RESUMEN

La necesidad de reducir el peso de los vehículos y aumentar su seguridad ha llevado a un crecimiento del uso de los aceros de alta resistencia mecánica para la fabricación de nuevos componentes estructurales de automóviles. Eso supone una reducción muy importante de CO₂ a la atmósfera. Existen muchos tipos de tecnologías para la producción de estos componentes pero el proceso de estampación en caliente es capaz de obtener en una sola acción resistencias mecánicas muy elevadas. Es por esto que este proceso ha ganado mucho protagonismo en los últimos años, especialmente en la industria del automóvil. Frente a procesos como el conformado en frío, el trabajo en caliente, permite obtener geometrías más complejas reduciendo efectos como la recuperación elástica que pueden darse en trabajos en frío.

No obstante, en comparación con el método tradicional de trabajo en frío, el diseño y la optimización del proceso de estampación en caliente requiere conocimientos profundos de transferencia de calor, metalurgia, etc. Es un proceso en el cual se dan muchos fenómenos termo-mecánicos-metalúrgicos a la vez y esto dificulta su estudio. Por eso, resulta imprescindible la utilización de herramientas de simulación numérica que permitan modelizar y simular el proceso.

Uno de los aspectos importantes que se dan en un proceso de estampación en caliente son las transformaciones de fase. Para poder realizar una simulación
correcta de un estampado en caliente es necesario la introducción de los modelos de su cinética y de esta forma poder simularlas.

El objetivo principal de este proyecto es introducir los modelos existentes de las transformaciones de fase en el software de simulación ABAQUS y, para cumplir los objetivos, primero ha de realizarse un estudio bibliográfico de los modelos existentes. Una vez conocidos estos, se escribe el programa que los incluya para finalmente introducirlo en ABAQUS.

Más allá del objetivo del proyecto se ha concluido que los modelos existentes para la cinética de las transformaciones de fase no siempre son válidos y que es necesaria una buena caracterización de los materiales para poder aplicarlos.
ÍNDICE

RESUMEN ...1

1. INTRODUCCIÓN ...7

1.1. OBJETIVO Y PLAN DEL PROYECTO ...8

1.2. ALCANCE DEL PROYECTO ...8

2. PROCESO DE ESTAMPACIÓN EN CALIENTE ...11

3. TRANSFORMACIONES DE FASE DE LOS ACEROS EN ESTADO SÓLIDO15

3.1. FASES DE LOS ACEROS ...15

3.1.1. Austenita ..17

3.1.2. Ferrita ...18

3.1.3. Perlita ...18

3.1.4. Bainita ..19

3.1.5. Martensita ..21

3.2. DIAGRAMAS TIEMPO-TEMPERATURA-TRANSFORMACIÓN (TTT)22
3.2.1. Modelo para la TTT del material.. 24

3.3. Diagramas Transformación bajo Enfriamiento Continuo (CCT) 25

4. MATERIALES.. 29

5. MODELOS PARA LAS TRANSFORMACIONES DE FASE............................ 35

5.1. Transformaciones difusivas... 35

5.1.1. Modelo isotérmico.. 35

5.1.1.1. Determinación de los parámetros \(b \) y \(n \)... 37

5.1.2. Modelo no isotérmico: Additivity Rule.. 38

5.1.2.1. Etapa de nucleación.. 39

5.1.2.2. Etapa de crecimiento... 43

5.2. Transformación martensítica.. 44

6. SIMULACIÓN DE LOS MODELOS DE LAS TRANSFORMACIONES DE FASE 47

6.1. Introducción a la simulación mediante elementos finitos...................... 47

6.2. Programación en FORTRAN ... 49

6.2.1. Programa para el cálculo de la fracción volumétrica de fase............ 49

6.3. Incorporación del programa a ABAQUS.. 57

7. RESULTADOS.. 61

7.1. Resultados del programa... 61

7.2. Resultados de la simulación.. 66
8. CONCLUSIONES .. 79

9. ACCIONES FUTURAS .. 81

10. IMPACTO AMBIENTAL .. 83

AGRADECIMIENTOS ... 87

BIBLIOGRAFÍA .. 89
1. **INTRODUCCIÓN**

El número de piezas de acero producidas por estampación en caliente se ha visto incrementado notablemente durante los últimos años. La razón de un uso tan elevado de este tipo de aceros, sobretodo en la industria automovilística, se debe a su elevada resistencia específica. Tampoco se debe desestimar que la estampación en caliente es un proceso fácilmente reproducible en producciones de gran tirada y reduce con respecto al conformado en frío efectos como la recuperación elástica. Su utilización crea la necesidad de una buena caracterización del mismo. Para que esto sea posible se necesita un gran dominio tanto del proceso como de los fenómenos que se producen a lo largo de él. Para realizar el estudio y el diseño de los equipos resulta imprescindible la modelización y la simulación por métodos de elementos finitos, con el doble objetivo de crear procesos que sean eficientes y conocer las propiedades del producto final.

No obstante, la simulación por elementos finitos del proceso de estampación en caliente, se encuentra en una etapa de desarrollo medio y en la mayoría de los casos, la modelización del proceso depende de los conocimientos experimentales de expertos. El principal problema a la hora de modelizar estos procesos es la determinación de los parámetros térmicos, mecánicos y metalúrgicos del mismo, puesto que durante el proceso de estampación en caliente, el material está sometido a un enfriamiento acompañado por una deformación que varía su microestructura, modificando por lo tanto sus propiedades mecánicas. Y es de aquí, de donde parte este proyecto.
1.1. **Objetivo y plan del proyecto**

Las transformaciones de fase en los aceros resultan un tema de investigación recurrente en el campo de la metalurgia física. De este campo han surgido modelos matemáticos para la descripción de la cinética de las transformaciones.

En este proyecto, se pretende introducir estos modelos matemáticos teóricos al software de simulación mediante elementos finitos ABAQUS para poder simular los cambios microestructurales que comporta la estampación en caliente.

Para determinar la evolución de las transformaciones de fase gobernadas por la difusión, se utiliza el modelo de Johnson-Mehl-Avrami-Kolmogorov; y para la transformación martensítica, la formulación de Koistinen y Marburger.

El proyecto consta de tres fases:

- Repaso de los modelos matemáticos y búsqueda de un acero bien caracterizado en la literatura.
- Núcleo del proyecto: incorporación de estos modelos a ABAQUS mediante subrutinas de usuario.
- Definición de un ensayo experimental para validar la simulación.

1.2. **Alcance del proyecto**

La realización de este proyecto permite conocer los modelos matemáticos que describen los cambios de fase durante el proceso de estampación en caliente, y así, poder introducirlos en el software ABAQUS para poder simular este proceso.

Se incluyen en el alcance del proyecto los siguientes trabajos:

- Estudio bibliográfico de los modelos matemáticos que describen las transformaciones de fase en estado sólido en los aceros.
• Estudio de la validez de estos modelos aplicándolos, mediante un programa sencillo, a un acero bien caracterizado.

• Integración de estos modelos en el flujo de trabajo de ABAQUS mediante subrutinas de usuario para obtener las fases en función de la curva de enfriamiento. Este programa no afectará a la evolución térmica del modelo.
2. PROCESO DE ESTAMPACIÓN EN CALIENTE

El proceso de estampación en caliente fue patentado y desarrollado por primera vez en 1977 por la empresa sueca Plannja, que lo utilizó para el procesado de hojas de sierras y de hojas de cortadoras de césped. En 1984, la empresa Saab Automobile AB lo aplicó a la industria automovilística para el Saab 9000. A partir de esta aplicación, el número de componentes producidos se incrementó de 3 millones/año en 1987 a 8 millones/año en 1997, llegando hasta los 107 millones en 2007. Los componentes utilizados en la industria automovilística son, por lo general, elementos del chasis: parachoques, montantes A y B, techo interior, barras puerta, etc.... (Ilustración 1).

Ilustración 1: Partes del automóvil procesadas por estampación en caliente[1].
El proceso de estampación en caliente es el más utilizado en la industria para la obtención de piezas de alta resistencia mecánica. De esta forma, se pueden obtener piezas de menor espesor y por lo tanto reducir su peso. Esto es importante en la fabricación de automóviles ya que comporta un menor consumo de carburante y por lo tanto una reducción de la emisión de CO₂ y también el aumento de la resistencia mecánica de las piezas otorga una mayor seguridad a los ocupantes del vehículo.

Actualmente existen dos tipos de procesos por estampación en caliente: directo e indirecto. En el proceso directo, la pieza es calentada en un horno para su austenización, transferida a la prensa y en ella deformada y templada (Ilustración 2-a). En el proceso indirecto, la pieza se deforma en frío con la forma deseada y posteriormente se le hace un templado después de la austenización (Ilustración 2-b).

Ilustración 2: Los dos procesos de estampación en caliente: (a) directo y (b) indirecto[1].

El más utilizado es el proceso de estampación en caliente directo que consta de tres etapas.

- En la primera etapa, las piezas parten de una estructura ferrítico-perlítica y se calientan en un horno a la temperatura de austenización (entre 900 y 950°C)
durante al menos 5 minutos para obtener una estructura completamente austenítica.

- La segunda etapa es la del transporte de la pieza desde el horno hasta la prensa donde es conformada. Esta etapa debe realizarse lo más rápidamente posible para evitar un descenso importante en la temperatura de la pieza que pueda comportar una transición de fase no deseada.

