TÍTULO: Análisis del impacto medioambiental de la telefonía móvil

TITULACIÓN: Ingeniería Técnica de Telecomunicaciones, especialidad Sistemas de Telecomunicación

AUTOR: Rubén Campos Altur
DIRECTOR: Luis Alonso
CODIRECTOR: Juan Carlos Aguado
FECHA: 13 de Junio de 2012
RESUMEN

El sector de las telecomunicaciones se ha convertido en uno de los grandes elementos de la economía mundial. Desde sus orígenes, su crecimiento no ha parado en ningún momento. Tal hecho supone de una gran responsabilidad medioambiental, por lo que identificar y medir los elementos que lo forman es fundamental para conseguir ajustar al máximo su impacto sobre el medioambiente.

Este TFC analiza el impacto medioambiental causado por la telefonía móvil a lo largo de las diferentes etapas que forman su ciclo de vida: extracción de materias primas, fabricación, explotación y fin de vida útil. De los tres ejes principales que forman esta industria, oficinas, red y teléfonos móviles, tan sólo se tienen en cuenta los dos últimos.

Para cada una de las etapas, se identifican los rasgos más característicos, se analizan los elementos que más perjudican el medio ambiente, y se proponen soluciones para paliar tales efectos.

A partir de la información obtenida, también se analiza, bajo diferentes escenarios de usuarios y volúmenes de descarga, el impacto medioambiental causado por el total de la red.

Como resultado de este TFC se obtiene que la fase de explotación de la red es la que causa mayor daño medioambiental, seguidamente de la fase de fabricación de los dispositivos móviles. La fase de final de vida útil simplemente permite contrarrestar una pequeña parte del daño causado por las otras dos fases.

El enfoque de este TFC tiene como propósito despertar la curiosidad de otros alumnos que quieran profundizar en cada una de las áreas que se tratan.
The telecommunications sector has become one of the major elements of the global economy. From its origins, its growth has not stopped at any time. This fact requires a great environmental responsibility, so identify and measure the elements that form it is essential to minimize the impact on the environment.

This TFC analyzes the environmental impact caused by mobile telephony throughout the different stages that form its life cycle: raw material extraction, manufacture, operation and end of life. From the three main axes that form this industry, offices, network and mobile phones, this piece of work considers only the last two.

For each of the stages, the most characteristic features are identified, the most harmful elements are analyzed, and some solutions are proposed to mitigate such effects.

From the information obtained, the environmental impact caused by the total network is also analyzed under different user scenarios and volumes of download.

Overall, the operational phase of the network is causing the higher environmental damage, then the manufacturing of mobile devices. The end of life phase just can counteract a small part of the damage caused by the other two phases.

The focus of this TFC is intended to arouse the curiosity of other students who want learn about some of the covered areas.
ÍNDICE

INTRODUCCIÓN, MOTIVACIÓN Y OBJETIVOS ...1

CAPÍTULO 1. ÁREAS DE ACTUACIÓN ...3
 1.1. Panorama de la telefonía móvil ...3
 1.2. Principales áreas de impacto medioambiental ..4

CAPÍTULO 2. MATERIAS PRIMAS Y FABRICACIÓN7
 2.1. Composición de un teléfono móvil ...7
 2.2. Materiales perjudiciales ...9
 2.2.1 Paladio ..9
 2.2.2 Tantalo ..9
 2.2.3 Cadmio ..10
 2.2.4 Plomo ...11
 2.2.5 Níquel ..11
 2.2.6 Berilio ...12
 2.2.7 Litio ...12
 2.2.8 Agentes ignífugos ..13
 2.3. Legislación y programas de garantía humanitaria14
 2.3.1 Directiva RoHS ...14
 2.3.3 Programas de garantía humanitaria ..15
 2.4. Consumo y emisiones ..15
 2.5. Cadena de transporte ...16
 2.6. Cargador ...18
 2.6.1. Clasificación de los cargadores ...19
 2.6.2 Cargador universal microUSB ..19

CAPÍTULO 3. EXPLOTACIÓN DE LA RED ..21
 3.1. Consumo de energía por línea ..21
 3.2. Huella de carbono por línea ..23
 3.3. Áreas de mejora en la red de acceso ...24
 3.3.1. Nivel de componentes ...25
 3.3.2. Nivel de nodo ..27
 3.3.2.1. Técnicas multiantena (MIMO y beamforming)27
 3.3.2.2. Transmisión discontinua (DTX y modo reposo)28
 3.3.2.3. Gestión dinámica del ancho de banda30
 3.3.2.4. Alternancia energética ...31
 3.3.3 Nivel de sistema ...31
3.4. Fuentes de energía renovables ... 34
 3.4.1. Energía solar .. 34
 3.4.2. Energía eólica .. 35
 3.4.3. Biocombustibles ... 35

3.5. Campos de RF electromagnética como posible cancerígeno 36

CAPÍTULO 4. FIN DE VIDA ÚTIL ... 37
 4.1. Reutilización del teléfono móvil .. 37
 4.2. Reciclaje del teléfono móvil ... 38
 4.2.1. Directiva WEEE ... 39
 4.3. Deshecho del teléfono móvil ... 40

CAPÍTULO 5. IMPACTO BAJO DIFERENTES ESCENARIOS 41
 5.1. Características de los diferentes escenarios 41
 5.2. Presentación de los resultados .. 42
 5.3. Análisis de los resultados del escenario E1 .. 44
 5.3.1. Escenario E1 GPRS ... 44
 5.3.2. Escenario E1 UMTS .. 45
 5.3.3. Escenario E1+ ... 45
 5.4. Análisis de los resultados del escenario E2 .. 46
 5.4.1. Escenario E2 GPRS ... 46
 5.4.2. Escenario E2 UMTS .. 47
 5.4.3. Escenario E2+ ... 47

CAPÍTULO 6. CONCLUSIONES ... 49

REFERENCIAS ... 52

ANEXOS .. 54
 ANEXO I. Aspectos básicos de una red de telefonía móvil 54
 ANEXO II. Problemas medioambientales asociados 54
 ANEXO III. Ciclo de vida bajo el método IMPACT2002+ 63
 ANEXO IV. Especificaciones iPhone 4 .. 75
ÍNDICE FIGURAS

- **Fig. 1.1** Evolución del número de usuarios de telefonía e internet ... 3
- **Fig. 1.2** Evolución de las velocidades de transmisión de datos .. 4
- **Fig. 1.3** Distribución de procesos y etapas de la industria de la telefonía móviles 5
- **Fig. 1.4** Huella de carbono global de las comunicaciones móvil hasta 2020 6
- **Fig. 2.1** Porcentaje de los materiales típicos de un teléfono móvil ... 7
- **Fig. 2.2** Pasos para la fabricación de un teléfono móvil ... 17
- **Fig. 2.3** Mapa de distribución de diferentes elementos de la cadena de transporte del iPhone 4 (Anexo IV) .. 17
- **Fig. 3.1** Ejemplo de ciclo diario de carga de la batería de un teléfono móvil 22
- **Fig. 3.2** Tamaño de las celdas e inversión necesaria en función de la frecuencia operativa de la red de telefonía móvil ... 24
- **Fig. 3.3** Jerarquía de un sistema básico de red de acceso .. 25
- **Fig. 3.4** Diagrama de bloques de una BS (Base Station) .. 26
- **Fig. 3.5** Ejemplo distribución acumulada de SINR (A) y *throughput* (B) bajo diferentes configuraciones de antenas ... 27
- **Fig. 3.6** Ejemplo de consumo de potencia del sistema en función del *link rate* con/sin DTX .. 28
- **Fig. 3.7** Información contenida en un frame de LTE ... 29
- **Fig. 3.8** Sistema adaptativo de consumo de TRX (A) y ancho de banda (B) en función de la carga de la red .. 30
- **Fig. 3.9** Ejemplo de reutilización de frecuencias de factor 3 ... 31
- **Fig. 3.10** Distribución a nivel de sistema de los nodos conectados al backhaul 32
- **Fig. 3.11** Simulación de sistema de macroceldas (A) y celdas heterogéneas (10 microceldas, B), y el consumo individual de ambas (C) ... 32
- **Fig. 3.12** Simulación del consumo por unidad de *throughput* en función del ISD para celdas macro/micro homogéneas, y una combinación de ambas 33
- **Fig. 3.13** Simulación de la ganancia de consumo en función del total del *throughput* por área bajo varios escenarios ... 34
- **Fig. 4.1** Diagrama de flujo del proceso de recuperación de los metales preciosos y otros materiales de los teléfonos móviles ... 39
- **Fig. 5.1** Impacto anual sobre las cuatro categorías de daño en GPRS y UMTS (R’06) bajo los escenarios E0, E1 y E2 ... 43
ÍNDICE TABLAS

Tabla 2.1 Evolución de los componentes más importantes de los teléfonos móviles ... 8
Tabla 2.2 Ejemplos de emisiones de CO$_2$e y energía consumida durante un ciclo de vida estimado de 3 años ... 15
Tabla 2.3 Densidad de energía para diferentes procesos de fabricación 16
Tabla 2.4 Especificaciones del sistema de calificación por estrellas EC IPP 19
Tabla 3.1 Consumo energético de la red por línea en España 21
Tabla 3.2 Emisiones de CO$_2$e por línea en España .. 23
Tabla 3.3 Emisiones de CO$_2$e en 2009 según la IEA ... 23
Tabla 5.1 Líneas de 2G y 3G, y consumo anual de datos, según escenario 41
Tabla 5.2 Elementos que forman el modelo de red de telefonía móvil 42
INTRODUCCIÓN, MOTIVACIÓN Y OBJETIVOS

La telefonía móvil está enmarcada dentro de las TIC y se caracteriza principalmente por ofrecer un servicio masivo que permite establecer llamadas de voz y video entre usuarios, y recientemente, acceder a servicios de banda ancha móvil. La demanda a nivel mundial de la telefonía móvil no ha dejado de crecer desde la segunda generación, al igual que su impacto negativo sobre el medio ambiente, y por tanto, en cierto modo, es corresponsable del calentamiento global.

El calentamiento del sistema climático es inequívoco, como evidencia el aumento observado del promedio mundial de las temperaturas del aire y del océano, la fusión generalizada de nieves y hielos, y el aumento del promedio mundial del nivel del mar. Si se mantuvieran las emisiones de gases de efecto invernadero en las tasas actuales, o superiores, ocasionaría un mayor calentamiento e induciría numerosos cambios en el sistema climático mundial, lo cual, supondrían un riesgo para la humanidad.

La motivación de realizar el TFC surge de la curiosidad por conocer mejor la red de telefonía móvil, y también la responsabilidad medioambiental que conlleva. Actualmente, la parte dedicada a aspectos medioambientales normalmente ocupa una pequeña parte de cada TFC, primando siempre otros aspectos técnicos y/o económicos. Por este motivo, se propuso realizar un trabajo que se focalizará únicamente en cuestiones medioambientales.

Este tipo de enfoque puede parecer atípico respecto a los que normalmente se presentan en la escuela debido a la falta de contenido técnico habitual, y por tanto, puede existir el riesgo de que parezca que la aportación no es tan relevante. El medio ambiente no se debería tratar como una cuestión trivial, sino más bien como un elemento esencial a tener en cuenta, y que puede que no se haya profundizado suficientemente durante la carrera.

Hasta ahora no se había realizado en la EETAC un TFC que uniera el ciclo de vida de la telefonía móvil y el medioambiente, por lo que se consideró que la mejor forma de enfocar este proyecto era plasmando unos conocimientos básicos que permitan entender la relación entre ambos, y por otro lado, extraer conclusiones prácticas para mejorar el ciclo de vida de los sistemas de comunicaciones móviles.

Para ello, se analiza el daño medioambiental que causa la telefonía móvil a lo largo de las diferentes etapas que forman su ciclo de vida: materias primas, fabricación y fin de vida útil de los terminales móviles, y la explotación y el consumo de recursos del equipo de red. Para cada una de las fases, se identifican los rasgos más característicos, se analizan los elementos de mayor impacto, y se proponen soluciones para paliar tales efectos. A partir de la información obtenida, también se analiza, bajo diferentes escenarios de usuarios y volúmenes de descarga, el impacto medioambiental causado por el total de la red.

¿Qué fase de todo el ciclo de vida de la telefonía móvil perjudica más el medioambiente?, ¿cuánto contribuye nuestro teléfono móvil al total de la huella de
carbono?, ¿qué trastornos puede causarnos la utilización del teléfono móvil?, ¿Qué materiales lo forman? ¿cuál de las redes, 2G o 3G, es la que se comporta mejor en términos medioambientales?, ¿cuáles son los componentes de la red que más daño provocan?, ¿cómo han mejorado con el tiempo las actualizaciones de los estándares GSM y UMTS? o ¿cómo consigue paliar el daño medioambiental una fase responsable de fin de vida útil?, son algunas de las dudas que se resolverán durante este trabajo.

En el Capítulo 1: Áreas de actuación, se despliega, a modo de capítulo introductorio, el contexto actual y futuro de la telefonía móvil, y se identifican cuáles son las áreas de mayor daño medioambiental dentro de todo el ciclo de vida, las cuales son analizadas en los capítulos dos, tres y cuatro.

En el Capítulo 2: Materiales primas y fabricación, se describen los materiales que componen los teléfonos móviles, cuales son los más perjudiciales y bajo qué directivas se rigen, cuánta energía es necesaria para su fabricación, y qué tipos de cargadores de terminales existen.

En el Capítulo 3: Explotación de la red, se describen los aspectos relacionados con el consumo de recursos y emisiones de la red de telefonía móvil, tanto desde el punto de vista de los usuarios, como de la red. Además, se describen varias técnicas para disminuir el impacto.

En el Capítulo 4: Fin de vida útil, se describen los procesos de reciclado y reutilización de los teléfonos móviles, cuál es su correspondiente legislación, y qué consecuencias conlleva un fin de vida irresponsable.

En el Capítulo 5: Impacto bajo diferentes escenarios, se analiza la huella de carbono, el consumo de recursos, el efecto sobre el cambio climático y la calidad del ecosistema que puede provocar el total de una la red de telefonía móvil en sus variantes 2G y 3G.

Finalmente, se presentan todas las conclusiones en el Capítulo 6.
CAPÍTULO 1. ÁREAS DE ACTUACIÓN

1.1. Panorama de la telefonía móvil

La industria de la telefonía móvil incluye a operadores (Movistar, Vodafone, Orange, OMV, etc), fabricantes de teléfonos (Nokia, Apple, Motorola, RIM, Samsung, etc), proveedores (Ericsson, Cisco, Huawei, Alcatel-Lucent, Nokia Siemens Networks, etc) y usuarios. Además, existe un amplio abanico de empresas que se encargan de la proveer contenidos, programas, servicios de facturación, marketing, administración, etc.

La demanda a nivel mundial de servicios de telecomunicaciones móviles no ha dejado de crecer desde que en la década de 1990 naciera la segunda generación de telefonía móvil, llegando a alcanzar el 1.3% de la economía europea en 2009 según la GSMA [1]. Tal crecimiento ha requerido de un gran esfuerzo y responsabilidad, tanto en aspectos económicos, sociales y científicos, como medioambientales.

En la actualidad, como se aprecia en la figura 1.1, el número de abonados de telefonía móvil alcanza ya los 6 billones, o lo que es lo mismo, más del 87% de la población del planeta. En comparación, sólo hay unos 1,5 billones de abonados de telefonía fija y 2,4 billones de usuarios de Internet. No obstante, la progresión año tras año, en el último lustro, refleja un dato muy importante: el sector de las comunicaciones no ha dejado de crecer en ninguna de sus variantes, a excepción de la telefonía fija.

Se estima que en 2008, cuando el número de usuarios a la telefonía móvil no superaban los 5 billones, el país con más teléfonos móviles era China, con 747 millones, y España ocupaba la posición #24 con 50 millones [3], lo cual equivalía a 1,12 teléfonos per cápita (posición #50 a nivel mundial), es decir, más de un teléfono móvil por persona.
En la actualidad, las regiones que más están creciendo son América del Sur, América del Norte, Europa del Este, África y Oriente Medio. La GSM Association estima que aproximadamente 896 millones de teléfonos móviles fueron vendidos en 2006, y alrededor del 50% de éstos fueron teléfonos de reemplazo. Por lo tanto, alrededor de 448 millones de los nuevos teléfonos vendidos fueron para 489 millones de nuevos clientes de telefonía móvil. La diferencia, 41 millones de personas, o un poco más del 8% de nuevos clientes, fueron sólo los que utilizaron un teléfono usado [4].

Los avances tecnológicos del sector crecen a un ritmo endiablado. La fuerza motriz detrás de este rápido desarrollo reside en la creciente importancia de las interacciones sociales y económicas. La potencia de procesado y la capacidad de almacenamiento de los dispositivos se ha duplicando aproximadamente cada 18 meses, de acuerdo a la Ley de Moore. Para poder transportar tal cantidad exponencialmente creciente de datos, en un margen de tiempo aceptable, las tasas de transmisión, con o sin “cables”, se han incrementado aproximadamente a la misma velocidad: un factor de diez cada cinco años (fig. 1.2). Esta misma tendencia también se asume para el futuro cercano.

Por otro lado, tal crecimiento se ha visto ligado a un aumento progresivo de las emisiones de CO₂. Proteger el medio ambiente y combatir el cambio climático son dos de los desafíos a los que se enfrenta actualmente la humanidad. Al mismo tiempo que el precio de la energía se ha disparado, el sector se ha visto obligado a estudiar minuciosamente nuevas formas de reducir sus facturas energéticas, y por supuesto, ajustar sus responsabilidades sociales y ambientales.

1.2. Principales áreas de impacto medioambiental

La palabra “medio ambiente” se puede definir como el conjunto de organismos vivos, o también llamados bióticos, y los elementos sin vida, o también llamados abióticos (energía solar, la atmósfera, el agua, el suelo,…), los cuales interactúan en la biosfera, la capa viva de la Tierra.
El sector de la telefonía móvil, o comunicaciones móviles en general, abarca multitud de fases que permiten el funcionamiento cotidiano de esta industria, y ofrecen uno de los servicios más universalmente utilizados en la actualidad. Como muestra la figura 1.3, estas fases parten de la extracción de materias primas, pasando por la construcción y/o fabricación, la utilización y/o explotación, hasta llegar al final de vida útil. Todas ellas forman el ciclo de vida de esta industria y contribuyen, en menor o gran medida, al impacto del medio ambiente.

No obstante, no todos los procesos provocan el mismo perjuicio sobre el medio ambiente. La figura 1.4 muestra como ha ido evolucionando la huella de carbono de cada uno de ellos. De acuerdo a la proyección, la huella de carbono global de las telecomunicaciones móviles aumentará casi linealmente hasta el año 2020, con un incremento anual de 11 Mton de CO$_2$e hasta alcanzar 235 Mton de CO$_2$e. Con respecto a 2007, la huella de carbono global se prevé que aumentará un factor de 2 hasta el año 2014, y de 2,7 hasta el año 2020. Por el contrario, la huella del sector de las TIC, en su conjunto, se espera que aumente en un factor de sólo 1,72 durante el mismo periodo de 13 años [6].

Durante todo este tiempo, la huella de carbono global sigue estando dominada por las huellas individuales de operación RAN (Radio Access Network) y la fabricación de dispositivos móviles. En consecuencia, las iniciativas encaminadas a la reducción de la huella de carbono del sector de las comunicaciones móviles deberían centrarse en estas dos áreas. Mientras que la operación RAN es de lejos el mayor contribuyente en el año 2007, la fabricación de dispositivos móviles se prevé que cada vez sea más importante, llegando alcanzar una huella de carbono similar en 2020.
Este TFC se centrará, por tanto, en aquellos procesos que tienen una mayor responsabilidad sobre el impacto medioambiental del sector. Estos procesos aparecen bajo un círculo rojo en la figura 1.3. Estas áreas son la extracción de materias primas que se utilizan en la fabricación de dispositivos móviles, la explotación de las redes, y finalmente la gestión de los teléfonos móviles en el final de su vida útil. Queda en segundo plano del TFC cualquier tema relacionado con el ciclo de vida de las oficinas.

En el Anexo II se añaden más detalles sobre los problemas medioambientales asociados a la telefonía móvil.
CAPÍTULO 2. MATERIAS PRIMAS Y FABRICACIÓN

Este capítulo comprende las dos primeras fases del ciclo de vida de la telefonía móvil previas a la fase de explotación. La creación de una red de telefonía móvil empieza por la extracción de las materias primas, la fabricación de los materiales base y los distintos componentes, para finalmente dar forma a cada uno de los elementos que forman la red.

La fabricación de teléfonos móviles supera ampliamente a la fabricación del resto de equipo de red de telefonía, tanto en número como en impacto. Por este motivo, a pesar de que muchos de estos materiales son comunes en ambos, este capítulo se centrará en los teléfonos móviles, dejando a un lado al daño asociado a la extracción de las materias primas.

En este capítulo se analizan los materiales más comunes en los teléfonos móviles, qué consecuencias medioambientales conlleva su uso y las obligaciones legales que han de cumplir. Por otro lado, también se analiza el peso medioambiental de ambas fases dentro de todo el ciclo de vida, así como el proceso de transporte y las diferentes opciones de cargadores.

2.1. Composición de un teléfono móvil

Cuando compramos un teléfono móvil solemos encontrar, en una misma caja, un terminal, formado por, pantalla, teclado, antena, circuitos impresos, micrófono y altavoz, una batería y un cargador. Cada teléfono móvil cambia dependiendo del modelo y fabricante, y por tanto, también los materiales que lo componen.

