Estudio del grado de asociación entre la señal de resonancia magnética cerebral y la ecografía transcraneal

Universitat Politècnica de Catalunya

Enero 2012

Rafael Carrascosa Morales
“El cerebro es lo más complejo que se ha descubierto hasta la fecha en el universo”

James Watson (descubridor del ADN)
Índice general

1. Introducción
 1.1. Motivación .. 13
 1.2. Ventajas y limitaciones 15
 1.3. Resumen ... 16

2. Imagen médica ecográfica 18
 2.1. Introducción .. 18
 2.2. Sistemas de ultrasonido comerciales 23
 2.2.1. El transductor 25
 2.2.2. Propiedades de las ondas acústicas 27
 2.2.3. Atenuación .. 30
 2.2.4. Ruido .. 30

3. Imagen de resonancia magnética 33
 3.1. Introducción .. 33
 3.2. Sistemas comerciales de resonancia magnética 36
 3.2.1. El escáner .. 36
 3.2.2. Propiedades de las ondas electromagnéticas 39
4. Protocolo de adquisición

4.1. Adquisición

4.1.1. Aparataje utilizado

4.1.2. Formato y características de las imágenes adquiridas

4.2. Planos médicos

4.2.1. Planos Transversales

5. Tratamiento de los datos

5.1. Extracción del cráneo

5.1.1. Ecografía

5.1.2. Volumen de resonancia magnética

5.2. Corregistro del cráneo

5.2.1. Redimensionado y espacio de trabajo

5.2.2. Corregistro del cráneo entero

5.2.3. Corregistro de las mitades del cráneo

5.3. Extracción del plano

5.3.1. Determinación del punto representativo del cráneo de la ecografía

5.3.2. Determinación del tercer punto

5.3.3. Transformación de los puntos

5.3.4. Extracción del corte

5.3.5. Resultado de la primera aproximación

5.4. Corregistro del cerebro a partir de la información mutua normalizada

5.4.1. Motivación

5.4.2. Información Mutua Normalizada (NMI) [20]

5.4.3. Estrategia a seguir
6. Resultados

6.1. Mejor corte del volumen de MRI

6.2. Superposición de las materias y el cráneo con la ecografía

6.3. Evaluación de los resultados

6.3.1. Medida de la significancia del corregistro

6.3.2. Diferencias estadísticas entre los tres tipos de tejido del cerebro

6.3.3. Puntos significativos entre la ecografía y el corte de MRI

7. Conclusiones y trabajo futuro
Índice de figuras

<table>
<thead>
<tr>
<th>Sección</th>
<th>Figura Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Instrumento - Imagen médica obtenida con el instrumento correspondiente</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Esquema del sistema de ultrasonido [10]</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Transductor</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Efecto piezoeléctrico</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Reflexión y transmisión de una onda</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Ejemplo de caminos distintos provocados por los scatterers</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Interferencia debida a las múltiples reflexiones [13]</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Godfrey Hounsfield junto al primer escáner de tomografía computada</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Esquema de un escáner</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Cráneo y materia blanca (en amarillo el mesencéfalo, en verde la fosa temporal)</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Realización de una TCS</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Vivid q</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>Transductor M4S-RS</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Escáner Siemens Tim Trio 3.0T</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Campo de visión del escáner</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>Cráneo</td>
<td>50</td>
</tr>
</tbody>
</table>
4.8. Sutura esfenoparietal ... 51
4.9. Planos corporales ... 52
4.10. Mesencéfalo (A), Tálamos (B) y Cisura interhemisférica (C) en una TCS .. 53
5.1. Diagrama de bloques del tratamiento de los datos 55
5.2. Ecografía original .. 57
5.3. Primera máscara (izquierda) y segunda máscara (derecha) 58
5.4. Smoothing de la ecografía ... 59
5.5. Umbral automático de Matlab® 59
5.6. Función de densidad de probabilidad (umbral de Matlab® = 75, umbral mejorado = 144.5) .. 60
5.7. Resultado con el umbral mejorado 60
5.8. Volumen de MRI .. 61
5.9. Volumen de materia gris (izquierda) y de materia blanca (derecha) 62
5.10. Volumen de líquido cefalorraquídeo (izquierda) y cráneo (derecha) 63
5.11. Diagrama de bloques del corregistro del cráneo 64
5.12. Superposición cráneo entero:
