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Abstract

In this M. Sc. Thesis, vaeal with the problenof Human Gesture Recognition using
Human Behavior Analysis technologiek particular, we apply the proposed
methodologiesin both health care and social applications. In these contexts, gestures
are usuallyperformed in a natural way, producing a high variability between the Human
Poses that belong to them. This fact makes Human Gesture Recognition a very
challenging task, as well as their generalizatmmdeveloping technologief®or Human
Behavior Analysis. In order to tackle with tt@mplete frameworkkor Human Gesture
Recognition, we split the process in three main goals: Computing-mmudial feature
spaces, probabilistic modelling of gestures, and clustering of Human Posesbfor S
Gesture representation. Each of these goals implicitly includes different challenging
problems, which are interconnected afated by three presented approaches: #ég
Visuatand-DepthWords, Probabilisti@ased Dynamic Time Warping, and -&ésture
Representation. The methodologies of each of these approaches are explained in detail
in the next sectiondNe have validated the presented approaches on different public and
designed data sets, showimggh performancend the viability of using our methodsr

real Human Behavior Analysis systearsl applicationsFinally, we show a summary of
different related applications currently in development, as well as both conclusions and
future trends ofresearch
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1. Introduction

Nowadays Human Behavior Analysis (HBA) is a widely considered technology in both health and
social applications. As an example, it can be useful for supported diagnosis of mental diseases
(e.g. Attention Deficit and Hyperactivity Disorder, which affedieua 10% of children and
adolescents of the world population), or for the tracking, control, and analysis of gestures on
eldelly people in order to improve their autonomy (e.g. people with physical incapacities or

dementia).

Human Gesture Recognition (RE5is one of the main challenging areas of Computer Vision and
the main core of HBA. Current methodologies have shown robust preliminary results on very
simple scenarios. However, these results are still far from human capabilities. On the other
hand, the large number of potential applications behind HGR in fields like surveillance
[Hampapur et al., 2009yanov et al., 1999; Brown et al., 2005; Howe and Dawson, ;1 S9§)
Language Recognition [Fang et al., 2007; Yang et al.,, 2009; Athitsos, 2010],ioad clin
applications[Pentland, 2005; Wren et al., 199@mong others, is pushing many scientists to
devote their efforts in this field of research. The main basis of HBA and HGR comes from
psychological analyses, which define thehavioralpatterns that a abject presents [Winsor et

al., 1997].

Going into more detail, deteittg Human Poses (HP) is a main step in the study of HGR.
However, HP detection is a challenging task because of the huge intedimtiafeature
variability in both still images and age sequences. From the point of view of data acquisition,
many methodologies treat images captured by visiigat cameras. Computer Vision is then
used to detect, describe, and learn visual features. The problem of limb detection and pose
recovery becoras even more difficult because of the difficulties of uncontrolled environments:

illumination changes, different points of view, or occlusions, just to mention a few.



1.1. Thesis goals

Using Computer Vision feature extraction and Machine Learning apprsauiregoal in thid.
Sc. Tesis is to improve current statef-the-art strategies for HGR in the field of HBA. In

particular, we define the following goals which are addressed in next sections:

1. Use of depth maps for Computer Vision feature extraction itoprove the
discriminability power of multmodal descriptors.

2. Probabilistic modelling of temporal multhodal descriptors for improved recognition of
human actions/gestures.

3. Apply the proposed methodology in real and challenging applications.

Given theprevious goals, our main objective is to recognize a large number of gestures. The
developed system that addresses these goals is composed by the modules shown in Figure 1: a)
compute the multimodal featurespaces from a large set of videos involving salvgestures, b)
probabilistic modelling of gestures using the described sequences in a dynamic programming

framework and c) analyzing the effect BiPclustering for gesture recognition

Keypoint Keypoint BoVDW BoVDW
detection description histogram classification

BoVDW Model

Reference Gesture

‘Begin-End Detection Spatio-Temporal
DTW Alignmen pyramids Ges_tt.nre
Recognition
Human body Pose Clustering of Sub-Gesture
detection HP space units

Two-Level GMM Clustering

Figurel: Pipeline of the full framewok. BoVDW model at the top (blue), Probabilistic DTW at the middle (green),
and clustering ofHPs at the bottom (degraded blue and green).

1.1.1. Computing multtmodal feature paces

First, data is acquired from different sensors that capture the information of people performing
a large amount of gestures. This information is stored as rmdtial RGHE (Red, Blue, Green,

plus Depth) data along the time, and it is obtained by the Micl¥ i YAy SOiun RS@PAOS



Figure 2. Then, the post process consists of creating a feature space from thewteie
different stateof-the-art multi-modal features areextracied and new ones are proposed
combining them using a fusion strategy. The pomed feature space ithen codified in aBag
of-Visuatand-Depth-Words (BoVDW)Moreover, we compare the HGR performance obtained

with our BoVDW descriptor respect to other common used descriptors.

Figure2: Microsoft Kinectmulti-modal sensor device.

1.1.2. Probabilistic modelling of gstures

This module consists aftegratingthe presented BoVDW approach in a fidiytomatic system
for HGR, which uses rovel ProbabilisticBased Dynamic Time Warping (DTW) for the prior
segmentaion of gestures in a sequenc&/e compare he usual DTW algorithm with our
Probability-Based DTW approach usirgg new proposed distancemeasure, showing both

overlapping and accuracy as teealuation measurement®r the HGR.

1.1.3. Clustering HPs faBubGesture representation

On the other hand, we apply existing methods from the siaift¢he-art for constructing a new
feature space of HPs through the structural model of human body joints from d&p#n,we
propose a linear combination of means usiagtwo-level Gaussian Mixture Model (GMM)
process to perform clustering the HPs space. This second technigue allows obtaining both more
intuitive modelling of features and the first S@esture units, following our proposal in [Ponce

et al., 2011a]. Thes&ubGesture units are coherent HP sets which can be useful to train

posterior general purpose HBA systems.



Table 1 summarizhe nomenclature useth the rest of the work.

Table 1: Nomenclature Table

Variable or Constant Description
v Cardinality of the visual voesbulary representing the visual words selected.
7 Second-moment 3x3 matrix of first order spatial and temporal derivatives.
|- Determinant.
Ar A Ag Regions in the image with significant eigen-values.
H Determinant and the trace of p.
R Relative importance constant factaor.
Tei-) Trace computation.
Srep Set of interest points for RGE data.
Sp Set of interest points for Depth data.
P Number of points in & cloud.
r Mumber of stable regions found in & cloud of points.
it fplt Wormal of the i-th point a0,
T Harizontal vector of the camera plane.
] Vertical vector of the camers plane.
= Vertor between the centroid of the cloud and the camers center.
Py r,y plane, orthogonal to the viewing axis =.
@ Angle between the normal n'®! and the viewing axis.
T Frequencies of the projected angle.
h Histogram that counts the occurrences of each word.
u,v,p Dimensions of the volume.
b, b, b Bins along the w, v, and p dimensions of the volume.
pitGE Histopram corresponding to the vocabulariy for the RGB-based deseriptor.
RO Histogram corresponding to the vocabulariy for the Depth-based descriptor.
F Value of the RGB or Depth histogram model.
daF Distance of the complementary histogram intersection.
dHG B Distance of RGE histogram.
dP Distance of Depth histogram.
dhase Weighted sum of distances between histograms.
g Constant relative important factor.
o Long time-serie.
C Short time serie.
a Vector element of time-serie ).
o Veetor element of time-serie O