La figura 2.1 muestra la proporción típica de materiales que posee un teléfono móvil. La mayoría de los materiales son plásticos, seguido de cristal, cobre y níquel. Sin embargo, aquellos que se encuentran en proporciones más pequeñas son los que requieren de una mayor preocupación ya que son los más perjudiciales para el medio ambiente, o los más valiosos. Estos materiales son el níquel, los agentes ignífugos (bromados y clorados), el plomo, el tantalio, el oro, el paladio, el antimonio y el berilio. Tan sólo el níquel se puede apreciar en la gráfica con claridad, el resto se encuentran englobados en la porción denominada “otros” ya que su contenido se encuentra por debajo del 0,1% de la composición típica de un teléfono móvil.

![Fig. 2.1 Porcentaje de los materiales típicos de un teléfono móvil [8]](image-url)
A medida que la industria ha avanzado, los materiales con los que se fabrican los teléfonos han ido cambiando, así como sus proporciones. En la tabla 2.1 se pueden diferenciar dos grupos de materiales, los tres más significativos (verde) y los que calificados como altamente peligrosos y/o valiosos (rojo).

Tabla 2.1. Evolución de los componentes más importantes de los teléfonos móviles [9]

<table>
<thead>
<tr>
<th>Elemento</th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plástico</td>
<td>55,9%</td>
<td>59,6%</td>
<td>63,4%</td>
<td>~ 40%</td>
</tr>
<tr>
<td>Cristal</td>
<td>10,6%</td>
<td>10,6%</td>
<td>10,6%</td>
<td>~ 20%</td>
</tr>
<tr>
<td>Cobre</td>
<td>16,9%</td>
<td>14,2%</td>
<td>11,6%</td>
<td>~ 10%</td>
</tr>
<tr>
<td>Níquel</td>
<td>1,13%</td>
<td>1,12%</td>
<td>0,88%</td>
<td>2% - 10%</td>
</tr>
<tr>
<td>Bromo</td>
<td>0,94%</td>
<td>0,94%</td>
<td>0,94%</td>
<td>0.1% - 1%</td>
</tr>
<tr>
<td>Plomo</td>
<td>0,30%</td>
<td>0,30%</td>
<td>0,35%</td>
<td>0.1% - 1%</td>
</tr>
<tr>
<td>Antimonio</td>
<td>0,08%</td>
<td>0,08%</td>
<td>0,08%</td>
<td>< 0,1%</td>
</tr>
<tr>
<td>Oro</td>
<td>0,04%</td>
<td>0,04%</td>
<td>0,03%</td>
<td>< 0,1%</td>
</tr>
<tr>
<td>Paladio</td>
<td>0,02%</td>
<td>0,02%</td>
<td>0,01%</td>
<td>< 0,1%</td>
</tr>
<tr>
<td>Cloro</td>
<td>0,01%</td>
<td>0,01%</td>
<td>0,01%</td>
<td>< 0,1%</td>
</tr>
<tr>
<td>Pt/Ta</td>
<td>0,0036%</td>
<td>0,0036%</td>
<td>0,0054%</td>
<td>0,1% - 1%</td>
</tr>
<tr>
<td>Berilio</td>
<td>0,0033%</td>
<td>0,0033%</td>
<td>0,0022%</td>
<td>< 0,1%</td>
</tr>
</tbody>
</table>

Del primer grupo (verde), el plástico es el que ha sufrido un mayor retroceso con el paso del tiempo, contrariamente, el cristal es el que ha aumentado más. Estos datos son una muestra de hacia dónde han ido evolucionando el diseño de los teléfonos móviles. Las carcasas (generalmente de plástico) antes eran grandes, ya que los teléfonos eran más grandes, al contrario que las pantallas, que solían ser pequeñas y monocromo. Ahora sucede justo lo contrario, los teléfonos se han ido haciendo cada vez más delgados, y las pantallas cada vez más grandes. Por lo tanto, este hecho se traduce en menor utilización de plásticos y un aumento en la utilización de cristal. Respecto al segundo grupo (rojo), poco ha variado la composición con el paso del tiempo.

Uno de los retos y posibilidades para mejorar la composición actual de los teléfonos móviles, por tanto, pasa por reducir del volumen de metales preciosos o tóxicos utilizados. Aunque las cantidades que se utilizan actualmente ya son, de por sí, pequeñas, se consideran la principal fuente de impacto negativo medioambiental de los sistemas de comunicaciones móviles.

Si desde un principio se tuviera en mente una perspectiva medioambiental, se deberían fabricar teléfonos móviles fáciles de reutilizar y reciclar, y que sus materiales residuales fueran mínimos. Todo este proceso empieza con el diseño de teléfonos móviles fáciles de fabricar, con materiales inocuos y con el mínimo de incrustaciones metálicas en plásticos. Por otro lado, estos teléfonos deberían cumplir con las más altas exigencias energéticas para que su consumo fuera lo más ajustado posible.
2.2. Materiales perjudiciales

Como se ha mostrado en el punto anterior, los materiales que más preocupación conllevan para el medio ambiente son el paladio, el tantalio, el bromo, el cadmio, el plomo, el níquel, el berilio, el antimonio, el cloro y el oro. Este último, a pesar de no estar catalogado como tóxico, ni para el medio ambiente, ni para la salud humana, es de gran valor y uno de los elementos más codiciados de la basura electrónica. Por lo tanto, el oro no está presente en los siguientes apartados de materiales perjudiciales.

2.2.1. Paladio

El principal productor de paladio es Rusia, con al menos 50% de los recursos mundiales, seguido por Sudáfrica, Canadá y los Estados Unidos [12]. Se puede encontrar como metal libre aleado con oro y otros metales del grupo del platino en los depósitos de los Montes Urales, Australia, Etiopía, Sudáfrica y América del Norte.

El uso más frecuente del paladio puro corresponde a los contactos eléctricos para bajo voltaje ya que es altamente resistente a la corrosión. También se utiliza en condensadores eléctricos de cerámica de múltiples capas y en revestimientos de componentes electrónicos y materiales de soldadura. Por tanto, el uso del paladio en el teléfono móviles se localizaría principalmente en el circuito impreso.

Todos los compuestos de paladio son considerados altamente tóxicos y cancerígenos. Sin embargo, causa poco impacto ambiental, y además, está presente en niveles bajos en algunos suelos, y las hojas de árboles. Algunas plantas no pueden tolerar bajos niveles de sales de paladio, sin embargo, la mayoría de las plantas tan solo ven afectado su crecimiento en niveles por encima de 3 ppm.

2.2.2. Tantalio

El tantalio (16.224,5 €/kg en Julio de 2007 [10]) es un metal gris, brillante, pesado, dúctil, de alto punto de fusión, buen conductor de la electricidad y el calor, y muy duro. Se suele extraer del mineral tantalita, que se encuentra en la naturaleza junto con la columbita. Esta mezcla se la conoce como coltán.

Las principales fuentes minerales de extracción de tantalio se encuentran en África, con más del 50%, y el resto se encuentra repartida por Brasil, Australia y Canadá. Se utiliza casi exclusivamente en la fabricación de condensadores eléctricos.
trolíticos de tantalio, un componente esencial de los dispositivos electrónicos muy compactos.

El tantalio puede ser perjudicial si es inhalado, ingerido, absorbido por la piel o si entra en contacto con los ojos o fosas nasales, sin embargo, no se considera un agente carcinógeno. Tampoco causa graves problemas al medio ambiente. No obstante, aunque no supone un gran riesgo para la salud humana o el medio ambiente, sí es motivo de grandes problemas sociales.

En la República Democrática del Congo es donde se encuentra una de las mayores reservas de coltán, el cual, ha sido uno de los factores que ha alimentado una guerra civil que se inició en 1996 y ha causado 5.4 millones de muertes [13] (el conflicto con más muertes después de la Segunda Guerra Mundial). Otros 1.7 millones de congoleños se vieron obligados a abandonar sus tierras y la minería a medida que sus tierras se veían destruidas por la guerra. Como consecuencia, el pueblo congoleño se vio obligado a matar elefantes y gorilas de las reservas de vida salvaje para poder alimentarse. En noviembre de 2004, los Jefes de Estado y de Gobierno de Angola, Burundi, República Centroafricana, República del Congo, República Democrática del Congo, Kenya, Uganda, Rwanda, Sudan, Tanzania y Zambia aprobaron por unanimidad una Declaración de Paz, Seguridad y Desarrollo. Actualmente existen mecanismos para certificar que el tantalio, así como el estaño, el tungsteno y el oro, no procede de guerras y cumplen con los derechos humanos, como se explica más adelante.

2.2.3. Cadmio

El cadmio (5,25 €/kg en Julio de 2007 [10]) es un metal pesado, blanco azulado, relativamente poco abundante. Alrededor de tres cuartas partes del cadmio se utiliza en las baterías de níquel-cadmio (NiCd).

Este tipo de baterías son fáciles de reciclar y volver a utilizar en baterías nuevas, aunque el proceso es peligroso. Algunos teléfonos móviles utilizan baterías de níquel-cadmio que contienen cadmio y el hidróxido de cadmio, por lo general, en menos del 25% del peso total de la batería. Sin embargo, desde mediados de la década de 1990, las baterías de níquel-cadmio están siendo rápidamente eliminada de todos los dispositivos electrónicos debido a su toxicidad en favor de las baterías de NiMH y Li-ion. El cadmio se utiliza también en la electrónica en cantidades muy pequeñas como acabados de superficie de las placas de circuito impreso, y en aleaciones de contactos eléctricos de relés e interruptores.

El cadmio es tóxico, especialmente por inhalación, al tracto respiratorio y al riñón y el hígado, y es un probable agente carcinógeno para el ser humano, no obstante, podría ser un elemento químico esencial, necesario en muy pequeñas cantidades.
2.2.4. **Plomo**

El plomo (1,88 €/kg en Julio de 2007 [10]) es un metal pesado, de color plateado con tono azulado, que se empaña adquiriendo un color gris mate. Tiene la capacidad de formar muchas sales, óxidos y compuestos organometálicos.

El plomo se encuentra comúnmente en aparatos eléctricos en cantidades muy pequeñas, en soldaduras junto a estaño. Este tipo de soldaduras se han utilizado en casi toda la electrónica de los teléfonos móviles, y al menos, constituyen un gramo por cada teléfono. Sin embargo, los principales fabricantes de teléfonos móviles, desde hace tiempo, están patrocinando la investigación y trabajando de forma cooperativa con los proveedores para buscar alternativas libres de plomo que pueden mantener la calidad y fiabilidad necesarias.

Dado que la soldadura a base de plomo está prohibida en Europa (y se está eliminando gradualmente en otras regiones de todo el mundo), la mayoría de los nuevos teléfonos móviles ya no contienen este tipo de soldadura, aunque teléfonos viejos puede que sí.

El plomo puede causar varios efectos no deseados como perturbación de la biosíntesis de hemoglobina y anemia, incremento de la presión sanguínea, daño en los riñones, aborto, perturbación del sistema nervioso, daños en el cerebro y daño en el esperma, además de ser un probable agente carcinógeno humano.

2.2.5. **Níquel**

El níquel (25,68 €/kg en Julio de 2007 [10]) es un metal de color blanco plateado, duro, maleable y dúctil. Es un conductor muy bueno de calor y electricidad. Los principales sitios de producción son Sudbury en Canadá, Nueva Caledonia y Norilsk en Rusia.

Uno de los usos más importantes se encuentra en la preparación de aleaciones que se caracterizan por su dureza, ductilitad y resistencia a la corrosión y al calor. Alrededor del 65% del níquel consumido en el mundo occidental se utiliza para fabricar acero inoxidable y el 12% del níquel consumido se utiliza en superaeaciones. El 23% restante del consumo se divide entre los aceros de aleación, baterías recargables (níquel-cadmio, NiCd, o níquel-hidruro metálico, NiMH), catalizadores y otros productos químicos, monedas, productos de fundición y recubrimientos.

Los seres humanos pueden estar expuestos al níquel al respirar aire, beber agua, comer comida o fumar cigarrillos. En pequeñas cantidades el níquel es esencial, pero cuando la toma es demasiado alta puede ser un peligro para la salud humana. Una absorción de cantidades muy grandes de níquel tiene como consecuencias mayores posibilidades de desarrollo de cáncer de pulmón, cáncer de la nariz, el cáncer de laringe y cáncer de próstata, enfermedades y mareos después de la exposición al gas de níquel, embolia pulmonar, insuficiencia respiratoria, defectos de nacimiento, asma y bronquitis crónica, reacciones alérgicas tales como erupciones en la piel y trastornos del corazón.
2.2.6. Berilio

El berilio (218,85 €/kg en Julio de 2007 [10]) es de color gris, duro, ligero y quebradizo. El berilio tiene uno de los puntos de fusión más altos entre los metales ligeros y tiene una conductividad térmica excelente. El óxido, berilia, se utiliza en algunos equipos electrónicos como disipador de calor. El berilio se encuentra en 30 minerales diferentes, siendo los más importantes el berilo y bertrandita, principales fuentes del berilio comercial. Actualmente la mayoría del metal se obtiene mediante reducción de fluoruro de berilio con magnesio.

Geográficamente, las mayores reservas se encuentran en los Estados Unidos que lidera la producción mundial de berilio (65%), seguido de Rusia (40%) y China (15%). Las reservas mundiales se estima que superan las 80.000 toneladas.

Se emplea principalmente para endurecer aleaciones, especialmente de cobre. Un teléfono móvil puede contener berilio en las aleaciones de cobre-berilio (98% de cobre, berilio ≤ 2%) usadas para soldar cables y componentes, y generalmente es menor a 0,3 gramos por cada teléfono.

El berilio entra en el aire, agua y suelo como resultado de procesos naturales, en cantidades pequeñas, y actividades humanas a través de la producción de metal y de la combustión de carbón y aceite. El berilio no es un elemento crucial para los humanos, y además es uno de los más tóxicos que se conocen. La inhalación de berilia o polvo que contenga berilia puede originar un trastorno pulmonar crónico llamado beriliosis en personas susceptibles. El berilio puede incrementar las posibilidades de desarrollar cáncer y daños en el ADN.

2.2.7. Litio

El litio (49,08 €/kg en Abril de 2009 [14]) es el metal sólido más ligero, es de color blando, de bajo punto de fusión y reactivo. Entre las propiedades físicas más notables del litio están el alto calor específico, alta conductividad térmica, muy baja densidad y elevado potencial electroquímico.

Por lo tanto, su uso es perfecto en aleaciones conductoras de calor y en baterías eléctricas, como las que usan los teléfonos móviles. Las baterías más utilizadas en los teléfonos móviles son las de ion de Litio.

El litio se encuentra en pequeña proporción en rocas volcánicas y sales naturales, como en el Salar de Atacama en Chile y el Salar de Uyuni en Bolivia, los cuales tienen el 50% de las reservas mundiales. En Atacama, en Chile, existen otro 30% de las reservas, y otros yacimientos de menor tamaño se encuentran en Argentina.

Las baterías de ion de litio están libres de metales pesados, sin embargo, el litio tiene un alto grado de reactividad química, y esto en sí mismo puede provocar problemas ambientales cuando se expone al agua (presente en la mayoría vertederos), ya que reacciona violentamente, formando gas hidrógeno altamente...
inflamable y vapores corrosivos de hidróxido de litio. Además, su calentamiento puede provocar combustión violenta o explosión, incluso puede arder espontáneamente en contacto con el aire cuando se dispersa en finas partículas.

2.2.8. Agentes ignífugos

Comúnmente se utilizan dos agentes ignífugos en los teléfonos móviles actuales, el TBBA (tetrabromobisphenil A) y el DBBE (decabromobiphenyl ether). El TBBA se utiliza en el sustrato de los circuitos impresos, y tanto TBBA como DBBE se utiliza en la carcasa de plástico de los teléfonos móviles. Estos agentes ignífugos se utilizan para evitar que el teléfono prenda fuego en caso de suceder algún error eléctrico, especialmente en la batería. No impedirían necesariamente el fuego, aunque sí retardaría su inicio, por lo que simplemente añaden un factor de seguridad. Un teléfono móvil actual contiene aproximadamente 2 gramos de estos agentes ignífugos, los cuales están basados en componentes como el bromo, antimonio o cloro.

El bromo es un líquido rojo, volátil y denso a temperatura ambiente. Las salmueras ricas en bromuro se tratan con gas de cloro, lavado a través de aire. En este tratamiento, los aniones de bromuro se oxidan resultando el bromo. Aproximadamente 556 mil toneladas métricas de bromo se producen al año en todo el mundo y los Estados Unidos, Israel y China son los principales productores.

El antimonio en su forma elemental, es un sólido cristalino, fundible, quebradizo, blanco plateado que presenta una conductividad eléctrica y térmica baja y se evapora a bajas temperaturas. En 2005, China fue el mayor productor de antimonio con una cuota de aproximadamente el 84% del mundo seguido de lejos por Sudáfrica, Bolivia y Tayikistán.

El cloro no se encuentra en la naturaleza en estado puro ya que reacciona con rápida con muchos elementos y compuestos químicos, por esta razón se encuentra formando parte de cloruros, cloritos y cloratos, en las minas de sal y disuelto en el agua de mar. El cloro se utiliza para la purificación del agua, en desinfectantes y en lejías, pero también de forma directa o indirecta en la producción de papel, antisépticos, colorantes, alimentos, insecticidas, pinturas, derivados del petróleo, plásticos, medicamentos, productos textiles y otros productos de consumo.

Estos agentes ignífugos forman parte de los PBDE (polybrominated diphenyl ethers), unas sustancias químicas altamente persistentes en el medio ambiente y bioacumulables. Estos pueden provocar cáncer y desórdenes reproductivos, con efectos particularmente perjudiciales para la tiroides. Los PBDE pueden causar trastornos neurológicos en el desarrollo, tales como dificultades de aprendizaje y problemas de conducta. Además, el bromo supone una amenaza mucho mayor para la capa de ozono que los gases CFC, sin embargo, su producción ha sido inferior.
2.3. Legislación y programas de garantía humanitaria

2.3.1. Directiva RoHS

La directiva RoHS (*Restriction of Hazardous Substances*) es la directiva de la Unión Europea sobre las restricciones en la utilización de determinadas sustancias peligrosas en aparatos eléctricos y electrónicos. Fue aprobada en febrero de 2003, y entró en vigor el 1 de julio de 2006.

La RoHS restringe el uso de seis materiales en la fabricación de varios tipos de equipos eléctricos: el cadmio (Cd), el mercurio (Hg), cromo hexavalente (Cr VI), polibromobifenilos (PBBs) y polibromodifeniléteres (PBDEs) y plomo (Pb).

Las concentraciones máximas fijadas mediante la enmienda 2005/618/CE son de 0,1% para plomo, mercurio, cromo VI, PBB y PBDE y de 0,01% para cadmio del peso en materiales homogéneos. Un material homogéneo es una substancia simple como por ejemplo el aislamiento de PVC o el hilo de cobre aislado. Los componentes como los condensadores, transistores o semiconductores no son materiales, sino que están hechos con varios de ellos.

Los límites, por lo tanto, no fijan el porcentaje total del producto o componente, sino el porcentaje de cada una de las partes teóricas en las que se puede dividir cada uno de los componentes que componen el producto final. Es decir, todo lo que pueda ser identificado como un material de un componente debe satisfacer el límite.

Esta medida afecta a cualquier persona o empresa que fabrique o venda aparatos eléctricos o electrónicos con marcas propias, reventa con marcas propias, aparatos fabricados por terceros y a quienes se dediquen profesionalmente a la importación o exportación de dichos aparatos a un Estado miembro de la Unión Europea. Dichos responsables deben hacerse cargo también de la financiación de la recogida, tratamiento, valorización y eliminación no contaminante de los residuos de aparatos eléctricos y electrónicos, según marca la WEEE, la cual se explica en el cuarto capítulo.

La directiva RoHS se aplica a electrodomésticos grandes y pequeños, equipos de comunicaciones e IT, aparatos electrónicos de consumo, aparatos de alumbrado, herramientas eléctricas y electrónicas, juguetes, equipos deportivos y de tiempo libre, y máquinas expendedoras. Por otro lado, la directiva RoHS no se aplica en herramientas industriales de gran tamaño estáticas, piezas de repuesto para la reparación de aparatos eléctricos y electrónicos comercializados antes del 1 de julio de 2006 y aplicaciones específicas del mercurio, plomo, cadmio y cromo hexavalente (lámparas fluorescentes, tubos de rayos catódicos, algunas soldaduras y protecciones anticorrosivas, etc).

Las baterías, a pesar de tener materiales como el cadmio (baterías de NiCd) no están incluidas en la directiva RoHS. Esto es debido a que las baterías se rigen por una directiva propia relativa a las pilas y acumuladores que contengan materiales peligrosos, la enmienda 91/157/CEE.
2.3.3. Programas de garantía humanitaria

Recientemente, la industria electrónica ha empezado a tomar medidas para garantizar que se respete la Declaración Universal de Derechos Humanos y evitar colaborar en conflictos a través del abastecimiento de minerales.

La industria electrónica, agrupada en la EICC (Electronic Industry Citizenship Coalition), junto a la GeSI (Global e-Sustainability Initiative), que engloba a las empresas de telecomunicaciones, han hecho público un programa para garantizar que los minerales utilizados provienen de zonas libres de conflictos, o CFS (Conflict-Free Smelter) [29].

Para poder obtener la certificación de CFS, previamente es necesario obtener la aprobación de otra auditoría llevada a cabo por la OECD (Organisation for Economic Co-operation and Development) llamada “OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas”. Actualmente, los materiales a los que van enfocados estos programas son el estaño, el tantalio, el tungsteno y el oro [30].

Este tipo de programas pretenden fomentar la transparencia de las cadenas de suministro de minerales y la participación empresarial sostenible en el sector de los minerales, con el fin de que los países puedan beneficiarse de sus recursos minerales naturales evitando que esto pueda convertirse en una fuente de conflictos, inseguridad y abuso contra los derechos humanos. Cave destacar que este tipo de programas son voluntarios, y por tanto, han de ser las propias empresas las que contraten estas auditorias, o bien, los clientes de éstas que quieran garantías sobre la procedencia de los materiales. La revisión de la CFS se realiza de forma anual, lo cual garantiza que las medidas alcanzadas no se corrompan con el tiempo.

