RESUM

Aquest projecte pretén estudiar els sistemes de protecció contra incendis existents avui en dia, en particular es vol estudiar l’efecte i el comportament d’un sistema de protecció passiva, el recobriment d’estructures metàl·liques amb pintura intumescent.

L’objectiu d’aquest estudi és conèixer les propietats termo-mecàniques d’aquest material. Es per això que es du a terme una campanya experimental d’assajos per poder determinar-los. Es realitzarà un anàlisi experimental del comportament de la pintura intumescent "Stofire" que determini el seu creixement i la seva conductivitat vers diferents velocitats d’escalfament, diferents espessors de pintura i diferents factors de massivitats de l’acer protegit per la pintura. D’aquesta manera s’espera tenir una mostra suficientment gran per trobar una relació que defineixi el creixement i l’aïllament tèrmic de la pintura.

Amb els resultats que s’obtenen es realitzarà una simulació per tal de validar els resultats experimentals i extreure’n les conclusions finals.
ÍNDICE

RESUM.. 1
1. INTRODUCCIÓ .. 6
GLOSARI .. 4
2. SISTEMES DE PROTECCIÓ CONTRA INCENDIS ... 7
 2.1. PROTECCIÓ ACTIVA .. 9
 2.2. PROTECCIÓ PASSIVA ... 16
3. PINTURES INTUMESCENTS .. 19
 3.1. INTRODUCCIÓ .. 19
 3.2. PROPIETATS I CARACTERÍSTIQUES ... 20
 3.3. COMPORTAMENT ... 22
 3.4. MÈTODE D’APLICACIÓ DE LA PINTURA .. 26
4. ESTUDI DEL COMPORTAMENT DE LES PINTURES INTUMESCENTS ... 31
 4.1. INTRODUCCIÓ .. 31
 4.2. METODOLOGIA DEL ASSAIAG .. 38
 4.2.1 CAMPANYA D’ASSAIOS ... 43
 4.2.2 CONFIGURACIÓ DEL ASSAIAG ... 44
 4.2.3. MECANITZACIÓ DEL SUPORT I DE LA PROVETA ... 47
 4.2.4. SISTEMA DE CAPTACIÓ DE DADES ... 49
 4.2.5 CAMPANYA EXPERIMENTAL .. 51
 4.2.6 TRACTAMENT DE LES LECTURES ... 52
 4.3. ANÀLISI DEL CREIXEMENT DE LA PINTURA ... 53
 4.3.1.- METODOLOGIA EMPRADA .. 53
 4.3.2. TRACTAMENT DELS RESULTATS (càlcul del creixement de la pintura) 54
 4.4. COMPORTAMENT TÈRMIC ... 58
 4.4.1. METODOLOGIA EMPRADA .. 59
5. RESULTATS OBTINGUTS .. 69
 5.1 COMPORTAMENT DE LA PINTURA EN FUNCIÓ DE LA VELOCITAT D’ESCALFAMENT 69
 5.2. PRECISSIÓ DELS RESULTATS : .. 73
 5.3. COMPORTAMENT DE LA PINTURA EN FUNCIÓ DE LA MASSIVITAT DE L’ACER 77
 5.4. COMPORTAMENT DE LA PINTURA EN FUNCIÓ DEL SEU GRUIX INICIAL: 79
 5.4.1. INTERPOLACIÓ : .. 82
 5.4.2. EXTRAPOLACIÓ .. 84
6. SIMULACIÓ .. 90
 6.1. INTRODUCCIÓ .. 90
 6.2. SIMULACIÓ AMB L’OZone V2.2 ... 90
7. IMPACTE MEDIAMBIENTAL .. 102
8. ESTUDI ECONÒMIC .. 105
CONCLUSIONS ... 109
AGRAÏMENTS ... 112
BIBLIOGRAFIA .. 113
GLOSARI

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[m2]</td>
<td>Àrea</td>
</tr>
<tr>
<td>A_f</td>
<td>[m2]</td>
<td>Superfície del foc</td>
</tr>
<tr>
<td>A_{lim}</td>
<td>[m2]</td>
<td>Superfície total dels límits del compartiment (parets +terra +sostre)</td>
</tr>
<tr>
<td>A_{tot}</td>
<td>[m2]</td>
<td>Superfície total del terra</td>
</tr>
<tr>
<td>A_v</td>
<td>[m$^{-1}$]</td>
<td>Factor de massivitat o factor de secció ($A_v = \frac{1}{g}$)</td>
</tr>
<tr>
<td>A_w</td>
<td>[m2]</td>
<td>Superfície total de les obertures</td>
</tr>
<tr>
<td>C_p</td>
<td>[J/Kg·K]</td>
<td>Calor específica</td>
</tr>
<tr>
<td>E</td>
<td>[N/m2]</td>
<td>Mòdul de Young</td>
</tr>
<tr>
<td>g_{acer}</td>
<td>[m],[mm]</td>
<td>Gruix acer</td>
</tr>
<tr>
<td>h</td>
<td>[m]</td>
<td>Altura</td>
</tr>
<tr>
<td>h_{cf}</td>
<td>[m]</td>
<td>Altura del combustible</td>
</tr>
<tr>
<td>h_w</td>
<td>[m]</td>
<td>Altura mitja de les obertures verticals</td>
</tr>
<tr>
<td>H</td>
<td>[MJ]</td>
<td>Calor de combustió</td>
</tr>
<tr>
<td>H_c</td>
<td>[MJ/Kg]</td>
<td>Energia calorífica alliberada per unitat màssica de Combustible</td>
</tr>
<tr>
<td>HR</td>
<td>[%]</td>
<td>Humitat relativa</td>
</tr>
<tr>
<td>L_{pint}</td>
<td>[m],[mm]</td>
<td>Gruix de la pintura intumescent</td>
</tr>
<tr>
<td>M</td>
<td>[Kg]</td>
<td>Massa</td>
</tr>
<tr>
<td>p</td>
<td>[MPa]</td>
<td>Pressió</td>
</tr>
<tr>
<td>q</td>
<td>[MJ/m2]</td>
<td>Densitat de càrrega de foc</td>
</tr>
<tr>
<td>Q</td>
<td>[MJ]</td>
<td>Càrrega de foc</td>
</tr>
<tr>
<td>R^2</td>
<td>[$^{0}/1$]</td>
<td>Coeficient de determinació</td>
</tr>
<tr>
<td>RHR</td>
<td>[MW]</td>
<td>Velocitat d'alliberació de calor (Rate of Heat Released)</td>
</tr>
<tr>
<td>RHR_{max}</td>
<td>[MW/m2]</td>
<td>Velocitat d’alliberació de calor màxima per unitat de superfície de càrrega de foc</td>
</tr>
<tr>
<td>t</td>
<td>[s],[min]</td>
<td>Temps</td>
</tr>
<tr>
<td>T</td>
<td>[ºC]</td>
<td>Temperatura</td>
</tr>
<tr>
<td>T_{ign}</td>
<td>[ºC]</td>
<td>Temperatura d’ignició del combustible</td>
</tr>
<tr>
<td>V</td>
<td>[m3]</td>
<td>Volum</td>
</tr>
<tr>
<td>Z_s</td>
<td>[m]</td>
<td>Altura de la interfase entre zona freda i zona calent</td>
</tr>
</tbody>
</table>
SUBÍNDEX

- **-acer** Relatiu a l’acer
- **-cf** Relatiu a la càrrega de foc
- **-eq** Valor equivalent
- **-f** Relatiu al foc
- **-pint** Relatiu a les pintures intumescents
- **-i** Valor –ièssim
- **-ign** Relatiu a la ignició
- **-imp** Relatiu a la imprimació
- **-l** Relatiu a la capa inferior
- **-lim** Valor límit
- **-max** Valor màxim
- **-tot** Valor total
- **-u** Relatiu a la capa superior
- **-w** Relatiu a les obertures verticals

LLETRES GREGUES

<table>
<thead>
<tr>
<th>Ρ</th>
<th>[Kg/m³]</th>
<th>Densitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ</td>
<td>[W/m·K]</td>
<td>Conductivitat tèrmica</td>
</tr>
<tr>
<td>α</td>
<td>[ºC⁻¹]</td>
<td>Coeficient de dilatació</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓ

L’objectiu d’estudi del projecte que es presenta a continuació és analitzar el comportament d’una tècnica concreta de protecció passiva contra incendis. Aquesta tècnica és el recobriment d’estructures metàl·liques amb pintura intumescent.

L’anàlisi del comportament de la pintura intumescent es centra en dos aspectes importants:

a) L’anàlisi de les característiques com aïllant tèrmic vers una situació de foc:
 Aquest “comportament tèrmic de la pintura” es realitza mitjançant el càlcul de la conductivitat tèrmica de la pintura sota l’efecte del foc.

b) L’anàlisi de la intumescència de la pintura en una situació de foc real:
 Aquest “comportament mecànic de la pintura” es realitza a partir de la caracterització del creixement de la pintura sota l’acció del foc.

Ambdós aspectes s’analitzaran en funció del gruix de pintura aplicada i del factor de massivitat de la estructura protegida per tal de caracteritzar el comportament de la pintura en les composicions més habituals en la construcció.

La realització d’aquest anàlisi s’ha fet experimentalment al laboratori mitjançant diferents metodologies elaborades pels propis autors del projecte i amb l’ajut del personal docent. El projecte que es presenta conté tant la part teòrica com la part experimental que són els aspectes principals de l’estudi.

Un cop caracteritzat el comportament termo-mecànic de les pintures intumescents es procedeix a simular-lo per tal de verificar els resultats obtinguts i calcular la resistència al foc que proporciona la pintura intumescent.
2. SISTEMES DE PROTECCIÓ CONTRA INCENDIS

Segons informen les Directives Europees de la Construcció dins l’apartat de seguretat en cas d’incendi “EN 1993 part 1-2”, tota estructura d’un edifici ha d’ésser dissenyada i construida de manera que, en cas d’incendi, sigui capaç de satisfacer els següents requisits:

a) La capacitat resistent de l’estructura es mantingui durant un temps requerit.
b) L’avenç i l’expansió del foc i fum dins de l’edifici estigui restringit.
c) Restringir l’avenç i l’expansió del foc a altres edificis adjacents.
d) Garantir que les persones que estiguin dins de l’edifici siguin capaces d’abandonar la zona de manera segura o estiguin protegides per altres medis com zones de refugi.
e) S’asseguri la pròpia seguretat dels bombers.

De la mateixa manera que “l’EuroCode” estableix aquests requisits a nivell europeu, el “Documento Básico SI Seguridad en caso de incendio (DB-SI), artículo 1; Exigencias básicas de Seguridad en caso de incendio” estableix un requisits molt similars, que tota edificació ha de complir a nivell nacional a Espanya.

a) Es limitarà el risc de propagació del incendi a l’interior de l’edifici.
b) Es limitarà el risc de propagació del incendi al exterior, tant en l’edifici considerat com als altres edificis.
c) L’edifici disposarà de mitjans d’evacuació adequats per que els ocupants d’aquest puguin abandonar-lo a arribar a un lloc segur dins del propi edifici en condicions de seguretat.
d) L’edifici disposarà dels equips i instal·lacions adequats per a que sigui possible la detecció i extinció del incendi, així com la transmissió de l’alarme als ocupants.
e) Es facilitarà la intervenció dels equips de rescat i extinció d’incendis.
D’aquesta manera s’han desenvolupat diferents sistemes per poder complir i garantir tots aquests requisits. Tots aquests sistemes s’engloben en dos grans grups segons el tipus de protecció:

a) **Sistemes de protecció activa**

b) **Sistemes de protecció passiva**

Per tal de complir tots els requisits es combinen els sistemes de protecció activa amb els sistemes de protecció passiva.
2.1. PROTECCIÓ ACTIVA

Els elements de protecció activa actuen un cop s’ha iniciat l’incendi, per tant la protecció activa consisteix en protegir l’edifici i els seus ocupants de l’acció del foc. La protecció activa consisteix per tant en la implantació de mesures de seguretat encaminades a detectar l’incendi, transmetre l’alarma als ocupants de l’edifici i extingir l’incendi o limitar-ne la seva propagació.

TEORIA DE L’EXTINCIÓ - MÈTODES D’EXTINCIÓ

Els mètodes d’extinció d’un foc s’han inspirat en els elements que el componen; de manera que si s’elimina un d’aquests elements s’haurà eliminat el foc. Per això els mètodes fonamentals d’extinció es poden dividir en quatre:

a) efecte de dilució
b) efecte de sufocació
c) efecte de refredament
d) efecte d’inhibició de la reacció en cadena

Dilució: s’entén com l’efecte de disminució de la concentració de combustible en l’espai de la reacció. És difícil de realitzar aquest efecte per mitjà d’un producte extintor; en canvi, prenent altres mesures com per exemple l’evacuació de líquids combustibles del recipient on hi ha foc, el tancament d’aixetes de pas en conduccions de combustibles, etc., és factible. Amb aquest sistema, el que s’intenta és eliminar el combustible.

Sufocació: en aquest cas s’entén com l’efecte d’eliminar el comburent, generalment l’oxigen de l’aire, de l’espai de la reacció. Això s’explica ràpidament a partir de la llei d’acció de masses, i es pot aconseguir, per exemple, desplaçant l’oxigen mitjançant l’aportació d’una quantitat determinada de gas inert, o bé cobrint la reacció amb un element que l’aïlla de l’exterior, com pot ésser una tapadora, escuma, una manta, etc. Amb aquest sistema, el que s’intenta és eliminar el comburent.
Refredament: s’entén com l’efecte d’eliminar el calor necessària de la reacció de manera que aquesta tingui tendència a aturar-se. L’efecte refrigerant dels productes d’extinció es basa en la conversió endotèrmica de fase, com l’evaporació, la sublimació, una descomposició absorbint calor, etc. La refrigeració directa per intercanvi calorífic té una importància molt petita. Per això s’obté un bon rendiment quan el producte extintor té una gran calor latent de vaporització. Una condició favorable per a la vaporització és que el producte extintor estigui finament dividit. Amb aquest sistema, el que s’intenta és eliminar l’energia en forma de calor.

Inhibició de la reacció en cadena: s’entén com l’efecte de trencar les cadenes de reacció, és a dir, d’evitar que els fragments reactius continuin la reacció. Això es pot fer de dues maneres: una és que el producte extintor actuï directament sobre el mecanisme de la reacció en cadena; aquest és el cas dels hidrocarburs halogenats (halons) que es combinen amb els radicals saturant-los i evitant així que continuï la reacció en cadena. Una altra manera d’actuar és que el producte extintor actuï com a paret, la qual cosa augmenta la tasca de recombinacions dels radicals, aquests queden saturats i l’element que fa de paret és el que absorbeix l’energia excedent de la recombinació. Aquest és el cas de la pols extintora. Amb aquest sistema, el que s’intenta és eliminar la reacció en cadena.

El Reglament d’Instal·lacions de Protecció Contra Incendis (RIPCI) enumera els diferents sistemes de protecció activa i determina els requeriments en relació a la seva instal·lació i manteniment:

a) **Sistemes autòmatics de detecció d’incendis:**

 - **Detectors de fums:**
 - Òptics (mitjançant una cèl·lula fotoelèctrica).
 - Iònics (es detecten les partícules de la combustió ionitzant l’aire).

 - **Detectors d’anàlisi de mostra.**

 - **Detectors tèrmics:**
 - Termo-estàtic (reacciona quan s’arriba a una temperatura concreta).
 - Termo-velocímetre (detecta augments bruscos de temperatura).
- Detectors òptics de flama (reaccionen a l’aparició d’energia radiant).

Imatge 1: Moment de detecció de l’incendi segons el tipus de detector

b) Sistemes manuals d’alarma d’incendis mitjançant polsadors ubicats en llocs estratègics.

c) Sistemes de comunicació d’alarma mitjançant avisadors acústics i lumínics.

d) Sistemes d’abastament d’aigua contra incendis segons dicta la normativa UNE 23.500 i UNE 23.590

Imatge 2: Font de subministrament d’aigua
e) Sistemes de Boques d’Incendi Equipades (BIE) segons UNE-EN 671:
 - De mànega semirígida de Ø 25mm.
 - De mànega flexible de Ø 45mm

f) Extintors d’incendi.

<table>
<thead>
<tr>
<th>Agents</th>
<th>CLASSES DE FOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Aigua pulveritzada</td>
<td>XXX</td>
</tr>
<tr>
<td>Aigua a raig</td>
<td>XX</td>
</tr>
<tr>
<td>Escuma física</td>
<td>XX</td>
</tr>
<tr>
<td>Pols polivalent</td>
<td>XX</td>
</tr>
<tr>
<td>Pols seca</td>
<td>XXX</td>
</tr>
<tr>
<td>Anhidrid carbònic</td>
<td>X</td>
</tr>
<tr>
<td>Halon</td>
<td>X</td>
</tr>
<tr>
<td>Pols per a metalls</td>
<td>XX</td>
</tr>
</tbody>
</table>

Imatge 3: Tipus d‘extintors

Imatge 4: Agent extintor segons el tipus de foc

Imatge 5: Sprinkler en funcionament
AGENTS EXTINTORS

S’ha parlat de quatre criteris per a l’extinció d’un foc, i per a actuar segons aquests hi ha l’ajut, entre d’altres, dels anomenats agents extintors. Un agent extintor és tot producte que, aplicat sobre el foc, en produeix l’extinció.
Entre els diferents tipus d’agents es farà una breu referència dels principals.

L’aigua

És un agent extintor important per la seva economia, disponibilitat i facilitat de transport. D’altra banda, químicament no reacciona amb facilitat, no és tòxica i és compatible amb la majoria de matèries.
Des del punt de vista extintor també té una gran acceptació, ja que és un recurs pràcticament il·limitat i a més té una gran potència destructora de l’energia en forma de calor per la seva gran calor de vaporització: 537 cal/g; per tant l’acció de l’aigua com a agent extintor és un efecte principalment de refredament, però també, en certa mesura, el vapor d’aigua format fa un efecte de sufocació en crear una atmosfera baixa en oxigen al voltant del foc. L’aplicació de l’aigua es pot fer a raig o polvoritzada mitjançant els brocs adients. De forma polvoritzada és més eficaç de cara al refredament, ja que representa una superfície més gran, i per tant una transmissió més ràpida de la calor. Una altra possibilitat de l’aigua és l’addició d’elements que en millorin les propietats, com poden ésser humectants, anticongelants, etc. L’aigua és adequada per a focs de classe A i, polvoritzada, per a alguns de classe B. Quan hi ha riscs elèctrics cal utilitzar-la amb precaució, malgrat que, polvoritzada, es pot fer servir en algunes circumstàncies. L’aigua també s’utilitza per refrigerar elements propers al foc, però sense atacar-lo directament.

Diòxid de carboni (CO₂)

És un element que es pot fabricar amb facilitat i no és car. Normalment es guarda en recipients d’alta pressió, ja que si aquesta es vol rebaixar s’ha de preveure un sistema de refrigeració. Dins els recipients d’alta pressió, el CO₂ és en part líquid. El sistema d’actuar es basa en l’efecte de sufocació, malgrat que la reacció amb el carboni de la flama i la refrigeració per sublimació de la neu carbònica hi tenen un cert paper. El calor de sublimació és de 137 cal/g, i la velocitat és relativament petita. Amb aquest element cal tenir la precaució de vigilar el foc extingit, ja que si baixa la concentració de CO₂, com que apaga per sufocació, es pot reactivar el foc. Cal recordar que un desplaçament de l’oxigen fa que l’aire ja no permeti la respiració; un contingut de 4 o 5% comença a ésser perillós.
Pols

Es poden considerar bàsicament dos tipus de pols:
- Pols BC
- Pols polivalent ABC

La pols BC és composta bàsicament de bicarbonat sòdic, bicarbonats potàssics i additius que li permeten certes propietats com resistència a l’envelliment, poder de lliscament, manteniment de propietats hidròfobes i impedir que s’agrumollí i que s’inflí. Aquest element actua per trencament de la reacció en cadena, per l’efecte de paret anticatalítica que fan les partícules sòlides. També és pot parlar d’un cert efecte de refredament i d’un efecte de sufocació degut al desprendiment de CO₂. Aquest agent és adequat per a focs de tipus B i C, mentre que no ho és per a focs de tipus A, és a dir per a focs sòlids que produeixen brasa. Per pal·liar aquest defecte del producte, es comercialitza també la pols polivalent.