\[\Delta x = 157 \text{ píxeles} \quad \Delta y = 80 \text{ píxeles} \quad \text{Plano} = 121 \quad (\text{eje Z}) \quad \text{Rotación} = -0.5 \text{ grados} \quad \text{Coeficiente de correlación} = 0.8868 \] ... 67
5.13. Superposición tras la primera aproximación 68
5.14. Histograma de las correlaciones (percentil 80) 69
5.15. Superposición izquierda:
\[\Delta x = 100 \text{ píxeles} \quad \Delta y = 168 \text{ píxeles} \quad \text{Plano} = 121 \quad (\text{eje Z}) \quad \text{Rotación} = -1 \text{ grados} \quad \text{Coeficiente de correlación} = 0.9306 \] ... 70
5.16. Superposición derecha:
\[\Delta x = 80 \text{ píxeles} \quad \Delta y = 155 \text{ píxeles} \quad \text{Plano} = 120 \quad (\text{eje Z}) \quad \text{Rotación} = 0 \text{ grados} \quad \text{Coeficiente de correlación} = 0.9282 \] ... 70
5.17. Mitades del cráneo .. 72
5.18. Puntos representativos de cada región de cráneo 72
5.19. Reducción a un sólo punto .. 73
5.20. Espacios con los que se trabaja 73
5.21. Correspondencia de puntos entre espacios 75
5.22. Volumen únicamente con el corte 77
5.23. Reconstrucción del corte ... 78
5.24. Máscara de promediado (pixel rojo de valor 2, pixel azul de valor 1) 79
5.25. Corte final ... 79
5.26. Corte de materia blanca (izquierda) y de materia gris (derecha) ... 80
5.27. Corte de líquido cefalorraquídeo (izquierda) y de cráneo (derecha) 81
5.28. Superposición de la materia blanca con la ecografía 82
5.29. Distribución conjunta de la materia blanca para un caso concreto 86
5.30. Distribución conjunta de la materia gris para un caso concreto 86
5.31. Distribución conjunta del líquido cefalorraquídeo para un caso concreto 87
5.32. Entropía de la resonancia (izquierda) y de la ecografía (derecha) para un caso concreto ... 88
5.33. Diagrama de bloques del corregistro del cerebro 89
5.34. Ecografía original limpia (izquierda) y filtrada (derecha) . . 89
5.35. Diagrama de bloques de una etapa de corregistro del cerebro ... 90
5.36. Movimiento sagital ... 91
5.38. Gráficas de MI para todo el cerebro. Max = pond_MI[8,2] = 0.0133 (arriba) y la materia gris. Max = GM_MI[1,10] = 0.0124 (debajo) . 92
5.39. Gráficas de MI para el líquido cefalorraquídeo. Max = CSF_MI[6,3]=0.0131 (arriba) y la materia blanca. Max = WM_MI[1,14] = 0.0152 (debajo) . 93
5.40. Estructura de una neurona ... 94
5.41. Movimiento coronal .. 95
5.42. MI del movimiento coronal para todo el cerebro. Max=MI_pond[3]=0.0136 ... 95
5.43. MI del movimiento coronal para la materia gris (arriba) y probabilidad conjunta del máximo (debajo). Max=GM_MI[4]=0.0126 ... 96
5.44. MI del movimiento coronal para el líquido cefalorraquídeo (arriba) y probabilidad conjunta del máximo (debajo). Max=CSF_MI[1]=0.0164 ... 97
5.45. MI del movimiento coronal para la materia blanca (arriba) y probabilidad conjunta del máximo (debajo). Max=WM_MI[36]=0.0157 ... 98

6.1. Mejor corte del volumen de resonancia magnética 101
6.2. Ecografía utilizada .. 101
6.3. Superposición de las materias con la ecografía 102
6.4. Orden de ejecución para medir la MI reordenando píxeles de la misma materia .. 105
6.5. p=0, umbral de MI=0.0177 .. 106
6.6. p=0, umbral de MI=0.0120 .. 106
6.7. p=0, umbral de MI=0.0170 .. 107
6.8. Orden de ejecución para medir intercambiando materias 108
6.9. p=0, umbral de MI=0.0177 .. 108
6.10. p=0, umbral de MI=0.0120 .. 109
6.11. p=0.001, umbral de MI=0.0170 109
6.13. Señales de cambio de medio en la ecografía 113
6.14. Puntos significativamente coincidentes del CSF y la ecografía 114
<table>
<thead>
<tr>
<th></th>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Esquema de la precesión</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>Separación de líneas espectrales</td>
<td>124</td>
</tr>
<tr>
<td>3</td>
<td>Triángulo representativo del ángulo que supone un voxel</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>Mesencéfalo en la ecografía</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>Detección por medio de una snake</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>Detección manual del mesencéfalo</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>Adaptación del atlas al vMRI</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>Tálamos en el vMRI</td>
<td>131</td>
</tr>
<tr>
<td>9</td>
<td>Tálamo con el cilindro debajo</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>Reconstrucción morfológica de la materia blanca</td>
<td>132</td>
</tr>
<tr>
<td>11</td>
<td>Puntos en el espacio</td>
<td>135</td>
</tr>
<tr>
<td>12</td>
<td>GUI</td>
<td>141</td>
</tr>
</tbody>
</table>
Índice de cuadros

