ESTUDI DE LA DINÀMICA DE LA PLATJA DE BADALONA
I/O AGENTS ATMOSFÈRICS

Xavier Abad i Argemí
DNM projecta final de carrera
Tutor: F. Xavier Martínez de Osés
1. Introducción .. 5

2. Marc teòric .. 6
 2.1. Corrent de deriva ... 6
 2.2. Sobrevent – sotavent .. 7

3. Escenari .. 8
 3.1 Diferents tipus de medis litorals a tenir en compte pel desenvolupament del treball 8
 3.1.1 Penya-segats ... 8
 3.1.2 Platges ... 8
 3.2 Descripció de la costa catalana: ... 12

4. Diferents tipus de construccions artificials ... 13
 4.1 Ports (diferents tipus) ... 13
 4.2 Natural: .. 24

5. Diferents tipus d’agents atmosfèrics de la zona ... 25
 5.1 Baixes pressions – altes pressions .. 25
 5.2 Temporal de llevant: ... 26
 5.3 Vents predominants de garbí: ... 27
 5.4 Corrents predominants ... 28
 5.5 Possible augment del nivell del mar (Breu explicació regle de Brunn): .. 30

6. Dades obtingudes .. 32
 6.1 Amplades de la platja abans i després de la construcció del port ... 33
 6.2 Sondes obtingudes després de cada fenomen atmosfèric important ... 38
 6.2.1 Temporal de llevant: .. 44
 6.2.2 Vents predominants de component Sud (Garbí/Llebeig): ... 52
 6.2.3 Altes pressions: ... 59

7. Interpretació de les diferents dades obtingudes ... 65
 7.1 Interpretació de les dades 6.1 “Amplades de la platja abans i després del port”.. 65
 7.2 Interpretació de les dades 6.2 “Sondes obtingudes després de cada fenomen meteorològic important” .. 68

8. Conclusions finals ... 71

Bibliografia ... 73
Índex d’imatges

Imatge 1 (Corrent de deriva, Ciencies de la tierra Ed.Salvat). .. 6
Imatge 2 (Sobrevent/Sotavent, Ciencies de la tierra Ed. Salvat). .. 7
Imatge 3 (Erosió Penya-segats, Imatges Google). ... 8
Imatge 4 (Tipus de platges, Imatges Google). .. 9
Imatge 5,6 (Situació, Google Earth)... 11
Imatge 7 (Mar Catalanobalear, wikipedia). ... 12
Imatge 8 (Port de Barcelona, Google Earth+ Edició pròpia). ... 13
Imatge 9 (Port d’Arenys, Google Earth+ Edició pròpia). .. 14
Imatge 10 (Ports influeients, Wikipedia + Edició pròpia). ... 15
Imatge 11 (Port Barcelona, Google Earth + Edició pròpia). ... 16
Imatge 12 (Port d’Arenys, Google Earth+ Edició pròpia). ... 17
Imatge 13 (Port de Maspalomas, Google Earth+ Edició pròpia). .. 18
Imatge 14 (Port de Badalona, Google Earth+ Edició pròpia). .. 19
Imatge 15 (Port de Palamós, Google Earth+ Edició pròpia). .. 20
Imatge 16 (Port de St. Feliu de Guíxols, Google Earth+ Edició pròpia). .. 21
Imatge 17 (Port de Llafranc, Google Earth+ Edició pròpia). ... 22
Imatge 18 (Espigó, wikipedia). .. 23
Imatge 19 (Espigó St, Antoni de Calonge, Google Earth). ... 23
Imatge 20 (Obstacle natural, Ciencies de la tierra Ed. Salvat). ... 24
Imatge 21 (Temporal de llevant, fotografia pròpia). ... 26
Imatge 22 (Temporal de llevant, fotografia pròpia). ... 27
Imatge 23 (Estadístiques de vents, www.windfinder.com maig 2012). ... 27
Imatge 24 (Vent tèrmic, wikipedia). .. 28
Imatge 25 (Corrents marines, Ciencies de la tierra Ed. Salvat). ... 29
Imatge 26 (Corrent predominant. Ciencies de la tierra Ed. Salvat). .. 30
Imatge 27 (Regla de Brunn). .. 31
Imatge 28 (Batimetries realitzades, Google Earth + edició pròpia). .. 38
Imatge 29 (GPS, Google Imatges). .. 39
Imatge 30 (Compàs nàutic, Google Imatges). ... 39
Imatge 31 (Sonda, Google Imatges). .. 40
Imatge 32 (Batimetries realitzades, Google Earth + edició pròpia). .. 41
Imatge 36 (Carta pressió atmosfèrica en superfície Analysis, MetOffice). 44
Imatge 37 (Temporal de llevant, imatge pròpia). ... 49
Imatge 38 (Temporal de llevant, imatge pròpia). ... 50
Imatge 39 (Temporal de llevant, imatge pròpia). ... 51
Imatge 40 (Temporal de llevant, imatge pròpia). ... 51
Imatge 41 (Carta pressió atmosfèrica en superfície Analysis, MetOffice). 52
Imatge 42 (Vents component Sud, imatge pròpia). .. 57
Imatge 43,44 (Vents component Sud, imatge pròpia). ... 58
Imatge 45 (Carta pressió atmosfèrica en superfície Analysis, MetOffice). 59
Imatge 46,47 (Alta pressió, imatge pròpia). ... 63
Imatge 48,49 (Alta pressió, imatges pròpies). ... 64
1. Introducció

Per tal d’introduir el projecta és necessari explicar breument el recorregut de la meva vida a la platja de Badalona, ja que ha estat fortament lligada a ella. Des de ben petit he passat molt de temps en ella des de fent castells de sorra a practicar diferents modalitats de navegació a vela fins a guanyar-me el sou per poder-me pagar els estudis que estic cursant actualment. Gràcies a aquesta relació estreta entre ella i jo he pogut anar observant al llarg dels anys diferents aspectes.

Des de sempre m’havia cridat l’atenció que la platja no parava de canviar la seva forma contínuament, inclús hi havia temporades en que estava a punt de desapareixi al cap de escassos mesos tornava ha haver-hi una gran platja. Sempre m’havia preguntat com podia passar, per mi era fascinant. Preguntava a la gent més gran que jo i per tant amb més experiència i cada un m’explicava una cosa completament diferent de l’altre, però en el que si que hi havia un punt en comú era que abans hi havia molta més platja que avui en dia. De fet la meva sensació a mesura que a nava creixent era que la platja anava minvant, però mai acabava de desapareixi.

Per totes aquestes raons vaig decidir que en algun moment de la meva vida havia de mirar-ho d’estudiar més científicament ja que hi havia moltes coses que no acabaven de lligar i em treien el son. Els anys anaven passant i no acabava de trobar el moment, fins que al acabar la meva diplomatura en navegació marí tima havia de fer un projecta i hi vaig veure la oportunitat. Era conscient que la meva carrera no havia tingut gaire a veure amb la essència del treball però de totes formes vaig decidir fer-lo.

Ràpidament em vaig adonar que molts conceptes se m’escapaven del meu coneixement ja que inclús els millors enginyers de ponts ports canals i camins tenien problemes per entendre la dinàmica de platja. El fet és que en la vida real i no en un laboratori hi ha moltes variables que actuen en un mateix moment i és molt difícil poder-les separat per estudiar una per una. Va ser llavors quan vaig entendre que el meu projecta havia de ser un projecta molt més descriptiu que analític ja que disposava de temps, eines i coneixement. Per tant en aquest projecta on hi ha hagut molta feina darrera ha estat en la recollida de dades; ja que s’havia d’esperar el moment adequat per recollir-les, els fenòmens meteorològics no succeeixen quan un vol.

M’agradaria que es tingués en compte que aquest ha estat un projecta aparentment no gaire extens degut al nombre de pàgines però cada una de elles ha estat fruit de molt treball de camp.

Sempre he pensat que una altre persona ha dit el que volies dir tu però molt millor i amb menys paraules, es podria resumir aquesta introducció de la següent manera:

"Qué inapropiado llamar Tierra a este planeta, cuando es evidente que debería llamarse Océano."

Arthur Clarke
Escritor britànic (n. 1914)
2. Marc teòric

Per arribar a entendre la dinàmica del litoral, s’han de tenir un certs coneixements que he anat assolint a mesura que intentava esbrinar com es comportava l’amplada de la platja en diferents situacions.

2.1. Corrent de deriva

En qualsevol litoral hi ha un corrent d’aigua predominant el qual transporta els sediments d’una zona a una altre. Aquest corrent de deriva pot ser més o menys intens depenent del vent.

El corrent de deriva es crea per onades que trenquen en sentit obliquu. La deriva litoral es produeix quan les onades transporten els sediments en sentit obliquu i ascendent cap a la platja, mentre que l’aigua procedent de les onades exhaustes la transporta directament pendent avall de la platja. Moviments similars es produeixen al llarg de tota la zona on trenquen les onades.

Cal dir que quant es produeix un temporal aquestes onades són molt més grans i molt més ràpides, augmentant així la seva capacitat de carrega produint uns efectes negatius a l’amplada de la platja que més endavant ho explicarem.
2.2. Sobrevent – sotavent

Quan s’estudia la dinàmica d’una platja respecte un obstacle, tan artificial com natural, cal saber diferenciar entre el sobrevent i sotavent.

En aquest cas l’obstacle són dos espigons, que protegeixen la desembocadura d’un riu.

2.3. Capacitat de carrega – carrega real.

La capacitat de carrega és la capacitat màxima que té un fluid, en aquest cas l’aigua marina, en transportar un sòlid, en aquest cas els sediments de la platja.

La capacitat de carrega depèn directament de la velocitat en que viatja el fluid.

\[CC = K \cdot V \] (la capacitat de carrega és igual una constant per la velocitat)

S’entén per carrega real el nombre de sediments que transporta en aquell moment un fluid.

