TÍTOL: Control d'inversors de potència trifàsics en el domini dq

AUTOR: Ruben Vela Sol y Petar Stojčević

TITULACIÓ: E.T. Telecomunicacions especialitat en Sistemes Electrònics

DIRECTOR: Miguel Castilla Fernández

DEPARTAMENT: Departament: 710, ENGINYERIA ELECTRÒNICA

DATA: 27/01/2012
RESUM (màxim 50 línies)

Es tracta de dissenyar i implementar els controls adequats per a inversors de potència trifàsics. Es desitja injectar potència activa i reactiva a la xarxa elèctrica de manera independent. Es considera que la font d'energia és qualsevol font renovable, com per exemple, panells fotovoltaics o petits aerogeneradors. El funcionament dels sistemes dissenyats es verifiquen mitjançant eines de simulació (entorn Matlab/Simulink), que extraient gràfiques de diferents punts observem els resultats per garantir que són els desitjats.

Paraules clau (màxim 10)

<table>
<thead>
<tr>
<th>VSC</th>
<th>Inversor</th>
<th>Control</th>
<th>Domini dq</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL</td>
<td>PWM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dedicat a les nostres famílies,
que ens han donat tot el suport
i sempre han cregut en nosaltres.

Al nostre tutor Miguel Castilla,
per estar sempre al nostre costat.
Índex

1. INTRODUCCIÓ

1.1. Descripció del problema...9
1.2. Justificació..11
1.3. Especificacions bàsiques..12

2. OBJECTIUS..13

3. INVERSOR DE DOS NIVELLS

3.1. Introducció..15
3.2. Funcionament d’un inversor de dos nivells....................................15
3.3. Estructura d’un VSC...16
3.4. Conclusió...17

4. IMPLEMENTACIÓ DEL PLL

4.1. Introducció..19
4.2. Phase-Locked Loop (PLL)..19
 4.2.1 Descripció del bloc PLL...19
 4.2.2 Domini dq...21
 4.2.2.1 Transformada dq...22
 4.2.2.2 Antitransformada dq..22
 4.3 Disseny del PLL...23
 4.4. Implementació del PLL..25
 4.5. Conclusions..29
5. CONTROL DE L’INVERSOR TRIFÀSIC

5.1. Introducció...31
5.2. Potència activa i reactiva..31
5.3. Modulador d’amplada de polsos (PWM)..........................32
5.4. Elecció del control..32
5.5. Control de corrent del VSC..32
5.6. Disseny del control de corrent...34
5.7. Implementació del control de corrent.................................38
5.8. Conclusions...41

6. CONTROL DE LA FONT DE POTÈNCIA

6.1. Introducció...43
6.2. Font de potència..44
6.3. Model de control de la font de potència..............................45
6.4. Control de la font de potència..48
6.5. Implementació del control de la font de potència...............49
6.6. Conclusions...54

7. CONCLUSIONS I PERSPECTIVES DE TREBALL

7.1. Conclusions...57
7.2. Perspectives de treball...58
8. REFERÈNCIES ..59

9. ANNEX MATLAB SIMULINK

 A.1. Funcions utilitzades ..61
 A.2. Circuits implementats ..62
1 Introducció

1.1. Descripció del problema

Avui en dia es sap que els combustibles algun cop s’esgotaran, per això es necessari conèixer i poder treballar amb les energies renovables. Aquí en el nostre país degut a les condicions mediambientals, les energies renovables que tenen més importància són l’energia eòlica i l’energia solar. Degut aquest interès, s’han dissenyat diversos sistemes per a convertir l’energia rebuda de fonts renovables en energia útil, com per exemple, la electricitat per la xarxa.

Històricament, els inicis de l’electricitat es troben en els sistemes de corrent continu (CC), però la facilitat de transformació i transport del corrent altern (CA) va fomentar el seu ús i instal·lacció a gran escala, restringint l’ús del corrent continu a entorns minoritaris.

No va ser fins a la segona meitat del segle XX que la investigació amb semiconductors va permetre el desenvolupament de l’electrònica de potència i amb això la possibilitat de convertir el corrent altern en continu i viceversa amb poques pèrdues. El principal problema que tenien els primers dispositius era les baixes potències que podien processar i l’elevat cost que tenien. Per això es va començar a utilitzar els convertidors de potència en aquells llocs en els quals presentava avantatges que no es podien aconseguir amb altres tecnologies com la transmissió de potència a llargues distàncies o la interconnexió de sistemes elèctrics veïns que funcionen a diferents freqüències.

El convertidor de potència utilitzat és un inversor de dos nivells, que consisteix en un circuit de potència (realitzat amb diferents configuracions de interruptors de potència i components passius) i un sistema de control i protecció. La unió entre els dos es troba a través de les senyals de sincronització/commutació i senyals de control de realimentació.
La tecnologia utilitzada en aquest projecte és VSC. La tecnologia VSC (Voltage Source Converter) es basa en l'ús de dispositius semiconductors de commutació forçada. Aquests semiconductors poden commutar sense necessitat de la xarxa, permetent el control simultani i independent de potència activa i reactiva.

Les estacions equipades amb VSC requereixen filtres en el costat de contínua i en el d'alterna per minimitzar l'efecte dels harmònics però té l'avantatge de que no requereix cap font de reactiva ja que el propi convertidor és capaç de controlar-la.

Aquest projecte tractarà de extreure l'energia solar provinent dels panells fotovoltaics, per ser processada i transformar-la en energia elèctrica. Cada panell es comporta com una font de potència, i el seu valor depèn de la seva irradiació solar. La potència que dona cada panell fotovoltaic apareix en la sortida com un valor continu de tensió i corrent. La figura 1.1. mostra el procés de transformació de l'energia solar.

Figura 1.1 Procés de transformació de l'energia solar
1.2. Justificació

Aquest treball proporciona més informació per poder aprendre sobre les energies renovables, la qual cada cop té una major importància. Per això es interessant estudiar i aprendre a fons aquestes energies. Cal esmentar el bon temps que tenim en el nostre país i les grans quantitats d'hores de sol que gaudim, per això cada cop podem apreciar més terrenys amb gran quantitat de plaques solars (figura 1.2), aquest es un dels motius per treballar amb energia solar.

També la importància d’estudiar i aprendre el funcionament d’un inversor de dos nivells i el control utilitzat en ell, dissenyar el control i treure el màxim rendiment de l’energia solar.

Figura 1.2 Panells fotovoltaics
1.3. Especificacions bàsiques

Tota la part practica d’aquest projecte ha estat realitzada de simulació MatLab Simulink. La utilització d’aquest programa es degut a coneixements adquirits del programa i suposava una avantatge alhora de realitzar el projecte. A més, el software conta amb moltes eines tant matemàtiques com de simulació que fan possibles la elaboració de millors sistemes.

El projecte s’ha realitzat d’acord amb els paràmetres de la xarxa elèctrica nord-americana, els quals són: 391V de pic (276V eficaços), una freqüència de 60 Hz i tres fases desfasades 120º entre elles (figura 1.3). La raó de fer el projecte amb aquests paràmetres es deu a que la informació consultada i trobada estava explicada amb aquest tipus de xarxa. Modificant la tensió, la freqüència i algun altre parâmetre de control es podria desenvolupar el treball amb especificacions de la xarxa elèctrica europea.

![Figura 1.3 Xarxa elèctrica nord-americana](image)

Figura 1.3 Xarxa elèctrica nord-americana
2 Objectius

L’objectiu principal consisteix en dissenyar un control capaç de convertir l’energia produïda per una matrícula de panells fotovoltaics i adaptar-la per a poder injectar-la a la xarxa elèctrica. La sortida dels panells es considera l’entrada del inversor trifàsic que s’utilitzarà per injectar a la xarxa tota la potència que l’entrada pugui subministrar. Per tant, el sistema sempre es troba treballant en el punt de màxima potència.

