ESTUDIO DE LAS CONSTELACIONES DEL HEMISFERIO NORTE EN COMPARACIÓN CON LAS DEL HEMISFERIO SUR Y SU UTILIZACIÓN EN NAVEGACIÓN

DIPLOMATURA EN NAVEGACIÓN MARÍTIMA

Director: Agustí Martín Mallofré
Autor: Jessica Gironès Ruiz
31/05/2012
Índice

1. Introducción .. 7
2. Historia .. 9
3. Estrellas y Constelaciones .. 13
 3.1. Estrellas: .. 13
 3.2. Magnitud: .. 14
 3.3. Constelación: .. 16
 3.3.1. Constelaciones zodiacales ... 17
 3.4. Movimientos de la Tierra: .. 18
 3.4.1. Rotación de la Tierra .. 18
 3.4.2. Traslación de la Tierra ... 19
 3.4.3. Precesión de los equinoccios ... 20
 3.5. Coordenadas celestes: .. 21
 3.5.1. Coordenadas horizontales .. 23
 3.5.2. Coordenadas horarias .. 24
 3.5.3. Coordenadas uranográficas ecuatoriales ... 25
4. Constelaciones del Hemisferio Norte ... 27
 4.1. Constelaciones circumpolares norte: .. 27
 4.1.1. Camelopardalis ... 27
 4.1.2. Cassiopeia .. 28
 4.1.3. Cepheus .. 29
 4.1.4. Draco ... 30
 4.1.5. Lacerta .. 31
 4.1.6. Lynx .. 32
 4.1.7. Ursa Major ... 33
 4.1.8. Ursa Minor ... 34
 4.2. Constelaciones no circumpolares del hemisferio norte: .. 35
 4.2.1. Andromeda ... 35
4.2.2. Auriga .. 36
4.2.3. Bootes .. 37
4.2.4. Canes Venatici ... 38
4.2.5. Coma Berenices ... 38
4.2.6. Corona Borealis ... 39
4.2.7. Cygnus ... 40
4.2.8. Hercules .. 41
4.2.9. Leo Minor .. 42
4.2.10. Lyra ... 43
4.2.11. Sagitta ... 44
4.2.12. Triangulum .. 45
4.2.13. Vulpecula .. 46
4.2.14. Pegasus .. 47
4.2.15. Perseus .. 48
4.2.16. Aquila ... 49
4.2.17. Canis Minor .. 50
4.2.18. Delphinus ... 51
4.2.19. Equuleus ... 52
4.2.20. Orión ... 52
4.2.21. Serpens .. 54
4.2.22. Taurus ... 55
4.2.23. Gemini ... 56
4.2.24. Cancer .. 58
4.2.25. Leo .. 59
4.2.26. Pisces ... 60
4.2.27. Aries .. 61

5. Constelaciones del hemisferio sur ... 62
5.1. Constelaciones circumpolares sur: 62
5.1.1. Centaurus .. 62
5.1.2. Grus .. 63
5.1.3. Apus .. 64
5.1.4. Ara .. 65
5.1.5. Carina .. 65
5.1.6. Chamaeleon .. 67
5.1.7. Circinus .. 68
5.1.8. Crux .. 68
5.1.9. Dorado ... 69
5.1.10. Horologium .. 71
5.1.11. Hydrus ... 71
5.1.12. Indus ... 73
5.1.13. Mensa .. 74
5.1.14. Musca .. 75
5.1.15. Norma .. 75
5.1.16. Octans ... 76
5.1.17. Pavo ... 78
5.1.18. Phoenix ... 79
5.1.19. Pictor ... 80
5.1.20. Reticulum .. 81
5.1.21. Telescopium .. 82
5.1.22. Triangulum Australe 83
5.1.23. Tucana ... 84
5.1.24. Vela ... 85
5.1.25. Volans ... 86
5.1.26. Hydrus ... 88
5.2. Constelaciones no circumpolares del hemisferio sur: .. 86
5.2.1. Aquarius ... 86
5.2.2. Antlia ... 88
<table>
<thead>
<tr>
<th>Nivel</th>
<th>Constelaciones</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3</td>
<td>Caelum</td>
<td>88</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Cetus</td>
<td>89</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Canis Major</td>
<td>91</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Columba</td>
<td>92</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Corona Australis</td>
<td>92</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Corvus</td>
<td>93</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Eridanus</td>
<td>94</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Fornax</td>
<td>96</td>
</tr>
<tr>
<td>5.2.11</td>
<td>Hydra</td>
<td>96</td>
</tr>
<tr>
<td>5.2.12</td>
<td>Lepus</td>
<td>97</td>
</tr>
<tr>
<td>5.2.13</td>
<td>Lupus</td>
<td>98</td>
</tr>
<tr>
<td>5.2.14</td>
<td>Microscopium</td>
<td>99</td>
</tr>
<tr>
<td>5.2.15</td>
<td>Piscis Austrinus</td>
<td>100</td>
</tr>
<tr>
<td>5.2.16</td>
<td>Puppis</td>
<td>101</td>
</tr>
<tr>
<td>5.2.17</td>
<td>Pyxis</td>
<td>103</td>
</tr>
<tr>
<td>5.2.18</td>
<td>Sculptor</td>
<td>104</td>
</tr>
<tr>
<td>5.2.19</td>
<td>Scutum</td>
<td>105</td>
</tr>
<tr>
<td>5.2.20</td>
<td>Crater</td>
<td>106</td>
</tr>
<tr>
<td>5.2.21</td>
<td>Monoceros</td>
<td>106</td>
</tr>
<tr>
<td>5.2.22</td>
<td>Ophiuchus</td>
<td>107</td>
</tr>
<tr>
<td>5.2.23</td>
<td>Sextans</td>
<td>109</td>
</tr>
<tr>
<td>5.2.24</td>
<td>Virgo</td>
<td>110</td>
</tr>
<tr>
<td>5.2.25</td>
<td>Libra</td>
<td>111</td>
</tr>
<tr>
<td>5.2.26</td>
<td>Scorpius</td>
<td>112</td>
</tr>
<tr>
<td>5.2.27</td>
<td>Sagittarius</td>
<td>113</td>
</tr>
<tr>
<td>5.2.28</td>
<td>Capricornus</td>
<td>114</td>
</tr>
<tr>
<td>6.</td>
<td>Comparativa</td>
<td>115</td>
</tr>
<tr>
<td>6.1.</td>
<td>Área de las constelaciones</td>
<td>118</td>
</tr>
</tbody>
</table>
6.2. Brillo de las constelaciones ... 120
6.3. Visibilidad de las constelaciones .. 121
6.4. Numero de estrellas visibles en las constelaciones 124
6.5. Fechas de mejor visibilidad ... 125
6.6. Estrellas del almanaque ... 126
7. Reconocimiento de estrellas .. 131
 7.1. Enfilaciones para encontrar las estrellas principales 131
 7.2. Catálogos de estrellas ... 135
 7.3. Planisferios .. 135
 7.4. Rectas de altura (astro desconocido) .. 137
 7.5. Identificador de astros Star finder .. 138
 7.6. Tablas americanas y Tablas Rápidas .. 139
 7.7. Naviesfera .. 140
8. Estrellas utilizadas en la navegación .. 141
9. Conclusiones ... 146
10. Bibliografía ... 148
PAGINAS WEB CONSULTADAS .. 149
1. Introducción

El Proyecto de Final de Carrera titulado “Estudio de las constelaciones del hemisferio norte en comparación con las del hemisferio sur y su utilización en la navegación” está dividido en varias partes diferenciadas. La primera parte es la historia, desde los más antiguos descubridores de las constelaciones hasta hoy en día. La segunda parte son definiciones sobre las estrellas, magnitudes, constelaciones, los movimientos de la tierra y las coordenadas celestes.

La tercera parte y más extensa, son las 88 constelaciones reconocidas actualmente por la Unión Astronómica Internacional (UBI) quien a partir de 1928 decidió reagrupar oficialmente la esfera celeste en estas constelaciones poniendo límites precisos entre ellas, tal que todo punto en el cielo quedara dentro de los límites de una figura. Antes de dicho año, eran reconocidas otras constelaciones menores que luego cayeron en el olvido. El trabajo de delimitación definitiva de las constelaciones fue llevado a cabo fundamentalmente por el astrónomo belga Eugène Joseph Delporte y publicado por la UAI en 1930.

En la actualidad se sabe que todas las estrellas de una constelación dada no presentan modo necesario una relación física de unas con otras. Algunas estrellas de una constelación pueden estar relativamente próximas a la Tierra, mientras que otras pueden estar relativamente alejadas. Todo lo que se sabe es que las estrellas están en aproximadamente la misma dirección a la vista desde la Tierra y todo lo que se encuentra dentro de una dirección está dentro del rango de una constelación.

La Unión Astronómica Internacional es una agrupación de las diferentes sociedades astronómicas nacionales y constituye el órgano de decisión internacional en el campo de las definiciones de nombres de planetas y otros objetos celestes así como los estándares en astronomía. Fue creada en 1919 a partir de la unión de diferentes organismos como el Bureau International de l’Heure, la Carte du Ciel y la Solar Union. Su objetivo es promover y coordinar la cooperación internacional en la astronomía y la elaboración de las reglas de nomenclatura de los diferentes cuerpos celestes.

1 Con en el Observatorio en París, fue la agencia internacional responsable de la combinación de diferentes medidas de tiempo universal, con la misión de unificar la hora mundial.
2 El primer gran relevamiento fotográfico de los cielos que fue confeccionado por varios observatorios de diferentes latitudes.
3 Unión Internacional para la cooperación en la investigación solar.
La cuarta parte es la comparación entre las constelaciones de cada uno de los hemisferios, comparando parámetros como la luminosidad, el área, número de estrellas y constelaciones, visibilidad, fechas de mejor visibilidad y las estrellas del Almanaque Náutico.

La quinta parte es el reconocimiento de estrellas, enumerando los diferentes modos de reconocer estrellas y constelaciones, desde métodos sencillos como trazar enfilaciones a simple vista y sin la necesidad de ningún instrumento o artefacto, o con métodos más complicados y que requieren cálculos, como utilizando la naivesfera, el starfinder o el reconocimiento del astro desconocido. Pasando por métodos intermedios como serian el uso de planisferios y catálogos.

La sexta y última parte trata de las estrellas utilizadas en navegación, que son las estrellas publicadas por el Almanaque Náutico.

Con este trabajo he pretendido explicar cómo utilizar y reconocer las constelaciones y sus estrellas más importantes de una manera práctica y de concepto, pero sin utilizar cálculos matemáticos, ya que eso sería repetir lo que ya nos enseñan durante la carrera. Me ha parecido interesante elegir este tema ya que, aunque las constelaciones hoy en día han perdido su importancia, al verse desplazadas por los avances tecnológicos, creo que es importante conocerlas, debido a que no nos podemos fiar al 100 por 100 de los aparatos electrónicos.
2. Historia

Debido al tiempo transcurrido y a la falta de registros históricos, es difícil conocer el origen preciso de las constelaciones más antiguas del mundo occidental. Pero parece que Leo, Taurus y Escorpius, existían ya en la cultura de Mesopotamia, unos 4000 años a. C.

Se cree que el interés de estos antiguos pueblos por la disposición de las estrellas tuvo motivos fundamentalmente prácticos, usualmente con propósitos agrícolas, de viaje y religiosos: como ayuda para medir el tiempo y las estaciones y para servir de orientación a navegantes y mercaderes cuando realizaban travesías durante la noche, ya fuese por mar o por el desierto. Así, pensaron que imaginando figuras con las cuales relacionar los grupos de estrellas les sería más fácil y seguro recordar las rutas a seguir.

De las 88 constelaciones adoptadas por la UAI, casi la mitad provienen de la imaginación de los astrónomos griegos. Homero menciona a Orion en la Odisea (obra que data del siglo IX a.C.). En el Antiguo Egipto era conocido como Sahu mil años antes.

El Zodiaco, dividido en doce constelaciones, surgió en Babilonia durante el reinado de Nabucodonosor II es el siglo VI a. C., vinculado a las doce lunaciones anuales. Lo adoptará la cultura griega, dándole a las constelaciones los actuales nombres.

Paralelamente otras culturas como la china, los incas, las hindús, precocobinas,... iban nombrando las constelaciones según su cultura, pero no son reconocidas actualmente.

La compilación exhaustiva de constelaciones más antigua conocida se remonta a Claudio Ptolomeo, quien en el siglo II a. C. presentó un catálogo de 1022 estrellas, agrupadas en 48 constelaciones, en su obra Almagesto. Este trabajo será la base de muchos resúmenes astronómicos occidentales posteriores, hasta finales de la Edad Media, sólo incluía las estrellas visibles desde Alejandría, lugar desde donde Ptolomeo llevó a cabo sus observaciones.

El Almagesto constituyó la última palabra sobre constelaciones hasta el siglo XVI, en que los viajes europeos de descubrimientos posibilitaron que los navegantes llegaran hasta latitudes meridionales.

Pieter Dirkszoon Keyser y Frederick de Houtman fueron navegantes y exploradores neerlandeses del siglo XVI que entre los años de 1595 y 1597 crearon 20 constelaciones pertenecientes al hemisferio sur, por solicitud del astrónomo y cartógrafo Petrus Plancius. De las cuales doce están entre las 88 constelaciones modernas.

El primer atlas de estrellas llamado Uranometria, publicado por el astrónomo alemán Johann Bayer en 1603, incluía 12 constelaciones nuevas visibles desde el hemisferio sur, además de un modo de nombrar las estrellas de cada constelación utilizando letras del alfabeto griego al que seguía el genitivo del nombre latino de la constelación a la que pertenece.

Ilustración 2. Uranometría. Fuente: www.library.illinois.edu
En 1624 el también astrónomo alemán Jakob Bartsch añadió tres constelaciones nuevas a los espacios existentes entre las constelaciones nombradas con anterioridad, Bartsch alistó asimismo como constelación separada la agrupación que conocemos por Crux, Cruz del Sur, cuyas cuatro estrellas principales habían sido incluidas por Ptolomeo en la constelación de Centauro. Con anterioridad, en el siglo XVII, Tycho Brahe elevó a la categoría de constelación el asterismo Coma Berenices que para los antiguos formaba parte de Leo y Virgo.

En Francia, en 1679, Augustin Royer creó la constelación Columba, separando parte de la constelación Canis Major. Además, identificó un grupo de estrellas entre Andrómeda, Céfeso y Pegaso, al cual nombró como el Cetro, pero que sería cambiada por Lacerta más adelante.

Siete constelaciones más, visibles desde las latitudes septentrionales medias, fueron descritas por el astrónomo polaco Johannes Hevelius en 1690. La visita de Nicolás Luise de La Caille al Cabo de Buena Esperanza en 1750 dio por resultado el descubrimiento de 14 constelaciones meridionales adicionales. Desde este tiempo, se ha intentado en varias ocasiones crear nuevas constelaciones, pero éstas no han gozado de aceptación oficial. No obstante, desde mediados de la primera década del siglo XIX ha sido uso corriente omitir la constelación mayor de Ptolomeo, Argo Navis, y alistar en su lugar tres constelaciones que representan la quilla de la nave (Carina), la popa (Puppis) y las velas (Vela), además de la brújula (Pyxis) inventada por La Caille.

La lista vigente de constelaciones es la adoptada por la Unión Astronómica Internacional de 1928 a 1930. Que impuso los límites de las constelaciones en 88 regiones en las cuales fue dividido el firmamento entero, de manera que cada área del firmamento pertenece a una y sólo a una de estas regiones. Los límites zigzaguean, por lo cual las líneas que separan las constelaciones no presentan discordancias con las figuras antiguas. Unas pocas estrellas que inicialmente se pensó que formaban parte de otra constelación acabaron en una nueva: por ejemplo, una de las cuatro estrellas del cuadrado de Pegasus pertenece ahora de modo oficial a Andrómeda. Pero, en conjunto, la división de la UAI aportó una gran simplificación.
3. Estrellas y Constelaciones

3.1. Estrellas:

Puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. De un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en un gas, tiende a expandirla. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la estrella. Por ello, el equilibrio se mantendrá esencialmente en las mismas condiciones, en la medida en que la estrella mantenga el ritmo de producción energética. Pero dicho ritmo cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro, que se conocen como evolución de la estrella.

La energía que disipan en el espacio estas esferas de gas, son en forma de radiación electromagnética, neutrones y viento estelar, y nos permiten observar la apariencia de las estrellas en el cielo nocturno como puntos luminosos y, en la gran mayoría de los casos, titilantes.

Debido a la gran distancia que suelen recorrer las radiaciones estelares, estas llegan débiles a nuestro planeta, siendo susceptibles, en la gran mayoría de los casos, a las distorsiones ópticas producidas por la turbulencia y las diferencias de densidad de la atmósfera terrestre. El Sol, al estar tan cerca, se observa no como un punto sino como un disco luminoso cuya presencia o ausencia en el cielo terrestre provoca el día o la noche respectivamente.

Los nombres de las estrellas proceden tanto de los griegos tales como Sirio, Procyon, Pollux, Castor, Régulo, Polaris, Arturo, Canopo, como de los árabes como Alcor, Mizar, Vega, Aldebarán, Deneb, Rigel, Algol, Betelgeuse y unos centenares de nombres más.

Ante la imposibilidad de dar nombre a la enorme cantidad de estrellas se planteó la idea de dar otro sistema de nomenclatura que resultase más útil para los astrónomos.

En 1603 Jon Bayer estableció un orden de brillo dentro de cada constelación, de modo que llamó a la estrella más brillante alfa, a la que le seguía en brillo beta y así sucesivamente. El inconveniente de esta nomenclatura es que el alfabeto griego sólo consta de 24 letras, mientras que, por término medio, hay unas 70 estrellas visibles por constelación.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Cuando las letras del alfabeto griego resultaban insuficientes para una constelación, Bayer recurrió al empleo de las letras minúsculas del alfabeto latino, complicando el método empleado.

Las estrellas se mueven en el espacio, aunque desde la tierra su movimiento no se percibe inmediatamente. Así, ningún cambio puede detectarse en sus posiciones relativas en el transcurso de un año e, incluso, en un periodo de mil años las estrellas parecen no haberse movido sustancialmente. Esto se debe a la enorme distancia a que se encuentran las estrellas de la Tierra. A estas distancias, han de transcurrir muchos miles de años para que el mapa estelar sufra cambios apreciables. Debido a esta aparente constancia a sus posiciones relativas, se ha acuñado el nombre de “fijas” para denominar a las estrellas.

3.2. Magnitud:

A simple vista puede apreciarse que hay unas estrellas que son más brillantes que otras. Los griegos ya intentaron clasificar las estrellas según su brillo. Hiparco introdujo las bases de la clasificación que se utiliza hoy en día: el sistema de magnitudes. La primera categoría o primera magnitud correspondía a las estrellas más brillantes que eran visibles poco después de la puesta de Sol. Las estrellas que eran aproximadamente la mitad de brillantes las denominó de segunda magnitud, y así sucesivamente hasta las de sexta magnitud, que son las estrellas más débiles visibles a simple vista en una noche clara.

En el siglo XIX, en un intento de mejorar la escala de magnitudes, se observó que las estrellas de sexta magnitud son unas 100 veces más débiles que las estrellas de primera magnitud, lo que supone que entre dos magnitudes sucesivas exista una diferencia de brillo de
aproximadamente 2,5. Además se establecieron algunas estrellas como referencia a partir de las cuales se podían medir los brillos del resto de las estrellas.

Una de las características de la escala de magnitudes es que la magnitud aumenta cuando el brillo disminuye y viceversa. Por ejemplo, una estrella de primera magnitud, fácilmente visible a simple vista es 100 veces más brillante que una de sexta magnitud, apenas visible a simple vista. La consecuencia de todo ello es que los objetos muy brillantes adquieren magnitudes negativas. Por ejemplo, una estrella que sea aproximadamente 2,5 veces más brillante que otra de primera magnitud, tendrá una magnitud menos, por lo que al restar 1 a 1, tendrá magnitud 0. Si tenemos otra estrella que a su vez sea 2,5 veces más brillante que otra de magnitud 0, tendrá magnitud -1, y así sucesivamente. El astro más brillante del cielo es el Sol con una magnitud de -26,8, después le sigue la Luna llena con una magnitud de -12,6 y a continuación Venus con una magnitud de -4,4.

No obstante, estas magnitudes corresponden al objeto tal y como se ve en la bóveda celeste, denominándose magnitud aparente. El brillo que podemos medir de las estrellas en el cielo, no nos da una indicación real de lo luminosa que es una estrella. Una estrella poco luminosa pero cercana al Sistema Solar puede aparecer más brillante que otra que sea más luminosa pero que esté más lejos.