- Por último, la pieza es estampada y templada simultáneamente durante unos 5-10 s, debido al contacto entre la pieza caliente y la matriz fría. En función de la velocidad de enfriamiento, la microestructura obtenida varía. Para obtener una pieza con una estructura completamente martensítica, la velocidad de enfriamiento debe ser mayor a la crítica (de temple).

Ilustración 3: Evolución de la microestructura de la pieza a lo largo del proceso de estampación en caliente[1].
Hoy en día, el objetivo del proceso de estampación en caliente no es solamente obtener piezas de alta resistencia mecánica, sino también poder controlar los valores de esta a lo largo de la pieza; con lo que se pueden obtener piezas en las que una parte de ellas no se deforma y transporta la energía hacia la parte que absorba el golpe deformándose plásticamente. El objetivo es aumentar la seguridad en los choques de los vehículos. En la actualidad se consigue soldando diferentes materiales, pero resulta altamente beneficioso poder obtener por un solo mecanismo de conformado, una pieza que tenga un gradiente de dureza a lo largo de ella. Para obtener esto por estampación en caliente, se ha de conseguir un enfriamiento diferente en cada zona de la pieza y es importante conocer las transformaciones de fase que suceden a lo largo del proceso.
3. TRANSFORMACIONES DE FASE DE LOS ACEROS EN ESTADO SÓLIDO

El estudio de las transformaciones de fase en los metales resulta imprescindible, dado que la totalidad de las piezas metálicas utilizadas en la industria, sufren cambios microestructurales al ser conformadas por estampación en caliente. Estas transformaciones producen cambios en las propiedades mecánicas y térmicas del material.

3.1. Fases de los aceros

Para los aceros usados comúnmente en la industria, las fases posibles producidas a partir de la austenita son: ferrita, perlita, bainita y martensita.

La austenita es una estructura cúbica centrada en las caras (FCC) que es más compacta que la cúbica centrada en el cuerpo (BCC) o la tetragonal centrada en el cuerpo (BCT). Todas las fases finales excepto la martensita, que tiene una estructura BCT, tienen una estructura BCC. La estructura BCT es una BCC distorsionada; esta distorsión aumenta con el contenido en carbón del acero.
El parámetro que determina la descomposición de la austenita es la energía libre del sistema, que se ve reducida al pasar de la estructura FCC propia de la austenita, a la BCC, propia de la ferrita. Esta energía libre depende de la temperatura. Al ir descendiendo esta se favorece la descomposición de la austenita. Existe una temperatura de estabilización de cada una de las fases a partir de la cual, la energía libre de estas es menor a la de la austenita. La Ac₃ es la temperatura de estabilización de la fase ferrita, la Bs la de la bainita y la Ms la de la martensita.

En el caso de las transformaciones de fase que se dan sin tensiones aplicadas, se observa un incremento en el volumen debido a la diferencia entre las estructuras cristalinas de la fase inicial y la final.

El primer paso que se da en las transformaciones de fase es la nucleación de pequeñas partículas o núcleos; las regiones más favorables para la nucleación son las imperfecciones como bordes de grano, vacantes y dislocaciones. El segundo paso es el crecimiento del núcleo hasta convertirse en un nuevo grano.

Se distinguen dos tipos de transformaciones: difusiva (o reconstructiva) y no difusiva (o displaciva). En las transformaciones difusivas, los átomos tienen la suficiente movilidad para desplazarse a través de la intercara de transformación reordenando la estructura cristalina, mientras que en las no difusivas los átomos no tienen la suficiente movilidad ni tiempo, por lo que mantienen sus vecinos durante la transición de fase. La difusiva requiere cierto tiempo, mientras que la no difusiva, puede darse muy rápidamente. El tipo y la cinética de la transformación dependerá...
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos
tanto del enfriamiento como de la composición química y el tamaño de grano austenítico del material.

3.1.1. Austenita

La austenita es una solución sólida de carbono en hierro gamma solo estable a altas temperaturas. El porcentaje de carbono soluble en esta fase depende de los elementos aleantes del acero. La propiedad más importante es su gran plasticidad, por lo que se trabaja fácilmente (forja, estampación, etc.).
3.1.2. Ferrita

Es la primera fase que se puede obtener durante el enfriamiento de la austenita; puede disolver muy pequeñas cantidades de carbono (0.008% a temperatura ambiente). La ferrita es blanda, poco resistente, dúctil y magnética (esta última propiedad la pierde a temperatura superiores a 768°C).

Existen varios tipos de ferrita:

La ferrita alotriomórfica es la que primero nuclea (a 910°C en hierro puro, pero puede bajar hasta 710°C en acero con 0.77% de C). Nuclea en los bordes de grano de la austenita, y crece mediante un proceso de reconstrucción que implica la reorganización de todos los átomos.

La ferrita idiomórfica, que se forma mediante los mismos mecanismos que la alotriomórfica, pero nuclea en inclusiones u otros lugares de nucleación heterogéneos; esta tiene una estructura externa muy equiáxica.

Por último está la ferrita Wittmanstätten, que presenta una estructura en forma de placas. Puede nuclear en los bordes de grano austeníticos y en la ferrita alotriomórfica formada previamente.

3.1.3. Perlita

Esta fase es un constituyente importante de la mayoría de los aceros comerciales debido a sus versátiles características mecánicas.

La perlita es un constituyente eutectoide formado por 86.5% de ferrita y 13.5% de cementita y se presenta generalmente en forma laminar con la ferrita interpenetrada y cristales de cementita que crecen cara a cara mediante un proceso difusivo normalmente en los bordes de grano austeníticos. También puede crecer en las intercaras austenita-ferrita o en inclusiones. La velocidad de crecimiento de la nueva perlita viene determinada sobre todo por la difusión del carbono. La
velocidad de difusión del carbono, la distancia de difusión y el espacio interlamelar
final vienen definidos por la temperatura a la cual se da la transformación y la
velocidad de enfriamiento. El espacio interlamelar es el parámetro principal que
caracteriza las propiedades mecánicas de la perlita y el que clasifica las diferentes
clases. Cuando el espacio interlamelar es pequeño y las láminas son muy delgadas se
conoce como perlita fina, mientras que las estructuras con un mayor espacio
interlamelar y láminas más gruesas se conocen como perlita gruesa. Las
propiedades mecánicas estarán entre las de la cementita, dura y frágil, y las de la
ferrita, más blanda y dúctil; por lo que a medida que aumenta el porcentaje de
cementita, la perlita se vuelve más dura y más frágil.

Las diferencias en dureza y tenacidad de las diversas estructuras se muestran
en la Ilustración 6. La perlita fina es más dura y menos dúctil que la perlita gruesa.

Ilustración 6: Dureza de las diferentes estructuras perlíticas en función del %C, %Fe₃C y del % de
perlita[2].

3.1.4. Bainita

La bainita es también una estructura de ferrita y cementita como la perlita
pero con una morfología diferente. Es visible únicamente a través del microscopio
electrónico ya que consiste en láminas muy finas de ferrita que se agrupan en haces.
La nucleación empieza en los bordes de grano austeníticos y la transformación es
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

Inicialmente no difusiva, pero inmediatamente después de la primera transformación el carbono empieza a difundir hacia la austenita remanente, y pueden nuclear un nuevo grupo de placas bainíticas en la punta de las ya formadas. A medida que la austenita se va enriqueciendo en carbono la transformación se va frenando hasta que finalmente se para.

Existen dos tipos de bainita, la bainita superior y la inferior. En la bainita superior, una parte del carbono que ha sido expulsado de la ferrita bainítica y enriquece la austenita, precipita en forma de cementita. Esto es aún posible ya que la bainita crece a temperaturas en las que la difusión del carbono es aún más rápida que la precipitación de carburos.
A más bajas temperaturas obtenemos la bainita inferior. La movilidad del carbono se reduce, una parte no puede ser extraída de la ferrita supersaturada, y precipita en forma de finos carburos dentro de las placas de ferrita. El resto de carbono al que le ha sido posible difundir a la austenita, aún precipita como carburo entre las placas. Esto da a la perlita inferior su morfología tan característica.

Los aceros bainíticos son más duros y resistentes que los perlíticos porque tienen una estructura más fina a base de partículas diminutas de Fe₃C en la matriz ferrítica; por este motivo combinan resistencia y ductilidad.

3.1.5. Martensita

Esta estructura es características de las austenitas enfriadas a velocidades elevadas. La mayoría de las transformaciones martensíticas son atérmicas y dependen más del grado de subenfriamiento por debajo de la temperatura de inicio (M_s) que del tiempo. La martensita nuclea y crece sin difusión dejando solamente
pequeños cambios en los planos atómicos. La velocidad de transformación es muy grande, del orden de la velocidad del sonido en el metal y el grado de transformación solo depende del subenfriamiento por debajo de la temperatura de inicio de la martensita (M_s).

Los aceros con microestructura martensítica son los más duros y resistentes, pero también los más frágiles y menos dúctiles, no son nada tenaces ya que su microestructura no tiene tantos sistemas de deslizamiento como una estructura BCC. La dureza de estos depende del contenido en carbono.