2.4. Consumo y emisiones

Las fases previas a la utilización del terminal móvil comprenden la extracción de materias primas, la fabricación y la mayor parte de la fase de transporte. Si atendemos a la información publicada por Nokia y Apple sobre algunos de sus últimos modelos de teléfonos móviles (tabla 2.2) vemos que el conjunto de todos estos procesos ocupan entre un 50-82% del total del ciclo de vida, y por tanto, superiores a las fases de utilización o reciclado.

Tabla 2.2. Repartición de las emisiones de CO$_2$e y la energía consumida durante un ciclo de vida estimado de 3 años de algunos teléfonos [16][17]

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Ext. MP & Fabricación</th>
<th>Transporte</th>
<th>Utilización</th>
<th>Reciclado</th>
<th>CO$_2$e</th>
<th>Energía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nokia E7</td>
<td>67%</td>
<td>15%</td>
<td>17%</td>
<td>1%</td>
<td>16 kg</td>
<td>278 MJ</td>
</tr>
<tr>
<td>Nokia N8</td>
<td>67%</td>
<td>15%</td>
<td>17%</td>
<td>1%</td>
<td>16 kg</td>
<td>278 MJ</td>
</tr>
<tr>
<td>Nokia Lumia 800</td>
<td>67%</td>
<td>15%</td>
<td>17%</td>
<td>1%</td>
<td>16 kg</td>
<td>278 MJ</td>
</tr>
</tbody>
</table>
Que la fase de extracción de materias primas y fabricación sea superior al resto se debe principalmente a la gran cantidad de energía necesaria para fabricar los circuitos integrados de silicio ("Si IC" o *silicon integrated circuits*), los cuales pueden ser considerados como otra materia prima más.

En la tabla 2.3 se muestra la densidad de energía bruta de materiales representativos de diferentes sectores industriales (plástico, papel metalúrgicas, vidrio, etc). El alto valor de densidad de energía relacionado con la fabricación de "Si IC" es un indicador de la complejidad tecnológica del proceso de fabricación. Por ejemplo, y salvando las distancias con los componentes de cualquier teléfono móvil, la fabricación de un EPROM de 1Mbit (M27C1001 de ST Microelectric) son necesarios 70 MJ y 30 litros de agua, entre otros materiales [18].

Tabla 2.3. Densidad de energía para diferentes procesos de fabricación

<table>
<thead>
<tr>
<th>Material</th>
<th>Densidad de energía MJ/kg</th>
<th>Material</th>
<th>Densidad de energía MJ/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si (IC)</td>
<td>35,000</td>
<td>Polietileno de alta densidad</td>
<td>75</td>
</tr>
<tr>
<td>Si (metalurgia)</td>
<td>33</td>
<td>Al (metalurgia)</td>
<td>162</td>
</tr>
<tr>
<td>Si (monocris. zirconia cúbica)</td>
<td>560</td>
<td>Cristal (botella genérica)</td>
<td>1</td>
</tr>
<tr>
<td>Cu (metalurgia)</td>
<td>20</td>
<td>Papel (fibras vírgenes)</td>
<td>48</td>
</tr>
</tbody>
</table>

Cuando compramos un teléfono móvil, en la caja encontramos una serie de accesorios que lo acompañan (cargadores, fundas, manos libres, envoltorios, etc), los cuales también tienen un coste energético y medioambiental que han de sumarse a los propios del teléfono. Sin embargo, muchos fabricantes de teléfonos móviles permiten utilizar los actuales accesorios en modelos nuevos. Actualmente se están haciendo grandes esfuerzos en crear estándares para poder compartir un mismo cargador entre modelos de diferentes fabricantes, como se explica más adelante.

2.5. Cadena de transporte

El transporte de mercancías es un proceso que está presente en prácticamente todos los ciclos de vida de cualquier producto, y aunque en el caso de la telefonía móvil no es una de las fases más dañinas, es importante hacer un seguimiento de las materias primas desde su origen hasta que el producto está finali-
zado en las estanterías de las tiendas. La fase de transporte forma parte, de forma transversal, de las cuatro grandes fases que se muestran en la figura 1.3 del primer capítulo, aunque su mayor impacto medioambiental reside en el tramo comprendido desde la fase de extracción de materias primas hasta justo antes de empezar la fase de explotación. Quedarían excluidas, por tanto, el transporte asociado a actualizaciones o reparaciones.

En el mundo globalizado que vivimos, cada una de las partes que forman el teléfono móvil son fabricadas por varias empresas, con materiales que se encuentran a cientos o miles de kilómetros de distancia, y en multitud de países. En la figura 2.2 se puede ver que, en cada uno de los pasos hasta llegar al producto final, existe una fase de transporte intermedia, y que, por tanto, repercute negativamente en el medio ambiente.

Si ponemos como ejemplo el iPhone 4 y los materiales mencionados en el punto 2.2, es posible trazar un mapa para hacer un seguimiento de como evoluciona todo el proceso de fabricación del terminal, desde los yacimientos de las materias primas más importantes (fig. 2.3, colores negro y azul), pasando por la fabricación de los componentes y su posterior ensamblaje (fig. 2.3, naranja y rojo), hasta finalmente, la distribución mundial del producto completado.

Fig. 2.2 Pasos para la fabricación de un teléfono móvil

Fig. 2.3 Distribución de diferentes elementos dentro de la cadena de transporte del iPhone 4 (Anexo IV)
Debido a que la información sobre cantidad y la procedencia de las materias primas de cada uno de los componentes no es de carácter público, ha sido imposible conocer cuál es el impacto medioambiental concreto. Sin embargo, la principal información que se puede extraer de la figura 2.3 es que todos los recursos se encuentran repartidos por todo el planeta, incluso aquellos más utilizados (azul), y que el continente americano es el que posee la mayor variedad, seguido de China. Todos estos materiales han de ser transportados hasta las fábricas encargadas de dar forma a cada uno de los componentes presente en el iPhone 4 (naranja). Éstas se encuentran principalmente en USA, China, Corea del Sur, Japón e Italia, por lo que las materias primas necesitan ser transportadas hasta sendos destinos.

Una vez fabricados todos los componentes, es necesario transportarlos a un mismo punto, en este caso, Foxconn, en Taipei, empresa encargada de ensamblarlos y dar forma al producto final. Finalmente, tan solo queda distribuir el iPhone 4 a través de los 88 países donde se comercializa, y en donde Apple ya ha vendido 57,39 millones de iPhones [19] en el último año.

Queda evidenciado, por tanto, el gran esfuerzo energético que supone la fabricación de teléfonos móviles debido únicamente al transporte de mercancías. Sin embargo, la fase de transporte equivale entre un 5-15% del total de emisiones durante todo el ciclo de vida.

Tratar de paliar las consecuencias dañinas de esta fase es una tarea difícil. El emplazamiento de los recursos naturales no se concentra en una misma región, sino que yacen repartidos de forma variable por el territorio, y por lo tanto, el coste (económico y medioambiental) del transporte se rige por aspectos del mercado. Por lo general, materias primas situadas a distancias cercanas prevalerán sobre las que se encuentran a largas distancias, debido principalmente al coste de transporte. Este planteamiento ya supone de por sí una medida que minimiza el daño medioambiental, siempre y cuando el precio de cada materia prima sea uniforme.

Por esta razón, la mejor medida para paliar el impacto medioambiental en la fase de transporte reside en la cadena final de distribución del producto. La miniaturización del empaquetamiento y el aligeramiento de peso, permiten que se transporte mayor cantidad de unidades en un mismo viaje, ahorrando energía e impacto sobre el medio ambiente.

2.6. Cargador

El cargador es un elemento que se vende junto a cada teléfono móvil, y que permite su conexión a la red eléctrica para poder cargar su batería. Si tenemos en cuenta que existen tantos cargadores como teléfonos móviles, es imprescindible que su fabricación sea lo más eficiente posible y que sus prestaciones también lo sean.
2.6.1. Clasificación de los cargadores

El programa IPP (European Commission’s Integrated Product Policy) junto con algunos de los principales fabricantes de teléfonos móviles (LG Electronics, Motorola, Nokia, Samsung y Sony Ericsson) han creado un sistema de calificación para evaluar la eficiencia energética de los cargadores, y así ayudar a los consumidores escoger aquellos que sean más respetuosos con el medio ambiente. El sistema viene determinado por el consumo del cargador cuando no se encuentra en un estado de carga, es decir, cuando tenemos conectado un terminal a la corriente y éste ya se encuentra totalmente cargado. La calificación parte de una puntuación sin estrellas, para los cargadores con un consumo de más de 0,5W, hasta los cargadores de cinco estrellas, para un consumo menor a 0,03W (ver tabla 2.4).

<table>
<thead>
<tr>
<th>Puntuación</th>
<th>Consumo cuando el terminal se encuentra enchufado pero totalmente cargado</th>
</tr>
</thead>
<tbody>
<tr>
<td>★★★★★</td>
<td>≤ 0,03W</td>
</tr>
<tr>
<td>★★★★</td>
<td>> 0,03W a 0,15W</td>
</tr>
<tr>
<td>★★★</td>
<td>> 0,15W a 0,25W</td>
</tr>
<tr>
<td>★★</td>
<td>> 0,25W a 0,35W</td>
</tr>
<tr>
<td>★</td>
<td>> 0,35W a 0,5W</td>
</tr>
</tbody>
</table>

Si retomamos como ejemplo el iPhone 4, el consumo mientras se encuentra conectado a la corriente, cuando la batería ya está cargada, vemos que el consumo arroja un resultado de 0,25W. Por lo tanto, el cargador estaría clasificado con una puntuación de tres estrellas de un total de cinco. Este dato resulta decepcionante, ya que a pesar de que el iPhone 4 es uno de los teléfonos más avanzados en cuanto a prestaciones, no consigue rivalizar en este aspecto a otros teléfonos de la competencia de similares prestaciones, como por ejemplo, la mayoría de teléfonos móviles de la serie X de Nokia, que obtienen la máxima puntuación (cargador modelo AC-10).

Por ejemplo, si tomamos como referencia un patrón de carga nocturno (3h de carga, más otras 5h que el cargador se mantiene conectado a la corriente), y lo realizamos diariamente, el consumo de energía malgastada que obtenemos es de 426,25Wh/año (1,25Wh/día). En el próximo capítulo se dan más detalles sobre el consumo durante el proceso de carga.

2.6.2. Cargador universal microUSB

La GSMA, junto a los principales operadores y fabricantes de telefonía móvil, se han unido para utilizar una solución compartida para cargar todos los terminales a través de la interfaz MicroUSB llamada UCS (Universal Charging Solution).
Además de utilizar un conector universal, la mayoría de los cargadores vendidos deberán ser de alta eficiencia y cumplir los objetivos marcados por la OMTP (Open Mobile Terminal Platform).

Los cargadores UCS deberán tener una eficiencia de 4 ó 5 estrellas, lo que equivaldría a ser tres veces más eficiente energéticamente que un cargador sin ningún tipo de calificación. Estiman que la medida permitirá ahorrar el 50% de la cantidad anual de cargadores que se fabrican actualmente, es decir, entre 13,6 y 21,8 Mton de CO$_2$e al año, con el respectivo ahorro de consumo energético y transporte [20].

Se ha propuesto el 1 de enero de 2012 como fecha en la que la mayoría de los terminales deberían adaptarse a este acuerdo. Esta medida permitirá reducir el deterioro medioambiental de la industria de la telefonía móvil y ayudará a la gente a hacer sus vidas más simples, ya que solamente necesitarán un cargador para alimentar todos sus dispositivos.
CAPÍTULO 3. EXPLOTACIÓN DE LA RED

En el capítulo anterior se ha analizado que el teléfono móvil es el elemento más importante de la red de telefonía móvil durante las fases de extracción de materias primas y fabricación.

La fase de explotación sucede a la fase de fabricación, y a diferencia de ésta, la importancia medioambiental recae, como se analiza a continuación, en el equipo de red que ofrece el servicio de telefonía y banda ancha móvil. La vida útil de una estación base suele ser ocho veces más larga que la de un teléfono móvil, y su uso requiere de una alta cantidad de energía para funcionar [21].

La instalación de los elementos de la red, y especialmente su operación, son los elementos clave de la fase de explotación, a los que hay que añadir los servicios de mantenimiento y de reparación, aunque estos últimos no se tienen en cuenta en este capítulo.

3.1. Consumo de energía por línea

Conocer cuál es el consumo de energía real en la red de telefonía móvil por cada usuario nos permite entender la magnitud de impacto que supone disponer de un servicio de telefonía móvil las 24 horas del día, los 365 días del año. El consumo de energía total se puede separar en dos partes, la relacionada con el consumo de los terminales móviles, y la relacionada con todos los equipos que forman la red.

Actualmente, España dispone de cuatro operadores de telefonía móvil con red propia, Movistar, Vodafone, Orange y Yoigo, pero únicamente las tres primeras publican informes de responsabilidad corporativa referente a temas medioambientales. En la tabla 3.1 se muestran los índices de consumo energético por cada línea de los tres principales operadores de telefonía móvil.

Tabla 3.1. Consumo energético de la red por línea en España

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo red [MWh]</td>
<td>22.980.876</td>
<td>16.745.000</td>
<td>11.137.154</td>
</tr>
<tr>
<td>Consumo por línea [kWh]</td>
<td>219.883</td>
<td>265.666</td>
<td>229.314</td>
</tr>
<tr>
<td>Líneas</td>
<td>9,57</td>
<td>15,87</td>
<td>20,59</td>
</tr>
</tbody>
</table>

Atendiendo a los datos de la tabla, Movistar es la compañía que tiene menor consumo energético, y sin embargo, es la que tienen mayor número de líneas. Por lo tanto, Movistar sería la compañía más eficiente energéticamente por línea, superando así, a sus competidores. En comparación con Vodafone, ésta es un 60% menos eficiente, o lo que es lo mismo, consume un 60% más por ofrecer, prácticamente, los mismos servicios. En el caso de Orange, la diferencia se agranda hasta el 115%.
Por otro lado, si establecemos un ciclo de carga pesimista de un teléfono móvil, como el de la figura 3.1, en donde el proceso de carga se realiza mientras dormimos, es posible conocer cuánta es la energía consumida en cada una de las tres fases en que se divide el ciclo (A, B y C). La fase A es la de utilización del teléfono móvil, en donde la batería es consumida, y por tanto, el teléfono se encuentra desconectado del cargador. Al contrario, en las fases B y C el cargador se encuentra conectado al teléfono, pero en la primera, la batería se encuentra cargando, y en la segunda no, debido a que ya se encuentra totalmente cargada.

![Fig. 3.1 Ciclo diario de estado de carga de la batería](image)

Tomando como ejemplo el iPhone 4 de Apple Inc., podemos ver como el consumo energético en la fase A es de 5,25Wh, teniendo en cuenta que la batería tiene una capacidad de 1420mAh y un voltaje de 3.7V.

El consumo de la fase B, es decir, mientras el teléfono está cargando, se obtiene una lectura de 6,7Wh, lo que supone un consumo total de 20,1Wh durante las tres horas que tarda en cargarse. Por último, el consumo de la fase C sería de 1,25Wh debido al consumo de 0,25Wh por cada una de las cinco horas que dura dicha fase.

Según este ciclo, cargar el teléfono mientras dormimos supone un malgasto anual de 456,25Wh (un 6% del total) debido al consumo energético que produce mantener el terminal enchufado a la corriente estando ya cargado. Por lo tanto, mantener enchufado el cargador a la corriente únicamente cuando el teléfono está en fase de carga permite ahorrar energía y ser más respetuosos con el medio ambiente.

Por consiguiente, el consumo anual calculado de un teléfono equivaldría a 7,8kWh, frente a 14kWh (media ponderada de los tres operadores) de la red de telefonía, lo que evidencia que el responsable del impacto medioambiental en la fase de explotación lo protagoniza la red.

En la actualidad, algunos operadores comparten algunas de sus instalaciones de estaciones de base radio con fines estratégicos, económicos y técnicos. Sin embargo, si se enfocara esta medida con objetivos medioambientales, y se fomentara su utilización, se podrían reducir drásticamente la necesidad de obras, alquileres, mantenimientos, y sobretodo, consumo energético. Esta medida sería especialmente útil en localizaciones apartadas de grandes núcleos urbanos, ya que permitiría expandir la cobertura de la red de telefonía móvil en zonas que no
suponen un gran interés para las compañías, y además, sacar un mayor rendimiento al equipo de red.

3.2. Huella de carbono por línea

La huella de carbono se mide en masa de CO₂ equivalente y es el perjuicio medioambiental que provocamos sobre la atmósfera a través de la emisión de gases de efecto invernadero debidos a la actividad humana.

Tal actividad altera la composición de la atmósfera mundial y se suma a la variabilidad natural del clima observada durante periodos comparables. Este hecho provoca un incremento de la concentración de gases e incrementa el porcentaje de ondas que son retenidas en la atmósfera, dando lugar a un incremento de la temperatura.

Tabla 3.2. Emisiones de CO₂e por línea en España

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones de CO₂e [t]</td>
<td>22.980.876</td>
<td>16.745.000</td>
<td>11.137.154</td>
</tr>
<tr>
<td>Emisiones de CO₂e por línea [kg]</td>
<td>935.615</td>
<td>71.574</td>
<td>109.455</td>
</tr>
</tbody>
</table>

Según la información publicada por cada operador, en la tabla 3.2 observamos que los clientes de Vodafone son los que menos huella de carbono producen, bastante menos que los de Orange y Movistar, cuyas huellas de carbono son dos y diez veces superiores, respectivamente.

Por otro lado, si atendemos a la huella de carbono de los clientes, independientemente del operador, referente al uso del teléfono móvil según el ciclo de carga del apartado anterior, y los datos que nos ofrece la IEA (tabla 3.3), podemos extraer que, a las emisiones antes mencionadas, hay que sumar 2.33kg CO₂e.

Por lo tanto, la media ponderada de huella de carbono por cliente se sitúa en 24,28kg de CO₂e, lo cual representa el 0.4% de la media española de la huella de carbono en 2009, o la misma capacidad de CO₂e que es capaz de absorber un pino piñonero al año [22].

Tabla 3.3. Emisiones de CO₂e en 2009 según la IEA

<table>
<thead>
<tr>
<th></th>
<th>CO₂e</th>
<th>CO₂e / TPES</th>
<th>CO₂e / capita</th>
<th>CO₂e / kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>millones ton de CO₂</td>
<td>ton de CO₂ / terajoule</td>
<td>ton. de CO₂ / capita</td>
<td>gramos de CO₂ / kWh</td>
</tr>
<tr>
<td>Mundo</td>
<td>29.000,00</td>
<td>57,00</td>
<td>4,29</td>
<td>500,00</td>
</tr>
<tr>
<td>Europa</td>
<td>3.765,20</td>
<td>51,60</td>
<td>7,15</td>
<td>339,00</td>
</tr>
<tr>
<td>España</td>
<td>283,40</td>
<td>53,50</td>
<td>6,17</td>
<td>299,00</td>
</tr>
</tbody>
</table>
3.3. Áreas de mejora en la red de acceso

La principal diferencia entre la tecnología UMTS y GSM reside en el tipo de acceso a los recursos radio. Mientras que GSM utiliza TDMA, UMTS utiliza WCDMA. La tecnología TDMA consiste en asignar varios slots temporales por usuario, por lo que el canal es compartido por varios usuarios simultáneamente. El WCDMA permite aprovechar todo el canal simultáneamente, y con varios usuarios, a partir de la utilización de códigos, los cuales permiten recuperar una señal ensanchada a banda base y viceversa.

No obstante, lo que realmente diferencia la infraestructura de la red de acceso de un estándar a otro es la frecuencia utilizada. Hasta hace poco tiempo, las frecuencias utilizadas en GSM eran las bandas de 900MHz y 1800MHz, y en UMTS la banda de 2100MHz, aunque recientemente se está haciendo un refactoring de las bandas de 900MHz y 1800MHz para poder ser utilizadas en UMTS.

Por tanto, el uso de una u otra tecnología requiere de una arquitectura de acceso diferente para cada caso. En GSM se requiere de menos estaciones base que en UMTS, ya que el tamaño de las celdas puede ser mayor, así como la potencia emitida. En UMTS, por el contrario, el uso de menor tamaño de celdas requiere de más estaciones base y menos potencia emitida.

Fig. 3.2 Tamaño de las celdas e inversión necesaria en función de la frecuencia operativa de la red de telefonía móvil [23]

En la figura 3.2 se puede observar como, a medida que aumentamos la frecuencia de trabajo de la red, el radio de alcance de las estaciones base es cada vez menor, y la inversión de infraestructura necesaria es mayor. Este hecho se debe, principalmente, a las pérdidas asociadas a la propagación, que varían en función de la frecuencia y de la distancia, como bien indica la fórmula 4.1.

\[L_{fs} = 32,45 + 20\log f (\text{MHz}) + 20\log d (\text{Km}) \] \hspace{1cm} (4.1)

Para una distancia igual a 1 m la fórmula se simplifica a como aparece en 4.2.
La fórmula para las pérdidas es:

\[L_{fs} = -27.55 + 20 \log f \text{ (MHz)} \]

(4.2)

Por lo que, para \(f = 960 \) MHz, tenemos unas pérdidas \(L_{fs} = 32.09 \) dB, para \(f = 1880 \) MHz obtenemos \(L_{fs} = 37.93 \) dB y para \(f = 2170 \) MHz las pérdidas son \(L_{fs} = 39.17 \) dB. Por lo tanto, mediante este método cada vez que se duplica la distancia se produce una atenuación de 6 dB.