Es por ello que para comparar las estrellas se calcula el brillo que tendrían si estuviesen situadas a una distancia fija, que arbitrariamente se ha escogido de 10 parsecs o 32,6 años luz. A ese brillo se le denomina magnitud absoluta.

En el siguiente cuadro se dispone el factor de brillo en relación a la magnitud:

<table>
<thead>
<tr>
<th>Diferencia en cuanto a magnitud</th>
<th>Factor en cuanto a brillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.512 veces</td>
</tr>
<tr>
<td>2</td>
<td>6.31 veces</td>
</tr>
<tr>
<td>3</td>
<td>15.85 veces</td>
</tr>
<tr>
<td>4</td>
<td>39.81 veces</td>
</tr>
<tr>
<td>5</td>
<td>100 veces</td>
</tr>
<tr>
<td>6</td>
<td>251 veces</td>
</tr>
<tr>
<td>7</td>
<td>631 veces</td>
</tr>
</tbody>
</table>
3.3. Constelación:

Es una agrupación convencional de estrellas, cuya posición en el cielo nocturno es aparentemente aproximada y pueblos, generalmente de civilizaciones antiguas, decidieron vincularlas mediante trazos imaginarios, creando así siluetas sobre la esfera celeste. En la inmensidad del espacio, en cambio, las estrellas de una constelación no necesariamente están localmente asociadas, y pueden encontrarse a cientos de años luz unas de otras. Además, dichos grupos son completamente arbitrarios, ya que distintas culturas han ideado constelaciones diferentes, incluso vinculando las mismas estrellas.

La lista de las 88 constelaciones modernas se organiza según el área que cubren de cielo, medido en grados cuadrados, determinados por los límites trazados por Eugène Joseph Delporte, que dibujó los límites usando las líneas verticales y horizontales de ascensión recta (equivalente la longitud terrestre) y declinación (equivalente a la longitud terrestre) correspondientes al año 1875,04. Debido a la precesión de los equinoccios5, los bordes de los mapas modernos se han movido un poco, por lo que ya no son líneas perfectamente verticales u horizontales. Este desvío aumentará con los años y siglos. Sin embargo, esto no altera el área que cubre cada constelación.

Se acostumbra a separar las constelaciones en dos grupos, dependiendo el hemisferio celeste dónde se encuentren:

- **constelaciones septentrionales**, las ubicadas al norte del ecuador celeste
- **constelaciones australes**, las ubicadas al sur del ecuador celeste.

4 Los astrónomos usan decimales para indicar partes del año, por lo que 1875,0 implica el principio del año 1875.

5 Es el cambio lento y gradual en la orientación del eje de rotación de la Tierra.
Dentro de cada uno de estos grupos se dividen en no circumpolares y circumpolares. Una constelación circumpolar es una constelación que, vista desde una latitud dada en la Tierra, nunca se pone, es decir, nunca desaparece bajo el horizonte debido a su proximidad a uno de los polos celestes. Por lo tanto son visibles desde dicho lugar durante toda la noche, todas las noches del año y serían siempre visibles durante el día también si no fuera por el efecto del resplandor del Sol. Para saber si para un observador una determinada constelación es circumpolar tiene que sumar su latitud y la declinación de la constelación, si el resultado de la suma da un valor mayor o igual a 90º es que es circumpolar para esa constelación y esa latitud. Si el resultado de la suma es menor de 90º es que la constelación en ese lugar es no circumpolar, por lo que sale y se pone en el horizonte del observador. En cambio, para un observador situado en el polo norte (latitud 90ºN) serán circumpolares todas las constelaciones del hemisferio norte y lo mismo para un observador situado en el polo sur. En cambio un observador situado en el ecuador, no tendrá ninguna constelación circumpolar, debido al movimiento de rotación de la tierra.

3.3.1. Constelaciones zodiacales

Las constelaciones del zodíaco pertenecen a una franja del cielo por donde, aparentemente, transitan el Sol y los planetas. Durante el siglo V a. C., dicha región fue dividida en 12 partes iguales, una por cada mes del año, a las cuales dieron el nombre de la constelación más próxima.

Además, a esa lista de 12 constelaciones habría que añadir a Ophiuchus, ya que astronómicamente hablando el Sol transita por sus límites. Los antiguos probablemente no tomaron esto en consideración por razones estéticas o astrológicas.

La precesión ha hecho cambiar asimismo las fechas en que el Sol parece recorrer cada una de las constelaciones del zodíaco, por lo cual el Sol no está situado en el signo que viene en los horóscopos de los periódicos. A principios de la Era cristiana el Sol se proyectaba al comienzo de la primavera en la constelación de Aries. Actualmente, 2000 años después, ha girado un ángulo 27,92º, proyectándose en Piscis.

En la astronomía moderna se considera el Zodiaco como una banda imaginaria de la esfera celeste que se extiende 8º a cada lado de la eclíptica en la cual transita el Sol, la Luna y los planetas.
3.4. Movimientos de la Tierra:

La Tierra no se encuentra en reposo sino que está sometida a movimientos de diversa índole. Los principales movimientos de la Tierra se definen con referencia al Sol y son los de rotación y traslación.

3.4.1. Rotación de la Tierra

Es uno de los movimientos de la Tierra que consiste en la rotación alrededor de su eje, hacia el Este. Visto desde la Estrella Polar, la Tierra gira en sentido anti horario. Un giro completo en relación a una estrella fija dura 23 horas, 56 minutos y 4 segundos.

A lo largo de millones de años la rotación se ha ralentizado de forma significativa por interacciones gravitacionales con la Luna. Sin embargo, algunos acontecimientos de grandes proporciones, como el terremoto del Océano Índico de 2004 han acelerado la rotación en 3 microsegundos.

A este movimiento se debe la sucesión de días y noches, siendo de día el tiempo en que nuestro horizonte aparece iluminado por el Sol, y de noche cuando el horizonte permanece oculto a los rayos solares. La mitad del globo terrestre quedará iluminada, en dicha mitad es de día mientras que en el lado oscuro es de noche. En su movimiento de rotación, los distintos continentes pasan del día a la noche y de la noche al día.
3.4.2. *Traslación de la Tierra*

Es el movimiento de la Tierra alrededor del Sol, que es la estrella central del Sistema Solar. La Tierra describe a su alrededor una órbita eclíptica.

Podemos definir la eclíptica como el círculo máximo de la esfera celeste formado por las proyecciones del Sol en un año. La elíptica está inclinada respecto del ecuador 23º 27’. Los puntos de corte de estos círculos máximos se llaman puntos equinocciales, siendo uno Aries y el otro Libra. Se distinguen uno del otro porque en Aries el sol pasa de tener declinación negativa a positiva y en Libra al contrario. El Sol está en Aries el 21 de marzo (cuando empieza la primavera) y en Libra el 23 de septiembre (cuando empieza el otoño). Los puntos separados 90º de los anteriores, se llaman solsticios y son los puntos en los cuales el Sol tiene la mayor declinación, denominando al que se encuentra en el hemisferio Norte solsticio de verano, con declinación máxima positiva 23º27’ y el punto contrario, en el hemisferio Sur, solsticio de invierno, con declinación máxima negativa 23º27’.

![Ilustración 6. Equinoccios. Fuente: www.proyectosalonhogar.com](image)

La eclíptica es uno de los círculos más importantes de la esfera celeste, el Sol la recorre aparentemente debido únicamente al movimiento de traslación de la Tierra, es decir, que si la Tierra no tuviese movimiento de rotación alrededor de su eje, veríamos al Sol recorrer en un año la eclíptica, pero al tener la Tierra movimiento de rotación, vemos moverse al Sol con la combinación de los dos movimientos y, por ello, no recorre diariamente un paralelo como las estrellas, sino lo que hace es un movimiento de tirabuzón que va en medio año de declinación.
Si se toma como referencia la posición de una estrella, la Tierra para dar una vuelta completa tarda un año sidéreo cuya duración es de 365 días, 6 horas, 9 minutos y 9,87 segundos.

3.4.3. **Precisión de los equinoccios**

Es el cambio lento y gradual en la orientación del eje de rotación de la Tierra, que hace que la posición que indica el eje de la Tierra en la esfera celeste se desplace alrededor del polo de la eclíptica, trazando un cono y recorriendo una circunferencia completa cada 25776 años, de forma similar al bamboleo de un trompo o peonza. El valor actual del desplazamiento angular es de 50.290966” por año, o alrededor de 1° cada 71.6 años.

Este cambio de dirección es debido a la inclinación del eje de rotación terrestre sobre el plano de la eclíptica y la torsión ejercida por las fuerzas de marea de la Luna y el Sol sobre la protuberancia ecuatorial de la Tierra. Estas fuerzas tienden a llevar el exceso de masa presente en el ecuador hasta el plano de la eclíptica.

Una mitad del ensanchamiento ecuatorial se sitúa sobre el plano de la eclíptica y la otra mitad debajo. Durante los equinoccios, los ensanchamientos de cada lado de la eclíptica están a la misma distancia del Sol y este no produce momento de fuerza. En cambio, todo el resto del tiempo, y sobre todo en los solsticios, el ensanchamiento de uno de los lados de la eclíptica no se encuentra a la misma distancia que el ensanchamiento del otro lado, y se produce un momento de fuerza creado por el Sol, que tiende a llevar el exceso de masa presente en el ecuador hasta el plano de la eclíptica y provoca el movimiento de precesión de la Tierra.

Si no existiese el achatamiento y la Tierra fuese esférica, la atracción del Sol no produciría un momento de fuerza sobre la Tierra y no habría modificación de la dirección del eje terrestre.

El cambio en la dirección del eje de rotación de la Tierra provoca una variación del plano del ecuador y, por tanto, de la línea de corte de dicho plano con la eclíptica. Esta línea señala en la esfera celeste la dirección del punto Aries, que retrograda sobre la eclíptica, fenómeno denominado precesión de los equinoccios. Las consecuencias de este fenómeno son:

- El polo norte celeste se mueve en relación a las estrellas, estando ahora próximo a la Estrella Polar.
- El primer punto de Aries, intersección del ecuador con la eclíptica, retrograda sobre el ecuador en el mismo período, es decir, 50.290966" por año.

3.5. Coordenadas celestes:

Las coordenadas celestes son el conjunto de valores que, de acuerdo con un determinado sistema de referencia, dan la posición de un objeto en la esfera celeste.

Los hemisferios celestes son las partes en las que queda dividida la esfera celeste por el ecuador celeste. Estos hemisferios contienen los polos celestes que forman el eje en torno al cual gira la Tierra. El Polo Norte Celeste es el que coincide con Polaris y cuya altura proporciona la latitud del lugar.

De noche, las estrellas parecen girar de este a oeste. La trayectoria que describe cada estrella es circular, con centro en uno de los polos celestes (norte o sur, dependiendo del hemisferio donde se encuentre el observador). Este movimiento, aparente, es debido al movimiento de rotación de la Tierra.

Los polos celestes son los puntos que tienen declinaciones +90º y -90º, norte y sur, respectivamente.

Por efecto de la precesión de los equinoccios, los polos celestes se desplazan con relación a las estrellas y, en consecuencia, las Estrellas Polares (es decir, la estrella que aparece más cercana al polo) de cada hemisferio no es la misma a través de los años.
Para entender las coordenadas vamos a definir algunos conceptos:

- **Cenit** es la intersección de la vertical de un lugar y la esfera celeste. Es el punto más alto en el cielo con relación al observador, que se encuentra justo sobre su cabeza (90°). Prolongando esta línea en dirección opuesta, corta a la esfera celeste en otro punto llamado Nadir.

- **Los Verticales** son los círculos máximos que pasan por el Cenit y el Nadir y, por tanto, son perpendiculares al horizonte. Existen infinitos Verticales, cada astro en un instante dado tiene una que le pasa por él.

- **Meridiano del lugar** es el círculo máximo que pasa por los polos celestes y por el Cenit y el Nadir. También es una Vertical. Los polos dividen al meridiano del lugar en dos semicírculos, uno que va desde el Polo norte al sur cogiendo al Cenit, llamado meridiano superior y otro que también va desde el Polo norte al sur cogiendo al Nadir llamado meridiano inferior.

- **El meridiano de Greenwich** es el círculo máximo que pasa por los polos y el Cenit del observatorio de la ciudad de Greenwich (G), también se llama primer meridiano.

- **El Ecuador celeste** es un círculo máximo de esfera celeste en el mismo plano que el ecuador y por tanto perpendicular al eje de rotación de la Tierra. En otras palabras, es la proyección del ecuador terrestre en el espacio. Como resultado de la inclinación que presenta el eje de rotación de la Tierra, el ecuador celeste tiene una inclinación de 23°27' con respecto a la normal al plano de la eclíptica.
• Los círculos horarios son los círculos máximos de la esfera celeste que pasan por los polos celestes, por tanto, son perpendiculares al ecuador. Por lo que el meridiano del lugar y el meridiano de Greenwich son círculos horarios. Cada astro tiene un círculo horario que pasa por él.

• Los paralelos son los círculos menores paralelos al ecuador celeste. Están formados al cortar la esfera celeste las prolongaciones de los planos que contienen a los paralelos terrestres. Son perpendiculares a los círculos horarios, meridiano del lugar y de Greenwich, a los cuales cortan en dos puntos.

3.5.1. **Coordenadas horizontales**

Las coordenadas de este sistema se encuentran en los círculos máximos perpendiculares Horizonte y Vertical del astro. Son el **Azimut** (Z) y la **Altura** (a).

• El Azimut es el arco de horizonte que va desde los puntos cardinales Norte o Sur hasta el vertical del astro.

• Altura es el arco de vertical contado desde el Horizonte hasta el astro, siempre es menor de 90º y es positiva si el astro es visible y negativa si no lo vemos (está bajo el
horizonte). Los astros que tienen la misma altura están en el mismo almicantar. Conociendo estas coordenadas conocemos la posición del astro en la esfera celeste.

3.5.2. Coordenadas horarias

Estas coordenadas se encuentran en los círculos máximos perpendiculares, Ecuador y círculo horario del astro. Son el **horario** y la **declinación**.

- El horario del lugar (h\(L\)) o horario astronómico es el arco de ecuador contado desde el punto de corte con el meridiano superior del lugar hacia el W hasta el círculo horario del astro, se cuenta de 0 a 360°.
- El horario de Greenwich (h\(G\)) es análogo al del lugar, pero contado desde el meridiano superior de Greenwich.
- La **declinación** es el ángulo que forma un astro con el ecuador celeste. Se mide en grados y siempre es menor de 90°, es positiva si está al norte del ecuador celeste y

6 Son los círculos menores paralelos al horizonte. Son normales a los verticales y corta al meridiano del lugar y meridiano de Greenwich en dos puntos.
negativa si está al sur. La declinación es comparable a la latitud geográfica, que se mide sin embargo sobre el ecuador terrestre.

3.5.3. **Coordenadas uranográficas ecuatoriales**

Este sistema de coordenadas es independiente del observador y se cuenta sobre el ecuador y los círculos horarios. Las coordenadas de este sistema que da el Almanaque náutico son el Ángulo sidéreo (\(\text{AS}\)) y la declinación (\(\text{d}\)).

- El Ángulo sidéreo es el arco de ecuador contado desde Aries hasta el círculo horario del astro de 0º a 360º en sentido inverso, o sea como las agujas del reloj, mirando desde el polo norte.
- La declinación la he explicado en el apartado anterior.

El Almanaque Náutico general, en lugar de dar el Ángulo sidéreo da la Ascensión recta que es el arco de ecuador contado desde Aries hasta el círculo horario en sentido directo, por lo que es igual al Ángulo sidéreo pero contado en sentido contrario, resultando: \(\text{AR} = 360º - \text{AS}\)

- La ascensión recta (\(\text{AR}\)) se mide en horas (h) y toma valores desde 0h hasta 24h subdividiéndose en 60 minutos y estos a su vez en 60 segundos.
El horario del lugar de Aries (hLγ) es el arco de ecuador desde el meridiano superior hasta Aries contado en el sentido de los horarios. Si sumamos hLγ y AS obtenemos el horario del lugar hL.

El punto Aries o equinoccio es el punto de la eclíptica a partir del cual el Sol pasa del hemisferio sur al hemisferio norte, lo que ocurre en el equinoccio de primavera sobre el 21 de marzo, iniciándose la primavera en el hemisferio norte y el otoño en el hemisferio sur. Los planos del ecuador celeste y la eclíptica se cortan en una recta, que tiene en un extremo el punto Aries y en el extremo diametralmente opuesto el punto Libra.

El punto Aries es el origen de la ascensión recta, y en dicho punto tanto la ascensión como la declinación son nulas.

4. Constelaciones del Hemisferio Norte

4.1. Constelaciones circumpolares norte:

4.1.1. Camelopardalis

Es una gran constelación del hemisferio norte celeste muy poco conspicua, pues sus estrellas más brillantes son sólo de magnitud 5, excepto β Camelopardalis que es de magnitud 4. Está situada entre las constelaciones de Auriga y las dos Osas. El nombre de Camelopardalis proviene de "camello-leopardo", nombre que los griegos dieron a la jirafa, ya que pensaban que tenía la cabeza de camello y las manchas de leopardo. Fue introducida como constelación por Petrus Plancius y publicada por Jakob Bartsch en 1624 en su libro sobre las constelaciones.

Ilustración 13. Constelación Camelopardalis. Fuente: Stellarium

Su abreviatura es “Cam”, simboliza una jirafa y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>5 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+69°</td>
</tr>
<tr>
<td>Superficie</td>
<td>757 grados cuadrados Rango 18º</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Camelopardalis (magnitud ap. 4.25)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −5°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 2. Características Camelopardalis. Fuente: Propia
4.1.2. **Cassiopeia**

Es una de las constelaciones compiladas en el catálogo estelar de Ptolomeo, el Almagesto, del siglo II, fácilmente reconocible por sus cinco estrellas brillantes que forman una "M" o una "W", dependiendo del momento de la noche en que se observe, sobre el horizonte norte. Casiopea señala al norte apuntando desde sus extremos de la M o W, tiene al otro lado la Osa Mayor. Al ser tan fácil de reconocer es muy usada para encontrar el norte cuando no es posible utilizar la Osa Mayor para este propósito, cuando ésta no es visible en cielos de latitudes templadas (menos de 35° N). Casiopea tiene su máxima culminación en el mes de noviembre y está formada por sus cinco estrellas más brillantes (de oeste a este): Caph, Schedar, Cih, Ruchbab y Segin. Es en esta culminación cuando tiene la mejor visibilidad para los observadores australes, que la verán formando una "W" muy baja sobre el horizonte norte al igual como sería observada seis meses más tardes en latitudes medias septentrionales.

Su abreviatura es “Cas”, simboliza la figura de la Reina y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>1 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+62°</td>
</tr>
<tr>
<td>Superficie</td>
<td>598 grados cuadrados Rango 25°</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Cas (Schedar) (magnitud ap.2,23)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −12°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Tabla 3. Características Cassiopeia. Fuente: Propia
4.1.3. **Cepheus**

Representa al legendario rey de Etiopía Cefeo, esposo de Casiopea y padre de Andrómeda. Es una de las 48 constelaciones nombradas por Ptolomeo. Es una constelación poco brillante ya que la mayoría de sus estrellas están entre magnitud 3 y 4. Está situada entre las constelaciones de Cassiopea, Cygnus y Draco.

Sin duda alguna el objeto más importante de esta constelación es una de sus estrellas, que dio nombre a un tipo de estrellas que han sido básicas para determinar las distancias interestelares: Las Cefeidas.

Ilustración 15. Constelación Cepheus. Fuente: Stellarium

Su abreviatura es “Cep”, simboliza la figura del Rey Cefeo y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>22 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+70°</td>
</tr>
<tr>
<td>Superficie</td>
<td>588 grados cuadrados Rango 27</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Cep (Alderamin) (magnitud ap. 2,44)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −1°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

4.1.4. **Draco**

También es una de las 48 constelaciones listadas por Ptolomeo. Aunque muy grande, Draco no tiene estrellas especialmente brillantes. La cabeza del dragón está representada por un cuadrilátero de estrellas situadas entre Hércules y la Osa Menor.

![Ilustración 16. Constelación Draco. Fuente: Stellarium](image)

Su abreviatura es “Dra”, simboliza un Dragón y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>15 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+67°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1083 grados cuadrados Rango 8</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>y Dra (Etamin) (magnitud ap. 2,23)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −4°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 5. Características Draco. Fuente: Propia
4.1.5. **Lacerta**

Está situada a unos 20 grados al este de Deneb (α Cygni). El cuerpo del lagarto va en dirección norte-sur. Fue recogida en el atlas de Hevelius en 1690. Antes de que Johannes Hevelius adoptara el nombre de Lacerta, otros nombres se propusieron para esta parte del cielo. Entre ellos Cetro y mano de la Justicia y Honores de Federico, en alusión a Federico el Grande de Prusia. Siendo una constelación moderna, no está asociada a ninguna leyenda antigua.