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comportamiento de las propiedades de las ondas acústicas en diferentes materiales (α a 1MHz) [11]</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Valores límite de exposición [15]</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Clasificación de ondas de telecomunicaciones</td>
<td>41</td>
</tr>
<tr>
<td>6.1</td>
<td>Resultados del bootstrapping para los 6 pacientes. Cálculos realizados únicamente para la materia blanca.</td>
<td>110</td>
</tr>
<tr>
<td>6.2</td>
<td>Resultados del Kruskal-Wallis para los 6 pacientes. * Valores por debajo de 10^{-8}</td>
<td>112</td>
</tr>
<tr>
<td>1</td>
<td>Algunas de las frecuencias de Larmor</td>
<td>120</td>
</tr>
</tbody>
</table>
Agradecimientos

Me gustaría agradecer a:

- Ivan Amat, por brindarme la oportunidad de trabajar en este proyecto, en el que tanto he disfrutado y por estar en todos los momentos en los que le he necesitado.

- Ferran Marqués, por el seguimiento que ha realizado a mi trabajo, aun estando en la distancia, sus consejos y opiniones, que me han servido de mucha ayuda.

- IDIBAPS Neuroinmunología, perteneciente al Hospital Clínic de Barcelona, por la cesión de las imágenes utilizadas en este proyecto.

- Elisenda Bonet, Álvaro Pérez, Dafnis Batallé y Jordi Luque, por ayudarme en algunos aspectos técnicos que he requerido y por facilitarme la faena.

- Transmural Biotech y sus trabajadores, por las facilidades ofrecidas y el gran ambiente de trabajo en el que me he visto envuelto.

- las personas que se han prestado voluntariamente para formar parte de este estudio.
• mis padres, Rafael y Marisa, mi hermano, David y mi novia, Gisella, por ser un apoyo moral muy importante durante la carrera, la realización de este proyecto y también fuera del ámbito académico.

• mis amigos, por aguantarme y por entender mi ausencia en algunos momentos a causa de la carrera.
Capítulo 1

Introducción

Este proyecto se enmarca dentro de Transmural Biotech SL, una spin off nacida en el grupo de investigación del Hospital Clínic de Barcelona con el objetivo de desarrollar nuevas soluciones tecnológicas para instrumentación médica y aplicaciones para el diagnóstico médico, ambas basadas en el procesado de imagen.

Las imágenes utilizadas para el estudio han sido recogidas en el recinto Maternidad del Hospital Clínic así como en Centro de Diagnóstico por la Imagen Clínica (CDIC) del Hospital Clínic de Barcelona.

1.1. Motivación

El estudio del cerebro es uno de los retos actuales en la medicina moderna. Existen varias técnicas de neuroimagen que ofrecen muy buenas resoluciones y permiten una fácil detección en caso de anomalía física. Las
técnicas más utilizadas son la resonancia magnética, tomografía axial computarizada (TAC), rayos X y tomografía por emisión de positrones (PET). Entre las técnicas de neuroimagen aceptadas no se encuentra la ecografía. No obstante, existen una serie de documentos que proponen que una ecografía transcraneal (Transcranial Sonography - TCS) puede ofrecer información textural del cerebro, debido a las propiedades físicas de reflexión de ondas ultrasónicas, que otras técnicas no son capaces de mostrar. El objetivo del presente proyecto es el de reforzar esta idea y permitir abrir una línea de investigación en esta dirección.