El projecte simula amb MatLab Simulink un inversor de dos nivells, amb el control prèviament dissenyat per funcionar a màxima potència, extreure les gràfiques, prendre resultats i obtenir unes conclusions sobre tot l’estudi.

Per poder acabar simulant tot el circuit i comprovar el seu funcionament, es crearan els diferents blocs poc a poc i comprovant que funcionen correctament per separat. El primer bloc creat és un PLL que converteix una tensió trifàsica al domini dq per tal de poder treballar en aquest domini. Al domini dq s’implementa el control i d’aquesta manera és molt més fàcil treballar que si es disposa la tensió trifàsica. Un cop implementat el control es transforma de dq a la tensió trifàsica i per això resulta un bloc de molta importància. El bloc VSC transforma una tensió DC a una tensió AC amb l’ajut del control. El bloc dels controls és el més complexe i l’encarregat de que el circuit funcioni correctament. Per últim s’ha implementat un bloc que simula el comportament d’una matrícula de panells fotovoltaics que és el que proporciona la tensió d’entrada. La xarxa es modula amb una font trifàsica. Un cop dissenyats tots del blocs i verificats que funcionen individualment s’agruparan per crear l’inversor trifàsic final que es pot observar a la figura 2.1.
Un cop ajuntats els blocs es verifica el correcte funcionament de l’inversor i es treballa en el punt que proporciona màxima potència amb un bon rendiment.
3 Inversor de dos nivells

3.1. Introducció

En aquest capítol s'explicarà el funcionament de l'inversor de dos nivells i la seva estructura.

3.2. Funcionament d'un inversor de dos nivells

Un inversor de dos nivells és un dispositiu electrònic que facilita l'intercanvi d'energia entre dos sistemes, aquesta funció s'anomena condicionament de potència [1]. L'inversor pot assumir dos nivells de voltatge al seus terminals AC (-Vdc i Vdc). Està composat per sis transistors que actuen com a interruptors, dos per a cada fase. Quan un transistor del parell està funcionant l'altre està desactivat, ja que mai treballen els dos al mateix temps. Els transistors estan controlats per un senyal que els fa commutar. Aquest senyal prové d'un control extern que envia el senyal als transistors per a que commutin adequadament fent una bona transferència d'energia, tenint un bon rendiment, i per tant, baixes pèrdues de commutació.

La transferència d'energia del sistema s'aconsegueix amb una commutació adequada dels transistors.
El terminal AC es una xarxa elèctrica i el terminal DC simula una font d’energia renovable, com per exemple, una matriu de panells fotovoltaics. L’inversor és l’encarregat de fer aquest canvi DC/AC (figura 3.1).

3.3. Estructura d’un VSC

La figura 3.2 mostra l’esquema del VSC de dos nivells. Al costat DC del VSC pot connectar-se una font de tensió DC o una font d’alimentació. Cada fase del VSC es connecta amb un sistema de corrent alterna a través d’una branca RL. El sistema de corrent alterna es modela amb una font trifàsica ideal (V_{abc}). Serà una font equilibrada, sinusoidal i de freqüència constant. El sistema VSC de la figura 3.2 mostra l’intercanvi de potència real y reactiva $P(s)$ i $Q(s)$ amb el sistema AC al punt PCC (Point of common coupling).

3.4. Conclusió

Aquest bloc serà ideal per a convertir el voltatge ofert per la font d’alimentació DC en una tensió AC que s'intenta acoblar a la xarxa elèctrica.
4 Implementació del PLL

4.1. Introducció

En aquest capítol s'explica el funcionament del PLL i perquè serveix. Es fa un incís explicant el domini dq perquè farà falta per implementar el PLL. Després es passa a dissenyar el PLL i a implementar-lo mitjançant el simulink. Quan ja s'obté el PLL en marxa farem variacions a la font d'alimentació per a comprovar que el PLL treballa correctament en diferents situacions adverses que es pot trobar a la vida real. S'extrauràn totes les gràfiques significatives i s'explica el funcionament i els diferents comportaments que obté el PLL.

4.2. Phase-Locked Loop (PLL)

4.2.1 Descripció del bloc PLL

El PLL serà l'encarregat de convertir una tensió trifàsica al domini dq per tal de poder treballar en aquest domini. Al domini dq s'implementa el control i d'aquesta manera és molt més fàcil treballar que si es té la tensió trifàsica. Un cop implementat el control es torna a transformar de dq a la tensió trifàsica amb un altre PLL. El PLL ens sincronitza la xarxa elèctrica amb el control.

Un PLL és un sistema en que la fase i la freqüència estan realimentades i d'aquesta manera es regular aquestes magnituds mitjançant un control [2-4].

L'objectiu és implementar el PLL mitjançant MatLab i comprovar que funciona correctament sota diverses circumstàncies.

A l'entrada, el PLL trobarà un senyal trifàsic i haurà de de regular una tensió V_{sq} a 0V i una tensió V_{sd} al valor de pic del senyal trifàsic. Aquesta conversió la durà a terme un convertidor dq.
A la sortida del PLL s’obté les equacions

\[V_{sd} = \hat{V}_s \cos(\omega_0 t + \theta_0 - \rho) \quad (4.1) \]

\[V_{sq} = \hat{V}_s \sin(\omega_0 t + \theta_0 - \rho) \quad (4.2) \]

\[\frac{d\rho}{dt} = \omega(t) \quad (4.3) \]

Tenint en compte que \(V_{sq} = 0 \), tenim que \(p(t) = \omega_0 t + \theta_0 \). Per aconseguir que \(V_{sq} \) sigui 0 es segueix la següent llei:

\[\omega(t) = H(\rho) \cdot V_{sq}(t) \quad (4.4) \]

on \(H(\rho) \) és la funció de transferència (compensador). Substituint els valors obtinguts de \(V_{sq} \) i \(\omega \) s’obté:

\[\frac{d\rho}{dt} = H(\rho) \cdot \hat{V}_s \sin(\omega_0 t + \theta_0 - \rho) \quad (4.5) \]

La equació (4.5) defineix un sistema no lineal. La funció del PLL és regular \(\rho \) a \(\omega_0 t + \theta_0 \). Sota aquesta condició de no lineal el PLL no pot complir la seva funció, per tant es modifica la equació (4.4) i queda de la següent manera:

\[\omega(t) = H(\rho) \cdot V_{sq}(t), \quad \omega(0) = \omega_0 i \omega_{\text{min}} \leq \omega_0 \leq \omega_{\text{max}} \quad (4.6) \]

On el valor inicial \(\omega(0) = \omega_0 \) està dins dels límits, es a dir, per sota de \(\omega_{\text{max}} \) i per sobre de \(\omega_{\text{min}} \). Aquests valors màxim i mínim son proper a \(\omega(0) \) i per tant defineixen un rang estret de variació de \(\omega(t) \).

Figura 4.1 Bloc de control del PLL
Per altra banda, el rang s’ha de seleccionar adequadament ample per a permetre excursions de $\omega(t)$ durant el transitori. Si s’aconsegueix que el terme $\omega_0t + \theta_0 - \rho$ sigui proper a zero, es pot fer l’aproximació $\sin(\omega_0t + \theta_0 - \rho) = \sin(\omega_0t + \theta_0 - \rho)$. Llavors, es s’implicaria l’equació (4.6) i quedaria:

$$\frac{d\rho}{dt} = \hat{V}_s \cdot H(\rho) \cdot (\omega_0t + \theta_0 - \rho)$$

(4.7)

L’equació (4.7) representa el control en el que l’entrada de referència és $\omega_0t + \theta_0$ la sortida és ρ i $\hat{V}_s \cdot H(s)$ és la funció de transferència (compensador), com s’observa a la figura 4.1.