![Ilustración 9: Dureza de la martensita en función del contenido en carbono](image)

3.2. Diagramas Tiempo-Temperatura-Transformación (TTT)

Los diagramas TTT representan el tiempo necesario para empezar a obtener una microestructura en concreto a una determinada temperatura. De esta forma se puede saber qué microestructuras se obtienen después de un determinado proceso y por lo tanto la dureza del material.

Estos diagramas se determinan experimentalmente para describir el tiempo de inicio y de fin de la descomposición austenítica en las diferentes fases. Cada diagrama es representativo únicamente de un tipo de acero con un determinado tamaño de grano austenítico.
Ilustración 10: Diagrama que muestra las medidas de la descomposición de la austenita representadas en la TTT[4]

No obstante para la mayoría de los tratamientos térmicos de los aceros es necesario el conocimiento de las microestructuras siguiendo un enfriamiento en continuo desde la austenita. Esta información no se puede extraer del diagrama TTT; en estos casos son necesarios los diagramas CCT.
Ilustración 11: Diagrama TTT de un acero 0.9 C. Las curvas (a), (b), (c) y (d) representan diferentes curvas de enfriamiento\[2\].

3.2.1. Modelo para la TTT del material

Para la aplicación de la Additivity Rule en la etapa de crecimiento, como se ha descrito antes es necesario el cálculo de los parámetros en cada paso de temperatura. Para el cálculo de los parámetros de la JMAK es necesario el tiempo de inicio y el del fin de una transformación isotérmica, la TTT del material. En la actualidad existen modelos que calculan la TTT de algunos aceros en función de su composición \[5\],\[6\], pero no se ha encontrado ninguno lo bastante preciso y que
abarque para todas las fases tanto los tiempos de inicio como los del fin de la transformación, y como se ha visto antes, son necesarios para el cálculo de los parámetros de la ecuación JMAK. El modelo de Lee y Bhadeshia\cite{5} logra ajustar bien los valores experimentales con los calculados mediante su ecuación pero obvia la fase perlítica; y el modelo de Kirkaldy\cite{6} no se ajusta bien para la TTT del acero 35NC6. Por lo tanto en este proyecto se realizará un ajuste mediante interpolación de la TTT de un acero conocido.

3.3. Diagramas Transformación bajo Enfriamiento Continuo (CCT)

Los diagramas CCT representan los cambios en la microestructura del material a lo largo de un enfriamiento en continuo. En estos casos, los tiempos requeridos para obtener una cierta microestructura son mayores que en los tratamientos isotérmicos. Esto comporta que el diagrama CCT esté desplazado hacia la derecha respecto al TTT. Se debe remarcar que en los casos de enfriamiento continuo existe una velocidad crítica que representa la velocidad mínima de temple a partir de la cual la microestructura obtenida será completamente martensítica (Ilustración 12).
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

Ilustración 12: Diagrama CCT de un acero donde se observa la temperatura crítica: en este caso 140°C/s. Se ve que entre 35-140°C/s se puede obtener estructura Martensita+Perlita\[8\].

Los diagramas CCT (continuous-cooling-transformation) deben ser obtenidos experimentalmente con una combinación de dilatometría y metalografía. Para la dilatometría se utiliza una probeta del material para el que queremos determinar la CCT y se miden la temperatura, el tiempo y las variaciones en la longitud de la probeta para diferentes velocidades de enfriamiento.
Ilustración 13: Curva de dilatación de enfriamiento de un acero.

El inicio de la transformación viene dado por un incremento en el volumen de la probeta. Las estructuras cristalinas FCC son más densas que las BCC, por lo que una transformación FCC → BCC implica un aumento en el volumen ocupado por la muestra. Para la transformación FCC → BCT sucede lo mismo, al ser la estructura BCT menos densa, el volumen de la muestra aumenta. Mediante el análisis de la dilatometría y el de las microestructuras realizado después del enfriamiento de la muestra, se puede construir el diagrama CCT del material (Ilustración 14).
Ilustración 14: Ilustración esquemática de la construcción de un diagrama CCT. F-ferrita, P-perlita, B-bainita y M-martensita. HV 10-Dureza[2].
4. MATERIALES

Para la obtención de productos con las propiedades deseadas resulta imprescindible una buena elección de los materiales. En función de las necesidades que han ido surgiendo en la industria se han desarrollado diferentes tipos de acero y para la industria de la automoción existe una gran variedad (Ilustración 15).

Ilustración 15: Clasificación de los aceros según deformación y tensión máxima\(^7\).
Los aceros utilizados en la industria de la automoción se pueden clasificar según sus propiedades mecánicas (resistencia máxima):

- **Baja resistencia mecánica (LSS):** tensión máxima < 270 MPa. Aceros para estampación e IF (Iterstitial-free).

- **Alta resistencia mecánica (HSS):** tensión máxima de 270-700 MPa. Carbono-Manganeso (CMn), bake hardenable (BH), IF de alta resistencia (IF-HS), microaleados (HSLA).

- **Ultra alta resistencia mecánica (UHSS):** tensión máxima > 700 MPa. Dual-phase (DP), aceros TRIP, de fase compleja (CP) y aceros martensíticos.

Las propiedades mecánicas de los aceros después del temple dependen fuertemente del contenido en carbono de este, por lo que controlando el porcentaje de carbono, se puede controlar la resistencia. Otros elementos que también influyen son el Mn o el Cr.

Para la realización de este proyecto, se han tratado los modelos de forma general, y a la hora de la aplicación del programa realizado siguiendo estos modelos, dado las limitaciones por la necesidad de utilizar un material debidamente caracterizado, se ha elegido el acero 35 NC 6 cuyos diagramas TTT (Ilustración 16) y CCT (Ilustración 17) ha sido extraídos de la bibliografía [8].

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>S</th>
<th>P</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Cu</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41</td>
<td>0.55</td>
<td>0.24</td>
<td>0.007</td>
<td>0.014</td>
<td>0.93</td>
<td>0.80</td>
<td>0.06</td>
<td>0.10</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Tabla 1: Composición del acero 35NC6.

Para la construcción de los diagramas el material ha sido austenizado a 900°C durante 30 minutos. En la TTT (Ilustración 16) se observa que los dominios perlítico
y bainítico están bien diferenciados y entre ellos aparece una zona de estabilidad de la austenita donde la transformación no se completa para una duración de 24h. En el caso de la CCT (Ilustración 17) se observa que a medida que la velocidad de enfriamiento aumenta, la línea de inicio de la transformación se desplaza hacia temperaturas más bajas, pero también se extiende sobre un rango de temperaturas mayor dando una mezcla de varias fases. Según la CCT este material tendría una velocidad crítica de temple de aproximadamente 60°C/s.

Ilustración 16: TTT del 35NC6[8].
Para saber cuál es el porcentaje máximo que puede transformar de cada fase es necesario conocer la composición del material (Tabla 1). De esta forma, mediante el diagrama binario de Fe-C y utilizando la regla de la palanca, podremos saber cuál es el máximo porcentaje de ferrita que puede transformar y por lo tanto, el resto estará disponible para la transformación de las otras fases posibles.
La máxima fracción de ferrita que puede tener un material con un porcentaje del 0.41% de C es del 52.2% (Ilustración 18). La fracción de ferrita disponible a lo largo del proceso va aumentando hasta el valor máximo, pero el diagrama binario está creado a partir de transformaciones en el equilibrio y este no es el caso de un proceso industrial como la estampación en caliente. Por lo que asumiendo que tomar los datos del diagrama binario comporta errores, se toma el máximo de ferrita posible desde el primer momento de la transformación y de esta forma se simplifica el cálculo.

4.1. Cálculo de la TTT del 35 CN 6

En la elección del material se ha tenido que escoger uno que esté bien caracterizado en la bibliografía para poder aplicar los modelos correctamente.
Obteniendo los valores gráficamente de la TTT del acero de interés se pueden interpolar los valores por tramos de forma que sabiendo la temperatura a la que se encuentra el programa, se le asigna una región dentro de la gráfica sobre la cual se interpolan linealmente los valores de los tiempos iniciales y finales para esa temperatura en cuestión. Si se observa la Ilustración 19 se puede ver que se ajustan bien los valores obtenidos de la interpolación a los obtenidos experimentalmente[8].

Ilustración 19: Comparación de la TTT obtenida experimentalmente[8] y la obtenida mediante el ajuste.
5. MODELOS PARA LAS TRANSFORMACIONES DE FASE

5.1. Transformaciones difusivas

5.1.1. Modelo isotérmico

En 1939 Johnson y Mehl[9] presentaron su trabajo sobre la cinética de las transformaciones de fase. Este trabajo era aplicable tanto a las transiciones de líquido a sólido como a las transiciones de estado sólido. Los trabajos previos no tenían en cuenta las variaciones en las composiciones de las fracciones no transformadas, y este aspecto varía considerablemente la cinética del proceso.

En el trabajo original de Johnson y Mehl se aplicaba la nucleación al azar. Las condiciones previas establecidas para definir el proceso determinan que la reacción viene gobernada por la nucleación y el crecimiento al azar, y que las velocidades de nucleación (\dot{N}) y de crecimiento isotrópico (G) permanecen constantes durante el proceso. Teniendo en cuenta estas condiciones la fracción volumétrica transformada en función del tiempo es:

$$V(t) = 1 - e\left(-\frac{2}{3}\dot{N}G^3t^4\right)$$

(1)

Para la cinética concreta de las reacciones que suceden en los bordes de grano como es el caso de la descomposición de la austenita, las condiciones previas consideradas por Johnson y Mehl fueron:
• La reacción viene gobernada por la nucleación y el crecimiento al azar.