La pols polivalent és composta per elements del tipus bisulfat d’amoni, fosfat d’amoni, clorur potàssic, bicarbonat d’urea potàssic, etc. Aquest tipus de pols es descompon entre 80-100°C i genera quantitat d’amoniaci i aigua. El producte residual forma unes crostes contínues de polifosfats que destorben l’arribada d’aire i afavoreixen d’altra part la coquització de les substàncies orgàniques. Aquestes pols són adequades per a focs de tipus A, B i C ja que també actuen per refredament i per trencament de la reacció en cadena. Aquests tipus de pols s’utilitzen molt en els extintors manuals, i són impulsats per gasos com el CO₂, el nitrogen o el freó. Aquests elements es poden utilitzar en casos de focs en què intervingui l’electricitat malgrat que la pols polivalent limita a 1.000 volts el camp d’utilització.

Agents halogenats (halons)

Són hidrocarburs halogenats que actuen en l’extinció trencant la reacció en cadena, és a dir fent un efecte anticatalític. Per efecte tèrmic es dissocien i l’ió d’haló així format es col·loca en la cadena de reacció de la combustió reaccionant amb els radicals H⁺ i OH⁻, d’on resulten combinacions d’hidrogen-halogen. En un pas posterior es reforma l’halogen de manera que els radicals actius han quedat destruïts. Aquests agents s’utilitzen bàsicament en focs de tipus B i C i en llocs on es necessita un gran efecte extintor combinat amb un mínim pes i volum. També es poden utilitzar en focs on intervé l’energia elèctrica; no deixen residus, ja que s’evaporen ràpidament, són relativament cars, i tenen certs efectes de toxicitat en llur descomposició que cal veure en les diferents possibilitats de productes. Aquests agents extintors són anomenats per un número que n’indica la composició química. La primera xifra indica el nombre d’àtoms de carboni, la segona els de fluor, la tercera els de clor i la quarta els de brom.
Exemples:
1301 – trifluor brom-metà
1211 – difluor clor brom-metà
2002 – dibrom-età

Actualment, a causa del forat que causen aquests productes en la capa d’ozó, estan prohibits i els existents són considerats un residu. Al mercat hi ha productes comercials que tenen efectes extintors similars.

Escumes

Aquests elements poden ésser de tipus químic o de tipus físic, essent aquest últim el que s’utilitza més actualment. Aquestes escumes físiques es formen a base d’una solució aquosa, aproximadament entre un 3% i un 6% de productes de tipus tensoactius produïts sintèticament, malgrat que també s’han utilitzat productes proteïnics i derivats. Un cop formada la solució, s’introduceix aire a fi que es formin les bombolles que donen lloc a l’escuma. Aquesta escuma pot ésser d’expansió baixa, mitja o alta, segons que els coeficients d’expansió siguin de l’ordre de fins a 30, fins a 250 o fins a 1.000, respectivament. Aquests agents extintors s’utilitzen bàsicament en l’extinció de fons superficials principalment de tipus B, ja que actuen per sufocació i en menor grau per refredament. També es poden emprar per evitar altres efectes com poden ésser el desprendiment de gasos tòxics o vapors inflamables, o per inundar espais tancats com soterranis. Hi ha diferents varietats d’agents espumosos com els formadors de pel·lícula aquosa o bé els anomenats antialcohols que s’utilitzen en cas de líquids combustibles de tipus polar.

Pols especials per a metalls

Atès que hi ha elements metàl·lics que cremen i presenten reaccions explosives o de desprendiment de gasos tòxics quan hom els aplica els agents extintors comuns, existeixen per a aquests fons de classe D unes pols extintores específiques. A part de tots aquests agents extintors que han estat anomenats fins ara i que es poden trobar convenientment comercialitzats, fonamentalment en forma d’extintors manuals, hi ha altres elements que també poden ajudar, millor o pitjor, a l’extinció d’un foc.

Cal pensar en els elements que es poden trobar en la vida quotidiana de les persones i que, en un moment donat, poden extinguir un conat d’incendi abans que arribi a ésser un foc important. Uns quants exemples podrien ésser tapadores a les cuines, mantes, draps mullats, sifons, sorra, etc.
2.2. PROTECCIÓ PASSIVA

Comprèn aquells sistemes on la seva eficàcia rau en estar permanentment presents, però sense implicar cap actuació directe sobre el foc. Per tant no són sistemes destinats a l’extinció de l’incendi, sinó que són sistemes destinats a minimitzar els danys causats pel foc.

Les funcions principals de protecció passiva contra incendis consisteixen en evitar la propagació del incendi i garantir la integritat estructural del edifici durant un temps determinat per tal de facilitar l’evacuació del edifici i la intervenció dels equips de rescat.

SISTEMES DESTINATS A EVITAR LA PROPAGACIÓ DEL FOC:

a) Compartimentar el foc en sectors independents mitjançant (murs, envans, portes, finestres, panells, anells intumescents, etc.) resistents al foc durant un temps determinat, amb l’objectiu d’evitar la propagació del foc a les zones adjacents i de facilitar l’evacuació dels ocupants i l’accés dels equips d’intervenció.

b) Emprar materials constructius per als revestiments o acabat de les paret, sostres i terres que tinguin una reacció al foc adequada per el tipus d’edifici per tal d’evitar la propagació i generació del foc. (veure ANNEX C: “Classificació europea del materials per a la construcció en funció de les propietats de reacció i resistència al foc”).
ACTUACIONS DESTINADES A GARANTIR LA INTEGRITAT ESTRUCTURAL DE L’EDIFICI:

c) S’han d’utilitzar elements estructurals o de sustentació (pilars, bigues, etc.) amb una capacitat portant (R) elevada per tal de proporcionar seguretat als ocupants durant l’evacuació, augmentar la seguretat dels equips de rescate i permetre als elements de protecció activa de la construcció acomplir les seves funcions. (veure ANNEX C: “Classificació europea de les propietats de resistència al foc dels elements constructius”).

La Capacitat portant (R) dels tipus d’estructures més comuns:

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Capacitat Portant (R)</th>
<th>Informació Adicional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metàl·liques</td>
<td>R baix.</td>
<td>No es comporta bé per sobre del 400ºC. Requereix de revestiments o pintures de protecció. Segons el cos de bombers el seu comportament és força previsible degut a la seva gran deformabilitat i per les experiències prèvies.</td>
</tr>
<tr>
<td>Formigó armat</td>
<td>R mitjana/alta si es dimensiona correctament. Aparició d’esquerdes per la diferencia de dilatació entre formigó i armadura. Inconvenient: té un comportament imprevisible i de col·lapse ràpid si les armadures queden al descobert (especialment amb el fenòmen del spalling o esclatament del formigó).</td>
<td></td>
</tr>
<tr>
<td>Fusta</td>
<td>R mitjana/alta si es dimensiona correctament. Avantatge: té un comportament previsible (avisa). Inconvenient: és un material combustible. La capa superficial carbonitzada fa d’àiament donant una R de 0,7mm/min.</td>
<td></td>
</tr>
</tbody>
</table>

d) S’han d’emprar elements de tancament (envàs, façanes, portes, finestres, cobertes, etc.) que minimitzin la transferència del calor cap les zones que protegeixen de l’actuació del calor. (veure ANNEX C: “Classificació europea de les propietats de resistència al foc dels elements constructius”).
e) S’han de protegir tèrmicament els elements estructurals per garantir la seva R.

Els sistemes més habituals són:

| Morters | • Els de perlina o vermiculita s’usen quan es vol una alta R.
| | • Els de ciment són més econòmics però menys aïllants.
| | • Per gruixos grans s’aplica sobre una reixeta.
| | • Afegeixen pes a l’estructura. |

| Panells | • Poden ser de fibra minerals o de guix.
| | • Cal assegurar l’estanqueïtat al foc de les unions entre panells.
| | • Afegeixen pes a l’estructura.
| | • Aplicació neta però complicada. |

| Fibra mineral | • S’utilitza en protecció d’àrees ocultes degut al seu aspecte final.
| | • Es crea una estructura capil·lar que pot absorbir gran quantitat d’humitat. |

| Pintures intumescents | • S’aconsegueix una capacitat portant (R) moderades.
| | • Fàcil d’aplicar independentment de la geometria.
| | • Sobrepès menyspreable.
| | • És un sistema car.
| | • Poc eficient davant focs d’evolució lenta. |
3. PINTURES INTUMESCENTS

3.1. INTRODUCCIÓ

A començaments dels 50’s es van començar a fer servir tecnologies intumescents per a revestiments quasi ceràmics que la NASA utilitzava com a apantallament tèrmic. Cap als anys 70 es van començar a desenvolupar les pintures intumescents i s’aplicaven sobre metalls amb l’objectiu de protegir-lo vers una possible situació de foc.

En els últims anys el desenvolupament i les prestacions dels materials intumescents han assolit un alt nivell. Juntament amb les pintures i els recobriments per fusta i acer s’han desenvolupat una gran varietat de productes intumescents, com pastes, taulons o vidres, per tal de resoldre, d’una manera senzilla, molts problemes relacionats amb la prevenció d’incendis mitjançant tancaments segellats, passos de cables i tubs, portes i finestres tallafocs.

L’objectiu de la pintura intumescent és el d’augmentar la resistència al foc dels perfiles metàl·lics que constitueixen l’estructura d’una edificació, retardant el moment en que el material protegit assoleix la seva temperatura crítica, temperatura a partir de la qual l’element estructural perd les propietats mecàniques necessàries per dur a terme la seva funció. D’aquesta manera es disposa de més temps per la evacuació de l’edifici i també per a la actuació dels serveis de rescat.

La protecció amb pintura intumescent, a diferència d’altres tipus de proteccions, incrementa molt poc el pes de l’estructura i s’aplica fàcil i ràpidament. Amés permet optimitzar la protecció segons les necessitats, ja que en funció del gruix del recobriment de pintura es poden assolir diferents temps de resistència al foc.

Imatge 10: Gelosia protegida amb pintura intumescent
3.2. PROPÓSITS I CARACTERÍSTIQUES

Les característiques que ha de tenir la pintura intumescent són diferents a les de les pintures habituals ja que la pintura intumescent, tot i ser una pintura, es comporta com un recobriment. Normalment les pintures intumescents no tenen finalitats estètiques o decoratives, per aquest motiu hi ha factors com l’acabat superficial o l’estabilitat del color que no es tenen gaire en compte alhora de dissenyar la pintura. Amés la majoria de pigments de color que es fan servir en les pintures contenen òxids metàl·lics que poden alterar les reaccions químiques que han de desenvolupar-se dintre de la massa intumescent.

Altrament hi han factors que s’han de controlar especialment per garantir la protecció en cas d’incendi de l’estructura pintada. Algunes de les qualitats més importants que han de complir les pintures intumescents són:

a) Bona adherència a l’estructura pintada:

És bàsic que la pintura no es desprengui en cap moment de la superfície recoberta, ja que si la pintura es desprengués en alguna zona es produiria un pont tèrmic i l’estructura fallaria abans del que s’espera. És a dir, s’ha de garantir la continuïtat de l’aïllament. L’adherència de la pintura és un factor crític en la fase d’intumescència ja que durant aquest procés es produeixen reaccions químiques en la pintura que podrien contrarestar l’efecte adherent de la imprimació. Per aquest motiu s’utilitzen imprimacions específiques per a cada tipus de pintura intumescent. El material protegit també ha de garantir una bona adherència amb la imprimació, per això s’han de fer tractaments superficials per eliminar els òxids de ferro dels profils a protegir (calamina).

b) Consistència de la pintura durant i després del procés d’intumescència:

Un cop s’ha produït la intumescència la pintura esdevé molt porosa i poc consistent, i per garantir una bona protecció tèrmica de l’estructura pintada s’ha d’evitar el despreniment de capes externes de la pintura.
c) **Bona capacitat d’evaporació dels dissolvents durant l’assecat de la pintura:**

Les pintures intumescents, com la majoria de pintures, contenen dissolvents per que es mantingui en fase líquida abans de la seva aplicació. És imprescindible que aquest dissolvent no quedi atrapat al interior de la pintura un cop aquesta s’hagi assecat, ja que en cas d’incendi es podria inflamar afectant al metall recobert.

d) **Ha de ser completament ignífug:**

Al ser un material de protecció contra incendis a part d’augmentar la resistència al foc dels elements protegits ha d’evitar la propagació del foc. Per aquest motiu s’estudia molt bé l’estequiometria de la reacció d’intumescència i en alguns casos s’afegeixen elements ignífugs a la pintura, generalment clorurs o altres halògens.

El mètode d’aplicació de la pintura és bàsic per garantir les característiques esmentades anteriorment, per aquest motiu tota empresa que es dediqui a la investigació, fabricació i venda de pintures intumescents ha d’especificar detalladament el mètode o mètodes d’aplicació correctes del seu producte (mirar apartat 3.4 “Mètodes d’aplicació de la pintura”).
3.3. COMPORTAMENT

Hi han diferents tipus de pintura intumescent però la majoria estan constituïdes per components inorgànics continguts en una matriu polimèrica. Estan dissenyades per reaccionar entre sí quan es sotmet a una temperatura elevada, amb la finalitat de proporcionar aïllament tèrmic, generant un espuma sobre la superfiçie. Aquesta espuma està constituïda pel 99,9% de carboni en estat grafític, el qual proporciona una gran resistència tèrmica donat el seu baixíssim coeficient de conductivitat tèrmica.

L’evolució de la pintura un cop exposada a una flama o a un flux de calor es pot representar en les fases següents:

a) Fusió (*melting*): la matriu del polímer es fon fins formar una capa viscosa. A vegades s’adhereixen retardants de temperatura per que la matriu es fongui a la temperatura que interessa (entorn als 400ºC). Les reaccions químiques que produeixen en aquesta fase són endotèrmiques

b) Intumescència (*intumescence*): els agents espumosos de la pintura reaccionen entre sí generant una gran quantitat de gas, principalment H₂O, CO₂ i N₂. Una part d’aquest gas queda atrapat en la matriu del polímer de manera que es forma una capa esponjosa de gruix notablement major al inicial. El gas atrapat en la pintura ajuda a millorar les propietats aïllants inicials d’aquesta, ja que el gas té una conductivitat tèrmica baixa. Les reaccions químiques d’aquesta fase són exotèrmiques

c) Formació d’una capa superficial formada per residus carbonosos (*char formation*): paral·lelament a la fase intumescència el líquid viscós es va endurint en les zones més externes, de manera que forma una capa carbonosa que retarda la degradació i el despreniment del recobriment. D’aquesta manera les propietats aïllants de la pintura tenen més durabilitat. En aquesta fase es poden alliberar partícules residuals volàtils

d) Degradació de la capa superficial de residus carbonosos (*char degradation*): al cap d’una estona la capa carbonitzada es va desintegrant degut a reaccions d’oxidació i de piròlisis, de manera que el recobriment es torna inert i porós i va perdent consistència i resistència mecànica progressivament. Per tant la pintura comença a perdre les seves propietats aïllants.
En el gràfic 1 s’observen les fases de dos tipus de pintura intumescent, una formada per materials epoxi (*coating A*) i l’altre formada per acetat de vinil (*coating B*). Ambdós pintures estan aplicades sobre plaques d’acer idèntiques, tenen el mateix gruix inicial i s’esclafen segons una rampa de temperatura de 10ºC/min. Es representa l’evolució de la pintura mitjançant la massa residual de manera que a major gruix, més gasos evaporats i per tant menor percentatge de massa residual.
Com es pot observar els dos tipus de pintura intumescent es comporten de manera similar, tot i així, com l’objecte d’estudi d’aquest projecte es l’Stofire que es tracta d’una pintura basada en una resina polimèrica, s’analitza el comportament de la coating B:

- En la fase de fusió (*melting*) s’observa una disminució de la massa degut a la degradació que pateix la matriu polimèrica de la pintura.

- En la fase posterior d’intumescència la disminució de massa més brusca degut a l’evaporació dels gasos generats per la pintura.

- Un cop finalitzada la intumescència en la fase de la formació d’una capa superficial carbonitzada (*char formation*) pràcticament no hi ha pèrdua de massa per que ja no es formen gasos.

- La degradació de la capa carbonitzada (*char degradation*) s’observa per que hi ha una lleugera disminució de la massa residual.

Al llarg de les fases descrites anteriorment tenen lloc diverses reaccions químiques que es donen tant en sèrie com en paral·lel. Les dues reaccions més importants són:

a) **Piròlisi**: és la descomposició química de la matèria orgànica i de tot tipus de material exceptuant metalls i vidres, causada per l’esclafament en absència d’oxigen o qualsevol altre reactiu oxidant. Aquesta descomposició es produeix a través d’un seguit de reaccions químiques i processos de transferència de matèria i calor.

Com a norma general la piròlisi comença entorn als 250ºC i s’acaba entorn als 500ºC formant diversos productes:
- En forma de gas: CO, CO₂, CH₄, C₂H₆ i hidrocarburs lleugers
- Líquids: cetones, àcid acètic, compostos aromàtics, etc.
- Sòlids: residus carbonosos (*char*)

b) **Oxidació - reducció**: reacció química on hi ha una transferència d’electrons entre els reactius.
Per dur a terme les fases descrites anteriorment, la pintura conté diversos compostos químics que es poden classificar de la següent manera segons la seva funció:

Agent carbonígen:

Ha de contenir nombrosos àtoms de carboni i presentar en la seva estructura nuclis d’esterificació. Generalment són hidrats de carboni o alcohol polifuncionals.

Aquests productes es descomponen sota l’acció del calor segons reaccions exotèrmiques que generen òxids de carboni i vapor d’aigua, originant residus combustibles. Tot i així, sota l’acció de la calor aquest agent carbonant pot reaccionar amb àcids inorgànics formant èsters carbonosos de l’àcid segons reaccions endotèrmiques que garanteixen que no es formi cap flama, evitant així la propagació del foc. D’aquesta manera només es formen carbó difícilment inflamables i es minimitza la formació de gasos combustibles.

Catalitzador:

Són substàncies àcides capaces de descompondre’s formant els productes necessaris per la piròlisi del agent carbonant.

Els més habituals són l’àcid fosfòric, fosfats o compostos orgànics derivats d’aquest àcid. Aquests es descomponen formant àcids fosfòrics que esterifica els grups hidroxils formant una massa carbonosa.

Agent espumós:

Són els mateixos que s’utilitzen habitualment en la indústria dels plàstics, normalment derivats nitrogenats. Aquests s’han de descompondre a una temperatura lleugerament superior a la dels agents carbonígens. La descomposició per el calor d’aquests materials produeix una font abundant de nitrogen, gas que col·labora de forma molt positiva a reduir la inflamabilitat del conjunt.

Suport:

Cobreix la espuma com si fos una pell per tal d’evitar que els gasos originats per l’agent productor de gasos s’escapin. Els materials més habituals són polímers termoplàstics que s’estoven i es fonen a baixa temperatura, actua com a agent espumós. Antigament es feia servir cautxú clorat però es va prohibir per la convenció de Montreal per la perillositat de desprendre clor quan s’escalfa.
3.4. MÈTODE D’APLICACIÓ DE LA PINTURA

IMPRIMACIÓ (ST-28):

Descripció:

Imprimació anticorrosiva de tipus universal, lliure de plom i cromats. No inflamable segons la norma UNE-EN 13501-1:2002. És adequada per el tractament anticorrosiu de superfícies d’acer en general i específicament per superfícies que s’han de protegir contra el foc amb el sistema intumescent Stofire.