A partir d’aquestes dues definicions es produeix aquesta equació.

\[
\frac{CR}{CC} \rightarrow \begin{cases}
& \text{En el cas de que el resultat sigui major que 1 es produirà l’erosió} \\
& \text{En el cas de que el resultat sigui 1, predominarà el transport} \\
& \text{En el cas de que el resultat sigui menor que 1 predominarà la sedimentació.}
\end{cases}
\]
3. Escenari

3.1 Diferents tipus de medis litorals a tenir en compte pel desenvolupament del treball

La classificació dels medis litorals per poder diferenciar-los és la següent:
- Penya-segats
- Platges

3.1.1 Penya-segats

Els penya-segats es caracteritzen per ser un tipus de medi litoral en retrocés, es desenvolupen quan l’onatge és el suficientment energètic com per ser poder-lo erosionar. La seva morfologia depèn de:
- El onatge
- La estructura geològica
- Tipus de material

La acció del onatges és més efectiva quan aquest es concentra, és a dir en costes amb poc rang marenal.

Podem diferenciar diferents parts en un penya-segat:
- Paret del penya-segat
- Base del penya-segat
- Plataforma de abrasió

La taxa de retrocés d’un penya-segat depèn de diferents aspectes tals com la resistència de la roca, presencia d’una plataforma de abrasió ben desenvolupada, exposició a l’acció de l’onatge i el rang marenal.

3.1.2 Platges

Les platges generalment són de sorra o de grava, o en tot cas una barreja de les dos. Aquest tipus de medi litoral ocupa una tercera part de la costa mundial, ja que és allà on
els sediments són acumulats cap a la costa a causa del onatge. Una vegada establerta una platja, podem tenir: Pèrdua de sediments o bé augment de sediments.

Les platges, en funció del procés d’onatge que les domini, es poden dividir en:

- Platges dominades per “deriva litoral” (descrit anteriorment en el marc teòric)
 Quan arriba el onatge a la costa en un angle obliqu.
- Platges dominades per “swash”
 Quan ocupen un espai entre dos sortints costaners.

També es pot donar el cas de platges compostes, dominades per “deriva” (quan l’onatge arriba obliqu i dominades per “swash” (quan l’onatge arriba paral·lel).

Normalment concorda que, moltes platges dominades per deriva litoral són estretes i llargues flanquejant penya-segats o deltes formant les anomenades fletxes litorals descrites posteriorment.

En algunes costes, el material és acumulat en forma de cordons de platja paral·lels i successius, on l’aportació de les diferents sorres és abundant, i existeixen vents forts cap a terra, els cordons de platja es poden reordenar en dunes costaneres que migren cap a terra. D’aquesta manera podem diferenciar dos formes de migració en una platja:

- Progradació de platges:
 Moltes barreres costaneres estant constituïdes per cordons de platja formats per l’onatge, o formades per acumulacions originades per el vent. Presenten “línies de creixement” que marquen successives línies de costa les quals indiquen progradacions intermitents amb fases d’erosió o truncació. Aquestes barreres tenen la seva posició fixa, sent així paral·leles a la línia de costa preexistent, sent ampliada per progradació.
- Platges transgressives:
 Moltes altres barreres i illes barrera, han estat construïdes per acumulació de sorra en vertical, i conduïdes cap a terra molt anteriorment durant el període del Holocè, i alguns estant encara sen moguts de forma intermitent per ventalls de tempestes i vents procedents de la costa.

En general, les platges transgressives es desenvolupen millor en costes que s’estan submergint, per altre banda les de progradació són associades a costes estables o emergents.

La major part de les platges mostren variacions de petit període (estacional) coneguts com erosió i dipòsit (“cut and fill”).

- Amb l’erosió (“cut”) quant part dels sediments són aportats en direcció a la mar durant episodis d’activitat d’onatge de tempesta, i dipòsit (“fill”) durant els períodes de calma quan l’onatge suau mou els sediments cap a la costa.

Cicles d’erosió i dipòsit es poden també donar com a resultat de petites oscil·lacions del nivell del mar.
En un sistema de platja es pot dir que està en equilibri quan el seu perfil transversal, inclòs a la zona subaquàtica adjacents, alterna cíclicament en resposta als processos generats per la acció de l’onatge de les aigües costaneres, sense canvis de llarg període (més de 5 anys). Una platja pot perdre el equilibri ja sigui per dipòsit (migració) o per erosió.

Hi ha diferents tipus de fons per davant de les platges, en alguns casos, descendeixen cap a fondos rocosos o fangosos que poden quedar parcialment a la vista durant la baixamar. En altres, poden passar a fondos de sorra o graves lleugerament còncaves, En altres ocasions, tenen formacions de barres subaquàtiques disposades paral·lelament a la costa. Normalment són de sorra, la qual té una forma i mobilitat depenen de la activitat de l’onatge de la tempesta. Normalment quan la barra es mou cap a la costa, la platja tendeix a dipositar sediments a la platja i quan es mou cap a fora tendeix a erosionar-se.

Dades a tenir en compte:
- Un ampli estudi sobre els canvis de la costa a nivell mundial fet per la IGU-CCE (International Geographical Union’s Commission on Coastal Environment) entre 1972-1984 va demostrar un predomini global de erosió de platges.
- A les costes sorrenques del món s’ha trobat que durant les últimes dècades:
 - Hi ha erosió en més del 70%
 - Menys del 10% progradan
 - El 20% restant continuen estables
Platja a estudiar: Platja de Badalona, en concret davant del Club Natació Badalona.
3.2 Descripció de la costa catalana:

La costa catalana va des del Cap Falcó, al nord, fins al riu de la Sènia, al sud. La seva orientació general és de nord-est cap a sud-oest i té una longitud total de 580 Km (Gelonch, 1990).

Els tipus de costa catalana i les seves extensions són, de forma aproximada (Gelonch, 1990):
- Penya-segats: 208 Km
- Costa baixa: 52 Km
- Platges: 280 Km
- Ports i obres marítimes: 40 Km

Si es fa una anàlisi segons les tres grans divisions costaneres (Costa Brava, Costa Central o de Barcelona i Costa Daurada), s’observa com la Costa Brava, que s’estén des de Port Bou fins a Roses i des de l’Escala fins a l’Estartit, està caracteritzada per ser un front costaner rocós, abrupte i accidentat. En aquest tram hi predominen les platges 28 encaixades naturalment, amb l’exceptió de la badia de Roses on la costa és del tipus deltaic al·luvial sotmesa a una forta pressió dinàmica del litoral deguda principalment als temporal i a l’acció eòlica (Villares, 1999). Al tram de la Costa Central, que agrupa les comarques del Maresme i el Barcelonès, la costa és poc abrupte i poc retallada i amb una forta pressió sedimentària deguda a les aportacions episòdiques de les torrenteres, donant lloc a platges llargues sense interrupcions. Finalment, el tram de la Costa Daurada es presenta com una costa mixta on podem trobar tant platges llargues, com és el cas de Calafell, Cambrils, Salou, com trams encaixats entre petits penya-segats com és el cas de Roda de Barà, Platja Llarga, Torre de la Mora, i fins i tot ambients deltaics, com és el cas del Delta de l’Ebre, que mostra un ambient molt particular.
4. Diferents tipus de construccions artificials.

4.1 Ports (diferents tipus)

- Ports esportius o de pesca: Aquests tipus de construccions són el gran ‘enemic’ de la dinàmica de la platja. Són grans construccions que interfereixen en la dinàmica de platja d’una forma desmesurada. És en aquest punt on ens centrem per investigar com ha canviat l’amplapa de la platja a partir de la construcció del port.

L’evolució de la dinàmica litoral de tot el Maresme i el Barcelonès està marcat per la construcció de diversos ports que han modificat la morfologia de la línia des del seu estat original. Els ports de la zona han trencat l’equilibri natural de les platges i han fet disminuir de manera parcial o total el transport de sorres que assegurava la conservació del litoral.

Abans de la construcció dels ports del Maresme, la línia de la costa estava formada per una platja contínua en tota la comarca, a excepció d’alguns afloraments rocosos, que rebia els sediments dels rius Besòs i Tordera i de diverses rieres de la zona. Les diferents platges tenien un equilibri que feia que la sorra perduda per un costat es recuperés per l’altre de manera natural.

Un dels ports que més ha fet desaparèixer l’equilibri de les platges és el port de Barcelona, i el seu efecte és més evident ja que es tracta d’una infraestructura construïda fa més temps. La barrera que suposa el port per al transport natural de les sorres fa que s’hagi acumulat al llarg dels anys una gran quantitat de sediments a la part de llevant del port. És tracta de la zona que actualment està ocupada pel barri de la Barceloneta.
En la imatge anterior es pot observar que les dimensions del port són descomunals, tot i està a 9,21 km en alçada.

El port d’Arenys de Mar va ser construït durant els anys trenta i és el port del Maresme que ha suposat un major trencament de la dinàmica litoral natural. Els estudis que s’hi han fet constaten que el port actua com una barrera total per al transport de sediments. Els corrents predominants que arrosseguen sediments en el Maresme tenen direcció NE-SW, és a dir, que durant l’any hi ha moviments de sorra en totes direccions, però el volum net de sorra transportada va en direcció Barcelona. La principal conseqüència d’aquest fet és l’acumulació de sorra a la part de llevant del port d’Arenys de Mar donant lloc a una platja anormalment ampla. Per altra banda, a ponent del port hi ha una pèrdua de sorra que no és reposada de manera natural i això provoca importants problemes d’erosió de sediments i disminució de la platja.