• La nucleación sucede únicamente en los bordes de grano.

• La forma de los granos se supone esférica.

• Los nuevos granos crecen dentro del grano en el que se originaron sin cruzar ninguna frontera hacia los granos adyacentes.

• La velocidad de crecimiento disminuye al final de la reacción debido al choque con otros granos.

La forma de las curvas de crecimiento de la fracción transformada obtenidas experimentalmente son muy parecidas a las obtenidas con (1), pero fue Avrami el que obtuvo un modelo que se adaptaba con más precisión a los resultados de los ensayos experimentales.

Según la teoría de la cinética de las reacciones de transformación de Avrami (1939) [10], [11], [12], se considera que todos los parámetros que controlan la reacción son constantes excepto la temperatura y el tiempo. Avrami asumió la presencia en la matriz original de núcleos que podían ser heterogeneidades o cristales de la nueva fase. Al contrario que Johnson y Mehl, él afirmó, basándose en datos experimentales extraídos de la literatura, que la presunción de que la velocidad de nucleación permanecía constante durante el proceso era en muchos casos incoherente con los hechos experimentales. Avrami tenía la idea de que inicialmente existían núcleos en la matriz; que el número de estos dependía del grado de subenfriamiento; y que, en cierto punto de la reacción, estos se activaban produciendo el crecimiento de los nuevos granos. De esta forma, a medida que el número de nuevos granos crece, el número de núcleos iniciales disponibles para la activación disminuye.

El rango de temperaturas o de composiciones para las cuales la razón entre la probabilidad de activación de los núcleos y la velocidad de crecimiento permanece constante se define como el rango isocinético. En este rango se puede usar una
escala de tiempo para analizar el fenómeno de la transformación como si tuviera características cinéticas constantes.

Bajo esas circunstancias, la fracción transformada es:

\[V(t) = 1 - e^{(-g(t))} \]

(2)

Donde \(g(t) \) es función del cubo de la velocidad de crecimiento, del número de núcleos, de una constante y de una potencia del tiempo. El valor de la potencia va variando a lo largo de la transformación.

\[V(t) = 1 - e^{(-bt^n)} \]

(3)

Esta es la ecuación de Johnson-Mehl-Avrami-Kolmogorov (JMAK), donde \(b \) y \(n \) son parámetros que se deben determinar empíricamente; \(b \) depende de la temperatura, la composición de la fase inicial y el tamaño de grano; y \(n \) del tipo de transformación de fase y toma valores entre 1 y 4.

Con esta ecuación se puede calcular la fracción volumétrica de la fase transformada, sabiendo que los parámetros \(b \) y \(n \) se deben determinar para cada temperatura.

5.1.1.1. Determinación de los parámetros \(b \) y \(n \)

Los parámetros \(b \) y \(n \) se determinan para diferentes temperaturas a partir de las TTT. Sabemos que a cada temperatura le corresponde una ecuación JMAK, por lo que para cada temperatura existe un par de parámetros \((b, n)\). Con las TTT se puede saber el tiempo para el inicio y el final de la transformación \((t_i \text{ y } t_f)\), y tomando los valores de la fracción volumétrica normalizados \(V_i = 0.01 \) y \(V_f = 0.99^{[13]} \), se obtienen los valores de \(b \) y \(n \):
Modelo no isotérmico: Additivity Rule

\[
\begin{align*}
 n &= \frac{\ln \left(\frac{1 - V_i}{1 - V_f} \right)}{\ln \left(\frac{t_i}{t_f} \right)} \\
 b &= -\frac{\ln(1 - V_i)}{(t_i)^n}
\end{align*}
\]

[^14]: Referencia del artículo o capítulo utilizado.
5.1.2.1. **Etapa de nucleación**

La etapa de nucleación se refiere al cálculo del tiempo transcurrido para que dé comienzo la transformación: el tiempo de incubación. En los procesos isotérmicos, la representación del tiempo de incubación en función de la temperatura es la TTT del material, mientras que para los casos no isotérmicos, esta representación nos da la CCT.

La ley de Scheil dice que si el periodo de incubación a temperatura T_i es τ_i, una muestra mantenida a esta temperatura durante t_i segundos ($t_i < \tau_i$) sufrirá una nucleación fraccional igual a t_i/τ_i. Scheil dijo que si durante el enfriamiento la suma de todas esas fracciones es igual a la unidad, el acero ha llegado al momento de inicio de la descomposición de la austenita. Teniendo en cuenta que se conoce la TTT del material, se sabe el tiempo de incubación para cada temperatura, $\tau_{TTT}(T)$ (Ilustración 21) y por lo tanto, según la ley de Scheil:

$$\int_0^{\tau} \frac{dt}{\tau_{TTT}(T)} = 1 \quad o \quad \sum_{i=1}^{n} \frac{\Delta t}{\tau_{TTT}(T)} = 1$$

(5)

Ilustración 21: Tiempo de incubación.
El tiempo para el cual el sumatorio se hace 1, es el tiempo de incubación para el proceso no isotérmico (τ_{cCT}), la representación de la CCT.

De esta forma aplicando la Additivity Rule con los valores del tiempo de incubación obtenidos de la TTT se puede calcular el diagrama CCT del material.

Diversas investigaciones han concluido que la aplicación de esta regla en algunos casos sobreestima el valor del tiempo de incubación para algunos materiales [14]. El tiempo de incubación obtenido experimentalmente a través de las medidas de la CCT es menor al calculado con la Additivity Rule a través de la TTT (Tabla 2):

$$\chi = \sum_{0}^{\tau_{cCT}} \frac{\Delta t}{\tau_{TTT}} < 1$$

(6)

<table>
<thead>
<tr>
<th>Velocidad de enfriamiento (°C/s)</th>
<th>χ</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>0.2</td>
</tr>
<tr>
<td>2.0</td>
<td>0.23</td>
</tr>
<tr>
<td>38.5</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Tabla 2: Additivity Rule aplicada a valores del tiempo de incubación obtenidos experimentalmente a través de la CCT para el acero 1025[14].

Por lo tanto, para poder aplicar la Additivity Rule se ha de incorporar un factor normalizador ϕ_i que tiene en cuenta el tiempo de incubación real medido a partir de las CCT[14].
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

\[\varphi_i = \int_0^{t_i^{CT}} \frac{dt}{\tau^{TTT}} \]

(7)

De esta forma:

\[\sum \frac{\Delta t_i}{\tau_i^{TTT}} \cdot \frac{1}{\varphi_i} = 1 \]

(8)

La aplicación de este parámetro requiere el conocimiento del valor del mismo para cada temperatura y esta no es una cuestión trivial ya que sería necesaria la ecuación que caracteriza la CCT del material. Por lo que no resulta una simplificación del modelo ya que si se necesita aplicar el factor sería necesaria de antemano la ecuación de la CCT para obtener la propia CCT.

Las discusiones realizadas sobre la validez del tiempo de incubación también deben tener en cuenta que el valor de este está idealizado ya que su aplicación se hace bajo la suposición de que experimentalmente es posible detectar el primer núcleo formado cuando en realidad no lo es.

Aunque la Additivity Rule no es precisa para el cálculo del tiempo de incubación y la determinación del diagrama CCT a partir del TTT, se puede utilizar siempre y cuando se tenga en cuenta el error que comporta, ya que actualmente no existe un método que de mejores resultados[15].

Aunque el programa no debe hacer el cálculo completo de la CCT del material, este debe ser válido para cualquier posible velocidad de enfriamiento. Si se hace el cálculo completo para varias velocidades de enfriamiento para comparar los valores obtenidos mediante la Additivity Rule con los obtenidos experimentalmente[8] se observa lo que antes se ha comentado. Para el caso de las transformaciones ferrítica y perlítica si que se observa que para velocidades de enfriamiento bajas (0.5°C/s o
1°C/s) el inicio de la transformación ferrítica calculada mediante la Additivity Rule se ajusta a los valores determinados experimentalmente. Para la transformación perlítica también se ajusta bien aunque está un poco desplazada hacia abajo ya que como se ha explicado antes, la Additivity Rule sobreestima en algunos casos el valor del tiempo de incubación.

Ilustración 22: Diagrama CCT obtenido experimentalmente comparado con el calculado mediante la Additivity Rule.

Para velocidades de enfriamiento más rápidas (10°C/s), donde empieza a aparecer la fase bainítica, se observa una mayor dispersión en los resultados. Tampoco queda claro experimentalmente el límite entre el crecimiento de la ferrita y el de la ferrita bainítica. Si se toma como tiempo de incubación de la bainita la línea discontinua de la Ilustración 22, hasta velocidades de enfriamiento de 10°C/s los
valores calculados con la Additivity Rule se ajustan a los observados experimentalmente, pero de esta forma, experimentalmente se obviarían las fracciones de bainita obtenidas a velocidades superiores a 10°C/s. Por otra parte si se toman los valores experimentales del tiempo de incubación para el inicio de la bainita de la línea continua se observaría una dispersión muy alta tanto en el tiempo de incubación como en la temperatura de inicio de la transformación entre los valores experimentales y los valores calculados a partir de la Additivity Rule.