Fig. 3.3 Jerarquía de sistema básico de red de acceso

Por otro parte, la red de acceso radio, en su forma más básica, se puede dividir en tres partes: nivel de componentes, nivel de nodo, y nivel de sistema. Todas ellas forman una estructura jerárquica, tal y como se muestra en la figura 3.3, juntamente con otros elementos de la red de acceso. A continuación se muestran estrategias para mejorar la eficiencia energética para cada una de estas partes.

3.3.1. Nivel de componentes

El principal objetivo para mejorar la eficiencia energética a nivel de componentes, no solo se basa en mejorar la eficiencia de cada uno de ellos, sino también analizar qué función realizan dentro del conjunto y ver qué oportunidades de mejora ofrecen.

Utilizando un modelo Ericsson [24], una BS (Base Station, estación base genérica para GSM y UMTS) puede ser dividida en diferentes partes: sistema de alimentación de AC, sistema conversor DC, amplificador de potencia RF, sistema de procesado y control de la señal y sistema de refrigeración. Todo el conjunto que forma la BS va conectado a la antena a través de un cable llamado feeder.

La mejora de la eficiencia energética de cada uno de estos elementos es, de por si, una meta para mejorar la eficiencia del conjunto del sistema. Sin embargo, lo
más óptimo es analizar qué partes son las que hacen que todo el conjunto se vea más perjudicado.

![Diagrama de bloques de una BS (Base Station)](image)

Si nos fijamos en la figura 3.4, es necesaria una fuente de alimentación de 10 kW para alimentar la BS y emitir un total de 120 W. Si seguimos la figura de derecha a izquierda, son necesarios otros 120 W para cubrir las pérdidas del feeder en la base de la torre, y a continuación, para conseguir esta potencia de RF, el equipo de radio necesita consumir 1,8 kW de procesado de señal y 4,2 kW para la amplificación de potencia RF. A todo esto, hay que sumarle el consumo de 1,1 kW y 2,5 kW debido a la conversión de corriente AC a DC y la refrigeración, respectivamente.

Los principales responsables de tal ineficiencia energética son, en primer lugar, el conversor de RF y el amplificador de potencia (5.3% de eficiencia), seguido del cable de alimentación (50%) y del conversor de corriente alterna a continua (85%). Sin embargo, debido a que estas ineficiencias se encuentran en cascada, los vatios ahorrados cerca de la antena son los que generan mayores beneficios al total de la eficiencia energética.

Si se consiguiera ahorrar 1 W en las pérdidas del feeder, los beneficios acumulados en la fuente de energía AC llegarían a ser aproximadamente 30W. Esto se debe gracias a que el ahorro de 1 W en los cables de alimentación permite ahorrar 18,9 W de pérdidas de modulación y amplificación, 3,34 W de pérdidas de rectificación y 7,56 W debidos a la refrigeración. Por lo tanto, los esfuerzos para conseguir un mejor perfil medioambiental, deben comenzar lo más cerca posible a la antena, ya que es donde se pueden conseguir un mayor ahorro de potencia y refrigeración.

Gracias a la miniaturización de los componentes, es posible integrar el conversor de RF y el amplificador junto a la antena, formando una active antenna, con lo cual, conseguiríamos minimizar las pérdidas asociadas al cable de alimentación, e incluso eliminarlas. En tal caso, tal ahorro supondría una reducción en el consumo del 35% de todo el sistema. La AAS (Active Antenna System) estaría conectada al resto de la BS a través un enlace óptico.

Aplicando esta medida, la potencia de entrada a la antena podría ser reducida a la mitad, o bien, la potencia de salida podría ser duplicada utilizando la misma
potencia de entrada. Por lo tanto, la planificación de emplazamientos se vería claramente favorecida, ya que sería posible obtener la misma cobertura teórica, pero con menos sites. Además, los sistemas de refrigeración relacionados con la AAS también se vería eliminados, ya que el equipo podría ser refrigerado por convección natural.

3.3.2. Nivel de nodo

Las mejoras de eficiencia energética a nivel de nodo (o subsistema) son más complejas que las que las que pueda ofrecerse a nivel de componentes, ya que el nodo necesita interactuar con el equipo del usuario que se encuentra separado por el canal, y por tanto, la coordinación de ambos es fundamental para que se puedan comunicar y establecer la transmisión.

3.3.2.1. Técnicas multiantena (MIMO y beamforming)

La utilización de la técnica MIMO, junto al beamforming, puede ofrecer un aumento significativo en la tasa de transmisión y reducir la tasa de error sin aumentar el ancho de banda, o la potencia de transmisión. Esto se logra gracias una mayor eficiencia espectral y a la diversidad espacial.

La técnica beamforming permite crear un patrón direccional mediante el desfase de diferentes antenas, permitiendo una máxima radiación hacia un usuario deseado, y nulo en las direcciones interferentes. Al concentrar toda la potencia de download (desde la BS) radiada sobre cada usuario, al mismo tiempo también seleccionamos la señal de upload, y por tanto, se reduce el nivel de interferencias, así como los requisitos de energía. Por lo tanto, las principales ventajas del beamforming son una menor radiación de energía, o una mayor ganancia de señal si mantenemos el mismo nivel de potencia (fig. 3.5a), además de una menor atenuación con la distancia y una mejora en la eficiencia espectral (fig. 3.5b).
La técnica MIMO, por su parte, nos habla simplemente sobre cuál es la distribución de las antenas en emisión y recepción en la dirección del downlink. El hecho de utilizar múltiples antenas supone un aumento en el consumo total de energía de la BS, aunque por otro lado, nos permite tener diversidad en recepción, lo cual supone una mejora en el downlink y la eliminación de los microcortes del canal (fast fading). Por tanto, aunque MIMO permita obtener mejores prestaciones, son necesarias otras técnicas, como el beamforming, o otras que vienen en este capítulo, para que la eficiencia energética se vea compensada.

Las técnicas MIMO y beamforming, por tanto, mejoran las tasas de transmisión de datos a partir de una determinada potencia de transmisión, o de forma equivalente, permiten reducir la potencia de transmisión necesaria para lograr un objetivo determinado de tasa de datos. Incluso, el número de sites por área podría ser reducido, resultando en un aumento general de la eficiencia energética de la red.

3.3.2.2. Transmisión discontinua (DTX y modo reposo)

Durante los periodos de poco tráfico, la mayoría de la capacidad de las BS permanece inutilizada. Incluso, bajo una carga moderada, una importante cantidad de recursos no son utilizados. Por consiguiente, la potencia de transmisión y operación se puede ver reducida en gran medida durante los periodos de poco tráfico, o incluso con tráfico moderado, utilizando modos de transmisión discontinua (fig 3.6).

Se pueden diferenciar varios tipos de modos de transmisión discontinua en función del tiempo de desconexión. Estos varían desde la duración de varios símbolos hasta periodos de varias horas. A continuación se muestra un ejemplo a partir de las especificaciones de LTE (fig. 3.7).

Fig. 3.6 Ejemplo de consumo de potencia del sistema en función del link rate con/sin DTX [25]

El micro DTX permitiría la desconexión de la transmisión durante menos de un subframe (1ms), el DTX corto, durante menos de un radio frame (10ms) y hasta un subframe, y el DTX largo, durante un radio frame o más. Para desconexiones
superiores al DTX largo, la BS entraría en modo reposo, y por tanto, los terminales activos no serían capaces de identificarla.

El micro DTX se basa en apagar la transmisión entre símbolos RS (reference signal) que hay en cada slot, siempre y cuando estos viajen vacíos. El DTX corto, en cambio, busca eliminar la necesidad de mandar los símbolos RS. La función de los RS, en una celda vacía, es permitir que los terminales, activos e inactivos, puedan identificar la celda. Si una celda no transmite RS, ésta no puede ser encontrada antes de que comience a transmitir RS de nuevo. Sin embargo, sería posible identificar una celda basándose en mediciones del SSS (secondard synchronization signal). Esto permitiría a una celda entrar en modo DTX durante los subframes comprendidos entre el 0 y el 5, y los siguientes restantes.

El DTX largo consiste en apagar la transmisión durante más de un radio frame, es decir, durante periodos superiores a los 10 ms. Para poder hacer esto, es necesario definir un modo de baja actividad, en donde no existe demanda de tráfico en la celda, debido a que no hay terminales activos, pero que, sin embargo, necesitan enviar información intermitente para que nuevos terminales que quieran identificar la BS. Cuando un terminal entra en el área de cobertura de la celda en reposo, ésta ha de “despertar” y retomar la transmisión y recepción.

En una orden de magnitud superior, el modo en reposo permitiría desconectar totalmente aquellas partes de la BS que no son necesarias en determinados momentos. En celdas típicas de tres sectores, con cuatro TRXs por sector, es decir, 12 TRXs activos, muchas veces éstos no son necesarios durante todo el tiempo. Mediante la introducción de esquemas avanzados de administración de energía, un TRX por sector podría ser puesto en modo de reposo durante las horas de carga baja. La implantación de esta medida no requiere de hardware, sino simplemente de una actualización software.
Si se tiene en cuenta que cada TRX consume 40-60W cuando no se está haciendo uso, el ahorro energético potencial en una red de cientos de BS podrían ser de entre el 10-20% [24], y sin ningún tipo de impacto en la calidad del servicio. También permitiría reducir la energía debida a la refrigeración asociada de este uso.

3.3.2.3. Gestión dinámica del ancho de banda

Al contrario que en la transmisión discontinua en el plano temporal, la gestión dinámica del ancho de banda opera en el plano frecuencial. Es posible conseguir grandes ahorros de energía mediante el ajuste dinámico de los PAs (power amplifiers) en función de la carga de la red.

La adaptación del ancho de banda consiste en crear diferentes niveles de ancho de banda (fig. 3.8a), esto significa que cuanto mayor ancho de banda dispongamos, mayor será la capacidad de carga que podremos asumir (fig. 3.8b). Sin embargo, la asignación dinámica también afecta al total de energía transmitida, cuanto menos ancho de banda empleemos, menor será el consumo energético de los PAs.

Por tanto, una rápida predicción del nivel de carga y una mínima demora del tiempo de reacción para aplicar cambios en el ancho de banda, son determinantes para conseguir maximizar la eficiencia energética de la red de acceso. La predicción se puede basar en perfiles de tráfico en periodos de tiempo comparables, como pueden ser el perfil de tráfico diario (fig. 3.8b) o semanal, aunque en algunos casos será necesaria la adaptación del ancho de banda en tiempo real para mantener la calidad del servicio.

![Fig. 3.8 Sistema adaptativo de consumo de TRX (A) y ancho de banda (B) en función de la carga de la red](image-url)

La adaptación del ancho de banda ofrece un mayor potencial de ahorro de energía a nivel de sistema, y la reducción significativa de las interferencias entre celdas mediante la aplicación de un plan de reutilización, con un factor de reutilización superior a uno, en situaciones de poco tráfico (por ejemplo, factor de reutilización superior a uno, situación de bajo tráfico) produce un mayor ahorro de energía que la simple reducción del ancho de banda. La Fig. 3.8 muestra cómo la adaptación del ancho de banda puede optimizar el consumo energético de la red de acceso. En función de la carga de la red, la Fig. 3.8a muestra cómo se ajusta el ancho de banda para minimizar el consumo energético, mientras que la Fig. 3.8b muestra cómo se ajusta el ancho de banda para optimizar la velocidad de transmisión (TX).
utilización 3 en la figura 3.9). Esto requiere que las celdas coordinen la configuración del ancho de banda con sus celdas vecinas por medio de la señalización.

![Diagrama de reutilización de frecuencias de factor 3](image)

Fig. 3.9 Ejemplo de reutilización de frecuencias de factor 3

Al conocer cómo se encuentran repartidos los recursos del ancho de banda, y saber cual es la información transmitida por cada celda vecina, es posible predecir su interferencia. Esto puede ser utilizado para transportar una mayor cantidad de datos al usuario o reducir de forma dinámica la potencia de transmisión de los símbolos de datos de ambos.

3.3.2.4. Alternancia energética

En el caso concreto en donde las estaciones base se encuentren alejadas de la red eléctrica, es necesaria una fuente de energía local. Comúnmente, se utilizan dos generadores diesel, cada uno de los cuales trabaja la mitad del tiempo, a la vez que el otro funciona como respaldo.

Para mejorar la eficiencia energética en este tipo de situaciones, una solución consistiría en sustituir uno de los generadores por una gran batería que sólo funcionase por la noche. Esta batería requiere que el generador diesel funcione a un nivel de carga superior para que ésta pudiera cargarse, pero aun así, este método es más eficiente que el esquema con dos generadores, ya que permite reducir el consumo de combustible casi a la mitad.

También existen medidas enfocadas a la utilización de energías renovables, las cuales se detallan más adelante.

3.3.3. Nivel de sistema

Conseguir una red eficiente a nivel de sistema consiste en construir una red que se amolde a las necesidades de los usuarios según su distribución y su comportamiento.
La idea de una red heterogéneas se basa en utilizar nodos de bajo consumo, formando microceldas, que complementen a las macroceldas convencionales (fig. 3.10). Por ejemplo, las picoceldas permiten asumir una gran demanda de tráfico en una área, mientras que las femtoceldas permiten dar cobertura de banda ancha en interiores. Por otro lado, también es posible definir repetidores en zonas donde no alcance el backhaul.

![Fig. 3.10 Distribución a nivel de sistema de los nodos conectados al backhaul](image)

Mientras que las macroceldas pueden cubrir grandes áreas (fig. 3.11a), las microceldas están diseñadas para distancias comparativamente cortas (fig. 3.11b), aprovechando las buenas condiciones del canal y utilizando menos potencia de transmisión, y por tanto, menos consumo de energía. Ambos tipos de estaciones base muestran diferentes patrones de consumo de energía (fig. 3.11c), los cuales se caracterizan por la relación entre el consumo de energía mínima, cuando la celda está vacía, y el consumo de energía dependiendo del nivel de carga.

![Fig. 3.11 Simulación de sistema de macroceldas (A) y celdas heterogéneas (10 microceldas, B), y el consumo individual de ambas (C) [25]](image)
La utilización de microceldas, en las redes macro homogéneas, no sólo mejora la capacidad del sistema, sino que también puede ser beneficioso desde una perspectiva de eficiencia energética. Esta última depende principalmente de la capacidad de carga que se quiera asumir, es decir, cuanto mayores son los requisitos de rendimiento, más microceldas se deberán utilizar para conseguir un consumo óptimo de energía. Así lo demuestra, por ejemplo, la simulación hecha por el proyecto Earth (figura 3.12 y 3.13), en donde se han utilizado n microceldas al borde de cada macrocelda según cada escenario n.

Fig. 3.12 Simulación del consumo por unidad de *throughput* en función del ISD para celdas macro/micro homogéneas, y una combinación de ambas [25]

Por un lado, en la figura 3.12 podemos observar el consumo (W) por unidad de throughput (bit/s) en función de la distancia entre *sites* (ISD) para tres grupos de casos: red homogénea de macroceldas (azul) y microceldas (rojo), y una combinación de ambas (negro). En cada grupo aparecen dos casos de carga de usuarios: baja (10 u/km2) y alta (130 u/km2). La utilización de una red heterogénea queda justificada en los casos de alta ocupación por celda, ya que el consumo se mantiene por debajo de la red homogénea (macro), al contrario que el caso con baja ocupación, hasta 1200m de ISD.

Por otro lado, en la figura 3.13 vemos cómo varía el consumo de energía respecto a la red homogénea de macroceldas para un throughput y número de microceldas determinado. A partir de un throughput deseado de 125Mbits/s/km2 observamos que todas las configuraciones heterogéneas mejoran la eficiencia energética total, y aquellas con mayor número de microceldas, son las que arrojan mejores resultados.
Por tanto, podemos decir que la utilización de microceldas embebidas dentro de macroceldas ayuda a asumir el creciente consumo de datos de la red móvil, y al mismo tiempo, amortigua el consumo total necesario.

Fig. 3.13 Simulación de la ganancia de consumo en función del total del throughput por área bajo varios escenarios [25]

3.4. Fuentes de energía renovables

Los requisitos energéticos de los equipos de red se han ido reduciendo con el paso del tiempo. Este hecho ha permitido que planteamientos alternativos consigan ser una solución real para cubrir las necesidades demandadas.

A pesar de los esfuerzos y la evolución en el aprovechamiento de las energías renovables, su uso queda limitado a zonas donde la carga de la red sea baja, y por lo tanto, muy difíciles de utilizar en la mayoría de ciudades o pueblos.

3.4.1. Energía solar

La energía solar se puede utilizar para suministrar energía a sites de baja o media capacidad, o en repetidores. Se puede considerar una tecnología madura y con los años su costo se ha abaratado y su eficiencia ha ido aumentando. La utilización de energía solar tiene como parte negativa la necesidad de grandes superficies donde ser instaladas, aunque la mejora de su eficiencia permite que cada vez sean menores.

Bajo las condiciones de capacidad antes citadas, es posible alimentar estaciones base de última generación mediante energía solar, hecho que resulta de gran interés en muchos de los mercados emergentes del mundo. Además de contar con muy bajo impacto ambiental, los emplazamientos alimentados con
energía solar también tienen la ventaja de tener un mantenimiento bajo y con una vida técnica útil aproximada de 20 años [34]. Por lo tanto, suponen una solución más fiable y autónoma que los emplazamientos con generadores diesel, sin embargo, se necesita una gran capacidad de almacenamiento de energía para solventar las variaciones de luz durante las diferentes épocas del año.

3.4.2. Energía eólica

La energía eólica no supone una alternativa completa a otras fuentes de energía, sino más bien un complemento a éstas. La industria de la energía eólica ha evolucionado hacia la utilización de turbinas eólicas cada vez más grandes, por lo que supone un gran esfuerzo encontrar el modelo que permita acoplar esta tecnología dentro del marco de las estaciones base y que suponga un rendimiento real en cuanto a costos y efectividad.

La gran ventaja de la energía eólica es que la turbina puede ser soportada en la estructura tradicional de una estación base, aunque también es posible la necesidad de un mástil o torre adicional. Por otro lado, la naturaleza dispersa del viento hace que se requiera de un pequeño generador diesel o de otra fuente de energía para paliar los periodos de viento insuficiente.

3.4.3. Biocombustibles

El biocombustible, como el biodiesel, puede ser producido a partir de una serie de materias primas como aceites vegetales prensados en frío, aceites vegetales usados (como los aceites de fritura usados en los restaurantes) o sin usar, grasas animales y aceites de pescado.

En algunos países, el biodiesel es más barato que el petrodiesel y su utilización reduce la dependencia respecto los combustibles fósiles. Las ventajas ambientales del biodiesel incluyen una reducción de las emisiones de dióxido de carbono, dióxido de azufre e hidrocarburos, además de no contener plomo ni azufre.

Además, el hecho que sea biodegradable es positivo en caso de derrame, pero no cuando queremos almacenarlo. Dependiendo de las condiciones de manipulación y almacenamiento, la vida útil puede ser de pocos meses hasta 10 años, por lo tanto, se necesita una planificación bastante exacta de su producción y expedición.

Por otro lado, la producción de biodiesel puede ser controvertida si, por ejemplo, se talan selvas o bosques, o se emplean zonas de cultivos alimentarios para conrear vegetales con mejores propiedades energéticas. En algunas zonas del planeta, se han talado o quemado grandes extensiones de bosque para crear tierras de cultivo destinado a biodiesel, desalojando a indígenas y animales de sus tierras.
3.5. Campos de radiofrecuencia electromagnética como posible cancerígeno

Recientemente, la IARC (International Agency for Research on Cancer) ha clasificado los campos de radiofrecuencia electromagnética como posible agente carcinógeno para los humanos (Grupo 2B), basándose en el aumento del glioma, un tipo de cáncer cerebral maligno, asociado al uso del teléfono móvil.

El informe emitido por la IARC [28] debate la posibilidad de que una exposición prolongada podría inducir, a largo plazo, consecuencias sobre la salud, en particular, un aumento en el riesgo de padecer cancer. Estas declaraciones tienen una gran importancia debido al constante crecimiento que está teniendo la telefonía móvil, especialmente entre adolescentes y niños. Sin embargo, los resultados obtenidos están clasificados como no concluyentes. Esto significa que simplemente se ha podido observar una asociación positiva entre la exposición del agente y el glioma, aunque no se ha encontrado una evidencia directa que permita demostrar la causalidad.

Para emitir estas conclusiones, el informe de IARC se basa en un estudio llevado a cabo por The Interphone Study Group [33] donde se reconoce un aumento del 40% de riesgo de contraer glioma para usuarios con un uso intensivo del teléfono móvil (una media de 30 minutos al día durante 10 años). Sin embargo, para determinar este porcentaje simplemente se fiaban de la memoria de los pacientes al preguntarles cuántas horas al día habían utilizado el teléfono móvil durante los últimos 10 años.
CAPÍTULO 4. FIN DE VIDA ÚTIL

La fase de fin de vida útil de todo equipo de red empieza cuando éste ya no volverá a ser utilizado, y por tanto, es necesario deshacerse de él. Cuando esta situación sucede, tanto los teléfonos móviles, como el equipo que forma la red, pueden ser restaurados y reutilizados, siendo esta la mejor opción para el medio ambiente, o bien desmontados y reciclados, o como peor opción, desechados.

La correcta gestión del final de vida útil es fundamental, ya que todo equipo de red contiene metales preciosos y/o potencialmente tóxicos, y que, en combinación con un buen diseño en la fase de fabricación, puede ayudar a una reducción significativa del impacto ambiental. La recuperación y reutilización de estos materiales evitaría reintroducirlos descontroladamente al medio ambiente, y al mismo tiempo, reduciría la cantidad extraída necesaria de materia prima prima.