Característiques tècniques:

<table>
<thead>
<tr>
<th>Caràcterísticas</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>vermell</td>
</tr>
<tr>
<td>Acabat</td>
<td>mate</td>
</tr>
<tr>
<td>Pes específic</td>
<td>1,55 ± 0,08</td>
</tr>
<tr>
<td>Gruix sec recomanat</td>
<td>35 µm per capa</td>
</tr>
<tr>
<td>% Sòlids en volum</td>
<td>51,5 ± 1%</td>
</tr>
<tr>
<td>Rendiment teòric</td>
<td>9,5 m²/kg</td>
</tr>
<tr>
<td>Assecat</td>
<td>30 min a 20ºC (reprintable en 24 hores)</td>
</tr>
<tr>
<td>Dissolvent indicat</td>
<td>X-7</td>
</tr>
<tr>
<td>COV subministrat</td>
<td>470 g/l</td>
</tr>
</tbody>
</table>

Tractament previ de la superfície:

Metalls nets i desengreixats, preferiblement sorrejats fins al grau Sa.2 ½ segons la norma ISO 8501-1.

El nivell de preparació no ha de ser inferior a St.2 segons la mateixa norma:

“**Preparación St.2** raspado, cepillado manual con cepillo de acero – cepillado a máquina – esmerilado a máquina – etc. de una manera minuciosa. Mediante el tratamiento se quitarán las capas sueltas de laminación, el óxido y las partículas extrañas. Luego se limpiará la superficie con un aspirador de polvo, aire comprimido limpio y seco o un cepillo limpio. Entonces deberá adquirir un suave brillo metálico. El aspecto deberá coincidir con las figuras con la designación St.2.”
Per tant ajustar-se a la normativa s’ha procedit a desengreixar fregant la superfície amb un fregall metàl·lic i emprant sabó especial pel eliminar el greix. Posteriorment s’ha netejat de les zones més brutes amb una mica de dissolvent universal.

Mètode d’aplicació:

Hi ha diferents mètodes per aplicar la capa d’imprimació: amb pinzell, corró, pistola aerogràfica i amb pistola airless. El més indicat és emprant una pistola aerogràfica però només està indicat per a l’ús industrial.

Tenint en compte el material que es disposava i els mètodes d’aplicació més freqüents en la realitat, la preparació de les provetes s’ha fet emprant un corró de llana de pel curt. El ST-28 s’ha aplicat sense diluir i només s’ha fet una capa de [30÷40]µm de gruix en sec.

Abans d’aplicar la capa de pintura intumescent Stofire s’ha deixar assecar 24 hores.
PINTURA INTUMESCENT (STOFIRE):

Descripció:

Revestiment talla focs de intumescència progressiva. La seva missió específica consisteix en enrederir l’acció destructora del foc aïllant les estructures metàl·liques del calor generat per l’ incendi. D’aquesta manera s’evita una pèrdua excessiva de propietats mecàniques de l’acer que pot generar la inestabilitat de l’estructura.

Reacciona en contacte amb la flama expandint-se, formant un aïllament multicel·lular d’acció extintora.

Característiques tècniques:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>blanc 90</td>
</tr>
<tr>
<td>Acabat</td>
<td>mate</td>
</tr>
<tr>
<td>Pes específic</td>
<td>1,39 ± 0,1</td>
</tr>
<tr>
<td>Gruix sec recomanat</td>
<td>[140÷600]µm per capa segons el factor de massivitat</td>
</tr>
<tr>
<td>% Sòlids en volum</td>
<td>62 ± 1%</td>
</tr>
<tr>
<td>Rendiment (600µm)</td>
<td>0,74 m²/kg</td>
</tr>
<tr>
<td>Assecat</td>
<td>2h a 20ºC i 60% d’HR (reprintable en 24h)</td>
</tr>
<tr>
<td>Enduriment</td>
<td>5 dies a 20ºC i 60% d’HR</td>
</tr>
<tr>
<td>Dissolvent indicat</td>
<td>STF exclusivament</td>
</tr>
<tr>
<td>COV subministrat</td>
<td>360 g/l</td>
</tr>
</tbody>
</table>
Tractament previ de la superfície:

En superfícies metàl·liques, s’haurà d’aplicar una imprimació prèvia de HK-2-E, **ST-28** o TAC PRIMER.

Tractament final de la superfície pintada:

La pintura intumescent pot tenir components sensibles a la humitat, per aquest motiu si l’estructura pintada està ubicada en una zona força humida, es recomana protegir la pintura mitjançant una capa de segellat final amb una pintura ignífuga, flexible i compatible amb l’**Stofire**.

Mètode d’aplicació:

Homogeneïtzar el producte preferiblement amb agitador mecànic. Aplicar en un entorn sec (d’HR inferior al 80%) i a una temperatura superior a 10ºC

Es poden emprar els següents mètodes:

- **Amb pinzell:** només per retocs i petites zones. Aplicar sense diluir.

- **Amb corró:** aplicar sense diluir. Utilitzar preferiblement corrons de llana de pel llarg.

- **Pistola aerogràfica:** calderí a pressió. Diluir un10% de STF. Pressió 4kg/cm². Coquilla de 2,6 a 2,8mm de Ø.

- **Pistola airless:** Diluir de 0 a 10% de STF. Cabal superior a 5,8 l/min i pressió mantinguda a 120kg/cm². Conquilles de 0,025 a 0,031”
L’exactitud en el gruix de la capa de pintura és un factor molt important per a l’anàlisi del creixement i l’aïllament de la pintura, ja que es vol analitzar el comportament de la pintura en funció del seu gruix inicial. Si el gruix de pintura variés molt entre provetes no es podrien assumir com a provetes iguals i per tant, no es podria calcular la mitjana entre els resultats.

La homogeneïtat de la capa de pintura també esdevé un factor crític en l’objectiu de l’estudi, ja que si hi han zones de la proveta amb major espessor, la intumescència no serà homogènia i per tant molt difícil d’analitzar.

Per aquests dos motius s’ha decidit que l’aplicació de la pintura la fes un pintor professional mitjançant una pistola airless.

Cada capa de pintura té un gruix en sec de [300÷500]µm. En funció del gruix que es vol assolir, 600, 1000 o 1200µm, s’han aplicat més o menys capes de pintura. Al finalitzar una capa de pintura s’ha mesurat el gruix en humit mitjançant un comparador. Passades 24h es mesura el gruix en sec mitjançant un micròmetre digital i s’aplica la següent capa de pintura en cas de requerir-la. Amb aquest procediment s’ha assolit una tolerància de ±50 µm.
4. ESTUDI DEL COMPORTAMENT DE LES PINTURES INTUMESCENTS

4.1. INTRODUCCIÓ

L’objectiu principal d’aquest projecte consisteix en determinar la protecció al foc que proporcionen les pintures intumescent mesurant el creixement de la pintura i el seu coeficient de conductivitat. Per això es realitzarà una campanya d’assajos per estudiar el comportament termo-mecànic de les pintures.

Abans però, cal estudiar dos factors primordials. Primer, quines corbes de temperatura es reproduiran i segon i fonamental, observar el comportament de la pintura respecte una font de calor. Un cop coneguts aquest factors, es definirà l’estratègia de la campanya experimental.

Gràcies al forn que ens proporciona el laboratori del foc (ETSEB, UPC), es reproduiran rampes amb una forma similar a la ISO 834, de creixement logarítmic però menys ràpides degut a les característiques del forn. D’aquesta manera s’intentarà simular una situació de foc real.

Per determinar el factor més important per a la realització de la campanya d’assajos, es realitzarà un assaig visual i així intentar respondre les següents qüestions:

- si es poden veure les diferents fases de la pintura.
- si aquesta es capaç d’absorbir els termoparells.
- si és possible determinar el gruix en funció del temps o la temperatura.

La finalitat d’aquesta campanya experimental consisteix en relacionar el comportament tèrmic i mecànic de la pintura en funció de la velocitat d’escalfament i del factor de massivitat de l’acer per veure si es pot extrapol·lar els resultats a altres situacions.
ASSAIG VISUAL (estufa de con)

Per tal de tenir una idea inicial respecte al comportament de la pintura Stofire s’ha procedit a realitzar un assaig visual. Amb aquest assaig s’intenta observar si la pintura absorbeix els termoparells així com determinar el rang de temperatures en les que es produeix el fenomen de la intumescència de la pintura i la durada aproximada d’aquest fenomen.

L’assaig es realitza en una cambra d’extracció d’aire on hi ha ubicada una resistència elèctrica que fa la funció de focus calent. Aquesta resistència genera un flux de calor constant degut a que no es pot variar la potència amb precisió, per tant no pot reproduir cap corba específica de temperatura. Així doncs, l’aument de temperatura sobre la proveta pintada amb Stofire s’ha fet per proximitat de la placa respecte la resistència elèctrica.

La potència de la resistència elèctrica no permet assolir temperatures superiors a 450ºC (Gràfic 2). Per aquest motiu, les provetes que s’estudiaran tenen un gruix de 1mm (Av=1000m⁻¹) per facilitar la reacció de la intumescència i es recobriran amb 600µm de pintura intumescent.

METODOLOGIA:

- Es retira la resistència de la “posició de treball”.
- Es col·loca la proveta en el suport posicionat el més pròxim possible de la resistència, de tal forma que quedi ben centrada respecte la resistència en la “posició de treball”.
- Es col·loca la resistència en la seva “posició de treball”.
- S’espera fins a que la pintura hagi arribat al seu creixement màxim.

El càlcul de la corba de temperatures a la qual es sotmet la proveta es fa prèviament en buit mitjançant un termoparell ubicat en la posició on es situarà la proveta. Es simula l’assaig mitjançant la metodologia descrita anteriorment i es mesura la temperatura fins a que aquesta s’establitza.

S’observa que l’escalfament és ràpid però no es pot assolir una temperatura superior als 450ºC (Gràfic 2).
CARACTERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES INTUMESCENTS

Gràfic 2: Evolució de la temperatura de l’assaig visual

Imatge 14: 28seg (inici flama)

Imatge 15: 32seg (inici Int. EXP. MÀX. = 2,9mm)
La mesura de la expansió de la pintura es realitza analitzant la gravació de l’assaig emprant tècniques de comparació.
Analitzant les imatges obtingudes i a partir del patró de mesures s’obté la següent taula amb els valors de l’expansió de la pintura:

<table>
<thead>
<tr>
<th>(t) [seg]</th>
<th>Expansió [mm]</th>
<th>Temperatura [ºC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>34,7</td>
</tr>
<tr>
<td>32</td>
<td>2,9</td>
<td>245</td>
</tr>
<tr>
<td>40</td>
<td>13,9</td>
<td>270</td>
</tr>
<tr>
<td>50</td>
<td>16,9</td>
<td>290</td>
</tr>
<tr>
<td>82</td>
<td>23,7</td>
<td>340</td>
</tr>
<tr>
<td>147</td>
<td>27,5</td>
<td>395</td>
</tr>
</tbody>
</table>

Taula 1: Resultats de l’assaig visual

Gràfic 3: Evolució del gruix en funció del temps
CARACTERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES INTUMESCENTS

Gràfic 4: Evolució del gruix en funció de la temperatura exterior

Es compara l’expansió de la pintura en funció del temps (Gràfic 3), i a partir de la corba de temperatures de l’assaig (Gràfic 2) es pot relacionar l’expansió del Stofire amb la temperatura, (Gràfic 4).

TRAM 1. de 170 a 250ºC:

Iniciació de l’expansió de la pintura, es pot observar la fase de la fusió (melting) i l’inici del procés de intumescència. La pintura creix 8 vegades el seu gruix inicial.

TRAM 2. De 250 a 270ºC:

Expansió ràpida de la pintura, fase de la intumescència. (Augment relatiu de 3,7 vegades i l’augment absolut és de 37,5 vegades el gruix inicial).

TRAM 3. De 270 a 390ºC:

Expansió moderada de la pintura, es degrada la capa carbonosa (Augment relatiu del 0,9 vegades el seu gruix, l’augment absolut és de 72 vegades el gruix inicial).
Per comprovar l’efecte d’un preescalfament en el comportament de la pintura, s’ha realitzat el mateix assaig amb una proveta pre-escalfada fins els 200ºC. El preescalfament es realitza de la mateixa manera que l’assaig visual. Donat que es té controlada la temperatura de la resistència segons l’altura, la proveta s’ha mantingut a 200ºC durant 30 minuts i després s’ha realitzat l’assaig visual. S’observa que no hi ha cap tipus de diferència en el comportament de la pintura. Per tant s’assumeix que el preescalfament realitzat en el forn no afecta al comportament de la pintura.

De la mateixa manera s’ha realitzat un altre assaig per observar si el termoparell és absorbit per la pintura. En aquest cas i per restriccions d’espai en la cambra, no es té en compte la temperatura de l’assaig i simplement s’observa si hi ha alguna variació en el creixement amb un termoparell en contacte. S’ha considerat que no hi ha cap efecte en el creixement de la pintura i que la pintura és totalment capaç d’absorbir els termoparells. A més, els termoparells enregistren el moment de la seva absorció.

Cal mencionar que els resultats que s’obtenen de l’assaig visual no s’adequen a la realitat ja que la intumescència d’aquest assaig, es produeix vora als 250ºC quan hauria d’ésser prop dels 450 ºC. Amés, també s’observa que la pintura s’inflama. Tot això es degut a que la proveta assajada només té un gruix de 1mm (factor de massivitat de 1000) i això fa que la intumescència sigui massa brusca i no permeti una correcta evaporació del gasos.
4.2. METODOLOGIA DEL ASSAIG

Els assajos s’han fet a l’Escola Politècnica Superior d’Edificació de Barcelona (EPSEB) mitjançant un forn elèctric de 5KW de potència. Aquest forn és capaç d’assolir una temperatura màxima de 1300ºC en 2,5 hores i està dissenyat principalment per treballar amb materials ceràmics.

S’han programat tres corbes de temperatura diferents tenint en compte tant les prestacions del forn utilitzat, com el comportament de la pintura intumescent.

Totes tres corbes tenen un preescalfament de 200ºC en 30 minuts per tal de minimitzar el xoc tèrmic que puguin patir els materials que constitueixen el forn. És sabut que el procés d’intumescència de la pintura s’inicia entorn als 350-400ºC i experimentalment s’ha determinat que el preescalfament a 200ºC no afecta a aquest procés.

Amés, amb aquest preescalfament s’aconsegueix reproduir velocitats d’escalfament més elevades, i per tant, més properes a una situació de foc real en el rang de temperatures on té lloc la intumescència de la pintura (entre 200-700ºC). Tot i així les prestacions del forn no permeten mantenir aquesta velocitat d’escalfament a temperatures més elevades als 700ºC, per tant s’ha programat una velocitat d’escalfament menor entre 700 i 900ºC per a cadascuna de les tres corbes.

La temperatura màxima que s’assoleix en els assajos és de 900ºC perquè experimentalment s’ha observat que a aquesta temperatura l’acer es troba a més de 500ºC, temperatura a partir de la qual l’acer perd considerablement les seves propietats resistentes.

![Gràfic 5: Evolució de la temperatura del forn i del interior de l’acer protegit](image.png)
Els programes introduïts al forn són:

<table>
<thead>
<tr>
<th>Programe 1</th>
<th>Preescalfament</th>
<th>De 200 a 700°C</th>
<th>De 700 a 900°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200°C en 30min</td>
<td>en 25min</td>
<td>en 25min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20°C/min)</td>
<td>(8°C/min)</td>
</tr>
<tr>
<td>Programa 2</td>
<td>200°C en 30min</td>
<td>en 30min</td>
<td>en 30min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16,7°C/min)</td>
<td>(6,7°C/min)</td>
</tr>
<tr>
<td>Programa 3</td>
<td>200°C en 30min</td>
<td>en 35min</td>
<td>en 35min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14,3°C/min)</td>
<td>(5,7°C/min)</td>
</tr>
</tbody>
</table>

Abans de realitzar la campanya d’assajos s’ha procedit a calibrar el forn per comprovar que la reproducció dels programes introduïts fos correcte i amés, conèixer les velocitats d’escalfament reals per a càlculs posteriors. Aquest calibratge s’ha fet amb el forn en buit i mesurant la temperatura en el seu interior mitjançant un termoparell del mateix tipus que s’emprarà en els assajos i en la mateixa posició.
Únic cop enregistrada la temperatura al llarg de tot el programa, s’han analitzat les dues rampes de temperatura de cada programa (de 200 a 700ºC i de 700 a 900ºC) observant tant la linealitat d’aquestes rampes com la velocitat d’escalfament real de cadascuna.

La linealitat i la velocitat d’escalfament real de cada rampa són:

<table>
<thead>
<tr>
<th>Programa</th>
<th>Rampa de 200 a 700ºC</th>
<th>Rampa de 700 a 900ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programa 1</td>
<td>Velocitat real = 18,33ºC/min</td>
<td>Velocitat real = 5,95ºC/min</td>
</tr>
<tr>
<td></td>
<td>Linealitat => $R^2 = 0,9897$</td>
<td>Linealitat => $R^2 = 0,9887$</td>
</tr>
<tr>
<td>Programa 2</td>
<td>Velocitat real = 17,49ºC/min</td>
<td>Velocitat real = 6,14ºC/min</td>
</tr>
<tr>
<td></td>
<td>Linealitat => $R^2 = 0,9989$</td>
<td>Linealitat => $R^2 = 0,9947$</td>
</tr>
<tr>
<td>Programa 3</td>
<td>Velocitat real = 15,06ºC/min</td>
<td>Velocitat real = 5,75ºC/min</td>
</tr>
<tr>
<td></td>
<td>Linealitat => $R^2 = 0,9987$</td>
<td>Linealitat => $R^2 = 0,9985$</td>
</tr>
</tbody>
</table>

Taula 3: Calibratge de les rampes

Tots els trams es poden considerar lineals ja que el coeficient de determinació (R^2) és prou elevat. En el tram de 200ºC a 700ºC les tres velocitats d’escalfament programades tenen pendents diferents (Gràfic 7), però en el tram de 700ºC a 900ºC les velocitats d’escalfament dels tres programes són molt similars (Gràfic 8).

Gràfic 7: Rampes de 200 a 700ºC
CARACTERITZACIÓ DEL COMPORTAMENT TERMO-MÈCÀNIC DE LES PINTURES INTUMESCENTS

Gràfic 8: Rampes de 700 a 900°C

Gràfic 9: Preescalfament real del forn
Durant el preescalfament s’observa que l’evolució de temperatures (Gràfic 9) no és constant sinó que oscil·la. Aquest fenomen és degut a que el termoparell de control del forn té més inèrcia tèrmica que el termoparell de mesura i per tant, triga més en mesurar la temperatura.

“Per exemple: en un instant concret el forn ha d’estar a 100ºC però el termoparell de control encara mesura 90ºC. Quan el termoparell de control mesura 100ºC la temperatura real ja és de 110ºC i el forn s’apaga i la temperatura disminueix”

Per tal de minimitzar l’efecte descrit anteriorment, s’han modificat paràmetres del controlador PID del forn. També s’ha contemplat la possibilitat de canviar el termoparell de control per un altre de resposta més ràpida, però finalment s’ha desestimat aquesta opció per que en el rang de temperatures d’interès (200-900ºC) no s’enregistren oscil·lacions en la temperatura del forn, i com ja s’ha dit anteriorment, es considera que el preescalfament no afecta al comportament de la pintura intumescent.
4.2.1 DISSENY DE L’ASSAIG

Com tota campanya experimental el procés que s’ha seguit per determinar el disseny final del assaig és el següent:

La metodologia a seguir, doncs, és ben clara. A partir del disseny inicial es realitzaran uns quants assajos i es valoraran els resultats. S’observarà detingudament quins aspectes cal tenir en compte per realitzar els assajos i com es pot millorar el disseny inicial. Els factors que han condicionat el disseny i la metodologia de l’assaig són:

a) La posició de la proveta, és a dir, quina posició proporciona més homogeneïtat en la lectura de les temperatures. També es té en compte que faciliti el muntatge del termoparells així com altres actuacions.

b) Optimització del disseny tant per facilitar el muntatge de la proveta amb el suport com per minimitzar el material utilitzat.

c) Quins termoparells s’adeqüen a les necessitats. Principalment es comparen els termoparells rígids i reutilitzables amb els termoparells d’un sol ús i flexibles.

d) Mètode d’aplicació de la pintura òptim per garantir la homogeneïtat i exactitud en el gruix.

e) Gruixos de pintura i factor de massivitat de l’acer a assajar per tal de que siguin representatius de casos reals.

f) Duració del assaig (escalfament i refredament) per tal de planificar els assajos i reservar el laboratori.