La TCS de diferentes estructuras cerebrales infra y supratensoriales (por debajo y encima del cerebelo), es capaz de detectar cambios en sus características causados por enfermedades relacionadas con el movimiento. Existen estudios que muestran que en casos de Parkinson se puede ver una hiperecogenicidad anormal en la substancia negra (SN) (Bercker et al. 1995 [1]). La substancia negra es una parte heterogénea del mesencéfalo (parte superior de tronco cerebral) y la hiperecogenicidad es el incremento de la capacidad de reflexión de ondas de ultrasonido. Así mismo, existen otros estudios que demuestran que la ecogenicidad de la substancia negra puede ser indicativa de otras enfermedades como la enfermedad de Wilson (Walter U. et al. 2005 [2]), tremor (Niehaus et al. 2004 [3]) o ataxia cerebroespinal, consistente en una falta de coordinación motora (Postert et al. 2004 [4])

También hay documentación que muestra hallazgos en las características de la TCS relacionadas con otras enfermedades como la distonia idiopática (contracciones musculares mantenidas) o la enfermedad de Hunting-
ton (Naumann et al. 1996 [5]; Postert et al 1999 [6]).

Así pues, con los estudios realizados hasta el momento y el apoyo de las propiedades físicas de las ondas de ultrasonido, existe la convicción de que una TCS es capaz de ofrecer, con un procesado correcto, información útil para el estudio del cerebro.

El proceso descrito en el capítulo 5 ha sido aplicado a un total de 6 voluntarios, mostrando las ilustraciones únicamente de uno de ellos. En el capítulo 6 se pueden constatar los resultados obtenidos en los 6 voluntarios que han participado en el proyecto.

1.2. Ventajas y limitaciones

Las principales ventajas de la ecografía con respecto a otras técnicas de adquisición de imagen médica son la portabilidad, la no invasividad, la rapidez en el examen médico y el bajo coste. Además, la realización de una TCS ofrece repetitividad ilimitada, requiere poca participación por parte del paciente y es de fácil y cómoda realización.

La ecografía es sensible al cambio de impedancias entre medios, cuando el cambio es brusco, la mayor parte de la onda se refleja creando zonas de oscuridad en la imagen, por lo tanto, dependiendo de la zona a evaluar, existe una fuerte limitación en este sentido. Precisamente por esto, la posibilidad de realizar una TCS depende de las ventanas acústicas del hueso temporal del paciente, cuya inaccesibilidad total o parcial se presenta entre el 10% y el 20% de los pacientes (Becker y Berg 2001 [7]). Por
último, la calidad de la prueba depende de las aptitudes de la persona que la realiza.

1.3. Resumen

El campo de la neurología tiene mucho camino por recorrer, del cerebro se conoce muy poco y se dedican esfuerzos para facilitar su estudio, así como métodos para poder obtener información que hasta el momento no se tiene. Las técnicas de obtención de neuroimagen ofrecen muy buena calidad tanto en imágenes para el estudio morfológico como funcional del cerebro, pero para ello es necesario un post-procesado de la señal.

La TCS es una técnica que ahora mismo se encuentra en modo de prueba y desarrollo, por ahora no está estipulada como un método aceptado de neuroimagen como pueden ser la resonancia magnética o los rayos X, pero hay estudios que ofrecen optimismo a los que creen que una TCS puede llegar a ser muy útil y representar características que otros métodos no pueden.

Este proyecto pretende corregistrar una TCS con un volumen de resonancia magnética del cerebro y obtener la imagen de resonancia magnética correspondiente a la misma región del cerebro que se muestra en la ecografía. Como objetivo paralelo se pretende reforzar la idea que se tiene sobre lo útil que puede ser una TCS demostrando que existe una correlación fuerte entre la imagen de una ecografía y la imagen correspondiente en una resonancia magnética a partir de la información textural de las
dos imágenes.
Capítulo 2

Imagen médica ecográfica

2.1. Introducción

EN 1917, a finales de la Primera Guerra Mundial, el físico francés Paul Langevin y el ingeniero eléctrico ruso Constantin Chilowsky, fabricaron el primer SONAR (Sound Navigation And Ranging) para localizar submarinos [8]. El mecanismo del SONAR emitía ondas ultrasónicas (por encima de los 20kHz) que se reflejaban en los submarinos y los ecos capturados se utilizaban como imágenes de éstos.

Después de la guerra, en 1929, Sergei Sokolov, científico ruso, propuso el uso del ultrasonido para detectar grietas en metal, y también para microscopía.