Para la realización de este proyecto se han tomado como válidos los valores obtenidos del cálculo mediante la Additivity Rule, siempre asumiendo las limitaciones y los errores cometidos al utilizar este método, dado que, como se ha comentado antes, no existe en la actualidad un método más preciso.

5.1.2.2. **Etapas de crecimiento**

Aplicando la Additivity Rule las transformaciones no isotérmicas pueden describirse como la suma de una serie de pequeñas transformaciones isotérmicas, y la fracción transformada para cada incremento de tiempo es calculada con la ecuación JMAK correspondiente a cada temperatura.
Tal y como muestra la Ilustración 23, al inicio de cada paso del tiempo \((j + 1)\), la fracción transformada del paso \(i\)-ésimo se calcula a partir del tiempo del paso anterior \((j)\), y la ecuación JMAK en esta “nueva” temperatura nos da una nueva relación \(F_{i}(t, T^{j+1})\); por lo que será necesario introducir un tiempo virtual \(\theta_{j}\) para el cual \(F_{i}(\theta_{j}, T^{j+1}) = F_{i}^{j}\). En el momento en que el tiempo virtual es conocido, se calcula la nueva fracción transformada después del paso de tiempo: \(F_{i}^{j+1} = F_{i}(\theta_{j} + \Delta t_{j}, T^{j+1})\). De esta forma el tiempo virtual se puede expresar\(^{[13]}\):

\[
\theta_{j} = \left[\ln\left(1 - \frac{F_{i}^{j-1}}{b}\right) \right]^{1/n}
\]

(9)

Se llama tiempo virtual ya que como tal no representa al tiempo real transcurrido durante la transformación, sino que es el tiempo que habría transcurrido en el momento en que existiese una determinada fracción transformada durante una transformación isotérmica.

A partir del valor del tiempo virtual, se obtiene la fracción de fase:

\[
F_{i}^{j+1} = 1 - e^{-b(\theta_{j} + \Delta t)^{n}}
\]

(10)

Así se calcula la fracción transformada de una reacción no isotérmica para las transformaciones no difusivas aplicando el modelo de Johnson-Mehl-Avrami-Kolmogorov para transformaciones isotérmicas.

5.2. Transformación martensítica

En 1958 Koistinen y Marburger dedujeron la relación entre el grado de transformación y el subenfriamiento mediante el ajuste de datos experimentales obteniendo la ecuación\(^{[16]}\):
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

\[F_m = 1 - e^{-0.011 \cdot (M_s - T)} \]

(11)

Donde \(F_m \) es la fracción volumétrica de martensita y \(M_s \) la temperatura de inicio de la transformación austenita-martensita. Se ve en la ecuación, que la única dependencia del volumen transformado con el tipo de acero u otras variables se da en el valor de la \(M_s \).
6. SIMULACIÓN DE LOS MODELOS DE LAS TRANSFORMACIONES DE FASE

6.1. Introducción a la simulación mediante elementos finitos

Técnicamente la simulación es la descripción y reproducción de procesos físicos y técnicos mediante el uso de ecuaciones matemáticas y modelos físicos. Comparándolo con los ensayos obtenidos de forma experimental normalmente resulta más económico y menos peligroso y combinándolo con métodos modernos de computación, la simulación resulta una herramienta poderosa y que cada día gana importancia en la descripción y el desarrollo de nuevos métodos de procesado. Hoy en día muchos procesos de conformado se caracterizan mediante pruebas experimentales que tienen un coste muy elevado, así como un consumo energético que podrían evitarse mediante estudios de simulación previos.

Uno de los métodos numéricos más importantes y es el que se utiliza en este proyecto, el Método de Elementos Finitos (FEM). Este es un método de cálculo numérico basado en ecuaciones diferenciales. Para dar solución a un problema de ingeniería basándose en el Método de Elementos Finitos se deben tener en cuenta las siguientes asunciones:
Una función continua se aproxima a una serie de funciones finitas y mediante ese número finito de funciones se puede llegar a una solución equivalente de la función continua.

El objeto a estudiar estará dividido en subdominios a los que se denomina “elementos”.

Estos elementos estarán definidos mediante puntos y conexiones llamados “nodos”.

La unión en una pieza de todos sus nodos y elementos es a lo que se denomina “mallado”, por lo tanto “mallar” una pieza significa crear los subdominios que van a definir a la misma.

Las funciones continuas definidas son resueltas en cada nodo, asumiendo que cualquier punto interno al elemento puede calcularse como función del valor de las variables nodales del elemento.

Como variables nodales entendemos los grados de libertad de los nodos: tres grados de desplazamiento y tres grados de rotación para cálculos mecánicos, un grado de libertad en los problemas térmicos, etc.

La suma de todos los elementos representa el objeto de estudio, al que se llama cuerpo mallado, consiguiendo una gran aproximación con la realidad a la hora de realizar el estudio de los elementos finitos.

En un análisis estructural, el Método de elementos Finitos ensambla una serie de elementos entre sí conectándolos a través de nodos hasta representar la geometría a estudiar. Cada elemento contiene las propiedades del material, de manera que se supone un comportamiento simplificado dentro de los mismos. Cada elemento interacciona con sus elementos vecinos mediante una serie de ecuaciones que llevaran como variables las incógnitas del problema a estudiar. Estas ecuaciones serán lineales o no dependiendo de las propiedades definidas del material y las condiciones de contorno del problema. Resolviendo cada una de las ecuaciones
dentro de los elementos, se obtiene la solución global del problema. En este proyecto se trata un problema térmico, por lo que el método de elementos finitos en este caso está basado en la resolución de la ecuación diferencial de transmisión de calor por conducción.

Ilustración 24: Esquema del análisis mediante elementos finitos.

6.2. Programación en Fortran

Uno de los lenguajes con los que se pueden escribir las subrutinas de usuario para introducirlas en ABAQUS es el lenguaje Fortran, y va a ser con este lenguaje con el que se va a trabajar en este proyecto.

6.2.1. Programa para el cálculo de la fracción volumétrica de fase

El programa que se presenta en este proyecto tiene como fin calcular las fracciones volumétricas de cada una de las fases que aparecen en las transiciones de fase asociadas a un proceso de enfriamiento. Este debe incluir los modelos de las transformaciones de fase: la ecuación JMAK en el caso de las transformaciones difusivas y la ecuación de Koistinen y Marburger para las no difusivas. Además
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

también deben estar introducidas las ecuaciones que se ajustan a la TTT del material y se debe implementar la Additivity Rule.

El programa, como el mismo proceso de transformación, debe tener dos etapas: nucleación y crecimiento. Las variables que determinan el momento de la transformación en la que se encuentra el programa son la temperatura y el tiempo. En función de estas variables se calcula tanto el tiempo de incubación como, en el caso de haber empezado la transformación, el porcentaje de fase transformada.

Las fases posibles en las que se puede descomponer la austenita son: ferrita, perlita, bainita y martensita; y la CCT del material está dividida en las cinco regiones respectivas (Ilustración 25). Cada una de ellas puede empezar a nuclear a partir de cierta temperatura, la temperatura de estabilización, por lo que a temperaturas superiores a las respectivas de cada fase, no debería de transformar esa fase.

Ilustración 25: CCT del acero 35 NC 6 con las fases posibles marcadas.
En la etapa de nucleación, el programa aplica la Additivity Rule para obtener el tiempo de incubación. Se aplica la ley de Scheil (5) de forma que en el momento en que el sumatorio da 1, el tiempo transcurrido es el tiempo de incubación necesario para el inicio de la transformación de fase.

Por lo tanto para que se dé por finalizada la etapa de nucleación y empiece la de crecimiento se deben cumplir dos propiedades:

- \[\sum_{i=1}^{n} \frac{\Delta t}{t_{i}(T)} = 1 \] (Additivity Rule).

- La temperatura debe ser igual o menor a la temperatura de estabilización de esa fase.

En el programa, la temperatura de estabilización de la ferrita es \(T_{F} \), la de la perlita \(T_{P} \), la de la bainita \(T_{B} \), y la de la martensita \(T_{M} \) (\(T_{F} > T_{P} > T_{B} > T_{M} \)). Siguiendo la línea de enfriamiento \(T = T_{o} - t \cdot v \) (donde \(v \) es la velocidad de enfriamiento), se puede saber en qué punto de la CCT se encuentra el proceso. Si por ejemplo a cierta temperatura \(T < T_{F} \) se cumple que \(\Sigma_{F} = 1 \left(\sum_{i=1}^{n} \frac{\Delta t}{t_{i}(T)(FERRITA)} = 1 \right) \), \(\Sigma_{P} < 1 \) y \(\Sigma_{B} = 1 \), ya ha transcurrido el tiempo de incubación y se puede iniciar la etapa de crecimiento para esa fase.

Por lo que el programa en la etapa de nucleación primero fija en qué rango de temperatura se encuentra, y después, mediante la aplicación de la Additivity Rule mide si el tiempo transcurrido es mayor o no que el tiempo de incubación de cada fase.
Ilustración 26: CCT del acero 35 NC 6. Donde están marcadas las temperaturas de estabilización de cada una de las fases posibles.