Variable or Constant

Description

5 Vector element of time-serie ().
o Vector element of time-serie O,
T Length of time-serie Q).
m Length of time-serie C.
M Alignment matrix with the costs between o; and q; at each (i, j) position.
£ Certain time In & sequence.
i Feature vector of the image.
T Length of the warping path.
W Cost matroc with the Warping path.
W Contiguous matrx elements that defines a mapping between O and ¢}
d Euclidean distance between the feature vectors of the sequences ¢, and g;.
N Number of training sequences.
5, Sequences for a certain gesture category.
L, Length in frames of sequence 5,.
3}_1 Frames of sequence 5.
5 Median length sequence.
4 Warped sequences.
;J‘ Frames of warped sequence.
i Component Gaussian Mocture Model.
e Mixing value.
o T I Parameters of each Gaussian Model in the mixture.
g Parameterization of the Gaussian Mixture Model.
Al Means of a G-Component Ganssian Mixture Model .
ke Current component Gaussian Mixture Model, or number of clusters.
ol Probability distribution function.
Pt A) Posterior probability of t belonging to the whole Gaussian Mixture Model.
D Soft-distance based measure of the probability.
Iy Cummulative cost matrix distance.
HFP Feature vector defining the human pose.
hp Element in the feature vector HP.
K Number of components of the Gaussian Mpxcture Model.
= [Mscrete Alphabet defining a gesture vocabulary.
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The rest of the Thesis @rganized as follows: Section 2 reviews state¢he-art in the fields
related to the proposal of the Thesis. Section 3 presents the-oBafsualDepth-Words
approach for multmodal feature extraction and spati@mporal representation of people in
video sequences. Section 4 describes the probabilistised DTWor gestures in a dynamic
programming frameworkSection 5 describes the S@esture representation using clustering of
HPs.Section6 validates thedifferent proposed methodologs and shows theresults obtained
Section 7 shows real applicationsof the proposed methodologyand Section 8 a list of
publications related to the proposed approaches and applicatiéizally, Sectior® includes

discussion and conclusipas well as future lines oésearch
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2. State-of-the-art

In this section we explain some backgrouod methods that describeHPs, as well as the

probabilistic scope for segmentation and recognitioHafman Gestures.

2.1. Description of HPs

Nowadays, Bagf-VisualWords BoVW is one of the most used approaches in Computer Vision,
commonly applied in image retrieval or image classification scenarios. This methodology is an
evolution of Bagof-Words (BoW) [Lewis, 1998], a method used in documanalysis, where

each document is represented using the apparition frequency of each wbedpredefined
dictionary. In the image domain, these words become visual elements of a certain visual
vocabulary. First, each image is decomposed into a largef ggtohes, either using some type

of spatial sampling (grids, sliding window, etc.) or detecting points with relevant properties
(corners, salient regions, etc.). Each patch is then described, obtaining a numeric descriptor. A
set of V representative visuawords are selected by means of a clustering process over the
descriptors, whereV is the cardinality of the visual vocabulary. Once the visual vocabulary is
defined, each image can be represented by a global histogram containing the frequencies of
visualwords. Finally, this histogram can be used as input for any classification technique (i.e.
1bbSFNBald bSAIKO2N 2N { #Mohammadi &tcNRAO9MSréover, f &>  H 1 s
extensions of BoW from still images to image sequences have been repmlysed, defining
SpatiecTemporalVisualWords (STVW) (i.e. in the context of human action recognition) [Niebles
et al., 2008].

In addition to visual features computed from RGB datagw form of representing images has

recently emerged, by including the depth ashew source of information. In this sensihe
aAONRa2Fl0 YAYySOGu aSyaz2N) NBf SIaSR AGmpltdr i S HAMs
VAaA2Yy TASt R® ¥ehsgrdvhichis abledo capture depth idf@mation of the scene,

in addition to the RGB image acquired by its camera, providing what is name® Rtdjes

RGB plus Depth This depth information has been particularly exploited for human body
segmentationand tracking. Shotton [Shotton et al., 2011] presented one of the greatest

advances in the extraction of the human body pose using-BGkhich is provided as part of

12



0KS YAYySOlUun KdzYly NBO23AyAGA2Y FNIYSH2N] @ az2NB?2
by depth maps, several-B3 descriptors have been recently developed [Bogdan et al., 2009],

which are based on codifying the distribution of normal vectors among regions in the 3D space.

In [Hernandez et al., 2011}wve have presented the Bad-Visualand-Depth-Words (BoVDW)
approach, which is an extension of the BoVW approach that takes profit of-maodial RGE
images by combining information of both RGB images and depth maps. We also have proposed
a new depth descriptor which takes into account thetdbution of normal vectors respect the
camera position, as well as the rotation respect the roll axis of the camera. In order to evaluate
the presented approach, we have compared the performances achieved with-cftéte-art

RGB and depth features sepéely, and combining them inlate fusionfashion. All experiments

are run in the proposed framework using the public data set provided by the ChalLearn Gesture
Challengtin the context oHGR Finally, the presented BoVDW approach has been integrated in

a fully automatic system fodGR which uses DTW for the prior segmentation of gestures in a
sequence. Results of the proposed BoVDW method have shown better performance using late

fusion in comparison to early fusion and standard BoVW model.

2.2. Probabilistic andDynamic Programmingcopesfor segmentation

and recognition ofHuman Gestures

SinceHRGis considered as the main core of the HBRere existsthe need of handling with
problems such assegmentation and recognitionin this way Human Gestures can be
understood ascontinuous sequence of data points-or temporal series following certain

trajectories, whose information is relevant for the posterior HBA

Thereexist a wide number of methods based on dynamic programming algorithms for both
alignment and clustering of temporal series [Zhou et al., 2010]. Moreover, one can consider
techniques that come from Probabilistic Graphical Models such as Hidden Markov sModel
(HMM) or Conditional Random Fields (CRF), which has been commonly used [Yang et al., 2009;
Rabiner, 1989; Stefan et al., 2008; Fang et al., 2007], especially for classification purposes.
Nevertheless, one of the most common methods usedHGRis Dynantg Time Warping (DTW)
[Reyes et al., 2011; Stefan et al., 2008], since it offers a temporal alignment between sequences

of different lengths.

1http://gesture.chalearn.org/
13



However, the application of such methods HGRIin complex scenarios becomes a hard task
due to the high variability of the environmental conditions of each domain. Some common
problems are: the wide range of human pose configurations, influence of bagkgjroontinuity

of human movements, spontaneity of humans actions, speed, appearance of unexpected
objects, illumination changes, partial occlusions, or different points of view tgustention a

few. These effects can cause dramatic changes in the géearbdf a certain gesture, generating
great intraclass variability. In this sense, since usual DTW is applied between a sequence and a
single pattern, it fails to take into account such variability. Thus, our propofAhirtista et al.,
2011]has been focused on the definition of an extension of DTW method to a probdizibgd
framework in order to perform an alignment between a sequence and a sét phttern
samples from the same gesture category using a Gaussian Mixture Model (GMMydiS e
Bishop, 2005] to model the variance caused by environmental factors. Consequently, the
distance metric used in the DTW framework has been redefined in order to provide a
probability-based measure. Results on public and challenging computer viatarhdve shown
better performance of the proposed probabilisttased DTW in comparison to the classical

approach.