El futuro plantea muchos retos y oportunidades para poder conseguir diseños más simples y con menores cantidades de materias dañinas, y por tanto, con un final de vida útil más respetuoso con el medio ambiente. Conseguir postergar el fin de vida útil mediante una fase de explotación más longeva, en el caso de los teléfonos móviles, puede resultar una buena opción. Sin embargo, el aumento de la longevidad de las estaciones base, o más en general, de todo el equipo que forma la red, puede llegar a ser contraproducente. Como se puede apreciar en el Anexo III, adoptar las últimas releases, tanto de GSM como de UMTS, se traduce en mejores perfiles medioambientales.

Siguiendo la misma lógica aplicada en el capítulo 2, este capítulo sólo se centrará el fin de vida útil relacionado con los dispositivos móviles, ya que, por volumen de fabricación e impacto por emisiones de CO$_2$, son los más representativos.

4.1. Reutilización del teléfono móvil

Aunque los teléfonos tienen una vida útil teórica de diez años, la utilización promedio es en realidad de sólo 18 meses [26], periodo que coincide con el tiempo obligatorio de permanencia que exigen las operadoras.

Cuando un usuario tiene la intención de no volver a utilizar su teléfono móvil, normalmente éste es cedido a amigos o familiares, o vendido de segunda mano. También puede darse el caso que el teléfono es devuelto y enviado a una empresa que se encargue de restaurarlo, pudiendo ser vendido para su posterior reutilización y otorgándole una segunda vida al producto. Por lo general, los teléfonos tienen una mayor probabilidad de ser reutilizado si se donan rápidamente en vez de ser almacenados [4].

Los teléfonos recogidos primero deben ser evaluados para determinar que mercados son los más aptos para su reutilización. A continuación, están sujetos a
una serie de pruebas para determinar en qué estado físico y funcional se encuentran, y si necesitan o no reparación. Las piezas defectuosas son reemplazadas, las baterías son substituidas en caso de no funcionar correctamente, el aspecto externo del teléfono es restaurado y toda la información del cliente original borrada.

Este tipo de terminales son utilizados como teléfonos de sustitución durante las reparaciones de los clientes, o se exportan a países en vías de desarrollo. En concreto, en este tipo de países, donde por ahora no existe una fuerte tradición de reciclaje, el número de teléfonos devuelto es porcentualmente bajo. Este handicap solo podría cambiar con una inversión sustancial en educación, sensibilización e infraestructura. En promedio, más del 70% de los teléfonos recogidos en los mercados desarrollados pueden ser restaurados, sin embargo, sólo el 25% de los teléfonos recogidos en los países en desarrollo son válidos [4].

4.2. Reciclaje del teléfono móvil

Un móvil puede ser reciclado y reutilizado entre un 65 y un 80%. El plástico no reciclable también se puede utilizar como combustible, por lo tanto, el porcentaje puede llegar hasta el 90% [27]. A pesar de estos datos, en la mayoría de países desarrollados, solo el 4% de los teléfonos móviles son recolectados para su reutilización o reciclado [4].

La batería es el primer elemento que se puede separar del teléfono móvil y clasificar en función de los materiales que la constituyen, como el cadmio, níquel, hidruro metálico-níquel y de iones/polímeros de litio. Todos estos materiales pueden ser recuperados y reutilizarse en otros productos como herramientas eléctricas, ollas o baterías nuevas.

El teléfono móvil, sin la batería, pasa a formar parte de un complejo proceso de reciclado que permite separar la mayoría de los materiales que lo componen. En la fig. 4.1 se muestra cada una de las acciones que se llevan a cabo a lo largo del proceso. El primer paso consiste en la separación mecánica de los componentes discretos reutilizables, como por ejemplo la pantalla. Parte del resto del teléfono pasa por un proceso de trituración que permite, aplicando varias técnicas (procesos magnéticos, corrientes de Eddy, flotación, ...), separar el aluminio, magnesio, metales ferrosos, plásticos y otros materiales. Por otro lado, se consigue separar cobre, oro, paladio, plata, plomo, níquel, estan, y otros metales, mediante la fundición.

Los metales extraídos en este proceso, como oro, platino, paladio y plata, se consideran materiales de gran valor y forman aproximadamente el 16% del peso del teléfono móvil. Sin embargo, las cantidades de algunos de estos materiales se han conseguido reducir con el tiempo gracias a los avances en las técnicas de fabricación. Otro 22% del peso de los teléfonos está formado por materiales de menor calidad que puede ser utilizado de muchas maneras, por ejemplo, como agregado para revestimiento de carreteras.
Fig. 4.1 Diagrama de flujo del proceso de recuperación de los metales preciosos y otros materiales de los teléfonos móviles

4.2.1. Directiva WEEE

La directiva de Residuos de Aparatos Eléctricos y Electrónicos (Waste Electrical and Electronic Equipment, WEEE) es una ley que tiene como objetivo promover el reciclaje, la reutilización y la recuperación de los residuos de estos equipos para reducir su contaminación. Esta ley que entró en vigor el 13 de agosto de 2005 en todo el ámbito de la Unión Europea.

La WEEE responsabiliza a los fabricantes de asumir los costes de gestión de los residuos generados, asumiendo la creación de una infraestructura para recolectar WEEE, aunque en España, supone el pago de una tasa de reciclaje por parte del consumidor.
El fabricante, al estar obligado a asumir estos costes del final de ciclo de vida del producto, éste está responsabilizado, en cierto modo, a replantearse la etapa de diseño con el fin de adaptarla a los requisitos de gestión de residuos y a reducir los costes posteriores. Sin embargo, algunas empresas se imponen límites aún más restrictivos, y por lo tanto, permiten fabricar equipos eléctricos y electrónicos con perfiles más respetuosos con el medio ambiente.

Actualmente en España la gestión de WEEE presenta grandes irregularidades, ya que sólo se tratan correctamente el 17% [15] de los aparatos eléctricos y electrónicos que se venden. Este hecho se debe al almacenamiento incontrolado de los residuos por chatarreros sin licencia, los cuales aprovechan las partes metálicas más beneficiosas, y abandonan otros materiales como el cadmio, plomo, cloro, mercurio o PVC.

Comúnmente, también se exportan los aparatos en desuso a países como Ghana, Nigeria, Costa de Marfil, India o China, camuflados como material de segunda mano, ya que está prohibido exportar residuos peligrosos. En estos países, los costos son más bajos y la legislación sobre WEEE es más laxa, lo cual hace que aumente la probabilidad de que extraigan los metales más valiosos sin ningún tipo de control [31] [32].

Se podría decir, por tanto, que la WEEE complementa a la RoHS durante todo el ciclo de vida. Mientras la RoHS pretende evitar sustancias peligrosas durante la etapa de diseño de los productos eléctricos y electrónicos, la WEEE asegura un correcto fin de vida útil de éstos, con una menor cantidad de sustancias peligrosas vertidas al medio ambiente y la garantía de que son manipulados correctamente.

4.3. Deshecho del teléfono móvil

Los teléfonos móviles, y equipo de red desechados, forman parte del creciente problema de la basura electrónica. El proceso de deshecho de los teléfonos móviles en vertederos es la peor opción en la fase de final de vida útil, ya que es la que más problemas medioambientales conlleva.

Deshacerse de los teléfonos móviles directamente sobre el suelo puede expone-rlos a ácidos, que durante periodos prolongados de tiempo, pueden disolverse en ellos y filtrarse en la tierra. Si el terreno donde se almacenan los deshechos no aplica una barrera impermeable, las substancias que se puedan originar podrían llegar a aguas freáticas, y posteriormente a pozos, arroyos o lagos, pudiendo afectar, por tanto, a seres humanos y el resto de especies.

El mayor riesgo de este tipo de almacenamiento se produce cuando la lixiviaci-ón de los metales y los productos químicos entran en contacto directo con el suelo y el agua contaminada de los vertederos que no están controlados. Algunos de ellos, especialmente en las regiones pobres, son visitados por personas, incluidos niños, en busca de material valioso, y por tanto, suponen riesgo potencial para la salud.
CAPÍTULO 5. IMPACTO BAJO DIFERENTES ESCENARIOS

En los capítulos anteriores se ha visto cuales eran los responsables del impacto medioambiental dentro de cada fase de vida de la red. A continuación se muestra cómo varía dicho impacto en función de los usuarios pertenecientes a cada una de las redes de telefonía móvil en un contexto de red genérico, y cómo influye el consumo anual de datos.

Este capítulo quiere reforzar la información aportada en los capítulos anteriores a través de la ejemplificación de un caso práctico bajo diferentes escenarios. El modelo de red utilizado es el mismo que la tesis “Life Cycle Assessment of Mobile Telephone Networks, with Focus on the End-of-Life Phase”, de W. Scharnhorst, sin embargo, en este TFC, los estándares que se comparan son el GPRS y el UMTS R’06, en lugar de EDGE y UMTS R’04, como hace el citado documento. A continuación se justifican la elección de estos dos estándares.

En el análisis de los resultados se expondrán qué medidas son las más idóneas para cada uno de los escenarios, con el objetivo de mejorar sus perfiles medioambientales, y por tanto, ser más respetuosos con el medio ambiente.

5.1. Características de los diferentes escenarios

Actualmente, los estándares más extendidos en España son el GPRS en la red 2G y la release 6 (R’06) de UMTS en la red 3G. Sin embargo, se pueden encontrar regiones donde predomine la cobertura EDGE en 2G, o releases más avanzadas de UMTS. Concretamente, la release 7 de 3G la podemos encontrar en los mayores núcleos urbanos de España, y la principal mejora reside en una mejora de las especificaciones del HSDPA y HSUPA, llamada HSPA+, permitiendo un downlink de 28 Mbps y un uplink de 11.5 Mbps. También se han hecho pruebas con la release 8 consiguiendo llegar a un downlink de 42 Mbps.

Por tanto, al ser la release 6 la más extendida, ésta será la utilizada para comparar su comportamiento frente al estándar GPRS, bajo varios escenarios de usuarios. Las especificaciones técnicas principales de los estándares GPRS y UMTS R’06 están incluidos en la tabla A1.2 del Anexo I.

| Tabla 5.1. Líneas de 2G y 3G, y consumo anual de datos, según escenario |
|-------------------------|--------|--------|--------|--------|--------|

<table>
<thead>
<tr>
<th></th>
<th>E0</th>
<th>E1</th>
<th>E1+</th>
<th>E2</th>
<th>E2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total líneas 2G</td>
<td>6188793</td>
<td>3270293</td>
<td>3270293</td>
<td>351793</td>
<td>351793</td>
</tr>
<tr>
<td>[2G] utilizan baterías níquel e hidruro metálico</td>
<td>3094397</td>
<td>1635147</td>
<td>1635147</td>
<td>175897</td>
<td>175897</td>
</tr>
<tr>
<td>[2G] utilizan baterías de ion de litio</td>
<td>3094397</td>
<td>1635147</td>
<td>1635147</td>
<td>175897</td>
<td>175897</td>
</tr>
<tr>
<td>Total líneas 3G (bat. de ion de litio)</td>
<td>1459250</td>
<td>2918500</td>
<td>2918500</td>
<td>5837000</td>
<td>5837000</td>
</tr>
<tr>
<td>Vol. de descarga por us. [Mbit/año]</td>
<td>2256</td>
<td>2256</td>
<td>4512</td>
<td>2256</td>
<td>9024</td>
</tr>
</tbody>
</table>
En la tabla 5.1 se muestran las diferencias entre los cinco escenarios que se han utilizado para comparar el estándar GPRS y UMTS R’06: E0, E1, E1+, E2 y E2+. La diferencia entre los escenarios del grupo 1 y del grupo 2 reside en el número de líneas 2G y 3G presentes en la red. Por otro lado, la diferencia dentro de cada uno de estos grupos, E1+ respecto E1 y E2+ respecto E2, es el volumen anual de datos transmitidos.

El resto de elementos que forman la red es el mismo en todos los escenarios, los cuales quedan reflejados en la tabla 5.2. Tanto los valores de las tablas 5.1, como la tabla 5.2 se han hecho coincidir expresamente con el modelo de red utilizado en la tesis “Life Cycle Assessment of Mobile Telephone Networks, with Focus on the End-of-Life Phase” para poder extrapolar los cálculos a los estándares GPRS y UMTS R’06. El conjunto de todos los datos utilizados se encuentra en el Anexo III.

Tabla 5.2. Elementos que forman el modelo de red de telefonía móvil

<table>
<thead>
<tr>
<th></th>
<th>GSM</th>
<th>UMTS R’06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usuarios</td>
<td>Según escenario</td>
<td>Según escenario</td>
</tr>
<tr>
<td>Base Transceiver Station / NodeB</td>
<td>6800</td>
<td>3465</td>
</tr>
<tr>
<td>Base Station Controller / Radio Network Controller</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Mobile Switching Centre</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Serving GPRS Support Node</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>Gateway GPRS Support Node</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

5.2. **Presentación de los resultados**

Los resultados del daño medioambiental anual causado por los diferentes escenarios de red, en GPRS y UMTS R’06, se muestran en la figura 5.1. Estos resultados representan el impacto del ciclo de vida bajo el método de análisis IMPACT2002+.

IMPACT2002+ es un método de análisis que permite determinar el impacto ambiental relacionado con los recursos consumidos y las emisiones liberadas durante el ciclo de vida de las redes de telefonía móvil, en este caso concreto. Este método está basado en otro modelo llamado IMPACT2002 y consta de 14 categorías intermedias y cuatro categorías finales de daño (consumo de recursos, cambio climático, salud humana y calidad ecosistema). Este método permite obtener una puntuación en función de los efectos para cada una de las sustancias involucradas, enlazadas con las categorías de daño correspondiente, obteniendo así, una medida de impacto ambiental.

La categoría “consumo de recursos” permite conocer cuál es la cantidad de energía no renovable necesaria y se expresa en unidades MJ. La categoría “cambio climático” permite obtener la cantidad de kilogramos equivalentes de CO₂ emitidos a la atmósfera. La categoría “salud humana” muestra el impacto
producido sobre la salud humana en unidades DALY (*Disability Adjusted Life Year*), es decir, el número de años perdidos debido a una afección sobre la salud humana, respecto a la esperanza de vida del país o región. Y por último, la categoría “calidad ecosistema” permite conocer el impacto producido sobre el ecosistema en unidades PDF*m²* año, siendo PDF (*Potentially Disappeared fraction*) el daño sufrido por la pérdida de especies en una determinada zona por fracción de tiempo.

Cada uno de los valores representados en la figura 5.1 se encuentra en relación a los valores de cada una de las cuatro categorías de daño (consumo de recursos, cambio climático, salud humana y calidad del ecosistema) del escenario E0 para la red GPRS.

![Fig. 5.1 Impacto anual sobre las cuatro categorías de daño en GPRS y UMTS (R'06) bajo los escenarios E0, E1 y E2](image)

Concretamente, el resultado de la extrapolación de los valores de daño medioambiental anual obtenidos para GPRS, respecto EDGE, bajo el escenario E0 son: 1,39E10 MJ de energía no renovable (consumo de recursos), 2,40E8 Kg CO₂e (cambio climático), 151 DALY (salud humana), 1,99E8 PDF*m²* año (calidad del ecosistema). Cada uno de estos impactos forman los valores de referencia (100%). En el siguiente punto se analizan el resto de los valores que aparecen en la figura 5.1, y cómo afectan las variaciones de cada escenario a los estándares GPRS y UMTS R'06.
5.3. **Análisis de los resultados del escenario E1**

El escenario E1 presenta un cambio en el número de usuarios, tanto de la parte de la red 2G como 3G, respecto al escenario E0 inicial. Por otro lado, el volumen de descarga por usuario permanece igual.

5.3.1. **Escenario E1 GPRS**

El impacto de las cuatro categorías del escenario E1 en GPRS desciende entre un 22% y un 32% debido a que el conjunto de móviles desciende a la mitad. Esta bajada está propiciada por tres factores: la disminución en la cantidad de teléfonos fabricados, el aligeramiento de la carga de la red en la fase de explotación y la prevención de las consecuencias del final de vida útil.

La disminución de teléfonos móviles fabricados hace que se fabriquen menos componentes y que ensamblen menos teléfonos móviles, lo cual supone un ahorro de materias primas y de energía en la fabricación y utilización.

Mantener el equipo de red, a pesar de tener una menor cantidad de terminales, supone un aligeramiento de carga de la red. Tener una red menos explotada reduce la cantidad de energía necesaria, con lo cual, también se reducen las emisiones asociadas. Sin embargo, tener la mitad de usuarios no supone tener un consumo reducido a la mitad.

Como medidas para conseguir ajustar al máximo el impacto asociado a la red, sería conveniente utilizar técnicas como la transmisión discontinua o la gestión dinámica del ancho de banda, ya que ambas, están enfocadas a escenarios de poca demanda. Por un lado, la transmisión discontinua, en especial aquellas de mayor duración, como el modo DTX largo o el modo reposo, permitirían desactivar partes de la red de acceso que no estuvieran demanda en determinados momentos. Por otro lado, en el plano frecuencial, ajustar el ancho de banda a las necesidades demandadas de throughput en cada instante, permitiría ahorrar grandes cantidades de energía.

Al fabricar menos teléfonos, también se minimizan los efectos derivados de la fase de fin de vida útil, sobretodo aquellos relacionados con el porcentaje de teléfonos móviles que no son reutilizados o reciclados. Este menor volumen no tiene tanta importancia en la parte positiva del impacto, pero si ahora una gran parte del impacto negativo, en especial, la parte que tiene que ver con el impac-to sobre la calidad del ecosistema, que como vemos en el anexo III, tiene gran repercusión en teléfonos 2G.

Por tanto, este hecho repercute en todas las fases del ciclo de vida, desde la fabricación de los teléfonos móviles, pasando por el consumo de energía en la fase de explotación, hasta el proceso de fin de vida útil.
5.3.2. **Escenario E1 UMTS**

En UMTS sucede justamente lo contrario, incrementar al doble el número de usuarios, tiene como consecuencia, un aumento en el impacto medioambiental global. Sin embargo, este incremento tan solo es de entre el 11% y 25%.

El hecho de tener el doble de teléfonos móviles UMTS respecto a E0, supone duplicar el impacto debido a la extracción de materias primas, fabricación, transporte, explotación y fin de vida útil. Sin embargo, en comparación con los teléfonos móviles GPRS, los dispositivos UMTS que trabajan con R'06 tienen mejores perfiles medioambientales en las cuatro categorías de daño, incluso en el fin de vida útil, lo cual supone un menor impacto cuando estos dispositivos dejen de estar operativos.

En cuanto a la red, ésta ve también aumentado su consumo energético y sus emisiones asociadas, aunque no en la misma cantidad que el número de teléfonos móviles, ya que no sigue un comportamiento proporcional. No obstante, un mayor número de usuarios, supone un mayor aprovechamiento de la red, o lo que es lo mismo, un menor impacto por bit, pero en total, este impacto es superior respecto al escenario E0 como hemos dicho antes.

Es posible conseguir paliar los efectos derivados de un aumento de tráfico gracias a técnicas como la transmisión discontinua inferiores al DTX largo, ya que a diferencia del escenario E1 GPRS, es más probable tener una demanda constante en la red UMTS debido a un mayor número de usuarios. Análogamente, la gestión dinámica del ancho de banda también debería adaptarse a este escenario, que en cualquier caso, sería superior al punto anterior.

Cabe añadir que, en la realidad, las operadoras planifican con bastante exactitud la capacidad que ha de soportar su red, y por tanto, el duplicar el número de dispositivos móviles, casi con total seguridad, también tendría asociada una modificación en el equipo de red.

5.3.3. **Escenario E1+**

Duplicar el volumen de descarga anual, como sucede en el escenario E1+, supone un impacto de entre un 5% y un 11% en GSM, y entre un 6% y un 13% en UMTS superior al escenario E1, lo cual, se debe exclusivamente al aumento del consumo energético en la fase de explotación.

Un aumento en el volumen de descarga no influye en la fase de de fabricación, ni es la fase de fin de vida útil, ya que el consumo de datos se realiza exclusivamente en la fase de explotación. Por consiguiente, el impacto medioambiental atribuido a los teléfonos móviles, como a la red de telefonía, se ven aumentados, aunque no de forma proporcional.

Un mayor consumo de datos causa que se consuma la batería de los teléfonos móviles más rápidamente, y que, por lo tanto, se recarguen con más frecuencia, aumentando así el consumo energético y las emisiones asociadas. En el caso
de la red sucede algo parecido, aumentar el 100% del volumen total de descargas de todos los usuarios de la red penaliza el impacto medioambiental a causa del aumento del consumo energético y las emisiones asociadas debido a una red más congestionada.

Aplicar medidas de reducción de impacto es fundamental en este caso, técnicas como MIMO y beamforming, y la utilización de redes heterogéneas pueden ser de gran utilidad. Para cubrir el aumento en el volumen de tráfico de datos es necesario conseguir uplinks y downlink más velozes, y aquí es donde MIMO y beamforming encajan a la perfección. Por otro lado, y en función de la topología de volumen de tráfico, la utilización de nodos de corto alcance, pero de gran capacidad, como son las picoceldas o femtoceldas, permitirían descongestionar macroceldas con altas tasas de tráfico de datos, y les permitiría funcionar en zonas de menor consumo de energía.

Este escenario refleja la actual creciente necesidad de consumo de datos en los teléfonos móviles. La proliferación de terminales basados en los sistemas operativos iOS de Apple, Android de Google y Windows Phone de Microsoft son los causantes de este incremento, ya que los usuarios de estos smartphones han demostrado ser grandes consumidores de aplicaciones que requieren de una conexión e intercambio de datos casi constante.

5.4. Análisis de los resultados del escenario E2

El escenario E2 presenta otro cambio en el número de usuarios, en donde, en 3G, se duplican nuevamente, y en GPRS, se ven reducidos al 10% con respecto al escenario E0 inicial. En esta nueva situación, el volumen de usuarios de 3G superaría, por tanto, a los de 2G. A pesar de que esta situación es actualmente poco probable, sí es interesante ver como reacciona el impacto medioambiental de la red.