En 1942, durante la Segunda Guerra Mundial, el Dr. Karl Dussik, psiquiatra austríaco, empleó el ultrasonido para detectar posibles lesiones
medulares de los aviadores. Proporcionó la primera máquina experimental médica de ultrasonidos y publicó el primer trabajo médico en este campo [9].

Después de la Segunda Guerra Mundial, los investigadores japoneses construyeron el primer equipo de ultrasonido, que trabajaba en A-mode (modo de amplitud) y procesaba señales de una dimensión. Después crearon el B-mode (modo de luminosidad), que generaba imágenes de dos dimensiones. Las aplicaciones iniciales estaban limitadas a la detección de cálculos biliares, masas en el pecho y tumores. A mediados de los años 60 se comercializaron sistemas de ultrasonido en Estados Unidos y Europa. A partir de entonces hubo innovaciones respecto al uso del ultrasonido y se empezaron a detectar cánceres potenciales y tumores en seres vivos. Aun y así, el uso más conocido de la ecografía es en el campo de la obstetricia, donde se usaba, al principio, para determinar el tamaño del feto y observar su crecimiento. Con nuevos avances en la técnica, se pudo utilizar para diagnosticar el embarazo múltiple y las anomalías del feto.

Actualmente existen distintas técnicas de obtención de imágenes médicas, que son las siguientes y se muestran sus ejemplos en la figura 2.1.

- Rayos X: los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. Los rayos X son una radiación ionizante e invasiva para los seres vivos, aunque ésta depende del tiempo de exposición a los rayos, la intensidad de los mismo y la frecuencia a la que se expone al paciente a los rayos. El equipo de rayos X no
es transportable y requiere una sala acondicionada específicamente para proteger al operario del entorno. Los rayos X, en medicina, se utilizan principalmente para detectar enfermedades óseas, aunque también son útiles para diagnosticar enfermedades de los tejidos blandos como la neumonía, el cáncer de pulmón, etc.

- **TAC - Tomografía Axial Computarizada**: su base es el estudio por rayos X, se producen imágenes detalladas de cortes axiales del cuerpo. En lugar de obtener una imagen como la radiografía convencional, la TAC obtiene múltiples imágenes al rotar alrededor del cuerpo. Una computadora combina todas estas imágenes y genera un volumen de imágenes de rayos X. Los inconvenientes son, por lo tanto, los mismos que para los rayos X.

- **PET - Tomografía por Emisión de Positrones**: es una técnica de medicina nuclear capaz de medir la actividad metabólica del cuerpo gracias a la inyección intravenosa de un contraste radiotrópico. La imagen que ofrece se puede observar "on live" y, como en el TAC, se trata de una imagen tridimensional. El principal inconveniente es la necesidad de inyectar el contraste.

- **RM - Resonancia magnética**: se trata de una técnica de imagen que utiliza un campo magnético constante y de intensidad elevado, originado principalmente por un imán de entre 0,5 y 3 Tesla. El campo magnético constante se encarga de alinear los momentos magnéticos de los núcleos atómicos básicamente en dos direcciones. La intensidad del campo y el momento magnético del núcleo determinan la frecuencia de resonancia de los núcleos. La resonancia magnética
genera una radiación ionizante que, dependiendo del tiempo de exposición del paciente, puede generar riesgos para la salud. El equipo de resonancia magnética todavía no es transportable y no se puede utilizar si hay objetos ferromagnéticos en la sala o dentro del paciente. Permite detectar el desplazamiento del spin de las moléculas de agua y, en medicina, se utiliza principalmente para observar alteraciones en los tejidos, cánceres y otras patologías. Es una de las técnicas utilizadas en este proyecto. Se va a profundizar más en el siguiente capítulo.

- fMRI - Imagen de resonancia magnética funcional: simplemente es una resonancia magnética en la que se muestra la actividad del órgano observado, hay distintos factores que pueden mostrarla, pero uno de los más comunes es el nivel de oxígeno que se encuentra en la región de interés.

- Ecografía: consiste en la emisión de ondas de ultrasonido para formar una imagen a partir de los ecos que ésta produce. La ecografía es un método no invasivo y transportable que permite captar imágenes de tejidos. En general se considera que la ecografía tiene un bajo contraste y, por tanto, tiene una capacidad de pronóstico reducida. Es el método de adquisición de las imágenes utilizadas en este proyecto y, por esto, se explica a lo largo de este capítulo. La motivación principal de este proyecto es demostrar que una ecografía contiene más información de la que la mayoría de gente del campo de la medicina cree.
Figura 2.1: Instrumento - Imagen médica obtenida con el instrumento correspondiente

De las técnicas comentadas, las que dan información funcional son el PET y la fMRI. En cambio, las técnicas que ofrecen información morfológica son la TAC, los rayos X, la RM y la ecografía. Obviamente, en función de lo que se quiera estudiar, estará más indicada una exploración morfológica o funcional.