At this point, we consider that gestures are usually described as sequence of features per
sample. Few works have decomposed eithetions/gestures into a set of unitZhou et al.,

2010; Alon et al., 2009], or their features in a multiple eiggraces[Tam G. Huynh, 2008].
However, the fact of adding temporality for performingtemporal clustering of gestures of
different length based on alustering cost by means of DTW, allosedegorizinggestures in a

more robust way. As we proposed in [Ponce et al., 2011a], extending the same idea f&& HGR
an important improvement for the definition of more precise SBbsture units, which are
deformed and aligned in time. Sequence of Sabsture units on the time can be modelled using

a temporal model, such as HMM, often used in the literature. From the definition of a gesture
vocabulary-or Bagof-Gestures (BoG) as we call in our propgsal discre¢ alphabetg is
obtained. If we consider each symbol of the alphaksepesture unitas a possible state of a
gesture,one can train statetransition probabilities of a HMM with standard Batelch or
Viterbi algorithm.Then, the final inference consistsf testing the proposed methodology on a
large scale data set of gestures. The process is performed by quantifying a gesture vocabulary

and doing inference on trained temporal models of gestures.

Although HMM are the clascal used temporal modelsnore pwerful modelsthat represent

the hidden (and observed) state in terms of state variables which can have complex

14



interdependencies can be introduced. Such models regard tdDymamic Bayesian Networks
(DBNs) [Rabiner, 1989pata Driven Markov Chain Mon@arlo (DEMCMC)for Switching Linear
Dynamical Systems (SLOGh et. Al., 2008]as well as Parametric and/or Segmental SLDS
where the lass have been very useful to modatatural trajectories (e.g. for the application

tracking honey bees explained iach works)

2.3. Human Potures and Human Gestures

In [Elmezain et. al.2009], authorsdefine Human Gestures and Human Postures on Human
Computer Interaction (HCI) problemsmtroducing an important differentiation between these

two concepts They refer specifically to hand posture and gesture recognition problems,
assuring that static morphs of the hand are called postures and hand movements are called
gestures. However, this definitiooan also coverthe definition of Human Poses and Human
Gestures, consideringither separatedoody parsor all body parts jointlyln this way, a gesture

is spatistemporal pattern which may be staticlynamic or both.On the other hand, several
challenging problems are presentéal hand posture and gesture recognitiamthe context of

HCI, which also cover thdP and HGR purposé&3ne of such problems, which arise in réale

hand gesture recognition, is to extract (spot) meaningful gestures from the continuous sequence
of hard motions. Another problem is caused by the fact that the same gesture varies in shape,
trajectory and duration, even for the same persdie goal of gesture interpretation is to push

the advanced humagomputer communication to bring the performance ofCHclose to
humanhuman interaction. They refer to Sign Language Recognition as an application area for
HCI to communicate with computers and for sign language symbols detection. Sign language is
categorized into three main groups namely finger spellingrdmevel sign and nemanual
features [Bowden et al., 2003]. Finger spelling is used to convey the words letter by letter. The
major communication is done through word level sign vocabulary andnmamual features

include the facial expressions, mouth domady position.

The techniques for posture recognition with sign languages are reviewed for finger spelling to
understand the research issues. The motivation behind this review is to develop a recognition
system which works with high recognition ratesra®ically, hand segmentation and
computations of good features are important for the recognition. In the recognition of sign
languages, different models are used to classify the alphabets and numbers. For example, in

[Hussain, 1999], Adaptive NeuFuzzyInference Systems (ANFIS) model is u$ed the

15



recognition of Arabic §n Languag€ASL) In this proposed technique, colored gloves are used

to avoid the segmentation problem and it helps the system to obtain good features. In
[Handouyahia et al., 1999the authors presented a recognition system for the International
Sign Language (ISL). They used Neural Network (NN) to train the alphabets. NN is used for the
recognition purposes because it can easily learn and train from the features computed for the
sign languages. Other approach includes the Elliptic Fourier DescfifD) used in [Malassiotis

and Strintzis, 2008] for ® hand posture recognith. In their systemthey have used
orientation and silhouettes from the hand to recogniz®3and posturesSimilarly, Licsar and
Sziranyi [Licsar and Sziranyi, 2002] used Fourier coefficients to represent hand shape in their
system which enables them to analyze hand gestures for the recognition. Freeman and Roth
[Freeman and Roth, 1994] used orientation hggtam for the classification of gesture symboals,

but huge training data is used to solve the orientation problem and to avoid the misclassification

between symbols.

In the last decade, several methofts advancechand gesture interfaces have be@noposed
[Deyou, 2006; Elmezain et al., 2008a; Kim et al., 2007; Mitra and Acharya, 2007, Yang et al.,
2007] but they differ from one another in their models. Some of these models are Neural
Network [Deyou, 2006], Hidden Markov Models (HMMs) [EImezaith €2008a; EImezain et al.,
2008b] and DTW [Takahashi et al., 1992]. In 1999, Lee et al. [Lee and Kim, 1999] proposed an
ergodic model based on adaptive threshold to spot the start and the end points of input
patterns, and also classify the meaningful tgess by combining all states from all trained
gesture models using HMMs. Kang et al. [Kang et al., 2004] developed a method to spot and
recognize the meaningful movements where this method concurrently separates unintentional
movements from a given imageequences. Alon et al., [Alon et al.,, 2005] proposed a new
gesture spotting and recognition algorithm using a pruning model that allows he system to
evaluate a relatively small number of hypeses compared to Continuous mamic
Programming (CDP). Yangakt[Yang et al., 2007] presented a method for recognition of whole
body key gestures in Humd®obot Interaction (HRI) by HMMs and garbage model for- non

gesture patterns.

Mostly, previous approaches use the backward spotting technique that first detketend
point of gesture by comparing the probability of maximal gesture models andgasture
model. Secondly, they track back to discover the start point of the gesture through its optimal
path and then the segmented gesture is sent to the recognizerdoognition. So, there is an

inevitable time delay between the meaningful gesture spotting and recognition where this time

16



delay is not well for ofine applications. Above of all, few researchers havdressed the
problems on norsign patterns-which irclude outof-vocabulary signsepenthesis and other
movements that do not correspond to sigrfer sign language spotting because it is difficult to

model nonsign patterns [Lee and Kim, 1999].

The different techniquepresented for hand gesture recogniti@re immediately applicable to
HBA systems because hands giveuge amounbf information at different levelsin addition,
although HRG ifcused on this extremity of the body, it is proved that modeling gestures at
different levelsis a good choice even for the rest parts of the body. In the following sections we
show different approachesfor grouping different feature representations, as well as
probabilistic and dynamic programming algorithms related to dipproaches presented in this

state-of-the-art section.
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3. BoVDW Representation

In this section, we present the BoVDW approach for HGR, whose pipeline is shown in the blue
part of Figure 1. Figure 3 contains a conceptual scheme of the approach. The steps of the
procedure are described below. At the end of this section, we present the application of the

BoVDW for HGR (green pipeline in Figure 1).