La figura 4.2 és el diagrama del PLL basat en les equacions (4.2),(4.3) i (4.4), i ajusta ω per a forçar que V_{sq} sigui zero en estat estacionari. El resultat final és que $\rho = (\omega_0t + \theta_0)$ i $V_{sd} = \hat{V}_s$. L’integrador de la figura 4.2 s’implementa amb un bloc $1/s$.

Figura 4.2 Diagrama esquemàtic del PLL

4.2.2 Domini dq

Els controls dels sistemes VSC solen ser força complexos. És per això que s’utilitza un canvi de variable per a simplificar les equacions. Hi ha molts tipus de transformacions, en el nostre cas s’utilitza la transformada dq.
Mitjançant la transformada en coordenades d-q, a partir d’un sistema trifàsic suposat sobre un sistema d’eixos a-b-c que formen un angle de 120°, s’obté un sistema equivalent de tensió o corrent que està associat a uns eixos que formen 90°, anomenats d-q.

Per obtenir les components d-q es projecten les components va, vb, vc sobre els eixos d-q. Les projeccions resultant son les corresponents a les components vd i vq.

4.2.2.1 Transformada dq

La equació que s’utilitza per a la transformada dq és [5],

\[
\begin{bmatrix}
 f_d(t) \\
 f_q(t)
\end{bmatrix} = \frac{2}{3} T[\varepsilon(t)] \begin{bmatrix}
 f_a(t) \\
 f_b(t) \\
 f_c(t)
\end{bmatrix}
\]

(4.8)

on

\[
T[\varepsilon(t)] = \mathbf{R}[\varepsilon(t)] \mathbf{C} = \begin{bmatrix}
 \cos[\varepsilon(t)] \cos \left[\varepsilon(t) - \frac{2\pi}{3} \right] \cos \left[\varepsilon(t) - \frac{4\pi}{3} \right] \\
 \sin[\varepsilon(t)] \sin \left[\varepsilon(t) - \frac{2\pi}{3} \right] \sin \left[\varepsilon(t) - \frac{4\pi}{3} \right]
\end{bmatrix}
\]

(4.9)

Es desenvolupa la matriu s’obté les expressions finals

\[
V_d = \frac{2}{3} \left[V_a \sin(\omega_t) + V_b \sin \left(\omega_t - \frac{2\pi}{3} \right) + V_c \sin \left(\omega_t + \frac{2\pi}{3} \right) \right]
\]

(4.10)

\[
V_q = \frac{2}{3} \left[V_a \cos(\omega_t) + V_b \cos \left(\omega_t - \frac{2\pi}{3} \right) + V_c \cos \left(\omega_t + \frac{2\pi}{3} \right) \right]
\]

(4.11)

\[
V_0 = \frac{1}{3} [V_a + V_b + V_c]
\]

(4.12)

4.2.2.2 Antitransformada dq

La antitransformada dq la s’utilitza en un PLL el qual estarà a la sortida del control i serveix per tornar al domini abc que és el domini real.
La equació que s’utilitza per a la antitransformada dq és

\[
\begin{bmatrix}
 f_a(t) \\
 f_b(t) \\
 f_c(t)
\end{bmatrix} = T[e(t)]^T \begin{bmatrix}
 f_d(t) \\
 f_q(t)
\end{bmatrix} \tag{4.13}
\]

on

\[
T[e(t)]^T = C^T R [-e(t)] = \begin{bmatrix}
 \cos[e(t)] & \sin[e(t)] \\
 \cos[e(t) - \frac{2\pi}{3}] \sin[e(t) - \frac{2\pi}{3}] \\
 \cos[e(t) - \frac{4\pi}{3}] \sin[e(t) - \frac{4\pi}{3}]
\end{bmatrix} \tag{4.14}
\]

Desenvolupant la matrícula s’obté les expressions finals

\[
V_a = [V_d \sin(\omega_t) + V_q \cos(\omega_t) + V_0] \tag{4.15}
\]

\[
V_b = [V_d \sin(\omega_t - \frac{2\pi}{3}) + V_q \cos(\omega_t - \frac{2\pi}{3}) + V_0] \tag{4.16}
\]

\[
V_c = [V_d \sin(\omega_t + \frac{2\pi}{3}) + V_q \cos(\omega_t + \frac{2\pi}{3}) + V_0] \tag{4.17}
\]

4.3 Disseny del PLL

A partir del PLL de la figura 3.3 es té una entrada \(V_{sabc}\) que té la forma

\[
V_{sabc} = V_{sa} + V_{sb} + V_{sc} \tag{4.18}
\]

\[
V_{sa} (t) = \hat{V_s} \cdot \cos(\omega_0 t + \theta_0) \tag{4.19}
\]

\[
V_{sb} (t) = \hat{V_s} \cdot \cos(\omega_0 t + \theta_0 - \frac{2\pi}{3}) \tag{4.20}
\]

\[
V_{sc} (t) = \hat{V_s} \cdot \cos(\omega_0 t + \theta_0 - \frac{4\pi}{3}) \tag{4.21}
\]

La freqüència implementada serà de \(\omega_0 = 2 \pi \times 60\) rad/s (60Hz) i l’amplitud de pic \(V_s = 391\) V. S’escull aquests valors perquè són els que s’utilitzen a la xarxa elèctrica d’Estats Units. Marcats aquests valors es passa a dissenyar el compensador. Es sap que el guany del llaç de realimentació ha de tenir
almenys dos pols a l’origen per no tenir error d’estat estacionar, ja que la funció \(\rho \) és una rampa i per eliminar l’error d’aquesta funció son necessaris dos pols a l’origen. Per tant, \(H(s) \) ha de tenir almenys un pol a \(s=0 \) i l’altre es trobarà a l’integrador. També s’ha de solucionar problemes de possibles harmònics que poden aparèixer. L’harmònic més important d’eliminar es el segon harmònic \((2\omega_0) \) perquè es el que te més amplitud i el més proper al nostre senyal. Una manera d’eliminar-lo seria dissenyar un compensador amb característiques de un bon filtrat pas baix. El problema seria que es reduceix considerablement l’amplà de banda del PLL. La millor opció serà que el compensador inclogui un parell de zeros compleix-conjugats a \(s=j2\omega_0 \); l’avantatge d’utilitzar aquest tàcnic es no sacrifici l’amplà de banda del PLL i es pot seleccionar [6]. Per assegurar que el guany segueix baixant amb el pendent -40dB/dec per \(\omega>2\omega_0 \) s’afegeix al compensador dos pols reals a \(s=-2\omega_0 \). Per tant,

\[
H(s) = \left(\frac{h}{V_{sn}} \right) \frac{s^2+(2\omega_0)^2}{s(s+2\omega_0)^2} F(s)
\]

(4.22)

On \(V_{sn} \) es el valor de pic de \(V_s \) i \(F_s \)

\[
l(s) = h \frac{s^2+(2\omega_0)^2}{s(s+2\omega_0)^2} F(s)
\]

(4.23)

Es Disseny el PLL amb una amplà de banda de 200 rad/s i un marge de fase de 60\(^{\circ}\). Aquesta fase es prou considerable per a que \(F(s) \) pugui estar formada per dos compensadors en cascada, en que cada un proporciona \(45^{\circ} \) a 200 rad/s. Per tant,

\[
F(s) = \left(\frac{s+(\rho/\alpha)}{s+\rho} \right) \left(\frac{s+(\rho/\alpha)}{s+\rho} \right)
\]

(4.24)

On

\[
\rho = \omega_c \sqrt{\alpha}
\]

(4.25)

\[
\alpha = \frac{1+\sin \delta_m}{1-\sin \delta_m}
\]

(4.26)
I dm es la fase que per al cas de 45º,

\[F(s) = \left(\frac{s+83}{s+482} \right)^2 \] \hspace{1cm} (4.27)

Substituint (4.27 a 4.23) es dedueix

\[l(s) = h \frac{h(s^2+568,516)(s^2+166s+6889)}{(s^2(s^2+1508s+568,516)(s^2+964s+232,324)} \left[(\text{rad}/s)/V \right] \] \hspace{1cm} (4.28)

Per tant,

\[H(s) = h \frac{685,42(s^2+568,516)(s^2+166s+6889)}{s(s^2+1508s+568,516)(s^2+964s+232,324)} \left[\left(\frac{\text{rad}}{s} \right)/V \right] \] \hspace{1cm} (4.29)

4.4. Implementació del PLL

Després de dissenyar el PLL, es passa a simular mitjançant MatLab el circuit i s'obté les diferents gràfiques necessàries.