![Ilustración 17. Constelación Lacerta. Fuente: Stellarium](image)

Su abreviatura es “Lac”, simboliza un Lagarto y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>22,5 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+46°</td>
</tr>
<tr>
<td>Superficie</td>
<td>201 grados cuadrados Rango 68</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Lacertae (magnitud ap. 3.8)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −33°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Octubre</td>
</tr>
</tbody>
</table>

Tabla 6. Características Lacerta. Fuente: Propia
4.1.6. **Lynx**

Introducida en el siglo XVII por Johannes Hevelius. El origen del nombre se debe a la poca luminosidad de sus astros, pues se necesita tener ojos de lince para poder verla. Para localizar al Lince hay que buscar entre dos constelaciones muy luminosas, la Osa Mayor y Auriga.

![Ilustración Lynx](Stellarium)

Su abreviatura es “Lyn”, simboliza un lince y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>8 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+47,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>545 grados cuadrados Rango 28</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Lyn (magnitud ap. 3,14)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y -28°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

Tabla 7. Características Lynx. Fuente: Propia
4.1.7. *Ursa Major*

La Osa Mayor es también conocida como el Carro Mayor o la Hélice. Entre los aficionados se le conoce con el nombre de "el carro", por la forma que dibujan sus siete estrellas principales, aunque ha recibido otros muchos nombres. A partir de la posición de Merak (β) y Dubhe (α) se puede encontrar la Estrella Polar.

![Ilustración 19. Constelación Ursa Major. Fuente: Stellarium](image)

Su abreviatura es “UMa”, simboliza la Gran Osa y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>11 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+51°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1280 grados cuadrados Rango 3</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>ε UMa (Alioth) (magnitud ap.1.7)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −17°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 8. Características Ursa Major. Fuente: Propia
4.1.8. **Ursa Minor**

La Osa Menor es una de las constelaciones más conocidas del hemisferio norte. Constuye siete estrellas con forma de carro; cuatro de ellas formarían lo que es la parte honda del carro y las otras tres serían el mango. El elemento más conocido de la Osa Menor es la estrella Polar, la cual se encuentra situada en la prolongación del eje de la tierra, de modo que permanece fija en el cielo y señala el Polo Norte geográfico, por lo que ha sido empleada por navegantes como punto de referencia en sus travesías.

![Ilustración 20. Ursa Minor. Fuente: Stellarium](image)

Su abreviatura es “UMi”, simboliza la Osa pequeña y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>16h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+77,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>256456 grados cuadrados</td>
</tr>
<tr>
<td>Rango</td>
<td>56</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Polaris (magnitud ap. 2)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y 0°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Junio</td>
</tr>
</tbody>
</table>

Tabla 9. Características Ursa Minor. Fuente: Propia
4.2. Constelaciones no circumpolares del hemisferio norte:

4.2.1. Andromeda

Situada al sur de Cassiopeia y cerca de Pegaso. Toma su nombre de la doncella Andrómeda de la mitología griega. Comparte una estrella con Pegaso, la estrella blanco-azulada de la esquina noroeste del Cuadrante de Pegaso, denominada Alpheratz o Sirrah (α Andromedae).

Su abreviatura es “And”, simboliza la figura de la Princesa Andrómeda y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>1,5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+37°</td>
</tr>
<tr>
<td>Superficie</td>
<td>722 grados cuadrados Rango 19</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Alpheratz (α And) (magnitud ap.2,05)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −37°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Tabla 10. Características Andromeda. Fuente: Propia
4.2.2. **Auriga**

Su localización es fácil, basta con mirar por encima de Orión. Se ve un pentágono de estrellas brillantes, entre las que destaca Capella (α Aurigae).

![Ilustración 22. Constelación Auriga. Fuente: Stellarium](image)

Su abreviatura es “Aur”, simboliza la figura de un Cochero y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>6h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+42°</td>
</tr>
<tr>
<td>Superficie</td>
<td>657 grados cuadrados</td>
</tr>
<tr>
<td></td>
<td>Rango 21</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Capella (α Aur) (magnitud ap. 0.05)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y -34°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 11. Características Auriga. Fuente: Propia
4.2.3. **Bootes**

Es una de las 48 constelaciones listadas por Ptolomeo. Boötes parece ser una figura humana grande, mirando hacia la Osa Mayor.

![Ilustración 23. Constelación Bootes. Fuente: Stellarium](image)

Su abreviatura es “Boo”, simboliza la figura de un Pastor o Boyero y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>15h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+31°</td>
</tr>
<tr>
<td>Superficie</td>
<td>907 grados cuadrados Rango 13</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Arcturus (α Boo) (magnitud ap.0.15)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −35°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Junio</td>
</tr>
</tbody>
</table>

4.2.4. **Canes Venatici**

Pequeña constelación introducida por Johannes Hevelius en el siglo XVII. Representa a 2 perros de caza (Chara y Asterion) que acompañan al Cazador de la constelación Bootes.

![Ilustración 24. Constelación Canes Venatici. Fuente: Stellarium](image)

Su abreviatura es “CVn”, simboliza la figura de unos Perros cazadores y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>13h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+40,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>465 grados cuadrados Rango 38</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Cor Caroli (α CVn) (magnitud ap. 2,90)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y -37°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
</tr>
</tbody>
</table>

4.2.5. **Coma Berenices**

Cabellera de Berenice en honor a la esposa de Ptolomeo III⁷. Constelación situada cerca y al oeste de Leo. A pesar de sus 386 grados cuadrados es una constelación nada vistosa a simple vista.

⁷Tercer faraón de la Dinastía Ptolemaica. Gobernó en Egipto de 246 a 222 a. C.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 25. Constelación Coma Berenices. Fuente: Stellarium

Su abreviatura es “Com”, simboliza el Cabello de Berenice y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+23,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>386 grados cuadrados Rango 42</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Com (magnitud ap. 4,26)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −56°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
</tr>
</tbody>
</table>

4.2.6. **Corona Borealis**

Es una pequeña constelación boreal cuyas principales estrellas forman un arco semicircular. Fue también una de las 48 constelaciones listadas por Ptolomeo, quien se refirió a la misma como Corona. La palabra Borealis fue añadida después, en contraste con la Corona Australis.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Su abreviatura es “CrB”, simboliza la Corona del Norte y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>16h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+33°</td>
</tr>
<tr>
<td>Superficie</td>
<td>179 grados cuadrados Rango 73</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>(α CrB) (Alphecca) (magnitud ap. 2,2)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −50°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 15. Características Corona Borealis. Fuente: Propia

4.2.7. Cygnus

Es una constelación del hemisferio norte que atraviesa la Vía Láctea. La disposición de sus principales estrellas hace que a veces sea conocida como la Cruz del Norte, en contraste con la constelación austral de la Cruz del Sur.

8Es la galaxia espiral en la que se encuentra el Sistema Solar.
Ilustración 27. Constelación Cygnus. Fuente: Stellarium

Su abreviatura es “Cyg”, simboliza un Cisne y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>21h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+44,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>804 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Deneb (α Cyg) (magnitud ap. 1.25)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre:</td>
</tr>
<tr>
<td></td>
<td>+90° y −29°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

4.2.8. Hercules

Recibe su nombre del héroe mitológico, Hércules y es la quinta en tamaño de las 88 constelaciones modernas. También era una de las 48 constelaciones de Ptolomeo. Es fácilmente reconocible por su forma de trapecio.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 28. Constelación Hercules. Fuente: Stellarium

Su abreviatura es “Her”, simboliza la figura del héroe Hércules y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>17h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+27,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1225 grados cuadrados Rango 5</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Kornephoros (magnitud ap. 2.75)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −39°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 17. Características Hercules. Fuente: Propia

4.2.9. Leo Minor

Es de las constelaciones más pequeñas, apenas puede ser reconocida como un triángulo y está situada entre las fácilmente reconocibles Ursa Major y Leo. Fue creada por Johannes Hevelius en 1687. Como curiosidad, es la única constelación del Hemisferio Norte que no tiene una estrella Alpha. El motivo es que Hevelius no calificaba a ninguna
estrella de sus constelaciones, y era Francis Baily, un astrónomo inglés, el que las calificaba e incluía en el British Association Catalogue en 1845. Baily asignó a la segunda estrella más brillante la letra Beta, pero por error se dejó de asignar la letra Alfa a la más brillante (46 LMi).

![Ilustración 29. Constelación Leo Minor. Fuente: Stellarium](image)

Su abreviatura es “LMi”, simboliza la figura de un león pequeño y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+32,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>232 grados cuadrados Rango 64</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>46 LMi (Praecipua) (magnitud ap. 3,83)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y –48°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 18. Características Leo Minor. Fuente: Propia

4.2.10. Lyra

La constelación de Lyra no es grande pero es fácilmente identificable por su estrella Vega que es el vértice del denominado "Triángulo de verano"⁹ (las otras dos estrellas son Deneb, en la constelación Cisne y Altair, en Águila).

⁹Es un asterismo que dibuja un triángulo imaginario en el hemisferio norte de la esfera celeste, sus vértices son las estrellas Altair, Deneb y Vega, y conecta las constelaciones Aquila, Cygnus y Lyra respectivamente.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 30. Constelación Lyra. Fuente: Stellarium

Su abreviatura es “Lyr”, simboliza la figura de la Lira y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>19h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+36,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>286 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Vega (α Lyrae)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −42°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

4.2.11. Sagitta

Es una de las tres constelaciones más pequeñas, después de Equuleus y Crux. Se encuentra dentro del perímetro del Triángulo Estival10.

10Es un asterismo que dibuja un triángulo imaginario en el hemisferio sur de la esfera celeste, sus vértices son las estrellas Betelgeuse, Siris y Procyon, y conecta las constelaciones Orión, Canis Major y Canis Minor respectivamente.
Ilustración 31. Constelación Sagitta. Fuente: Stellarium

Su abreviatura es “Sge”, simboliza una Flecha y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>20h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+18,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>80 grados cuadrados. Rango 86</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>γ Sge (magnitud ap. 3,47)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −69°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

4.2.12. Triangulum

Es una pequeña constelación del norte, cuyas tres estrellas más brillantes, de tercera y cuarta magnitud, forman un triángulo casi isósceles. También fue una de las 48 listadas por Ptolomeo.

Ilustración 32. Constelación Triangulum. Fuente: Stellarium
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Su abreviatura es “Tri”, simboliza una Triángulo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>2h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+31°</td>
</tr>
<tr>
<td>Superficie</td>
<td>132 grados cuadrados Rango 78</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Tri (magnitud ap. 3,00)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −53°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

4.2.13. Vulpecula

Ubicada en medio del Triángulo de verano, al norte de Sagitta y Delphinus. No contiene ninguna estrella brillante.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>20h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+24°</td>
</tr>
<tr>
<td>Superficie</td>
<td>268 grados cuadrados Rango 55</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Vul (Anser) (magnitud ap. 4.44)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −61°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

Tabla 22. Características Vulpecula. Fuente: Propia
4.2.14. Pegasus

Recibe su nombre del Pegaso mítico. Es una de las 48 inicialmente descritas por Ptolomeo. Es fácilmente reconocible por el cuadrado formado por sus estrellas Alfa "Markab", Beta "Scheat", Gamma "Algenib" y Alfa Andromedae "Alpheratz".

![Illustración 34. Constelación Pegasus. Fuente: Stellarium](image)

Su abreviatura es “Peg”, simboliza la figura del caballo alado Pegaso y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>23h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+19°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1121 grados cuadrados Rango 7</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Estrella más brillante</th>
<th>Alpheratz (α And) (magnitud ap.2,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −54°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Octubre</td>
</tr>
</tbody>
</table>

Tabla 23. Características Pegasus. Fuente: Propia

4.2.15. Perseus

Es una de las 48 constelaciones de Ptolomeo. Está situada al Este de Casiopea y al Norte de Taurus. Su nombre proviene del héroe mitológico griego Perseo que rescató a Andrómeda de Cetus, un monstruo marino. Esta constelación nos deleita cada año en Agosto con la lluvia de estrellas más famosa: Las Perseidas, que se pueden contemplar entre el 23 de Julio y el 22 de Agosto siendo la máxima actividad el día 12/13 de Agosto.

Su abreviatura es “Peg”, simboliza la figura del héroe mitológico Perseo y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>3h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+45°</td>
</tr>
<tr>
<td>Superficie</td>
<td>615 grados cuadrados Rango 24</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Per (Mirphak) (magnitud ap.1.79)</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Visibilidad</th>
<th>En latitudes entre: +90° y −31°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

4.2.16. *Aquila*

Es una de las 48 constelaciones listadas por Ptolomeo. Es una constelación fácil de identificar por la peculiar figura que forman sus estrellas más brillantes. Conocida desde la antigüedad, esta constelación cruza la Eclíptica y la Vía Láctea. Su estrella más brillante, Altair, es la 12ª estrella más brillante del cielo y forma junto a Deneb en Cygnus y a Vega en Lyra el famoso Triángulo de Verano.

![Ilustración 36. Constelación Aquila. Fuente: Stellarium](image)

Su abreviatura es “Aql”, simboliza una Águila y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+3,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>652 grados cuadrados Rango 22</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Estrella más brillante</th>
<th>Altair (α Aql) (magnitud ap. 0,77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +78° y −71°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

4.2.17. **Canis Minor**

La figura del Can menor es simple, es una línea que une dos estrellas. Procyon su estrella más brillante forma junto con Betelgeuse (Orión) y Sirio (Canis Mayor) el «Triángulo de Invierno».

![Ilustración 37. Constelación Canis Minor. Fuente: Stellarium](image_url)

Su abreviatura es “CMi”, simboliza un Perro Pequeño y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+6,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>183 grados cuadrados Rango 71</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Procyon (α CMi) (magnitud ap.0,38)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −77°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

4.2.18. **Delphinus**

Es una pequeña constelación muy cercana al ecuador celeste. Fue incluida ya en la lista de Ptolomeo de 48 constelaciones. Delphinus tiene el aspecto de un delfín al saltar y puede ser reconocida fácilmente en el cielo, aunque no es muy brillante. Se halla rodeada por Vulpecula, Sagita, Aquila, la constelación zodiacal de Acuario, el pequeño caballo Equuleus y finalmente por Pegaso. Otra forma de reconocerla es por tener una forma semejante a la de una cometa y porque es de pequeño tamaño.

![Ilustración 38. Constelación Delphinus. Fuente: Stellarium](image)

Su abreviatura es “Del”, simboliza un Delfín y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>21h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+11,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>189 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Rotanev (β Del) (magnitud ap. 3,63)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −69°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

Tabla 27. Características Delphinus. Fuente: Propia
4.2.19. Equuleus

Es la segunda más pequeña de las 88 constelaciones, sólo superada por la Cruz del Sur. A pesar de ello y de no ser de las más brillantes, fue también una de las 48 constelaciones catalogadas por Ptolomeo. Es fácil de localizar, ya que se encuentra entre Pegaso y Delphinus.

![Ilustración 39. Constelación Equuleus. Fuente: Stellarium](image)

Su abreviatura es “Equ”, simboliza la cabeza de un Caballo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>21h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+7,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>72 grados cuadrados Rango 87</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Equ (Kitalpha) (magnitud ap.3,92)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −77°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

Tabla 28. Características Equuleus. Fuente: Propia

4.2.20. Orión

Es una constelación prominente, quizás la más conocida del cielo. Sus estrellas brillantes y visibles desde ambos hemisferios hacen que esta constelación sea reconocida universalmente. La constelación es visible a lo largo de toda la noche durante el invierno en el hemisferio norte y en verano en hemisferio sur. Es asimismo visible pocas horas antes del amanecer desde finales del mes de agosto hasta mediados de noviembre y puede verse en el cielo nocturno...
hasta mediados de abril, al menos en el hemisferio norte. Es la única que tiene 6 estrellas con un brillo superior a magnitud 2. En el centro de la constelación se encuentran 3 brillantes estrellas (Alnitak, Alnilam y Mintaka) llamadas popularmente “las tres Marías”, que forman el cinturón del cazador que representa. Estas estrellas junto con Betelgeuse, Bellatrix, Saiph y Rigel, forman un asterismo inconfundible. Orión se encuentra cerca de la constelación del río Eridanus y apoyado por sus dos perros de caza Canis Maior y Canis Minor peleando con la constelación del Tauro.

Su abreviatura es “Ori”, simboliza la figura del personaje mitológico de Orión y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>5,5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+6°</td>
</tr>
<tr>
<td>Superficie</td>
<td>594 grados cuadrados Rango 30</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Rigel (β Orionis) (magnitud ap. 0,12)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +79° y -67°</td>
</tr>
</tbody>
</table>

Ilustración 40. Constelación Orion. Fuente: Stellarium
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Mejor visibilidad</th>
<th>Enero</th>
</tr>
</thead>
</table>

Tabla 29. Características Orion. Fuente: Propia

4.2.21. Serpens

Era una de las 48 listadas por Ptolomeo. Entre las modernas constelaciones es la única dividida en dos partes, aunque se considera una única constelación:

- **Serpens Caput**, que representa la cabeza de la serpiente, situada al oeste.
- **Serpens Cauda**, que representa la cola, al este.

Entre estas dos partes se sitúa la constelación de Ophiuchus, el portador de la serpiente. Sus estrellas son bastante débiles y la numeración griega sigue un orden empezando por Serpens Caput.

Ilustración 41. Constelación Serpens Caput. Fuente: Stellarium

Ilustración 41. Constelación Serpens Caput. Fuente: Stellarium
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 42. Constelación Serpens Cauda. Fuente: Stellarium

Su abreviatura es “Ser”, simboliza una Serpiente y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>Serpens Caput: 16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serpens Cauda: 18 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>Serpens Caput: +10°</td>
</tr>
<tr>
<td></td>
<td>Serpens Cauda: −5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>637 grados cuadrados</td>
</tr>
<tr>
<td></td>
<td>Rango 23</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Ser (Unukalhai)</td>
</tr>
<tr>
<td></td>
<td>(magnitud ap. 2,63)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre:</td>
</tr>
<tr>
<td></td>
<td>+74° y −64°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 30. Características Serpens Caputy Serpens Cauda. Fuente: Propia

4.2.22. Taurus

Es una constelación zodiacal. Destaca en el cielo invernal, entre Aries al oeste y Géminis al este. Al norte se encuentran Perseus y Auriga, al sureste Orión, y al suroeste Eridanus y Cetus.

En el zodíaco es el segundo signo. Como tal, en la antigüedad contenía la constelación del mismo nombre, pero la precesión de los equinoccios ha hecho que el signo de Tauro se encuentre ocupado por la constelación de Aries. Actualmente el sol brilla sobre Tauro entre el 13 de Mayo y el 21 de Junio.
Ilustración 43. Constelación Taurus. Fuente: Stellarium

Su abreviatura es “Tau”, simboliza un Toro y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>4,5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+15,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>797 grados cuadrados</td>
</tr>
<tr>
<td>Rango</td>
<td>17</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Aldebarán (α Tau) (magnitud ap. 0.9)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y -59°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Enero</td>
</tr>
</tbody>
</table>

Tabla 31. Características Taurus. Fuente: Propia

4.2.23. Gemini

Es la tercera constelación del zodíaco, y se encuentra a unos treinta grados al noroeste de Orión. Atravesada por la Vía Láctea y por la Eclíptica y cuyo nombre proviene de sus 2 principales estrellas: Castor y Pollux apodadas “Los Gemelos”.

56
Su abreviatura es “Gem”, simboliza la figura de dos gemelos y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>7h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+22,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>514 grados cuadrados Rango 30</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Pollux (β Gem) (magnitud ap.1.1)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −55°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 32. Características Gemini. Fuente: Propia
4.2.24. **Cancer**

Constituye uno de los doce signos zodiacales. La constelación de Cáncer es pequeña y débil. Se encuentra entre las constelaciones de Géminis al Este, Lince al Norte y las constelaciones de Canis Minor e Hidra al Sur. La constelación también da su nombre al Trópico de Cáncer\(^{11}\).

![Ilustración 45. Constelación Cancer. Fuente: Stellarium](image)

Su abreviatura es “Cnc”, simboliza un Cangrejo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>9h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+20°</td>
</tr>
<tr>
<td>Superficie</td>
<td>506 grados cuadrados Rango 31</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Cnc (Altarf) (magnitud ap. 3.5)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −57°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

\(^{11}\)Es el paralelo situado actualmente a una latitud de 23°26’16” al norte del Ecuador. Esta línea imaginaria delimita los puntos más septentrionales en los que el Sol llega a brillar desde el cénit, lo que ocurre entre el 20 y el 21 de junio de cada año, a lo que se le denomina como solsticio de junio.
4.2.25. Leo

Quizá una de las constelaciones zodiacales más conocidas, Leo contiene muchas estrellas brillantes, como Regulo, que es una estrella muy utilizada en Navegación. Se encuentra entre Cancer y Virgo.