Figure3: BoVDW approach in BGRscenario. Interest points in RGB and depth images depicted as circles. Color
of the circles indicates the assignment to a visual word in the shown histogg@emputed over one spatio
temporal bing. Limits of the bins from the spatidemporal pyramids decomposition are represented by dashed
lines in blue andyreen, respectively. A detailed view of the normals of the depth image is shown in the wbgféer
corner.

3.1. Keypoint detection

The first step of BoWased models consists of selecting a set of points in the image/video with
relevant properties. In order to reduce the amount of points in a dense spetiporal
sampling, we use the Spatieemporal Interest Point (STIP) detectordles, 2005], which is an
extension of the welknown Harris detector in the temporal dimension. The STIP detector first
computes the seconthoment matrix—N A of first order spatial and temporal derivatives.
Then, the detector searches regions in theage withthe three significant eigenvalues of,
combining the determinant and the trace of

O ss YtEY-
where §scorresponds to the determinanty t computes the trace, antY stands for a relative
importance constant factor. As we have miwhodal RGE data, we apply the STIP detector

separately on the RGB and Depth volumes, so we get two sets of interest pointand™Y .

18



3.2. Keypoint description

At this step, we want to describe the interest points detected in the previous step. On one hand,
for 'Y  we compute stateof-the-art RGB descriptors, including HOG, HOF, and their
concatenation HOG/HOF [Laptev et. al., 2008]. On the other handyfowe test the VFH
descriptor and propose the VFHCRH, detailed below. We do not use neither the whole image
nor the whole object to describe the keypoints. Regions of interest are limited around each

keypoint, depending on the scale where keypoints degected.

3.2.1. VFHCRH

The recently proposed PFH and FPFH descriptors [Bogdan et al., 2009] represent each point in
the 3D cloud with a histogram, where each histogram encodes the distribution of the mean
curvature around the described point. Therefore, bdH and FPFH provitlehistograms,
invariants togO U0 "Megrees of Freedom), beitgthe number of points in the cloud. Following
their principles, VFH describes each cloud of points with only one descriptortdfins, variant
to object rotation aroundpitch and yaw axis. However, VFH is invariant to rotation about the roll
axis of the camera. In contrast, CVFH describes each cloud of points using a different number of
descriptorsi , wherei is the number of stable regions found on the cloud. Eachlsteegion is
described using a nenormalized VFH histogram and a Camera's Roll Histogram (CRH), and the
final object description includes all region descriptors. CRH is computed by projecting the
normalt of the ‘@h point” onto a planed that is orthogonal to the viewing axis(i.e. the
vector between the centroid of the cloud and the camera center), under orthographic
projection:

T T ti "o,
where %.is the angle between the normdil and the viewing axis. Finally, the toigram encodes
the frequencies of the projected angle betweent and waxis, the vertical vector of the

camera plane.

In order to avoid descriptors of arbitrary lengths for different point clouds, we describe the
whole cloud using VFH. In additionwagins CRH is computed for encodip@ 0 "@formation.
The concatenation of both histograms results in the proposed YRFH@escriptor of 1T ins

shown in Figure 4.
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Figure4: VFHCRH descriptor: Concatenation of VFH and CRH histograms resulting in 400 total bins.

3.3. BoVDW histogram

Once we have described all the detected points, we build our vocabulagy viual/depth
words by applying a clustering method over all the descriptors. Hence, the clustering method
"Gmeans in our casedefines the words from which a query video v represented, shaped

like a histogranmiQthat counts the occurrences of each word. Additionally, in order to introduce
geometrical and temporal information, we apply spat@mporal pyramids. Basically, spatio
temporal pyramids consist of dividing theleb volume inb , &, anda bins along the, 0, and

i dimensions of the volume, respectively. Thed, @ @n separate histograms are
computed with the points lying in each one of these bins, and are concatenated with the global

histogramcomputed using all points.

These histograms define the model for a certain class of the probleraur case, a specific
gesture. Since we deal with multhodal data, we build different vocabularies for the RGB
based descriptors and the deptiased onespbtaining the corresponding histograni®, and

"Q. Finally, the information given by the different modalities is merged in the next and final

classification step, hence usitage fusion

3.4. BoVDWbased classification

The final step of the BoVDW approach consists of predicting the class of the query video. For
that, any kind of multclass supervised learning technique could be used. In our case, we use a
simple GNearest Neighbour classification, computing the compmatary of the histogram

intersection as distance:
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Q p B &aQ&Q o™HQ Q,
where"O¥ "Y"OB'O . Finally, in order to merge the histograr®® andQ, we compute the
distances)? andQ separately, and compute a wgited sum:
Q p T Q 1Q,

to perform late fusion, wherg is a constant relative importance factor.

The validatiorof this approachs performed in the evaluation part (Section 6.2.1) together with

the rest of methods.
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4. Probabilisticbased DTW

In this section we first describe the original DTW and its common extension to deteeesthrt
of sequences given a possible infinite sequence. Then, we extend the DTW in order to align
patterns handling with the variance using a posterior f@bitistic training with GMMFinally,

we explain the redefinition of the distance measure used in our approach.

4.1. Dynamic Time Warping

The original DTW algorithm was defined to match temporal distortions between two signals,
finding a warping path betweerhe two time seried0 M andd o . In
order to align these two sequences,0 matrix is designed, where the ent "6 of the
matrix contains the cost betwee¢> andrj . Then, a warping path of leng"Y¢® 0 Fedo

where 0 indexes a position in the cost matrixs defined as a set of "contiguous" matrix
elements that defines a mapping betwedénand 0. This warping path is typically subjected to

several constraints:

f Boundary conditions0 plp ando Gre 8
f Continuity and monotonicity Given( ¢fd | then o o, ¢ pand

@ G p, this forces the points ic to be monotonically spaced in time.

We are generally interested in the final warping path thatisfying these conditions minimizes

the warping cost:

where "“Ycompensates the different lengths of the warping pathhis path can be found very
efficiently using dynamic programminghe cumulative cost at a certain pish 0 "“@Qcan be
found as thecomposition of the distancQ "Q between the featurevectors of the sequences
¢yandn with the minimum of thecumulative cost of the adjacent elements of the cost matrix

up to that point.Thatisd "Q Q@AQ [ ED O phC p I O ph @0 p

Given the streaming nature of our preh, the input feature vecto0, has no defined length

and may contain several instances of the gespaern 6. In order to detect the beginning and
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ending position of thecandidate gesture, the current endjncost is checkeehe cost of the
element in the last row If that value is below a certain learned thresh-|dhe warping path
down to that matrix position is considered to defiaematching warping candidate gesture. An

example of a beghiend HGRogether with the working path estimation is shownkigureb.

e

-

N - —
1/ o 3/ v

s
]
[ ]
3
0

gesture start gesture end

Figure5: Beginend of HGRof a gesture pattern iran infinite sequence|,'= using the probabilistiecbased DTW. Note,
how different samples of the same gesture category are modelled with a GMM and this model is used to provide a

probability-based distane. In this sense, each cell X" will contain the accumulative distance.