La figura 4.3 mostra la resposta en freqüència de \(l(j\omega) \). Es pot apreciar com \(l(j\omega) \) cau amb un pendent de -40dB/dec per \(\omega<<\omega_c=200 \). Al voltant de \(\omega_c \) el pendent es redueix aproximadament -20dB/dec i la fase augmenta -120º, que correspon a un marge de fase de 60º. Per \(\omega>\omega_c \), \(l(j\omega) \) torna a caure amb pendent de 40dB/dec. D’aquesta manera aconseguim atenuar la distorsió harmònica de \(V_{abc} \).
La figura 4.4 muestra el funcionamiento del PLL. Es muestra que, des de $t=0$ a $t=0.07s$, la sortida del compensador està saturada a $\omega_{min} = 2\pi \times 55 \text{ rad/s}$ i per tant V_{sd} i V_{sq} varien amb el temps. Al voltant de $t=0.07s$ V_{sq} intenta ser negativa. Llavors, $H(s)$ actua augmentant ω per regular V_{sq} a zero i ho aconsegueix en menys de 0.15s. Es pot apreciar que s’escull ω_{min} propera a ω_0 per a que el transitori sigui més curt però no pot estar massa a prop perquè el PLL no seria capaç de reaccionar tan ràpidament i no funcionaria correctament.
La figura 4.5 mostra el funcionament del PLL davant d’un desequilibri sobtat de V_{sabc}. Aquest desequilibri de la xarxa podria ser degut a moltes circumstàncies externes com podria ser una tempesta. Inicialment el PLL està en estat estacionari. A $t=0.05s$, el sistema AC rep la pertorbació i V_{sd} passa de 391V a 260V i a $t=0.15s$ torna al seu valor original. Per respondre a la pertorbació, $H(s)$ canvia el valor de ω, com es veu a la figura 4.5, per mantenir V_{sq} a zero. A la figura 4.5 veiem que V_{sq} i V_{sd} inclouen una ona de 120Hz però $H(s)$ s’encarrega de suprimir-la, mentre que ω i ρ es mantenen sense distorsions.
La figura 4.6 representa el funcionament del PLL davant un canvi en ω_0, que en aquest cas passem de 60Hz a 63Hz a $t=0.25$ i torna al seu valor inicial a $t=0.35$. Com es veu a la figura, V_{sd} i V_{sq} tornen ràpidament al seu valor inicial i ω canvia al seu nou valor.
Figura 4.6 Funcionament del PLL davant un canvi de freqüència

4.5. Conclusions
Observant les gràfiques es veu que el disseny del PLL funciona correctament per a les diferents situacions en que s'ha fet treballar, ja que sempre ofereix una tensió contínua que equival a l'evolvent del senyal trifàsic i una altra tensió contínua a zero volts. Per tant, es pot afirmar que s'ha realitzat un correcte disseny del PLL. Això ens permet utilitzar aquest bloc en el disseny de l'inversor trifàsic final.
5 Control de l’inversor trifàsic

5.1. Introducció

En aquest capítol es dissenya el control de potència. Es comença per explicar que és la potència activa i reactiva. També s’explica el bloc PWM que s’haurà de posar a la sortida del control per adaptar el senyal per als transistors. Més endavant, s’estudia la possibilitat d’implementar un control de voltatge o de corrent. Es tria el control, s’explica el seu funcionament i per últim es passa a dissenyar e implementar aquest control. S’extrauran gràfiques per observar el seu funcionament i s’extrauran les conclusions.

5.2. Potència activa i reactiva

La potència activa ve determinada per la carrega resistiva que es connecta al circuit AC. El treball útil de la càrrega determinarà la potencia activa que haurà de subministrar la font. La potència activa es representa per la lletra P i la seva unitat de mesura es el watt (W).

La potencia reactiva es la que consumeixen els circuits AC que tenen connectades càrregues actives, com poden ser motors, transformadors de voltatge i qualsevol dispositiu que contingui bobines. Les bobines consumeixen potencia activa i reactiva. La potencia reactiva no proporciona ningú tipus de treball útil, però els dispositius com les bobines requereixen aquest tipus de potència per poder produir el camp magnètic amb el qual funcionen. La unitat de mesura de la potència reactiva es el volt-amper reactiu (VAR).

El sistema VSC de la figura 3.1 pot ser utilitzat com a control de la potencia activa i reactiva. El costat DC del VSC esta connectat en paral·lel amb una font DC i l’objectiu es controlar la potencia activa i reactiva instantània que el sistema VSC intercanvia amb el sistema AC.
5.3. Modulador d’amplada de polsos (PWM)

El modulador d’amplada de polsos és un bloc que es posa abans dels transistors i és l’encarregat de fer-los commutar segons el senyal d’entrada que li arriba [7]. S’encarrega de variar el cicle de treball per a controlar la quantitat d’energia que s’envia a la xarxa elèctrica. S’utilitza aquest bloc perquè es té un senyal sinusoïdal i per fer commutar als transistors es necessita un senyal digital (quadrada i amb valors 0 o 1) que li indiqui a cada transistor quan ha d’estar obert (0) o quan ha d’estar tancat (1). Els transistors estan aparellats de tal manera que quan un té valor 0 la seva parella té el valor invers.

A la figura (A.8) de l’annex tenim l’esquema del bloc implementat i a la figura A.9 es veu més detalladament la part que s’encarrega de rebre el senyal que arriba del control i convertir-lo en 6 sortides (una per a cada transistor).

5.4. Elecció del control

Hi ha dos mètodes principals per controlar \(P_s \) i \(Q_s \) en el sistema VSC de la figura 5.1, control de voltatge o control de corrent [8,9]. S’escull el control de corrent perquè es pot regular que no hi hagin sobrecorrents amb un control dedicat exclusivament a controlar el corrent de la línia. Desprès, la potencia activa i reactiva es controlada per la fase i l’amplitud del corrent de la línia VSC respecte al punt PCC. També es pot dir que el control de corrent es més robust a la variació de paràmetres del sistema AC i VSC, un rendiment més elevat i un control amb més precisió [10].

5.5. Control de corrent del VSC

La figura 5.1 mostra el diagrama del control de corrent, on es pot apreciar que el control està realitzat en domini dq. Per tant, \(P_s \) i \(Q_s \) estan controlats per les corrents \(I_d \) i \(I_q \). Els senyals \(V_{tabc} \) i \(V_{sabc} \) són transformats al domini dq, per ser processats pels compensadors per produir el senyal de control. Finalment, els
senyals de controls són transformats al domini abc i connectats al VSC (figura 3.2). Per protegir el VSC, $I_{d_{ref}}$ i $I_{q_{ref}}$ estan limitades per blocs saturador[11,12].