En aquesta foto es pot observar que el port afecta molt la dinàmica de la platja no tan per les seves dimensions com en el cas del port de Barcelona si no perquè trenca totalment amb la línia de platja.
Les platges que queden a ponent d’Arenys de Mar com per exemple les de Caldes d’Estrac i Sant Vicenç de Montalt seguïen transvasant sediments cap a les platges del sud-oest (Llavaneres, Mataró) però no tenien cap aport de sorra de les platges de llevant. En conseqüència, aquestes platges van patir una forta erosió fins a arribar al risc real de desaparèixer i per frenar la pèrdua de sorra, es van construir esculleres longitudinals submergides i espigons perpendiculars a la costa en tot aquest tram.

Els altres quatre ports del Maresme (El Masnou, Premià de Mar, Mataró i el Bals) han donat lloc a uns efectes similars, és a dir, acumulació de sediments a les platges de llevant del port i erosió destacada de les platges de ponent. Tot i això, es tracta de ports construïts fa pocs anys i els resultats de l’alteració de la dinàmica litoral són menors que en els ports de Barcelona o Arenys de Mar.

Es creu que s’està produint una disminució a les platges del barcelonès/maresme a causa de la ràpida pavimentació del litoral català, reduint així l’aportació de sediments a les platges catalanes; a més de la gran construcció de ports per tot el litoral català que interfereixen en la dinàmica de la platja.

En una de les visites que es va realitzar a l’escola del mar de Badalona, ens van informar d’aquest fet; a partir d’aquesta informació, hem volgut profunditzar en aquest tema creant un mapa en el qual es pot veure la massificació de ports al litoral català fins arribar al port de Badalona (recordem que aquest treball està centrat en el port i la platja de Badalona), a més dels diferents rius que aporten sediments a la costa catalana.

A continuació presentem el mapa de Catalunya anteriorment esmentat:

- Relació nombres-Ports:
 1. Port de Roses
 2. Port de la Clota
 3. Port de l’Estartit
 4. Port de LLafranc
5. Port de Marina Palamós
6. Port de Palamós
7. Espigons de Sant Antoni de Calonge
8. Port de Marina d’Aro
9. Port de Sant Feliu de Guíxols
10. Port de Canyelles
11. Port de Blanes
12. Port d’Arenys de Mar
13. Port del Balís
14. Port de Mataró
15. Port de Premià de Mar
16. Port de Masnou
17. Port de Badalona
18. Port Olímpic (Barcelona)
19. Port de Barcelona

Justificació de la influència dels ports:

- Extremadament alt. Hem agafat el port de Barcelona com exemple:

Imagen 11
Explicació: El port de Barcelona té la més gran influència en el litoral català a causa de la seva gran superfície que ocupa, a més de la seva localització i no tant per la seva forma, ja que segueix la línia de costa.
En vermell hem representat el corrent de deriva, les fletxes més primes són els corrents que han variat a causa del port i les més gruixudes el corrent de deriva predominant i no alterat.

- Molt Alt: Hem agafat el port d’Arenys de Mar com exemple:

Explicació: Aquest port és de gran influència en la dinàmica de platges ja que interfereix en el corrent de deriva a la vegada que trenca la línia de costa a causa de la seva forma; també té unes magnituds considerables però no arriba a les del port de Barcelona.
Alt: Hem agafat el port de Masnou com exemple:

Explicació: hem catalogat aquest port amb una influencia alta degut a les seves dimensions semblants a les del port d’Arenys de Mar, però en canvi es pot observar perfectament que el port segueix més la línea de costa i no varia d’una forma tan exagerada el corrent de deriva.
• Moderadament alt: hem agafat el port de Badalona com exemple:

![Port de Badalona](image14)

Explicació: hem considerat que aquest port té una influencia moderada alta, ja que les seves dimensions son considerables, però al ser un port nou, s’ha intentat interferir el menys en la línia de costa. Cosa que s’ha aconseguit amb èxit com es port observar a la fotografia. S’ha construït un port interior afavorint encara més la no interferència amb el corrent de deriva.
- Intermedi: Hem agafat el port de Marina Palamós com exemple:

Explicació: El port de Marina Palamós l’hem classificat com un port que té una influència intermèdia ja que si que modifica el corrent arran de la costa però al cap hi ha la fia si ens hi fixem, encara que no hi hagués el port el corrent de deriva es desviaria cap a la mateixa direcció (fletxa verda).
• Baix: Hem agafat el port de Sant Feliu de Guíxols com exemple:

Explicació: Aquest port tot i tenir unes dimensions notables, en la fotografia es pot observar que el port gairebé no influeix en el corrent de deriva. La flèxa vermella i verda segueixen exactament el mateix recorregut.
Molt baix: Hem agafat el port de Llafranc com exemple:

Explicació: El port de Llafranc, com es pot observar clarament a la foto, és gairebé un port natural, es poden observar embarcacions amarrades fora del port el que indica que es una zona molt tranquil·la, característica important dels ports naturals. El que és el port artificial té una dimensions molt reduïdes, a la vegada el port artificial està construït dintre de la cala produint que el port tingui una influencia nul·la.
Espigó: Un espigó és una estructura lineal (predomina la longitud sobre les altres dimensions) construïda amb blocs de pedres de dimensions considerables, o d’elements prefabricats de formigó, anomenats tetràpodes, quan la pedra és escassa, col·locats dintre de l’aigua, en rius, rierols o pròxims a la costa marítima, amb la intenció de dirigir el flux en quelcom lloc determinat, reduir l’onatge o afavorir la decantació de sorra.

En aquest cas el corrent de deriva és d’esquerra a dreta provocant una acumulació de sorra a sobrevent (la part dreta) i una disminució de sorra a la part de sotavent (la part esquerra)

En aquest cas els espigons s’han col·locat paral·lelament a la platja provocant un "tómbolo" descrit posteriorment a la secció de obstacles naturals.(st. Antoni de Calonge)
4.2 Natural:
Un obstacle natural és aquell que s’ha format per ell sol, sense l’ajuda de l’home. Aquests tipus d’obstacle no són cap perill per la dinàmica de la platja, ja que evolucionen i sempre segueixen el seu curs.
5. Diferents tipus d’agents atmosfèrics de la zona.

Òbviament quan es tracta un tema mediambiental s’ha de tenir forçosament en compte els agents atmosfèrics:

5.1 Baixes pressions – altes pressions:
Com que en el mediterrani no hi ha marees aparentment, el nivell del mar no tindria que variar, però això no és del tot cert, ja que estudis recents demostren que un canvi de pressió atmosfèrica pot modificar el nivell del mar.

La pressió atmosfèrica induix canvis en el nivell del mar ja que l’aire pesa i aquest pes genera canvis invertits a les seves variacions. Quan la pressió augmenta, el nivell del mar disminueix i viceversa. Parlem llavors del mecanisme del baròmetre invertit.

Anem a tractar d’analitzar aquest fenomen de forma simple. Suposem que s’ha arribat a un nivell del mar amb una pressió determinada i on no hi ha corrents d’aire. En aquestes condicions, per a un nivell horitzontal a una profunditat, H, en l’aigua es tindrà:

\[Pa + r \cdot g \cdot H = \text{constant} \]

On \(Pa \) és la pressió atmosfèrica, \(r \) és la densitat de l’aigua, \(g \) és la gravetat i \(H \) la profunditat a la qual ens trobem respecte al nivell del mar de referència. Si ara varia la pressió de l’aire en \(\Delta Pa \) s’obtindrà que el nivell del mar variarà en sentit contrari. Per tant, s’haurà produït una variació en H:

\[\Delta H = \frac{\Delta Pa}{gr} \]

Si posem els valors de \(r = 1026 \text{ kg/m}^3 \) i \(g = 9.8 \text{ m/s}^2 \) en l’expressió anterior, hauríem de \(\Delta H = -0.993(\Delta Pa) \)

On \(\Delta H \) es mesura en cm i \(\Delta Pa \) en hPa. Veiem que, i en termes aproximats, un increment de 1 hPa produeix un decreixement del nivell del mar de l’ordre de 1 cm. Fem alguns comptes conceptuels.

Si el nivell de referència en la costa d’Alacant ho prenem amb 1013 hPa de pressió, quan se situa un anticicló de 1043 sobre aquesta, per exemple al gener, tindrem que la variació de nivell hauria estat, només per aquesta contribució, de l’ordre de -40cm. En una situació on el pas d’una borrascas de 983 hPa sigui seguit per una situació anticiclònica on el baròmetre vaig arribar als 1023 hPa, s’haurà produït una diferència de desnivell del mar que va des dels +0,30cm als -10cm. Tot això sense tenir en compte els efectes generats pel vent, que situacions anticiclòniques és poc significatiu.
5.2 Temporal de llevant:

Temporal característic de Catalunya i el País Valencià, en el qual predominen vents de llevant i pluges preexistentes. Té una durada d’uns quants dies i es presenta, principalment a la tardor i a l’hivern, associat a una àrea de baixes pressions a la mediterrània occidental.

Quan es produeix aquest fenomen atmosfèric la velocitat del corrent de deriva augmenta notablement a causa dels forts vents de llevant. Augment tant que la capacitat de càrrega també augmenta provocant així que el quocient entre capacitat de càrrega i la càrrega real sigui major que 1. Això té com a conseqüència una erosió de la platja i per tant una disminució de l’amplada de la platja.
5.3 **Vents predominants de garbí.**

Durant els mesos de Maig, Juny, Juliol i Agost els vents predominants a la costa catalana en concret a la platja de Badalona són de component Sud.