4.2. Handling varance with Probabilitybased DTW

Consider a training set & sequence: "VI"VI8 'V with™v | 8 H for a certan gesture
category, whered is the length in framesf sequence™ . Let us assume that sequences are
ordered according to their length, so thed O 0 '™ ¢8R p, the median

length sequence i'Y " . This sequence is used as a reference, and the rest of sequarees

aligned with it usindd TWin order to avoid theéemporal deformations of diffenet samples from

a same gesture categoryherefore, after the alignment process, all sequences have led _ h

The set of warped sequences "V F"VI8 F'V . Once all sampleare aligned, the set of th’&h
elements among all warped sequenci 4is modelled by means of e @component Gaussian
Mixture Model (GMM)._. | F F where™Q@ pR8 RQ| is the mixing value an* and+

the parameters of each Gaussian model in the mixture.
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4.3. Distance measure

In classical DTW, a pattern and a sequemre alignedusing a distance metric, such as the
Euclidean distance. Since @gsture pattern is modelled by means of probabilistic modelseif
want to use the principles of DTW, the distance needs toeblefined. In thisvork, we consider

a soft-distance based on thprobability of a pointbelonging to each one of ti‘Ocomponents

in the GMM.

Let each one of the GMMs thatodel the gesture patterns be defined as follows:

Then, note that for agiven feature vector'Qof the image,the posterior probability of'Q
belonging to each one of th"'Ocomponents of the GMM can bebtained. In addition, since

B J p, wecan compute the probability <dbelonging to the whole GMM dke following:

0 "M | t0Q

which is the sum of the weighted probability of each componé&tgvertheless, an additional
step is required since the standabdW algorithm is conceived for distances instead of similarity
measures.In this sense we use a safitance based measure of the probabilitwhich is

defined as:
o qQpf 0

In conclsion, by aligning the set (0 gesture samplesequences and modelling each of the
elements composing theesulting warped sequences with a GMM, the possible temporal
deformations of the gesture category are taken into accouahd thus, we obtain a
methodology for gesture detection that &ble to deal with multiple deformations in data. The
algorithmthat summarizes the use of the probabilisiased DTW to detedtart-end of gesture

categories is shown in Table
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Tablel: Probabilistiecbased DTW beghend of HGR algorithm

Input: A gesture model ' = {cy, .., ey } with corresponding GMM
models A = {Aq, .., A }, its similarity threshold value g, and
the testing sequence () = {qgi, .., oo }- Cost matrix My, oo
is defined, where N {w), w = (i,1) is the set of three upper-left
neighbor locations of w in M.
Output: Working path W of the detected gesture, if any
 Initialization
fori =1:mdo
forj =1:o0cdo
Mz,5) = 20
end
end
forj=1:0cdo
M0, 7)=0
end
fort =0: codo
fori =1:mdo
w = (i, 1)

_"U{'LL-]- = .D,-,;I:w, }\:l + ]'I'I]'I'Lw_.a.‘,E Niw I_"L:f l:‘u.'r}
end :
if M (m.t) < pthen
W = {argmin,, s o (o) M (w’)}
return
end
end

The validatiorof this approachs performed in the evaluation part (Section 6.2.2) together with

the rest of methods.
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5. SubGesture Representation

This section explains thaescription of HPs and their clustering process for representing them as
SubGestures[Ponce et. al., 2011c]

5.1. HP description

This sectiordescribes the processing of depth data in order to perform the segmentation of the
human body by obtaining the skeletal model, and then computing its feature vdetorthe
acquisition of depth maps we use the public API OpenNI software [OpenNI, 2018]. Th
middleware is able to provide sequences of images at rate of 30 frames per second. The depth
images obtained are T i U mixels resolution. These features are able to detect and track

people to a maximum distance of six meters from mséthsor device.

We use the method of [Shotton et al., 2011] to detect the human body and its skeletal model.
This approach uses a huge & human samples to infer pixel labels through Random Forest
estimation, and skeletal model is defined as the centroid of mass of the different dense regions
using MeanrShift algorithm. Experimental results demonstrated that it is efficient and effective
for reconstructing @D human body poses, even against partial occlusions, different points of
view or no light conditions. The articulated human model is defined by the set of 15 reference
points shown in Figuré. This model has the advantage of beinghy deformable, and thus,

able to fit to complex human poses.

LEFT HAND, HEAD RIGH HAND
NECK
LEFT ELBOW RIGH ELBOW
RIGH SHOULDER
Center of Mass
LEFT HIP RIGH HIP
LEFT KNEE RIGHT KNEE
LEFT FOOT RIGHT FOOT

Figure6: The 3D articulated human model consisting of 15 distinctive points.
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In order to subsequently make comparisons and analyze the different extractedadkatzdels,

we need to normalize them. In this sense, we use the neck joint of the skeletal model as the
origin of coordinates (OC). Then, the neck is not used in the frame descriptor, and the remaining
14 joints are used in the frame descriptor computthgir 3-D coordinates with respect to the

OC. This transformation allows us to relate pose models that are at different depths, being
invariant to translation, scale, and tolerant to corporal differences of subjects.

Therefore, the final feature vectoiQ) at framej that defines the human pose is described by 42

elements-14joints w3 spatial coordinates

5.2. HP clustering

In order to group the previous pose descriptions in pose clusters, we use standard Gaussian
Mixture Model. Our goal is to group the set of frame pose descriptions in clusters so that
posterior learning algorithms can improve generalization in HBA. We fisecavariance GMM

of 0 components parameterized as follows,
— “ O O QM ™ prey

Then, a likelihood value based on the probability distributir)  of the GMM is obtained as

follows,

' - - OUEY 1 IDO0SEH 1 TACE
Based on this standard probabilistic GMM model, our-texel clustering procedure is defined
as follows,

1) First level Use three spatial components of descriptO0 for each joint "GO
phedp 1 and perform GMM 0. clusters, namel"O00 .
2) Secom levet

2.1) Define for each pose a new feature vector,

CO° M) B M req) redia)
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of sizep ¢, where@) is the probability result of applying GMM moc Q00  at

features from"O0corresponding to spatial coordinatesjeth joint.
2.2) Use the components (<. clusters, namel"O00 .

Given a new frame, then, human skeleton is obtained as described before, and feature vector
"O0is computed and tested using twevel GMM description, obtaining a final probability for

the mast likely cluster from the set (C. possible pose clusters.

The validation of this approach is performed in the evaluation part (Section 6.2.3) together with

the rest of methods.
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6. Experiments andesults

In this section, weliscuss the data, methods and evaluation measurements befooging the
results for the differentpresentedapproaches, as well as we discuss about them comparing
among otherstate-of-the-art methods.We show performance diGRfor the BoVDW approach.
Then, we show the performance for the probabilidiesed DTW. Finally, we show qualitative

results for the HP representation.

