un sistema mixto no era la opción deseada, esto significaba también una reducción de potencia frigorífica de la planta enfriadora, una reducción en la cantidad de UTA’s compradas a Termoven y consecuentemente un empeoramiento de la oferta recibida por ellos.

12.3 ACS mediante placas solares

La producción de ACS mediante placas solares fue la primera opción que se planteó para cumplir con las necesidades del edificio en ACS. En los anexos se muestra el estudio realizado para estas. Finalmente se descarto por dos motivos principalmente. Primero, la posibilidad de
substituir las placas solares por una caldera de micro-cogeneración. Esta caldera, a la vez de producir el agua caliente necesaria para cubrir el 100% de las necesidades de ACS del edificio, también produce energía eléctrica “in situ” con el consecuente ahorro energético debido a las pérdidas de transporte de la energía eléctrica. En los anexos se presenta la reducción anual de CO\(_2\) emitido a la atmósfera así como la reducción la cantidad de energía eléctrica generada.

12.4 Recuperación de calor

La opción de instalar recuperadores de calor fue descartada ya que esta obra se firmó antes de la entrada en vigencia de la última versión del RITE de 2007 que obliga a la colocación de recuperadores de calor para instalaciones superiores a una cierta potencia. Al no ser entonces de obligatorio cumplimiento, aún y la propuesta por parte de TECNIFRED S.A. hacia la empresa constructora, esta opción se descartó y no se solicitó el estudio consecuente.
Conclusiones

El proyecto realizado cumple el objetivo diseñar un sistema de climatización para el hotel dando resultado a una oferta coherente que se sustenta sobre cálculos y criterios técnicos firmes. Tras terminar la realización del proyecto, y como valoración personal, he podido observar como actualmente en el ámbito industrial los criterios técnicos no son suficientes para tomar decisiones ya que las condiciones económicas son las que marcan la posibilidad de llevar a cabo un tipo de proyecto u otro con las soluciones que ello conlleva.

Ha sido difícil en varios momentos seguir las directrices del arquitecto, constructora y propiedad que nos siempre apuntaban en la misma dirección y que, cambiaban constantemente los criterios sobre el diseño final de los locales del hotel. Con constantes variaciones estéticas y de diseño que en la mayoría de los casos chocaban con las posibilidades técnicas para poder llevar a cabo la climatización de los locales.

No obstante, la solución final ha sido del agrado de todas las partes, siendo el coste de la instalación razonable y incluyendo un sistema de micro-cogeneración de energía en el sistema, en que se produce ACS y energía eléctrica “in-situ”.
Agradecimientos

Mis agradecimientos a la empresa gracias a la cual ha sido posible este proyecto, TECNIFRED S.A. A Manuel Ruano (propietario y director general de TECNIFRED S.A.) por ofrecerme esta oportunidad, guíame durante el proyecto y enseñarme nuevos conocimientos a nivel técnico y gestión de proyectos.

Gracias a Josep María Nacenta por su tutoría durante el proyecto y sus valiosos consejos no solo técnicos sino sobre la vida en general.

Infinitamente agradecido a mi compañera, Isadora Bassetto Kwiatkowski, ya que sin ella todo esto no tendría sentido.
Bibliografía

Bibliografía complementaria

REAL DECRETO 1751/1998, de 31 de Julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios (RITE) y sus Instrucciones Técnicas Complementarias (ITE) y se crea la Comisión Asesora para Instalaciones Térmicas de

CTE: Código Técnico de la Edificación.