<table>
<thead>
<tr>
<th>Mes del anyo</th>
<th>ene</th>
<th>feb</th>
<th>mar</th>
<th>abr</th>
<th>Mayo</th>
<th>juny</th>
<th>jul</th>
<th>ago</th>
<th>sep</th>
<th>oct</th>
<th>nov</th>
<th>dic</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominante dir. del viento</td>
<td></td>
</tr>
<tr>
<td>Proposició del viento (\geq 4) Beaufort (%)</td>
<td>6</td>
<td>9</td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>23</td>
<td>34</td>
<td>17</td>
<td>29</td>
<td>11</td>
<td>19</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Promoció velocitat del viento (\text{Km/h})</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Promoció temps del aire (\text{°C})</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>24</td>
<td>14</td>
<td>12</td>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>

Imatge 23

Gran temporal de la platja de Badalona (les onades passaven per sobre el pont del petroli)
Aquests vents de component Sud són formats a causa del contrast térmic de l’aigua freda del mediterrani, durant la primavera i fins els primers mesos d’estiu depenen de l’any, i el calor que despren la ciutat durant aquestes dates mencionades anteriorment. Aquest contrast térmic és degut a que la calor específica de l’aigua és molt més alta i per tant tarda una mica més a escalfar-se, concretament fins el mes d’agost no comença a estar calenta. En canvi, la sorra de la platja i l’asfalt de la ciutat tenen un calor específic molt més baix i per tant s’escalfa molt mes ràpid.

En el cas A. seria el cas mencionat anteriorment mentre que a l’hivern passa justament el contrari i per tant predominant els vents de component Nord (cas B).

Al tractar-se d’un vent térmic estem parlando d’un vent a nivell regional, com a conseqüència de ser un vent a nivell regional podem extreure que aquest vent té molt poc “fetch” i per tant formarà una onada amb el període molt curt per tant d’alta freqüència i de molt poca alçada. Aquest tipus d’ona es caracteritza per poder regenerar les platges àmpliament durant l’anomenat període de bonança.

5.4 Corrents predominants

Un corrent oceànic és una massa d’aigua en moviment respecte a l’aigua que l’envolta; les masses d’aigua tenen diferents salinitats, densitats i temperatures.

Hi ha diversos tipus de corrents oceànics, classificats segons diversos criteris:
- procés de formació (corrents de gradient, corrents térmics)
- distància al fons mari (corrents de superfície, de profunditat mitjana i abissals)
- temperatura mitjana interna:
 - horitzontals: corrents que es mouen en paral·lel a la superfície
 - verticals: corrents que es mouen en perpendicular a la superfície

Els corrents que van de l’equador als pols també aportan aire càlid; com el corrent del Golf. Els corrents que van dels pols a l’equador refreden la zona intertropical.

Aquest tipus de corrents, l’origen dels quals és essencialment termohalí (diferencies de temperatura i salinitat de les masses d’aigua) no s’ha de confondre amb els corrents costaners, que tenen el seu origen principalment en el vent moviment de les onades. Els corrents marins modifiquen el clima de les costes perquè les escalfen o les refreden. Les costes banyades per corrents freds acostumen a ser molt àrides perquè les aigües fredes no s’evaporen i, per tant, l’aire és sec. Les costes que reben corrents càlids acostumen a estar lluries de glaç i les pluges hi solen ser més abundants de manera que les corrents formades pel clima d’una zona del planeta són agents modificadors d’aquests en altres àrees del globus més o menys allunyades. Amb els anys poden fins hi tot arribar a modificar illes o moure continents a través de l’erosió i el transport de sediments (no se sap segur però amb milions d’anys seria una teoria que és veu vàlida).
Les ones, que són ondulacions que es formen quan el vent agita la superfície dels mars i oceans, també participen en els corrents marins, de la mateixa manera que les mareaes, i descensos del nivell de l’aigua del mar provocats bàsicament per l’atracció de la lluna sobre l’aigua dels mars i oceans.

Imagen 25

Les propietats del mar Mediterrani són afectades per la seva situació de mar gairebé interior. Així, les mareaes són lleus com a resultat de l’estreta connexió amb l’oceà Atlàntic. El Mediterrani es caracteritza pel seu to blavenc, i és immediatament reconegut per aquest color particular, especialment en les àrees properes a les illes gregues i croates.

L’evaporació excedeix en gran quantitat a les precipitacions i les afluències dels rius vers al Mediterrani, un factor que és central per a la circulació de l’aigua a la conca. L’evaporació és especialment alta a la meitat est del mar, causant que el nivell de l’aigua descendeixi i la salinitat s’incrementi respecte a l’est. Aquest gradient de concentració manté una baixa salinitat provinent des de l’Atlàntic fins la conca, la qual es fa més lleu i es torna més salada a mesura que viatja cap a l’est i baixa per la regió de Llevant, circulant després cap a l’oest i dirigint-se cap a l’Estret de Gibraltar. D’aquesta manera, el corrent marí flueix des de l’est banyant les costes africanes i després cap a l’oest per la zona nord. Un cop a l’oceà, aquesta “aigua intermèdia” pot persistir milers de quilòmetres allunyada de la seva font.

Les corrents a la Mar Catalano-balear

La principal característica de la circulació marina en aquesta zona és la presència d’un corrent intens que coreja la irregular plataforma, deixant la costa a la dreta, des del Mar de Ligur fins al Mar Català. Aquest corrent és conegut com a corrent del Nord, encara que també s’anomena en ocasions Corrent Liguro-provençal o Corrent Català.

El Corrent del Nord flueix sobre el talús continental del Mediterrani Nord occidental, deixant la costa a la dreta i vorejant una irregular plataforma continental. Aquesta corrent forma part de la circulació general ciclònica del Mediterrani. El Corrent del Nord neix de la unió de es branques est i oest del Corrent de Còrsega, té una amplada de 30 a 50 Km i arriba a profunditats de 300 a 400 metres. Les velocitats màximes de l’ordre de 30-50 cm/s, es donen a ña capa superficial del corrent.
Aigües avall, el Corrent del Nord flueix seguint el talús en direcció SO fins al nord del Canal d’Eivissa al voltant de 39ºN. En aquest punt el corrent es bifurca, de manera que la branca principal continua cap al SO, portant aigües relativament més fredes i salines cap a la Conca Algeriana, mentre que una branca secundària gira en sentit ciclònic i torna cap al NE, formant el Corrent Balear.

5.5 Possible augment del nivell del mar (Breu explicació regle de Brunn).

En aquest punt del treball no he volgut investigar gaire ja que entraríem en un treball completament diferent al que m’havia plantejat inicialment, però si que m’agradaria comentar els aspectes més importants a tenir en compte:

Recents estudis estan intentant demostrar que l’augment de la temperatura mitjana del planeta ja no és una teoria si no que s’està convertint en un fet. Generant així el desgel dels pols i provocant així que tot el desgel que es produeixi en la plataforma continental generi un augment del nivell del mar.

Un ascens del nivell del mar iniciará la erosió de les platges, o l’accelerarà si ja s’esta produint, ja que la immersió profunditzarà les aigües costeres per tant trencaran onades més grans contra la costa.

En 1962, Bruun va proposar un model de resposta de una platja sorrenca al ascens del
nivell del mar, en una situació en la que la platja estava inicialment en equilibri, sense guany ni pèrdua de sorra:

Es produeix una erosió de la part alta de la platja, amb removilització del sediment a la zona submareal de la mateixa de tal manera que es restableix el perfil transversal de la platja.

En efecte, hi hauria una migració de tal manera que la línia de costa retrocediria més enllà dels límits del propi ascens del nivell del mar.

La restauració es veuria completada quan el nivell del mar tornés a estabilitzar-se en aquest nou nivell alt, tornant a un nou perfil d’equilibri.

La extensió d’aquesta recessió ve prevista per la denominada Regla de Brunn que diu:

-La línia de costa es retracta de 50 a 100 vegades a lo que puja el nivell del mar. Es a dir, un ascens de 1 metre provocaria un retrocés de 50 a 100 metres de la línia de costa.

Donat que hi ha un gran número de platges que tenen una amplada de no més de 30 metres de supramareal, implicaria que moltes d’aquestes desapareixerien amb ascensos de 30 cm del nivell del mar, que segons el IPCC s’hi arribarà al 2030.

-En general, a les costes amb energia d’onatge de baix a moderat, la regla de Brunn sobreestima la recessió de les platges, En canvi en costes amb onatge altament energètic la erosió és entre 2 a 4 vegades superior a la prevista per la regle de Brunn.

-En general, la regle de Brunn funciona millor en platges amb pendents moderats. Amb pendents molt alts es sobreestima i amb pendents molt baixos es subestima.

-Una precondició de la regle de Brunn és que les platges subjectes al ascens haurien d’estar en equilibri inicialment. Però com ja hem vist, la majoria de les platges estan en erosió, i solsament una molt petita proporció de platges estan actualment en equilibri.

-La regle de Brunn tampoc te en conte que els canvis en els processos o en els gradients de les taxes dels sediments.
6. Dades obtingudes

La recollida de dades ha estat sens dubte el que ha ocupat més temps. Podríem diferenciar dos tipus de recollides de dades:

Pel que fa a l’apartat “6.1 Amplades de la platja abans i desprès de la construcció del port” ha estat una recollida de dades en les quals s’ha anat visitant diferents organismes relacionats per tal de trobar la informació adequada. Organismes com ara l’Ajuntament de Badalona, concretament el departament de medi ambient de Badalona, el qual ens va facilitar una informació molt bona. També es va visitar l’anomenada Escola del Mar a Badalona on se’ns va orientar de quina manera es podria afrontar millor el treball i de la mateixa manera ens va facilitar informació procedent de la Mancomunitat de Municipis de l’Àrea metropolitana de Municipis.