6.1. Data

The first data source used is the ChalLedata set[ChalLearn, 201%]provided from the
CVPR2011 Workshop's challenge @R The data set consists of 50,000 gestures each one
portraying a single user in front of a fixed camera. The imagesaptured by the Kinect device
providing both RGB and deptimages. The data useeh subset of the wholeare 20
developmentbatches with a manually tagged gesture segmentation. Each hattides 100
recorded gestures grouped in sequences of 1 tgeStures performed by the same user. The
gestures from each batch adrawn from a diferent vocabulary oyto p wnique gestures and
just one training sample per gesture is providEdr each sequence the actor performs a resting
gesture between each gesture to classify. Rbis data set, we performed background
subtraction based on deptmaps, and defined p 7. p Tgrid approach to extract HOG+HOF
feature descriptors per cell, which are finally concatenated follaimage (posture) descriptor.
Inthis data set we will test fothe recognition of the resting gesture pattern, using 100 sample
of the pattern in a terfold validation procedure. An example of the ChalLedataset is shown

in Figure? (a)(b) and Figure 8.
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(c) (d)

Figure7: (a,b) Sample depth and RGB image for the ChalLearn database. (c,d) Sample frame of for different
activities in the HUPBA dataset.

Figure8: Gesture samples from the ChalLearn data.

Secondwe usethe HUPBA datasetvhichis composed of 2 mulctor sequences of RGileo
recorded at 24 fps. For each one of those sequences 14 fertector were manually tagged at
each frame. In every sequeneach actor performs a set of 12 actions, 8 individual actionsdand
actions which involve an additional actor. The featuegtracted from these sequences are the
relative position of the 13mbs to the centroid of the head. To effectively discriminattions,
the actors perform a resting gesture for a certain amoohtime before performing a concrete
action. Some imaged this data set are showim Figure 7Ac)(d). In ths dataset we als@im to
detect the resting gesture performed befoeach activity/gesture in order to provide a robust

gesturesegmentation procedure and compare performance with standard Rppvoach.
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Finally, we designednd usedanother new data set of gestures usingSth a A ONR a2 F i YAy
device consisting of seven different categories. It has been considered 10 different actors and
different environments, having a total of 130 data sequences with 32 frame gesiuresefore

the data set contains the high variabilitypf uncontrolled environments. The resolution of the

video depth sequences s T ar ). 180me examples are shown in Figure 9.

Figure9: Examples of sequences provided by the people detection system showing the skeleton detection and
tracking.
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6.2. Methods and Evaluatioomeasurements

Before the presentation of the results, first, we discties methods,parameters, and validation

protocol of the experiments performefbr the differentpresented approaches

6.2.1. BovDW

For the experiments, the vocabulary size was sew ¢ 1 words for both RGB and depth
cases. For the spatiemporal pyramids, the volume was divided¢ ¢ ¢ bins-resulting in a

final histogram ofp Y mhms.. In the classification step we use a simple Nearest Neighbor
classifier, since we only have one training example for each gesture. Finally, for the late fusion,
the weight| @) was empirically set. As a pprocessing step, DTW was applied to all

sequerces in order to segment the gestures.

For the evaluation of the methods, in the context of HGR, we have used the Levenshtein

distance or edit distance. This edit distance between two strings is defined as the minimum

number of operationsinsertions, substutions or deletions needed to transform one string

into the other. In our case, the strings contain the gesture labels detected in a video sequence.
For all the comparison, we compute the Mean Levenshtein Distance (MLD) over all sequences

and batches.

In order to test the BoVDW model representation, we designed a continuous HGR system. First,
ProbabilisticDynamic Time Warping used to detect a gesture of reference which splits the
multiple gestures to be recognized. Then, each segmented gestussssfiedd using the BovVDW
pipeline described above. These steps are also illustrated in the green pipeline shown in Figure
1.

6.2.2. ProbabilisticBased DTW

We compare the usual DTW algorithm with our probabitigsged DTW approach using the
proposed distance DThe evaluation measurements are overlapping and accuracy of the
recognition for the resting gesture, we consider that a gesture is correctly detected if
overlapping in the resting gesture ssbquence is greater thap 1 Pthe standard overlapping
value. The costhreshold for all experiments was obtained by cresdidation on training data.

Each GMM in the probabilitpased DTW was fit witticomponents.
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6.2.3. SubGesture representation

For the HP representation, theeople detection system used is providbd the public library
OpenNlI. This library has a high accuracy in people detection, allowing multiple detections even
in cases of partial occlusions. The detection is accurate as people remain at a minimum of 60cm
from the camera and up to 4m, but can odaup to 6m but with less robust and reliable
detection. We perform classical oevel GMM and the proposed twievel GMM in Matlab
programming, usingQ v and Q  p Mg fit ™ Q is the number of clusters used for
standard onelevel GMM.

6.3. Results

Considering previous methods and evaluation measurements, in this section we present the

results for the different approaches.

Table2 shows the results for the usual DTW algorithm and our proposal on the ChalLearn and
HUPBA datasets. We can see how theppsedprobabilisticbasedDTWapproachoutperforms
the usual DTW algorithm in both experiments. In addition, this improvement is even higher

when mesuring the accuracy (up tcx B.

Table2: Small Overlapping and Accuracy results.

ChaLearn HUPBA
Dataset Overlap. Acc. Overlap. Acec.
Probability-based DTW | 0.3908 | 0.6781 0.2534 | 0.4434
Euclidean DTW 0.3003 0.6043 0.2314 0.4032

Table 3shows a comparison between different statéthe-art RGB and depth descriptors
including our proposed VFHCRHsing ourBoVDW approach. In the case of RGB descriptors,
HOF alongoerforms the worst. In contrast, the early concatenation of HOIFHOGdescriptor
outperforms the simple HOG. Thus, HOF contribai#ding discriminative information to HOG.
In a similaway, looking at the depth descriptors, one can see how the concatenatitre CRH

to the VFH descriptor clearly improves the penfi@nce comparedo the simpler VFH.
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Table3: Mean Levenshtein distance for RGB and depth descriptors

RGB desc. MLD H Depth desc. MLD

HOG 0.3452 || VFH 0.4021
HOF 0.4144 || VFHCRH 0.3064
HOGHOF 0.3314

Figurel0shows the performance in dte 20 development batches separately. When using late
fusionin order to mergeinformation from the best RGB and deptlescriptors (HOGHOF and
VFHCRH, respectivelg) MLD oT&® X pistachieved. Furthermore, we also appliate fusion in

a o-fold way, merging HOG, HOF, and VFHCRH descriptors sepdmathlyg.case we assigned
the weight| to HOG and VFHCRH descriptors (p | to HOF), impreing the MLD to

& ¢ ¢ Erom this result webserve that HOGHOF late fusion performs better than HOGHOF

early fusion.
0.8 ' " |EEHOGHOF
[VFHCRH
0.6L [JLF. HOGHOF/VFHCRH i
Bl F. HOG/HOF/VFHCRH I
0.4- H :
i ‘ HH ‘ ‘ ‘ ‘ |
LR g LW DR |
0 2 4 6 8 10 12 14 16 18 20

Figurel0: Performance of the best RGB adépth descriptors separately, as well as thef@d and 3fold late
fusion of them. X axis represent different batches and Y axis represents the MLD of each batch.

Finally, ve tested the one and twdtevel GMM procedures on the designed data set. We show
two qualitative results. First, in Figudel, we show some examples of samples that fall in a
particular cluster using onkevel GMM and some samples that fall in a gsel GMM cluster.