S’han assajat diferents dissenys de proveta tenint en compte els factors descrits anteriorment i finalment s’ha decidit la configuració de la proveta definitiva.
4.2.2 CONFIGURACIÓ DEL ASSAIG

Proveta

La proveta consisteix en una placa d’acer protegida amb pintura intumescent. S’assajaran dos gruixos, 10mm i 6mm ambdós amb una superfície de 15X15cm que correspon a un factor de secció \(A_{\text{exposada}} / V \) de 100m\(^{-1}\) i 166,7m\(^{-1}\) respectivament. S’han escollit aquestes dimensions de proveta tenint en compte el factor de secció dels perfiles IPE i HEA més habituals en la construcció.

Les plaques d’acer tenen un forat al centre d’una cara del contorn de 7,5 cm de profunditat i 2,5mm de diàmetre on s’hi ubica un termoparell que mesura la temperatura de l’acer al llarg de l’assaig (Imatge 22).

Aquesta placa està pintada per les dues cares amb el mateix gruix per que es vol una configuració simètrica per tal que les dues cares de la placa es comportin de la mateixa manera.

Per pintar les plaques d’acer primer s’ha aplicat una capa d’imprimació “STF” de gruix 300µm (amb tolerància ±50 µm) a totes les provetes mitjançant una pistola aerofràtica. Posteriorment s’ha aplicat la capa de pintura intumescent “Stofire” amb el gruix corresponent mitjançant una pistola airless (veure ap. 3.4; “mètodes d’aplicació de pintures”).

Tant la pintura intumescent com la imprimació han estat proporcionades per l’empresa EuroquímicaPaints, S.A.
S’ha aïllat el contorn de la proveta per tal d’obtenir un comportament homogeni de la pintura i evitar el efecte *Soufflé* típic en aquest tipus d’assaig (*Imatge 24*). Al aïllar aquest contorn la placa d’acer no perd calor per el perímetre d’aquesta, per tant hi ha el mateix flux de calor en totes les punts de la superfície pintada i el creixement de la pintura és homogeni (*Imatge 23*). S’ha de tenir en compte que aïllant en contorn queda una superfície útil d’assaig de 13x13 cm.

![Imatge 23: Creixement homogeni](image1.png) ![Imatge 24: Efecte Soufflé](image2.png)

Suport de la proveta

El suport de placa ha de complir els següents requisits:

1) Ha de ser un bon aïllant tèrmic.
2) La seva configuració ha de ser estable i s’ha de mantenir durant tot l’assaig.
3) Permetre la mecanització per al seu muntatge (forats, regates, talls, etc).
4) Ha de conservar les seves propietats una vegada utilitzat.

Per aquest motiu, els suports de la placa d’acer són de silicat de calci, que es tracta d’un material refractari que permet un bon aïllament de tot el contorn de la placa i és un material fàcilment mecanitzable que manté la seva integritat física un cop sotmès a temperatures elevades.

El silicat de calci emprat en els suports de la placa d’acer ha estat cedits per l’empresa APPLUS.
El disseny del suport consta de 6 elements:

- 2 bases ubicades a la part superior i inferior de la placa.
- 2 prismes amb 4 forats de Ø2,5mm cadascun per tal de permetre el pas de termoparells i que aquests quedin perpendiculars a la superfície pintada. Aquests prismes també complementen l’estructura general del suport i aporten més estabilitat a tot el conjunt.
- 2 marcs laterals que aïllen les cares laterals i posicionen els prismes anteriors.

Imatge 25: Elements del suport

D’aquesta manera s’aconsegueix una estructura compacte i reutilitzable, que permet canviar la placa d’acer sense malmetre el suport d’una manera ràpida i eficaç. (Imatge 26).

Imatge 26: Conjunt muntat i procediment pel canvi de placa
4.2.3. MECANITZACIÓ DEL SUPORT I DE LA PROVETA

PLACA D’ACER:

Les plaques d’acer de 15x15cm s’han fet a partir de planxes de 15x300cm tallades a trams de 15cm mitjançant una serra basculant de manera que de cada planxa s’han extret 10 plaques. S’ha escollit aquest tipus de serra per què, mentre s’està tallant la planxa, no es necessari que hi hagi algú accionant la serra com passa en la serra de disc, d’aquesta manera s’optimitza el temps.

Un cop tallades s’ha procedit a matar els cantells vius mitjançant una mola i posteriorment s’han fet els forats per ubicar-hi els termoparells. Aquests forats s’han realitzat amb un trepant a una velocitat de 1450rpm amb broques HSS. Com es tracta d’un forat de poc diàmetre i bastant profund (ø2,5x75mm) abans de fer-los s’han fet forats del mateix diàmetre però menys profunds (ø2,5x25mm) a fi de guiar la broca llarga, ja que les broques esveltes són molt fràgils i es trenquen fàcilment.

Imatge 26: Broques
SUPORT PLACA

Les diferents parts del suport s’han realitzat a partir de planxes de silicat de calci de 50x50cm i 2cm de gruix. Aquest material es molt resistent a la temperatura però té unes propietats mecàniques baixes i és bastant fràgil, de manera que convé mecanitzar-lo emprant velocitats moderades per evitar un escalfament excessiu de les eines.

Primerament s’ha tallat la forma bàsica de cada una de les peces mitjançant una serra de calar. Seguidament s’ha procedit a realitzar els diferents forats mitjançant el trepant a una de velocitat de 780rpm. Finalment s’han mecanitzat les regates amb una fresadora vertical a una velocitat de 632rpm.

Imatge 27: Mecanització d’una regata amb la fresadora
4.2.4. CAPTACIÓ DE DADES

Per cadascun d’aquests assajos es mesura la temperatura mitjançant uns sensors de temperatura anomenats termoparells. Els termoparells emprats en aquest assaig són del tipus K d’un sol ús perquè són molt flexibles i tenen una resposta tèrmica ràpida, dos aspectes importants per a la configuració de l’assaig.

Aquests termoparells estan formats per dos fils conductors de NiCr aïllats entre ells. Aquests fils s’enrosquen i el primer punt de contacte entre ells és el punt on el termoparell mesura la temperatura. S’ha construït un patró per assegurar que els termoparells sempre es col·loquen a la mateixa distancia en tots els assajos i que el tram enroscat sigui igual de llarg en tots els termoparells, d’aquesta manera es minimitza la variabilitats entre els assajos.

Imatge 28: termoparell i patró

Per mesurar el creixement de la pintura al llarg de l’assaig s’ha dissenyat un “sensor d’expansió” mitjançant diversos termoparells posicionats perpendicularment a la superfície pintada i a distàncies respecte de la superfície conegudes. Aquest dispositiu s’ha dissenyat degut a que al treballar a altes temperatures no es pot fer servir cap element de mesura de desplaçaments (micròmetres, galgues extensiomètriques, comparadors, etc.) ni cap tècnica visual ja que el forn és un recinte tancat.

A mesura que la pintura creix va absorbint els termoparells. En el moment que cadascun d’aquests termoparells és absorbit per la pintura, passa de mesurar la temperatura del aire que hi havia a prop de la pintura a mesurar la temperatura del interior de la pintura, per tant s’enregistra una davallada de la temperatura. D’aquesta manera es sap que en moment on la lectura del termoparell comença a disminuir la pintura s’ha expandit fins a la posició on es troba el termoparell.
Per a cada una de les dues cares de la proveta es mesura la temperatura sis punts diferents a fi de calcular el creixement de la pintura i l’aïllament que aporta la pintura al llarg de tot l’assaig. Tots ells a la mateixa altura respecte el terra del forn per si l’aire al interior del forn presenta una estratificació de temperatura.

Aquests punts són:

- Un exterior al suport per mesurar la temperatura de l’aire al interior del forn.
- Un al interior de la placa d’acer per mesurar la temperatura de l’acer.
- Quatre punts col·locats diferents distàncies de la proveta en funció del gruix de pintura inicial, destinats a mesurar el creixement de la pintura SENSOR EXPANSIÓ.

![Imatge29: Distribució dels termoparells](image_url)

![Imatge30: Detall del sensor expansió](image_url)

![Imatge31: Configuració de l’assaig](image_url)
Les lectures s’enregistren cada 5 segons en un sistema d’adquisició de dades anomenat Datalogger. S’utilitza un interval tan ràpid per poder captar l’efecte de la intumescència amb exactitud.

4.2.5 CAMPANYA EXPERIMENTAL

Un cop trobat el disseny final i quina metodologia d’assaig és la més apropiada, es defineix un programa d’assajos. Tenint en compte que per cada tipus de proveta es reprodueixà tres rampes de temperatura diferents, s’ha decidit fer tres provetes de cada tipus. D’aquesta manera s’assajaran per a cada tipus de proveta dos cops cada rampa de temperatures. La campanya consta de les següents provetes:

<table>
<thead>
<tr>
<th>MASSIVITAT</th>
<th>100 m(^1)</th>
<th>166,6 m(^1)</th>
<th>100 m(^1)</th>
<th>166,6 m(^1)</th>
<th>100 m(^1)</th>
<th>166,6 m(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUIX ACER [mm]</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>GRUIX PINTURA [µm]</td>
<td>1200</td>
<td>1000</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VELOCITAT [ºC/min]</td>
<td>2 ASSAJOS PER CADA VELOCITAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,1</td>
<td>P12_A10_V1</td>
<td>P12_A6_V1</td>
<td>P10_A10_V1</td>
<td>P10_A6_V1</td>
<td>P6_A10_V1</td>
<td>P6_A6_V1</td>
</tr>
<tr>
<td>17,6</td>
<td>P12_A10_V2</td>
<td>P12_A6_V2</td>
<td>P10_A10_V2</td>
<td>P10_A6_V2</td>
<td>P6_A10_V2</td>
<td>P6_A6_V2</td>
</tr>
<tr>
<td>18,3</td>
<td>P12_A10_V3</td>
<td>P12_A6_V3</td>
<td>P10_A10_V3</td>
<td>P10_A6_V3</td>
<td>P6_A10_V3</td>
<td>P6_A6_V3</td>
</tr>
</tbody>
</table>

Taula 4: Planificació dels assajos

On:

\(PX_AY_VZ\) → Pintura de gruix X·100 [µm] sobre Acer d’espessor Y [mm] assajat a una Velocitat de Z [ºC/min]
4.2.6 TRACTAMENT DE LES LECTURES

SUAVITZACIÓ DE LES LECTURES

El forn reprodueix les rampes programades mitjançant un controlador PID, això fa que la temperatura real a l’interior del forn oscil·li lleugerament i com els termoparells utilitzats tenen una resposta tèrmica molt ràpida les lectures es veuen afectades. Per aquest motiu és necessari suavitzar les dades obtingudes per poder tractar-les evitant resultats incoherents.

Aquesta suavització es realitza fent la mitjana cada 5 lectures consecutives: el valor a suavitzar més els valors de les 2 lectures precedents i les 2 lectures posteriors, essent el valor a suavitzar la mediana. D’aquesta manera s’assegura el creixement constant de la temperatura.

\[
Lectura_{suav_i} = \frac{(Lectura_{i-2} + Lectura_{i-1} + Lectura_i + Lectura_{i+1} + Lectura_{i+2})}{5}
\]
4.3. ANÀLISI DEL CREIXEMENT DE LA PINTURA

L’objectiu és determinar el creixement de la pintura vers diferents velocitats d’escalfament, del factor de massivitat de l’acer i del gruix inicial de pintura intumescent per tal de deduir el comportament de la pintura en altres casos.

Per a la realització d’aquest anàlisi cal tenir en compte dos grans inconvenients:

- La intumescència de la pintura és molt sensible al gruix inicial d’aquesta.
- Com l’assaig es realitza al interior d’un forn, és impossible emprar cap tècnica visual de mesurament del gruix al llarg de l’assaig.

Per tant s’ha hagut de realitzar una metodologia d’assaig específica tenint en compte aquests impediments tècnics.

4.3.1.- METODOLOGIA EMPRADA

Degut a que l’expansió de la pintura és molt sensible al gruix inicial d’aquesta, la homogeneïtat del gruix de la pintura és un factor decisiu per a la validesa dels resultats. Per aquest motiu s’ha decidit que el mètode d’aplicació de la pintura òptim per a l’assaig és l’aplicació amb pistola airless (veure ap. 3.4. mètode d’aplicació de la pintura).

Per mesurar el creixement de la pintura al llarg de l’assaig s’ha dissenyat un “sensor d’expansió” mitjançant diversos termoparells posicionats perpendicularment a la superfície pintada i a distàncies respecte de la superfície conegudes, tal i com s’ha explicat en l’apartat 4.2.4. Sistema de captació de dades.

La configuració d’aquest sensor pretén captar la intumescència des de l’inici fins al final. Per aquest motiu el primer termoparell ha d’estar en contacte amb la superfície des del principi i queda situat a 5mm degut a la longitud de la unió. D’altra banda, és sabut que les pintures intumescents augmenten el seu volum fins a 50-60 vegades i per tant el gruix màxim que s’assolirà en la campanya d’assajos és de 50-60mm.
4.3.2. TRACTAMENT DELS RESULTATS (càlcul del creixement de la pintura)

Per a cadascuna de les tres velocitats d’escalfament descrites anteriorment s’analitzen les lectures dels termoparells del “sensor expansió” i s’observa que cadascuna de les lectures presenta una davallada de temperatura en un instant determinat.

LECTURES TERMOPARELLS

Quan un termoparell és absorbit per la intumescència de la pintura aquest passa de mesurar la temperatura de l’aire a mesurar la temperatura al interior de la pintura. S’observa com la temperatura enregistrada creix més lentament fins el punt en el que detecta un refredament. Un cop la pintura s’ha expandit fins el màxim tots els termoparells tornen a enregistrar un escalfament per, finalment, assolir la temperatura del forn.

[Gràfic 10: lectures assaig P6_A6]
Mitjançant la combinació de tos els termoparells es pot conèixer l’evolució del creixement de la pintura. Cada termoparell representa un gruix concret, imposat per la distància a la que es troba de la pintura, en un instant de temps i temperatura determinats. A més també es poden identificar els instants inicial i final del procés de la intumescència tal i com s’explica a continuació:

El gràfic representa les lectures termoparells de l’assaig P6_A10, instant de la intumescència.

Els punts 1, 2 i 3 representen els instants on el termoparell es troba totalment absorbit per la pintura, per tant es coneix exactament el gruix de la pintura en funció de la temperatura i del temps. També es pot observar com totes les lectures detecten el final del refredament en el mateix moment, això es degut a que la pintura ha assolit el seu gruix màxim i per tant el seu màxim aïllament tèrmic. Per tant aquest instant s’associa al final de l’expansió de la pintura.

Per veure i entendre millor el comportament de la pintura al llarg de l’assaig, es calcula la diferència entre la temperatura enregistrada pel forn i les temperatures enregistrades pels sensors. D’aquesta manera es troba que es pot determinar les fases per les quals passa la pintura intumescent.
Com s’explica en l’apartat 3.2. Propietats i Característques, se sap que la primera fase de la reacció de la pintura és endotèrmica (fusió), absorbeix calor per poder realitzar el canvi d’estat, per tant, durant aquesta fase la pintura s’escalfa. Aquest fet es reflecteix en el càlcul de la diferència entre la temperatura enregistrada pel forn i les temperatures enregistrades pels sensors, que comença a disminuir en el moment en el qual s’inicia la fusió de la pintura.

De la mateixa manera també es pot acotar la fase de la intumescència. En aquest cas el termoparell passa de mesurar la temperatura de l’aire a mesurar la temperatura de la pintura. Com la pintura està a menys temperatura que la temperatura del forn la diferència entre les lectures augmenta ràpidament fins assolir el seu valor màxim. En aquest instant l’expansió de la pintura s’ha completat i poc a poc la diferència entre temperatures disminueix fins ser nul·la ja que la pintura va perdent efectivitat.

Cal notar que la precisió amb la que els sensors detecten cada fase depèn de la distància a la que es troben de la pintura. Aquest fet incideix especialment en el temps de detecció, ja que com més lluny de la pintura més tard ho detecta el sensor (cas del tercer termoparell a 20mm).
Finalment, el valor del gruix final es mesura un cop finalitzat l’assaig.

Coneguts tots els punts anteriors ja es pot determinar el creixement de la pintura vers qualsevol temperatura i vers el temps. Per fer-ho es tracen rectes entre punts consecutius de de l’inici fins el final i es suavitzen els resultats per tal d’aproximar-se a un valor més real. D’aquesta manera es té:

<table>
<thead>
<tr>
<th>Gruix [mm]</th>
<th>temps [min]</th>
<th>Temperatura forn [ºC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>47,7</td>
<td>450</td>
</tr>
<tr>
<td>5</td>
<td>48,9</td>
<td>467</td>
</tr>
<tr>
<td>20</td>
<td>50,5</td>
<td>492</td>
</tr>
<tr>
<td>50</td>
<td>57,0</td>
<td>585</td>
</tr>
<tr>
<td>61</td>
<td>60,0</td>
<td>631</td>
</tr>
</tbody>
</table>

Taula 5: Valors del gruix de pintura intumescent respecte el temps i la temperatura, assaig P12_A6_V3

Gràfic 13: evolució del gruix de pintura en funció de la temperatura, assaig P12_A6_V3
4.4. COMPORTAMENT TÈRMIC

Es pretén determinar el comportament tèrmic de les pintures intumescentes, és a dir conèixer les seves propietats aïllants. Es vol determinar, de manera empírica, el coeficient de conducció de la pintura intumescent assajada per poder saber de forma precisa com i quan aïllen les pintures en funció de la temperatura, del gruix d’espuma creat i del gruix de la placa a la que s’està protegint.

Per això cal una descripció inicial del comportament de la pintura quan es sotmet a un increment de temperatura. Les pintures intumescentes són un material inicialment homogeni, que al escalfar-se varia la seva forma i estructura formant una espuma modificant notablement les propietats físiques inicials. El creixement de la pintura s’inicia en la superfície externa i progrèssa successivament per les superfícies adjacents, de manera que aquestes empenen les capes d’espuma inicials. Aquest creixement implica que el volum d’aïllant tèrmic augmenta progressivament protegint encara més la superfície protegida (veure ap “3.3. Comportament”).

La protecció que ofereixen les pintures intumescentes no és permanent per dos motius:

a) Al augmentar la temperatura s’afavoreix la convecció i radiació dins de les bombolles, el que fa incrementar la conductivitat tèrmica.

b) Transcorregut un cert temps la pintura transformada completament en espuma per consistència i adherència i s’acaba desprengent del acer deixant nua l’estructura ha protegir.
4.4.1. METODOLOGIA EMPRADA

Per al càlcul de la conductivitat de la pintura és molt important que la proveta sigui simètrica, és a dir que cada cara ha de rebre el mateix flux de calor, d’aquesta manera es pot assumir que ambdós cares es comportaran de la mateixa manera i que el flux de calor sempre va del exterior cap al interior de la proveta.

La posició de la proveta dins del forn garanteix aquesta simetria, ja que les cares pintades són perpendiculars a les resistències elèctriques del forn i el flux de calor no arriba directament a la pintura. D’aquesta manera si hi ha una resistència elèctrica que s’escalfa més que les altres, afecta a amdues cares de la proveta per igual.