Figura 5.1 Diagrama de control de corrent

Amb referència amb el control de la figura 5.1, la potència activa i reactiva que s'entrega al sistema de corrent alterna al PCC es la següent

$$P_s(t) = \frac{3}{2} [V_{sd}(t)i_d(t) + V_{sq}(t)i_q(t)] \tag{5.1}$$

$$Q_s(t) = \frac{3}{2} [-V_{sd}(t)i_d(t) + V_{sq}(t)i_q(t)] \tag{5.2}$$

On la V_{sd} i V_{sq} són les components dq del sistema AC i no poden ser controlats per el sistema VSC. Com es descriu al capítol 4, si el PLL esta en un estat d'equilibri, $V_{sq}=0$ i les equacions (5.1) i (5.2) es poden reescriure com
\[P_s(t) = \frac{3}{2} V_{sd}(t)i_d(t) \] \hspace{1cm} (5.3) \\
\[Q_s(t) = -\frac{3}{2} V_{sd}(t)i_q(t) \] \hspace{1cm} (5.4)

Per tant, sobre la base de (5.3) i (5.4), \(P_s(s) \) i \(Q_s(s) \) poden ser controlades per \(I_d \) i per \(I_q \), respectivament.

\[I_{dref}(t) = \frac{2}{3V_{sd}} P_{sref}(t) \] \hspace{1cm} (5.5)

\[I_{qref}(t) = -\frac{2}{3V_{sd}} Q_{sref}(t) \] \hspace{1cm} (5.6)

Si el sistema de control pot donar un seguiment de referència de manera ràpida, és a dir, identificació \(i_q \approx i_{qref} \), llavors \(P_s \approx P_{sref} \) i \(Q_s \approx Q_{sref} \), això vol dir que \(P_s(t) \) i \(Q_s(t) \), poden ser controlades de forma independent per els comandaments de referència. \(V_{sd} \) és una variable DC (en estat estacionari), \(I_{dref} \) i \(I_{qref} \) són també variables DC i \(P_{sref} \) i \(Q_{sref} \) són senyals constants. Per tant, com era d’esperar, el sistema de control dq funciona amb variables DC, a diferència del domini \(\alpha\beta \), que s’ocupa de les senyals sinusoidals.

5.6. Disseny del control de corrent

Aquest control assumeix una condició de \(\omega(t) = \omega_0 \).

\[L \frac{di_d}{dt} = L\omega_0 i_q - (R + r_{on})i_d + V_{td} - V_{sd} \] \hspace{1cm} (5.7)

\[L \frac{di_q}{dt} = -L\omega_0 i_d - (R + r_{on})i_q + V_{tq} - V_{sq} \] \hspace{1cm} (5.8)

Per tant, \(V_{td} \) i \(V_{tq} \) són

\[V_{td}(t) = \frac{v_{dc}}{2} m_d(t) \] \hspace{1cm} (5.9)

\[V_{tq}(t) = \frac{v_{dc}}{2} m_q(t) \] \hspace{1cm} (5.10)

Les equacions (5.9) i (5.10) representen el model VSC en dq. El model es aplicable tant a VSC de dos nivells i a NPC de tres nivells. En (5.7) i (5.8), \(i_d \) i \(i_q \)
són variables d’estat, V_{td} i V_{tq} variables d’entrada del control, i V_{sd} i V_{sq} són entrades de pertorbació. Degut a la presència de $L\omega_0$ termes de les equacions (5.7) i (5.8), la dinàmica de i_d i i_q estan acoblades, per desacoblar la dinàmica es pot determinar m_d i m_q.

$$m_d = \frac{2}{v_{dc}} (u_d - L\omega_0 i_q + V_{sd}) \quad (5.11)$$

$$m_q = \frac{2}{v_{dc}} (u_q + L\omega_0 i_d + V_{sq}) \quad (5.12)$$

On u_d i u_q són dos noves entrades de control. Substituint m_d i m_q en les equacions (5.9) i (5.10), respectivament a partir de (5.11) i (5.12), i la substitució de V_{td} i V_{tq} a partir de (5.7) i (5.8), es dedueix

$$L \frac{di_d}{dt} = -(R + r_{on})i_d + u_d \quad (5.13)$$

$$L \frac{di_q}{dt} = -(R + r_{on})i_d + u_q \quad (5.14)$$

Figura 5.2 Diagrama del bloc de control

Les equacions (5.13) i (5.14) descriuen dos desacoblaments de primer ordre, en sistemes lineals. Amb base a (5.13) i (5.14), i_d i i_q poden ser controlades
per u_d i u_q, respectivament. La figura 5.2 mostra una representació de blocs dels controladors del eixos q i d del VSC, on u_d i u_q són les sortides dels compensadors corresponents. El eix d s’encarrega del procés $e_d = i_{dref} - i_d$ i ofereix u_d a la sortida, després gràcies a l’equació (5.11), u_d contribueix a m_d. Per un altre costat, el eix q s’encarrega del procés $e_q = i_{qref} - i_q$ i proporciona u_q, que sobre la base de (5.12), contribueix a m_q. El VSC amplifica m_d i m_q per un factor de VCC/2 i genera V_{td} i V_{tq}, que a la seva vegada, influeix sobre i_d i i_q sobre la base de (5.7) i (5.8). Sobre la base del procés de control avançamentat [13], podem dibuixar un diagrama de blocs més simplificat com el de la figura 5.3, que és equivalent al sistema de control de la figura 5.2.

La figura 5.3 indica que les plantes de control, tant el eix d com el q, tenen els bucles idèntics. Per tant, els compensadors utilitzats també poden ser iguals. A diferència dels control en αβ on els compensadors són bastant difícils de optimitzar i per lo general son de alt orde dinàmic, $k_d(s)$ pot ser un simple proporcional-integral (PI). El compensador permet el seguiment d’un comandament de referencia DC. Per tant,
\[K_d(s) = \frac{k_p s + k_i}{s} \] (5.15)

On \(k_p \) i \(k_i \) són guanys proporcionals e integrals, respectivament. Per tant, el guany de llàc és

\[l(s) = \left(\frac{k_p}{L_s} \right)^{s+k_i/k_p} \frac{s+(R+r_{on})/L}{s+(R+r_{on})/L} \] (5.16)

S'ha de senyalar que degut al pol en la planta en \(s = -(R+r_{on})/L \) que és bastant proper a l'origen, la magnitud i la fase del guany del bucle començarà a caure a partir d'una freqüència relativament baixa. Per tant, el pol de la planta és el primer cancel·lat per el compensador de zero \(s = -k_i/k_p \), i el guany de llàc assumeix la forma \(l(s) = k_p/(L_s) \). La funció de transferència de llàc tancat, es a dir, \(l(s)/(1+l(s)) \), es converteix en

\[\frac{l_d(s)}{l_{dref}(s)} = G_i(s) = \frac{1}{\tau_i s + 1} \] (5.17)

Si

\[k_p = L/\tau_i s \] (5.18)

\[k_i = (R+r_{on})/\tau_i \] (5.19)

On \(\tau_i \) és la constant de temps resultant del sistema del circuit tancat.

La equació (5.17) indica que si \(k_p \) i \(k_i \) són seleccionats en base a (5.18) i (5.19), la resposta \(i_d(t) \) per \(i_{dref}(t) \) es basa en una funció de transferència de primer ordre la qual conté una constant de temps \(\tau_i \) que és una opció de disseny. \(\tau_i \) ha de ser petita per una resposta ràpida a la corrent de control, però adequada per \(1/\tau_i \), es a dir, l'amplà de banda del sistema és considerablement menor que la freqüència de commutació del VSC (expressada en rad/s). Dependent dels requeriments d'una aplicació específica i del convertidor, la freqüència de commutació \((\tau_i) \) és selecciona entre 0,5 i 5 ms.
5.7. Implementació del control de corrent

El controlador de la figura 5.1 té els següents paràmetres:
L=100µH, R=0.75mΩ, r=0.88mΩ, V_{dc}=1250V. El sistema AC es de V_{sd}=391V i f=60Hz. S’utilitza el PLL dissenyat anteriorment per sincronitzar el sistema AC amb el domini dq.