Up and down results are poses from different subjects. From thesditgive results, we can
observe that in the case of one level cluster, samples have more visual variability, grouping
different pose from different subjects in the same cluster. This is mainly because all joints and

spatial coordinates are considered amendent in the ondevel GMM procedure, and large
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movement in a particular joint affects global clustering for a particular pose. On the other hand,
in the proposed twdevel GMM clustering, all joints are first independently clustered, and

grouped with gual probability in the second GMM level. As a result, we can observe that
samples from the proposed clustering have more visual similarity, offering more discriminative

information for better generalization of Human Behavior recognition techniques.
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Figurell: Sample examples from clusters defined using degel GMM (left) and twelevel GMM (right),
respectively.

As an example dpplicability in the second qualitative result shown in (g 12, we can see
consecutive visual descriptions of some data set gestures. At the bottom of the sequences, we
show a first row that represents the cluster number assigned by aevet GMM, and a second

row with the assigned cluster using tievel GMM One can see that in most cases both
grouping techniques assigns consecutive poses to same clusters, but as shown earlier, the
clusters assigned by the oievel GMM have more visual variability, being inefficient for human

behavior generalization purpose

Ay M e .
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Figurel2: Cluster assignments for some gesture pose sequences. Red line shows the clustering of the first level,
while blue one shows the clustering of the second level with less visual pose variability.
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7. Applications

This section describea set of real applications based on the proposed methodologies. In

particular, we focus on monitoring and health care purposes, as well as social applications.

First, weexplainthe project funded by the Department of Applied Mathatics and Analysis
(MAIA) in the University of Barcelonas partof our presented work in thé&octoral Consortium
of the International Joint Conference on Atrtificial Intelligence (IJCAI) Zdricé et al., 201143]
where we reviewed some applications cmm from a B.S. Thesis and their immediately
extension to other areasThen, we briefly comment our current project funded by the
Department of Justice ahe Generalitat ofCatalonia. Finally, we summarize anottoerrrent
LINE 2S5 00 Tdzy RSRO®IRE ([KIS /athOEE ¢ @

7.1. Project funded by Deptof MAIAin UB

As part of a previous B.S. Thesis funded by the Department of Applied Mathematics and Analysis
(MAIA) of the University of Barcelona, wackled the problem of HBAwhere one can consider

the nonverbal communication as a specifigse This analysis was performed in ordersieethe
overlapping betweerthe annotationsprovided by the feedback from the evaluation committee

of (GKS aidzRS ysiwheh pradentingidal Bagh®l& thesis and the impressions
provided by our systeniThen, we evaluate how the system discriminates the best grades from

the worst ones.

As we explained in [Ponce et al., 2010, Ponce et al., 2011b], oral expression awerinain
communication arene of the most relevant competences, and it is considered a critical factor
to the personal, academic, professional and civic life of the graduates [Allen, 2002]. In this
direction, Curtis and Winsor proved that oral communication was the second mosirtamp

factor for the American Society of Personnel Administrators [Curtis et al.,, 1989], and
subsequently conducted a survey of over 1000 human resources managers, concluding that
good oral communication skills are important either for obtaining a joltcogive a good

performance at the job [Winsor et al., 1997].

In the particular case of Computer Science for oral expression andarbal communication,
the development of this competence has usually been relegated to the defense of final bachelor

projects. The list and methods for evaluating both the specific and transverse competences of a
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final bachelor project has been analysed and widely discussed in the field of engineering, where
such kind of activities are being developed for many years [Valteret al., 2009a; Valderrama
et al., 2009b]. In many cases, the defense of the final bachelor project is the first opportunity for

the student to be with the need of communicating their results orally, without prior training.

S. Indra Dexi and F. Shahi@zoz [Indra and Shahnaz, 2008] made a study of the fear effect to
the grade earned by the students in oral presentations. What derives from their work is that fear
leads to worse outcomes and that the more convinced the students are on their communication
skills, the more comfortable they feel, and hence their grades become better. To improve the
perception of students on their communication skills is necessary to generate activities that
require communicating concepts or results, providing them a goodifeek so they can keep

improving their skills.

As we reviewed in previous sections, masitomatic methodsfor HBA have a first stage of
feature extraction and a second phase of analysis of the extracted data. In many works, the first
phase is based on tlamining by using special clothes or specific colors with sensors that allow
to easily determine the position and acceleration of certain regions (hands, arms, head, etc.
[Triesch et al., 1998]). In order to work in uncontrolled environments, other stutieve
focused on the skin color detection, movement, shapes, or background subtraction, which
automates and give more independence to both the recognition system and the subject who

performs the actions [Chen et al., 2003; Martin et al., 1998].

For the &ature extraction stage of HGRsystem, we defined a set of simple visRabEeatures

for our first works. These features were based on face detection, skin modelling, and feature
tracking processes. We used the Face Detector of Vidlang&s [Viola and Jones, 2004] in order

to detect the region of the face and define our origin or coordinates, which is similar to the
approach presented in [Stefan et al., 2008]. Inner pixels of the detected region are used to train
a skill color model fhes and Rehg, 2002], which is used to look for hand/arm candidate
regions. Finally, those blobs connected with the highest density correspond to our regions of
interest, which are tracked using mean shift [Fukunaga and Hostetler, 1975]. All the spatial
coordinates of the detected regions are computed in reference to the face coordinates and
normalized using the face area. Examples of detected and tracked regions are shown in Figure
13.
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Figurel3: Examples of detected regions fdifferent student presentations.

With the computed feature space, we performed an initial experiment where 15 bachelor thesis
videos were recorded some examples are shown in Figj@reUsing the social signal indicators
defined in [Pentland, 2005], we computed a set of activity, stress, and engagement indicators
from the extracted feature space [Ponce et al., 2010]. Using the score obtained by the teachers
at the presentations, we cagorized the videos in two levels: those with the lowest score, and
those with the highest score, and trained a Discrete Adaboost binary classifier [Friedman et al.,
1998]. Applying stratified tefold crossvalidation, we obtained interesting results, shiog high
prediction performance of student score based on his/herwerbal communication using the

extracted featuresThen we used Adaboost margin in order to rank features by relevance.

Moreover, we have also tested our system on different applmas, such as Sign Language
recognition using a novel multarget dynamic gesture alignment, Attention Deficit
Hyperactivity Disorder (ADHD), corporal physiotherapy analysis, and inpatient monitoring, with

high success. See some examples in Fibdire

(b) (c) (d)
Figurel4: (a) Sign Language Recognition, (b) Impatient monitoring, (c) Physiotherapy analysis, and (d) ADHD

analysis
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7.2. Project funded by the Department of Justice

At the present time, we arenrolledin a project funded by the Center of Juridical Studies and
Specialized Formalization (CEJFE), as part of the Department of JusticeGdnthialitat de

Catalunya In this project, we are interested in the analysis of the communication process in
criminalmediation situationsIn these situationsseveral people participate in the same session

trying to reach an agreement of an event involving legal problems, helped by the figure of a
mediatoras part of the session participantsSirst, we are acquiring ntisimodal data from these

situationsin different Citesof Justice from different localities: Barcelona, Marnesa, and Vilanova

i la Geltra. This islang procedure that has to take in account all the required conditions for this

purpose: etic, environmeil conditions, distribution of people, required recordiagifacts, and

the invasiveness factorSome examples of the acquiring process and the environment
conditions are shown in Figure 1Bhen, the second step is to handle with the data obtained for

extracting humarbehavioralpatterns of each of these situations applyitige HRG techniques
definedinthisThesiE2NJ | . ! @ CAYyl ffteéx daAaAy3d (GKSasS LI G4SNy
mediation process, the main goal is to detect arhlyzethe situationswhen people opinions