Ilustración 27: CCT del acero 35 NC 6 donde queda marcada la región a partir de la cual empieza a transformar la ferrita.
Una vez se han cumplido estas dos propiedades empieza la etapa de crecimiento. Durante la etapa de crecimiento, se aplica la Additivity Rule para obtener la fracción de fase transformada tal y como se ha explicado anteriormente. Ahora el programa se sitúa dentro del dominio de la fase que le corresponde y calcula a partir de los modelos introducidos la fracción transformada. A cada fase le corresponde una subrutina que hace el cálculo de la fracción transformada. Para el caso de la ferrita, la perlita y la bainita, se calcula mediante la aplicación de la Additivity Rule a la ecuación JMAK; y para el caso de la martensita, mediante la ecuación de Koistinen y Marburger tal y como se ha explicado antes. Para el caso de la ferrita, la bainita y la perlita, es necesario el cálculo de los parámetros de la ecuación JMAK según las ecuaciones (4), y para esto es necesario la ecuación de la TTT. Sabiendo la temperatura, el programa se traslada a la TTT correspondiente a esa temperatura y hace el cálculo de los parámetros. Teniendo en cuenta los errores asumidos al aplicar la Additivity Rule para el cálculo tanto del tiempo de incubación como para el cálculo de la fracción transformada se ha realizado el programa para poder introducirlo en ABAQUS, y a continuación se presenta el diagrama de flujo del programa (Ilustración 28) y la transcripción de un ejemplo del funcionamiento del programa en lenguaje FORTRAN.
Ilustración 28: Diagrama de flujo del programa.
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

**
******** PROGRAMA PRINCIPAL ********
**

\[UVAR(1) = UVAR(1) + (DTIME / tsf) \]
\[UVAR(2) = UVAR(2) + (DTIME / tsp) \]
\[UVAR(3) = UVAR(3) + (DTIME / tsb) \]

Regla de adición aplicada al tiempo de incubación \(\sum \frac{\Delta t}{t_{F}} \geq 1 \)

Si Temperatura > \(T_{M} \)

\[\text{if} \ (\text{ARRAY}(1).gt.Tm) \text{ then} \]
\[\text{if} \ (\text{ARRAY}(1).gt.Tf) \text{ then} \]
\[\text{CALL AUSTENITA(UVAR, DIRECT, T, TIME, DTIME, CMNAME,} \]
\[1 \text{ ORNAME, NUVARM, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, NDI, NSHR, COORD,} \]
\[2 \text{ JMBC, JMBCYT, MATLAYO, LACCFLA)} \]

else

\[\text{if} \ (\text{UVAR}(1).ge.1) \text{ then} \]
\[\text{CALL FERRITA(UVAR, DIRECT, T, TIME, DTIME, CMNAME, ORNAME, NUVARM, NOEL,} \]
\[1 \text{ NPT, LAYER, KSPT, KSTEP, KINC, NDI, NSHR, COORD, JMBC, JMBCYT, MATLAYO,} \]
\[2 \text{ LACCFLA, af, bf, pf, tsf, tff)} \]

else

\[\text{CALL AUSTENITA(UVAR, DIRECT, T, TIME, DTIME, CMNAME,} \]
\[1 \text{ ORNAME, NUVARM, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, NDI, NSHR, COORD,} \]
\[2 \text{ JMBC, JMBCYT, MATLAYO, LACCFLA)} \]

end if

end if

else

\[\text{CALL MARTENSITA(UVAR, DIRECT, T, TIME, DTIME, CMNAME, ORNAME,} \]
\[1 \text{ NUVARM, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, NDI, NSHR, COORD, JMBC, JMBCYT,} \]
\[2 \text{ MATLAYO, LACCFLA, Tm)} \]

end if

Se muestra un ejemplo de la aplicación de la regla de adición a la ecuación
JMAK para el cálculo de la fracción transformada de la ferrita, la subrutina FERRITA y uno del modelo de Koistinen y Marburger, la subrutina MARTENSITA:

```fortran
subroutine FERRITA(UVAR, DIRECT, T, TIME, DTIME, CMNAME, ORNAME,
1 NUVARM, NOEL, NPT, LAYER, KSPT, KSTEP, KINC, NSHR, COORD,
2 JMAC, JMATYP, MATLAYO, LACCFLA, af, bf, pf, tsf, tff)
C INCLUDE 'ABA_PARAM.INC'
C
CHARACTER*80 CMNAME, ORNAME
CHARACTER*3 FLGRAY(15)
DIMENSION UVAR(NUVARM), DIRECT(3, 3), T(3, 3), TIME(2)
DIMENSION ARRAY(15), JARRAY(15), JMAC(*), JMATYP(*), COORD(*)

double precision af, bf, pf, tsf, tff

CALL GETVRM('TEMP', ARRAY, JARRAY, FLGRAY, JRCD, JMAC, JMATYP, MATLAYO,
1 LACCFLA)

af = (log(log(0.99))/log(0.01))/(log(tsf/tff))
bf = -log(0.99)/(tsf**af)

if (UVAR(5).ge.1) then
    UVAR(5) = 1
else
    pf = DTIME + (-((log(1-UVAR(5)))/bf)**(1/af))
    UVAR(5) = 1-exp((-bf)*(pf**af))
end if

UVAR(6) = UVAR(5) * 0.522
UVAR(4) = 1 - (UVAR(6) + UVAR(8) + UVAR(10) + UVAR(11))

return
end
```

Llamada a la subrutina GETVRM para asociar ARRAY(1) = Temperatura

Fracción de fase ferrítica:

\[F_i^{j+1} = 1 - e^{-b(\theta_j + \Delta t)^n} \]

Tiempo virtual:

\[\theta_j = \left[\frac{\ln\left(1 - \frac{F_i^{j-1}}{b}\right)}{b} \right]^{1/n} \]
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

6.3. Incorporación del programa a ABAQUS

En este proyecto se utiliza el software de simulación ABAQUS. A parte de disponer de una amplia gama de modelos constitutivos, ABAQUS proporciona la interfaz a través de la cual el usuario puede introducir nuevos modelos mediante subrutinas de usuario. A partir de estas subrutinas el usuario puede adaptar ABAQUS a sus requerimientos particulares.

La subrutina que se utiliza de las múltiples opciones que ABAQUS proporciona, es la UVARM. Esta subrutina permite al usuario definir resultados (UVAR) que dependan de las variables disponibles en los puntos de integración sin interferir en el cálculo de ABAQUS. Como ABAQUS no guarda ningún resultado durante el análisis, mediante esta subrutina se puede disponer de ellos a lo largo del cálculo.
Para poder acceder a los datos del material en cada punto de integración es necesario llamar a la rutina GETVRM. De esta forma se extraen datos como la temperatura en cada punto de integración.

En el caso de este proyecto se definen funciones UVAR que calcularán los valores de las fracciones transformadas para cada una de las fases.

Para introducir el diagrama de flujo presentado en el apartado anterior (Ilustración 28) en ABAQUS se debe tener en cuenta la forma de trabajar del programa (Ilustración 29). El análisis está dividido en pasos durante los cuales se imponen unas cargas y unas condiciones de contorno que finalizan al terminar este, por lo que un análisis puede tener uno o varios pasos. Durante cada uno de los pasos se realizan varios incrementos. El cálculo por elementos finitos está basado en sistemas de ecuaciones diferenciales que describen la evolución del sistema, por lo que la discretización del tiempo es la base de la resolución de estos sistemas. Los incrementos son los asociados a esta discretización del tiempo, por lo que también van asociados a variaciones en las variables de campo de los puntos de integración, y en el caso del programa de este proyecto van asociados a incrementos tanto del tiempo como de la temperatura. Durante los incrementos se realizan varias iteraciones hasta que el algoritmo numérico converge. Durante las iteraciones el programa aquí presentado tomará, mediante la subrutina GETVRM, los valores de la temperatura en los puntos de integración para, utilizando la subrutina UVARM, definir una función UVAR que calcule la fracción de fase de cada punto. Una iteración no siempre va asociada a un incremento en el tiempo pero si en la temperatura ya que el análisis va evolucionando hasta que converge.
Ilustración 29: Diagrama de flujo del análisis mediante subrutinas durante una iteración en ABAQUS.

En este punto, para el caso del programa aquí presentado se debe tener en cuenta que para las UVAR que calculan las fracciones de fase, si existe un incremento de temperatura, este siempre debe estar asociado a un incremento en el tiempo, por lo que a la hora de programar la función se ha de llamar a la UVARM solo cuando existe un incremento en el tiempo, cuando finaliza un incremento.
La aplicación de la regla de adición para el cálculo de la fracción volumétrica de las fases implica el cálculo del tiempo virtual. Este, tal y como se ha definido anteriormente (9), es función de la fracción volumétrica del incremento anterior, por lo que a la hora de definirlo en el programa se ha de tener en cuenta. Como se muestra en la transcripción de la subrutina FERRITA (apartado anterior), donde el p_f corresponde al tiempo virtual, este ha de encontrarse definido en una línea anterior a la UVAR, ya que de esta forma, tomará el valor de esta del incremento anterior y en la línea siguiente, con el tiempo virtual se calculará la UVAR correspondiente a ese incremento.
7. RESULTADOS

La finalidad de este proyecto es introducir el programa antes descrito en ABAQUS para poder simular las transiciones de fase.