5.4.1. Escenario E2 GPRS

El comportamiento en GPRS se observa cómo el impacto de las cuatro categorías de daño desciende entre un 21% y un 32% respecto el escenario anterior, mientras que, respecto el escenario inicial, la diferencia es de entre 43% y 64%, aun siendo la población de teléfonos móviles solamente un 6% respecto a ésta.

El impacto global se ve enormemente reducido, aunque a pesar de tener una porción muy inferior de usuarios, el impacto medioambiental aun supone más del 50% en tres de las cuatro categorías de daño. Por esta razón, se podría decir que esta red estaría muy desaprovechada debido al gran impacto producido por tan pocos usuarios. Por tanto, en este caso, el impacto por bit es mucho mayor respecto al escenario anterior.

Debido a la poca densidad de usuarios GPRS en este escenario, cobra especial sentido utilizar energías renovables, junto a equipos de red de acceso adaptados al poco volumen de tráfico y de bajo consumo. También, al igual que en es-
cenarios anteriores, es conveniente utilizar técnicas de transmisión discontinua y ancho de banda dinámico, enfocadas ambas a situaciones de poco tráfico.

De las cuatro categorías de daño, el valor que más desciende es el relacionado con la calidad del ecosistema. Esto sucede debido a la gran diferencia de dispositivos móviles entre E1 y E2 y a que ninguno de estos teléfonos será incinerado ni almacenado en un vertedero, principal causante del perjuicio sobre el medio ambiente en la fase de fin de vida útil.

5.4.2. Escenario E2 UMTS

La red UMTS, bajo el escenario E2, dobla su número de usuarios, aumentando su impacto medioambiental entre un 19% y 23%, menos en la categoría de calidad del ecosistema, donde el aumento es del 50%.

Esta última categoría presenta un gran aumento debido al peso que tiene el teléfono móvil en las fases de fabricación, uso, y especialmente, en la fase de fin de vida. Mientras que el resto de elementos de la red presentan valores favorables en términos medioambientales, en esta categoría el teléfono móvil contribuye negativamente en el proceso de fin de vida útil. Por lo tanto, según se ha visto en cada escenario de número de usuarios, un gran número de terminales en la red dispararía este índice.

En cuanto al impacto causado por la red, este tendría un comportamiento similar al del escenario E1 de UMTS, pero de mayor magnitud. El aumento de usuarios causa que el consumo energético se vea agravado, al igual que sus emisiones asociadas, aunque no ambas de forma proporcional. Sin embargo, al haber más usuarios en la red, esta estaría mejor aprovechada en cuanto a impacto por bit.

Debido a la gran demanda de tráfico, medias como la gestión dinámica del ancho de banda o la transmisión discontinua pueden parecer inútiles, ya que la mayor parte del tiempo vamos a necesitar que todos los recursos estén disponibles. Sin embargo, se repiten patrones de tráfico donde disminuye enormemente la demanda de tráfico, y es justo en estos lapsos de tiempo, donde estas medidas cobran importancia.

5.4.3. Escenario E2+

En el caso del escenario E2+ se puede observar el impacto que produciría cuadriplicar el consumo de datos anual por cada usuario respecto al escenario inicial. En GPRS supondría un aumento de entre el 4% y el 9%, y en UMTS de entre el 8% y el 16%. Por lo tanto, no supone un gran aumento si comparamos que el aumento es el doble de lo que se producía con la variante del escenario E1+.

Desde un punto de vista global, la red UMTS se comporta peor en términos medioambientales que la red GSM, cuando estas funcionan de forma independiente, debido principalmente a la alta demanda de energía de los Node B. Las estaciones base de UMTS pueden consumir hasta cuatro veces más energía, y
además, son necesarias hasta un 50% más de estaciones base que GSM. Por lo tanto, es obvio que si juzgamos ambos sistemas únicamente por la función de llamadas telefónicas, el sistema UMTS es el que perjudica más el medio ambiente.

Al sumar los usuarios de 2G y 3G, el resultado es ligeramente inferior respecto a la situación inicial E0 (351.793 usuarios, concretamente). Sin embargo, el impacto medioambiental de las cuatro categorías, en UMTS, se encuentra por encima del 100% marcado como referencia. A pesar de este último dato, los usuarios de UMTS son capaces de disfrutar de más prestaciones que el estándar GPRS no es capaz de ofrecer, como por ejemplo, hacer videollamadas, navegar por Internet a velocidades similares al ADSL, o utilizar cómodamente aplicaciones con uso intensivo de Internet. Por lo tanto, se podría decir que un mayor impacto medioambiental de la red UMTS quedaría justificada debido al aumento de las prestaciones que podríamos tener en nuestros teléfonos móviles.

En este escenario, donde la transmisión de datos cobra especial importancia, es necesario optimizar el perfil medioambiental de la red para evitar que se dispare su consumo. Las medidas necesarias serían equivalentes a las del escenario E1+, aunque más severas. Las redes heterogéneas serían una buena fórmula para ampliar la capacidad de datos, aunque para ello es necesario el conocimiento de la toponimia de la demanda para saber dónde aplicar las celdas embebidas y poder descongestionar la red. El número de microceldas necesarias, respecto al escenario E1+, debería ser superior.

Por otro lado, la utilización de fuentes de energía renovables para alimentar equipos de la red de acceso quedaría descartado para UMTS debido al consumo energético en niveles altos de carga, sin embargo, cabría la posibilidad de utilizarse en GPRS.
CAPÍTULO 6. CONCLUSIONES

Este trabajo ha servido para analizar el impacto medioambiental del la telefonía móvil, lo cual supone de por sí, un hecho innovador, ya que no se había tratado en anteriores TFCs de la escuela. La bibliografía disponible es aún bastante limitada, y en muchos casos de carácter privado. Además, ésta no presenta los resultados bajo un único sistema de medida, lo cual impide la comparación.

Durante todo el tiempo que he estado involucrado en este proyecto he podido ampliar mis conocimientos sobre telefonía móvil y asociar las siguientes conclusiones sobre su impacto al medioambiente.

El sector de las telecomunicaciones se ha convertido en uno de los grandes elementos de la economía mundial. Desde sus orígenes, su crecimiento no ha parado en ningún momento. Tal hecho requiere de una gran responsabilidad medioambiental, por lo que identificar y medir los elementos que lo forman es fundamental para conseguir ajustar al máximo su impacto sobre el medioambiente.

En conjunto, de todas fases analizadas en el documento, la fase de explotación es la que causa mayor impacto negativo, seguidamente de la fase de fabricación. La fase de final de vida útil simplemente permite contrarrestar una pequeña parte del daño causado por las otras dos fases.

Los teléfonos móviles están fabricados con materiales potencialmente peligrosos y/o gran valor, los cuales pueden ser una gran amenaza para la integridad del ser humano y para el resto de elementos que se encuentran en el medio ambiente. Además, este hecho puede convertirse en un gran problema si tenemos en cuenta que en muchos países existen más teléfonos móviles que personas y que, cerca de la mitad de los teléfonos nuevos, son de reemplazo. Por esta razón, su fabricación debe prever futuros problemas en el final de vida útil.

Las sucesivas actualizaciones en los estándares UMTS y GSM han supuesto una gran mejora en el impacto causado sobre el medio ambiente, incluso situándose casi a la par en las versiones analizadas más modernas. Por tanto, mantener actualizadas las redes a las versiones más recientes consigue que estas tengan perfiles más respetuosos con el medio ambiente. El funcionamiento las redes 2G y 3G de forma paralela supone carecer en ciertas zonas de las las ventajas que ofrece UMTS, aunque en contrapartida, ésta requiera de un mayor número de sites en la red, y por tanto, más consumo energético. Un replanteo en la distribución de frecuencias permitiría salvar este obstáculo.

Los equipos que proporcionan cobertura a los teléfonos móviles consumen mucha más energía que los teléfonos móviles en sí, y dentro de éstos, las estaciones base radio son las que mayor responsabilidad tienen. Por lo tanto, el dimensionar correctamente la red a la capacidad necesaria en cada momento y utilizar las últimas técnicas de optimización de la energía, es fundamental para no malgastar recursos. Por otro lado, no se ha podido encontrar una causalidad concluyente de que los campos RF puedan causar cáncer en humanos, aunque sí una asociación positiva entre éstos y el aumento del riesgo de contraer glioma.
Una fin de vida útil responsable puede suponer una gran oportunidad para darle una segunda vida a los teléfonos móviles en desuso, y una gran fuente de recuperación de metales preciosos y demás materiales que suponen un riesgo para el medio ambiente, y que necesitan ser tratados en condiciones especiales.

Finalmente, cabe mencionar que este proyecto sienta unas bases a lo que podrían ser otros proyectos sobre aspectos más específicos dentro de la misma temática, analizando más profundamente alguno de los capítulos tratados.
Análisis del impacto medioambiental de la telefonía móvil
REFERENCIAS

ANEXOS

ANEXO I. Aspectos básicos de la red de telefonía móvil

Para que un sistema de telecomunicación tenga éxito, es básico y necesario que todas sus tecnologías estén estandarizadas, es decir, que sean aceptadas y abiertas a toda la comunidad de operadores y fabricantes.

En España, la primera generación de telecomunicaciones móviles utilizaban una tecnología analógica y era diferente a muchos otros países. Al no estar estandarizado el sistema no consiguió el apoyo ni éxito suficiente como para difundirse al gran público. A partir de la introducción del sistema GSM se propuso una solución única y común que progresivamente fue extendiéndose por todo el mundo. La GSMA fue la asociación que se encargó de apoyar la normalización, la implementación y la promoción del sistema de telefonía móvil GSM.

Sin embargo, a pesar de su éxito, el sistema GSM fue superado con la aparición del sistema UMTS. En la actualidad, tanto el sistema GSM, como el UMTS conviven simultáneamente para complementarse mutuamente dependiendo de las necesidades de cada área.

Toda red de comunicaciones móvil genérica, independientemente de la tecnología de acceso utilizada, cuenta con los siguientes elementos comunes:

- Estaciones móviles: son aquellos dispositivos que permiten el acceso a la red, como teléfonos, tarjetas de red, ...

- Estaciones base: es todo el equipo distribuido para cubrir un área geográfica y que controlan el enlace radio entre el usuario y la red, y por lo tanto, dan acceso al servicio.

- Sistemas de control y conmutación de las estaciones base: Son aquellos que permiten tener control sobre las llamadas, controlan la conmutación del acceso entre distintas estaciones base y dan movilidad al usuario de forma totalmente transparente a este.

- Bases de datos para gestionar la movilidad: permiten registrar los usuarios de la red móvil y se encargan del mantenimiento y la distribución de la información del perfil correspondiente en cuanto a aspectos de autenticación y tarificación.

- Banda de frecuencias: a cada operador del mercado se le asigna un determinado ancho de banda delimitado por ciertas frecuencias, que debe repartir entre sus usuarios para poder establecer llamadas. En España, el espectro radieléctrico de las telecomunicaciones se encuentra dividido en tres bandas de radiofrecuencia (900MHz, 1800 MHz y 2100 MHz) y cuatro operadores presta-
dores del servicio de telefonía móvil con red propia (Orange, Movistar, Vodafone y Yoigo), cuya reserva del espectro figuran en la tabla A1.1.

Tabla A1.1. División del espectro radioeléctrico de la red de telefonía móvil en España.

<table>
<thead>
<tr>
<th>OPERADOR</th>
<th>BANDA GSM 900 MHz (FDD)</th>
<th>BANDA GSM 1800 MHz (FDD)</th>
<th>BANDA UMTS 2100 MHz (FDD Y TDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>2 x 6 MHz (2025)</td>
<td>2 x 24,8 MHz (2028)</td>
<td>2 x 15 + 5 MHz (2030)</td>
</tr>
<tr>
<td>Movistar</td>
<td>2 x 12 MHz (2015)</td>
<td>2 x 24,8 MHz (2028)</td>
<td>2 x 15 + 5 MHz (2030)</td>
</tr>
<tr>
<td>Vodafone</td>
<td>2 x 12 MHz (2025)</td>
<td>2 x 24,8 MHz (2028)</td>
<td>2 x 15 + 5 MHz (2030)</td>
</tr>
<tr>
<td>Yoigo</td>
<td>-</td>
<td>-</td>
<td>2 x 15 + 5 MHz (2030)</td>
</tr>
</tbody>
</table>

A1.1. Redes 2G o GSM

El estándar GSM (Global System for Mobile Communications) es el más extendido en el mundo, con un 82% de los terminales en uso, cuenta con más de 3.000 millones de usuarios en 212 países distintos, siendo el estándar predominante en Europa, América del Sur, Asia y Oceanía, y con gran extensión en América del Norte.

La llegada del estándar GSM ha sido una ventaja tanto para consumidores, que podían salir del área de servicio local y continuar enviando y recibiendo llamadas y cambiar de operador sin cambiar de terminal (cambiando simplemente la tarjeta SIM), como para los operadores de red que podían elegir entre múltiples proveedores de sistemas GSM, al tratarse de un estándar abierto que no requería el pago de licencias.

La principal característica del sistema GSM es que funciona con una interfaz radio TDMA (Time Division Multiple Access). Esta técnica permite la transmisión de señales digitales ocupando el canal de transmisión con distintas fuentes, de esta manera se logra un mejor aprovechamiento del medio. Como se puede ver en la figura A1.1, el tiempo se divide en espacios de tiempo y a cada usuario se le asigna uno, es decir, un espacio de tiempo por el que se puede establecer la conversación.

1. Actuaciones en materia de espectro radioeléctrico: Refarming en banda de 900 MHz y 1800 MHz, Dividiendo Digital y banda de 2,6 GHz.

A parte de la división del tiempo en emisión y recepción mediante TDMA también se utilizan otras técnicas como el empleo de celdas contiguas a distintas frecuencias (SDMA) para repartir mejor el espectro frecuencial y poder reutilizar frecuencias en celdas no contiguas. También se separan las bandas de emisión y recepción y se subdividen en canales radioeléctricos.

En la figura A1.2 se muestra la arquitectura de red GSM genérica, donde podemos ver cada una de las partes que la forman.

Fig. A1.1 División por tiempo de la técnica TDMA entre 4 usuarios.

Fig. A1.2 Arquitectura de red genérica GSM.

A1.2. Redes 3G o UMTS

El sistema GSM, a pesar de ofrecer grandes prestaciones como enviar y recibir e-mail, faxes, navegar por Internet o enviar SMS, presenta algunas limitaciones en cuanto a número máximo de usuarios activos simultáneos o el acceso a servicios multimedia de alto volumen de tráfico de datos. El UMTS permite mejorar las comunicaciones móviles y poco a poco las redes se han ido adaptando a este nuevo sistema denominado 3G.

El sistema UMTS, al igual que el GSM, es un sistema digital, se encuentra dentro del IMT-2000 (International Mobile Telecommunications-2000) de la ITU (International Telecommunication Union), encargada de fijar el estándar para que todas las redes 3G sean compatibles unas con otras. Los servicios que ofrecen
las tecnologías 3G son básicamente: acceso a Internet, servicios de banda ancha, roaming internacional e interoperatividad.

La estructura de redes UMTS está compuesta por dos grandes subredes: la red de telecomunicaciones y la red de gestión. La primera es la encargada de sustentar la transmisión de información entre los extremos de una conexión. La segunda se encarga de la facturación y tarificación de los abonados, el registro, definición de los perfiles de servicio, las operaciones de los elementos de la red, la detección y resolución de anomalías, y también la recuperación del funcionamiento tras periodos de apagado o desconexión de algunos de sus elementos.

UMTS usa una comunicación terrestre basada en una interfaz radio WCDMA (Wideband Code Division Multiple Access), conocida como UMTS Terrestrial Radio Access (UTRA). El sistema WCDMA es una tecnología que permite acceso múltiple al canal, donde los usuarios se distinguen entre sí por unas secuencias de código únicas para cada uno de ellos, lo que significa que pueden transmitir al mismo tiempo utilizando la misma frecuencia portadora (figura A1.3). También soporta división de tiempo duplex (TDD) y división de frecuencia duplex (FDD).

Fig. A1.3 División por tiempo de la técnica WDMA entre 4 usuarios

Una red UMTS se compone de los siguientes elementos:

- **Núcleo de red (Core Network).** El núcleo de red incorpora funciones de transporte (conmutación, señalización y información del tráfico) y de inteligencia (encaminamiento). A través del núcleo de red, el UMTS se conecta con otras redes de telecomunicaciones, de forma que resulte posible la comunicación no sólo entre usuarios móviles UMTS, sino también con los que se encuentran conectados a otras redes.

- **Red de acceso radio (UTRAN).** La red de acceso radio proporciona la conexión entre los terminales móviles y el Core Network. Se compone de una serie de subsistemas de redes radio (RNS) que son el modo de comunicación de la red UMTS. Las RNS son responsables de los recursos y de la transmisión / recepción en un conjunto de celdas y tiene asociados varios nodos B. Los nodos B son los elementos de la red que se corresponden con las estaciones base.
• UE (User Equipment). Se compone del terminal móvil y su módulo de identidad de servicios de usuario/suscriptor (USIM) equivalente a la tarjeta SIM del teléfono móvil.

Un ejemplo de una conexión a la red UMTS, junto a la parte de red GSM, se puede observar en la figura A1.4.

![Diagrama de la red troncal](image)

Fig. A1.4 Elementos funcionales de la red troncal.

Partimos de nuestro dispositivo 3G (MS), ya sea un teléfono móvil o una tarjeta para ordenadores compatible con esta red, nuestros datos llegan al NodoB que es el encargado de recoger las señales emitidas por los terminales y pasan al RNC para ser procesadas, estos dos componentes es lo que llamamos UTRAN, desde el UTRAN pasa al núcleo de la red que está dividido en conmutadores que distribuyen los datos por los diferentes sistemas, según vayan a uno u otro seguirán un camino pasando por el MSC (Mobile services Switching Center), o por el SGSN (Serving GPRS Support Node) y posteriormente por el GGSN (Gateway GPRS Support Node).

A1.3. Actualización de las redes 2G y 3G

La mejora del estándar GSM original han sido posibles gracias al Phase 2+, que ha dado paso a los estandards GPRS y EDGE, permitiendo obtener transferencias de datos no-voz, a través de la conmutación de paquetes, a una mayor velocidad. El estándar GPRS (General Packet Radio Service) fue el primero en hacer uso del Phase 2+ en 1995 e impulsó la velocidad de transmisión de datos aplicando una modulación QPSK (Quadrature Phase Shift Keying), pasando de una velocidad de subida de 7.2 kbit/s a 31.2 kbit/s, y de bajada de 14.4 kbit/s a 62.4 kbit/s.

Más adelante, con la llegada del estándar EDGE, los datos de subida y bajada se consiguieron mejorar hasta 192.0 kbit/s y 384.0 kbit/s respectivamente utilizando una modulación 8PSK (8 Level Phase Shift Keying). Con la implementación del GPRS y EDGE bajo la existente red GSM se necesitó actualizar parte de esta red añadiendo varios equipos como SGSN (Serving GPRS Support Nodes), GGSN (Gateway GPRS Support Noder) y algunos otros.

Tabla A1.2. Hoja de especificaciones de cada una de las redes tratadas en este trabajo

<table>
<thead>
<tr>
<th>Generación</th>
<th>2G</th>
<th>2.5G</th>
<th>2.5G</th>
<th>3G</th>
<th>3G</th>
<th>4G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estándar</td>
<td>GSM</td>
<td>UMTS</td>
<td>UMTS</td>
<td>UMTS</td>
<td>UMTS</td>
<td>LTE</td>
</tr>
<tr>
<td>Modo de transmisión de datos</td>
<td>Phase 2</td>
<td>Phase 2+</td>
<td>Phase 2+</td>
<td>3GPP R’99</td>
<td>3GPP R’04</td>
<td>3GPP R’07</td>
</tr>
<tr>
<td>Velocidad de transferencia de datos [kbit/s]</td>
<td>Transmisión de voz</td>
<td>14.4</td>
<td>14.4</td>
<td>14.4</td>
<td>12.2</td>
<td>12.2</td>
</tr>
<tr>
<td>Velocidad de subida</td>
<td>7.2</td>
<td>31.2</td>
<td>192.0</td>
<td>64.0</td>
<td>960.0</td>
<td>5800</td>
</tr>
<tr>
<td>Velocidad de bajada</td>
<td>14.4</td>
<td>62.4</td>
<td>384.0</td>
<td>384.0</td>
<td>1920.0</td>
<td>14400</td>
</tr>
<tr>
<td>Método de acceso</td>
<td>FDD/TDD</td>
<td>FDD</td>
<td>FDD</td>
<td>TDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulación</td>
<td>FDMA/TDMA</td>
<td>W-CDMA</td>
<td>SC-FDMA</td>
<td>OFDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuración de la red/Elementos de la red</td>
<td>Sistema de equipol/usuari</td>
<td>Mobile Station (MS) incl. Subscriber Identity Module card (SIM)</td>
<td>User equipment (UE) incl. User Specific Identity Module card (USIM card)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base Station Subsystem/</td>
<td>Base Transceiver Station (BTS)</td>
<td>NodeB</td>
<td>eNB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Network Subsystem</td>
<td>Racks BTS</td>
<td>NodeB racks</td>
<td>eNB racks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Switched Domain (CSD)</td>
<td></td>
<td>Base Station Controller (BSC)</td>
<td>Radio Network Controller (RNC)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Racks BSC</td>
<td>Racks RNC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baterias back-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sistema de refrigeración</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cableado (interiores, exteriores)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mástil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antenas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sistema de refrigeración</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cableado (interiores, exteriores)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mobile Switching Centre (MSC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Racks MSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sistema de refrigeración</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cableado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La primera modificación sustancial de la primera versión del estándar UMTS (R’99) llegó la release 2004 (R’04). Esta nueva versión ofrecía una mejora en la conmutación de paquetes de transmisión de datos de voz y la implementación de la modalidad TDD para la transferencia de datos no-voz. Utilizando TDD la máxima velocidad de subida se situó de 64 kbit/s a 960.0 kbit/s y de 384.0 kbit/s...
a 1920.0 kbit/s de bajada. La última versión UMTS utilizada ha sido la release 8 (R’06), esta permite incrementar la velocidad de subida hasta 5800 kbit/s y 14400 kbit/s de bajada gracias a la utilización de HSDPA (High Speed Downlink Packet Access), HSUPA (High Speed Uplink Packet Access) y una modulación 16QAM (16 Level Quadrature Amplitude Modulation). Este último estándar permite concentrar simultáneamente la conmutación de paquetes de datos de voz y datos no-voz en un mismo proceso.