Actualmente, la ecografía es una de las técnicas más utilizadas en el diagnóstico mediante imágenes médicas.

Concretamente, los usos más comunes del ultrasonido en imágenes médicas están orientadas a las imágenes de exploración de diferentes órganos como el páncreas, la vesícula biliar, el hígado, el corazón, la próstata, las mamas o la exploración del feto durante el embarazo.

La mayoría de las técnicas de ultrasonido aplicadas a la imagen médica se basan en la transmisión de ondas de alta frecuencia en la región de estudio y a la visualización de la señal recibida debido a las estructuras y tejidos de ésta.
A diferencia de las imágenes obtenidas con otros métodos, las técnicas de ultrasonido permiten captar las imágenes en tiempo real sin generar radiaciones ionizantes. Además, los exámenes de ultrasonido no son invasivos ni se ha detectado que provoquen efectos nocivos con los niveles de intensidad utilizados en las imágenes médicas.

Las ventajas principales de la ecografía son la portabilidad, el no ser invasiva, la rapidez de la prueba y el bajo coste. El ámbito que refleja este proyecto corresponde a un tipo de realización que no está, actualmente, aceptada. Las ecografías que se han realizado para este proyecto corresponden a TCS en personas adultas a través de la fosa temporal. Como se puede observar más adelante, la ecografía es muy sensible al cambio de impedancias entre los medios que refleja y es especialmente adecuada para imágenes de tejidos blandos. No obstante, al ser tan sensible a los cambios de impedancia, al encontrarse con un hueso o el aire, la reflexión es muy grande y se pueden generar zonas de sombra, éstos son aspectos a tener en cuenta en el momento de tomar una TCS.

2.2. Sistemas de ultrasonido comerciales

Un ecógrafo comercial está formado básicamente por una pantalla, una CPU, un transductor o sonda y un sistema de adquisición de datos. El esquema se muestra en la figura 2.2.

El principal inconveniente que presenta la ecografía es que, a veces, presenta una resolución limitada.
Figura 2.2: Esquema del sistema de ultrasonido [10]

Las imágenes de ultrasonido utilizadas en medicina normalmente son de estructuras de tejidos que se encuentran cercanos a la superficie de la piel y, por eso, los pulsos acústicos que se utilizan tienen una longitud de onda espacial (λ) corta (normalmente por debajo de 1 cm.) y una frecuencia alta (normalmente de 2MHz a 40MHz), la relación se muestra en la ecuación 2.1. Cuanta mayor frecuencia se esté usando, mejor resolución tendrá la ecografía. Teniendo en cuenta que $v_{cerebro} = 1540 m/s$ y que $f_{mínima} = 2MHz$:

$$\lambda_{máxima} = \frac{v}{f} = \frac{1540}{2 \cdot 10^6} = 7,7 \cdot 10^{-4}[m] \quad (2.1)$$

El transductor es una parte muy importante del ecógrafo. La ondas de ultrasonido son generadas por cristales piezoeléctricos que se encargan de convertir las señales eléctricas en ondas acústicas mediante vibracio-
Figura 2.3: Transductor

nes en el momento de transmitir y al revés en la recepción de la onda de ultrasonido.

2.2.1. El transductor

La sonda de ultrasonido (figura 2.3) es un transductor, sirve tanto de emisor como de receptor de los pulsos de ultrasonido y se coloca sobre la superficie del cuerpo. El transductor se encarga de transformar la energía eléctrica en energía acústica y viceversa.

Se acostumbran a utilizar cristales piezoelectríticos como transductor, estos contienen dipolos eléctricos orientados en una determinada dirección. La compresión de los cristales cambia la orientación de los dipolos induciendo una diferencia de potencial entre los dos extremos del material. De la tensión del material piezoelectrítico resulta una diferencia de potencial de polarización invertida.

En consecuencia, el material también puede actuar como un receptor y
produce un voltaje variante cuando es sometido a la presión de una onda acústica. A esto se le llama efecto piezoeléctrico directo.