A l’apartat“6.2 Sondes Obtingudes després de cada fenomen atmosfèric important” es va volgué trobar algun estudi fet anteriorment per poder seguir una pauta de treball però no es va trobar. Així que es va decidir fer l’estudi batimètric lo més científicament possible. Com més endavant es descriure en el corresponent apartat es va utilitzar el material que es creia més adequat per dur a terme la tasca. M’agradaria conscienciar a la gent de la dura tasca que va ser la recollida de dades en moltes ocasions amb condicions atmosfèriques adverses com ara el fred, però sempre amb moltes ganes.

Per altre banda espero que aquestes dades serveixin a persones que vulguin continuar amb aquest estudi ja que en la dinàmica de platja sempre hi ha aspectes a millorar.
6.1 Amplades de la platja abans i després de la construcció del port.

Per a dur a terme aquesta recollida de dades, es va decidir posar-se en contacte amb el departament de medi ambient de Badalona, el qual ens va donar un seguit de dades de l’amplada de totes les diferents seccions de la platja de Badalona abans i després de la construcció del port (any 2002) per així poder observar com ha afectat a curt termini la construcció del port.

Les taules que ens van donar estan organitzades a partir dels carrers. Per poder comprendre on està cada platja a continuació us donem el mapa de platges i carrers.
Mitjanes anuals de l’amplada de les diferents platges que configuren el litoral badaloní

<table>
<thead>
<tr>
<th>Carrers</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecsa</td>
<td>26,81</td>
<td>24,1</td>
<td>22,42</td>
<td>27,42</td>
<td>37</td>
</tr>
<tr>
<td>C. Mar Negre</td>
<td>32</td>
<td>18,42</td>
<td>24,17</td>
<td>27,42</td>
<td>33,5</td>
</tr>
<tr>
<td>Mar Jonica S.</td>
<td>8,7</td>
<td>7,5</td>
<td>2,5</td>
<td>7,5</td>
<td>14,8</td>
</tr>
<tr>
<td>Mar Jonica N.</td>
<td>31,25</td>
<td>19,6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naturista N.</td>
<td>27,25</td>
<td>23,6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(57) sense nom</td>
<td>25,92</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. Cervantes</td>
<td>26,42</td>
<td>30,58</td>
<td>41,25</td>
<td>44,1</td>
<td>67,75</td>
</tr>
<tr>
<td>C. Mar Tirrena</td>
<td>39</td>
<td>34,3</td>
<td>29,08</td>
<td>38,17</td>
<td>53,83</td>
</tr>
<tr>
<td>C. Mar Adriatica</td>
<td>33,83</td>
<td>27,5</td>
<td>25,58</td>
<td>28,7</td>
<td>31,42</td>
</tr>
<tr>
<td>C. Mar Mediterrà</td>
<td>33,08</td>
<td>37,3</td>
<td>36,75</td>
<td>41,3</td>
<td>48,25</td>
</tr>
<tr>
<td>Riera del Canyet</td>
<td>32</td>
<td>33,58</td>
<td>28,08</td>
<td>33,42</td>
<td>38</td>
</tr>
<tr>
<td>C. Del Mar</td>
<td>58,83</td>
<td>55,7</td>
<td>55,83</td>
<td>58,92</td>
<td>60,58</td>
</tr>
<tr>
<td>C. Sant Domenet</td>
<td>43,7</td>
<td>43,42</td>
<td>38,3</td>
<td>38,3</td>
<td>42,2</td>
</tr>
<tr>
<td>C. Torre Badal</td>
<td>42,7</td>
<td>40,5</td>
<td>39,08</td>
<td>33,58</td>
<td>36,5</td>
</tr>
<tr>
<td>C. Marti Julia</td>
<td>44,58</td>
<td>43,25</td>
<td>40,2</td>
<td>35,92</td>
<td>36,7</td>
</tr>
<tr>
<td>Riera Canyado</td>
<td>42,2</td>
<td>40,7</td>
<td>38,25</td>
<td>35,58</td>
<td>34,7</td>
</tr>
</tbody>
</table>

Gràfic 1.

En aquest gràfic es veuen les diferents mitjanes de les amplades de les platges badalonines en l’ interval d’anys del 2001 fins el 2005. Ni en aquest gràfic ni en els posteriors estan reflectides les amplades de les diferents platges del litoral badaloní dels anys 2006 i 2007, ja que les dades que se’ns van facilitar d’aquests dos anys en el departament de medi ambient, i com ja han pogut comprovar, estan incompletes.
En aquest gràfic es pot veure les mitjanes de les amplades de les diferents platges de sobrevent.

En aquest gràfic es pot veure les mitjanes de les amplades de les diferents platges de sotavent.
Gràfic 4
En aquesta gràfica es poden veure les mitjanes de les amplades d’una platja de sotavent tocant al port (C/ Mar Jònica S), una platja de sobrevent tocant al port (C/ Cervantes) i una platja de sobrevent allunyada del port (C/ del Mar).

-Informació extreta a través de la mancomunitat de municipis, area de Barcelona. Fins ara, les dades eren recollides pel departament de medi ambient de l’Ajuntament de Badalona. S’ha volgut contrastar aquesta informació per tal de fer-la més verídica, així que després de molts esforços vam aconseguir trobar un altre font de dades, aquesta vegada des de l’àrea metropolitana de Barcelona

Evolució de la línia de costa 2001-2009

Gràfic 5
Tot aquest conjunts de gràfics s’han realitzat gràcies a les dades aportades pel Departament de medi ambient de Badalona i de la Mancomunitat de Municipis de l’Àrea Metropolitana de Barcelona. Totes aquestes dades seran adjuntades com Annex 1 del treball.

La interpretació de les dades obtingudes es durà a terme al apartat 7 del treball: “Interpretació de les diferents dades obtingudes”.
6.2 Sondes obtingudes després de cada fenomen atmosfèric important.

Tenint en compte l’escenari descrit anteriorment en l’apartat corresponent i els diferents agents atmosfèrics que es donen en aquest escenari, vam decidir prendre un seguit de sondes en els mateixos punts per tal de veure com afectava cada un d’ells.

Es va intentar tractar els agents atmosfèrics cada un per separat però ja se sap que en els estudis de camp hi ha moltes variables que actuen al mateix moment.

A la vegada, cal mencionar que les sondes s’han pres en més d’una ocasió i que les dades reflectides en el treball són les mitjanes corresponents. En cada agent atmosfèric s’especificarà quantes vegades s’han pres les dades i en quines condicions.

S’ha diferenciat tres tipus d’agents atmosfèrics clars a la costa badalonina:

- Temporal de llevant, normalment associat a baixes presions. (s’han tractat les dos variables a la vegada ja que no s’ha pogut diferenciar l’una de l’altra).
- Vents predominants de component Sud, anomenat garbi o Llebeig.
- Altes pressions.

Escenari, i punts exactes d’on s’han pres les sondes:

Image 28
Material amb el que s’ha realitzat l’estudi de camp:

Per tal de situar-se en els punts exactes anomenats anteriorment es va disposar d’un GPS no diferencial amb el que depèn del dia s’obtenia un error de diferents metres, per tant es va optar per un compàs de demores per tal de poder afinar el màxim la posició i prendre sempre les sondes al mateix punt. Les demores es prenien sempre a punts coneguts de la costa els quals han estat immòbils durant tot l’estudi. A partir de dos demores es prenia una posició exacte.

-GPS waterproof GARMIN:

![Image 29]

-Compàs de demores PLASTIMO iris 50:

![Image 30]
Per tal de prendre les diferents sondes al principi es volia optar per una sonda electrònica mòbil la qual es pot adquirir a qualsevol botiga especialitzada de pesca. Finalment però, degut a l’experiència anterior amb els aparells electrònics i la seva precisió es va optar per un mètode més senzill, a simple vista menys precís que amb la sonda electrònica però en realitat molt més exacte.

-Sonda electrònica ECHO FISH 300:

Imatge 31

Com ja s’ha comentat anteriorment finalment es va optar per un altre sistema més senzill però en sondes de poca profunditat molt més exacte i a la vegada molt més econòmic. Es tractava d’un pes lligat amb a un cap al qual es submergia, a continuació es feia un nus característic al cap on posteriorment es mesurava amb un metre.
-Taula de les diferents sondes obtingudes en metres:

<table>
<thead>
<tr>
<th>Punts</th>
<th>Temporal de llevant</th>
<th>Vents predominants component sud</th>
<th>Altres pressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.10 m</td>
<td>0 m</td>
<td>0 m</td>
</tr>
<tr>
<td>A2</td>
<td>1.50 m</td>
<td>0,20 m</td>
<td>0,20 m</td>
</tr>
<tr>
<td>A3</td>
<td>1.10 m</td>
<td>0,50 m</td>
<td>0,60 m</td>
</tr>
<tr>
<td>A4</td>
<td>2.00 m</td>
<td>1,10 m</td>
<td>1,10 m</td>
</tr>
<tr>
<td>B1</td>
<td>0.40 m</td>
<td>0 m</td>
<td>0 m</td>
</tr>
<tr>
<td>B2</td>
<td>0.70 m</td>
<td>0,20 m</td>
<td>0,20 m</td>
</tr>
<tr>
<td>B3</td>
<td>0.70 m</td>
<td>0,40 m</td>
<td>0,50 m</td>
</tr>
<tr>
<td>B4</td>
<td>1.50 m</td>
<td>1,20 m</td>
<td>1,20 m</td>
</tr>
<tr>
<td>C1</td>
<td>0.30 m</td>
<td>0,50 m</td>
<td>0 m</td>
</tr>
<tr>
<td>C2</td>
<td>0.50 m</td>
<td>0,20 m</td>
<td>0,20 m</td>
</tr>
<tr>
<td>C3</td>
<td>0.70 m</td>
<td>0,60 m</td>
<td>0,50 m</td>
</tr>
<tr>
<td>C4</td>
<td>1.20 m</td>
<td>1,40 m</td>
<td>1,30 m</td>
</tr>
</tbody>
</table>

[Imatge 32]

[Gràfic 7]
Recentment, al conegut Pont del Petroli de Badalona s’hi va instal·lar una estació atmosfèrica i una estació oceanogràfica que recull dades contínuament i està a la disposició de tothom a través de la pàgina web www.pontdelpetroli.org. A partir d’aquesta pàgina web i de molta paciència per esperar les condicions meteorològiques ideals es van agafar les dades meteorològiques interessants per cada agent atmosfèric anunciat anteriorment.