Prent τ_i=2ms deduïm els compensadors,

\[K_d(s) = K_q(s) = \frac{0.05s+0.815}{s} \quad [\Omega] \quad (5.20) \]

Els controladors del sistema estan desactivats fins a l’instant t=0.15s per a que el PLL arribi a l’estat estacionari. A t=0.15s s’activa el sistema i els controls mentre que \(P_{sref} \) i \(Q_{sref} \) segueixen sent 0. A t=0.2s, \(P_{sref} \) canvia de 0 a 2.5MW. A t=0.3s, \(P_{sref} \) cambia de 2.5MW a -2.5MW. A t=0.4s, \(Q_{sref} \) canvia de 0 a 1MVAR.

La figura 5.4 mostra la posada en funcionament del VSC i les respostes a les pertorbacions. Es pot apreciar que \(P_s \) i \(Q_s \) segueixen ràpidament a \(P_{sref} \) i \(Q_{sref} \) respectivament. La figura 5.4 també mostra \(V_a \) i \(I_a \) que és el voltatge i el corrent de la fase a de la línia AC. Es pot apreciar com

- \(I_a \) està en fase amb \(V_a \) quan \(P_s = 2.5MW \) i \(Q_s = 0 \)
- \(I_a \) està en contrafase (180º) de \(V_a \) quan \(P_s = -2.5MW \) i \(Q_s = 0 \)
- \(I_a \) està a 158º de \(V_a \) quan \(P_s = -2.5MW \) i \(Q_s = 1MVAR \)
La figura 5.5 mostra un primer pla de i_d i i_q al voltant de $t=0.20s$. S’aprecia que i_d té una resposta esglaó que arriba al seu valor final al voltant de $t=0.21s$, es a dir, passats 10ms. La figura 5.5 també mostra com i_q es manté a 0 sempre tot i el salt que fa i_d de 0 a 4260A.

Figura 5.4 Resposta dinàmica de potència activa i reactiva
La figura 5.6 mostra m_{dq} i m_{abc}. El senyal m_{abc} és el que s’obté a la sortida del PLL dq-abc, que té com a entrada m_{dq}. Es veu que a l’instant $t=0.2s$, m_d fa un salt fins de 0.625 a 0.965.
5.8. Conclusions

Segons la informació s'ha decidit utilitzar un control de corrent per les seves avantatges, en comptes de un control de tensió. El disseny del control proporciona un bon control de la potència, i es pot apreciar clarament que les gràfiques mostren la potència de referència juntament amb la que proporciona el circuit i es pot veure un comportament molt semblant. També s'extrau gràfiques dels diferents punts d'interès del circuit i s'observa un bon comportament en tots els senyals.
6 Control de la font de potència

6.1. Introducció

En els apartats anteriors es presentava el model de control de la figura 5.1, on la seva funció era controlar la potència activa i reactiva que intercanvia amb el sistema AC. En el control, el bus DC del VSC és ideal. El sistema VSC actua com intercanviador d’energia bidireccional entre el sistema AC i la font de tensió. No obstant, en moltes aplicacions, com per exemple, la energia fotovoltaica (PV) i els sistemes de piles combustibles, el costat VSC no és connectat per una font de tensió, sinó que està connectat a una font de potència que necessita ser connectada i produir un canvi (real) de potència amb el sistema AC. Per tant, el voltatge del bus DC no està fixat, per això, aquest ha de ser regulat. Aquest escenari s’il·lustra en la figura 6.3.

El sistema VSC de la figura 6.3 es conceptualment la mateixa figura que la figura 5.1, excepte que la font de voltatge (DC) es substitueix per una font de potència (variable). La font de potència representa normalment una unitat de potència electrònica, com una font d’energia primària, per exemple, un camp fotovoltaic, una velocitat del vent variable d’un conjunt turbogenerador, un conjunt de piles de combustible o un gas d’una turbina-generador. El sistema VSC de la figura 6.3 permet un intercanvi d’energia bidireccional entre la font de potència i el sistema AC.

En aquest capítol s’implementa un model de font de potència real (una matriu de panells fotovoltaics). Primer es presenta la font de potència, s’explica el seu funcionament i es veu les adaptacions necessàries per treballar correctament amb la nova font. Després s’explica en que consisteix el control de la font, es dissenya aquest control adaptat a la font i per últim es simula amb simulink el circuit, s’extrauen les gràfiques i s’obtenen les conclusions.
6.2. Font de potència

La font de potència és una matriu de panells fotovoltaics que aprofiten la irрадiància del sol per a proporcionar una corrent equivalent (figura 6.1).

Figura 6.1 Font de potència de panells fotovoltaics

Per fer la simulació es col·loca un condensador gran entre els panells i el sistema VSC per a convertir aquesta corrent en una tensió i així poder tractar-la. El seu comportament està descrit en la figura 6.2, en que es veu els seus valor característics. El corrent de curtcircuit (corrent màxim) és \(I_{sc} = 230 \text{A} \) i el voltatge en circuit obert (voltatge màxim) és de \(V_{oc} = 1656 \text{V} \). S’observa a la figura 6.2 la típica corba de V/P en que es veu que el punt de màxima potència i on es desitja treballar és a 1250V. També com es veurà s’aconsegueix treballar en un ample marge de valors acotats entre 1000 i 1500V.
6.3. Model de control de la font de potència

L’objectiu principal és controlar la tensió i regular el V_{dc}. Com il·lustra el control de la figura 6.3, P_s i Q_s poden ser controlades de forma independent. Per tant, per regular la tensió, s’utilitza un sistema realimentat que compara V_{dc} amb una referència i, en conseqüència s’ajusta P_s, de tal manera que la potència neta intercanviada pel bus DC es manté a zero. No obstant, la reacció Q_s pot ser controlada independentment. En moltes aplicacions Q_s pot ser regulada a zero, es a dir, el sistema VSC opera amb un factor de potència [14].
Figura 6.3 Diagrama del control de la font de potència

El requeriment principal a l’hora de controlar l’alimentació de la figura 6.3 és la de regular el voltatge del bus DC, V_{dc}. S’ha optat per regular V_{dc}^2 en comptes de V_{dc}. La dinàmica de V_{dc}^2 es descriu per

$$\frac{dV_{dc}^2}{dt} = \frac{2}{c} P_{loss} - \frac{2}{c} \left[P_s + \frac{2LP_s}{3V_{sd}} \frac{dP_s}{dt} \right] + \frac{2}{c} \left[\frac{2LQ_s}{3V_{sd}^2} \frac{dQ_s}{dt} \right] (6.1)$$

És vàlid per les dues configuracions de VSC. Sobre la base de (6.1), V_{dc}^2 és la sortida, P_s és la entrada de control, P_{loss} i Q_s són les entrades de pertorbació. Com es mostra a la figura 6.1, V_{dc}^2 es compara amb $V_{dc ref}^2$, la senyal d’error es processat per el compensador $K_v(s)$, i el $P_{s ref}$ es emès per el control. El control, a la seva vegada, regula P_s en $P_{s ref}$, mentre que Q_s pot ser controlada independentment, $Q_{s ref}$ es pot ajustar a un valor diferent de zero si el intercanvi d’energia reactiva amb el sistema AC es necessari. En un sistema AC amb una
impedància gran, la tensió PCC està subjecta a variacions de \(P_s \) respecte el temps. En aquests cas, la tensió de PCC pot ser regulada per el control de \(Q_s \), en un sistema de circuit tancat que s’alimenta per la part de darrere de la tensió PCC i \(Q_{sref} \).