Primero se realiza una comprobación de los resultados del cálculo del programa para verificar su funcionamiento y la validez de los modelos utilizados. Una vez esto se ha comprobado, se introduce en ABAQUS para comprobar la correcta implementación. Esto se verificará mediante un modelo sencillo de un solo elemento y se compararán los resultados con los obtenidos con el cálculo anterior. Finalmente se introducirá en un modelo de estampación en caliente para verificar el funcionamiento del programa con más de un elemento y poder simular las transiciones de fase en un modelo industrial.

7.1. Resultados del programa

Se han realizado los cálculos con el programa para diferentes velocidades de enfriamiento: 0.1, 1, 5, 10, 30, 50 y 95 °C/s, obteniéndose los resultados reflejados en la Tabla 3.
Ilustración 30: Gráfica de la CCT experimental (línea continua) y la calculada mediante la Additivity Rule (línea de puntos) con la representación de las líneas de enfriamiento.

<table>
<thead>
<tr>
<th>v (°C/s)</th>
<th>F_A (%)</th>
<th>F_P (%)</th>
<th>F_P (%)</th>
<th>F_B (%)</th>
<th>F_M (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cálculo (C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental (E)</td>
<td>0.1</td>
<td>0.00</td>
<td>52.15</td>
<td>47.80</td>
<td>0.05</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0.25</td>
<td>52.11</td>
<td>0.80</td>
<td>39.90</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>25</td>
<td>12</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>2.25</td>
<td>14.46</td>
<td>0</td>
<td>21.37</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>3.09</td>
<td>1.00</td>
<td>0.00</td>
<td>11.47</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>3.47</td>
<td>0.32</td>
<td>0.00</td>
<td>2.55</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>3.65</td>
<td>0.18</td>
<td>0</td>
<td>0.91</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>C</td>
<td>95</td>
<td>3.53</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabla 3: Resultados del cálculo de las fracciones volumétricas de cada fase a diferentes velocidades de enfriamiento. Los valores que difieren más entre los calculados y los experimentales están marcados con un recuadro rojo.
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

Ilustración 31: Fracción de fases para $v = 0.1^\circ C/s$

Ilustración 32: Fracción de fases para $v = 1^\circ C/s$
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

Ilustración 33: Fracción de fases para $v = 5^\circ C/s$

Ilustración 34: Fracción de fases para $v = 10^\circ C/s$
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

Ilustración 35: Fracción de fases para $v = 30^\circ C/s$

Ilustración 36: Fracción de fases para $v = 50^\circ C/s$
Se observa que para las velocidades de enfriamiento en las que empieza a aparecer la fase bainítica existe mayor dispersión entre los resultados obtenidos mediante el cálculo y los experimentales. Para los casos en que el material se enfria a velocidades bajas (0.1°C/s) y a velocidades altas (>10°C/s) el cálculo resulta más próximo al observado experimentalmente.

7.2. Resultados de la simulación

Al introducir el programa en ABAQUS, se pueden obtener los resultados de las simulaciones para el cálculo de la fracción volumétrica de cada fase en un modelo de enfriamiento en continuo de una pieza de 35 NC 6.

Primero se implementará el cálculo en un modelo sencillo de un solo elemento, de esta forma podremos verificar el funcionamiento del programa.
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

Si tomamos un solo elemento tetragonal, este tiene implícito un solo punto de integración, por lo que los resultados obtenidos no deberían diferir mucho de los obtenidos mediante el programa FORTRAN. Se va a realizar el cálculo para diferentes velocidades de enfriamiento \((v = 1, 5, 10 y 30^\circ C/s)\). Las líneas de enfriamiento para estas velocidades de enfriamiento atraviesan tanto la zona bainítica como la ferrítica tal y como se muestra en la Ilustración 38.

Ilustración 38: Gráfica de la CCT experimental (línea continua) y la calculada mediante la Additivity Rule (línea de puntos) con la representación de las líneas de enfriamiento para los ejemplos aquí realizados.

Se ha representado la evolución de las fases para cada una de las velocidades de enfriamiento (Ilustración 39Ilustración 42), y además se puede observar
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

gráficamente en la Tabla 4, la evolución de la fase desde el instante inicial del análisis al instante final.

Ilustración 39: Fracción volumétrica de las diferentes fases en función del tiempo calculado para una velocidad de \(v = 1^\circ\text{C/s} \).

Ilustración 40: Fracción volumétrica de las diferentes fases en función del tiempo calculado para una velocidad de \(v = 5^\circ\text{C/s} \).
Incorporación de los modelos de las transformaciones de fase de un acero a un software de simulación por elementos finitos

<table>
<thead>
<tr>
<th>v = 5°C/s</th>
<th>Tiempo (s)</th>
<th>0</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura (°C)</td>
<td>900</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUSTENITA</th>
<th>Fracción vol. (%)</th>
<th>100</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>91.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.667</td>
<td>83.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.333</td>
<td>75.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.000</td>
<td>66.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.667</td>
<td>50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.000</td>
<td>41.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.667</td>
<td>33.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.333</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.000</td>
<td>16.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.667</td>
<td>8.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.333</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FERRITA</th>
<th>Fracción vol. (%)</th>
<th>0.0</th>
<th>14.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>91.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.667</td>
<td>83.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.333</td>
<td>75.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.000</td>
<td>66.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.667</td>
<td>50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.000</td>
<td>41.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.667</td>
<td>33.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.333</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.000</td>
<td>16.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.667</td>
<td>8.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.333</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERLITA</th>
<th>Fracción vol. (%)</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>91.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.667</td>
<td>83.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.333</td>
<td>75.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.000</td>
<td>66.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.667</td>
<td>50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.000</td>
<td>41.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.667</td>
<td>33.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.333</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.000</td>
<td>16.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.667</td>
<td>8.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.333</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAINITA</th>
<th>Fracción vol. (%)</th>
<th>0.0</th>
<th>21.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>91.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.667</td>
<td>83.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.333</td>
<td>75.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.000</td>
<td>66.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.667</td>
<td>50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.000</td>
<td>41.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.667</td>
<td>33.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.333</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.000</td>
<td>16.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.667</td>
<td>8.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.333</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARTENSITA</th>
<th>Fracción vol. (%)</th>
<th>0.0</th>
<th>61.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>91.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.667</td>
<td>83.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.333</td>
<td>75.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.000</td>
<td>66.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.667</td>
<td>50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.000</td>
<td>41.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.667</td>
<td>33.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.333</td>
<td>25.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.000</td>
<td>16.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.667</td>
<td>8.333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.333</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4: Fracciones volumétricas de las fases al inicio y al finalizar el proceso para v = 5°C/s.
Ilustración 41: Fracción volumétrica de las diferentes fases en función del tiempo calculado para una velocidad de \(v = 10^\circ C/s \).

Ilustración 42: Fracción volumétrica de las diferentes fases en función del tiempo calculado para una velocidad de \(v = 30^\circ C/s \).
Si se introduce el programa en un modelo más complejo, con más de un elemento como puede ser el que vemos a continuación se observa que el análisis funciona correctamente sin dar ningún tipo de problema. El modelo es una chapa de 35 NC 6 ligeramente deformada y enfriada según las condiciones de una estampación en caliente. En el análisis se ha obviado el cálculo mecánico ya que no es necesario para realizar la simulación de las transformaciones de fase según los modelos aquí seguidos, por lo que la pieza no se deforma, pero si que se enfria siguiendo las transferencias de calor entre la chapa y las herramientas de una simulación de una estampación en caliente.

Al inicio del análisis la chapa está a 800°C y las herramientas a 25°C, por lo que habrá una transferencia de calor chapa-herramientas que enfriará la chapa hasta aproximadamente 100°C. Se han tenido en cuenta los contactos directos entre la chapa y la matriz y la chapa y el punzón. A continuación se presentan las imágenes extraídas de la simulación.

Ilustración 43: Montaje del equipo para la estampación en caliente.

Hay que tener en cuenta que en algunas zonas de la chapa, esta solamente está en contacto con el punzón, por lo que se enfriará más lentamente.

Si se observan los resultados de la temperatura (Ilustración 44) a lo largo de la chapa se ve que existe un gradiente de temperatura a lo largo de ella. Cada una de las
zonas se enfriá con mayor o menor rapidez en función del contacto que tengan con las herramientas del dispositivo. Existe un gradiente de velocidad de enfriamiento y por lo tanto existirá un gradiente de fases a lo largo de ella.

Ilustración 44: Evolución de la temperatura de la chapa a lo largo del tiempo: (a) t = 0s; (b) t = 1.375s; (c) t = 7.26s; (d) t = 16.27s y (e) t = 60s.
Ilustración 45: Distribución de fase austenítica a lo largo de la chapa en el momento inicial y el final.

Ilustración 46: Distribución de fase ferrítica a lo largo de la chapa en el momento inicial y el final.
Ilustración 47: Distribución de fase bainítica a lo largo de la chapa en el momento inicial y el final.

Ilustración 48: Distribución de fase martensítica a lo largo de la chapa en el momento inicial y el final.