En la tabla A1.2 aparece como quedan repartidas las propiedades de cada uno de los estándares básicos y las sucesivas actualizaciones descritas anteriormente.

A1.4. Redes LTE

LTE, o Long Term Evolution, es el siguiente paso tecnológico en la red de telecomunicaciones móviles de alta velocidad desarrollado por la 3GPP (3rd Generation Partnership Project).

Son muchas las variantes que LTE introduce en relación a sistemas de comunicaciones móviles previos, sin embargo dos aspectos relevantes que cabría destacar son que en LTE, por primera vez, todos los servicios, incluida la voz, se soportan sobre el protocolo IP (Internet Protocol), y que las velocidades de pico de la interfaz radio se sitúan dentro del rango de 100 Mb/s y 1Gb/s, ampliamente superiores a las conseguidas en los sistemas predecesores. Se espera que con LTE se puedan romper finalmente y definitivamente las barreras que todavía impedían la consecución plena de una movilidad con capacidad multimedia. Lo que sería equivalente a afirmar que con la aparición de LTE los usuarios que lo deseen ya no tendrán que verse penalizados en su capacidad de comunicación por el hecho de ser móviles en lugar de fijos.

La interfaz y arquitectura radio del sistema LTE es completamente nueva, y pasará a denominarse Envolved UTRAN (E-UTRAN). Un importante logro de E-UTRAN ha sido la reducción del costo y la complejidad de los equipos, esto es gracias a que se ha eliminado el nodo de control (conocido en UMTS como RNC). Por tanto, las funciones de control de recursos de radio, control de calidad de servicio y movilidad han sido integradas al nuevo Node B, llamado envolved Node B (eNB). Todos los eNB se conectan a través de una red IP y se pueden comunicar unos a otros usando el protocolo de señalización SS7 sobre IP. Los esquemas de modulación empleados son QPSK,16-QAM y 64-QAM. La arquitectura del nuevo protocolo de red se conoce como SAE donde los eNB gestionan los recursos de red. En la tabla A1.2 aparecen concretadas las principales especificaciones de LTE.

LTE presenta muchos retos para conseguir perfiles más eficientes energéticamente que sus estándares anteriores. En la actualidad se están haciendo grandes esfuerzos por parte de todas las empresas del sector para implantar este estándar con unas directrices que permitan evolucionar hacia una red que consuma menos recursos y energía, y emita menos CO₂.
ANEXO II. Problemas medioambientales asociados

La palabra “medio ambiente” se puede definir como el conjunto de los organismos vivos, o también llamados elementos bióticos, junto con los elementos sin vida, o también llamados abióticos (energía solar, la atmósfera, el agua, el suelo,...), todos ellos situados en la biosfera, la capa viva de la Tierra, donde interactúan los seres vivos con el medio físico que les rodea.

El sector de la telefonía móvil, o comunicaciones móviles más en general, abarca multitud de fases que permiten funcionamiento cotidiano de esta industria, y ofrecer uno de los servicios más universalmente utilizados en la actualidad. Estas fases parten de la extracción de materias primas, pasando por la construcción y/o fabricación, la utilización y/o explotación, hasta llegar al final de vida útil. Todas ellas forman el ciclo de vida de esta industria y contribuyen, en menor o gran medida, al impacto del medio ambiente.

La industria de la telefonía móvil gira en torno al alto consumo de energía y de recursos. Estos dos elementos conllevan problemas medioambientales asociados, como son la contaminación atmosférica, el calentamiento global, la destrucción de la capa de ozono, el consumo de recursos naturales, la contaminación y pérdida del suelo, la generación de residuos y la contaminación acústica.

Una alta demanda de energía tiene como consecuencia un gran volumen de emisiones, culpables en gran medida, de la contaminación atmosférica. La contaminación atmosférica está causada por la presencia en el aire de materias o formas de energía que impliquen riesgo, daño o molestia grave para las personas y bienes de cualquier naturaleza. Dicha contaminación es causada principalmente por gases como el CO, CO$_2$, NO, SO$_2$, CH$_4$ y O$_3$. Este problema se localiza básicamente en países en vías de desarrollo y en grandes núcleos urbanos.

Casi de forma colateral, el aumento de las emisiones también causa otros problemas a nivel global: la destrucción de la capa de ozono y el calentamiento global.

Cuando nos referimos a la destrucción de la capa de ozono lo que en realidad sucede es que el grosor de la capa de ozono se ve disminuido debido al aumento de la concentración de cloro y de bromo en la estratosfera, y en especial, la emisión de compuestos clorofluorocarbonados (CFC). La disminución de concentración de ozono hace que la radiación solar penetre más fácilmente a la atmósfera aumentando las radiaciones ultravioleta y causando efectos nocivos sobre la salud (ojos, cáncer, sistema inmunológico,...) y alterando el ecosistema vegetal. Este problema se localiza básicamente en los polos del planeta y facilitaría una aceleración del calentamiento global. El agujero en la capa de ozono se encuentra actualmente estable, pero no se espera que vuelva a densidades normales hasta dentro de varios cientos de años.

El calentamiento global (o también llamado cambio climático) se debe a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante periodos comparables.
Cuando la Tierra recibe luz del sol, parte la devuelve a la atmósfera en longitudes de onda infrarrojas, y parte de las ondas las retienen las nubes y los gases efecto invernadero (CO$_2$, CH$_4$, N$_2$O, HFC, ...), afectando a la regulación de la temperatura. Por lo tanto, el incremento de la concentración de gases procedentes de las emisiones, incrementaría el porcentaje de ondas que son retenidas, y daría lugar a un incremento de la temperatura.

Según IPCC (Intergovernmental Panel on Climate Change) el aumento de la temperatura en el s.XX fue de 0,76º y en el s.XXI será de entre 1,8º y 4º. Las consecuencias principales del aumento de la temperatura son el incremento del nivel del mar por el deshielo, la alteración de las precipitaciones y aumento de su irregularidad. También cabe destacar que todos los modelos que explican tal comportamiento son altamente criticados en la actualidad, y puede que estén equivocados, pero no se han hallado modelos mejores.

Los recursos naturales son comúnmente utilizados para la generación de energía o la fabricación de bienes. Un recurso natural es aquel elemento de la naturaleza que podemos transformar para nuestro beneficio (combustibles, agua, viento, animales, minerales, ...), y el cual puede ser renovable (viento, agua, plantas o animales) o no renovable (petróleo o minerales). Un elevado consumo de los recursos naturales no renovables puede sobrepasar el umbral de renovación, y provocar como consecuencia, el agotamiento del recurso con el paso del tiempo.

La explotación intensa de recursos naturales también conlleva un impacto sobre el medio desde donde se extraen, pudiendo llegar a la pérdida de suelo. Las causas básicas que hacen que aumente este problema medioambiental son la creciente pérdida de bosques tropicales (en torno al 0,9% anual), el aumento del número de incendios, la intensificación de la presión del suelo en países de mayor pobreza o en vías de desarrollo y la propagación de enfermedades y plagas.

Como consecuencia de los procesos de transformación de los recursos naturales se generan residuos, los cuales son dañinos para el medio ambiente si no se tratan correctamente. Los residuos pueden generar impacto sobre la atmósfera, el medio hídrico y el suelo, llegando incluso a contaminarlo si no se gestionan correctamente. El aumento de población, juntamente con la aparición de nuevas necesidades de la humanidad, como puede ser la telefonía móvil, son uno de los motivos que está causando una creciente generación de residuos, y un gran problema para las autoridades. En algunos casos se ha decidido exportar los residuos peligrosos a países en vías de desarrollo debido a laxas leyes en cuanto a temas medioambientales.

Los procesos asociados a la actividad de la industria de la telefonía móvil pueden alterar las condiciones normales del ambiente de una determinada zona. El exceso de sonido o ruido puede causar trastornos graves en las personas como el deterioro de la capacidad auditiva, interferencias en la comunicación oral, efectos sobre el sueño y el descanso, efectos fisiológicos y cardiovasculares, ansiedad, estrés emocional y comportamientos nerviosos. Por lo tanto, este tipo de perturbaciones también puede llegar a considerarse un contaminante, y afectar negativamente la salud de las personas.
ANEXO III. Ciclo de vida bajo el método IMPACT2002+

Para la realización de este TFC se ha utilizado información del apartado 7.4 de la tesis “Life Cycle Assessment of Mobile Telephone Networks, with Focus on the End-of-Life Phase”, de Wolfram Scharnhorst, donde expresa los resultados según el método de LCA IMPACT2002+.

IMPACT2002+ es un método de análisis para determinar el impacto ambiental relacionado con los recursos consumidos y las emisiones liberadas durante el ciclo de vida de las redes de telefonía móvil, en este caso. Este método, está basado en otro modelo llamado IMPACT2002, y consta de 14 categorías intermedias y cuatro categorías finales de daño: consumo de recursos, cambio climático, salud humana, calidad ecosistema. Este método permite obtener una puntuación en función de los efectos para cada una de las substancias involucradas, enlazadas con las categorías de daño correspondiente, obteniendo así, una medida de impacto ambiental.

La categoría “consumo de recursos” permite conocer cual es la cantidad de energía no renovable necesaria y se expresa en unidades MJ. La categoría “cambio climático” permite obtener la cantidad de kilogramos equivalentes de CO₂ emitidos a la atmósfera. La categoría “salud humana” muestra el impacto producido sobre la salud humana en unidades DALY (Disability Adjusted Life Year), es decir, expresa el número de años perdidos, debido a una afección sobre la salud humana, respecto a la esperanza de vida del país o región. Y por último, la categoría “calidad ecosistema” permite conocer el impacto producido sobre la calidad del ecosistema en unidades PDF*m²*año, siendo PDF (Potentially Disappeared fraction) el daño sufrido por la pérdida de especies en una determinada zona por fracción de tiempo.

Para interpretar correctamente las gráficas de la metodología IMPACT2002+ hay que tener en cuenta que cada gráfica de cada una de las cuatro categorías son iguales en valores totales durante los siguientes apartados del anexo, pero en cada uno de ellos aparece resaltada la información propia del contexto del cual se habla con colores rojos y verdes. Contrariamente, las otras dos fases no involucradas en el apartado aparecen con tonos grises.

La unidad que se utilizará para evaluar el impacto de cada proceso se basará en la unidad de transmisión bit, tanto para voz, como para datos. Los escenarios que se han utilizado en los Análisis de Ciclo de Vida utilizados se encuentran en el capítulo 5 del documento.

A3.1. Fabricación

A continuación se muestran los impactos referidos a cada una de las cuatro categorías de daño en las que se divide el método IMPACT2002+. La fase de fabricación es, de los tres procesos analizados mediante el IMPACT2002+, el segundo en importancia en cuanto impacto medioambiental. En las gráficas que acompañan cada categoría, la fase de fabricación presenta colores rojos para
UMTS y verdes para GSM, mientras que la fase de explotación aparece de gris oscuro y la fase de fin de vida útil de gris claro.

A3.1.1. Consumo de recursos

La figura A3.1 muestra el impacto producido sobre los recursos durante la fase de fabricación expresado en unidades MJ/bit, tanto para redes 2G (GSM, GPRS y EDGE) como 3G (UMTS(R’99), UMTS(R’04) y UMTS(R’06)).

La fase de fabricación ocupa el 44% en GSM y el 20% en UMTS (R’99) del total de daño sobre el consumo de recursos, o lo que es lo mismo, el consumo de recursos no renovables. Con las sucesivas actualizaciones de los estándares, se aprecia como en el caso del 2G el porcentaje se mantiene, mientras que en 3G aumenta ligeramente (22% en R’04 y 27% en R’06). Por lo tanto, a diferencia de la fase de explotación, no se consigue reducir esta categoría de daño del mismo modo en sucesivas actualizaciones.

La fase de fabricación está dominada por el estándar UMTS (R’99), y las R’04 y R’06 permiten reducir el impacto un factor de 9,1 y 18,7 respectivamente. En 3G, esta categoría de daño se centra en la generación de electricidad para cubrir las necesidades de fabricación de los NodeB y los UELIIO. En los NodeB es donde se consigue una mayor mejora en las sucesivas actualizaciones, consiguiendo un rendimiento 18,7 veces menos perjudicial.

Por otro lado, los terminales móviles (MSLIIO y MSNIMH) y las BTS son los que obtienen las puntuaciones más altas en GSM, ocupando el 75% de esta categoría. Este tipo de daño está protagonizado por la energía utilizada para la fabricación de las PWBA (Printed Wiring Board Assembly) utilizadas tanto en teléfonos móviles como bastidores de las BTS.

3 MSNIMH: Teléfonos móviles con baterías de níquel e hidruro metálico (NiMH), MSNIMH: Teléfonos móviles con baterías de ion de litio en 2G (Li-ion), BTS: Base Transceiver Station, BSC: Base Station Controller, MSC: Mobile Switching Centre, BBC: Back Bone Cable, UELIIO: Teléfonos móviles con baterías de ion de litio en 3G (Li-ion), RNC: Radio Network Controller, SGSN: Serving GPRS Support Node, GGSN: Gataway GPRS Support Node.
A3.1.2. Cambio climático

La figura A3.2 muestra el impacto producido sobre el cambio climático en la fase de fabricación en unidades Kg CO₂e por cada bit, para los diferentes tipos de redes 2G y 3G.

La categoría de cambio climático está dominada por la fase de fabricación en 2G en cada una de sus versiones (52%, 51% y 51%), no así en 3G, que obtiene valores bastante inferiores respecto a la fase de explotación (32%, 30% y 35%). Aunque en valores absolutos, el estándar UMTS (R’99) es el que obtiene más puntuación.

Dentro de la fase de fabricación, al igual que la categoría anterior, los teléfonos MSLIIIO (23% en GSM, 18% en GPRS y 9% en EDGE) y MSNIMH (35% en GSM, 29% en GPRS y 22% en EDGE), y las BTS son, en ese orden, los elementos de la red 2G que más impacto producen debido a las emisiones de CO₂ asociadas a la fabricación de PWBA. A medida que las nuevas actualizaciones se suceden, este conjunto de elementos consigue perfiles medioambientales más óptimos, mientras que el bloque formado por el conglomerado de otros elementos de la red 2G se mantiene prácticamente igual.

En los equipos utilizados en 3G, los que más puntuación reciben son los NodeB, seguido por los UELIIIO. Los NodeB son los elementos que más impacto producen en UMTS (R’99) (88%) y UMTS (R’04) (56%), no así en UMTS (R’06) (28%) que se encuentra por debajo del impacto producido por el conglomerado de otros elementos de la red 3G. En valor absoluto, la puntuación de los NodeB consigue reducir un factor 12,4 y 49,6 en sucesivas actualizaciones con respecto al estándar básico.

![Fig. A3.2](image-url) Impacto producido sobre el cambio climático en la fase de fabricación. Unidades expresadas en (Kg equiv. de CO₂ en Aire)/bit

A3.1.3. Salud humana

La figura A3.3 muestra el impacto producido sobre la salud humana durante la fase de fabricación en unidades DALY/bit, tanto para redes 2G (GSM, GPRS y EDGE) como 3G (UMTS(R’99), UMTS(R’04) y UMTS(R’06)). La unidad DALY (Disability Adjusted Life Year) expresa el número de años perdidos, debido a una
afección sobre la salud humana, respecto a la esperanza de vida del país o región.

Fig. A3.3 Impacto producido sobre la salud humana en la fase de fabricación. Unidades expresadas en DALY/bit

El impacto negativo producido sobre la salud humana está protagonizado por la fase de fabricación en el caso de la red 2G (62% en GSM, 60% en GPRS y 54% en EDGE), al contrario que en 3G, que no supera el impacto de la fase de explotación (48% en UMTS (R’99), 41% en UMTS (R’04) y 45% en UMTS (R’06)).

Bajo condiciones iniciales, la red UMTS (R’99) predomina esta gráfica debido a la contribución de los NodeB (91%). El impacto producido por los NodeB se ve reducido en sucesivas actualizaciones de la red 3G en un factor 9.2 para UMTS (R’04) (59%) y 18.89 para UMTS (R’06) (32%). La emisión de partículas primarias y secundarias son la principal causa de impacto de esta fase. Estas emisiones se deben a la fabricación de aluminio primario utilizado en los racks de los NodeB y a la fabricación de plomo primario para las baterías que se utilizan como backups en los NodeB. Con menor índice de impacto, se encuentra la fabricación de acero primario utilizado en los PWBA y NodeB y de paladio primario utilizado en los PWBA.

Los teléfonos MSNIMH son los que tienen mayor puntuación (37%) en GSM, seguido de los teléfonos MSLIIO (19%), y en tercer lugar las BTS (22%). En sucesivas actualizaciones de 2G, todos ellos reducen su puntuación, al igual que su porcentaje. Contrariamente, el conglomerado formado por otros elementos de la red 2G aumenta ligeramente su puntuación hasta superar a los otros tres elementos comentados en la red EDGE. El daño causado por la red 2G se debe a la emisión de partículas primarias y secundarias por la fabricación de la PWBA de teléfonos móviles y racks de BTS, la fabricación de paladio, plata y aluminio primario para los racks de BTS y la fabricación de baterías NiMH (niquel e hidruro metálico).

Finalmente se puede ver como las versiones más actualizadas de 2G y 3G presentan perfiles medioambientales similares en esta categoría de daño.
A3.1.4. Calidad del ecosistema

La figura A3.4 muestra el impacto producido sobre la calidad del ecosistema durante la fase de fabricación en unidades (PDF*m²*año)/bit, para redes 2G y 3G. La unidad PDF (Potentially Disappeared fraction) expresa el daño sufrido por la pérdida de especies en una determinada zona y por fracción de tiempo.

Esta categoría de daño presenta, como impacto negativo, las fases de fabricación, explotación y fin de vida útil, pero además, la fase de fin de vida útil también puntuación negativa (beneficiosa para el medio ambiente). La fase de fabricación, en este caso, obtiene puntuaciones muy pequeñas, por debajo de las otras dos fases, tanto en 2G (17% en GSM, 19% en GPRS y 21% en EDGE) como 3G (22% en UMTS (R’04) y 25% en UMTS (R’06)) a excepción de UMTS (R’99) (37%).

Esta categoría de daño está protagonizada por el impacto producido por los NodeB en la red UMTS (R’99) (94%), pero consigue reducirse drásticamente hasta ocupar un impacto mínimo. El impacto de la red 3G en la fase de fabricación se debe básicamente a la fabricación de plomo primario para las baterías de backup montadas en los racks de los NodeB y a la fabricación de aluminio primario para construir estos racks. Además, otros efectos que contribuyen al impacto de esta fase son las emisiones de cobre al aire, aluminio al agua y zinc al aire y la tierra.

El impacto producido en 2G es pequeño comparado con las otras fases, y está relacionado con el vertido de aluminio disuelto al agua y cobre al aire en la fabricación de racks de BTS y teléfonos móviles, así como la emisión de cobre al aire en la fabricación de plomo primario para las baterías backup de las BTS.

A3.2. Explotación

La fase de explotación, representada en colores verdes o rojos, es de los tres procesos analizados, el que más daño medioambiental causa. A continuación se muestran los impactos referidos a cada una de las cuatro categorías de daño en
las que se divide el método IMPACT2002+. Las fases de fabricación y fin de vida útil están representadas con tonos grises.

A3.2.1. Consumo de recursos

La figura A3.5 muestra el impacto producido sobre los recursos en la fase de explotación en MJ/bit, tanto para redes 2G y 3G.

La fase de explotación domina sobre las fases de fabricación y de fin de vida útil en la categoría de consumo de recursos (56% para GSM y 80% para UMTS, en sus estándares básicos).

En esta categoría de daño, el elemento que más contribuye es el consumo causado por las BTS y los NodeB (69% y 88% respectivamente, en los estándares básicos) ya que requieren de gran cantidad de energía para funcionar, gran parte proveniente del uranio. La actualización de las redes GSM (GPRS y EDGE) y UMTS (R’99) (UMTS (R’04) y UMTS (R’06)) ha permitido reducir drásticamente en un factor de 1,6 de GSM a GPRS y 1,7 de GPRS a EDGE en la red 2G, y en la red 3G un factor de 7,2 de UMTS (R’99) a UMTS (R’04) y 2,5 de UMTS (R’04) a UMTS (R’06). Esta mejora permite que los perfiles de 2G y 3G, en sus versiones más avanzadas, sean bastante parecidos.

A pesar de todo el beneficio tecnológico, la instalación de la infraestructura adicional en la red 3G (Nodo B, RNC, etc), así como el mayor consumo de energía en la fase de uso, aumenta el consumo total de la red y limita el beneficio medioambiental.