Pont del Petroli:
-Estació oceanogràfica instal·lada al pont del petroli:

Tipus d'instrument: Doppler Aquadopp Nortek
Localització: 41º26.410' N - 2º 14.936' E
Variables mesurades: Velocitat i direcció de la corrent a 5m de profunditat, altura d'ona significant, direcció de l'onatge i període pic de l'onatge.
Dades disponibles des de: 2009

-Estació meteorològica instal·lada al Pont del Petriol:

Tipus d'instrument: Estació meteorològica automàtica Campbell
Localització: 41º26.410' N - 2º 14.936' E
Variables mesurades: Velocitat mitja i màxima del vent, direcció del vent, temperatura de l'aire, humitat relativa, pressió atmosfèrica, radiació global, precipitació, temperatura de l'aigua i salinitat
Dades disponibles des de: 2009
6.2.1 Temporal de llevant:

Les sondes descrites durant els temporals de llevant evidentment no van ser preses durant el temporal de llevant ja que com bé es podrà observar a continuació les onades generades durant aquest fenomen poden arribar als dos metres d’alçada, per dues raons; les sondes preses serien completament falses ja que el moviment del onatge no permetria prendre una bona sonda, i evidentment no seria del tot segur entrar a l’aigua amb tot l’equipament. D’altra banda, van ser preses lo més aviat possible després del fenomen meteorològic.

En el cas del “temporal del llevant” es van poder prendre les sondes en un total de 3 vegades i les sondes descrites anteriorment són les mitjanes aritmètiques.

S’ha deciddit mostrar com exemple de temporal de llevant el dia 14/3/2011:

Mapa de pressió atmosfèrica en superfície (Analysis):
Direcció del vent: Clarament marcada als 090º vent de l’Est, Llevant

Direcció del corrent: Com que el corrent es marca cap a on va i no d’on ve, clarament la direcció del corrent superficial és de 270º
Velocitat mitjana del vent: Com a temporal de llevant que és, la velocitat del vent pot arribar fins a uns 14 m/s, uns 25 nusos.

Pressió atmosfèrica: Es pot observar clarament que quan baixa la pressió atmosfèrica és quan puja la intensitat del vent.
Alçada d’ona significant: Es pot observar que al tractar-se d’un temporal de llevant, amb aquest fenomen meteorològic hi ha molt de fetch, cosa que permet generar onades bastant grans.

Direcció de l’onatge: quasi sempre paral·lel a la platja
Període de pic del onatge: Es pot observar que amb grans onades el període acostuma a ser més gran i per tant de freqüència més petita.

Velocitat del corrent superficial: una de les dades més importants per entendre la dinàmica de la platja, i és que quan es produeix un temporal de llevant la velocitat del corrent superficial augmenta considerablement i és per això que s’erosiona molt la platja després d’aquest fenomen.
Tot seguit es va fotografiar el fenomen des de el obstacle artificial, per tal d’entendre millor la dinàmica de la platja durant el desenvolupament del fenomen meteorològic. En la fotografia s’hi ha volgut reflectir els diferents termes:

-Corrent de deriva

-Zona de Sobrevent
 -Punts C1, C2, C3, C4

-Obstacle artificial
 -Punts B1, B2, B3, B4

-Zona de Sotavent
 -Punts A1, A2, A3, A4
A continuació es va fotografiar la zona de sotavent des de sobre el obstacle. Es pot observar que l’erosió va ser tan forta que es va descobrir el col·lector de la cloaca i algunes pedres col·locades per protegir-lo.
Fotografia ampliada:

Tot seguit es va fotografiar la zona de sobrevent, on es pot observar clarament que hi ha una acumulació de sorra molt superior que a la zona de sotavent.
6.2.2 Vents predominants de component Sud (Garbí/Llebeig):

Les sondes preses durant el període en el que predominaven vents de Garbí s’han pres mentre es produïa aquest fenomen ja que l’onatge produït per aquest fenomen no és gaire destacable i es podien prendre unes bones sondes. En el cas del fenomen meteorològic “Vents predominants de component Sud” es van poder prendre sondes fins a un total de 5 vegades ja que és un fenomen bastant comú al nostre litoral. Les sondes mostrades anteriorment són les mitjanes aritmètiques d’aquestes.

Es va decidir prendre com exemple el dia 10/3/2011

Mapa de pressió atmosfèrica en superfície (Analysis):

![Mapa de pressió atmosfèrica en superfície](image41)
Velocitat mitjana del vent: Com es pot observar en el gràfic el màxim de la intensitat del vent es produeix al migdia que és quan hi ha més contrast tèrmic. La majoria de vegades passa que augmenta molt ràpid i el descens és més progressiu.

Pressió Atmosfèrica: Es pot observar que quan puja la intensitat del vent cau la pressió en picat a causa de la diferencia de temperatura entre la mar i el terra calent i es produeix la cèl·lula convectiva explicada anteriorment en l’apartat corresponent.
Direcció del vent: Es pot observar en el gràfic que la direcció del vent és més aviat dispersa excepte en el moment en què puja la intensitat, que queda una direcció clarament marcada de component sud.

Gràfic 18

Direcció del corrent superficial: com es pot observar en el gràfic la direcció del corrent és de 090º durant tot el dia ja que el corrent es marca en la direcció on va i no d'on ve.

Gràfic 19
Alçada d’ona significant: Es pot observar en el gràfic que es venia d’un dia amb una mica d’ona atge, però que al llarg del dia ha anat disminuint a causa del vent amb poc fetch de component Sud.

Gràfic 20

Direcció d’ona: Com és habitual, donat per l’orientació del litoral, l’ona atge prové del 180°.

Gràfic 21
Període de pic del onatge: es pot observar que a causa del poc fetch característic per als vents del component sud l’alçada de la ona es petita i per tant el període també ho és, augmentant la freqüència.

Gràfic 22

Velocitat del corrent superficial: tal i com mostra el gràfic en el moment en que augmenta la intensitat del vent i a causa de la interacció entre el vent i la mar, es produeix un màxim de velocitat en el corrent justament quan hi ha més intensitat de vent.

Gràfic 23
Tot seguit es va fotografiar el fenomen desde el obstacle artificial, per tal d’entendre millor la dinàmica de la platja durant el desenvolupament del fenomen meteorològic.

Tal i com es podrà observar en les següents fotografies el que anteriorment havia estat el costat de sobrevent serà el costat de sotavent i a l’inrevés a causa de que el vent prové completament de direccions oposades.

Primer es va fotografiar el costat de sobrevent i es pot observar l’evident acumulació de sorra en aquesta banda de l’obstacle artificial, on abans estava completament erosionat al estar al costat de sotavent. Es pot observar que anteriorment l’erosió havia estat tan significativa fins el punt de que havia quedat al descobert la tubera de formigó que queda paral·lела a la línia de platja.
A continuació es mostra un parell de fotografies del costat de sotavent on abans durant el “Temporal de llevant” havia estat el costat de sobrevent. Es pot observar que on abans hi havia una gran acumulació de sorra ara hi ha una evident erosió.
6.2.3 Altes pressions:

Les sondes preses durant el període en el que predominaven les altes pressions s’han pres mentre es produïa aquest fenomen ja que l’onatge produït per aquest fenomen és gairebé cero i es podien prendre unes bones sondes.

En el cas del fenomen meteorològic “Altes pressions” es van poder prendre sondes fins a un total de 4 vegades. Les sondes mostrades anteriorment són les mitjanes aritmètiques d’aquestes.

Es va decidir prendre com exemple el dia 14/03/2012

Mapa de pressió atmosfèrica en superfície (Analysis):
Velocitat mitjana del vent: tal i com mostra el gràfic la velocitat mitjana del vent és molt baixa i sense cap patró determinat.

Direcció del vent: Al no haver-hi una intensitat de vent notable, el vent no s’estableix en una direcció determinada i com es pot observar en el gràfic, durant el dia, el vent prové de totes les direccions possibles.
Alçada d’ona significant: A causa de la poca intensitat del vent i de la gran pressió que es produeix durant el dia l’alçada de la ona es gairebé cero.

Període de pic de l’onatge: A causa de la poca alçada de l’onatge el període és molt baix i només es veu alterat es suposa per el pas d’alguna embarcació que podria alterar el sensor.
Pressió atmosfèrica: com es pot observar al gràfic, durant tot el dia la pressió atmosfèrica es notablement alta. Especialment durant el dia, arribant al límit d’aquesta justament al migdia solar del dia on es produïa el fenomen meteorològic.
Tot seguit es va fotografiar el fenomen des de el obstacle artificial, per tal d’entendre millor la dinàmica de la platja durant el desenvolupament del fenomen meteorològic.

Com es podrà observar a les següent fotografies, al no haver-hi vent, en aquest cap no hi ha ni costat de sobrevent ni costat de sotavent. A més, també es podrà observar com a causa de les altes pressions atmosfèriques el nivell del mar baixa considerablement
En aquesta fotografia presa des de la vora de l’aigua es pot observar més clarament els fets destacats anteriorment:
-No es pot diferenciar el costat de sobrevent del costat de sotavent a causa de la falta d’un vent predominant.
-A causa de les altes pressions la mar es veu pressionada i per tant baixa el nivell del mar notablement causant així l’efecte que l’amplada de la platja a augmentat considerablement.

