ÍNDICE PLIEGO CONDICIONES

Índice pliego condiciones..3

Capítulo 1: montaje y desmontaje de los componentes diseñados en el proyecto.....................6

Capítulo 2: características durante el uso..13

 2.1. Parámetros de uso para el aluminio .. 14

 2.2. Parámetros de uso para el acero ... 14

Capítulo 3: mantenimiento de los elementos diseñados ...18

Capítulo 4: CONCLUSIONES .. 21
CAPÍTULO 1: MONTAJE Y DESMONTAJE DE LOS COMPONENTES DISEÑADOS EN EL PROYECTO

Los componentes que forman parte del conjunto de la herramienta de bruñido en este proyecto son:

- 3 casquillos de fricción para bolas de 3, 5 y 10 mm.
- 3 bolas de bruñido de diámetros 3, 5 y 10 mm.
- Y un vástago empujador

Como ya es sabido, estas piezas se encuentran en el interior del cuerpo principal de la herramienta. Pero si se intentan montar en su interior, las bolas de 3 y 5mm caerán inmediatamente ya que el cuerpo principal no está diseñado para sujetar otras bolas que no sean de 10mm de diámetro.

Por esta razón, asume importancia el diseño de cabezales para sujetar a las bolas y no caigan. Y como solución al problema, se opta por el diseño de 3 cabezales cuya finalidad será la de sujetar las bolas y no caigan.
El montaje de todos estos componentes en la herramienta de bruñido, se realizará de manera común para los 3 casos posibles (para las bolas de 3, 5 y 10mm). Los pasos a tomar serán los siguientes:

1- Primero de todo, se ha de escoger todas las piezas requeridas para proceder al montaje de éstas. Y se examina que todos los elementos correspondan al mismo grupo y no están mezclados entre sí.

2- Acto seguido, se debe comprobar que los componentes están limpios y no poseen ninguna partícula que dificulte el montaje de los elementos en la herramienta, o que incluso peor, pueda llegar a afectar a la pieza a realizar el proceso. Es por esta razón que el control de limpieza de los componentes deba realizarse siempre antes de proceder al montaje de los elementos que la componen. En caso de haber alguna partícula o impureza en alguna de las partes, se lavaría con agua y se secarían o bien al aire (con o sin alcohol) o bien con un material muy blando que no afectase a la calidad superficial de dichos componentes.

3- Después de haber comprobado el estado de los elementos, se procederá a la colocación del cuerpo principal de la herramienta en algún sistema de fijación con garras blandas con tal de sujetar la herramienta sin que se caiga y resulte dañada o pueda perjudicar de alguna forma al operario que la esté montando debido al peso de ésta. La pieza se dispondrá de forma vertical pero de forma inversa a la posición que tendría durante el proceso de bruñido. La fijación de la pieza debe disponerse de tal forma que no se obstaculice el montaje del resto de componentes. (véase figura 1.1)

4- Seguidamente, se introduciría la contra-tuerca por la parte superior del cuerpo principal en la disposición en que se encuentra (figura 1.2)

5- Se roscaría el cabezal a utilizar, desplazándolo hasta llegar a tener contacto con la superficie de la contratuerca. (figura 1.3)

6- En tal disposición, deberá apretarse bien la unión roscada, realizando el par necesario para que no se produzcan fallos durante el uso de la herramienta y de esa forma pudiera afectar a la superficie bruñida; pero que a su vez, sea fácil de realizar su desmontaje sin alterar a los componentes unidos. (figura 1.4)

7- Se desajustaría fijación de la herramienta y se gira el conjunto de las piezas unidas, disponiéndolas en posición del bruñido. (figura 1.5)

8- En esta posición, se procede a introducir cuidadosamente la bola de bruñido en el interior de la herramienta, con la ayuda de unas pinzas, en caso necesario. (figura 1.6)

9- Se realiza la misma operación para el casquillo de fricción y el vástago empujado (siguiendo este orden para la correcta colocación de los elementos en el interior del cuerpo principal). (figuras 1.7 y 1.8)
10- Finalmente, se introduce el resto de elementos que componen la herramienta y se procede al montaje de ésta a la máquina para su seguida utilización, no sin antes verificar la unión roscada.

El desmontaje de la herramienta se produciría de la misma forma pero de manera inversa. Se podría considerar igual a diferencia de las últimas operaciones a realizar:

- Una vez desmontada la pieza, se procederá a la limpieza de sus componentes para la buena conservación de la herramienta.