Per derivar la funció de transferència \(G_p(s) = P_s/P_{sref}(s) \), s’observa que

\[
I_t(s) = G_i(s)I_{tref}(s) \tag{6.2}
\]

On \(G_i(s) \) està donada per (5.17). Suposant que \(V_{sd} \) es constant, multiplicant per els dos costats de (6.2) per \((3/2)V_{sd} \), s’obté,

\[
P_s(s) = G_i(s)P_{sref}(s) \tag{6.3}
\]

Per tant, \(G_p(s) = G_i(s) \) es basa en (5.17), sobte

\[
\frac{P_s}{P_{sref}(s)} = G_p(s) = \frac{1}{\tau_i s + 1} \tag{6.4}
\]

El control de la planta explicada en l’equació (6.1) és no lineal degut a \(P_s \frac{dP_s}{dt} \) i \(Q_s \frac{dQ_s}{dt} \). Amb la planta linealitzada, on \(\tilde{V}_s \) es substituïda per \(V_{sd} \).

\[
\frac{d\tilde{V}_{dc}^2}{dt} = \frac{2}{C} \left[\tilde{P}_s + \left(\frac{2LP_{s_0}}{3V_{sd}^2} \right) \frac{d\tilde{P}_s}{dt} \right] + \frac{2}{C} \left[\left(\frac{2LQ_{s_0}}{3V_{sd}^2} \right) \frac{d\tilde{Q}_s}{dt} \right] \tag{6.5}
\]

On els superíndex \(\sim \) i 0 representen, respectivament pertorbacions i valor de estat estacionari en petita senyal. L’aplicació de la transformada de Laplace a (6.5), es dedueix la funció de transferència \(G_v(s) = \frac{\tilde{V}_{dc}^2}{\tilde{P}_s} \) com

\[
G_v(s) = \frac{\tilde{V}_{dc}^2}{\tilde{P}_s} = - \left(\frac{2}{C} \tau s + 1 \right) \frac{\tau s + 1}{s} \tag{6.6}
\]

On la constant de \(\tau \) és

\[
\tau = \frac{2LP_{s_0}}{3V_{sd}^2} \tag{6.7}
\]
La equació (6.7) indica que τ es proporcional (en estat estacionari) al flux de potència P_{s0}. Per tant, si P_{s0} és petit, τ es insignificant i la planta es predominant a un integrador. A mesura que s’augmenta P_{s0}, τ es fa més gran i provoca un canvi en la fase de $G_v(s)$. Quant P_{s0} va creixent, τ es suma a la fase de $G_v(s)$. Amb base a (6.6) a la planta el zero ve donat per $z = -1/\tau$. Per tant, un impacte negatiu en τ correspon a un zero en el semiplà dret (LD). En conseqüència, el control de la tensió no es de fase mínima. Aquesta propietat de fase mínima té un impacte perjudicial sobre la estabilitat del sistema i s’ha de tenir en compte a l’hora de fer el disseny del control.

6.4. Control de la font de potència

La figura 6.4 mostra un diagrama de blocs del control per el port de la font de potència de la figura 6.3. El sistema del circuit tancat consta del compensador $K_v(s)$, el controlador $G_p(s)$, i el control de la planta $G_v(s)$, com és explicat per l’equació (6.5). Les figures 6.3 i 6.4 indiquen que $K_v(s)$ es multiplica per -1 per compensar el signe negatiu de $G_v(s)$. $K_v(s)$ ha incloure un terme integral i una funció de transferència. La funció de transferència compensa el desfasament de plantes i assegura un marge de fase adequat a la freqüència de tall amb el guany. Amb base a les equacions (6.5) i (6.6), $G_v(s)$ té un retard més gran de fase que P_{s0}, on el seu valor nominal és negatiu. Si el marge de fase és adequat es pot garantir en el seu punt de funcionament, que el sistema en circuit tancat es manté estable.

![Diagrama de blocs del control basat en el model lineal](image_url)
Per dissenyar $K_p(s)$, primer s’ha de seleccionar el tall amb el guany ω_c de manera adequada, i ser més petit que l’ample de banda de $G_p(s)$, de tal manera que un pot assumir $G_p(j\omega_c) \approx 1 + j0$. Llavors, $K_v(s)$ es dissenya per un marge de fase suficientment gran, segons la condició de pitjor cas. El mètode de disseny utilitzat és el lloc de les arrels. L’avantatge d’utilitzar aquest mètode és que els índexs de rendiment, com per exemple, el temps d’establiment, està relacionat amb el pol/zero i es pot trobar d’una manera més fàcil, això es pot prendre en compte alhora de fer el disseny.

6.5. Implementació del control de la font de potència

Amb la figura 6.3 es prenen els paràmetres:

$2C=19.25\mu F$, $L=100\mu H$, $R=0.75m\Omega$, $r=0.88m\Omega$, $V_{dc}=1250V$, $V_{sd}=391V$ i $f=60Hz$.

El controls queden

$$K(s) = 0.0007 \ [V^{-1}]$$ \hspace{1cm} (6.8)

$$F(s) = \frac{s^2+(3\omega_0)^2}{(s+3\omega_0^2)} = \frac{s^2+1131^2}{s^2+2262s+1131^2}$$ \hspace{1cm} (6.9)

I segons 5.17 i 5.18, per $\tau_i=0.05ms$ es té que $k_p=0.2\Omega$ i $K_i = 3.26\Omega/s$, que correspon a

$$G_p(s) = G_i(s) = \frac{1000}{s+1000}$$ \hspace{1cm} (6.10)

Aquest control està basat en la figura 6.4, on $G_v(s)$ és una funció del punt de funcionament (vegeu les equacions (6.6) i (6.7)). Per tant, $K_v(s)$ està dissenyat per el pitjor dels casos. L’equació (6.8) indica que l’ample de banda de $G_p(s)$ és de 1000 rad/s. Així, pel llac de control de la figura 6.4, es tria ω_c al voltant d’una cinquena part de l’ample de banda de $G_p(s)$, és a dir, 200 rad/s, per evitar l’excessiu retard de fase en el bucle.
Amb base a la figura 6.4, el guany del llac és

\[l(s) = -K_v(s)G_p(s)G_v(s) \] \hspace{1cm} (6.11)

On \(G_v(s) \) i \(G_p(s) \) estan donades per (6.8) i (6.9), respectivament. Per assegurar zero errors d'estat estacionari, \(K_v(s) \) ha d'incloure un terme integral. \(K_v(s) \) és

\[K_v(s) = N(s) \frac{K_o}{s} \] \hspace{1cm} (6.12)

On \(N(s) \) és una funció de transferència sense zero en \(s=0 \), i \(k_0 \) es un guany constant. Substituint \(G_v(s) \) i \(K_v(s) \) en (6.11), respectivament, a partir de (6.6) i (6.12), s’obté

\[l(s) = N(s)K_0 \left(\frac{2}{C} \right) \frac{\tau s + 1}{s^2 (0.001s+1)} \] \hspace{1cm} (6.13)

\(N(s) \) seria el següent filtrat:

\[l(s) = 374.23 \left(\frac{2}{C} \right) \frac{\tau s + 1}{s^2 (0.001s+1)} \] \hspace{1cm} (6.14)

On \(\rho \) és el pol de filtrat, \(\alpha (> 1) \) és una constant real, i \(n_0 \) es el guany del filtrat.

La fase màxima del filtrat està donada per

\[\delta_m = \sin^{-1} \left(\frac{\alpha-1}{\alpha+1} \right) \] \hspace{1cm} (6.15)

que correspon a la freqüència

\[\omega_m = \frac{p}{\alpha a} \] \hspace{1cm} (6.16)

Així, si un marge de fase, per exemple, 45\(^\circ\) es desitja per el pitjor dels casos de \(P_{s0} \), llavors necessitem \(\angle N(J200) \) per a ser de 80\(^\circ\).