A3.2.2. Cambio climático

La figura A3.6 muestra el impacto producido sobre el cambio climático en la fase de explotación en Kg equivalentes de CO₂ en Aire/bit, para los diferentes tipos de redes 2G (GSM, GPRS y EDGE) y 3G (UMTS(R’99), UMTS(R’04) y UMTS(R’06)).
En la categoría de daño sobre el cambio climático, la fase explotación se encuentra porcentualmente similar a la de fabricación en el caso de la red 2G (48% en GSM y 51% en GPRS y EDGE), mientras que en el caso de la red 3G la fase de explotación predomina sobre el resto (68% en UMTS (R’99), 70% y 65% en UMTS (R’04) y UMTS (R’06)).

La comparación de los efectos climáticos entre los dos estándares de red muestra que las redes GSM, bajo condiciones iniciales, presentan 10,5 veces mejores resultados que las redes UMTS (R’99). La actualización de la red UMTS (R’99) a R’04 y R’06 ha dado lugar a perfiles medioambientales bastante más bajos, un factor de 7,3 y 2,44 respectivamente. Por otro lado, en el caso de 2G, también han habido mejoras en las sucesivas actualizaciones, un factor de 2,63 en EDGE respecto a GSM.

Al igual que en el caso anterior, la fase de Explotación está dominada por las emisiones de CO2 asociadas a la producción de energía necesaria para operar las BTS y los NodeB, los cuales ocupan el 69% en GSM, 62% en GPRS, 48% en EDGE y 88% en UMTS (R’99), 85% en UMTS (R’04), 71% en UMTS (R’06).

A3.2.3. Salud humana

La figura A3.7 muestra el impacto producido sobre la salud humana en la fase de explotación en DALY/bit, tanto para redes 2G como 3G.
En el caso de la red 2G, se observa cómo la fase de explotación no es la que más puntuación obtiene, ocupando el segundo lugar por detrás de la fase de fabricación, aunque su porcentaje va en aumento con las sucesivas actualizaciones (38%, 40% y 46% para GSM, GPRS y EDGE, respectivamente). En el caso de la tecnología 3G, los valores de las fases de fabricación y explotación se encuentran cercanas al 50% aunque con tendencia hacia esta última (52%, 59% y 55% para R’99, R’04 y R’06, respectivamente).

Esta categoría de daño está protagonizada por el daño causado por la emisión de partículas primarias y secundarias. Estas partículas son consecuencia de la energía generada para alimentar, principalmente, los NodeB (87%, 80% y 61% para UMTS (R’99), UMTS (R’04) y UMTS (R’06), respectivamente). En 2G, el elemento que más daño causa son las BTS, en GSM (62%) y GPRS (52%), menos en EDGE, que sería el conglomerado del resto de elementos (74%) formado por MSLIIO, BSC, MSC, SGSN, GGSN y BBC (OTROS 2G).

Al comparar la fase de explotación de UMTS (R’99) respecto GSM vemos como es 10 veces mayor y que en sucesivas actualizaciones ambos tipos de redes consiguen perfiles más respetuosos con la salud humana (factor de 1,6 y 1,3 de GSM a GPRS y de GPRS a EDGE).

A3.2.4. Calidad del ecosistema

La figura A3.8 muestra el impacto producido sobre la calidad del ecosistema durante la fase de explotación en (PDF*m^2*año)/bit para redes 2G y 3G. La unidad PDF (Potentially Disappeared fraction) expresa el daño sufrido por la pérdida de especies en una determinada zona y por fracción de tiempo.

Al igual que en el caso anterior, la fase de explotación no predomina la red 2G (25%, 40% y 46%, para GSM y sucesivas actualizaciones), al contrario que en la red 3G (52%, 59% y 55%, para UMTS (R’99) y sucesivas actualizaciones). Por otro lado, hay una diferencia respecto a las demás categorías, la fase de fin de vida útil tiene parte de puntuación que afecta negativamente a la calidad del
ecosistema, y por lo tanto comparte la parte derecha de la gráfica junto con la fase fabricación y explotación.

Al centrarnos en la fase de explotación, la red UMTS (R’99) obtiene la puntuación más alta en cuanto al impacto de la calidad del ecosistema principalmente debido a la energía consumida por los NodeB (87%). Comparándola con el estándar GSM, el impacto de este último es 10 veces inferior, dominado principalmente por las BTS (62%, 52% en GPRS y 41% en EDGE).

En sucesivas actualizaciones de 2G y 3G el impacto se reduce hasta conseguir unos perfiles medioambientales similares en EDGE y UMTS (R’06). De GSM a GPRS mejora un factor de 1,6 y de GPRS a EDGE un factor de 1,3, mientras que de UMTS (R’99) a UMTS (R’04) un factor de 7 y de UMTS (R’04) a UMTS (R’06) 2,4.

A3.3. Fin de vida útil

A3.3.1. Consumo de recursos

La figura A3.9 muestra el impacto producido sobre los recursos en la fase de fin de vida útil expresado en MJ/bit para las redes 2G y 3G.

El beneficio medioambiental relacionado con el reciclaje y fabricación de materias primas secundarias es bastante reducido en esta categoría de daño. El mayor ahorro se produce en la red UMTS (R’99), encabezado por los NodeB, con un 7% con respecto a las fases de fabricación y explotación juntas. En UMTS (R’04) y UMTS (R’06) es del 10% y 16% respectivamente, y aunque sea un ahorro inferior respecto a UMTS (R’99), dichas redes tienen bastante menor puntuación en el resto de fases. Para las redes 2G el ahorro medioambiental se traduce en un 11% en GSM, un 13% en GPRS y un 18% en EDGE.
A3.3.2. Cambio climático

La figura A3.10 muestra el impacto producido sobre el cambio climático en la fase de fin de vida útil en Kg equivalentes de CO$_2$ en aire por cada bit para los diferentes tipos de redes 2G y 3G.

La fase de fin de vida útil permite un ahorro medioambiental del 15% en GSM, 18% en GPRS y 22% en EDGE, a la par que en 3G, 16% en UMTS (R'99), 17% en UMTS (R'04), 21% en UMTS (R'06).

La mayor beneficio de la fase de fin de vida útil se produce en la red UMTS (R'99) gracias al reciclaje de desechos electrónicos. El reciclaje de aluminio y la plata son los recursos que más contribuyen al ahorro de energía, y por lo tanto, al proceso del cambio climático. Con estas medidas se puede llegar a ahorrar casi la mitad de puntuación de la fase de fabricación.

Fig. A3.10 Impacto producido sobre el cambio climático en la fase de fin de vida útil. Unidades expresadas en (Kg equiv. de CO$_2$ en Aire)/bit

A3.3.3. Salud humana

La figura A3.11 muestra el impacto positivo que causa sobre la salud humana la fase de fin de vida útil en unidades DALY/bit, tanto para redes 2G como 3G.

Fig. A3.11 Impacto producido sobre la salud humana en la fase de fin de vida útil. Unidades expresadas en DALY/bit
26% en UMTS (R’04), 33% en UMTS (R’06). De las cuatro categorías de daño analizadas, esta es la que obtiene más porcentaje de beneficio en la fase de fin de vida útil.

La reutilización del aluminio, acero y paladio son los responsables de reducción del impacto medioambiental de esta categoría, en especial de los NodeB, que son los que más puntuación obtienen en las fases de fabricación. En cada una de la redes, menos en GSM, la reutilización de estos materiales supone una gran medida medioambiental, ya que permite el ahorro de más del 50% del proceso de fabricación.

A3.3.4. Calidad del ecosistema

La figura A3.12 muestra el impacto producido sobre la calidad del ecosistema durante la fase de fin de vida útil en (PDF*m²*año)/bit, para redes 2G y 3G. La unidad PDF (Potentially Disappeared fraction) expresa el daño sufrido por la pérdida de especies en una determinada zona y por fracción de tiempo.

La fase de fin de vida útil muestra como la calidad del ecosistema tiene una parte beneficiosa (valores negativos) y otra perjudicial (valores positivos) para el medio ambiente.

Si nos centramos en la parte beneficiosa, vemos como el ahorro de puntuación en 2G supone un 8%, 9% y 10% en GSM, GPRS y EDGE respectivamente, donde la mayor parte la ocupa las BTS. Por otro lado, en 3G se obtienen mejores resultados, un 28% en UMTS (R’99) y un 14% en sucesivas actualizaciones. Los beneficios medioambientales son atribuidos principalmente al reciclaje del aluminio de los racks de BTS y Node B, y del plomo de las baterías utilizadas como backup.

Si miramos la parte perjudicial de la tabla, nos damos cuenta de que tiene mayor puntuación que la parte beneficiosa, y por lo tanto, toda la ventaja que se podría haber obtenido se ve contrapuesta por la parte izquierda de la tabla, a excepción de la red UMTS (R’99). La parte perjudicial de esta fase supone un 57% en GSM, un 54% en GPRS y un 51% en EDGE del daño total, ocupado por los mó-
viles MSLIIIO y MSNIMH. En 3G esta posición también está ocupada por los teléfonos móviles (UELIIIO) pero con unas proporciones inferiores, 8% en UMTS (R'99), 27% en (R'04) y 30% en (R'06). Este impacto se atribuye, en gran medida, a las emisiones de cobre y níquel a la tierra de las cenizas originadas por la incineración de los teléfonos móviles no reutilizados.
ANEXO IV. Especificaciones iPhone 4

El iPhone 4 es un teléfono móvil multimedia desarrollado por Apple Inc. Fue puesto a la venta en Junio de 2010 y desde entonces ha cosechado un gran éxito mundial. Es compatible con UMTS y GSM (850/900/1900/2100 Mhz), Wi-Fi (802.11 b/g/n), GPS y Bluetooth 2.1 + EDR, así como CDMA, gracias a una versión específica del teléfono para funcionar en este tipo de redes. El iPhone 4 es un teléfono de altas prestaciones como indican sus características técnicas presentes en la tabla A4.1.

Dentro de la caja encontramos el teléfono móvil iPhone 4, unos auriculares Apple con control remoto y micrófono, un cable de conector Dock a USB un adaptador de corriente USB, un clip metálico, manual rápido de instrucciones y varios envoltorios de plástico.

Además de cumplir con las directivas obligatorias RoHS y WEEE, Apple va más allá y ha diseñado las siguientes características para reducir su impacto medioambiental: la utilización de circuitos impresos libres de bromo, la ausencia de PVC en el equipo principal, auriculares ni cable USB, la pantalla LCD está libre de mercurio y el vidrio de su pantalla no contiene arsénico. Además, la mayor parte del embalaje está fabricado con fibras recicladas y biodegradables. Tanto la composición del iPhone 4, como la proporción de emisiones de CO₂e (45 kg CO₂e total) queda reflejada en la figura A4.1.
Tabla A4.1. Hoja de especificaciones del iPhone 4.

<table>
<thead>
<tr>
<th>General</th>
<th>2G Network</th>
<th>GSM 850 / 900 / 1800 / 1900</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3G Network</td>
<td>HSDPA 850 / 900 / 1900 / 2100</td>
</tr>
<tr>
<td>Announced</td>
<td>2010, June</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Available. Released 2010, June</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>Dimensions</td>
<td>115.2 x 58.6 x 9.3 mm</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>137 g</td>
</tr>
<tr>
<td>Display</td>
<td>Type</td>
<td>TFT capacitive touchscreen, 16M colors</td>
</tr>
<tr>
<td></td>
<td>Size</td>
<td>640 x 960 pixels, 3.5 inches</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Scratch-resistant surface</td>
</tr>
<tr>
<td></td>
<td>Alert types</td>
<td>Vibration, MP3 ringtones</td>
</tr>
<tr>
<td></td>
<td>Speakerphone</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Headphone jack</td>
<td>- 3.5 mm headset jack</td>
</tr>
<tr>
<td>Memory</td>
<td>Phonebook</td>
<td>Practically unlimited entries and fields, Photocall</td>
</tr>
<tr>
<td></td>
<td>Call records</td>
<td>100 received, dialed and missed calls</td>
</tr>
<tr>
<td></td>
<td>Internal</td>
<td>16/32 GB storage, 512 MB RAM</td>
</tr>
<tr>
<td></td>
<td>Card slot</td>
<td>No</td>
</tr>
<tr>
<td>Data</td>
<td>GPRS</td>
<td>Class 10 (4+1/3+2 slots), 32 - 48 kbps</td>
</tr>
<tr>
<td></td>
<td>EDGE</td>
<td>Class 10, 236.8 kbps</td>
</tr>
<tr>
<td></td>
<td>3G</td>
<td>HSDPA, 7.2 Mbps; HSUPA, 5.76 Mbps</td>
</tr>
<tr>
<td></td>
<td>WLAN</td>
<td>Wi-Fi 802.11 b/g/n</td>
</tr>
<tr>
<td></td>
<td>Bluetooth</td>
<td>Yes, v2.1 with A2DP</td>
</tr>
<tr>
<td></td>
<td>Infrared port</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>USB</td>
<td>Yes, v2.0</td>
</tr>
<tr>
<td>Camera</td>
<td>Primary</td>
<td>5 MP, 2592 x 1944 pixels, autofocus, LED flash</td>
</tr>
<tr>
<td></td>
<td>Features</td>
<td>Touch focus, geo-tagging</td>
</tr>
<tr>
<td></td>
<td>Video</td>
<td>Yes, 720p@30fps, LED video light, geo-tagging</td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td>Yes, videocalling over Wi-Fi only</td>
</tr>
<tr>
<td>Features</td>
<td>OS</td>
<td>iOS 4</td>
</tr>
<tr>
<td></td>
<td>CPU</td>
<td>1 GHz Apple A4 processor</td>
</tr>
<tr>
<td>Messaging</td>
<td>SMS</td>
<td>SMS (threaded view), MMS, Email, Push Email</td>
</tr>
<tr>
<td></td>
<td>Browser</td>
<td>HTML (Safari)</td>
</tr>
<tr>
<td>Radio</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Games</td>
<td>Downloadable, incl. motion-based</td>
<td></td>
</tr>
<tr>
<td>Colors</td>
<td>Black, White</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Yes, with A-GPS support</td>
<td></td>
</tr>
<tr>
<td>Java</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>MicroSIM card support only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scratch-resistant glass back panel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active noise cancellation with dedicated mic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Digital compass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Google Maps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Audio/video player and editor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voice command/dial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TV-out</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>Stand-by</td>
<td>Up to 300 h (2G) / Up to 300 h (3G)</td>
</tr>
<tr>
<td></td>
<td>Talk time</td>
<td>Up to 14 h (2G) / Up to 7 h (3G)</td>
</tr>
<tr>
<td></td>
<td>Music play</td>
<td>Up to 40 h</td>
</tr>
</tbody>
</table>
Tabla A4.2. Componentes del iPhone 4.

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Details</th>
<th>Supplier</th>
<th>Country</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Processor</td>
<td></td>
<td>Samsung A4 “APL0398” 45nm, PoP</td>
<td>Samsung</td>
<td>South Korea</td>
<td>US$10.75</td>
</tr>
<tr>
<td>DRAM Memory</td>
<td></td>
<td>SDRAM, 4Gb Mobile DDR, PoP Samsung K4HX3643GB (Samsung dies, 2 x 2Gb)</td>
<td>Samsung</td>
<td>South Korea</td>
<td>US$13.80</td>
</tr>
<tr>
<td>Misc. Applications Processor Components</td>
<td></td>
<td>Discretes, Passives, etc.</td>
<td>-</td>
<td>-</td>
<td>US$0.50</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td>Samsung NAND Flash 16GB MLC K9HDG08U5M-LCB0</td>
<td>Samsung</td>
<td>South Korea</td>
<td>US$27.00</td>
</tr>
<tr>
<td>Baseband</td>
<td></td>
<td>Infineon 337S3833 HSDPA/HSUPA WCDMA/EDGE</td>
<td>Infineon</td>
<td>-</td>
<td>US$11.72</td>
</tr>
<tr>
<td>Transceiver</td>
<td></td>
<td>Infineon 338S0626 Quad-Band GSM/Glide</td>
<td>Infineon</td>
<td>-</td>
<td>US$2.33</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td>Intel (Numonyx) MCP 128Mb NOR Flash + 128Mb Mobile DDR</td>
<td>Intel</td>
<td>-</td>
<td>US$2.70</td>
</tr>
<tr>
<td>Power Mgmt.</td>
<td></td>
<td>n/a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RAM</td>
<td></td>
<td>Skyworks SKY77541-32 Transmit Module Quad-Band GMS/EDGE PAM + Antenna Switch</td>
<td>Skyworks</td>
<td>USA</td>
<td><inc below></td>
</tr>
<tr>
<td>RAM</td>
<td></td>
<td>Skyworks SKY77459-17 Transmit Module Single-Band WCDMA/HSUPA PAM + Duplexer</td>
<td>Skyworks</td>
<td>USA</td>
<td><inc below></td>
</tr>
<tr>
<td>RAM</td>
<td></td>
<td>Skyworks SKY77452-20 Transmit Module Single-Band WCDMA/HSUPA PAM + Duplexer</td>
<td>Skyworks</td>
<td>USA</td>
<td><inc below></td>
</tr>
<tr>
<td>RAM</td>
<td></td>
<td>TriQuint TQM676901 Transmit Module Single-Band WCDMA/HSUPA PAM + Duplexer</td>
<td>TriQuint</td>
<td>USA</td>
<td><inc below></td>
</tr>
<tr>
<td>RAM</td>
<td></td>
<td>TriQuint TQM666092 Transmit Module Single-Band WCDMA/HSUPA PAM + BAW Duplexer</td>
<td>TriQuint</td>
<td>USA</td>
<td><inc below></td>
</tr>
<tr>
<td>FEM</td>
<td></td>
<td>n/a</td>
<td>Murata</td>
<td>Japan</td>
<td><inc below></td>
</tr>
<tr>
<td>SAW Module</td>
<td></td>
<td>Murata</td>
<td>Murata</td>
<td>Japan</td>
<td><inc below></td>
</tr>
<tr>
<td>Misc. RF Components</td>
<td></td>
<td>PAMs, Modules, Discretes, Passives, etc.</td>
<td>-</td>
<td>-</td>
<td>US$8.25</td>
</tr>
<tr>
<td>Power Management</td>
<td>Main PM Device</td>
<td>Dialog D1815A 338S0867-A4 Main Pwr Mgmt</td>
<td>Dialog</td>
<td>-</td>
<td>US$2.03</td>
</tr>
<tr>
<td>WiFi/BT</td>
<td></td>
<td>Broadcom BCM43429 Module WLAN 802.11a/b/g/n, Bluetooth V2.1+EDR, FM/RDS/RBS Rcvr</td>
<td>Broadcom</td>
<td>-</td>
<td>US$7.80</td>
</tr>
<tr>
<td>GPS</td>
<td></td>
<td>Broadcom BCM4750</td>
<td>Broadcom</td>
<td>-</td>
<td>US$1.75</td>
</tr>
<tr>
<td>Misc. Connectivity Components</td>
<td></td>
<td>Discretes, Passives, etc.</td>
<td>-</td>
<td>-</td>
<td>US$0.80</td>
</tr>
<tr>
<td>Touchscreen Controller</td>
<td></td>
<td>Texas Instruments 343S50499 (F761586C)</td>
<td>Texas Instruments</td>
<td>USA/Japan</td>
<td>US$1.23</td>
</tr>
<tr>
<td>Audio CODEC</td>
<td></td>
<td>Cirrus Logic 343S5089 (CL1149S80)</td>
<td>Cirrus Logic</td>
<td>USA</td>
<td>US$1.15</td>
</tr>
<tr>
<td>E-Compass</td>
<td></td>
<td>AKM 9K975 3-Axis</td>
<td>AKM</td>
<td>Japan</td>
<td>US$0.70</td>
</tr>
<tr>
<td>Accelerometer</td>
<td></td>
<td>ST Micro LIS331DLH 3-Axis</td>
<td>STMicroelectronics</td>
<td>Italy</td>
<td>US$0.65</td>
</tr>
<tr>
<td>Gyroscope</td>
<td></td>
<td>ST Micro L3G4200D Digital 3-Axis</td>
<td>STMicroelectronics</td>
<td>Italy</td>
<td>US$2.60</td>
</tr>
<tr>
<td>Misc. Interface & Sensor Components</td>
<td></td>
<td>Discretes, Passives, etc.</td>
<td>-</td>
<td>-</td>
<td>US$3.80</td>
</tr>
<tr>
<td>Display / Camera</td>
<td>Display</td>
<td>3.5” Diag, LTPS LCD, 960x640 Pixels LG (or poss. TN)</td>
<td>LG</td>
<td>South Korea</td>
<td>US$26.50</td>
</tr>
<tr>
<td>Touch Screen</td>
<td>Capacitive Glass, “Reinforced” Wintek or TPK/Balda</td>
<td>Wintek or TPK/Balda</td>
<td>-</td>
<td>China</td>
<td>US$10.00</td>
</tr>
<tr>
<td>Camera</td>
<td>5MP Auto-Focus</td>
<td>-</td>
<td>China</td>
<td>US$9.75</td>
<td></td>
</tr>
<tr>
<td>Camera (secondary)</td>
<td>VGA Auto-Focus</td>
<td>-</td>
<td>China</td>
<td>US$1.00</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>Battery</td>
<td>1400mAh</td>
<td>Amparex</td>
<td>China</td>
<td>US$5.00</td>
</tr>
<tr>
<td>Mechanicals</td>
<td></td>
<td>Enclosure, Metals, Plastics, Hardware, etc.</td>
<td>-</td>
<td>-</td>
<td>US$10.80</td>
</tr>
<tr>
<td>Electro-Mechanicals</td>
<td></td>
<td>PCBs, Acoustics, Connectors, etc.</td>
<td>-</td>
<td>-</td>
<td>US$14.40</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td>Accessories, Literature, Box Contents</td>
<td>-</td>
<td>-</td>
<td>US$5.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US$187.51</td>
</tr>
</tbody>
</table>
Fig. A4.2 Mapa de materiales, componentes y ensamblaje de fabricación del iPhone 4.