![Ilustración 46. Constelación Leo. Fuente: Stellarium](image)

Su abreviatura es “Leo”, simboliza un León y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>11h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+13,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>947 grados cuadrados Rango 12</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Regulus (α Leo) (magnitud ap. 1,4)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +84° y −57°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 34. Características Leo. Fuente: Propia
4.2.26. Pisces

Es una constelación del zodiaco ubicada entre Aquarius al oeste y Aries hacia el este. No tiene estrellas de magnitud menor de a 4.

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>0,5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>+13°</td>
</tr>
<tr>
<td>Superficie</td>
<td>889 grados cuadrados Rango 14</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>η Psc(magnitud ap. 3.6)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +83° y −57°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Ilustración 47. Constelación Pisces. Fuente: Stellarium

Su abreviatura es “Psc”, simboliza dos Peces y sus características son:

Tabla 35. Características Pisces. Fuente: Propia
4.2.27. **Aries**

Es una de las constelaciones del zodíaco, se encuentra entre las constelaciones de Piscis, al oeste, y Tauro al este.

![Ilustración 48. Constelación Aries. Fuente: Stellarium](image)

Su abreviatura es “Ari”, simboliza un Carnero y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>3h</td>
</tr>
<tr>
<td>Declinación</td>
<td>+20,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>441 grados cuadrados Rango 39</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Ari (Hamal) (magnitud ap. 2.0)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +90° y −59°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

Tabla 36. Características Aries. Fuente: Propia
5. Constelaciones del hemisferio sur

5.1. Constelaciones circumpolares sur:

5.1.1. Centaurus

Es una extensa constelación que se encuentra al norte de Crux y en el extremo norte de la Vía Láctea. Rodea la Cruz del Sur formando una de las más ricas y hermosas constelaciones del cielo. En Centaurus se encuentra Próxima Centauri, la estrella conocida más cercana al Sol, situada a 4,22 años luz de distancia.

![Ilustración 49. Constelación Centaurus. Fuente: Stellarium](image)

Su abreviatura es “Cen”, simboliza la figura de un Centauro (medio hombre, medio caballo) y sus características son:

| Ascensión recta | 13h |

[Ilustración de Centaurus](image)
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-47,5°</td>
<td></td>
</tr>
<tr>
<td>Superficie</td>
<td>1060 grados cuadrados</td>
<td>Rango 9</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Alpha Centauri (α Cen) (magnitud ap. –0.01)</td>
<td></td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre:</td>
<td>+25° y –90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 37. Características Centaurus. Fuente: Propia

5.1.2. Grus

Es una de las 20 constelaciones creadas por Pieter Dirkszoon Keyser y Frederick de Houtman entre los años de 1595 y 1597, y su primera aparición es en el libro Uranometría de Johann Bayer en 1603.

![Ilustración 50. Constelación Grus. Fuente: Stellarium](image)

Su abreviatura es “Gru”, simboliza una Grulla y sus características son:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>22h</td>
<td></td>
</tr>
<tr>
<td>Declinación</td>
<td>-47°</td>
<td></td>
</tr>
<tr>
<td>Superficie</td>
<td>366 grados cuadrados</td>
<td>Rango 45</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Gru (Al Na’ir) (magnitud ap. +1,73)</td>
<td></td>
</tr>
</tbody>
</table>
Visibilidad | En latitudes entre: +33° y −90°
Mejor visibilidad | Octubre

Tabla 38. Características Grus. Fuente: Propia

5.1.3. **Apus**

Aparece por primera vez en Uranometría de Johann Bayer en el año 1603, pero pudo haber sido usada por navegantes con anterioridad.

![Ilustración 51. Constelación Apus. Fuente: Stellarium](image)

Su abreviatura es “Aps”, simboliza un Ave del Paraíso y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>16h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-75°</td>
</tr>
<tr>
<td>Superficie</td>
<td>206 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Aps(magnitud ap. 3.83)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +7° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

5.1.4. Ara

Situada entre Scorpius y Triangulum Australe. Es una de las 48 constelaciones recogidas por Ptolomeo en el siglo II.

Ilustración 52. Constelación Ara. Fuente: Stellarium

Su abreviatura es “Ara”, simboliza un Altar y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>17h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-56,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>237 grados cuadrados Rango 63</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Ara (magnitud ap. 2.9)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +22° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 40. Características Ara. Fuente: Propia

5.1.5. Carina

Forma parte de la antigua constelación de Argo Navis. La Unión Astronómica Internacional la dividió en tres componentes: Carina, Vela y Puppis. Contiene estrellas muy brillantes, pero destaca sobre todo Canopus por ser la segunda estrella más brillante del firmamento.
Su abreviatura es “Car”, simboliza la Quilla de un Barco y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>9h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-63°</td>
</tr>
<tr>
<td>Superficie</td>
<td>494 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Canopus (α Car) (magnitud ap. −0,7)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +15° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

Tabla 41. Características Carina. Fuente: Propia
5.1.6. **Chamaeleon**

La constelación fue una de las veinte constelaciones creadas por Pieter Dirkszoon Keyser y Frederick de Houtman entre los años de 1595 y 1597, y su primera aparición fue en el libro Uranometria de Johann Bayer de 1603.

![Ilustración 54. Constelación Chamaleon. Fuente: Stellarium](image)

Su abreviatura es “Cha”, simboliza un Camaleón y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>11h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-79°</td>
</tr>
<tr>
<td>Superficie</td>
<td>132 grados cuadrados Rango 79</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>y Cha (magnitud ap. 4,1)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +7° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 42.Características Chamaleon. Fuente: Propia
5.1.7. **Circinus**

Es una de las constelaciones pequeñas del sur. Esta constelación fue creada en el siglo XVIII, y fue introducida por Nicolas Louis de Lacaille, quien tenía una fascinación por la ciencia secular, de donde sacó numerosos nombre para las constelaciones. Sólo contiene 7 estrellas de magnitud inferior a 6.

![Ilustración 55. Constelación Circinus. Fuente: Stellarium](image)

Su abreviatura es “Cir”, simboliza un Compás y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>15h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-62°</td>
</tr>
<tr>
<td>Superficie</td>
<td>93 grados cuadrados Rango 85</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Cir (magnitud ap. 3,2)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +20° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Junio</td>
</tr>
</tbody>
</table>

Tabla 43. Características Circinus. Fuente: Propia

5.1.8. **Crux**

Normalmente referida como la Cruz del Sur para contrastarla con la Cruz del Norte, es una de las más famosas constelaciones modernas a pesar de ser la más pequeña de las 88 que integran la esfera celeste. Según los límites imaginarios impuestos por la Unión Astronómica
Internacional en 1930, esta constelación, con solo 68 grados cuadrados, cubre apenas 1/600 del cielo. Es útil para la orientación ya que permite determinar el punto cardinal sur.

![Ilustración 56. Constelación Crux. Fuente: Stellarium](image)

Su abreviatura es “Cru”, simboliza una Cruz y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>12h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-60°</td>
</tr>
<tr>
<td>Superficie</td>
<td>68 grados cuadrados Rango 88</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Acrux (α Cru) (magnitud ap. 1,25)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +25° y –90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
</tr>
</tbody>
</table>

Tabla 44. Características Crux. Fuente: Propia

5.1.9. **Dorado**

Creada por Pieter Dirkszoon Keyser y Frederick de Houtman entre 1595 y 1597, y listada por primera vez en la Uranometria de Johann Bayer de 1603. Es conocida también como "Pez Espada", recibe su nombre en realidad del dorado delfín o mahi-mahi, Coryphaena hippurus, un pez comestible nativo de América.
Su abreviatura es “Dor”, simboliza un Pez Dorado y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-59,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>141 grados cuadrados Rango 72</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Dor(magnitud ap. 3,27)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +20° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 45. Características Dorado. Fuente: Propia

Ilustración 57. Constelación Dorado. Fuente: Stellarium
5.1.10. Horologium

Originalmente llamado Horologium Oscillitorium por Nicolas Louis de Lacaille, el nombre de la constelación ha sido acortado para que sea menos pesado. Horologium Oscillitorium se puso en honor al inventor del reloj de péndulo, Christian Huygens.

Ilustración 58. Constelación Horologium. Fuente: Stellarium

Su abreviatura es “Hor”, simboliza un Reloj de Péndulo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>3h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-53,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>249 grados cuadrados Rango 58</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Horologii(magnitud ap. 3,85)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +23° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

Tabla 46. Características Horologium. Fuente: Propia

5.1.11. Hydrus

Es una de las 20 constelaciones creadas por Pieter Dirkszoon Keyser y Frederick de Houtman entre los años de 1595 y 1597, y su primera aparición es en el libro Uranometría de Johann Bayer en 1603. También conocida como "Hidra macho" o "pequeño Hidra".
Su abreviatura es “Hyi”, simboliza una Serpiente Marina y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>2h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-70°</td>
</tr>
<tr>
<td>Superficie</td>
<td>243 grados cuadrados Rango 61</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Hydri(magnitud ap. +2,80)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +8° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

Ilustración 59. Constelación Hydrus. Fuente: Stellarium

Tabla 47. Características Hydrus. Fuente: Propia
5.1.12. *Indus*

Es una de las 20 constelaciones creadas por Pieter Dirkszoon Keyser y Frederick de Houtman entre los años de 1595 y 1597, y su primera aparición es en el libro *Uranometría* de Johann Bayer en 1603.

Dado que fue creada en el siglo XVII y se sitúa en el sur, no fue conocida por las culturas clásicas, por lo que no tiene mitología relacionada.

![Ilustración 60. Constelación Indus. Fuente: Stellarium](image)

Su abreviatura es “Ind”, simboliza la figura de un Indio Americano y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>22h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-60°</td>
</tr>
<tr>
<td>Superficie</td>
<td>294 grados cuadrados Rango 49</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Indi (magnitud ap. +3,11)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +15° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

5.1.13. Mensa

Fue introducida por Nicolas Louis de Lacaille bajo el nombre de Mons Mensae. El nombre hace referencia específicamente a la Montaña de la Mesa en Sudáfrica, desde donde Lacaille hizo importantes observaciones del cielo austral. La constelación no contiene estrellas brillantes, así Alfa Mensae su estrella más brillante es apenas visible con una magnitud 5,08, haciéndola la constelación menos visible del cielo.

![Ilustración Mensa](image)

Ilustración 61. Constelación Mensa. Fuente: Stellarium

Su abreviatura es “Men”, simboliza una Mesa y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-77,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>153 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Mensae(magnitud ap. 5,08)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +5° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Enero</td>
</tr>
</tbody>
</table>

Tabla 49. Características Mensa. Fuente: Propia
5.1.14. **Musca**

Creada por Pieter Dirkszoon Keyser y Frederick de Houtman entre 1595 y 1597, y apareció por primera vez en el libro Uranometría de Johann Bayer de 1603.

![Ilustración 62. Constelación Musca. Fuente: Stellarium](image)

Su abreviatura es “Mus”, simboliza una Mosca y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>12,5 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−69,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>138 grados cuadrados Rango 77</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Mus(magnitud ap. 2,69)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +15° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
</tr>
</tbody>
</table>

Tabla 50. Características Musca. Fuente: Propia

5.1.15. **Norma**

Ubicada entre Scorpius y Centaurus, y atravesada por la Vía Láctea. También es conocida como La Regla, La Regla del Carpintero, El Juego de Reglas o El Nivel, aunque formalmente es conocido en latín como Norma et Regula, que significa "Escuadra y Nivel". Fue descrita por primera vez por el astrónomo Nicolas Louis de Lacaille, en el siglo XVIII. El hecho de haber sido cambiados sus límites originales hace que actualmente esta constelación no tenga una estrella Alfa ni Beta.
Ilustración 63. Constelación Norma. Fuente: Stellarium

Su abreviatura es “Nor”, simboliza una Regla y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>16 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−51°</td>
</tr>
<tr>
<td>Superficie</td>
<td>165 grados cuadrados</td>
</tr>
<tr>
<td></td>
<td>Rango 74</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>y² Normae (magnitud ap. 4,01)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre:</td>
</tr>
<tr>
<td></td>
<td>+30° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 51. Características Norma. Fuente: Propia

5.1.16. Octans

Es una constelación discreta presentada por Nicolas Louis de Lacaille. Es, fundamentalmente, conocida por ser la ubicación del polo sur celeste. Su estrella Sigma Octantis (σ Oct) es la estrella más cercana del polo que puede ser vista por el ojo humano, pero es tan apagada, que es prácticamente inútil como Estrella Polar para efectos de navegación.
Su abreviatura es “Oct”, simboliza un Octante y sus características son:

<table>
<thead>
<tr>
<th>Carácterística</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>21 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−82,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>291 grados cuadrados Rango 50</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>ν Octantis(magnitud ap. 3,73)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +0° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Octubre</td>
</tr>
</tbody>
</table>

Tabla 52. Características Octans. Fuente: Propia
5.1.17. **Pavo**

Fue una de las veinte constelaciones creadas por Pieter Dirkszoon Keyser y Frederick de Houtman entre 1595 y 1597, y apareció por primera vez en el libro *Uranometría* de Johann Bayer de 1603.

![Ilustración 65. Constelación Pavo. Fuente: Stellarium](image)

Su abreviatura es “Pav”, simboliza un Pavo Real y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>20 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−66°</td>
</tr>
<tr>
<td>Superficie</td>
<td>378 grados cuadrados</td>
</tr>
<tr>
<td>Rango</td>
<td>Rango 44</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Pav (Peacock) (magnitud ap.1.94)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +15° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

Tabla 53. Características Pavo. Fuente: Propia
5.1.18. Phoenix

Introducida por los navegantes daneses Pieter Dirkszoon Keyser y Frederick de Houtman, y popularizada por el libro Uranometría de Johann Bayer en 1603.

Ilustración 66. Constelación Phoenix. Fuente: Stellarium

Su abreviatura es “Phe”, simboliza un Ave Fénix y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>1 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−49°</td>
</tr>
<tr>
<td>Superficie</td>
<td>469 grados cuadrados Rango 37</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Phoenicis (Ankaa) (magnitud ap.2,39)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +32° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Tabla 54. Características Phoenix. Fuente: Propia
5.1.19. Pictor

Dado que fue creada por Nicolas Louis de Lacaille en el siglo XVII, no fue visible para culturas tempranas y clásicas por lo que no tiene mitología relacionada.

![Ilustración 67. Constelación Pictor. Fuente: Stellarium](image)

Su abreviatura es “Pic”, simboliza un Caballete de Pintor y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>6 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-53,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>247 grados cuadrados Rango 59</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Pic (magnitud ap.3,27)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +26° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Enero</td>
</tr>
</tbody>
</table>

Tabla 55. Características Pictor. Fuente: Propia
5.1.20. *Reticulum*

Fue presentada por Nicolas Louis de Lacaille para conmemorar el retículo, que fue un instrumento científico usado para medir la posición de las estrellas.

Ilustración 68. Constelación Reticulum. Fuente: Stellarium

Su abreviatura es “Ret”, simboliza una Retícula y sus características son:

<table>
<thead>
<tr>
<th>Carácterística</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>4 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−60°</td>
</tr>
<tr>
<td>Superficie</td>
<td>114 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Reticuli (magnitud ap. 3,33)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre:</td>
</tr>
<tr>
<td></td>
<td>+23° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Enero</td>
</tr>
</tbody>
</table>

Tabla 56. Características Reticulum. Fuente: Propia
5.1.21. **Telescopium**

Identificada y nombrada por el astrónomo francés Nicolas Louis de Lacaille. Dado que fue introducida en el siglo XVIII y es una constelación austral, no fue visible para la cultura Mediterránea, así que no tiene mitología relacionada. Sus estrellas son bastante débiles y sólo su estrella Alfa baja de magnitud 4.

Ilustración 69. Constelación Telescopium. Fuente: Stellarium

Su abreviatura es “Tel”, simboliza una Telescopio y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>19 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−51°</td>
</tr>
<tr>
<td>Superficie</td>
<td>252 grados cuadrados Rango 57</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Tel (magnitud ap. 3,49)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +33° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

Tabla 57. Características Telescopium. Fuente: Propia
5.1.22. Triangulum Australe

Es una pequeña constelación austral cuyas tres estrellas más brillantes, de segunda y tercera magnitud, forman casi un triángulo equilátero. Esta constelación fue introducida por Johann Bayer en 1603. No debe ser confundida con la constelación boreal de Triangulum.

![Ilustración 70. Constelación Triangulum Australe. Fuente: Stellarium](image)

Su abreviatura es “TrA”, simboliza un Triángulo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>16 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−65°</td>
</tr>
<tr>
<td>Superficie</td>
<td>110 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α TrA (Atria) (magnitud ap. 1,91)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +20° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 58. Características Triangulum Australe. Fuente: Propia
5.1.23. Tucana

Fue creada por los navegantes holandeses Pieter Dirkszoon Keyser y Frederick de Houtman entre 1595 y 1597, como resultado de sus exploraciones por los mares del hemisferio sur. Apareció por primera vez en la obra Uranometría, de Johann Bayer. Representa al tucán, una especie de ave tropical oriunda de Suramérica.

Ilustración 71. Constelación Tucana. Fuente: Stellarium

Su abreviatura es “TrA”, simboliza un Tucán y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>23,5 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−66,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>295 grados cuadrados Rango 48</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Alfa (α) Tucanae (magnitud ap. 2,87)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +14° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Tabla 59. Características Tucana. Fuente: Propia
5.1.24. Vela

Junto con Carina y Pyxis formaba parte de una antigua constelación llamada Argos Navis, hasta que en 1750 fue dividida por Louis de Lacaille. Este es el motivo por el cual esta constelación no tiene ninguna estrella Alfa y Beta.

![Ilustración 72. Constelación Vela. Fuente: Stellarium](image)

Su abreviatura es “Vel”, simboliza la Vela de un Barco y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>9,5 h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−47°</td>
</tr>
<tr>
<td>Superficie</td>
<td>500 grados cuadrados</td>
</tr>
<tr>
<td>Rango</td>
<td>32</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Regor (magnitud ap. 1,8)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +33° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

Tabla 60. Características Vela. Fuente: Propia
5.1.25. **Volans**

Esta fue una de las creaciones de los navegantes holandeses Pieter Dirkszoon Keyser y Frederick de Houtman entre los años 1595 y 1597. Apareció por primera vez en los mapas estelares preparados por el astrónomo alemán Johann Bayer publicados en *Uranometria*.

![Ilustración 73. Constelación Volans. Fuente: Stellarium](image-url)

Su abreviatura es “Vol”, simboliza un Pez Volador y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>8h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−69,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>141 grados cuadrados Rango 76</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Vol(magnitud ap. 3.77)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +15° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

Tabla 61. Características Volans. Fuente: Propia

5.2. **Constelaciones no circumpolares del hemisferio sur:**

5.2.1. **Aquarius**

Descrita por Claudio Ptolomeo. Su símbolo representa el flujo del agua. De todo el zodíaco, Acuario es una de las constelaciones reconocida con mayor antigüedad. Los sumerios le dieron este nombre a la constelación, en honor a su dios An, que derrama el agua de la inmortalidad.
sobre la Tierra. Se encuentra en una región comúnmente llamada el Mar o Aqua por su pro difusión de constelaciones acuáticas tales como Cetus, Piscis, Eridanus. Algunas veces el río Eridanus se representa como lo que derrama la vasija de Acuario.

Ilustración 74. Constelación Aquarius. Fuente: Stellarium

Su abreviatura es “Aqr”, simboliza una figura de un hombre portando agua y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>22,5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-11°</td>
</tr>
<tr>
<td>Superficie</td>
<td>980 grados cuadrados Rango 10</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Aqr (Sadalsuud) (magnitud ap. 2.9)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +65° y −87°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Octubre</td>
</tr>
</tbody>
</table>

5.2.2. **Antlia**

Denominada Antlia Pneumática como el invento del físico inglés Robert Boyle del siglo XVII. Su nombre fue reducido en la protocolización de las 88 constelaciones por parte de la Unión Astronómica Internacional. El astrónomo Nicolas-Louis de Lacaille le puso este nombre en la época en que estuvo trabajando en el observatorio del Cabo de Buena Esperanza, desde 1750 hasta 1754. Después de observar unas 10.000 estrellas meridionales, Lacaille hizo una división del cielo sur con catorce nuevas constelaciones, entre las cuales está Antlia. Es difícil de distinguir a simple vista, ya que su estrella más brillante (Alfa) tiene magnitud 4.