Calcutant el valor de \(\alpha, \rho, i n_0 \), amb \(\delta_m=80^\circ, \omega_m=200 \text{ rad} / \text{s}, i | N(J200) | = 1 \), s’obté

\[N(s) = 10.38 \frac{s+19}{s+2077} \] \hspace{1cm} (6.17)

Substituint \(N(s) \) de (6.17) a (6.12) i (6.13),
\[l(s) = 388455 \left(\frac{s+19}{s+2077} \right) \left(\frac{\tau s+1}{s^2(0.001s+1)} \right) \] (6.18)

\[K_p(s) = 1868 \left(\frac{s+19}{s+2077} \right) \] (6.19)

Es refereix al guany del llàç de (6.18) com el guany de llàç compensat. La Figura 6.5 mostra les gràfiques de magnitud i fase del guany del llàç de compensació.

La figura 6.5 també mostra que \(| (J200) | = 1\). El sistema és estable amb un marge de fase acceptable.

![Figura 6.5 Magnitud i fase del guany de compensació](image)

Com s’ha anomenat en l’apartat 6.2, es treballa amb diferents valors per comprovar que el circuit es comporta adequadament dins del marc indicat de \(1000V < V_{dc} < 1500V\).
La figura 6.6 mostra la potència i la V_{dc} en el cas de 1000V.

Figura 6.6 potència i la V_{dc} en el cas de 1000V

S’observa que ofereix un bon senyal de 1000V amb una potència de poc més de 0.2MW.
La figura 6.7 mostra la potència i la V_{dc} en el cas de 1250V.

![Diagrama de potència i V_{dc}](image)

Figura 6.7 potència i la V_{dc} en el cas de 1250V

S’observa que ofereix un bon senyal de 1250V amb una potència més elevada que just es troba en el pic de la figura 6.2.
Per últim la figura 6.8 mostra la potència i la V_{dc} en el cas de 1500V, un punt proper al voltatge màxim.

![Diagrama](image)

Figura 6.8 potència i la V_{dc} en el cas de 1500V

S’observa que ofereix un bon senyal de 1500V amb una potència menor que la màxima però que s’ajusta a la que ha de proporcionar segons la figura 6.2.

Cal remarcar que en totes les figures anteriors s’injecta potència reactiva a l’instant $t=0.6s$ en que es veu una petita pertorbació que es resolta ràpidament pel sistema per a tornar al valor desitjat.

6.6. Conclusions

S’ha aconseguit tenir un control que gestiona bé l’energia proporcionada pels panells solars per a injectar-la a la xarxa elèctrica. A les gràfiques es veu el comportament dels panells fotovoltaics i com el control injecta la potència adequada a la xarxa. Hem aconseguit treballar en el pic de tensió (punt de màxima potència) que és el desitjat per aprofitar al màxim l’energia
subministrada per els panells fotovoltaics. També s'ha aconseguit treballar en un ampli marge de valors de la font perquè el nostre control pugui treballar correctament. El nostre marge que es garanteix un funcionament òptim compren entre 1000V i 1500V.
7 Conclusions i perspectives del treball

7.1. Conclusions

L’objectiu principal d’aquest treball és dissenyar un control capaç d’extreure l’energia d’una font renovable i adaptar aquesta energia per a la xarxa elèctrica amb la màxima eficiència. El control funciona correctament com es pot apreciar a la figura 5.4. Es pot veure que P_s i Q_s (potències subministrades pel circuit) segueixen ràpidament a P_{sref} i Q_{sref} respectivament (són les potències desitjades). La figura 7.1 també mostra V_a i I_a que és el voltatge i el corrent de la fase “a” de la línia AC. Es pot apreciar que I_a està en fase amb V_a quan $P_s=2.5$MW i $Q_s=0$, I_a està en contrafase (180°) de V_a quan $P_s=-2.5$MW i $Q_s=0$ i I_a està a 158° de V_a quan $P_s=-2.5$MW i $Q_s=1$MVAR. Aquest comportament de les fases era l’esperat.

S’ha aconseguit aquest propòsit i s’ha anat un pas més lluny implementant una font renovable real utilitzant un bloc que simula el comportament d’una matriu de panells fotovoltaics. S’ha adaptat el control per aquesta font concreta i s’ha aconseguit tenir un control que gestiona bé l’energia proporcionada pels panells solars per a injectar-la a la xarxa elèctrica. A la figura 6.2 es veu el comportament dels panells fotovoltaics i a la figura 6.7 com el control injecta la potència adequada a la xarxa. Com s’observa, es treballa en el pic de tensió (punt de màxima potència) que és el desitjat per aprofitar al màxim l’energia subministrada per els panells fotovoltaics. També s’obté un ampli marge de valors de la font perquè el control pugui treballar correctament. El marge que garanteix un funcionament òptim compren entre 1000V i 1500V (figura 6.6 i 6.8).
7.2. Perspectives de treball

Com en moltes ocasions, aquest treball permet endinsar-se més en els conceptes utilitzats o derivar aquests conceptes a uns altres camps.

Aquest treball gestiona una font DC i la adapta a la xarxa elèctrica AC. Es podrien utilitzar blocs d’aquest treball per a fer altre tipus de conversions, com per exemple AC/AC. Un model a implementar podria ser un HVDC (High-Voltage Direct Current) en configuració back-to-back, figura [15]. És la connexió utilitzada per connectar dos sistemes asíncrons (que treballen a diferent freqüència). La instal·lació consisteix en la interconnexió de dos convertidors situats en la mateixa estació convertidora, un per a cada sistema elèctric. La interconnexió es realitza mitjançant un enllaç en corrent continu, sense la necessitat d’una línia de transmissió.

En aquest bloc utilitza dos VSC que podrien ser com el d’aquest treball i els controls podrien estar basats en els del treball. D’aquesta manera, connectant els dos VSC en cascada es pot implementar el circuit anterior.

Finalment, no s’ha d’oblidar que aquest treball ha estat desenvolupat en el entorn de simulació MatLab Simulink, amb que només s’ha desenvolupat la part teòrica i les simulació pertinents. Per tant, per comprovar realment les avantatges e inconvenients del control utilitzat, les conclusions extretes i el funcionament del sistema tal com s’han simulat i explicat, seria necessari plasmar aquest treball en el laboratori. D’aquesta manera, es podria conèixer realment les aplicacions i dimensions d’aquest projecte.
Referències

9 Annex MatLab Simulink

A.1 Funcions utilitzades

- **plot (x,y,'c')**: dibuixa una gràfica xy amb les variables que posis dins de x i y. La 'c' es per escollir el color de la gràfica.

- **AXIS ([xo x1 y0 y1])**: esculls on comença i acaba els eixos x i y.

- **hold on/off**: manté un dibuix per a que es pugui dibuixar altres gràfiques sobreposades. Amb off desactiva la funció.

- **grid on/off**: activa/desactiva la reixeta.

- **figure**: obre una nova figura.

- **help x**: obre una llista de comandes per ajudar a veure les seves variants.

- **s = TF('s')**: inicia una funció de transferència.

- **num=[x]**: introdueixes el valor del numerador de la funció de transferència.

- **den=[y]**: introdueixes el valor del denominador de la funció de transferència.

- **SYS = TF(num,den)**: crea una funció de transferència amb el numerador i denominador escrits anteriorment.

- **bode (SYS)**: dibuixa el diagrama de bode del sistema.
A.2 Circuits implementats

Figura A.1 Implementació del PLL amb diferents configuracions de la font

Figura A.2 Vista interior del PLL de la figura A.1.

Figura A.3 Inversor trifàsic de dos nivells
Figura A.4 Vista interior del bloc del compensador en el domini dq de la figura A.3.

Figura A.5 Vista interior del bloc generador de senyal de referència de la figura A.3.

Figura A.6 Vista interior del bloc saturador de la figura A.3.
Figura A.7 Vista interior del bloc PLL 2 (dq-abc) de la figura A.3.

Figura A.8 Vista interior del bloc PWM de la figura A.3.
Figura A.9 Vista interior del bloc SVM de la figura A.7.

Figura A.10 Control de la font de potència.

Figura A.11 Font de potència.