0S3AAY (2 YIFIGOK 6a0ftA01¢ Y2YSydaos Fa ¢Sttt |a GK

from a psychological point of view.
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Figurel5: Top: Examples of the acquiring process and environment conditions from the City of Justice of Barcelc
Down: RGB (left) and depth maps (right) data acquisition from one of the three devices that records in the environ
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foundation. In this project, we are interested in monitoring and control the actions of ancients
having several kinds afementias like Alzheimer. As a particular case, we want to detect if a
certain ancient has taken her pills in order to avoid performing the action tWimethat, we use

a developed applicationvhich contains different methodologies of this Thesis. For instance,
depth descriptors are used for detectirapnd trackng the person,as well asthe interaction
between that person and prior trained objectalso, a qualitative DTW can be employed to
cormrectly identify simple gestures like taking an obje&lthough the objects for our case are
usually pillboxes, the application is able to learsexeral kind obbjects. Moreover, since the
appearance of theperson is also learned, the application isealh discriminate the correct
interaction of the ancient with is/her pillbox. If a pillbox doesot belong to a certain ancient,

then an alarm can be triggered to alert that there could be a problem with the medication of the

ancient. Moreover we have atsincluded an extra functionality to the implemented system in

2NRSNJ (2 LISNF2NY WNBYSYOSNBRQ 2F GKS t20lFGAz2Y

such as keys, glasses, or mobile phoiiégure 16 shows some examples of the Hur@dmject
Interaction application and examples tie pillboxesused. Our plan is to use this technology

either for geriatric centers or automatic home assistance.
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Figurel6: Examples of the HumasDbject Interactionapplication and examples of the pillboxassed.
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8. Publications

This section shows a list of publications of the author categorized according to the retgttion
the content of this M. Sc. ThesiSome of the publications listed below can be also found in

section 9 with the references.

[1] [Bautista et al., 2011] M. A. Bautista, A. Hernandez, V. Ponce, X. Pérez, X. Barg, O. Pujol, C. Angulo, and
S. Escalera&robabilitybased Dynamic Time Warping for Gesture Recognitibtdler revision for the

InternationalWorkshop on Depth Image Analysis on ICPR, 2011.

[2] [Hernandez et al., 2011] A. Hernandez, M. A. Bautista, X. Pérez, V. Ponce, X. Bar6, O. Pujol, C. Angulo,
and S. EscaleraBoVDW: Bagf-Visualand-DepthWords for Gesture Recognition. Accepted for
Publiation atICPR, 2011.

[3] T. Hernandez, Miguel Reyes, Victor Ponce y Sergio Escalera. GradgtliHuman Segmentation in
Video SequencedJnder revision at the International Journal on Pattern Recognition and Artificial
Intelligence (IJPRAI) 2011.

[4] [Ponce et al., 2010] V. Ponce, S. Escalera, X. Baro, and P. Radewzatic analysis of newerbal
communication. CVCRD10 Achievements and New Opportunities in Computer Vision, pag€s8,105
2010.

[5] [Ponce et al., 2011a] V. Ponce, M. Gorga, X.,Bar&scalerdjuman Behavior Analysis from Video
Data Usin@agof-Gestures International Joint Conference on Artificial Intelligence, Doctoral
Consortium, pp. 283@837,2011.

[6] [Ponce et al., 2011b] V. Ponce, M. Gorga, X. Bard, P. Radeva, and S. Bstisim.de la Expresion
Oral y Gestual en Proyectos Fin de Carrera via Un Sistema de Vision ARéWision, Vol 4(1), 2011.

[7] [Ponce et. al., 2011c] V. Ponce, M. Reyes, X. Bar6, M. Gorga and S. Hswmalenzel GMM Clustering
of Human Poses for Automatic Human Behavior Analysis. Proceedings of the Sixth CVC WorkShop
CVCR&D State of the Art of Research and Development in Cem\gigton, ISBN 9784-9383515-6,
pp. 47-50, 2011.

Summarizing, in [2,85,6,7 we use different methodologies for describing featumetated
with sections 3 and ,5as well as some new approaches for those purposes. In addiiga6][
present similar applications related with tlsection 7.10of this work.Finally,in [1,5] we discuss
about different methodologies of the state of the adr HGR and propose a new approach

relatedto the one presented isection 4.
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9. Conclusion andruture Work

In this M. Sc. Thesis we have presented both feature level and sequence level approaches for
improving HGRisinglarge data sets, as well adiest representation of clustered HRs order to

perform accurateHBAsconsideringgesture units.

Frst, we have presented the BoVDW approach for HGR using-madtal RGE images. We
have proposed a new depth descriptor VFHCRH, which outperforms VFH. Moreover, we have
analyzed the effect of the late fusion for the combination of RGB and dejetbcriptors in the
BoVDW, obtaining better performance in comparison to early fusion. Finally, we have presented
a fully-automatic HGR system, using DTW for a prior segmentation of the video sequences, and

the BoVDW approach for the classification of esegmented gesture.

On the other hand, wéhave proposed a probabilistibased DTW for HGR, where different
samples of the same gesture category are used to build a Gatlsssaa probabilistic model of

the gesture in which possible deformations are imgliocencoded. In addition, to embed these
models into the DTW framewoykoft-distance based on the posterior probability of the GMM
was defined. In conclusion, a novel methodology for gesture detection that is able to deal with

multiple deformations in datwaspresented.

Moreover, in this workwe designed a data set of human actions and described individual frames
using pose skeleton models from depth map information. We proposed aldwed GMM
clustering algorithm in order to group similar poses sottpasterior HBAtechniques can
improve generalization. We showed some preliminary qualitative results comparing our
approach with the classical odevel GMM clustering strategy, showing a more visual coherent

grouping of poses.

Finally in this work we have presenteseveralreal and challengingpplications using the

proposedmethodologies
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The future work consists of advancing in thdifferent interconnected lines of research
presented in thisM. Sc. Mesisbelonging toMachineLearning and Computer Vision fieldss
part of the Artificial Intelligence scop&or the feature levelt could be interesting to compare
with more descriptors andmethods foremphasize the benefits aiisng the depth feature.
Therefore, we carcombire them on a new late fusion fashipaswe performed for our RGB
descriptors. For the sequence level, we are interesteghiayzingother alternativesfor handing
with the varianceamonggestures as well as perform more theoretical anagdor the use 6
other distance measures. In addition, we think thatvould be interesting to perform more
experimentation by comparing with other methods frothe Probabilistic Graphical Models
Since our approach for segmenting sequences is a priori used for postamnizing gestures,
we believe on combining these approaches for improving HGR. Furthermerareninterested

in obtaining more preciseuB-Gesture units in order toobtain moreaccurateHGRsystems For
that, we plan to propose train, and validate different Probabilistic Graphical Model structures
within a HBA frameworkThen, he final inference consists of the testing of the proposed
methodology on a large scale data set of gestures. The process will be performed by quantifying
a gesture vocabulgrin our discrete alphabeg (recalled from Section 2.2nd doing inference

on trained temporal models of gestures.
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