![Máquina neumática](Image)

Ilustración 75. Constelación Antlia. Fuente: Stellarium

Su abreviatura es “Ant”, simboliza una Máquina Neumática y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-32°</td>
</tr>
<tr>
<td>Superficie</td>
<td>239 grados cuadrados Rango 62</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Ant (magnitud ap. 4.25)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +50° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 63. Características Antlia. Fuente: Propia

5.2.3. **Caelum**

Introducida por Nicolas Louis de Lacaille, se localiza entre Columba y Eridanus. Representa un cincel, instrumento para trabajar sobre cobre y otros metales.

Es una constelación tenue sin ninguna estrella por encima de la cuarta magnitud. Es la octava constelación más pequeña del firmamento, con un área ligeramente inferior a la de Corona Austral.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 76. Constelación Caelum. Fuente: Stellarium

Su abreviatura es “Cae”, simboliza un Cincel y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-38°</td>
</tr>
<tr>
<td>Superficie</td>
<td>125 grados cuadrados Rango 81</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Cae(magnitud ap. 4.45)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +41° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Enero</td>
</tr>
</tbody>
</table>

Tabla 64. Características Caelum. Fuente: Propia

5.2.4. Cetus

La ballena o el monstruo marino, es una constelación del hemisferio sur, en una región conocida como Agua. Es la 4ª Constelación más grande del cielo ocupando más de 1200 grados cuadrados, estando atravesada por el plano del Ecuador.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 77. Constelación Cetus. Fuente: Stellarium

Su abreviatura es “Cet”, simboliza una Ballena o un Monstruo Marino y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>1,5h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-7,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1231 grados cuadrados Rango 4</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>β Cet (Diphda) (magnitud ap.2.04)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +65° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Tabla 65. Características Cetus. Fuente: Propia
5.2.5. **Canis Major**

Es una constelación que parece seguir, en su recorrido en el cielo debido al movimiento diurno, al Gran Cazador, Orión. Tiene muchas estrellas brillantes, pero la más importante de todas y muy usada en Navegación es Sirius, que es la estrella más brillante del cielo nocturno.

![Ilustración 78. Constelación Canis Major. Fuente: Stellarium](image)

Su abreviatura es “CMa”, simboliza un Perro Grande y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>7h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-22°</td>
</tr>
<tr>
<td>Superficie</td>
<td>380 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Sirius (α CMa) (magnitud ap. −1.46)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +57° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 66. Características Canis Major. Fuente: Propia
5.2.6. **Columba**

Es una pequeña constelación justo al sur de Canis Major y Lepus. Fue sacada de la constelación Canis Major por Augustin Royer, en 1679.

![Ilustración 79. Constelación Columba. Fuente: Stellarium](image)

Su abreviatura es “Col”, simboliza un Palomo y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-35°</td>
</tr>
<tr>
<td>Superficie</td>
<td>270 grados cuadrados Rango 54</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Col (Phact) (magnitud ap.2,6)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +47° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 67. Características Columba. Fuente: Propia

5.2.7. **Corona Australis**

Es una de las 48 constelaciones nombradas por Ptolomeo en el siglo II. Es una constelación pequeña característica de los cielos sureños que está prácticamente integrada a Sagitario, bordeándola al norte y oeste. En el este y sur tiene las constelaciones de Scorpius y Telescopium respectivamente. Debajo del arquero se ve un pequeño semicírculo de estrellas de magnitud 4 y 5, la Corona Australis.
Ilustración 80. Constelación Corona Australis. Fuente: Stellarium

Su abreviatura es “CrA”, simboliza una Corona de Laurel y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>19h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-41,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>128 grados cuadrados Rango 80</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α CrA(magnitud ap. 4.1)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +44° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

Tabla 68. Características Corona Australis. Fuente: Propia

5.2.8. **Corvus**

Es una constelación menor con sólo 11 estrellas visibles a simple vista. y Corvi (Gienah Gurab) y δ Corvi (Algorab), sirven de indicadoras para encontrar a Spica de la constelación de Virgo.
Su abreviatura es “Crv”, simboliza un Cuervo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>12h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-18°</td>
</tr>
<tr>
<td>Superficie</td>
<td>184 grados cuadrados Rango 70</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>γ Crv (Gienah Gurab) (magnitud ap. 2.59)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +65° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
</tr>
</tbody>
</table>

Tabla 69. Características Corvus. Fuente: Propia

5.2.9. **Eridanus**

Es la sexta constelación más grande de las 88 constelaciones modernas. También es una de las 48 constelaciones de Ptolomeo. En su extremo austral está la estrella de primera magnitud Achernar (α Eri), que es una estrella muy peculiar porque es una de las estrellas más planas conocidas. Las observaciones indican que su radio es casi 50% más largo en el ecuador que en los polos. Esto se debe a que la estrella rota a gran velocidad.
Ilustración 82. Constelación Eridanus. Fuente: Stellarium

Su abreviatura es “Eri”, simboliza un Río y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>3h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-29°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1138 grados cuadrados Rango 6</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Achernar (α Eri) (magnitud ap. +0,45)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +32° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

Tabla 70. Características Eridanus. Fuente: Propia
5.2.10. **Fornax**

Es una constelación austral que fue introducida por Nicolas Louis de Lacaille bajo el nombre de Fornax Chemica aunque más tarde sería acortado a Fornax. Es muy poco luminosa.

Su abreviatura es “For”, simboliza un Horno y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>3h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-32°</td>
</tr>
<tr>
<td>Superficie</td>
<td>398 grados cuadrados Rango 41</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α For(magnitud ap. 3,87)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +50° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Diciembre</td>
</tr>
</tbody>
</table>

5.2.11. **Hydra**

Es la más grande de las 88 constelaciones modernas, y fue una de las 48 constelaciones que Ptolomeo registró. No debe ser confundida con Hydrus, constelación del hemisferio sur de menor tamaño.
Su abreviatura es “Hya”, simboliza una Hidra (serpiente gigante) y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>11h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-14°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1303 grados cuadrados</td>
</tr>
<tr>
<td>Rango</td>
<td>Rango 1</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Alfard (α Hya) (magnitud ap. 1.99)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +55° y -83°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 72. Características Hydra. Fuente: Propia

5.2.12. Lepus

Es una constelación situada justo al sur de Orión, y posiblemente representa una liebre siendo perseguida por él. Lepus fue una de las 48 constelaciones de Ptolomeo. Su forma de trapecio es fácilmente visible.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 85. Constelación Lepus. Fuente: Stellarium

Su abreviatura es “Lep”, simboliza una Liebre y sus características son:

<table>
<thead>
<tr>
<th>Carácterísticas</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>6h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-19°</td>
</tr>
<tr>
<td>Superficie</td>
<td>290 grados cuadrados Rango 51</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Lep (Arneb) (magnitud ap.+2,58)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +63° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Enero</td>
</tr>
</tbody>
</table>

Tabla 73. Características Lepus. Fuente: Propia

5.2.13. Lupus

Ubicada entre las constelaciones de Centaurus y Scorpius. Se encuentra entre las patas del escorpión y casi unida a centauro. Desde España (incluyendo Europa central) sólo se puede ver la parte más septentrional de la constelación, en el momento del tránsito por el meridiano, a comienzos del verano.
Su abreviatura es “Lup”, simboliza un Lobo y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>15h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-42,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>334 grados cuadrados Rango 46</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Lupi(magnitud ap. 2,3)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +35° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Junio</td>
</tr>
</tbody>
</table>

Tabla 74. Características Lupus. Fuente: Propia

5.2.14. **Microscopium**

Es una pequeña constelación austral introducida por Nicolas Louis de Lacaille. Está constituida por estrellas tenues ninguna de las cuales alcanza magnitud 3.
Ilustración 87. Constelación Microscopium. Fuente: Stellarium

Su abreviatura es “Mic”, simboliza un Microscopio y sus características son:

<table>
<thead>
<tr>
<th>Descrición</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>21h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-36,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>210 grados cuadrados Rango 66</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>y Mic (magnitud ap. 4,67)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +45° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

Tabla 75. Características Microscopium. Fuente: Propia

5.2.15. Piscis Austrinus

Fue una de las 48 constelaciones listadas por Ptolomeo. Se piensa que originalmente, Piscis Austrinus fue la única constelación con forma de pez, Piscis fue considerada con forma de pez posteriormente.
Ilustración 88. Constelación Piscis Austrinus. Fuente: Stellarium

Su abreviatura es “PsA”, simboliza un Pez y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>22h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-31°</td>
</tr>
<tr>
<td>Superficie</td>
<td>245 grados cuadrados Rango 60</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Fomalhaut (α Piscis Austrini) (magnitud ap. 1,16)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +53° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Octubre</td>
</tr>
</tbody>
</table>

Tabla 76. Características Piscis Austrinus. Fuente: Propia

5.2.16. Puppis

Es la mayor de las tres partes en las que se separó la constelación Argo Navis. Las otras son Vela y Carina.
Su abreviatura es “Pup”, simboliza la Popa de un Barco y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>7,5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-31°</td>
</tr>
<tr>
<td>Superficie</td>
<td>673 grados cuadrados, Rango 20</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>ζ Pup (Naos) (magnitud ap. 2,25)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +39° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 77. Características Puppis. Fuente: Propia
5.2.17. Pyxis

Introducida por Nicolas Louis de Lacaille bajo el nombre de Pyxis Nautica. Se supone que representa la brújula del Argo Navis, sin embargo es muy difícil pensar que el Argo pudiera tener una brújula, ya que los griegos no conocían este instrumento de navegación. Cabe resaltar que Pyxis no es oficialmente una parte de Argo Navis, ya que sus estrellas tiene una designación Bayer independiente (a diferencia de Carina, Puppis y Vela las cuales aún poseen parte de las designaciones Bayer de Argo).

Ilustración 90. Constelación Pyxis. Fuente: Stellarium

Su abreviatura es “Pyx”, simboliza una Brújula y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>9h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-27°</td>
</tr>
<tr>
<td>Superficie</td>
<td>221 grados cuadrados Rango 65</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Pyxidis (α Pyx) (magnitud ap.3,68)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +53° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Marzo</td>
</tr>
</tbody>
</table>

Tabla 78.Características Pyxis. Fuente: Propia
5.2.18. **Sculptor**

Fue presentada por Nicolas Louis de Lacaille. Originalmente la llamó 'Estudio de escultor', pero posteriormente, el nombre fue acortado. Fue introducida durante el siglo XVII, por lo que no tiene mitología relacionada.

![Ilustración 91. Constelación Sculptor. Fuente: Stellarium](image)

Su abreviatura es “Scl”, simboliza un Escultor y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>0h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-32,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>475 grados cuadrados Rango 36</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Scl(magnitud ap. 4,31)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +50° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Noviembre</td>
</tr>
</tbody>
</table>

Tabla 79. Características Sculptor. Fuente: Propia
5.2.19. Scutum

Fue creada por Johannes Hevelius en 1690 bajo el nombre de Scutum Sobiescii o Scutum Sobiescianum (el “escudo de Sobieski”), para honrar al rey y héroe polaco Juan III Sobieski\(^{12}\). Es la única constelación moderna que se asocia a una figura histórica.

![Ilustración 92. Constelación Scutum. Fuente: Stellarium](image)

Su abreviatura es “Sct”, simboliza el Escudo de Juan III Sobieski y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>19h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-10°</td>
</tr>
<tr>
<td>Superficie</td>
<td>109 grados cuadrados Rango 84</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Alfa (α) Scuti (magnitud ap. 3,85)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +74° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

Tabla 80. Características Scutum. Fuente: Propia

\(^{12}\) Jan Sobieski (1629 - 1696). El nombre de la constelación Scutum viene del escudo de este personaje histórico que fue rey de Polonia a partir de 1674 y que liberó a Viena del asedio de los turcos en 1683. Anteriormente había ayudado al propio Hevelius a reconstruir su observatorio que había sido destruido en un incendio.
5.2.20. *Crater*

Fue una de las 48 listadas por Ptolomeo. Es una pequeña constelación formada por débiles estrellas y con un tamaño de 282° cuadrados. También llamada La Copa está situada entre Hydra y Leo justo al lado de Corvus. No tiene estrella con brillo mayor a la cuarta magnitud.

![Ilustración 93. Constelación Crater. Fuente: Stellarium](image)

Su abreviatura es “Crt”, simboliza una Taza y sus características son:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>11h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−15,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>282 grados cuadrados Rango 53</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>δ Crt(magnitud ap. 3,57)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +65° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 81. Características Crater. Fuente: Propia

5.2.21. *Monoceros*

Es una constelación situada casi en la Eclíptica y por lo tanto visible desde ambos hemisferios. Su origen se remonta al siglo XVII cuando el astrónomo alemán Jakob Bartsch la bautizó en 1624 como el Unicornio. Está formada por débiles estrellas de magnitud 4 que la hacen difícil
de distinguir a simple vista. Está rodeada por Orión al este, Géminis al norte, Canis Maior al sur y la constelación Hydra hacia el oeste.

Ilustración 94. Constelación Monoceros. Fuente: Stellarium

Su abreviatura es “Mon”, simboliza un Unicornio y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>7h</td>
</tr>
<tr>
<td>Declinación</td>
<td>−5,5°</td>
</tr>
<tr>
<td>Superficie</td>
<td>482 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Monocerotis (magnitud ap. 3,93)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +79° y −80°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Febrero</td>
</tr>
</tbody>
</table>

Tabla 82. Características Monoceros. Fuente: Propia

5.2.22. **Ophiuchus**

Una de las 48 listadas por Ptolomeo. Puede verse en ambos hemisferios entre los meses de abril a octubre por estar situada sobre el ecuador celeste. Al norte de Ofiuco se halla Hércules,
al suroeste Sagittarius y al sureste Scorpius, al este se encuentran Serpens Caput y Libra, mientras que al oeste quedan Aquila, Scutum y Serpens Cauda. La constelación queda flanqueada por la Cabeza y la Cola de la Serpiente, que puede ser considerada como una única constelación: Serpens, que la atraviesa. El conjunto resultante es un hombre rodeado por una serpiente. En teoría debería de haber pertenecido al Zodiaco ya que el Sol está más tiempo en esta constelación que en Sagitario.

Ilustración 95. Constelación Ophiuchus. Fuente: Stellarium

Su abreviatura es “Oph”, simboliza la figura del Portador de la Serpiente y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>17h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>−8°</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Superficie</th>
<th>948 grados cuadrados Rango 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrella más brillante</td>
<td>α Oph (Ras Alhague) (magnitud ap. 2,1)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +60° y -76°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 83. Características Ophiuchus. Fuente: Propia

5.2.23. Sextans

Fue introducida en el siglo XVII por Johannes Hevelius y la llamó así en honor al sextante que utilizaba para medir la posición de las estrellas y orientarse en sus observaciones. Dicho sextante fue destruido por un incendio en septiembre de 1679. Está situada entre Leo e Hydra y no es una constelación particularmente brillante. No hay mitología asociada a esta constelación.

![Ilustración 96. Constelación Sextans. Fuente: Stellarium](image-url)

Su abreviatura es “Sex”, simboliza un Sextante y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>10h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-2°</td>
</tr>
<tr>
<td>Superficie</td>
<td>314 grados cuadrados Rango 47</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>α Sex (magnitud ap. 4,49)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +79° y -83°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Abril</td>
</tr>
</tbody>
</table>

Tabla 84. Características Sextans. Fuente: Propia
5.2.24. **Virgo**

Es una Constelación zodiacal con un tamaño de 1294º cuadrados que la convierte en la 2ª más grande del cielo después de Hydra. Esta constelación primaveral está relacionada probablemente con la diosa griega Demeter, y seguramente éste es el motivo por el que dos de sus principales estrellas tengan nombres relacionados con la cosecha: Spica, que significa "la Espiga", y Vindemiatrix, que significa "la vendimiatora". Se encuentra entre Leo al oeste y Libra al este.

![Ilustración 97. Constelación Virgo. Fuente: Stellarium](image_url)

13 La diosa griega de las cosechas.
Su abreviatura es “Vir”, simboliza una Virgen y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>13h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-4°</td>
</tr>
<tr>
<td>Superficie</td>
<td>1294 grados cuadrados</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Spica (α Vir)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +68° y -76°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Mayo</td>
</tr>
</tbody>
</table>

Tabla 85. Características Virgo. Fuente: Propia

5.2.25. Libra

Es la séptima constelación del zodiaco en el cielo. Bastante discreta, no tiene estrellas de primera magnitud, estando situada entre Virgo al oeste y Scorpius al este, notablemente más llamativas. Como se evidencia por los nombres de sus estrellas más brillantes, fue en algún momento parte de las pinzas del Scorpius: así, Zubenelgenubi (α Librae) significa "pinza del sur" y Zubeneschamali (β Librae) "pinza del norte".

Ilustración 98. Constelación Libra. Fuente: Stellarium

Su abreviatura es “Lib”, simboliza una Balanza y sus características son:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascensión recta</td>
<td>15h</td>
</tr>
<tr>
<td>Declinación</td>
<td>-15°</td>
</tr>
<tr>
<td>Superficie</td>
<td>538 grados cuadrados</td>
</tr>
</tbody>
</table>

111
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Tabla 86. Características Libra. Fuente: Propia

<table>
<thead>
<tr>
<th>Estrella más brillante</th>
<th>Zubeneschamali (β Lib) (magnitud ap. 2.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +60° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Junio</td>
</tr>
</tbody>
</table>

5.2.26. Scorpius

Es una constelación del zodíaco. Antiguamente esta constelación se representaba unida a la que hoy se conoce como libra, que no existía\(^\text{14}\). Las estrellas que hoy se conocen como alfa y beta Librae representaban las pinzas sur y norte del escorpión. Es una constelación muy importante ya que contiene 11 estrellas con magnitud inferior a 3.

![Ilustración 99. Constelación Scorpius. Fuente: Stellarium](image)

Su abreviatura es “Sco”, simboliza un Escorpión y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>17h</th>
</tr>
</thead>
</table>

\(^{14}\) Se cree que fueron los romanos quienes primero la imaginaron.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur
y su utilización en Navegación

<table>
<thead>
<tr>
<th>Declinación</th>
<th>-32°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie</td>
<td>497 grados cuadrados</td>
</tr>
<tr>
<td></td>
<td>Rango 33</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>Antares (α Sco) (magnitud ap. 1,4)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre:</td>
</tr>
<tr>
<td></td>
<td>+44° y −90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Julio</td>
</tr>
</tbody>
</table>

Tabla 87. Características Scorpius. Fuente: Propia

5.2.27. **Sagittarius**

Es una constelación del zodíaco, generalmente representada como un centauro sosteniendo un arco. Se encuentra entre Scorpius al oeste y Capricornus al este. Las estrellas de esta constelación tampoco siguen la "norma" que aplicó Johannes Bayer de asignarles la primera letra del alfabeto griego a la estrella más brillante.

![Ilustración 100. Constelación Sagittarius. Fuente: Stellarium](image)

Su abreviatura es “Sgr”, simboliza un Arquero con cuerpo de caballo y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>19h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-28,5°</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Superficie</th>
<th>867 grados cuadrados Rango 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrella más brillante</td>
<td>ε Sgr (Kaus Australis) (magnitud ap. 1.9)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +45° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Agosto</td>
</tr>
</tbody>
</table>

Tabla 88. Características Sagitarius. Fuente: Propia

5.2.28. Capricornus

Es una de las constelaciones del Zodíaco. Aunque a veces se representa como una cabra, generalmente se le añade una cola de pez. Está situada entre Sagittarius y Aquarius. Es difícil de ver a simple vista a no ser que el cielo esté bastante oscuro, ya que exceptuando a Deneb Algedi, el resto de sus estrellas son de aproximadamente magnitud 4 o superior.

Su abreviatura es “Cap”, simboliza una Cabra y sus características son:

<table>
<thead>
<tr>
<th>Ascensión recta</th>
<th>21h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declinación</td>
<td>-18°</td>
</tr>
<tr>
<td>Superficie</td>
<td>414 grados cuadrados Rango 40</td>
</tr>
<tr>
<td>Estrella más brillante</td>
<td>δ Cap (Deneb Algedi) (magnitud ap.2,9)</td>
</tr>
<tr>
<td>Visibilidad</td>
<td>En latitudes entre: +62° y -90°</td>
</tr>
<tr>
<td>Mejor visibilidad</td>
<td>Septiembre</td>
</tr>
</tbody>
</table>

Tabla 89. Características Capricornus. Fuente: Propia
6. Comparativa

En el Polo Norte, durante la noche de seis meses que engloba nuestro otoño y nuestro invierno, todas las constelaciones boreales giran en torno a la Polar, que un observador ve en el Cenit.

En el Polo Sur, donde las constelaciones son a la inversa, no vemos ninguna constelación boreal, pero todas las constelaciones australes danzan en torno a la zona desolada que rodea el Polo Sur. Entre los polos y el ecuador, la latitud del lugar de la observación corresponde a la altura del polo, o grosso modo podemos decir que la latitud es igual a la altura de la polar.