Per determinar el coeficient de conducció de les pintures es procedirà a realitzar un balanç de calor en un volum de control tancat aplicant el principi de la conservació de l’energia.

Una sèrie de factors que cal tenir en compte alhora de determinar el coeficient de conducció són:

1) L’estratificació de temperatures dins el forn. Com l’aire calent és menys dens que l’aire fred, aquest tendeix a situar-se en la part superior del forn i com no hi ha circulació forçada d’aire, com per exemple en forns de gas, aquesta estratificació de la temperatura es veu agreujada. Per evitar que aquest fet afecti en les lectures tots els termoparells estan situats a la mateixa alçada respecte el terra del forn.
2) Cal tenir en compte que la transferència de calor per convecció a la superfície de la proveta varia al llarg de l’assaig per que el coeficient de convecció depèn de la geometria de la proveta, de la velocitat del fluid (aire) i de les propietats del mateix a l’entorn de la superfície. Com al llarg de l’assaig la temperatura augmenta, les propietats del aire varien i impossibiliten el càlcul del coeficient de convecció. Per aquesta raó es neglegeix l’efecte de la convecció i es tracta com un problema de conducció pura, però per fer-ho es necessari conèixer la temperatura superficial de la pintura al llarg del assaig tal i com s’explica més endavant (\[T_{aire\ del\ forn} \rightarrow T_{superfície\ de\ la\ pintura} \rightarrow \])

\[\text{Resistència per convecció} \]

3) La superfície de la proveta és petita i no es pot neglir la transferència de calor pel seu perímetre (efecte souffle de la pintura). Per tant el contorn de la proveta està protegit amb 1cm de silicat de calci, de manera que tot el contorn es pot considerar adiabàtic. A més com ja s’ha comentat la proveta està dissenyada amb una configuració simètrica, ja que té les dues cares pintades amb el mateix gruix i reben el mateix flux de calor. Així doncs, es pot definir el sistema en dues parts idèntiques i adiabàtiques en l’eix de simetria.

\[T_{del\ forn} \rightarrow \text{Gradient tèrmic a l’interior del forn fins a la superfície de la proveta} \rightarrow \text{Contorn adiabàtic (protegit pel suport)} \rightarrow \text{Eix de simetria} \rightarrow \text{Contorn adiabàtic (simetria)} \rightarrow \text{Contorn adiabàtic (protegit pel suport)} \]
CÀLCUL DE LA TEMPERATURA SUPERFICIAL DE LA PINTURA

Per a càlculs posteriors és necessari conèixer la temperatura de la superfície de la pintura al llarg de l’assaig. Com la pintura s’expandeix la superfície de la pintura es desplaça i no es possible mesurar-la amb un termoparell, però es pot deduir la seva evolució a partir de les lectures dels termoparells del sensor expansió en cadascuna de les fases de la intumescència

Abans de la intumescència: El primer termoparell dels sensor expansió inicialment està en contacte amb la superfície, per tant abans de la intumescència la temperatura superficial de la pintura es molt propera a la lectura d’aquest termoparell, així que es considera que abans de la intumescència el primer termoparell del sensor expansió mesura la temperatura superficial de la pintura.

Durant la intumescència: Cada termoparell del sensor expansió mesura la temperatura superficial de la pintura del instant en que és absorbit, per tant coneixent les lectures de tots els instants en que els termoparells queden absorbits es té l’evolució de la temperatura superficial de la pintura.

Després de la intumescència: Depenent de l’assaig la pintura pot absorbir tots o gairebé tots els termoparells del sensor expansió. En el cas que algun termoparell quedí molt proper a la superfície de la pintura final es pren la lectura d’aquest com a temperatura de la superfície (Gràfic 14). Si pel contrari l’últim termoparell no queda absorbit es considera que la temperatura superficial evoluciona de la mateixa manera que la lectura d’aquest (Gràfic 15).

![Gràfic 14](image1.png)

Gràfic 14: Tª superficial si l’últim termoparell queda proper a la superfície (assaig P10_A6_V2)
CARACATERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES INTUMESCENTS

Un cop s’han fet totes les consideracions ja esmentades es pot procedir a l’estudi de transferència de calor. Es considera el següent volum de control tancat:

Gràfic 15: Tª superficial si l’últim termoparell no queda absorbit (assaig P10_A10_V3)

Imatge 32: Representació del volum de control
A partir del teorema de la conservació de l’energia i considerant el volum de control anterior, es té el següent balanç de calor:

\[Q_{\text{entrada}} + Q_{\text{generada}} - Q_{\text{sortida}} = Q_{\text{emmagatzemada}} \quad (1) \]

On la calor d’entrada és la calor aportada per les resistències i la calor de sortida és nul·la ja que tot el contorn és adiabàtic. Les reaccions de la intumescència poden generar calor però si es compara aquesta calor generada amb les altres calors del balanç, es té que el seu valor és prou petit com per negligir-la. Per tant es considera que la calor d’entrada és igual a la calor emmagatzemada.

Aquesta calor emmagatzemada és la mateixa que es transfereix per conducció a través de la pintura i finalment s’emmagatzema escalfant la placa d’acer. Així doncs, el balanç de calor es realitzarà entre la pintura i l’acer:

\[Q_{\text{entrada}} = Q_{\text{emmagatzemada}} \Rightarrow Q_{\text{pintura}} = Q_{\text{acer}} \quad (2) \]

Per al càlcul d’aquestes calors i per al càlcul del coeficient de conducció s’aplicaran les lleis de Fourier:

\[
\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{Q} = \rho c \frac{\partial T}{\partial t}
\]

Degut a les simetries anteriorment esmentades que presenta la proveta, es té un flux de calor unidireccional \((\frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0)\).
A més a més la transferència en els elements assajats es simplifiquen de la següent manera:

a. **PINTURA:** degut a que té un volum petit i la seva densitat és molt més petita que la del acer, els efectes del calor emmagatzemat són menyspreables \((\rho c \frac{\partial T}{\partial t} = 0)\) i només es considerarà el calor per conducció amb l’equació corresponent a la transferència de calor per a una placa plana.

\[
Q_{\text{pintura}} = \left(\lambda_{\text{pintura}} \times A \right) \times \left(T_1 - T_2 \right) / L_{\text{pintura}} \tag{3}
\]

b. **ACER:** degut a que el ferro és un bon conductor, tota la peça es troba pràcticament a la mateixa temperatura, és a dir, els efectes de transferència de calor són nuls \(\left(\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) = 0 \right)\) i per tant només es té en compte l’efecte del calor emmagatzemat.

\[
Q_{\text{acer}} = \rho \times V \times C \times \frac{\Delta T}{\Delta t} \tag{4}
\]

Per tant, substituint (2) i (3) en (4) es pot trobar el coeficient de conducció, \(\lambda_{\text{pintura}}\) :

\[
\lambda_{\text{pintura}} = \left(\rho \times C \times \frac{\Delta T}{\Delta t} \right) \times L_{\text{pintura}} / A_v \times (T_1 - T_2) \tag{5}
\]

On:

\[
A_v = 1 / g_{\text{acer}}
\]
Aquest coeficient de conducció és una propietat física de la pintura, és a dir, només depèn de la composició química i de la estructura interna de la pintura. Per tant aquesta conductivitat pot ser útil si es vol fer una simulació de la pintura, tenint en compte tant el creixement de la pintura com la variació de la conductivitat d’aquesta \((L_{\text{pintura}}\) no és constant). Però per si sola no aporta informació del aïllament tèrmic real de la pintura al llarg de l’assaig.

Per conèixer l’aïllament que aporta la pintura en tot moment es calcula la conductivitat tèrmica equivalent. Aquesta conductivitat equivalent indica la conductivitat que hauria de tenir un material hipotètic, que no varíes el seu gruix inicial al llarg del assaig, per comportar-se de la mateixa manera que la pintura intumescent.

Per que aquest material hipotètic es compliri de la mateixa manera que la pintura intumescent, ha de “veure” el mateix flux de calor, per tant:

\[
Q_{\text{pintura}} = Q_{\text{material hipotètic}}
\]

(6)

Tal i com s’ha definit la transferència de calor per conducció en (3) es pot escriure (6) de la següent manera:

\[
\left(\frac{\lambda_{\text{pintura}} \times A \times (T_1 - T_2)}{L_{\text{pintura}}} \right)_{\text{pintura}} = \left(\frac{\lambda_{\text{equivalent}} \times A \times (T_1 - T_2)}{L_{\text{material hipotètic}}} \right)_{\text{material hipotètic}}
\]

(7)

Aïllant \(\lambda_{\text{equivalent}}\) de l’equació (7) es té:

\[
\lambda_{\text{equivalent}} = \frac{\lambda_{\text{pintura}}}{L_{\text{pintura}}} \times L_{\text{material hipotètic}}
\]

(8)

El gruix del material hipotètic \(L_{\text{material hipotètic}}\) s’ha pres de 1 mm en tots els recobriments assajats per tal de poder comparar-los entre ells.
4.4.2. CÀLCUL DEL COEFICIENT DE CONDUCCIÓ

Com ja s’ha explicat anteriorment es considera que el flux de calor és unidireccional. Això implica que la transferència de calor per convecció de l’aire ha d’ésser la mateixa que la transferència per conducció a la pintura i alhora igual que la calor emmagatzemada per l’acer. També s’ha de tenir en compte que es tracta d’un assaig transitori i per tant aquestes transferències de calor no es donen simultàniament.

Primer hi ha una transmissió de calor del forn per convecció fins a la superfície de la pintura, tot seguit, aquesta calor es transmet per conducció al llarg de tota la pintura fins que arriba a la placa d’acer i finalment s’emmagatzema en l’acer augmentant la seva temperatura progressivament.

Per incorporar la variable temporal es parteix de la fórmula de la calor emmagatzemada per l’acer, de manera que:

\[Q_{t+1} = \rho_{acer} \times \frac{1}{A_v} \times c \times \frac{\delta T}{\delta t} \]

On:

\[\frac{\delta T}{\delta t} = \frac{T_{i+1} - T_i}{\Delta t} \]

Per tant la conductivitat de la pintura es calcula de la següent manera:

\[\lambda_{pintura} = \left(\rho_{acer} \times C_{acer} \times \frac{(T_{i+1} - T_i)}{\Delta t} \right) \times \frac{L_{pintura}}{A_v} \times \frac{1}{T_{i+1} - T_i} \]

Els termoparells enregistren dades cada 5 segons de manera que la variable temps queda definida (\(\Delta t = 5s \)).

Una altre variable que cal tenir en compte és la intumescència de la pintura. En l’apartat 4.3-“Anàlisi del creixement de la pintura” s’explica com s’obté l’evolució del creixement de la pintura vers el temps i la temperatura. Coneixent el gruix de la pintura en cada instant (\(L_{pintura} \)) i mitjançant l’equació (10) descrita anteriorment s’obté l’evolució del coeficient de conductivitat al llarg de tot l’assaig.
Prenen els següents valor de les propietats de l’acer i la pintura es calcula l’evolució de la conductivitat en funció del temps i la temperatura:

\[
\begin{align*}
\rho_{\text{acer}} &= 7850 \text{ kg/m}^3 \\
C_{\text{acer}} &= 450 \text{ J/kg·ºC} \\
A_v &= 100 \text{ o } 166,7 \text{ m}^{-1}
\end{align*}
\]

S’observa que la conductivitat, tot i ser petita, augmenta a temperatures elevades. Com ja s’ha dit anteriorment, aquesta conductivitat no reflecteix el comportament aïllant de la pintura.
Per fer-se una idea del aïllament que proporciona la pintura es calcula la conductivitat equivalent emprant l’equació (8) amb:

\[L_{material \ hipotètic} = 1 \text{ mm} \]

En el Gràfic 17 s’observa com la conductivitat equivalent al sobrepassar els 400°C, moment on la pintura inicia el procés d’intumescència, millora notablement les seves propietats aïllants. Un cop s’asseoleixen els 650°C la conductivitat equivalent s’estabilitza degut a que la intumescència ja ha acabat, la pintura ha assolit el seu grúix màxim i per tant el seu màxim aïllament.
5. RESULTATS OBTINGUTS

5.1 COMPORTAMENT DE LA PINTURA EN FUNCIÓ DE LA VELOCITAT D’ESCALFAMENT

S’observa que el comportament de la pintura varia al aplicar-li diferents velocitats d’escalfament, però no es pot observar un patró comú en tots els assajos i per tant no es pot estudiar quina influència té la velocitat d’escalfament en el comportament de la pintura. Aquest fet es deu a que les diferents velocitats assajades (V1, V2, V3) són bastant semblants i la variabilitat de l’assaig emmascara el possible efecte de la velocitat d’escalfament en el comportament de la pintura.

<table>
<thead>
<tr>
<th>VELOCITAT D’ESCALFAMENT</th>
<th>Val. de 200 a 700ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>19,73 ºC/min</td>
</tr>
<tr>
<td>V2</td>
<td>17,19 ºC/min</td>
</tr>
<tr>
<td>V3</td>
<td>14,76 ºC/min</td>
</tr>
</tbody>
</table>

Per observar com afecta la velocitat d’escalfament al comportament de la pintura hi ha dos opcions:

- Reduir la variabilitat dels assajos.
- Assajar velocitats d’escalfament més diferents.
Es pot observar com el creixement de la pintura depèn del gruix inicial d’aquesta, però no s’observa una influència evident de la velocitat d’escalfament (Gràfic 18).

Gràfic 18: Creixement de la pintura per a diferents gruixos inicials aplicada a acer de Av 100m⁻¹

Gràfic 19: Creixement de la pintura per a diferents gruixos inicials aplicada a acer de Av 166,7m⁻¹
En el càlcul de la conductivitat de la pintura s’ha utilitzat l’evolució del gruix d’aquesta (veure ap. 4.4. Comportament tèrmic), per tant tal i com passa en el creixement de la pintura, no s’observa un efecte de la velocitat d’escalfament en la conductivitat de la pintura (Gràfic 20).

Gràfic 20: Conductivitat de la pintura per a diferents gruixos inicials aplicada a acer de Av 100 m\(^{-1}\)
Gràfic 21: Conductivitat equivalent de la pintura per a diferents gruixos inicials aplicada a acer de Av 166,7m1

Gràfic 22: Conductivitat equivalent de la pintura per a diferents gruixos inicials aplicada a acer de Av 100m1
S'ha observat que en el rang de velocitats d’escalfament assajat el comportament de la pintura no sembla dependre de l’escalfament, ja que no s’observa un patró comú en els diferents tipus d’assaig. Per aquest motiu es considera que les diferències entre els resultats de V1, V2 i V3 són degudes exclusivament a la variabilitat de l’assaig. Tenint en compte això s’ha calculat la mitjana de les tres velocitats assajades per cada tipus de prova de manera que el comportament de la pintura només depèn del gruix de pintura inicial i l’espessor de l’acer protegit. Es tenen per tant els següents tipus d’assajos:

\[
\text{PX}_\text{AY} \rightarrow \text{Pintura de gruix } X \times 100 \, \text{µm} \text{ sobre } \text{Acer d’espessor } Y \, \text{mm}
\]

Amb aquesta simplificació hi ha menys tipus d’assaig però cadascun d’ells consta de més mostres, de manera que els resultats són més fiables.

5.2. PRECISSIÓ DELS RESULTATS

Considerant que la velocitat d’escalfament no afecta al comportament de la pintura, s’estudia la distribució dels resultats dels diferents tipus d’assaig \(\text{PX}_\text{AY} \), de manera que es tenen més mostres de cada tipus d’assaig, concretament es tenen 6 (V1-B, V1-F, V2-B, V2-F, V3-B, V3-F). I per tant l’error estàndard és menor (\(\downarrow \sigma / \sqrt{n} \)).

Per conèixer la precisió dels resultats obtinguts es considera que aquests es comporten seguint una distribució normal. Sigui \(\mu \) la mitja dels resultats, \(\sigma \) la desviació típica dels resultats i \(n \) el número de mostres, es té:

\[
\bar{X} \sim N \left(\mu, \sigma / \sqrt{n} \right)
\]

Es calcula l’interval de confiança dels resultats obtinguts [IC] amb una confiança del 95% (\(1 - \alpha = 95\% \)):

\[
P \left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right] = 1 - \alpha
\]
Com s’ha vist en el Gràfic 22, els resultats de l’evolució del gruix de la pintura de les plaques d’acer amb factor de massivitat de 100m$^{-1}$ presenten més dispersió que les plaques amb massivitat de 166,7m$^{-1}$, concretament el tipus d’assaig que presenta més dispersió és P1_A10. Per tant el cas més desfavorable en el càlcul del creixement de la pintura es dona en les provetes de massivitat 100m$^{-1}$, així que s’estudia la precisió del càlcul del creixement de tots els assajos a partir d’aquest tipus.

La dispersió del càlcul del creixement de la pintura no és la mateixa al llarg de tot l’assaig, essent màxima en el moment de màxima expansió de la pintura (Gràfic 23). Per aquest motiu es calcula l’error estàndard a 500, 550, 600, 650 i 700ºC.

Sabent que la desviació típica és:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$
Es calculen la mitjana i les desviacions típiques del gruix a 500, 550, 600, 650 i 700°C:

<table>
<thead>
<tr>
<th></th>
<th>500°C</th>
<th>550°C</th>
<th>600°C</th>
<th>650°C</th>
<th>700°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0,0025m</td>
<td>0,0126m</td>
<td>0,0242m</td>
<td>0,0342m</td>
<td>0,0365m</td>
</tr>
<tr>
<td>σ</td>
<td>0,00335m</td>
<td>0,010109m</td>
<td>0,008971m</td>
<td>0,003023m</td>
<td>0,00399m</td>
</tr>
</tbody>
</table>

Sabent que $Z_{α/2} = 1.96$ per a $α = 0.05$ (IC del 95%) es calcula la confiança o precisió del càlcul del creixement per als diferents rangs de temperatura:

$$ERROR = \pm Z_{α/2} \frac{σ}{\sqrt{n}}$$

<table>
<thead>
<tr>
<th>RANG DE TEMPERATURES</th>
<th>ERROR DEL CÀLCUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tªamb-450°C</td>
<td>± 0m</td>
</tr>
<tr>
<td>450-500°C</td>
<td>± 0,00268m</td>
</tr>
<tr>
<td>500-600°C</td>
<td>± 0,00809m</td>
</tr>
<tr>
<td>600-650°C</td>
<td>± 0,00718m</td>
</tr>
<tr>
<td>650-700°C</td>
<td>± 0,00242m</td>
</tr>
<tr>
<td>700-900°C</td>
<td>± 0,00319m</td>
</tr>
</tbody>
</table>

De la mateixa manera que s’ha fet amb l’estudi de la dispersió en el càlcul del creixement, es procedeix a estudiar la dispersió de la conductivitat equivalent del tipus de proveta P06_A6 ja que és el més desfavorable. Es calculen les distribucions a les temperatures 400, 500, 700, 875°C tal i com es mostra en el Gràfic 24.
CARACTERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES INTUMESCENTS

<table>
<thead>
<tr>
<th>RANG DE TEMPERATURES</th>
<th>ERROR DEL CÀLCUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tªamb-400ºC</td>
<td>± 0,011085 [W/Km]</td>
</tr>
<tr>
<td>400-500ºC</td>
<td>± 0,0001928 [W/Km]</td>
</tr>
<tr>
<td>500-700ºC</td>
<td>± 0,003992 [W/Km]</td>
</tr>
<tr>
<td>700-875ºC</td>
<td>± 0,020539 [W/Km]</td>
</tr>
</tbody>
</table>

Taula 8: Mitjana i desviació tipeica de la conductivitat equivalent

<table>
<thead>
<tr>
<th>TEMPERATURES</th>
<th>CONDUCTIVITAT EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>400ºC</td>
<td>0,04250 [W/Km]</td>
</tr>
<tr>
<td>500ºC</td>
<td>0,01517 [W/Km]</td>
</tr>
<tr>
<td>700ºC</td>
<td>0,02267 [W/Km]</td>
</tr>
<tr>
<td>875ºC</td>
<td>0,02767 [W/Km]</td>
</tr>
</tbody>
</table>

σ

<table>
<thead>
<tr>
<th>TEMPERATURES</th>
<th>CONDUCTIVITAT EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>400ºC</td>
<td>0,01385 [W/Km]</td>
</tr>
<tr>
<td>500ºC</td>
<td>0,002409 [W/Km]</td>
</tr>
<tr>
<td>700ºC</td>
<td>0,004989 [W/Km]</td>
</tr>
<tr>
<td>875ºC</td>
<td>0,023432 [W/Km]</td>
</tr>
</tbody>
</table>

Taula 8: Mitjana i desviació tipeica de la conductivitat equivalent

Aquests errors en el càlcul tant del creixement com de la conductivitat, es deuen a moltes causes. A continuació es presenten algunes de les més importants:

- La posició dels termoparells destinats a la detecció del creixement no és exacte.
- El retard en la detecció de la temperatura és propi de cada termoparell i de cada Datalogger.
- La proveta no és exactament simètrica, per tant és possible que hi hagi una cara més protegida que l’altra.
- La cara frontal es troba a la part del forn on hi ha la porta, per tant poden existir pèrdues tèrmiques.
- En els càlculs s’han fet aproximacions i simplificacions.
5.3. COMPORTAMENT DE LA PINTURA EN FUNCIÓ DE LA MASSIVITAT DE L’ACER PROTEGIT

S’observa que els recobriments de les plaques de 10mm arriben a gruixos més elevats que els recobriments de les plaques de 6mm. A més també es pot observar que els recobriments de les plaques d’acer de Av 100m\(^{-1}\) inicien la seva intumescència a temperatures més elevades que els recobriments de les plaques d’acer de Av 166,7m\(^{-1}\).