Fotografia presa uns dies després del fenomen “Altes pressions”, on es pot observar que el nivell del mar torna a puja però continua sense haver-hi costat de sobrevent/sotavent.
7. Interpretació de les diferents dades obtingudes.
En aquest apartat s’intentarà interpretar les dades obtingudes durant aquest any d’investigació de la platja de Badalona

7.1 Interpretació de les dades 6.1 “Amplades de la platja abans i després del port”
A través de les dades obtingudes es pot deduir que al haver un obstacle que trenqui la dinàmica de platges, té com a conseqüència una disminució de la velocitat del corrent de deriva que, conseqüentment, produeix una disminució de la capacitat de carrega del mateix, produint una precipitació dels sediments a sobrevent; aquest mateix fet provoca que la carrega real disminueixi fen que el quocient entre carrega real i la capacitat de carrega sigui menor que 1, produint una gran capacitat erosiva a la part de sotavent. Per tant, des de la construcció del port (2002), s’hauria d’observar un augment de l’amplada a la part de sobrevent i una disminució a la part de sotavent.

Per explica aquest fenomen tindrem que recuperar una sèrie de formules que he esmentat anteriorment en l’apartat “marc teòric”.

\[
CC = K \cdot V \quad \text{(la capacitat de carrega és igual una constant per la velocitat)}
\]

S’entén per carrega real el nombre de sediments que transporta en aquell moment un fluid.
A partir d’aquestes dues definicions es produeix aquesta equació.

\[
\begin{align*}
CC & \geq 1 & \text{En el cas de que el resultat sigui major que 1 es produirà l’erosió} \\
CC & < 1 & \text{En el cas de que el resultat sigui menor que 1 predominarà la sedimentació}
\end{align*}
\]
A partir de les formules hem deduït el següent:

-A la situació 1: La velocitat baixa considerablement, això té com a conseqüència que la capacitat de carrega es veu reduïda dràsticament. En canvi, la carrega real és la mateixa. Per tant, el quocient serà major que 1 i això produirà una sedimentació massiva augmentant l’amplada de la platja a la zona de sobrevent.

-A la situació 2: La carrega real ha disminuït considerablement ja que els sediments han sedimentat a sobrevent, a més la velocitat ha augmentat de nou, augmentant també la capacitat de carrega. Això produeix que el quocient sigui menor que 1, produint una erosió molt notable.

-Anàlisi de les gràfiques:
Com podem en les gràfiques 1, 2, 3 i 4 a la part de sobrevent hi ha un augment de sedimentació, el que confirma una part de l’explicació feta anteriorment, però per contra, a la part de sotavent també s’ha observat un augment de sedimentació, el que ens indica que part de l’explicació pot ser errònia però hi ha altres factors a tenir en compte:

-La part de sotavent del port de Badalona obté sediments procedents de la desembocadura del riu Besòs.

-És tracta d’un port que no trenca gairebé la línia de costa, per tant la sedimentació a sobrevent i la capacitat d’erosió a sotavent són menors.

-És podria donar el cas de que com les dades només són fins el 2005 la dinàmica de la platja encara no s’hagués establert del tot.

-Per últim es podria donar el cas de que les dades fossin errònies.

En la gràfica 2 es pot observar que les platges de sobrevent més pròximes al port són les que tenen un augment més gran de sediments, per tant un augment de l’amplada de la platja més gran.

En la gràfica 3 es pot observar les platges de sotavent que tenen un petit augment de sediments per, possiblement, els factors anomenats anteriorment; a part podem veure tres platges (sense nom(57), C/Naturista N. i C/Mar Jònica N.) eliminades a causa de la construcció del port en la seva situació.

En la gràfica 4 podem diferenciar més clarament l’influencia del port en les platges; per aconseguir mostra l’influencia hem fet la gràfica en una platja de sotavent pròxima al port, una de sobrevent pròxima al port i una de sobrevent allunyada del port.
Es pot observar que la platja pròxima al port de sobrevent té un increment de l’amplada de la platja superior a les altres dues platges a causa de la seva situació.

En el gràfic 5 dona una informació molt interessant. Aquest gràfic acaba per confirmar el fet anomenat anteriorment pel que fa a la banda de sobrevent del port a través de les gràfiques 1,2,3,4. Amb la particularitat de que passat la riera Canyadó, més cap a sobrevent, s’observa una disminució de l’amplada de la platja. Això podria ser degut:

- Aquestes platges es troben molt allunyades del port i per tant ja no es troben sota la seva influència i la tendència general del conjunt de les platges del Barcelonès, Maresme és d’anar disminuint a causa de la poca arribada de sediments per causa de la pavimentació del litoral català i de les seves rieres, més la massificació de ports a sobrevent d’aquestes platges assenyalades en l’apart 4.1 del treball.

El gràfic 5 confirma que la part de sotavent del port, tal i com es preveia en l’explicació anterior, esta perdent amplada.

El gràfic 6 ens aporta una informació bastant dubtosa la qual s’intentarà analitzar. Primerament destacà que aquesta gràfica és només d’un any i que per tant el comportament de la platja en un any no marca la seva dinàmica ja que en el moment en que es van prendre les dades poder estava succeint un fenomen meteorològic dels descrits anteriorment on s’ha pogut observar que modificant àmpliament i momentàniament l’amplada de la platja. Deixen de banda aquest fet, podem analitzar:

- La platja just a sobrevent del port guanya uns pocs metres d’amplada. La següent platja però, per causes desconegudes, disminueix uns 10 metres la seva amplada. La resta de platges a sobrevent del port es comporten de la mateixa forma en que s’ha descrit a la gràfica 5. També es pot observar que a les platges a sobrevent de la riera Canyadó continuen amb la tendència de disminuir la seva amplada probablement pels fets descrits anteriorment.

- La platja just a sotavent del port perd uns pocs metres d’amplada tal i com s’esperava. Per altre banda les platges de més a sotavent guanyen considerablement amplada confirmand el que s’havia descrit anteriorment a l’explicació de les gràfiques 1,2,3,4 sobre aquesta zona.
7.2 Interpretació de les dades 6.2 “Sondes obtingudes després de cada fenomen meteorològic important”.

Per tal de poder interpretar les dades obtingudes correctament, analitzarem cada un dels fenòmens meteorològics anomenats anteriorment per separat.

-Interpretació de les sondes obtingudes durant el “Temporal de Llevant”.
Primer de tot es recorda que les sondes obtingudes no es van poder prendre durant el mateix temporal de Llevant ja que les condicions de la Mar no ho permetien.
El que es pot observar en el gràfic 6 és que totes les sondes preses durant el temporal de Llevant són molt més profundes que ens els altres fenòmens meteorològics. Degut a que com es pot observar en el gràfic 14 “velocitat del corrent superficial” els valors són notablement alts, arribant a puntes de 26 cm/s. Al produir-se aquest fort corrent superficial sumat al corrent de deriva la Mar és capaç d’absorbir molts més sediments i per tant augmenta la seva capacitat d’erosionar considerablement.
Un factor a tenir en compte seria que per la orientació de la platja el temporal de Llevant impacta de forma obliqua a la platja de manera que augmenta la seva capacitat d’erosió.
Un altre factor a tenir en compte és el de la gràfica 11 (alçada d’ona significant” on es pot observar que l’alçada de la ona augmenta notablement produint una major erosió de la platja.
Per altre banda, els sensors atmosfèrics de l’estació meteorològica detectant una forta baixada de la pressió el que provoca, segons s’ha pogut veure anteriorment, un augment de nivell del mar, el que provoca segons la regla de Brunn una major erosió de la platja.

Si observem per separat la zona de sobrevent de la zona de sotavent prenen com a referència el objecte artificial assenyalat anteriorment es pot deduir:
A la zona de sotavent l’erosió de la platja encara és més acusada que a la zona de sobrevent degut a que en la zona de sobrevent la velocitat del corrent disminueix i per tant els sediments es precipitan al fons. Al precipitar-se els sediments a la zona de sobrevent l’aigua queda lliure de sediments i per tant pot tornar a absorbir-los aquesta vegada en la zona de sotavent.

Es pot observar que en la zona de sotavent la sonda presa a 5 metres de la platja és superior que la sonda presa a 10 metres de la línia de costa. Aquest fet es produeix ja que durant períodes de gran activitat d’onatge, la platja crea un mecanisme d’autodifensa que consisteix en diferents bancs de sorra que fan trencar les onades mes lluny de la platja fent així que arribin amb menys força a la platja i així erosionin menys sorra. Aquests bancs de sorra mai es presenten de la mateixa manera ja que depenen de molts factors com ara la corrent i les alçades de les ones.
A la zona de sobrevent de l’obstacle artificial es pot observar com les sondes van augmentant progressivament ja que molt probablement el banc de sorra es produeixi a més distància de la línia de costa.
Les fotografies han estat analitzades al costat d’elles mateixes per tal de mostrar-ho d’una forma més gràfica.
Interpretació de les sondes preses durant el fenomen “Vents predominants de component Sud (Garbi/Llebeig):

El que es pot observar en el gràfic 6 és que la totalitat de les sondes són de menys profunditat degut a que la direcció del vent i per tant la direcció del corrent afavoreix la regeneració de la platja com es pot observar en el gràfic 19.

La regeneració de la platja es veu tan afavorida que fins i tot la sonda primera sonda presa a la zona de sobrevent té un valor de cero tal i com es pot observar en la Imatge 42. Posteriorment les sondes van augmentant progressivament a la zona de sobrevent ja que el banc de sorra es troba enganxat a la platja ja que aquesta es troba en una perióde de bonança i no desenvolupa el mecanisme d’autoprotecció.