Así es como, en un punto Norte, la recta que une la Polar con el observador corresponde aproximadamente al eje de rotación de la esfera celeste. Cuanta menos distancia hay del polo a un astro, más tiempo permanece visible.

La mayor diferencia entre las constelaciones del hemisferio Norte y las del hemisferio Sur es que en el Norte tenemos la constelación Ursa Minor, que tiene la estrella más cercana al polo Norte celeste, Polaris, exactamente a AR 2h 46m 43s y d +89º 19’02” y de 2ª magnitud. Con ella podemos hallar rápidamente la latitud, ya que observando su altura y aplicándole una corrección por horario local nos da la latitud en que nos encontramos. Esta corrección es debida a que al no encontrarse en el mismo polo norte celeste, va describiendo un paralelo en la esfera celeste y según sea nuestra posición con respecto a dicho paralelo, así será la corrección a aplicar a la altura observada.

Ilustración 102. Polaris y Polo Norte Celeste. Fuente: Stellarium
Haciendo una enfilación entre la estrella Alkaid de la constelación Ursa Mayor y la estrella Polaris, pasamos por el polo norte celeste:

![Ilustración 103. Enfilación Alkaid, Polo Norte Celeste y Polaris. Fuente: Stellarium](image)

Con la estrella Polaris, además de poder calcular nuestra latitud, también podemos encontrar la corrección total\(^\text{15}\), para poder corregir nuestro Rumbo de aguja, lo podremos hacer midiendo en azimut de aguja y con el Horario del lugar de Aries entrar en el Almanaque Náutico y coger el valor del azimut verdadero. Con la resta del azimut verdadero y el azimut de aguja encontramos la corrección total.

En el hemisferio sur también hay una estrella cercana al polo sur celeste, aunque no tanto como Polaris del polo norte celeste, esta estrella es Sigma Octans, también llamada Polaris Australis, y pertenece a la constelación Octans, sus coordenadas son: AR 21h 19m 12s y d -88º 54’ 17” y de magnitud 5,45.

\(^{15}\)Es la suma de los desvíos producidos a la ajuga náutica debidos al magnetismo terrestre y al propio buque. Sumando esta corrección al azimut de aguja encontramos el azimut verdadero, del rumbo de aguja al rumbo verdadero o de la demora de aguja a la verdadera.
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

Ilustración 104. Sigma Octans y Polo Sur Celeste. Fuente: Stellarium

Debido a su magnitud no se puede utilizar en navegación, por lo que no sirve tener esa estrella tan cercana, de manera que el polo sur celeste se busca a través de la constelación Crux, ya que el travesaño mayor de la cruz señala al sur y tiene estrellas de primera magnitud, por lo que es fácilmente visible.

El polo cae a medio camino entre la Crux y la brillante estrella Achernar de la constelación Eridanus. Una línea perpendicular a la que une Rigil Kent y Hadar de la constelación Centaurus también señalaría hacia el polo.

Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

6.1. **Área de las constelaciones**

Lo primero que podemos decir es que en el hemisferio Norte hay 35 constelaciones, mientras que en el Hemisferio sur hay 53, de esto podemos deducir que las constelaciones en el Norte ocupan un área mayor que en el Sur.

Comparando el área de algunas constelaciones se pueden observar algunas curiosidades, como que Sagittarius (867,43 grados cuadrados) es casi doble del tamaño de Scorpius (496,78 grados cuadrados) aunque para nada lo parece a simple vista. Incluso, Cancer (505,87 grados cuadrados) es más grande que Scorpius y parece más pequeña que las dos anteriores. Aries y Capricornio son aproximadamente del mismo tamaño, Canis Major es un 50% mayor que la Osa Menor, y Orion es sólo el 26º en tamaño. El tamaño de las constelaciones se da en grados cuadrados. La superficie total de la esfera celeste es de 41252.96125 grados cuadrados.
Según el área que ocupan podemos decir, que la más grande es Hydra con un área de 1302,844 grados cuadrados y la más pequeña es Crux con un área de 68,447 grados cuadrados, ambas pertenecientes al hemisferio Sur. Las 10 primeras constelaciones con mayor área ordenadas de mayor tamaño a menor tamaño serían:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Área (grados cuadrados)</th>
<th>Porcentaje</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydra</td>
<td>1.302,844</td>
<td>3,16</td>
<td>Sur</td>
</tr>
<tr>
<td>Virgo</td>
<td>1.294,428</td>
<td>3,14</td>
<td>Sur</td>
</tr>
<tr>
<td>Ursa Major</td>
<td>1.279,660</td>
<td>3,10</td>
<td>Norte</td>
</tr>
<tr>
<td>Cetus</td>
<td>1.231,411</td>
<td>2,99</td>
<td>Sur</td>
</tr>
<tr>
<td>Hercules</td>
<td>1.225,148</td>
<td>2,97</td>
<td>Norte</td>
</tr>
<tr>
<td>Eridanus</td>
<td>1.137,919</td>
<td>2,76</td>
<td>Sur</td>
</tr>
<tr>
<td>Pegasus</td>
<td>1.120,794</td>
<td>2,72</td>
<td>Norte</td>
</tr>
<tr>
<td>Draco</td>
<td>1.082,952</td>
<td>2,63</td>
<td>Norte</td>
</tr>
<tr>
<td>Centaurus</td>
<td>1.060,422</td>
<td>2,57</td>
<td>Sur</td>
</tr>
<tr>
<td>Aquarius</td>
<td>979,854</td>
<td>2,38</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 90. Área de las 10 primeras de mayor a menor. Fuente: Propia

De las cuales abarcan el 11,42% en el hemisferio Norte y el 17% en el hemisferio Sud. Las 10 constelaciones más pequeñas de mayor a menor serían:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Área (grados cuadrados)</th>
<th>Porcentaje</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamaeleon</td>
<td>131,592</td>
<td>0,32</td>
<td>Sur</td>
</tr>
<tr>
<td>Corona Australis</td>
<td>127,696</td>
<td>0,31</td>
<td>Sur</td>
</tr>
<tr>
<td>Caelum</td>
<td>124,865</td>
<td>0,30</td>
<td>Sur</td>
</tr>
<tr>
<td>Reticulum</td>
<td>113,936</td>
<td>0,28</td>
<td>Sur</td>
</tr>
<tr>
<td>Triangulum Australe</td>
<td>109,978</td>
<td>0,27</td>
<td>Sur</td>
</tr>
<tr>
<td>Scutum</td>
<td>109,114</td>
<td>0,26</td>
<td>Sur</td>
</tr>
<tr>
<td>Circinus</td>
<td>93,353</td>
<td>0,23</td>
<td>Sur</td>
</tr>
<tr>
<td>Sagitta</td>
<td>79,932</td>
<td>0,19</td>
<td>Norte</td>
</tr>
<tr>
<td>Equuleus</td>
<td>71,641</td>
<td>0,17</td>
<td>Norte</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Brillo</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crux</td>
<td>68,447</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 91. Área de las 10 últimas de mayor a menor. Fuente: Propia

De las cuales abarcan el 0,3% en el hemisferio Norte y el 2,14% en el hemisferio Sud.

6.2. **Brillo de las constelaciones**

Esta lista, donde se define el brillo general de una constelación, está hecha con el número de estrellas visibles por unidad de área. Para facilitar la comparación fácil, y para evitar el uso de números muy pequeños, la unidad de área es de 100 grados cuadrados. Por lo tanto:

Brillo general: \(\frac{\text{número de estrellas visibles en la constelación}}{\text{tamaño de la constelación en grados cuadrados}} \)

El brillo general de una constelación en particular, entonces, es el número promedio de estrellas visibles por cada 100 grados cuadrados.

Comparando dos constelaciones con el mismo brillo, como Andrómeda y Monoceros, que tienen cada una un brillo total de 7.476, lo que significa que ambos tienen un promedio de aproximadamente \(\frac{7}{2} \) de estrellas visibles por cada 100 grados cuadrados de superficie, es curioso que Andrómeda es una figura muy fácil de reconocer en el cielo nocturno pero Monoceros, por el contrario, no lo es.

Según el brillo de las 10 constelaciones más brillantes ordenadas de mayor a menor brillo:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Brillo</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crux</td>
<td>29.218</td>
<td>Sur</td>
</tr>
<tr>
<td>Corona Australis</td>
<td>16.446</td>
<td>Sur</td>
</tr>
<tr>
<td>Carina</td>
<td>15.581</td>
<td>Sur</td>
</tr>
<tr>
<td>Vela</td>
<td>15.211</td>
<td>Sur</td>
</tr>
<tr>
<td>Lupus</td>
<td>14.984</td>
<td>Sur</td>
</tr>
<tr>
<td>Canis Major</td>
<td>14.733</td>
<td>Sur</td>
</tr>
<tr>
<td>Puppis</td>
<td>13.810</td>
<td>Sur</td>
</tr>
<tr>
<td>Musca</td>
<td>13.732</td>
<td>Sur</td>
</tr>
<tr>
<td>Orion</td>
<td>12.906</td>
<td>Norte</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Brillo</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scorpius</td>
<td>12.480</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 92. Brillo de las 10 primeras constelaciones de mayor a menor. Fuente: Propia

De las cuales 9 pertenecen al Hemisferio Sur y solo una al Hemisferio Norte. Las 10 constelaciones con menor brillo ordenadas de mayor a menor son:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Brillo</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virgo</td>
<td>4.481</td>
<td>Sur</td>
</tr>
<tr>
<td>Indus</td>
<td>4.422</td>
<td>Sur</td>
</tr>
<tr>
<td>Horologium</td>
<td>4.018</td>
<td>Sur</td>
</tr>
<tr>
<td>Crater</td>
<td>3.895</td>
<td>Sur</td>
</tr>
<tr>
<td>Antlia</td>
<td>3.767</td>
<td>Sur</td>
</tr>
<tr>
<td>Canes Venatici</td>
<td>3.224</td>
<td>Norte</td>
</tr>
<tr>
<td>Caelum</td>
<td>3.204</td>
<td>Sur</td>
</tr>
<tr>
<td>Sculptor</td>
<td>3.159</td>
<td>Sur</td>
</tr>
<tr>
<td>Fornax</td>
<td>3.019</td>
<td>Sur</td>
</tr>
<tr>
<td>Sextans</td>
<td>1.595</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 93. Brillo de las 10 últimas constelaciones de mayor a menor. Fuente: Propia

De las cuales también, 9 pertenecen al Hemisferio Sur y solo una al Hemisferio Norte.

6.3. **Visibilidad de las constelaciones**

Es bastante útil saber entre que latitudes son visibles las constelaciones, para saber si desde la latitud donde nos encontremos podemos observar unas u otras sin necesidad de hacer cálculos.

son todas las constelaciones del Hemisferio Norte más casi todas las no circumpolares del Hemisferio Sud.

Podremos ver una parte de las constelaciones de: Ara, Caelum, Centaurus, Eridanus, Grus, Horologium, Lupus, Norma, Pavo, Phoenix, Pictor, Puppis y Vela. Pero nunca podremos ver las constelaciones de: Apus, Carina, Chamaeleon, Circinus, Crux, Dorado, Hydrus, Indus, Mensa, Musca, Octans, Reticulum, Telescopium, Triangulum Australis, Tucana y Volans. Por lo que sabiendo esto, descartaremos totalmente el intentar encontrarlas. Las constelaciones circumpolares Sur son en su gran mayoría las que no podemos observar desde nuestra latitud, pero unas cuantas de ellas sí las podemos ver parcialmente.

Solo hay dos constelaciones que solo sean visibles totalmente en uno de los hemisferios, Ursa Minor en el Hemisferio Norte y Octans en el Hemisferio Sur.

Es también bastante interesante saber que constelaciones son visibles, aunque parcialmente en latitudes elevadas, desde cualquier lugar del mundo, siendo por lo tanto, visibles en todas las zonas navegables del mundo.

En la siguiente tabla las latitudes de visibilidad están referidas a las constelaciones enteras, pero parcialmente se ven desde cualquier punto de la Tierra:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>visibilidad</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquarius</td>
<td>+65º a -87º</td>
<td>Sur</td>
</tr>
<tr>
<td>Aquila</td>
<td>+78º a -71º</td>
<td>Norte</td>
</tr>
<tr>
<td>Canis Minor</td>
<td>N a -77º</td>
<td>Norte</td>
</tr>
<tr>
<td>Cetus</td>
<td>+65º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Eridanus</td>
<td>+32º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Hydra</td>
<td>+55º a -83º</td>
<td>Sur</td>
</tr>
<tr>
<td>Leo</td>
<td>+84º a -57º</td>
<td>Norte</td>
</tr>
<tr>
<td>Libra</td>
<td>+60º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Monoceros</td>
<td>+79º a -78º</td>
<td>Sur</td>
</tr>
<tr>
<td>Ophiuchus</td>
<td>+60º a -76º</td>
<td>Sur</td>
</tr>
<tr>
<td>Orion</td>
<td>+79º a -67º</td>
<td>Norte</td>
</tr>
<tr>
<td>Pisces</td>
<td>+83º a -57º</td>
<td>Norte</td>
</tr>
<tr>
<td>Serpens</td>
<td>+74º a -64º</td>
<td>Norte</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Constelación</th>
<th>visibilidad</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sextans</td>
<td>+68º a -76º</td>
<td>Sur</td>
</tr>
<tr>
<td>Taurus</td>
<td>N a -59º</td>
<td>Norte</td>
</tr>
<tr>
<td>Virgo</td>
<td>+79º a -83º</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 94. Mayor visibilidad de las constelaciones. Fuente: Propia

De las cuales 9 pertenecen al Hemisferio Sur y 7 al Hemisferio Norte.
En la siguiente tabla están las constelaciones que al tener una parte invisible desde algún punto de la Tierra, no pueden estar en la tabla anterior, pero que en las zonas navegables son visibles, aunque sea parcialmente.

<table>
<thead>
<tr>
<th>Constelación</th>
<th>visibilidad</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capricornus</td>
<td>+62º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Corvus</td>
<td>+65º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Cráter</td>
<td>+65º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Delphinus</td>
<td>N a -69º</td>
<td>Norte</td>
</tr>
<tr>
<td>Equuleus</td>
<td>N a -77º</td>
<td>Norte</td>
</tr>
<tr>
<td>Lepus</td>
<td>+63º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Sagitta</td>
<td>N a -69º</td>
<td>Norte</td>
</tr>
<tr>
<td>Scutum</td>
<td>+74º a S</td>
<td>Sur</td>
</tr>
<tr>
<td>Vulpecula</td>
<td>N a -61º</td>
<td>Norte</td>
</tr>
</tbody>
</table>

Tabla 95. Visibilidad de las constelaciones. Fuente: Propia

De las cuales 5 pertenecen al Hemisferio Sur y 4 al Hemisferio Norte
6.4. **Numero de estrellas visibles en las constelaciones**

Las 10 constelaciones con mayor número de estrellas visibles son:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Nº estrellas 1ª y 2ª Magnitud</th>
<th>Nº estrellas 3ª y 4ª Magnitud</th>
<th>Nº estrellas 5ª y 6ª Magnitud</th>
<th>Total</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centaurus</td>
<td>6</td>
<td>31</td>
<td>64</td>
<td>101</td>
<td>Sur</td>
</tr>
<tr>
<td>Taurus</td>
<td>2</td>
<td>26</td>
<td>70</td>
<td>98</td>
<td>Norte</td>
</tr>
<tr>
<td>Puppis</td>
<td>1</td>
<td>19</td>
<td>73</td>
<td>93</td>
<td>Sur</td>
</tr>
<tr>
<td>Hercules</td>
<td>0</td>
<td>24</td>
<td>61</td>
<td>85</td>
<td>Sur</td>
</tr>
<tr>
<td>Cygnus</td>
<td>3</td>
<td>20</td>
<td>56</td>
<td>79</td>
<td>Norte</td>
</tr>
<tr>
<td>Draco</td>
<td>1</td>
<td>16</td>
<td>62</td>
<td>79</td>
<td>Norte</td>
</tr>
<tr>
<td>Eridanus</td>
<td>1</td>
<td>29</td>
<td>49</td>
<td>79</td>
<td>Sur</td>
</tr>
<tr>
<td>Orion</td>
<td>7</td>
<td>19</td>
<td>51</td>
<td>77</td>
<td>Norte</td>
</tr>
<tr>
<td>Carina</td>
<td>4</td>
<td>20</td>
<td>53</td>
<td>77</td>
<td>Sur</td>
</tr>
<tr>
<td>Vela</td>
<td>3</td>
<td>18</td>
<td>55</td>
<td>76</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 96. Número de estrellas visibles en las constelaciones 10 primeras. Fuente: Propia

De las cuales 6 pertenecen al Hemisferio Sur y 4 al Hemisferio Norte.

Las 10 constelaciones con menor número de estrellas visibles son:

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Nº estrellas 1ª y 2ª Magnitud</th>
<th>Nº estrellas 3ª y 4ª Magnitud</th>
<th>Nº estrellas 5ª y 6ª Magnitud</th>
<th>Total</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crater</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>Sur</td>
</tr>
<tr>
<td>Horologium</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>Sur</td>
</tr>
<tr>
<td>Apus</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>Sur</td>
</tr>
<tr>
<td>Antlia</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>Sur</td>
</tr>
<tr>
<td>Scutum</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>Sur</td>
</tr>
<tr>
<td>Mensa</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>Sur</td>
</tr>
<tr>
<td>Sagitta</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>Norte</td>
</tr>
<tr>
<td>Sextans</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>Sur</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Constelación</th>
<th>Norte</th>
<th>Sur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equuleus</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Caelum</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 97. Número de estrellas visibles en las constelaciones 10 últimas. Fuente: Propia

De las cuales 8 pertenecen al Hemisferio Sur y 2 al Hemisferio Norte.

Del total de esta lista completa obtenemos que son visibles a simple vista 3047 estrellas, de las cuales 88 son de entre 1ª y 2ª magnitud, 779 entre 3ª y 4ª magnitud y 2180 hasta 6ª magnitud.

6.5. **Fechas de mejor visibilidad**

Las fechas en las que se observa mejor una constelación, es la fecha en la que alcanza la culminación. Por definición, el punto culminante de una constelación es el paso de esta a través del meridiano superior del observador. Por lo general, esto se refiere al paso de la constelación por el cenit del observador, alcanzando su altura máxima. Pudiendo decir también que una constelación será invisible para nosotros al pasar 180º de nuestro cenit, excepto si la constelación en particular es circumpolar para el observador, en cuyo caso siempre podrá observarla. Cuando una constelación se eleva al ponerse el Sol y se pone a la salida del Sol, es visible durante toda la noche, y es entonces la mejor fecha para su observación.