En tots els recobriments es té aquest mateix comportament per tant es pot dir que l’espessor de l’acer recobert per pintura intumescent afecta al creixement d’aquesta.

Les plaques d’acer de 10mm d’espessor (Av 100m\(^{-1}\)) tenen més massa (o volum) que les plaques de 6mm (Av 166,7m\(^{-1}\)), per tant tenen més inèrcia tàrmica i triguen més en escalfar-se tal i com indica (1). La temperatura del forn augmenta igual de ràpid per als dos espessors de plaques d’acer, per tant aquest retard tàrmic que té la plaça d’acer de Av 100m\(^{-1}\) respecte la de Av 166,7m\(^{-1}\) es tradueix en que la intumescència de la pintura es dona a temperatures més elevades en les plaques de Av 100m\(^{-1}\).

\[Q_{acer} = \rho \times V \times C \times \frac{\Delta T}{\Delta t} \]
(1)
La major inèrcia tèrmica de l’acer de Av 100m⁻¹ també afecta en el càlcul de la conductivitat de la pintura i en el càlcul de la conductivitat equivalent, ja que els seus càlculs depenen directament de la calor emmagatzemada per l’acer (Qacer) tal i com s’indica en (2) i (3):

\[
\lambda_{\text{pintura}} = \frac{(\rho \times C \times \frac{\Delta T}{\Delta t}) \times L_{\text{pintura}}}{A_v \times (T_1 - T_2)} \quad (2)
\]

\[
\lambda_{\text{equivalent}} = \frac{\lambda_{\text{pintura}} \times L_{\text{equivalent}}}{L_{\text{pintura}}} \quad (3)
\]

Els resultats de la conductivitat de la pintura i de la conductivitat equivalent en funció del gruix d’acer es mostren en els Gràfics 26, 27, 28, 29, 30 i 31.
5.4. COMPORTAMENT DE LA PINTURA EN FUNCIÓ DEL SEU GRUIX INICIAL:

Tal i com es pot observar en els gràfics X i Y en els dos gruixos d’acer l’inici de la intumescència varia depenent del gruix inicial de pintura. A més gruix inicial de pintura menor temperatura d’inici de la intumescència, es a dir que la pintura comença a créixer abans.

També s’observa que el procés d’intumescència acaba a temperatures més elevades en els recobriments de més gruix. Per tant es pot dir que el gruix inicial de la pintura afecta a la duració de reacció d’intumescència de manera que a més gruix de pintura més dura la reacció.
Gràfic 33: Creixement de la pintura per plaques d’acer de 166,7m⁻¹

<table>
<thead>
<tr>
<th>Gruix inicial de pintura</th>
<th>Gruix final de pintura</th>
<th>Creixement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 µm</td>
<td>64mm (Acer de 10mm)</td>
<td>53,3 vegades</td>
</tr>
<tr>
<td></td>
<td>56mm (Acer de 6mm)</td>
<td>46,7 vegades</td>
</tr>
<tr>
<td>1000 µm</td>
<td>37mm (Acer de 10mm)</td>
<td>37,0 vegades</td>
</tr>
<tr>
<td></td>
<td>33mm (Acer de 6mm)</td>
<td>33,0 vegades</td>
</tr>
<tr>
<td>600 µm</td>
<td>14mm (Acer de 10mm)</td>
<td>23,3 vegades</td>
</tr>
<tr>
<td></td>
<td>12mm (Acer de 6mm)</td>
<td>20,0 vegades</td>
</tr>
</tbody>
</table>

Taula 10: Augment del gruix de pintura

Es sabut que la pintura intumescent creix fins a 50-60 vegades el seu gruix inicial, però tal i com s’observa en la Taula 10 en recobriments de pintura de poc espessor, la pintura no creix tan com és d’esperar. Aquest fet ens indica que en gruixos de pintura de poc espessor la intumescència de la pintura no és completa i per tant la pintura no assoleix el gruix final esperat de 50-60 vegades el gruix inicial.
5.3. COMPORTAMENT DE LA PINTURA EN FUNCIÓ DEL GRUIX INICIAL

Tal i com s’ha dit anteriorment el comportament de la pintura intumescent depèn del gruix inicial d’aquesta. Si s’aconsegueix saber com afecta el gruix inicial al la intumescència es pot deduir el comportament d’altres gruixos de pintura no assajats.

La proporcion alitat del tres gruixos de pintura assajats (600, 1000 i 1200µm) no és constant al llarg de tot l’assaig, és a dir, l’evolució de la pintura varia de forma diferent en els tres gruixos a mesura que s’augmenta la temperatura. Per exemple si es compara el comportament del recobriment de 1200µm amb el de 600µm es té:

A 580ºC el recobriment 1200µm ha crescut 25 vegades el seu gruix inicial (1,2 vegades més que el recobriment de 600µm).

A 650 ºC el gruix del recobriment 1200µm ha crescut és 46,5 vegades el gruix inicial (2,5 cops més que el recobriment de 600µm).

A més, tal i com s’ha comentat anteriorment, la duració de la reacció d’intumescència depèn del gruix inicial de pintura.

Per aquests motius s’ha discretitzat els resultats en 14 rangs de temperatura cadascun amb un numero de dades semblants (*Taula 11*).

<table>
<thead>
<tr>
<th>TRAM 1</th>
<th>de 185,6 ºC a 242,6 ºC</th>
<th>TRAM 8</th>
<th>de 569,2 ºC a 614,4 ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAM 2</td>
<td>de 242,6 ºC a 290,3 ºC</td>
<td>TRAM 9</td>
<td>de 614,4 ºC a 653,8 ºC</td>
</tr>
<tr>
<td>TRAM 3</td>
<td>de 290,3 ºC a 345,2 ºC</td>
<td>TRAM 10</td>
<td>de 653,8 ºC a 677,9 ºC</td>
</tr>
<tr>
<td>TRAM 4</td>
<td>de 345,2 ºC a 404,8 ºC</td>
<td>TRAM 11</td>
<td>de 677,9 ºC a 703,3 ºC</td>
</tr>
<tr>
<td>TRAM 5</td>
<td>de 404,8 ºC a 462,9 ºC</td>
<td>TRAM 12</td>
<td>de 703,3 ºC a 725,3 ºC</td>
</tr>
<tr>
<td>TRAM 6</td>
<td>de 462,9 ºC a 518,9 ºC</td>
<td>TRAM 13</td>
<td>de 725,3 ºC a 746,1 ºC</td>
</tr>
<tr>
<td>TRAM 7</td>
<td>de 518,9 ºC a 569,2 ºC</td>
<td>TRAM 14</td>
<td>de 746,1 ºC a 761,5 ºC</td>
</tr>
</tbody>
</table>

Taula 11: Rangs de temperatura

S’ha analitzat la dependència del comportament de la pintura en funció del seu gruix inicial en cada rang de temperatures i per separat.
5.4.1. INTERPOLACIÓ:

Per a conèixer el comportament de gruixos de pintura d’entre 600 i 1200µm s’han interpolat els resultats obtinguts experimentalment per a gruixos de 600, 1000 i 1200µm.

Per aquesta interpolació s’ha emprat el polinomi interpolador de Newton, definit de la següent manera:

\[\sum_{j=0}^{n-1} a_j g_j (x) \]

On \(g_j (x) \) és:

\[g_j (x) = \prod_{i=0}^{j-1} (x - x_i) \]

I \(a_j \) son les imatges (creixement o conductivitat):

\[a_0 = f [x_0], \quad a_1 = f [x_0, x_1], \ldots, \quad a_j = f [x_0, x_1, \ldots, x_{j-1}, x_j] \]

Aplicant aquest polinomi al cas estudiat es té:

\[P(x) = a_0 + a_1 \cdot (x - 600) + a_2 \cdot (x - 1000) \cdot (x - 600) \]

On:

\[a_0 = f(600) \]
\[a_1 = f(1000) = a_0 + a_1 \cdot (1000 - 600) \rightarrow a_1 = \frac{f(1000)-a_0}{(1000-600)} \]
\[a_2 = f(1200) = a_0 + a_1 \cdot (1200 - 600) + a_2 \cdot (1200 - 600) \cdot (1200 - 1000) \rightarrow \]
\[\rightarrow a_1 = \frac{f(1200) - a_0 - a_1 \cdot (1100 - 600)}{(1200 - 600) \cdot (1200 - 1000)} \]

Substituint es té:

\[P(x) = f(600) \cdot \frac{(x - 1000) \cdot (x - 1200)}{(600 - 1000) \cdot (600 - 1200)} + f(1000) \cdot \frac{(x - 600) \cdot (x - 1200)}{(1000 - 600) \cdot (1000 - 1200)} + f(1200) \cdot \frac{(x - 600) \cdot (x - 1000)}{(1200 - 600) \cdot (1200 - 1000)} \]

Aquesta interpolació és valida tant per obtenir el creixement com per obtenir la conductivitat equivalent o de la pintura d’un recobriment de gruix comprés en l’interval [1200;600]µm

Els Gràfics 34,35,36,37,38 i 39 mostren exemples de diferents interpolacions.
CARACTERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES
INTUMESCENTS

Gràfic 34: Creixement d’un recobriment de 800µm

Gràfic 35: Creixement d’un recobriment de 800µm

Gràfic 36: Conductivitat eq. d’un recobriment de 800µm

Gràfic 37: Conductivitat eq. d’un recobriment de 800µm

Gràfic 38: Conductivitat de la pintura d’un recobriment de 800µm

Gràfic 39: Conductivitat de la pintura d’un recobriment de 1200µm
5.4.2. EXTRAPOLACIÓ

Per conèixer el comportament de recobriments de pintura amb un gruix inicial que no estigui dins en l’interval de \([1200;600]\)µm s’han extrapolat els resultats experimentals tenint en compte la tendència estadística dels tres gruixos assajats. Per verificar que la extrapolació realizada és vàlida convindria fer un assaig amb un gruix de pintura fora de l’interval, però no s’ha fet per falta de temps i recursos. Tot i així, aquesta extrapolació pot resultar útil per al disseny d’aquests nous experiments prevenint, per exemple el desbordament de la intumescència dins el utilitatge d’assaig.

Primerament s’ha de tenir en compte que la extrapolació del creixement i la extrapolació de la conductivitat no són iguals, ja que tenen tendències estadístiques diferents.

EXTRAPOLACIÓ DEL CREIXEMENT DE LA PINTURA:

Observant el comportament de la pintura intumescent s’han pres les següents consideracions de cara a extrapolar els resultats:

- Els recobriments de gran espessor es comporten proporcionalment als gruixos assajats de 600, 1000 i 1200µm.
- El creixement màxim assolible és 56 vegades el gruix inicial del recobriment.
- Per conèixer el creixement de recobriments de poc espessor s’extrapola exponencialment a partir dels tres gruixos assajats i els gruixos interpolats de 1100, 900, 800, 700µm. Per tant es considera que sempre hi ha un creixement mínim.

![Gràfic 40: Extrapolació del Rang de temperatures 9 (de 514,4 a 653,8 ºC)](image-url)
En cada un dels rangs de temperatures s’extrapola el gruix final del rang corresponent al gruix de recobriment que es vol conèixer. Per exemple, segons indica el Gràfic 40, un recobriment de 1600µm assoleix un gruix de 70mm en arribar a 653.8ºC i un de 400µm assoleix un gruix de 7,5mm en arribar a la mateixa temperatura.

Realitzant aquesta extrapolació per cada rang de temperatures és pot deduir el comportament de recobriments de gruix no comprès en el rang de [600;1200]µm

Per exemple el creixement que té un recobriment de pintura intumescent de 1800µm sobre acer amb un factor de forma (Av) de 166,7m\(^{-1}\) (acer assajat de 6mm d’espessor) és el següent:

Gràfic 41: Creixement d’un recobriment de 1800µm sobre acer de Av 100m\(^{-1}\)
EXTRAPOLACIÓ DE LA CONDUCTIVITAT EQUIVALENT DE LA PINTURA:

S’observa que per a recobriments de gruixos importants l’evolució de la conductivitat equivalent es veu poc afectada al variar el gruix inicial del recobriment, es a dir que l’evolució de la conductivitat d’un recobriment de 1000µm es molt semblant a la d’un recobriment de 1200µm, però en recobriments de poc espessor la conductivitat equivalent varia molt en funció del seu gruix inicial del, es a dir que l’evolució de la conductivitat equivalent d’un recobriment de 600µm és notablement diferent a la d’un recobriment de 800µm.

Per tenir en compte aquest comportament s’ha considerat que la conductivitat té una tendència potencial en funció del gruix inicial, a gruixos elevats tendeix a estabilitzar-se a una conductivitat mínima (Gràfic 42).
CARACTERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES INTUMESCENTS

Gràfic 43: Tendència potencial de la conductivitat equivalent del Rang de temperatures 9 (de 514,4 a 653,8 ºC)

Realitzant aquesta extrapolació per cada rang de temperatures és pot deduir el comportament de recobriments de gruix no comprès en el rang de [600;1200]μm

Per exemple la conductivitat equivalent d’un recobriment de pintura intumescent de 1800μm sobre acer amb un factor de forma (Av) de 100m⁻¹ (acer assajat de 10mm d’espessor) és el següent:

Gràfic 44: Conductivitat equivalent d’un recobriment de 1800μm sobre acer de Av 100m⁻¹
O bé la conductivitat equivalent d’un recobriment de pintura intumescent de 400µm sobre acer amb un factor de forma (Av) de 166.67 m\(^{-1}\) (acer assajat de 6mm d’espessor) és el següent:

Gràfic 45: Conductivitat equivalent d’un recobriment de 400µm sobre acer de Av 166.67 m\(^{-1}\)
EXTRAPOLACIÓ DE LA CONDUCTIVITAT DE LA PINTURA:

Fins a 440ºC la conductivitat es aproximadament la mateixa en tots els recobriments ja que no s’ha iniciat la intumescència, per aquest motiu en els rangs de temperatura nº 1, 2, 3, 4, 5 i 6 la conductivitat de tot recobriment es considera igual a la mitja de les conductivitats calculetes experimentalment (600, 1000 i 1200µm).

A temperatures més elevades la pintura inicia la seva intumescència i la conductivitat de la pintura comença a augmentar de manera que es considera que l’evolució de la conductivitat varia proporcionalment en funció del gruix inicial.

Realitzant aquesta extrapolació per cada rang de temperatures és pot deduir el comportament de recobriments de gruix no comprès en el rang de [600;1200]µm

Per exemple la conductivitat d’un recobriment de pintura intumescent de 1800µm sobre acer amb un factor de forma (Av) de 100m⁻¹ (acer assajat de 10mm d’espessor) és el següent:

Gràfic 46: Conductivitat de la pintura per a un recobriment de 1800µm sobre acer de Av 100m⁻¹
6. SIMULACIÓ

6.1. INTRODUCCIÓ

Per tal de validar els resultats obtinguts del coeficient de conducció equivalent, es realitza una simulació mitjançant un software conegut per veure si els resultats s’assemblen als calculats. D’aquesta manera es podrà saber si el cicle del projecte queda ben tancat o per contra els resultats obtinguts no ens apropen a la realitat tal i com s’espera.

El software seleccionat per la simulació és l’OZone V2.2 que proporciona la universitat de Liege, Bèlgica.

Es recorda que el coeficient de conducció equivalent representa la conductivitat tèrmica del material independentment del creixement que pateix, simplificant el problema d’estudi només al cas tèrmic. D’aquesta manera es pot utilitzar un software convencional per determinar la protecció al foc que proporcionen les pintures intumescents.

L’objectiu d’aquesta simulació és reproduir tots els assajos realitzats per analitzar el comportament que s’obté amb el coeficient de conducció equivalent i així valorar si es pot acceptar aquest paràmetre. En cas positiu també s’analitzarà la resistència que proporcionen les pintures intumescents.

6.2. SIMULACIÓ AMB l’OZone V2.2

PROPOSTA D’ESCENARI D’INCENDI

Com s’ha comprovat, en l’interval d’estudi assajat, la velocitat d’escalfament no afecta al comportament de la pintura intumescent. Per això, les simulacions es realitzen en base a una única corba de temperatura i a partir d’aquesta es simula l’estructura metàl·lica protegida amb 1200, 1000 i 600μm de pintura intumescent i sense protegir. D’aquesta manera es podrà valorar la validesa del coeficient de conducció comparant els resultats amb els resultats obtinguts experimentalment.

La simulació es realitzarà sobre una edificació petita i de fàcil construcció, definida amb un sostre a dues aigües, dues finestres i una porta.

Es considera que el vidre de les finestres explota al arribar als 400°C i que la porta de metall es manté tancada al llarg de tota la simulació.
L’acer que es simula es troba sostenint el sostre del recinte i recobert per les 4 cares. S’utilitza acer S 235 i dos tipus de perfils metàl·lics, IPE 750X196 per factors de massivitat de 100 i un IPE 450 per factors de 166.7.

PRESENTACIÓ DEL RECINTE

El recinte d’estudi per les simulacions és una edificació de 42.75 m² de superfície i representa una única zona. Aquesta edificació correspon a un petit habitatge de construcció molt senzilla, amb un sostre a dues aigües i amb dues finestres.

CARACTERÍSTIQUES GEOMÈTRIQUES

Dimensions:
- Altura: 3.5 m
- Altura teulada: 0.5 m
- Longitud: 9.5 m
- Amplada: 4.5 m

- Superfície: 42.75 m²
- Volum: 138.9375 m³

Material:
- Sostre: Planxa ondulada d’acer d’ 1mm de gruix (Steel EN 1994-1-2)
- Terra: Formigó (Normal weight Concrete EN 1994-1-2)
- Paret: Totxana (Normal Bricks)

Obertures (exclusivament en la façana):
- Porta: metàl·lica de 0.8X2.2 m²
- Finestra1: vidre de 1X2 m²
- Finestra2: vidre de 1X1.5 m²
PROPIETATS TÈRMIQUES

Les propietats tèrmiques dels materials es mostren en la següent taula:

<table>
<thead>
<tr>
<th>Material</th>
<th>gruix [cm]</th>
<th>CP [kJ/kg·K]</th>
<th>KS [W/m·K]</th>
<th>(\rho) [kg/m(^3)]</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formigó</td>
<td>10</td>
<td>1</td>
<td>1,6</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>Totxana</td>
<td>10</td>
<td>0,84</td>
<td>0,7</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>Acer</td>
<td>0,1</td>
<td>0,6</td>
<td>45</td>
<td>7850</td>
<td></td>
</tr>
</tbody>
</table>

Nota: \(T_a = 400^\circ\text{C}\)

Taula 12: Propietats tèrmiques.