De totes formes a la zona de sotavent, tot i que les sondes són menys profundes que durant el temporal de Llevant, s’hi pot observar a la imatge 43,44 com s’hi ha produït una llengua de sorra en forma de banc de sorra. Produït pel fenomen anomenat anteriorment; la corrent en topar amb l’obstacle artificial disminueix la velocitat i per tant els sediments precipitant formant la llengua de sorra. A continuació el corrent es lliure de sediments i pot erosionar altre vegada la platja, en aquest cas amb menys magnitud que en el temporal de llevant degut als valors més baixos de velocitat de corrent.

Durant aquest fenomen és necessari comentar les dades obtingudes per l’estació meteorològica del pont del petroli ja que són molt interessants. Primer de tot comentar que perquè es produeix el vent de component sud ha d’haver-hi una situació d’estabilitat atmosfèrica com es pot observar a la imatge 41. Aquesta estabilitat atmosfèrica sumada a un dia amb presència del sol afavoreix el contrast tèrmic entre la Mar (baixa temperatura) i la platja (alta temperatura). Aquest contrast tèrmic produeix la cèl·lula convectiva explicada en el apartat corresponent del treball. Aquest cèl·lula convectiva es produeix durant el mig dia degut a que durant el mig dia es produeix una major incidència dels raigs del sol. Tal i com es pot observar en el gràfic 15 la velocitat mitjana del vent augmenta durant el migdia.

La direcció del vent es deguda a que durant el migdia el sol esta situat al Sud i per tant on hi ha una major incidència del Sol. Acostuma a passar, que durant el matí els vents són predominants de Llevant, bastant lleus, a mesura que avança el dia el vent va rollant amb el sol, així que al migdia el vent bufà de component sud i a mesura que va avançant el dia el sol va avançant cap a l’Oest emportant-se amb ell el vent que acaba rollant de ponent.

Un gràfic a destacar és el 16. Es pot observar que al llarg del dia va augmentant la pressió fins que comença ha augmentar el vent i és quan la pressió disminueix en picat. De la mateixa manera es pot observar que quan torna a baixar el vent la pressió torna a augmentar fins que el Sol d’eixa d’actuar. Aquest gràfic ens mostra clarament com actua la cèl·lula convectiva; durant la gran activitat solar al migdia l’aire s’esclalfa i puja, disminuint la pressió on es troba l’estació meteorològica. Aquest ascens d’aire crea un “buit” d’aire que és ocupat ràpidament per una altre massa d’aire creant un moviment: el vent.
-Interpretació de Sondes preses durant el fenomen “Altes pressions”.

Per començar a interpretar les sondes preses durant aquest fenomen és imprescindible observar primer de tot el mapa de pressió en superfície analítica. En el mapa es pot observar un gran anticicló sobre Europa. En el centre del anticicló es pot arribar a una pressió de fins a 1035 hpa. Aquest gran anticicló situat sobre el continent europeu actua com a barrera i desplaça totes les depressions lluny del continent. Aquest fet és important ja que ens mostra que durant un període notable de temps s’ha tingut bonança. Al tenir poca activitat d’ones al litoral badaloní la platja ha anat esdevenint una platja completament diferent a la que es trobava durant el temporal de Llevant.

Com es pot observar en el gràfic 6 no es pot diferenciar pràcticament entre el sobrevent del sotavent, ja que es recorda que en un obstacle artificial es diferencia el sobrevent del sotavent quan tenim un vent establert. En canvi, com es pot observar en el gràfic 25 no hi ha un vent establert, en el gràfic 24 es pot observar com la intensitat del vent es gairebé inapreciable, causant a la vegada un alçada de l’onatge pràcticament inexistente com es pot observar en el gràfic 26.

Durant aquest fenomen els sensor que enregistraven la direcció del corrent i la seva intensitat no funcionaven a causa d’una averia. Però, el que s’ha pogut observar en altres ocasions de caràcter semblant és que hi ha una tendència de corrent de llevant cap a ponent a causa del corrent de deriva comentat anteriorment en el apartat corresponent del treball.

Una gràfica ha destacar durant aquest fenomen seria la gràfica 28 on es pot observar que la pressió atmosfèrica es manté en tot moment per sobre dels 1024 hpa. S’observa que durant el dia els valors de la pressió són més alts que durant la nit. Aquestes pressions tant altes pressionen la superfície del mar baixant el seu nivell en la manera que s’ha explicat anteriorment en l’apartat corresponent del treball. Per aquesta raó les sondes que es prenen en aquest fenomen són les més baixes dels 3 fenòmens descrits en aquest treball. Al baixar el nivell del mar i conjuntament amb la regla de Brunn es pot explicar també el gran augment de l’amplada de la platja tal i com es mostra a les imatges 46,47.

Cal comentar que aquesta amplada de la platja va ser momentània, ja que al cap de uns dies i sense que es produís cap fenomen pertorbador de la línia de costa, com ara un temporal de llevant, simplement amb el retorn de la pressió atmosfèrica a uns valors normals (1013 hpa) s’observa a les imatges 48, 49 com augmenta el nivell del mar però sense esdevenir un costat de sobrevent definit ja que continua sense haver-hi un vent predominant.
8. Conclusions finals

Durant el plantejament del projecta de final de carrera tenia la idea clara del tipus de treball que volia portar a terme, però la dificultat més gran va ser posar-li límits: A mesura que anava recollint dades, visitant entitats, consultant llibres, pàgines webs; anaven sorgint nous apartat els quals podria haver-los inclòs al projecta, ja que en la dinàmica de la platja intervenien in numerables factors els quals la modifiquen i la fan complicada hi ha la vegada fascinant, és per això que es va decidir marcar uns marges ben definits.

Primer de tot es va decidir observar, investigar i a la vegada descriure la possible degradació del conjunt de les platges del Maresme, Barcelonès. En aquest punt s’ha observat quin és el corrent de deriva predominant a la costa catalana i d’on provenen els sediments d’aquestes platges. S’ha observat que la pavimentació de les rieres i bores dels rius han fet minvar l’aportament dels sediments a les platges. A la vegada, s’ha observat la massificació dels ports a la costa catalana frenant així l’aportació dels sediments des de el Nord de Catalunya cap al Sud acumulant així una gran quantitat de sediments a la banda de sobrevent dels ports i erosionant amb contundència a la zona de sotavent dels ports fins al punt de la desaparició d’alguna platja. Es va decidir estudiar com afectava la construcció d’un port, a les platges properes a ell, ja que es disposava d’unes dades de les amplades de les platges de sobrevent i de sotavent del port de Badalona, abans i després de la construcció d’aquest. S’ha pogut observar com a la banda de sobrevent del port hi ha hagut una acumulació de sediments a les platges properes al port, m’entres que a la banda de sotavent del port hi ha hagut un disminució de les platges més properes, comentar que les que eren una mica més llunyanes augmentaven lleugerament, es creu que degut a la proximitat del riu Besòs.

Degut al continuo contacte amb la platja de Badalona durant molts anys he pogut observar que la platja està en continuo moviment i realment sembla que es comporti com un organisme viu que té unes respostes depenent en la situació en que es trobi. Per aquesta raó, es va decidir fer un anàlisis del que succeïa a la platja de Badalona, en concret davant del CN Badalona a partir d’unes batimetries realitzades després d’un fenomen atmosfèric destacat, com ara després d’un temporal de llevant, després d’un període de predominança de vents de component sud o finalment després d’un període d’altres pressions. Per tal de poder treure el màxim suc a les sondes preses durant aquests períodes es va decidir prendre-les a sobrevent/sotavent de l’obstacle artificial anomena’t durant el projecta.

En general, s’ha pogut observar que durant els temporals de llevat la platja tendeix a erosionar-se degut a les onades generades pel fet de tenir més fetch, el grau d’incisió de les onades, el fet que normalment vagi acompanyat de baixes pressions. S’ha pogut observar clarament com aquesta erosió era clarament superior a la banda de sotavent de l’obstacle artificial.

Durant la predominança de vents de component Sud s’ha pogut observar com en general la platja prograda degut a que les ones són d’una freqüència superior i, d’una alçada menor, el grau d’incisió d’aquestes a la platja i una vegada més com a la banda de sobrevent de l’obstacle artificial la progradació de la platja era superior que a la banda de sotavent.
Durant la predominança d’altes pressions s’ha pogut observar com aparentment la platja en general guanyar molta amplada però en realitat s’ha pogut concloure que realment era ja que durant períodes d’altes pressions el nivell del mar baixa considerablement augmentant així l’amplada d’aquesta. Després s’ha pogut observar que al retornar la pressió atmosfèrica a valors més normals, la platja retornar als valors d’amplada normal. Durant aquest fenomen no s’ha observat diferenciar entre un costat i l’altre de l’obstacle artificial, ja que no hi havia un vent establert i per tant no hi havia sobrevent/sotavent.

Com a conclusió final, es pot dir que intentar estudiar el comportament de la dinàmica d’una platja, és una tasca molt important ja que com s’ha dit anteriorment hi ha moltes variables que actuant a la vegada i és molt difícil intentar trobar situacions en les que es permeti estudiar cada una de elles per separa’t. Crec que ha estat un projecta de final de carrera en el que hi ha hagut molt treball de camp i ha estat bastant complicat intentar associar totes les idees, dubtes, solucions per tal d’haver realitzat un projecta amb coherència i cohesió.
Bibliografia

-Ciencias de la tierra Ed. Salvat

-Area metropolitana de Barcelona, Mancomunitat de Municipis

-Fotografies pròpies

Pàgines Web Consultades:

www.pontdelpetroli.org

www.maps.google.cat

www.google.es/imghp?hl=es&tab=wi

www.wikipedia.es

www.puertos.es/es/oceanografia_y_meteorologia/banco_de_datos.html/

www.windguru.com

www.windfinder.com

www.metoffice.gov.uk/