Por otro lado, aplicando un campo eléctrico a través del material, tanto en la compresión como en la expansión, dependiendo de la polaridad del campo en cada caso, se produce una onda acústica. Se le llama efecto piezoeléctrico inverso.

En general se pueden generar dos tipos de ondas acústicas o modos de vibración:

1. Se puede conseguir aplicando un potencial eléctrico senoidal a través del material.

2. Aplicando pequeños pulsos eléctricos a través del material.

Con cualquiera de las dos opciones se genera una vibración a la frecuencia de resonancia. En el caso del material piezoeléctrico, la frecuencia de resonancia dependerá del grosor del material utilizado.
Figura 2.5: Reflexión y transmisión de una onda

Como ejemplo, un pulso acústico emitido por un material piezoeléctrico tarda 1ms en producirse. Durante el tiempo que el pulso viaja a través del tejido, el transductor “escucha” las onda reflejadas antes de emitir otro pulso. El tiempo entre dos pulso normalmente va entre 250 y 500ms. Es importante remarcar que el tiempo de emisión típicamente dura menos del 1% del tiempo entre dos pulsos consecutivos, por lo que el 99% del tiempo, el ecógrafo está “escuchando” las ondas reflejadas.

Actualmente existe la nueva generación de ultrasonidos que, en lugar de utilizar un transductor tradicional (que funciona con el efecto piezoeléctrico), utilizan transductores de silicona que permiten obtener imágenes más nítidas.

2.2.2. Propiedades de las ondas acústicas

La onda acústica se refleja de forma diferente según las diferentes impedancias acústicas de los tejidos que atraviese o por las heterogeneidades
de éstos, siempre que se opere en el límite lineal del material.

La impedancia acústica de un material \((Z)\) está definida como el producto de su densidad \(\rho\) y de la velocidad \(\nu\) del sonido en el material.

\[
Z = \rho \nu
\]

Cuanto mayor sea la impedancia acústica de un material, menor será la penetración de las ondas en él. El porcentaje de la energía acústica reflejada entre dos materiales con impedancias diferentes \(Z_1\) y \(Z_2\) se denomina coeficiente de reflexión y se define de la siguiente manera:

\[
R = \left(\frac{Z_1 - Z_0}{Z_1 + Z_0} \right)^2
\]

Esta ecuación proviene de la siguiente ecuación general siempre y cuando el ángulo de incidencia sea distinto de cero.

\[
R = \left(\frac{Z_1 \cos \theta_i - Z_0 \cos \theta_r}{Z_1 \cos \theta_i + Z_0 \cos \theta_r} \right)^2
\]

Donde \(\theta_i\) y \(\theta_r\) son los ángulos de incidencia y refracción respectivamente.

El porcentaje de energía acústica transmitida recibe el nombre de coeficiente de transmisión: \(T = 1 - R\). Cuanto mayor es la diferencia entre la impedancia acústica de dos tejidos, mayor es la reflexión de la onda acústica incidente y menor es la transmisión de energía.

En la tabla 2.1 se puede ver la diferencia de impedancias entre el aire y un tejido blando, como es la piel.
<table>
<thead>
<tr>
<th>Material</th>
<th>Densidad ρ ($10^3 Kg/m^3$)</th>
<th>Velocidad ν (m/s)</th>
<th>Impedancia Z ($10^3 Kg/m^2 s^{-1}$)</th>
<th>Atenuación α (dB/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aire</td>
<td>0.0012</td>
<td>330</td>
<td>0.0004</td>
<td>1.38</td>
</tr>
<tr>
<td>Agua</td>
<td>1</td>
<td>1430</td>
<td>1.43</td>
<td>0.0025</td>
</tr>
<tr>
<td>Tejido blando</td>
<td>1.1</td>
<td>1540</td>
<td>1.69</td>
<td>0.5 a 1.0</td>
</tr>
<tr>
<td>Hígado</td>
<td>1.05</td>
<td>1570</td>
<td>1.65</td>
<td>1.1</td>
</tr>
<tr>
<td>Grasa</td>
<td>0.95</td>
<td>1450</td>
<td>1.38</td>
<td>0.6</td>
</tr>
<tr>
<td>Hueso</td>
<td>1.91</td>
<td>4080</td>
<td>7.8</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Cuadro 2.1: Comportamiento de las propiedades de las ondas acústicas en diferentes materiales (α a 1MHz)\[11\]

La diferencia de impedancias entre el aire y la piel implica que haya una reflexión de más del 99% de la energía acústica y que se transmite menos del 1%. Por este motivo en los exámenes médicos siempre se pone un gel en la superficie del transductor, para que no haya aire entre el mismo y la piel. El gel que se utiliza tiene una impedancia acústica de entre 1.45×10^3 y 1.56×10^3 Kg·m$^{-2}$·s$^{-1}$, así se resuelve el problema de cambio de medio y el coeficiente de transmisión que se tendrá será del 99.9% \[12\].