- Por acabado, se recogería los elementos que componen la herramienta, para que pueda evitar que sean dañados y puedan dejar de tener la misma eficiencia o tenga que elaborarse de nuevo alguno de sus componentes.

A continuación, se puede ver de forma esquemática la secuencia de montaje o desmontaje, descrita anteriormente, de los elementos que componen este prometo:

Figura 1.1: Posicionamiento y fijación del cuerpo principal

Figura 1. contratuerca
Figura 1.3: Introducción del cabezal

Figura 1.4: Apriete entre el cabezal y la contratuerca

Figura 1.5: Girar herramienta
Figura 1.6: Introducción de la bola

Figura 1.7: Introducción del casquillo

Figura 1.8: Introducción del vástago
CAPÍTULO 2:
CARACTERÍSTICAS DURANTE EL USO

Durante el uso de la herramienta, se tendrá en cuenta el material que vaya a ser bruñido, puesto que los parámetros varían. Se puede hacer una diferencia entre elementos de la familia de los aceros y elementos de la familia de los aluminios.

El motivo de las variaciones en los parámetros del proceso, evidentemente resultan de la diferencia de las características mecánicas entre ambas familias.
2.1. Parámetros de uso para el aluminio

En la tabla 2.1, se recogen los parámetros característicos:

<table>
<thead>
<tr>
<th>Parámetros de utilización para el aluminio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad de avance (Va)</td>
</tr>
<tr>
<td>Velocidad de corte (Vc)</td>
</tr>
<tr>
<td>Profundidad de pasada (p)</td>
</tr>
<tr>
<td>Profundidad lateral (b)</td>
</tr>
</tbody>
</table>

Tabla 2.1: Parámetros de uso para aluminio

2.2. Parámetros de uso para el acero

En la tabla 2.2, se recogen los parámetros característicos:

<table>
<thead>
<tr>
<th>Parámetros de utilización para el aluminio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad de avance (Va)</td>
</tr>
<tr>
<td>Velocidad de corte (Vc)</td>
</tr>
</tbody>
</table>
Para ambos la estrategia de mecanizado a seguir irá en función de los objetivos a obtener en la pieza bruñida. Así pues, se efectuará un mecanizado paralelo o perpendicular al mecanizado previo puesto que los resultados obtenidos serán diferentes.

Tabla 2.2: Parámetros de uso para acero

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad de pasada (p)</td>
<td>0,5 - 1,0 mm</td>
</tr>
<tr>
<td>Profundidad lateral (b)</td>
<td>0,08 - 0,15 mm</td>
</tr>
</tbody>
</table>
CAPÍTULO 3: MANTENIMIENTO DE LOS ELEMENTOS DISEÑADOS.

Como toda herramienta, ésta también requiere de un mantenimiento para la conservación de ésta en buenas condiciones y le conlleve a una larga vida de uso, para realizar su finalidad correctamente y mejorar la calidad superficial y características mecánicas de la pieza sometida.

Tal y como se ha comentado anteriormente, la limpieza de la herramienta es muy importante para realizar un buen mantenimiento de ésta. Tanto previamente al uso de susodicha, como a posteriori.

Además, es importante realizar una buena limpieza, ya que pueden quedar restos de lubricante en los componentes de la herramienta que pueden provocar en éstos defectos como:

- Mal ajuste o acoplamiento entre los elementos que componen la herramienta de bruñido.
- Suciedad incrustada que sea muy difícil de quitar y que influyan en el resto de piezas.
- Un posible avance favorable a la aparición del fenómeno de la corrosión.

- Puede causar que la rosca pierda efectividad, por diferentes razones

- Etc.

Para evitar la aparición de estos defectos u otros, se realizará los siguientes medios preventivos:

- Minucioso cuidado con la limpieza de estos componentes (previos y posteriores)

- Evitar la limpieza con productos inapropiados que puedan favorecer a la aparición de fenómenos corrosivos o uso de materiales puedan alterar la calidad superficial de éstos.

- Se intentará poner especial cuidado con las partes críticas de cada elemento.

- No se hará uso indebido o inapropiado de cada elemento que compone la herramienta.

- Periódicamente, se realizará una limpieza por ultrasonidos para limpiar la suciedad de las zonas inaccesibles o que sean más difícil de extraer.
CAPÍTULO 4: CONCLUSIONES

Un buen uso y mantenimiento de la herramienta fabricada alarga la vida útil de ésta. Mientras que lo contrario dejaría de tener utilidad y conllevaría una pérdida de dinero y tiempo.