Per a la simulació dels assajos s’introduirà la corba d’alliberació de calor (RHR) que s’adequï a la de l’assaig i el model de combustió que es selecciona és “*no combustion model*”. Aquest model no té en compte la presència de l’oxigen ja que els balanços de massa i d’energia es calculen tenint en compte la corba *RHR*.

Finalment, només cal introduir el coeficient de conducció equivalent com a material de protecció per l’acer.

S’ha pogut observar que la intumescència actua en instants diferents segons el factor de massivitat; per factors de massivitat de 100, la intumescència té lloc entre els 400-600 °C i per factors de massivitat de 166,7, entre els 370-550 °C. Per això en l’estudi dels resultats es tindrà en compte aquets instants i així observar aquest procés amb més precisió.
COMPARACIÓ RESULTATS SIMULACIÓ VS RESULTATS EXPERIMENTALS

Com ja s’ha comentat, les simulacions es fan en base a una única rampa de temperatura. Per tant, el primer que cal fer es veure la precisió en la simulació de la temperatura exterior.

Gràfic 47: Temperatura exterior assajada(blava) i simulada(VERmella)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>30</td>
<td>200,00</td>
<td>198,50</td>
<td>0,76</td>
</tr>
<tr>
<td>40</td>
<td>350,78</td>
<td>370,07</td>
<td>5,21</td>
</tr>
<tr>
<td>41</td>
<td>370,60</td>
<td>387,34</td>
<td>4,32</td>
</tr>
<tr>
<td>43</td>
<td>406,20</td>
<td>421,47</td>
<td>3,62</td>
</tr>
<tr>
<td>45</td>
<td>443,90</td>
<td>455,19</td>
<td>2,48</td>
</tr>
<tr>
<td>50</td>
<td>527,31</td>
<td>538,73</td>
<td>2,12</td>
</tr>
<tr>
<td>51,5</td>
<td>550,60</td>
<td>557,40</td>
<td>1,22</td>
</tr>
<tr>
<td>54</td>
<td>587,52</td>
<td>585,71</td>
<td>0,31</td>
</tr>
<tr>
<td>60</td>
<td>673,91</td>
<td>649,00</td>
<td>3,84</td>
</tr>
<tr>
<td>70</td>
<td>732,08</td>
<td>728,00</td>
<td>0,56</td>
</tr>
<tr>
<td>80</td>
<td>794,22</td>
<td>786,46</td>
<td>0,99</td>
</tr>
<tr>
<td>90</td>
<td>850,00</td>
<td>819,79</td>
<td>3,69</td>
</tr>
</tbody>
</table>

Taula 13: Resultats temperatura exterior amb preescalfament

Per el càlcul de l’error s’utilitza la següent expressió:

\[
\text{error (\%)} = \frac{T_{\text{simulació}} - T_{\text{assaig}}}{T_{\text{assaig}}} \times 100
\]
Tan visualment com numèricament, es pot dir que es reproduïx perfectament la temperatura exterior al llarg del temps. Les principals diferències entre ambdues, però es troben en l’interval de temps on té lloc el procés de la intumescència. Més endavant s’avaluarà el seu efecte en els resultats.

Tal i com ja s’ha comentat, el preescalfament no afecta al comportament de la pintura ni a la seva protecció, però en canvi, afegixeix 30 minuts extres en el càlcul de la resistència al foc que presenten les pintures intumescents. Per aquest motiu, en l’estudi dels resultats s’analitzaran sense tenir en compte el preescalfament.

D’aquesta manera, s’obté una evolució de temperatures logarítmica de forma similar que el de la ISO 834. En el Gràfic 48, s’aprecia com ambdós comportaments són similars, però clarament, la temperatura assajada creix més lentament que la ISO 834 degut a les limitacions del forn empleat.

Aquest programa de simulació no permet introduir un recobriment de gruix variable al llarg de l’assaig, per aquest motiu s’ha introduït un gruix de recobriment constant de 1mm amb la conductivitat equivalent calculada ($\lambda_{equivalent}$) per cada tipus d’assaig.
S’analitzarà l’evolució de la temperatura de l’àcer en funció del factor de massivitat per cada un dels gruixos de pintura assajats, de manera que:

Taula 14: Comparació assaig VS simulació P12_A10

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Tacer_assaig [ºC]</th>
<th>Tacer_Ozone [ºC]</th>
<th>ERROR Tacer [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>167,01</td>
<td>144,00</td>
<td>13,78</td>
</tr>
<tr>
<td>13</td>
<td>205,31</td>
<td>168,87</td>
<td>17,75</td>
</tr>
<tr>
<td>15</td>
<td>229,06</td>
<td>187,50</td>
<td>18,14</td>
</tr>
<tr>
<td>20</td>
<td>272,20</td>
<td>236,40</td>
<td>13,15</td>
</tr>
<tr>
<td>24</td>
<td>295,06</td>
<td>280,70</td>
<td>4,87</td>
</tr>
<tr>
<td>30</td>
<td>327,36</td>
<td>352,00</td>
<td>7,53</td>
</tr>
<tr>
<td>40</td>
<td>431,45</td>
<td>458,38</td>
<td>6,24</td>
</tr>
<tr>
<td>50</td>
<td>527,20</td>
<td>527,20</td>
<td>0,00</td>
</tr>
<tr>
<td>60</td>
<td>580,00</td>
<td>564,80</td>
<td>2,62</td>
</tr>
</tbody>
</table>

Taula 15: Comparació assaig VS simulació P10_A10

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Tacer_assaig [ºC]</th>
<th>Tacer_Ozone [ºC]</th>
<th>ERROR Tacer [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>171,11</td>
<td>143,89</td>
<td>18,92</td>
</tr>
<tr>
<td>13</td>
<td>205,31</td>
<td>168,36</td>
<td>21,95</td>
</tr>
<tr>
<td>15</td>
<td>229,06</td>
<td>186,83</td>
<td>22,60</td>
</tr>
<tr>
<td>20</td>
<td>283,97</td>
<td>236,40</td>
<td>20,12</td>
</tr>
<tr>
<td>24</td>
<td>312,47</td>
<td>280,70</td>
<td>11,32</td>
</tr>
<tr>
<td>30</td>
<td>350,79</td>
<td>352,00</td>
<td>0,34</td>
</tr>
<tr>
<td>40</td>
<td>431,45</td>
<td>460,34</td>
<td>6,28</td>
</tr>
<tr>
<td>50</td>
<td>527,21</td>
<td>527,70</td>
<td>0,09</td>
</tr>
<tr>
<td>60</td>
<td>590,40</td>
<td>564,50</td>
<td>4,59</td>
</tr>
</tbody>
</table>

Taula 16: Comparació assaig VS simulació P6_A10

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Tacer_assaig [ºC]</th>
<th>Tacer_Ozone [ºC]</th>
<th>ERROR Tacer [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>187,25</td>
<td>150,60</td>
<td>19,57</td>
</tr>
<tr>
<td>13</td>
<td>231,47</td>
<td>176,60</td>
<td>23,71</td>
</tr>
<tr>
<td>15</td>
<td>264,53</td>
<td>195,30</td>
<td>26,17</td>
</tr>
<tr>
<td>20</td>
<td>325,40</td>
<td>249,20</td>
<td>23,42</td>
</tr>
<tr>
<td>24</td>
<td>353,16</td>
<td>303,90</td>
<td>13,95</td>
</tr>
<tr>
<td>30</td>
<td>404,10</td>
<td>407,23</td>
<td>0,77</td>
</tr>
<tr>
<td>40</td>
<td>510,68</td>
<td>499,24</td>
<td>2,24</td>
</tr>
<tr>
<td>50</td>
<td>637,60</td>
<td>560,00</td>
<td>12,17</td>
</tr>
<tr>
<td>60</td>
<td>730,10</td>
<td>606,00</td>
<td>17,00</td>
</tr>
</tbody>
</table>
En l’estudi amb un factor de massivitat de 100 m$^{-1}$, es pot observar com pels gruixos de pintura de 1000 μm i 1200 μm s’obté un comportament molt similar als resultats experimentals.

L’interval d’intumescència està comprés entre els instants t=13min i t=24min on les diferències són màximes. Part d’aquest error està influenciat per l’error en la temperatura exterior, de totes maneres, no afecta gaire als resultats. Els canvis de fase, melting i intumescència, no queden ben reproduïts, bàsicament perquè l’Ozone no ho té en compte. Això es deu a que el càlcul es realitza sobre elements que no pateixen canvis de fase.

Per altra banda, el cas P6_A10 difereix molt del comportament experimental en el tram final. També és patent la diferència entre els resultats durant els canvis de fase, però l’aïllament simulat a partir dels 500ºC no s’adeca al comportament esperat. Segurament, la poca quantitat de pintura intumescent és la causa.

Donat que la temperatura crítica de l’acer que es pren és de 500ºC, els resultats que s’obtenen es consideren vàlids per estudiar la resistència al foc de les pintures intumescents.
Els resultats per un factor de massivitat de 166,7 m⁻¹ són els següents:

Taula 17: Comparació assaig VS simulació P12_A6

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Tacer_assaig [ºC]</th>
<th>Tacer_Ozone [ºC]</th>
<th>ERROR Tacer [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>214,38</td>
<td>188,00</td>
<td>12,31</td>
</tr>
<tr>
<td>11</td>
<td>227,77</td>
<td>201,33</td>
<td>12,39</td>
</tr>
<tr>
<td>15</td>
<td>277,32</td>
<td>246,65</td>
<td>11,06</td>
</tr>
<tr>
<td>20</td>
<td>315,77</td>
<td>311,79</td>
<td>1,26</td>
</tr>
<tr>
<td>21,5</td>
<td>323,83</td>
<td>332,77</td>
<td>2,76</td>
</tr>
<tr>
<td>30</td>
<td>400,72</td>
<td>432,50</td>
<td>7,93</td>
</tr>
<tr>
<td>40</td>
<td>504,25</td>
<td>513,23</td>
<td>1,78</td>
</tr>
<tr>
<td>50</td>
<td>617,73</td>
<td>535,60</td>
<td>13,30</td>
</tr>
<tr>
<td>60</td>
<td>665,00</td>
<td>555,10</td>
<td>16,53</td>
</tr>
</tbody>
</table>

Taula 18: Comparació assaig VS simulació P10_A6

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Tacer_assaig [ºC]</th>
<th>Tacer_Ozone [ºC]</th>
<th>ERROR Tacer [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>221,73</td>
<td>198,65</td>
<td>10,41</td>
</tr>
<tr>
<td>11</td>
<td>237,00</td>
<td>207,24</td>
<td>12,56</td>
</tr>
<tr>
<td>15</td>
<td>300,20</td>
<td>267,00</td>
<td>11,06</td>
</tr>
<tr>
<td>20</td>
<td>352,30</td>
<td>356,20</td>
<td>1,11</td>
</tr>
<tr>
<td>21,5</td>
<td>366,00</td>
<td>384,50</td>
<td>5,05</td>
</tr>
<tr>
<td>30</td>
<td>465,57</td>
<td>486,40</td>
<td>4,47</td>
</tr>
<tr>
<td>40</td>
<td>606,47</td>
<td>558,65</td>
<td>7,88</td>
</tr>
<tr>
<td>50</td>
<td>713,67</td>
<td>611,20</td>
<td>14,36</td>
</tr>
<tr>
<td>60</td>
<td>768,60</td>
<td>648,60</td>
<td>15,61</td>
</tr>
</tbody>
</table>

Taula 19: Comparació assaig VS simulació P6_A6

<table>
<thead>
<tr>
<th>t [min]</th>
<th>Tacer_assaig [ºC]</th>
<th>Tacer_Ozone [ºC]</th>
<th>ERROR Tacer [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23,00</td>
<td>23,00</td>
<td>0,00</td>
</tr>
<tr>
<td>10</td>
<td>221,73</td>
<td>198,65</td>
<td>10,41</td>
</tr>
<tr>
<td>11</td>
<td>237,00</td>
<td>207,24</td>
<td>12,56</td>
</tr>
<tr>
<td>15</td>
<td>300,20</td>
<td>267,00</td>
<td>11,06</td>
</tr>
<tr>
<td>20</td>
<td>352,30</td>
<td>356,20</td>
<td>1,11</td>
</tr>
<tr>
<td>21,5</td>
<td>366,00</td>
<td>384,50</td>
<td>5,05</td>
</tr>
<tr>
<td>30</td>
<td>465,57</td>
<td>486,40</td>
<td>4,47</td>
</tr>
<tr>
<td>40</td>
<td>606,47</td>
<td>558,65</td>
<td>7,88</td>
</tr>
<tr>
<td>50</td>
<td>713,67</td>
<td>611,20</td>
<td>14,36</td>
</tr>
<tr>
<td>60</td>
<td>768,60</td>
<td>648,60</td>
<td>15,61</td>
</tr>
</tbody>
</table>
De la mateixa manera que en els resultats anteriors, en l’interval on es produeix la intumescència, des de l’instant $t=10\text{min}$ fins $t=20\text{min}$ aproximadament, hi ha un augment de les diferències entre les temperatures. Degut a l’augment del factor de massivitat, les diferències són menors ja que no hi ha tanta incidència en la temperatura de l’acer.

De totes maneres, a la vista dels resultats obtinguts, en els instants finals, un cop sobrepassats els $500\degree\text{C}$, l’error augmenta considerablement i el comportament entre ambedues temperatures és molt diferent. La temperatura de l’acer assajat creix més ràpidament que la simulada.

La precisió en la simulació del comportament de l’acer depèn fortament del factor de massa i del gruix de la pintura. Com més gruix sigui l’acer i més pintura tingui, més precisos són els resultats, mentre que per gruixos de $600\ \mu\text{m}$ o factor de massivitat de $166,7\ \text{m}^{-1}$ s’obté un comportament de l’acer poc realista.

Tal i com ja s’ha esmentat anteriorment, donat que la temperatura crítica de l’acer s’estableix en els $500\degree\text{C}$, els resultats que s’obtenen de la simulació són acceptables per calcular la resistència al foc que proporcionen les pintures intumescents.

Per el càlcul d’aquesta, es mirarà en quin instant de temps la temperatura de l’acer assoleix els $500\degree\text{C}$ i es compararà amb el temps que trigaria en cas de que l’acer estigui desprotegit.
Gràfic 55: Estudi de la resistència al foc de la simulació per un factor de massivitat de 100 m2.

Gràfic 56: Estudi de la resistència al foc de l’assaig per un factor de massivitat de 100 m2.

CARACATERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES

INTUMESCENTS
CARACATERITZACIÓ DEL COMPORTAMENT TERMO-MECÀNIC DE LES PINTURES INTUMESCENTS

Gràfic 57: Estudi de la resistència al foc de la simulació per un factor de massivitat de 166,7 m$^{-1}$

Gràfic 58: Estudi de la resistència al foc de l’assaig per un factor de massivitat de 166,7 m$^{-1}$
ELSVALORSDERESTIÈNCIAALFOCQUES'OBTENENESPRESSENENLATÀBLA20:

<table>
<thead>
<tr>
<th>ASSAIG</th>
<th>SIMULACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aσ</td>
<td>100 m²</td>
</tr>
<tr>
<td>1200 μm</td>
<td>R40</td>
</tr>
<tr>
<td>1000 μm</td>
<td>R40</td>
</tr>
<tr>
<td>600 μm</td>
<td>R30</td>
</tr>
</tbody>
</table>

Taula 20: Resultats de la resistència al foc

L’acer amb factor de secció 100m⁻¹ quan està desprotegit triga aproximadament 18 minuts, és a dir que tindria una resistència al foc menor a R20. Amb l’aplicació de la pintura, s’aconsegueix augmentar aquest temps fins a 46 minuts, R40.

En el cas de l’acer amb factor de secció 166,7m⁻¹ quan està desprotegit triga aproximadament 25 minuts, és a dir que tindria una resistència al foc una mica major a R20. Amb l’aplicació de la pintura, s’aconsegueix augmentar aquest temps fins a 38 minuts, pràcticament R40.

Tal i com ja s’ha comentat, fins aquest interval, els resultats obtinguts es poden assimilar al comportament real de la pintura i es pot comprovar que les resistències al foc obtingudes són idèntiques a excepció del cas P6_A10.

Per tant, la conclusió que es pot extreure del resultats és que fins a un valor determinat de temperatura, 500ºC, el coeficient de conducció equivalent ens és útil per representar el comportament de la pintura intumescent.
7. IMPACTE MEDIAMBIENTAL

Per analitzar el impacte ambiental del projecte s’han de contemplar diferents etapes d’aquest amb el seus impactes respectius.

Aquestes fases són:

a) Pintat de les plaques
b) Mecanització del suport de la proveta
c) Realització dels assajos
d) Desplaçaments
e) Electricitat

a) La pintura en estat líquid conté COV’s “Compostos Orgànics Volàtils” que actuen com a dissolvent. Els COV’s són compostos químics que contenen carboni que es presenten en estat gasos o són molt volàtils a temperatura ambient. Aquests compostos acostumen a contenir cadenes de carboni menors a 12, juntament amb àtoms d’hidrogen, oxigen, clor, brom, fluor, iode, nitrogen, sofre, fosfurs i silici.

El principal problema ambiental de les emissions de COV’s és la formació d’oxidants fotoquímics al reaccionar amb altres contaminants que hi puguin haver en l’aire formant el fenomen conegut com “smog fotoquímic”, comú en les grans ciutats i nuclis urbans amb elevada contaminació.

Les emissions de COV’s poden generar danys greus a les persones en funció de la composició química d’aquest i del grau d’exposició de la persona. En el pitjor dels casos poden ocasionar càncer, alteracions genètiques i problemes de fertilitat degut bàsicament al benzè i al clorur de vinil. Per aquest motiu la composició dels dissolvents està controlada i majoritàriament s’utilitza acetona o etanol que són molt menys nocius. Tot i així, l’operari que apliqui tant la capa d’imprimació com la de pintura, ha de portar una mascareta per no inhalar els gasos directament.

El Real Decret 117/2003 estableix uns límits per als compostos orgànics més perillosos, instant a la possible substitució dels mateixos:

- 2mg/Nm3 per als compostos que puguin causar càncer, alteracions genètiques, etc. sempre que s’emeti un cabal superior a 10g/hora.
- 20mg/Nm3 pe aquells compostos halogenats amb possibles efectes cancerígens quan el cabal màssic d’emissió sigui superior a 100g/hora.

Si hi ha un excedent de pintura mai s’ha de llençar en estat líquid ja que els dissolvents són inflamables, per tant abans de llençar-la s’ha de reticular (assecar) amb algun tipus de catalitzador.
S’han utilitzat 10kg de pintura intumescent amb un COV de 360g/l i la densitat de la pintura liquida és de 1.4kg/l i 2kg de dissolvent amb un COV de 470g/l i una densitat de 1,55kg/l (mirar apartat 3.4-“Mètode d’aplicació de la pintura”)

Per tant, les emissions de COV’s totals del projecte són:

$$Emissió_{COV} = 10\text{kg}_{\text{pint}} \cdot \frac{1}{1,4\text{kg}_{\text{pint}}} + 2\text{kg}_{\text{imp}} \cdot \frac{0,36\text{kg}_{\text{COV}}}{1,55\text{kg}_{\text{imp}}} + 0,47\text{kg}_{\text{COV}} = 3,17\text{kg COV’s}$$

b) El material emprat pel suport és un compost de silicat calci compactat que al mecanitzar-lo genera pols de partícules de calci i silici que no presenten ninguna toxicitat, no obstant això aquestes partícules poden causar problemes respiratoris a l’operari que mecanitza els suports, per tant aquest ha d’estar ben protegit amb una mascareta per no inhalar la pols.