Como ejemplos, Febrero como mes en invierno y Junio como mes en verano:

<table>
<thead>
<tr>
<th>Febrero</th>
<th>Constelación</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Día 4</td>
<td>Pyxis</td>
<td>Sur</td>
</tr>
<tr>
<td>Día 13</td>
<td>Vela</td>
<td>Sur</td>
</tr>
<tr>
<td>Día 22</td>
<td>Sextans</td>
<td>Sur</td>
</tr>
<tr>
<td>Día 23</td>
<td>Leo Minor</td>
<td>Norte</td>
</tr>
<tr>
<td>Día 24</td>
<td>Antlia</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Tabla 98. Mes de Febrero. Fuente: Propia

6.6. **Estrellas del almanaque**

En el almanaque náutico de las 91 estrellas listadas 50 pertenecen al hemisferio Sur y 49 al hemisferio Norte. De esta lista, las de 1º magnitud son 12 con declinación Sur, de las cuales 6 serían circumpolares para un observador situado en latitud 40 Sur y 10 con declinación Norte, de las cuales solo 2 son circumpolares para un observador situado en latitud 40 Norte.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Constelación</th>
<th>Declinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achernar</td>
<td>Eridanus</td>
<td>Sur</td>
</tr>
<tr>
<td>Acrux</td>
<td>Crux</td>
<td>Sur</td>
</tr>
<tr>
<td>Adhara</td>
<td>Canis Major</td>
<td>Sur</td>
</tr>
<tr>
<td>Aldebarán</td>
<td>Taurus</td>
<td>Norte</td>
</tr>
<tr>
<td>Altair</td>
<td>Aquila</td>
<td>Norte</td>
</tr>
<tr>
<td>Antares</td>
<td>Scorpius</td>
<td>Sur</td>
</tr>
<tr>
<td>Arcturus</td>
<td>Bootes</td>
<td>Norte</td>
</tr>
<tr>
<td>Betelgeuse</td>
<td>Orión</td>
<td>Norte</td>
</tr>
<tr>
<td>Canopus</td>
<td>Carina</td>
<td>Sur</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Estrella</th>
<th>Constelación</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capella</td>
<td>Auriga</td>
<td>Norte</td>
</tr>
<tr>
<td>Deneb</td>
<td>Cygnus</td>
<td>Norte</td>
</tr>
<tr>
<td>Fomalhaut</td>
<td>Piscis Austrinus</td>
<td>Sur</td>
</tr>
<tr>
<td>Hadar</td>
<td>Centaurus</td>
<td>Sur</td>
</tr>
<tr>
<td>Mimosa</td>
<td>Crux</td>
<td>Sur</td>
</tr>
<tr>
<td>Pollux</td>
<td>Gemini</td>
<td>Norte</td>
</tr>
<tr>
<td>Procyon</td>
<td>Canis Minor</td>
<td>Norte</td>
</tr>
<tr>
<td>Regulus</td>
<td>Leo</td>
<td>Norte</td>
</tr>
<tr>
<td>Rigel</td>
<td>Orión</td>
<td>Sur</td>
</tr>
<tr>
<td>Rigil Kent</td>
<td>Centaurus</td>
<td>Sur</td>
</tr>
<tr>
<td>Sirius</td>
<td>Canis Major</td>
<td>Sur</td>
</tr>
<tr>
<td>Spica</td>
<td>Virgo</td>
<td>Sur</td>
</tr>
<tr>
<td>Vega</td>
<td>Lyra</td>
<td>Norte</td>
</tr>
</tbody>
</table>

Tabla 100. Estrellas de 1º magnitud. Fuente: Propia

Las de 2º magnitud son 28 con declinación Sur de las cuales 14 serían circumpolares para un observador situado en latitud 40 Sur y 30 con declinación Norte, de las cuales 16 son circumpolares para un observador situado en latitud 40 Norte.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Constelación</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alderamin</td>
<td>Cepheus</td>
<td>Norte</td>
</tr>
<tr>
<td>Alhena</td>
<td>Gemini</td>
<td>Norte</td>
</tr>
<tr>
<td>Alioth</td>
<td>Ursa Mayor</td>
<td>Norte</td>
</tr>
<tr>
<td>Alkaid</td>
<td>Ursa Mayor</td>
<td>Norte</td>
</tr>
<tr>
<td>Al Na’ir</td>
<td>Grus</td>
<td>Sur</td>
</tr>
<tr>
<td>Alnilam</td>
<td>Orión</td>
<td>Sur</td>
</tr>
<tr>
<td>Alnitak</td>
<td>Orión</td>
<td>Sur</td>
</tr>
<tr>
<td>Alphard</td>
<td>Hydra</td>
<td>Sur</td>
</tr>
<tr>
<td>Alphecca</td>
<td>Corona Borealis</td>
<td>Norte</td>
</tr>
<tr>
<td>Constelación</td>
<td>Nombre</td>
<td>Hemisferio</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Alpheratz</td>
<td>Andromeda</td>
<td>Norte</td>
</tr>
<tr>
<td>Almak</td>
<td>Andromeda</td>
<td>Norte</td>
</tr>
<tr>
<td>Aludra</td>
<td>Canis Major</td>
<td>Sur</td>
</tr>
<tr>
<td>Ankaa</td>
<td>Phoenix</td>
<td>Sur</td>
</tr>
<tr>
<td>Aspidiske</td>
<td>Carina</td>
<td>Sur</td>
</tr>
<tr>
<td>Atria</td>
<td>Triangulum Australe</td>
<td>Sur</td>
</tr>
<tr>
<td>Avior</td>
<td>Carina</td>
<td>Sur</td>
</tr>
<tr>
<td>Bellatrix</td>
<td>Orión</td>
<td>Norte</td>
</tr>
<tr>
<td>Caph</td>
<td>Cassiopeia</td>
<td>Norte</td>
</tr>
<tr>
<td>Castor</td>
<td>Gemini</td>
<td>Norte</td>
</tr>
<tr>
<td>Denébola</td>
<td>Leo</td>
<td>Norte</td>
</tr>
<tr>
<td>Diphda</td>
<td>Cetus</td>
<td>Sur</td>
</tr>
<tr>
<td>Dubhe</td>
<td>Ursa Mayor</td>
<td>Norte</td>
</tr>
<tr>
<td>Elnath</td>
<td>Taurus</td>
<td>Norte</td>
</tr>
<tr>
<td>Eltanin</td>
<td>Draco</td>
<td>Norte</td>
</tr>
<tr>
<td>Enif</td>
<td>Pegaso</td>
<td>Norte</td>
</tr>
<tr>
<td>β Grus</td>
<td>Grus</td>
<td>Sur</td>
</tr>
<tr>
<td>Hamal</td>
<td>Aries</td>
<td>Norte</td>
</tr>
<tr>
<td>Kaus Australis</td>
<td>Sagitarius</td>
<td>Sur</td>
</tr>
<tr>
<td>Kochab</td>
<td>Ursa Minor</td>
<td>Norte</td>
</tr>
<tr>
<td>Markab</td>
<td>Pegaso</td>
<td>Norte</td>
</tr>
<tr>
<td>Menkalinan</td>
<td>Auriga</td>
<td>Norte</td>
</tr>
<tr>
<td>Menkar</td>
<td>Cetus</td>
<td>Norte</td>
</tr>
<tr>
<td>Menkent</td>
<td>Centaurus</td>
<td>Sur</td>
</tr>
<tr>
<td>Merak</td>
<td>Ursa Mayor</td>
<td>Norte</td>
</tr>
<tr>
<td>Miaplacidus</td>
<td>Carina</td>
<td>Sur</td>
</tr>
<tr>
<td>Mintaka</td>
<td>Orión</td>
<td>Sur</td>
</tr>
<tr>
<td>Mirach</td>
<td>Andromeda</td>
<td>Norte</td>
</tr>
</tbody>
</table>
Tabla 101. Estrellas de 2ª magnitud. Fuente: Propia

<table>
<thead>
<tr>
<th>Estrella</th>
<th>Constelación</th>
<th>Hemisferio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirfak</td>
<td>Perseus</td>
<td>Norte</td>
</tr>
<tr>
<td>Mirzam</td>
<td>Canis Major</td>
<td>Sur</td>
</tr>
<tr>
<td>Mizar</td>
<td>Ursa Mayor</td>
<td>Norte</td>
</tr>
<tr>
<td>Muhlifain</td>
<td>Centaurus</td>
<td>Sur</td>
</tr>
<tr>
<td>Navi</td>
<td>Cassiopeia</td>
<td>Norte</td>
</tr>
<tr>
<td>Nunki</td>
<td>Sagitarius</td>
<td>Sur</td>
</tr>
<tr>
<td>Peacock</td>
<td>Pavo</td>
<td>Sur</td>
</tr>
<tr>
<td>Polaris</td>
<td>Ursa Minor</td>
<td>Norte</td>
</tr>
<tr>
<td>Puppis</td>
<td>Puppis</td>
<td>Sur</td>
</tr>
<tr>
<td>Rasalhague</td>
<td>Ophiuchus</td>
<td>Norte</td>
</tr>
<tr>
<td>Regor</td>
<td>Vela</td>
<td>Sur</td>
</tr>
<tr>
<td>Sadr</td>
<td>Cygnus</td>
<td>Norte</td>
</tr>
<tr>
<td>Saiph</td>
<td>Orión</td>
<td>Sur</td>
</tr>
<tr>
<td>Scheat</td>
<td>Pegaso</td>
<td>Norte</td>
</tr>
<tr>
<td>Schedar</td>
<td>Cassiopeia</td>
<td>Norte</td>
</tr>
<tr>
<td>ε Scorpii</td>
<td>Scorpius</td>
<td>Sur</td>
</tr>
<tr>
<td>θ Scorpii</td>
<td>Scorpius</td>
<td>Sur</td>
</tr>
<tr>
<td>Shaula</td>
<td>Scorpius</td>
<td>Sur</td>
</tr>
<tr>
<td>Suhail</td>
<td>Vela</td>
<td>Sur</td>
</tr>
<tr>
<td>δ Velorum</td>
<td>Vela</td>
<td>Sur</td>
</tr>
<tr>
<td>Wezen</td>
<td>Canis Major</td>
<td>Sur</td>
</tr>
</tbody>
</table>

Las 3ª magnitud son 9 con declinación Sur de las cuales 2 serían circumpolares para un observador situado en latitud 40 Sur y 9 con declinación Norte, de las cuales solo una es circumpolar para un observador situado a latitud 40 Norte.
Tabla 102. Estrellas de 3ª magnitud. Fuente: Propia

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Constelación</th>
<th>Declinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acamar</td>
<td>Eridanus</td>
<td>Sur</td>
</tr>
<tr>
<td>Alcyone</td>
<td>Taurus</td>
<td>Norte</td>
</tr>
<tr>
<td>Algenib</td>
<td>Pegaso</td>
<td>Norte</td>
</tr>
<tr>
<td>Algol</td>
<td>Perseus</td>
<td>Norte</td>
</tr>
<tr>
<td>Cor Caroli</td>
<td>Canes Venatici</td>
<td>Norte</td>
</tr>
<tr>
<td>Deneb Algedi</td>
<td>Capricornus</td>
<td>Sur</td>
</tr>
<tr>
<td>Gienah</td>
<td>Corvus</td>
<td>Sur</td>
</tr>
<tr>
<td>β Hydrae</td>
<td>Hydra</td>
<td>Norte</td>
</tr>
<tr>
<td>V Hydrae</td>
<td>Hydra</td>
<td>Sur</td>
</tr>
<tr>
<td>α Lyncis</td>
<td>Lynx</td>
<td>Norte</td>
</tr>
<tr>
<td>Rasalgethi</td>
<td>Hercules</td>
<td>Norte</td>
</tr>
<tr>
<td>Sabik</td>
<td>Ophiuchus</td>
<td>Sur</td>
</tr>
<tr>
<td>Unukalhai</td>
<td>Serpens</td>
<td>Norte</td>
</tr>
<tr>
<td>μ Velorum</td>
<td>Vela</td>
<td>Sur</td>
</tr>
<tr>
<td>Vindemiatrix</td>
<td>Virgo</td>
<td>Norte</td>
</tr>
<tr>
<td>Zaurak</td>
<td>Eridanus</td>
<td>Sur</td>
</tr>
<tr>
<td>Zubenelgubi</td>
<td>Libra</td>
<td>Sur</td>
</tr>
<tr>
<td>Zubeneschamali</td>
<td>Libra</td>
<td>Sur</td>
</tr>
</tbody>
</table>
7. Reconocimiento de estrellas

El problema del reconocimiento o identificación de las estrellas consiste en conocer la estrella que queremos observar, cosa imprescindible para obtener en el Almanaque Náutico sus coordenadas. Los astros se pueden reconocer por enfilaciones, con mapas celestes, con identificadores, con la naviesfera y también resolviendo las formulas de la recta de altura.

7.1. Enfilaciones para encontrar las estrellas principales

Conociendo algunas constelaciones y estrellas se pueden reconocer otras trazando enfilaciones o líneas imaginarias en la esfera celeste. Fácilmente reconocibles en el firmamento resultan de gran utilidad para el navegante las constelaciones: Ursa Major, Ursa Minor, Cassiopeia, Orion, Pegasus, Scorpius, Andromeda y Crux.

La primera de las enfilaciones es como encontrar la estrella Polaris de la constelación Ursa Minor a través de la constelación Ursa Major, trazando una enfilación prolongando la distancia entre Merak y Dubhe cinco veces. Desde la polar también podemos encontrar la constelación de Cassiopeia prolongando la misma línea en dirección contraria y con ángulo contrario, nos encontramos con su estrella Shedir. A través de las dos constelaciones podemos encontrar la estrella Polaris.
Ilustración 107. Enfilación Merak-Dubhe y Cassiopeia con Polaris. Fuente: Stellarium

Siguiendo la enfilación entre Dubhe- Polaris nos encontramos a Alpheratz que es la estrella que comparten las constelaciones de Andromeda y Pegasus.
Ilustración 108. Enfilación Dubhe-Polaris con Alpheratz. Fuente: Stellarium

Con la enfilación Mizar- Alkaid de Ursa Major encontramos la estrella Antares de la constelación Scorpius.
Con la enfilación de las tres Marías o Cinturón de Orion encontramos la estrella más brillante del cielo nocturno, Sirius de la constelación Canis Major.
7.2. **Catálogos de estrellas**

Son una relación numerada de estrellas indicando sus magnitudes, coordenadas y algunos datos complementarios interesantes.

El catálogo del Almanaque Náutico para uso de los navegantes comprende 99 estrellas (todas las de 1ª y 2ª magnitud y algunas de 3ª). Las coordenadas tabuladas son el Ángulo Sidéreo y la declinación correspondientes al día 15 de cada mes.

7.3. **Planisferios**

Son mapas de estrellas o representaciones de la esfera celeste sobre un plano, donde las estrellas se identifican a través de enfilaciones, y en los que las posiciones de las estrellas suelen señalarse con un código de símbolos que permite apreciar su magnitud y cada una de

Ilustración 110. Enfilación Cinturón de Orion con Sirio. Fuente: Stellarium
ellas con su nombre o letra griega. Cuando el planisferio va asociado a un catálogo también llevan el número de este.

Pueden utilizarse distintos sistemas de proyección. El Almanaque Náutico contiene cuatro planisferios, dos de aspecto circular que son proyección estereográfica\(^6\) de los hemisferios boreal y austral sobre el plano del ecuador celeste, tomando el polo opuesto como vértice de proyección, y otros dos planisferios en proyección Mercator que comprenden una banda circular de 80º, para apreciar mejor el aspecto de las constelaciones ecuatoriales.

Podemos encontrar libros donde se detallan los mapas del cielo para cada mes del año, con un mapa separado para cada hemisferio. Incluyen un mapamundi donde identificar el color de la línea de la latitud del observador.

Ilustración 111. Mapa celeste del mes de Enero, hemisferio Norte. Fuente: Manual de identificación de estrellas y planetas

\(^6\) En estas proyecciones el centro o vértice de proyección es un punto sobre la esfera, siendo el plano de proyección normal al diámetro de la misma que pasa por el centro de proyección.
Para visualizar el cielo hacia el Norte hay que sostener el mapa con las manos con el Norte hacia el observador. La línea con la latitud de 40ºN en nuestro caso representa el horizonte y la cruz del mismo color de la línea representa el cenit. Entonces podemos reconocer las diferentes constelaciones que tenemos delante y sus principales estrellas. Lo mismo haremos si queremos observar el cielo hacia el Sur con el correspondiente mapa, pero con el Sur pegado a nuestro cuerpo. Del mismo modo tenemos dos mapas también para el hemisferio Sur y para cada mes del año.

7.4. Rectas de altura (astro desconocido)

Si partimos de que tenemos calculados el $h_{\gamma l}$ y h_{l}, a continuación calculamos la altura verdadera (corrigiendo la altura instrumental con el error de índice y la altura del buque) que es un dato cierto que, junto con la latitud estimada y el Z_a corregido (+ la corrección total) a Z_v, necesitaremos para calcular la declinación del astro con la fórmula:

$$send = sena \cdot senl + cosa \cdot cosl \cdot cos Z_v$$

Con esta declinación aproximada comprobaremos que no se trate de un planeta.

En el caso de que el valor de la declinación fuese muy aproximado al de un planeta miraríamos el horario del planeta en Greenwich y lo corregiríamos por minutos y segundos. Después calcularíamos el horario del planeta en el lugar con la fórmula:

$$ctgh = \frac{tg(a \cdot cos l - sen l \cdot cos Z_v)}{sen Z_v}$$

y lo transformaríamos en horario del planeta en Greenwich (sumando o restando nuestra longitud) para ver si se aproxima bastante al valor del horario del planeta en Greenwich hallado por las tablas.

Si el valor fuese muy aproximado consideraríamos como reconocido el astro.

Por el contrario, si el valor del horario del planeta en Greenwich hallado no fuese aproximado al que viene en las tablas de los planetas entonces no se trataría de un planeta sino de una estrella con una declinación muy parecida a la de un planeta, en cuyo caso procederíamos de la siguiente forma: horario del astro en el lugar, h_{l}, (que ya estaría calculado = horario del planeta en el lugar), horario de Aries en el lugar, $h_{\gamma l}$, que ya hemos calculado, y despejamos A.S. de:

$$h_{l} = h_{\gamma l} + A.S. \quad \rightarrow \quad A.S. = h_{\gamma l} - h_{l}$$
Comparando la declinación hallada y ese A.S. con los de las tablas procederíamos a reconocer el astro.

7.5. Identificador de astros Star finder

El Identificador está diseñado para determinar los valores aproximados de Azimut Verdadero y altura de las 57 estrellas más importantes del Almanaque Náutico, además de los cuatro planetas utilizados en Navegación Astronómica, mientras estén encima del horizonte del observador, para un determinado sitio y hora.

Consta, esencialmente, de un disco base circular y opaca, que representa el plano del ecuador celeste, sobre el que se han proyectado y señalado 57 estrellas seleccionadas. Una cara del disco base corresponde al hemisferio norte celeste y la otra al hemisferio sur. En el centro del disco se sitúa la proyección del polo celeste correspondiente (norte o sur). La circunferencia exterior de cada cara del disco está graduada de 0º a 360º, corresponiendo la graduación 0º al primer punto de Aries. Los radios representan semicírculos horarios o máximos de ascensión. El radio que pasa por el 0º de la graduación representa el primer máximo de ascensión o semicírculo horario del primer punto de Aries.

También incluye 9 discos transparentes, correspondientes a distintas latitudes (de 10º en 10º, desde los 5º de latitud hasta los 85º). Cada disco sirve tanto para latitud norte como para latitud sur, según la cara del mismo que se utilice. Según la latitud en que se encuentre el observador, se insertará el disco correspondiente en el disco base. Estos discos tienen dibujadas en azul curvas que representan almicantarats y verticales. En estos discos se señala con una cruz azul la posición del zenit. Por tanto, el meridiano superior del lugar estará representado por la línea que pasa por el centro del disco base (polo) y por esta cruz (zenit). Esta línea, radio del disco base, tiene una flecha en su extremo, y al moverse con el disco transparente, sirve para medir el horario local de Aries en la graduación del disco base.

Conocidas la altura verdadera del astro y su azimut verdadero en un instante determinado, para identificar el astro, se halla el horario local de Aries a la hora de la observación. Se inserta en el disco base el disco transparente de latitud más próxima a la del observador, de forma que la flecha de este último marque en el borde graduado del disco base el horario local de Aries. Se busca la intersección de las curvas correspondientes al azimut verdadero y a la altura verdadera del astro desconocido, encontrando en dicha intersección, o en sus proximidades, el nombre de la estrella observada.
7.6. Tablas americanas y Tablas Rápidas

Se utilizan para determinar los astros que pueden observarse en los crepúsculos con las tablas primero sacaremos del Almanaque Náutico la información sobre los crepúsculos, se decide la hora a la que se realizará la observación y se calcula la situación de estima en ese instante. Entonces se obtiene el horario de Aries correspondiente a la hora en que se realizará la observación.

Se modifica la latitud de estima al grado próximo, y la longitud de estima lo necesario para tener un número exacto de grados como valor del horario local de Aries astronómico. Esta situación se denomina situación aproximada.

Con la latitud y con el horario local de Aries astronómico se entra en las tablas y se anota el nombre de las estrellas seleccionadas junto con su altura y azimut.
7.7. Naviesfera

Es un instrumento formado por un globo celeste y un soporte especial en el cual gira el globo para situarlo en una posición análoga a la esfera celeste que vemos en un instante determinado. En el globo están dibujadas las estrellas principales, el ecuador, la eclíptica y algunos paralelos y círculos horarios.

El soporte tiene dos círculos metálicos fijos, uno que representa el horizonte graduado en azimut y otro graduado en latitud. Además tiene un cuadrante móvil que se coloca normal al arco graduado en azimut, graduado en altura.

Una cosa a tener en cuenta es que la posición relativa de las estrellas la vemos al contrario que en la realidad, debido a que en la Naviesfera estamos viendo la esfera celeste desde fuera y en realidad estamos dentro de dicha esfera celeste.

Para reconocer un astro tenemos que calcular el horario del lugar de Aries, inclinamos la bola hasta que marque la latitud y la giramos hasta que el meridiano superior del lugar nos marque el horario del lugar de Aries que ya hemos calculado. En este momento la esfera ya está en la posición en que tenemos la esfera celeste. En el círculo de horizonte buscamos el azimut y situamos la vertical del astro, sobre él tomamos la altura del astro y en ese punto veremos el astro que queremos reconocer.

8. Estrellas utilizadas en la navegación

Son una lista de 99 astros de hasta tercera magnitud empleadas por los marinos en el cálculo de situación en altamar y en verificaciones de rumbo. Por ser las más conspicuas en el firmamento y las más brillantes de cada constelación, son fácilmente identificables.