Si se observan las Ilustración 45, la Ilustración 46, la Ilustración 47 y la Ilustración 48 se ve la distribución de cada una de las fases a lo largo de la chapa. En cada una la escala es diferente, mientras que de austenita y martensita se obtienen en algunas zonas un 100% para la ferrita lo máximo que se puede obtener es un 0.7% y para la bainita un 15.4%.
Para una mejor observación de la distribución de las fases a lo largo de la chapa se tomará un elemento de las regiones donde existe mayor dispersión en la velocidad de enfriamiento (Ilustración 49), y se hará un análisis de su evolución. De esta forma se observará la evolución de las fases en cada una de las regiones. En el caso del elemento 1, este será el que se enfriará más lentamente ya que se trata de una región más grande que la del elemento 2 y como esta, solamente está en contacto con el punzón. En esta región se debería de encontrar más diversidad de fases, si observamos la CCT del material (Ilustración 50) con la línea de enfriamiento que sigue la región se ve que cruza la fase bainítica.

Ilustración 49: Chapa del material donde se observa el gradiente de velocidades de enfriamiento.
Ilustración 50: CCT del material con la línea de enfriamiento que sigue la región del elemento 1 marcada.
Ilustración 51: Fracción volúmica de cada una de las fases en función del tiempo para el elemento 1.

Ilustración 52: Fracción volúmica de cada una de las fases en función del tiempo para el elemento 2.
Ilustración 53: Fracción volúmica de cada una de las fases en función del tiempo para el elemento 3.

En la Ilustración 51, la Ilustración 52 y la Ilustración 53 se observa el crecimiento de cada una de las fases en los tres elementos diferentes. En la Ilustración 51, correspondiente al elemento 1, se observa el crecimiento de la fase bainítica y de la martensítica, mientras que en la Ilustración 52 y la Ilustración 53 solamente se distingue el crecimiento de la martensita.
8. CONCLUSIONES

La finalidad de este proyecto es implementar los modelos matemáticos existentes de las transformaciones de fase al software de simulación ABAQUS. Para que una simulación trabaje correctamente los modelos aplicados al software deben estar bien definidos. Durante la realización se ha hecho una revisión de los modelos existentes para la cinética de las transformaciones. Se ha observado que las transiciones isotérmicas resultan bien modelizadas a través de la ecuación de JMAK, pero al aplicar este modelo mediante la regla de adición para obtener las fracciones volumétricas de las fases en las transiciones de fase no isotérmicas se ha comprobado que no resulta del todo válido.

Como ya se ha visto la Additivity Rule se aplica en las dos fases de las transiciones de fase, la nucleación, para obtener el llamado tiempo de incubación, y para el crecimiento. En ambas etapas se observan las diferencias entre los resultados del cálculo y los experimentales. Para el cálculo tanto del tiempo de incubación como de la fracción volumétrica de las fases ferrítica y perlítica se ha visto que los valores obtenidos se ajustan a los obtenidos experimentalmente, mientras que los obtenidos para la fase bainítica difieren de los valores experimentales.

Las diferencias entre los resultados calculados con la Additivity Rule y los obtenidos experimentalmente se deben a varios factores que el modelo matemático no tiene en cuenta, como por ejemplo la existencia de diferentes microestructuras.
para cada una de las fases. Como se ha explicado anteriormente, existen varios tipos de ferrita y además existen dos posibles fases eutécticas: perlita y bainita, la cuales están divididas en bainita superior e inferior y perlita fina y perlita gruesa. Este modelo implica tomar las transiciones como reacciones isocinéticas y no siempre se pueden tomar como tal, ya que dependerá de la velocidad de enfriamiento.

Se ha comprobado también que es posible la implementación de los modelos matemáticos mediante un programa relativamente sencillo en el software de simulación ABAQUS pudiendo simular de esta forma las transformaciones de fase de un acero.
9. ACCIONES FUTURAS

En este proyecto se ha desarrollado un programa que incluye los modelos de las transformaciones de fase de los aceros y se ha implementado en el software de simulación ABAQUS. Los modelos utilizados aquí para las transformaciones de fase no isotérmicas obvian la dependencia de la cinética de las transformaciones con factores como el tamaño de grano, la fracción transformada previamente, la conductividad térmica de cada fase, etc. En la actualidad existen modelos que incluyen la dependencia con estos factores, pero su implementación en el programa no resulta trivial. Además, muchos de los modelos están fuertemente ligados a los materiales para los que se han desarrollado y no son válidos en todos los rangos de composiciones.

Industrialmente existe la necesidad de poder simular procesos como la estampación en caliente, y estos procesos llevan asociados las transformaciones de fases. Por lo que una de las vías a seguir es la implementación de todos los factores que influyen en las transformaciones de fases para conseguir una simulación más precisa.

Uno de los materiales con mayor proyección en la industria automovilística para su utilización en piezas del chasis del coche desarrolladas mediante estampación en caliente es el USIBOR-1500P. Una de las características principales de este material es su alta templabilidad debido al boro, el cual retrasa la aparición de la ferrita. Esto
hace al material susceptible de ser utilizado en piezas de la carrocería que requieren una alta resistencia. Por lo que otra de las vías que quedan abiertas es la de conseguir una correcta caracterización de este material y la búsqueda de modelos que se adapten bien a sus características.
10. IMPACTO AMBIENTAL

Cada una de los pasos que se siguen para la realización de un proyecto conllevan un gasto energético y este gasto energético está asociado a un impacto ambiental debido a las emisiones de gases de efecto invernadero. Por lo tanto es importante realizar un estudio sobre el impacto ambiental que un proyecto conllevará.

Existen varios tipos de emisiones con alcances diferentes:

- **Alcance 1: Emisiones directas**

 Incluye las emisiones directas que proceden de fuentes que posee o controla el sujeto que genera la actividad. Por ejemplo, este grupo incluye las emisiones de la combustión de calderas i vehículos, etc. que el sujeto mismo controla y posee.

- **Alcance 2: Emisiones indirectas de la generación de electricidad y de calor, vapor o frío.**

 Comprende las emisiones derivadas del consumo de electricidad y de calor, vapor o frío. Las emisiones de electricidad y de calor, vapor o frío adquiridas se producen físicamente en las instalaciones donde la electricidad o el calor son generados. Estas instalaciones productoras son diferentes en la organización de la cual se estiman las emisiones.
• Alcance 3: Otras emisiones indirectas.

Incluyen todo el resto de emisiones indirectas. Las emisiones de alcance 3 son consecuencia de las actividades del sujeto, pero provienen de fuentes que no son poseídas o controladas por el sujeto. Algunos ejemplos del alcance 3 son la extracción i producción de materiales adquiridos, los viajes de trabajo, el transporte de materias primas, de combustibles i de productos (por ejemplo, actividades logísticas) o la utilización de productos o servicios que alguien nos ofrece.

En el caso de este proyecto las únicas emisiones derivadas de su realización son de alcance 2, las correspondientes al consumo energético del ordenador con el que se ha trabajado diariamente y del de los ordenadores con los que se ha realizado el cálculo. Para calcular las emisiones asociadas se ha de aplicar un factor de emisión de CO$_2$, también llamado *mix* eléctrico (g de CO$_2$/kWh), atribuible al suministro eléctrico que representan las emisiones asociadas a la generación eléctrica. En este mix se tienen en cuenta que existen pérdidas de electricidad que se asocian al transporte y la distribución. El *mix* eléctrico del año 2010 es de 181 g CO$_2$/kWh[17].

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Horas trabajo</th>
<th>Consumo (kWh)</th>
<th>Energía (kW)</th>
<th>Emisión CO$_2$ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordenador CTM</td>
<td>950</td>
<td>0.2</td>
<td>190</td>
<td>34.390</td>
</tr>
<tr>
<td>Ordenador portátil</td>
<td>200</td>
<td>0.2</td>
<td>40</td>
<td>7.2</td>
</tr>
<tr>
<td>Ordenadores cálculo (8 CPU)</td>
<td>920</td>
<td>0.6</td>
<td>552</td>
<td>99.912</td>
</tr>
<tr>
<td>Impresora</td>
<td>6</td>
<td>1.1</td>
<td>6.6</td>
<td>1.188</td>
</tr>
<tr>
<td>TOTAL</td>
<td>142.7 kg de CO$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5: Emisión de CO$_2$ asociada al consumo energético realizado durante el proyecto.

Se debe remarcar en este apartado los beneficios de la simulación de procesos industriales ya que no solo permite un ahorro a nivel económico sino que disminuye
notablemente el impacto ambiental. El consumo energético de los ordenadores para realizar el cálculo de un proceso industrial es ostensiblemente menor que la energía consumida por la maquinaria necesaria para realizar un proceso como una estampación en caliente.
AGRADECIMIENTOS

En primer lugar me gustaría agradecer al Dr. José M. Prado y a la Dra. Mª Dolors Riera la oportunidad que me han brindado para realizar este proyecto en la Fundación CTM Centro Tecnológico así como su ayuda y su apoyo durante la realización del mismo.

También me gustaría agradecer a mis acompañantes en el viaje y sobre todo a mis compañeros del departamento de simulación por su ayuda en los aspectos técnicos y por hacer que la estancia en el centro haya sido una experiencia inmejorable, en especial a Albert Llobet por su ayuda, su paciencia y su apoyo constantes.

Muchas gracias a todos.
BIBLIOGRAFÍA

4 *Mechanical Metallurgy,* George E. Dieter.

8 *Principes de base des traitements thermiques thermomécaniques et thermochimiques des aciers*, A. Constant, G. Henrr, J.-C. Charbonnier.

15 Yuntian T. Zhu and Terry C. Lowe. *Application of, and Precautions for Use of, the Rule of Additivity in Phase Transformation*,