Aquestes partícules es precipiten i cauen al terra del taller, per tant no hi ha emissions a l’atmosfera.

c) En el procés d’intumescència es produeixen fums que estan compostos principalment per H$_2$O, CO$_2$, NH$_3$ i en una proporció molt menor CO i Cl$. Els compostos més perillosos per a les persones dels esmentats són el Cl$, CO i NH$_3$ però les proporcions de la pintura estan equilibrades per tal que aquests reaccionin amb els altres compostos generant productes innocus.

Es pot calcular la quantitat màxima d’elements perillosos segons la Directiva 67/548/CEE de substàncies perilloses o el Reglament (CE) No. 1272/2008 (veure el document “Ficha de datos de seguridad del Stofire”):

<table>
<thead>
<tr>
<th>Identificadores</th>
<th>Nombre</th>
<th>Concentració</th>
<th>(*)Clasificació -Reglamento 1272/2008</th>
<th>(*)Clasificació -Directiva 67/548/CEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Indice:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. CAS:108-78-1</td>
<td>2,4,6-trilamino-1,3,5-triazine</td>
<td>2.5 - 20 %</td>
<td>XI</td>
<td>R36/38</td>
</tr>
<tr>
<td>N. CE:203-615-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. registro:N/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Indice:</td>
<td>(***) etilbenceno</td>
<td>2.5 - 25 %</td>
<td>Acute Tox. 4 *, H332 - Flam. Uit. 2, H225</td>
<td>F Xn R11 R20</td>
</tr>
<tr>
<td>N. CAS:100-41-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. CE:202-849-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. registro:N/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Indice:</td>
<td>N,N’-Ebono-1,2-dilbis(12-hidroxioctadecanamida)</td>
<td>1 - 2.5 %</td>
<td>Aquatic Chronic 2, H411 - Skin Sens. 1, H317</td>
<td>XI N R43 R51/53</td>
</tr>
<tr>
<td>N. CAS:1330-20-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. CE:215-535-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. registro:N/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Indice:</td>
<td>(***) xileno (Mezcla de isómeros)</td>
<td>20 - 25 %</td>
<td>Acute Tox. 4 *, H312 - Acute Tox. 4 *, H332 - Flam. Uit. 3, H226 - Skin Irrit. 2, H315</td>
<td>Xn XI R10 R20/21 R38</td>
</tr>
<tr>
<td>N. CAS:1330-20-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. CE:215-535-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. registro:N/D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula 21: Fitxa de dades de seguretat del Stofire
Generació màx. de \([2,4,6\text{-triamino-1,3,5-triazine}]\) \(= 0,2\cdot10\text{kg/pint} = 2\text{kg}\)
Generació màx. de \([\text{etilbenzè}]\) \(= 0,25\cdot10\text{kg/pint} = 2,5\text{kg}\)
Generació màx. de \([12\text{-hidroxiocadecanamida}]\) \(= 0,025\cdot10\text{kg/pint} = 0,25\text{kg}\)
Generació màx. de \([\text{xilè}]\) \(= 0,25\cdot10\text{kg/pint} = 2,5\text{kg}\)

Per aquest motiu les provetes sempre s’han manipulat amb guants i els assajos s’han fet sota d’una campana extractora de fums. Sempre s’ha evitat que alguna persona estigues en les immediacions del assaig per que no respires directament els gasos generats en la intumescència, i en cas que hi hagi alguna persona durant el procés d’intumescència, aquesta ha dut una mascareta protectora per tal de no inhalar directament els gasos generats i ulleres protectores per evitar una possible irritació de les mucoses.

No s’ha fet un càlcul de les quantitats de CO\(_2\) emès a l’atmosfera ja les reaccions químiques de la pintura no han estat facilitades per raons de confidencialitat.

Tant els termoparells com les plaques de silicat calci poden iritjar la pell, per aquest motiu sempre s’han manipulat amb guants.

Per a la realització dels assajos s’han emprat 200m de termoparell tipus K i 3Kg de silicat calci. Ambdós contenen fibres de silici que poden ser nocives pel medi ambient, per aquest motiu un cop utilitzats s’han llençat a un contenidor de residus especials que disposa el laboratori del foc de la ETSAB. Amb la pintura intumescent ja utilitzada s’ha procedit de la mateixa manera.

d) Al llarg del tot el projecte s’han comptabilitzat quatre visites a l’empresa Euroquímica Paints, S. A. situada a la població de Dosrius (Argentona) a 39km de l’ETSEIB i dues visites a l’empresa APPLUS situada al campus de Bellaterra (Cerdanyola) a 20km. Per tant el consum mitjà del vehicle és 7 litres als 100km, el consum total de combustible és:

\[
\text{Consum_{carburant}} = (4 \cdot 2 \cdot 39\text{km} + 2 \cdot 2 \cdot 20\text{km}) \cdot \frac{7\text{litres}}{100\text{km}} = 27,44 \text{ litres}
\]

Considerant que el cotxe emet 120 grams de CO\(_2\) per km, es tenen unes emissions de CO\(_2\) en desplaçaments de:

\[
\text{Emissions de CO}_2 = (4 \cdot 2 \cdot 39\text{km} + 2 \cdot 2 \cdot 20\text{km}) \cdot \frac{120\text{g}}{\text{km}} = 47,04 \text{ kg de CO}_2
\]
8. ESTUDI ECONÒMIC

En aquest apartat es realitzarà l’estudi econòmic del projecte, per això es realitzarà un pressupost del treball exposat.

Abans però es presenta com s’ha planificat el desenvolupament del treball, el qual es pot dividir en les cinc fases que s’expliquen a continuació:

FASE 1: La primera fase bàsicament consisteix en la introducció per part dels enginyers en el concepte de pintura intumescent. Es tracta d’un brainstorming de com s’encararà el projecte i de les seves necessitats.

FASE 2: La segona fase és el cos del projecte i comprèn moltes accions. Primerament es defineix i modelitza la proveta a assajar. Es contacta amb les empreses comercialitzadores de tots els materials que es necessiten, principalment amb l’empresa productora i distribuïdora de pintures intumescents. Es mecanitzen les provetes i es fan unes proves inicials per acabar de millorar el disseny. Per últim es mecanitzen les provetes definities per a la campanya experimental. Es tracta sens dubte de la fase més costosa ja que, a part de ser la fase més llarga, comprèn la compra de tot el material necessari i la contractació d’un especialista per pintar les provetes.

FASE 3: Campanya experimental. Es treballa en el laboratori del foc de la ETSEB que proporciona l’instrumental per als assajos.

FASE 4: La quarta fase consisteix en el tractament de les dades recopilades en la campanya experimental i en la realització d’una simulació per verificar la validesa dels resultats.

FASE 5: Es realitza la part escrita de tot el projecte.
Finalment, només cal especificar els següents punts per a dur a terme el pressupost del projecte:

✓ El temps total per a la realització del projecte ha estat de 10 mesos.

✓ El cost corresponent al lloguer de les instal·lacions no es té en compte en el pressupost d’aquest projecte però és important mencionar-ho.

✓ El cost de l’operari que aplica la imprimació i la pintura a les provetes es de 17€/h incloses les despeses indirectes (lloguer, llum, ...).

✓ El cost de la llicència del programa OZone V2.2 és de 0 € ja que és pot descarregar gratuïtament des de la pàgina de la Universitat de Liege (Bèlgica).

✓ L’empresa de pintures intumescents proporciona les provetes inicials per realitzar els primers assajos.

✓ Donat que es un projecte de recerca, l’IVA només es tindrà en compte per la compra de la materials.

Finalment, el pressupost necessari per dur a terme aquest projecte ha estat de: 38300 €.
Diagrama Gantt

<table>
<thead>
<tr>
<th>FASE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

FASE 1 (2 mesos): Brainstorming

FASE 2 (6 mesos): Contactar empreses, planificació, modelització, testeig del material, mecanització i pintatge, provatges inicials.

FASE 3 (2 mesos): Campanya experimental

FASE 4 (2 mesos): Tractament de dades i simulació

FASE 5 (8 mesos): Elaboració de la memòria
FASE 2

<table>
<thead>
<tr>
<th>TASCA</th>
<th>TEMPS / QUANTITAT</th>
<th>COST</th>
<th>TOTAL [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Enginyers Industrials</td>
<td>1.000 h</td>
<td>25 €/h</td>
<td>25.000</td>
</tr>
<tr>
<td>Material:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- pintura intumescent (STOFIRE)</td>
<td>15 Kg</td>
<td>9,47 €/Kg</td>
<td>94,7</td>
</tr>
<tr>
<td>- imprimació (STF)</td>
<td>3 Kg</td>
<td>3,61 €/Kg</td>
<td>7,22</td>
</tr>
<tr>
<td>- silicat de calci</td>
<td>3 Kg</td>
<td>1,35 €/Kg</td>
<td>4,05</td>
</tr>
<tr>
<td>- termoparells</td>
<td>200 m</td>
<td>2 €/m</td>
<td>400</td>
</tr>
<tr>
<td>- acer</td>
<td>35 Kg</td>
<td>2,8 €/Kg</td>
<td>98</td>
</tr>
<tr>
<td>- Extres</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Operari</td>
<td>21 h</td>
<td>17 €/h</td>
<td>357</td>
</tr>
<tr>
<td>IVA</td>
<td>18%</td>
<td></td>
<td>174,7746</td>
</tr>
<tr>
<td>Varis</td>
<td></td>
<td></td>
<td>2.994,194</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>29.140</td>
</tr>
</tbody>
</table>

FASE 3

<table>
<thead>
<tr>
<th>TASCA</th>
<th>TEMPS</th>
<th>COST</th>
<th>TOTAL [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Enginyers Industrials</td>
<td>200 h</td>
<td>25 €/h</td>
<td>5.000</td>
</tr>
<tr>
<td>Amortització forn (20.000€ en 15 anys)</td>
<td>150 h</td>
<td>0,15 €/h</td>
<td>23</td>
</tr>
<tr>
<td>Varis</td>
<td></td>
<td></td>
<td>560</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>5.583</td>
</tr>
</tbody>
</table>

FASE 4

<table>
<thead>
<tr>
<th>TASCA</th>
<th>TEMPS</th>
<th>COST</th>
<th>TOTAL [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Enginyers Industrials</td>
<td>200 h</td>
<td>25 €/h</td>
<td>5.000</td>
</tr>
<tr>
<td>Varis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>5.000</td>
</tr>
</tbody>
</table>

FASE 5

<table>
<thead>
<tr>
<th>TASCA</th>
<th>TEMPS</th>
<th>COST</th>
<th>TOTAL [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Enginyers Industrials</td>
<td>100 h</td>
<td>25 €/h</td>
<td>2.500</td>
</tr>
<tr>
<td>Varis</td>
<td></td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2.780</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TASCA</th>
<th>QUANTITAT</th>
<th>COST</th>
<th>TOTAL [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impressió color</td>
<td>260 pàgs.</td>
<td>0,35 €/und</td>
<td>91</td>
</tr>
<tr>
<td>Carpeta</td>
<td>1</td>
<td>7,59 €/und</td>
<td>7,59</td>
</tr>
<tr>
<td>Enquadernació</td>
<td>3</td>
<td>1,22 €/und</td>
<td>3,66</td>
</tr>
<tr>
<td>Tapa dura</td>
<td>3</td>
<td>0,46 €/und</td>
<td>1,38</td>
</tr>
<tr>
<td>CD’s</td>
<td>3</td>
<td>0,90 €/und</td>
<td>2,70</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>106,33</td>
</tr>
</tbody>
</table>

TOTAL [€] 42.609,33
CONCLUSIONS

L’objectiu d’aquest projecte de recerca ha consistit en determinar el creixement de la pintura intumescent i la seva conductivitat tèrmica a partir d’un mètode d’assaig desenvolupat pels propis autors (*sensor expansió*).

Per tal de validar els resultats obtinguts experimentalment s’ha realitzat una simulació dels assajos mitjançant l’Ozone V2.2. Considerant una temperatura crítica de l’acer de 500°C (*Annex C*) es comparen els temps que triga l’acer en assolir-la.

<table>
<thead>
<tr>
<th>Av</th>
<th>100 m⁻¹</th>
<th>166,7 m⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUIX</td>
<td>ASSAIG</td>
<td>SIMULACIÓ</td>
</tr>
<tr>
<td>1200 μm</td>
<td>47min</td>
<td>46min</td>
</tr>
<tr>
<td>1000 μm</td>
<td>47min</td>
<td>46min</td>
</tr>
<tr>
<td>600 μm</td>
<td>39min</td>
<td>40min</td>
</tr>
</tbody>
</table>

Com es pot observar, els instants on l’acer es troba a 500°C per ambdós situacions és molt similar i per tant es considera que la metodologia emprada en l’obtenció de la conductivitat de la pintura i el creixement d’aquesta és vàlida. En concret el plantejament del *sensor expansió* és correcte i les aproximacions i simplificacions que s’han realitzat en els diferents càlculs són acceptables.

Els errors en els càlculs de la conductivitat tèrmica i en el creixement de la pintura s’atribueixen principalment a la variabilitat en la posició dels termoparells i a la precisió en la reproducció de les rampes de temperatura.

Amb la metodologia d’assaig desenvolupada i amb un equipament potent es podrien realitzar assajos amb profils metàl·lics per tal d’estudiar el creixement i l’aïllament de la pintura en zones concretes del perfil. Per exemple, mitjançant el *sensor expansió* es pot estudiar que passa quan dos fronts de pintura intumescent xoquen a partir d’una mesura directa del comportament de la pintura en aquest punt.

A més, com s’han determinat les propietats aïllants de la pintura, es poden realitzar simulacions per tal de preveure el comportament de la pintura intumescent en múltiples combinacions sense la necessitat de realitzar assajos. Preveure el comportament de la pintura sense la necessitat de realitzar assajos proporciona un important estalvi econòmic per part de l’empresa fabricant i a part, permet la
determinació del gruix óptim de pintura a utilitzar segons els requeriments de la edificació a protegir.

També s’ha estudiat la influència de tres paràmetres en el comportament de les pintures intumescent i s’ha arribat a les conclusions següents:

✓ **Factor de massivitat:** La inèrcia tèrmica dels acers de 6mm és més petita, per tant l’acer s’escalfa més ràpidament afectant a la temperatura de la pintura i per tant, al seu comportament. De manera que la reacció d’intumescència es produeix a temperatures menors i el gruix final de pintura és menor.

\[
\begin{align*}
\text{→ Av} & \quad \text{↓ Gruix final} \\
\text{↓ Tª inici de la intumescencia} & \quad \text{↓ Inercia tèrmica}
\end{align*}
\]

✓ **Gruix inicial:** Com més gran és el recobriment que protegeix l’acer la intumescència s’inicia a temperatures menors. D’aquesta manera els acers de gruix de 6mm amb un recobriment de 1200µm són la combinació on la reacció d’intumescència s’inicia abans.

\[
\begin{align*}
\text{↑Gruix inicial} & \quad \text{→ ↓ Tª inici} \\
\text{↑ Gruix inicial} & \quad \text{→ ↑ Duració de la reacció}
\end{align*}
\]

També el temps del procés de la intumescència és més gran, afavorint la seva reacció i obtenint un gruix final més gran. Es pot considerar que a més recobriment, millor treballa la pintura tal i com es pot observar en la taula 10.

<table>
<thead>
<tr>
<th>Gruix inicial de pintura</th>
<th>Gruix final de pintura</th>
<th>Creixement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 µm</td>
<td>64mm (Acer de 10mm)</td>
<td>53,3 vegades</td>
</tr>
<tr>
<td></td>
<td>56mm (Acer de 6mm)</td>
<td>46,7 vegades</td>
</tr>
<tr>
<td>1000 µm</td>
<td>37mm (Acer de 10mm)</td>
<td>37,0 vegades</td>
</tr>
<tr>
<td></td>
<td>33mm (Acer de 6mm)</td>
<td>33,0 vegades</td>
</tr>
<tr>
<td>600 µm</td>
<td>14mm (Acer de 10mm)</td>
<td>23,3 vegades</td>
</tr>
<tr>
<td></td>
<td>12mm (Acer de 6mm)</td>
<td>20,0 vegades</td>
</tr>
</tbody>
</table>

Taula 22: Augment del gruix de pintura
Analitzant la Taula 10 s’observa com, amb la combinació d’un acer de 10mm i amb un recobriment de 1200 µm s’obté un gruix final de 64mm, és a dir 53.3 vegades el seu gruix inicial. Es tracta de la combinació on la intumescència dura més temps, prop de 8 minuts i per tant té més temps per completar-se. A més, s’ha arribat a la conclusió que per que la pintura intumescent funcioni correctament el recobriment ha d’ésser major a 600 µm.

× **Velocitat d’escalfament:** Tot i que s’intueix que la velocitat d’escalfament afecta al comportament de la pintura, degut a que les velocitats assajades són massa properes no s’ha pogut determinar cap influència en el comportament de la pintura intumescent.

A nivell personal aquest projecte ens ha ensenyat com realitzar una campanya experimental per tal de minimitzar costos i temps, en concret hem aprèn a analitzar tots els inconvenients i avantatges del assaig plantejat abans de prendre’l com a assaig definitiu i començar la campanya d’assajos. També ens ha ensenyat a simplificar el problema d’estudi tenint en compte les limitacions del assaig, un cas molt clar ha estat l’obtenció de la temperatura superficial de la pintura per simplificar el càlcul en la transferència de calor. Per últim ens ha ajudar a saber com tractar amb empreses, a realitzar comandes de material, convocar reunions i realitzar consultes de tot tipus.

Gràcies a que el projecte s’ha realitzat en equip, s’ha aprèn a treballar en grup, a delegar tasques i a prendre decisions conjuntes.
AGRAÏMENTS

La realització d’aquest projecte ha estat possible gràcies a l’ajuda i paciència de moltes persones. Primer de tot agrair a la família tot el seu suport incondicional i al professor i tutor d’aquest projecte, Frederic Marimon. Sense ell això no hagués estat possible.

Agrair també a tot el departament de Estructures i Resistència dels Materials: Beatriz, Jordi, Juan i en especial a en Francesc Joaquim, sempre atent i molt pacient.

La col·laboració del departament de Materials de la ETSEB ha estat bàsica pel desenvolupament d’aquest projecte, així que agraiem a l’Anna Lacasta i la Laia Haurie per confiar en nosaltres i acceptar-nos en el seu laboratori del foc, i a en Josep, que com en Francesc Joaquim ens ha suportat durant tot aquest temps.

Per acabar, agrair a les empreses que han col·laborat amb nosaltres, Euroquímica i Applus que ens han proporcionat el material i informació molt valuosa per tirar endavant aquest projecte.

Finalment a tots els que ens envolten i han tingut la paciència d’ajudar-nos i escoltar-nos.

Gràcies a tots ells aquest projecte és avui una realitat,

Gràcies
BIBLIOGRAFIA

REFERÈNCIES BIBLIOGRÀFIQUES

[3] Prof. Dr. M. Fontana, *Épaissieurs de couche pour le dimensionnement par calcul*, ETH Zurich

[5] Robert J. Asaro, Brian Lattimer, Chris Mealy, George Steele, *Thermo-physical performance of a fire protective coating for naval ship structures*, University of California

BIBLIOGRAFÍA COMPLEMENTARIA

[16] Frederic Marimon Carvajal, Apunts: Resistència passive de l’estructura metàl·lica enfront al foc, ETSEIB

[18] Ficha de datos de Seguridad 0861009004325-STOFIRE 90 (segons reglament (CE) nº 1907/2006), Euroquímica S.A.

[19] Informe técnico de la evaluación de la contribución a la resistencia al fuego de la protección mediante pintura a elementos de acer según la norma UNE-ENV 13381-4:2005

[20] DOCUMENTACIÓ D’ESTADÍSTICA

[21] LLIBRE DE CALOR ETSEIB