Dado su intenso brillo son las primeras en aparecer en el firmamento durante los crepúsculos vespertinos y las últimas en desaparecer en los crepúsculos matutinos, momentos ambos más idóneos para efectuar las observaciones astronómicas dado la simultaneidad de visión de los astros y el horizonte.

Junto al Sol, la Luna, y los planetas Venus, Marte, Júpiter y Saturno son los puntos de la esfera celeste empleados en astronomía como referencia para la navegación. Las coordenadas celestes de estas estrellas se publican en los Almanaque Náuticos.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Magnitud aparente</th>
<th>Ángulo sidéreo</th>
<th>Constelación</th>
<th>Declinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acamar</td>
<td>3,3</td>
<td>315º19'</td>
<td>Eridanus</td>
<td>S 40º15'</td>
</tr>
<tr>
<td>Achernar</td>
<td>0,5</td>
<td>335º27'</td>
<td>Eridanus</td>
<td>S 57º10'</td>
</tr>
<tr>
<td>Acrux</td>
<td>1,3</td>
<td>173º10'</td>
<td>Crux</td>
<td>S 63º10'</td>
</tr>
<tr>
<td>Adhara</td>
<td>1,5</td>
<td>255º13'</td>
<td>Canis Major</td>
<td>S 29º</td>
</tr>
<tr>
<td>Alcyone</td>
<td>2,9</td>
<td>302º56'</td>
<td>Taurus</td>
<td>N 24º08'</td>
</tr>
<tr>
<td>Aldebarán</td>
<td>0,9</td>
<td>290º50'</td>
<td>Taurus</td>
<td>N 16º32'</td>
</tr>
<tr>
<td>Alderamin</td>
<td>2,4</td>
<td>40º17'</td>
<td>Cepheus</td>
<td>N 62º38'</td>
</tr>
<tr>
<td>Algenib</td>
<td>2,8</td>
<td>356º32'</td>
<td>Pegaso</td>
<td>N 15º15'</td>
</tr>
<tr>
<td>Algol</td>
<td>*2,8</td>
<td>312º45'</td>
<td>Perseus</td>
<td>N 41º</td>
</tr>
<tr>
<td>Alhena</td>
<td>1,9</td>
<td>260º23'</td>
<td>Gemini</td>
<td>N 16º23'</td>
</tr>
<tr>
<td>Alioth</td>
<td>1,8</td>
<td>166º21'</td>
<td>Ursa Mayor</td>
<td>N 55º53'</td>
</tr>
<tr>
<td>Alkaid</td>
<td>1,9</td>
<td>152º59'</td>
<td>Ursa Mayor</td>
<td>N 49º15'</td>
</tr>
<tr>
<td>Nombre</td>
<td>Magnitud</td>
<td>Declinación</td>
<td>Caudal</td>
<td>Signo</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>Al Na’ir</td>
<td>1,7</td>
<td>27º45’</td>
<td>Grus</td>
<td>S 46º54’</td>
</tr>
<tr>
<td>Alnilam</td>
<td>1,7</td>
<td>275º47’</td>
<td>Orión</td>
<td>S 01º12’</td>
</tr>
<tr>
<td>Alnitak</td>
<td>2,1</td>
<td>274º39’</td>
<td>Orión</td>
<td>S 01º56’</td>
</tr>
<tr>
<td>Alphard</td>
<td>2,0</td>
<td>217º57’</td>
<td>Hydra</td>
<td>S 08º43’</td>
</tr>
<tr>
<td>Alphecca</td>
<td>2,2</td>
<td>126º12’</td>
<td>Corona Borealis</td>
<td>N 26º40’</td>
</tr>
<tr>
<td>Alpheratz</td>
<td>2,1</td>
<td>357º44’</td>
<td>Andromeda</td>
<td>N 29º10’</td>
</tr>
<tr>
<td>Altair</td>
<td>0,8</td>
<td>62º09’</td>
<td>Aquila</td>
<td>N 08º54’</td>
</tr>
<tr>
<td>Almak</td>
<td>2,3</td>
<td>328º49’</td>
<td>Andromeda</td>
<td>N 42º23’</td>
</tr>
<tr>
<td>Aludra</td>
<td>2,5</td>
<td>248º51’</td>
<td>Canis Major</td>
<td>S 29º20’</td>
</tr>
<tr>
<td>Ankaa</td>
<td>2,4</td>
<td>353º16’</td>
<td>Phoenix</td>
<td>S 42º14’</td>
</tr>
<tr>
<td>Antares</td>
<td>*1,4</td>
<td>112º27’</td>
<td>Scorpius</td>
<td>S 26º27’</td>
</tr>
<tr>
<td>Arcturus</td>
<td>0,0</td>
<td>145º56’</td>
<td>Bootes</td>
<td>N 19º07’</td>
</tr>
<tr>
<td>Aspidiske</td>
<td>2,5</td>
<td>220º39’</td>
<td>Carina</td>
<td>S 59º20’</td>
</tr>
<tr>
<td>Atria</td>
<td>1,9</td>
<td>107º30’</td>
<td>Triangulum Australe</td>
<td>S 69º03’</td>
</tr>
<tr>
<td>Avisor</td>
<td>1,8</td>
<td>234º18’</td>
<td>Carina</td>
<td>S 59º33’</td>
</tr>
<tr>
<td>Bellatrix</td>
<td>1,6</td>
<td>278º33’</td>
<td>Orión</td>
<td>N 6º22’</td>
</tr>
<tr>
<td>Betelgeuse</td>
<td>*0,9</td>
<td>271º02’</td>
<td>Orión</td>
<td>N 7º24’</td>
</tr>
<tr>
<td>Canopus</td>
<td>-0,7</td>
<td>263º56’</td>
<td>Carina</td>
<td>S 52º42’</td>
</tr>
<tr>
<td>Capella</td>
<td>0,1</td>
<td>280º35’</td>
<td>Auriga</td>
<td>N 46º</td>
</tr>
<tr>
<td>Caph</td>
<td>2,3</td>
<td>357º32’</td>
<td>Cassiopeia</td>
<td>N 59º13’</td>
</tr>
<tr>
<td>Castor</td>
<td>2,0</td>
<td>246º09’</td>
<td>Gemini</td>
<td>N 31º51’</td>
</tr>
<tr>
<td>CorCaroli</td>
<td>2,9</td>
<td>165º51’</td>
<td>Canes Venatici</td>
<td>N 38º15’</td>
</tr>
<tr>
<td>Deneb</td>
<td>1,3</td>
<td>49º32’</td>
<td>Cygnus</td>
<td>N 45º19’</td>
</tr>
<tr>
<td>Deneb Algedi</td>
<td>2,9</td>
<td>33º04’</td>
<td>Capricornus</td>
<td>S 16º04’</td>
</tr>
<tr>
<td>Denébola</td>
<td>2,1</td>
<td>182º34’</td>
<td>Leo</td>
<td>N 14º30</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Magnitud</th>
<th>Dec.</th>
<th>Constelación</th>
<th>Latitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphda</td>
<td>2,0</td>
<td>348º56’</td>
<td>Cetus</td>
<td>S 17º55’</td>
</tr>
<tr>
<td>Dubhe</td>
<td>1,8</td>
<td>193º53’</td>
<td>Ursa Mayor</td>
<td>N 61º41’</td>
</tr>
<tr>
<td>Elnath</td>
<td>1,7</td>
<td>278º13’</td>
<td>Taurus</td>
<td>N 28º37’</td>
</tr>
<tr>
<td>Eltanin</td>
<td>2,2</td>
<td>90º46’</td>
<td>Draco</td>
<td>N 51º29’</td>
</tr>
<tr>
<td>Enif</td>
<td>*2,1</td>
<td>33º48’</td>
<td>Pegaso</td>
<td>N 09º56’</td>
</tr>
<tr>
<td>Fomalhaut</td>
<td>1,2</td>
<td>15º25’</td>
<td>Piscis Austrinus</td>
<td>S 29º33’</td>
</tr>
<tr>
<td>Gacrux</td>
<td>*1,6</td>
<td>172º02’</td>
<td>Crux</td>
<td>S 57º11’</td>
</tr>
<tr>
<td>Gienah</td>
<td>2,6</td>
<td>175º53’</td>
<td>Corvus</td>
<td>S 17º37’</td>
</tr>
<tr>
<td>β Gruis</td>
<td>*2,1</td>
<td>19º09’</td>
<td>Grus</td>
<td>S 46º49’</td>
</tr>
<tr>
<td>Hadar</td>
<td>0,6</td>
<td>148º49’</td>
<td>Centaurus</td>
<td>S 60º26’</td>
</tr>
<tr>
<td>Hamal</td>
<td>2,0</td>
<td>328º01’</td>
<td>Aries</td>
<td>N 23º31’</td>
</tr>
<tr>
<td>α Hydrae</td>
<td>3,1</td>
<td>225º59’</td>
<td>Hydra</td>
<td>N 05º54’</td>
</tr>
<tr>
<td>V Hydrae</td>
<td>3,1</td>
<td>197º26’</td>
<td>Hydra</td>
<td>S 16º16’</td>
</tr>
<tr>
<td>Kaus Australis</td>
<td>1,9</td>
<td>83º45’</td>
<td>Sagitarius</td>
<td>S 34º23’</td>
</tr>
<tr>
<td>Kochab</td>
<td>2,1</td>
<td>137º20’</td>
<td>Ursa Minor</td>
<td>N 74º06’</td>
</tr>
<tr>
<td>Markab</td>
<td>2,5</td>
<td>13º39’</td>
<td>Pegaso</td>
<td>N 15º16’</td>
</tr>
<tr>
<td>Menkalinan</td>
<td>1,9</td>
<td>269º53’</td>
<td>Auriga</td>
<td>N 44º57’</td>
</tr>
<tr>
<td>Menkar</td>
<td>2,5</td>
<td>314º16’</td>
<td>Cetus</td>
<td>N 04º08’</td>
</tr>
<tr>
<td>Menkent</td>
<td>2,1</td>
<td>148º08’</td>
<td>Centaurus</td>
<td>S 36º26’</td>
</tr>
<tr>
<td>Merak</td>
<td>2,4</td>
<td>194º21’</td>
<td>Ursa Mayor</td>
<td>N 56º19’</td>
</tr>
<tr>
<td>Miaplacidus</td>
<td>1,7</td>
<td>221º40’</td>
<td>Carina</td>
<td>S 69º46’</td>
</tr>
<tr>
<td>Mimosa</td>
<td>1,3</td>
<td>167º53’</td>
<td>Crux</td>
<td>S 59º45’</td>
</tr>
<tr>
<td>Mintaka</td>
<td>2,2</td>
<td>276º50’</td>
<td>Orión</td>
<td>S 0º17’</td>
</tr>
<tr>
<td>Mirach</td>
<td>2,1</td>
<td>342º23’</td>
<td>Andromeda</td>
<td>N 35º41’</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Estrella</th>
<th>Paridad</th>
<th>Degres</th>
<th>Constelación</th>
<th>Latitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirfak</td>
<td>1,8</td>
<td>308º41'</td>
<td>Perseus</td>
<td>N 49º54'</td>
</tr>
<tr>
<td>Mirzam</td>
<td>2,0</td>
<td>264º11'</td>
<td>Canis Major</td>
<td>S 17º58'</td>
</tr>
<tr>
<td>Mizar</td>
<td>2,3</td>
<td>158º53'</td>
<td>Ursa Mayor</td>
<td>N 54º51'</td>
</tr>
<tr>
<td>Muhlifain</td>
<td>2,4</td>
<td>169º27'</td>
<td>Centaurus</td>
<td>S 49º02'</td>
</tr>
<tr>
<td>Navi</td>
<td>*2,3</td>
<td>345º38'</td>
<td>Cassiopeia</td>
<td>N 60º47'</td>
</tr>
<tr>
<td>Nunki</td>
<td>2,0</td>
<td>75º59'</td>
<td>Sagitarius</td>
<td>S 26º17'</td>
</tr>
<tr>
<td>α Lyncis</td>
<td>3,1</td>
<td>219º32'</td>
<td>Lynx</td>
<td>N 34º20'</td>
</tr>
<tr>
<td>Peacock</td>
<td>1,9</td>
<td>53º20'</td>
<td>Pavo</td>
<td>S 56º41'</td>
</tr>
<tr>
<td>Polaris</td>
<td>2,0</td>
<td>317º60'</td>
<td>Ursa Minor</td>
<td>N 89º19'</td>
</tr>
<tr>
<td>Pollux</td>
<td>1,1</td>
<td>243º28'</td>
<td>Gemini</td>
<td>N 28º</td>
</tr>
<tr>
<td>Procyon</td>
<td>0,4</td>
<td>244º60'</td>
<td>Canis Minor</td>
<td>N 5º11'</td>
</tr>
<tr>
<td>1 Puppis</td>
<td>2,3</td>
<td>238º59'</td>
<td>Puppis</td>
<td>S 40º02'</td>
</tr>
<tr>
<td>Rasalgethi</td>
<td>3,5</td>
<td>101º12'</td>
<td>Hercules</td>
<td>N 14º23'</td>
</tr>
<tr>
<td>Rasalhague</td>
<td>2,1</td>
<td>96º07'</td>
<td>Ophiuchus</td>
<td>N 12º33'</td>
</tr>
<tr>
<td>Regor</td>
<td>1,8</td>
<td>237º31'</td>
<td>Vela</td>
<td>S 47º22'</td>
</tr>
<tr>
<td>Regulus</td>
<td>1,4</td>
<td>207º44'</td>
<td>Leo</td>
<td>N 11º54'</td>
</tr>
<tr>
<td>Rigel</td>
<td>0,1</td>
<td>281º13'</td>
<td>Orión</td>
<td>S 8º11'</td>
</tr>
<tr>
<td>Rigil Kent</td>
<td>0,0</td>
<td>139º52'</td>
<td>Centaurus</td>
<td>S 60º53'</td>
</tr>
<tr>
<td>Sabik</td>
<td>2,6</td>
<td>102º13'</td>
<td>Ophiuchus</td>
<td>S 15º44'</td>
</tr>
<tr>
<td>Sadr</td>
<td>2,2</td>
<td>54º20'</td>
<td>Cygnus</td>
<td>N 40º18'</td>
</tr>
<tr>
<td>Saiph</td>
<td>2,1</td>
<td>272º54'</td>
<td>Orión</td>
<td>S 09º40'</td>
</tr>
<tr>
<td>Scheat</td>
<td>*2,4</td>
<td>13º54'</td>
<td>Pegaso</td>
<td>N 28º09'</td>
</tr>
<tr>
<td>Schedar</td>
<td>2,2</td>
<td>349º41'</td>
<td>Cassiopeia</td>
<td>N 56º36'</td>
</tr>
<tr>
<td>ε Scorpii</td>
<td>2,3</td>
<td>107º15'</td>
<td>Scorpius</td>
<td>S 34º19'</td>
</tr>
</tbody>
</table>
Estudio de las constelaciones del Hemisferio Norte en comparación con las del Hemisferio Sur y su utilización en Navegación

<table>
<thead>
<tr>
<th>Estrella</th>
<th>Magnitud</th>
<th>Latitud</th>
<th>Constelación</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ Scorpii</td>
<td>1,9</td>
<td>95º 26’</td>
<td>Scorpius</td>
<td>S 43º</td>
</tr>
<tr>
<td>Shaula</td>
<td>1,6</td>
<td>96º23’</td>
<td>Scorpius</td>
<td>S 37º07’</td>
</tr>
<tr>
<td>Sirius</td>
<td>-1,5</td>
<td>258º34’</td>
<td>Canis Major</td>
<td>S 16º44’</td>
</tr>
<tr>
<td>Spica</td>
<td>1,0</td>
<td>158º32’</td>
<td>Virgo</td>
<td>S 11º14’</td>
</tr>
<tr>
<td>Suhail</td>
<td>2,2</td>
<td>222º53’</td>
<td>Vela</td>
<td>S 43º29’</td>
</tr>
<tr>
<td>Unukalhai</td>
<td>2,7</td>
<td>123º46’</td>
<td>Serpens</td>
<td>N 06º23’</td>
</tr>
<tr>
<td>Vega</td>
<td>0,0</td>
<td>80º40’</td>
<td>Lyra</td>
<td>N 38º48’</td>
</tr>
<tr>
<td>δ Velorum</td>
<td>2,0</td>
<td>228º44’</td>
<td>Vela</td>
<td>S 54º45’</td>
</tr>
<tr>
<td>μ Velorum</td>
<td>2,8</td>
<td>198º10’</td>
<td>Vela</td>
<td>S 49º29’</td>
</tr>
<tr>
<td>Vindemiatrix</td>
<td>2,8</td>
<td>164º18’</td>
<td>Virgo</td>
<td>N 10º54’</td>
</tr>
<tr>
<td>Wezen</td>
<td>1,9</td>
<td>252º46’</td>
<td>Canis Major</td>
<td>S 26º25’</td>
</tr>
<tr>
<td>Zaurak</td>
<td>3,0</td>
<td>300º20’</td>
<td>Eridanus</td>
<td>S 13º 28’</td>
</tr>
<tr>
<td>Zubenelgenubi</td>
<td>2,8</td>
<td>137º06’</td>
<td>Libra</td>
<td>S 16º06’</td>
</tr>
<tr>
<td>Zubeneschamali</td>
<td>2,6</td>
<td>130º35’</td>
<td>Libra</td>
<td>S 09º26’</td>
</tr>
</tbody>
</table>

9. Conclusiones

Las constelaciones han sido parte importante en la vida de varias civilizaciones desde la antigüedad hasta nuestros días, siendo muy utilizadas por los navegantes desde entonces hasta el siglo pasado. Las constelaciones del hemisferio sur fueron nombradas muchos años más tarde que las del norte, eso explica la diferencia entre los nombres de unos y otros. Las constelaciones en el hemisferio norte tienen nombres que en su mayoría provienen de los griegos mientras que muchas de las constelaciones del hemisferio sur tienen nombres de inventos del siglo XVII.

De la comparación entre las constelaciones de cada hemisferio podemos decir que el hemisferio Norte tiene la ventaja de tener una estrella, fácilmente visible, casi en el norte cosa que en el hemisferio sur no. En el hemisferio norte hay 35 constelaciones menos que en el sur.

Del área que ocupan podemos deducir fácilmente que debido a que las constelaciones más grandes y las más pequeñas pertenecen al hemisferio sur, las del hemisferio norte son más uniformes en tamaño. Del mismo modo podemos analizar el brillo de las constelaciones, ya que el hemisferio sur tiene las constelaciones más brillantes, pero también las menos brillantes. Está muy relacionado con el número de estrellas que tiene cada constelación, ya que más o menos obtenemos el mismo resultado.

La visibilidad de las constelaciones está bastante igualada, ya que son visibles en todo el mundo las constelaciones cercanas al ecuador celeste, tanto del sur como del norte. De igual modo, la declinación de las estrellas del Almanaque Náutico también está muy igualada, por lo que en los dos hemisferios tenemos estrellas tanto de 1ª, 2ª y 3ª magnitud de igual modo.

Actualmente, y debido a los avances tecnológicos sufridos en el último siglo, las constelaciones se han quedado en desuso, al aparecer en el mercado aparatos como el GPS que directamente nos da la posición en la que nos encontramos. Nos hemos acostumbrado a confiar en estos aparatos de tal manera que nos olvidamos de que un día pueden fallar. Por esto, es de vital importancia tener en cuenta este tipo de conocimientos para poder ser capaces de orientarnos y posicionarnos sin ayuda de equipos electrónicos.

Existen hoy en día, incluso, aplicaciones del móvil que se descargan de manera gratuita y sirven para reconocer astros, apuntando con el móvil al cielo o al astro que quieres reconocer y te dice el nombre y la constelación a la que pertenece.
Finalmente me gustaría comentar que me ha resultado muy interesante realizar este trabajo, ya que he aprendido mucho sobre las constelaciones y las estrellas utilizadas en navegación. Después de buscar mucha información tanto en libros como en internet, he podido extraer una conclusión práctica de su utilización y función.
10. Bibliografía

- Castello Mora, F. Astronomía náutica, Navegación. 5ª Edición. 2006.
PAGINAS WEB CONSULTADAS

- www.fing.edu.uy/ (12/02/2012)
- www.robertexto.com/archivo1/constelaciones.htm (14/02/2012)
- www.mascoalba.com/public/astronomia/ (14/02/2012)
- www.medioambiente.cu/ (22/02/2012)
- www.astrologia.org (24/02/2012)
- www.library.illinois.edu (07/03/2012)
- www.constellationsofwords.com (22/02/2012)
- www.kalipedia.com (07/03/2012)
- www.proyectosalonhogar.com (12/03/2012)
- www.mayas2012.es (23/03/2012)
- www.personales.ya.com (23/03/2012)
- www.wikipedia.org (23/03/2012)
- www.elcielodelmes.com (07/03/2012)