Aun y así, la dificultad de observación a través del hueso no queda resuelta. Para obtener una buena imagen de ultrasonido para cada tejido se debe utilizar un transductor específico, ya que la intensidad de las ondas recibidas se corresponderá con las propiedades acústicas del tejido que se quiere estudiar y se tendrá que considerar la penetración deseada de la onda, es decir, si la zona de estudio es superficial o profunda.
2.2.3. Atenuación

Cuando los pulsos de las ondas de ultrasonido pasan a través de un medio, su amplitud se atenúa exponencialmente siguiendo la siguiente ecuación:

\[A = A_0 e^{-\alpha x} \]

donde \(A_0 \) es la amplitud inicial, \(\alpha \) es el coeficiente de atenuación y \(x \) es la distancia recorrida.

El coeficiente de atenuación \(\alpha \) varía con la frecuencia \(f \) del pulso y es aproximadamente proporcional a \(f^2 \) para el agua y a \(f^{1.2} \) para tejidos blandos. La tabla 2.1 también muestra los coeficientes de atenuación de algunos tejidos y materiales.

La atenuación debida al gel que se aplica en la adquisición de las imágenes se puede considerar despreciable.

2.2.4. Ruido

Las imágenes de ultrasonido se construyen a partir de las ondas recibidas por el transductor y, como pueda pasar en la atmósfera, tendremos aberraciones, ya que la propagación a través del tejido tiene una componente de aleatoriedad parecida a la de la atmósfera.

Así, la fuente de ruido en las imágenes de ultrasonido corresponde a la interferencia de múltiples ondas y ecos, con caminos y fases aleatorios, debido a las múltiples interferencias. Las aberraciones se generan tanto
Figura 2.6: Ejemplo de caminos distintos provocados por los scatterers por los distintos caminos que toman las ondas reflejadas de un único scatterer (cada punto del medio que fuerza a la onda a cambiar su trayectoria, que debería ser recta idealmente), como por las ondas que provienen de los distintos scatterers (ver figura [2.6]).

Al utilizar un transductor con un cristal piezoeléctrico en un medio heterogéneo que contiene distintos scatterers, se producirán ondas esféricas que llegarán al transductor en distintos momentos.

Al recibir la señal, el transductor transformará los ecos en una señal eléctrica que será la suma instantánea de la presión acústica de las ondas de los scatterers. Esta suma corresponde al patrón de interferencias de los diferentes scatterers, que se refleja como una línea discontinua en la figura [2.7]. Este máximo, que se corresponde con la envolvente de la señal, es lo que se llama patrón de interferencia Speckle. De hecho, se obser-
Figura 2.7: Interferencia debida a las múltiples reflexiones [13]

va una cierta dualidad entre las aberraciones que aparecen en imágenes atmosféricas y las que aparecen en las imágenes de ultrasonido, ya que en ambos casos se trabaja en un medio heterogéneo no estático. En un caso existe el movimiento del aire y las turbulencias y en el nuestro el movimiento de las células y el flujo sanguíneo.

En el caso de las imágenes de ultrasonido, en la señal que recibe el transductor, no están directamente relacionados el número de scatterers del tejido con el número y la amplitud de los picos de esta señal. Por lo tanto, la imagen que se obtiene no refleja propiamente la distribución de los scatterers de la textura del tejido. Las imágenes obtenidas se corresponden con el speckle del tejido y no con el tejido en sí.
Capítulo 3

Imagen de resonancia magnética

3.1. Introducción

Una imagen por resonancia magnética (Magnetic Resonance Imaging - MRI) es una técnica generalmente no invasiva que utiliza el fenómeno de la resonancia magnética para obtener información sobre la estructura y composición del cuerpo a analizar. Esta información es procesada por ordenadores y transformada en imágenes.

Tiene muchas utilidades, tanto médicas como industriales. En medicina se utiliza para observar alteraciones en los tejidos y detectar cáncer y otras patologías. Industrialmente, es utilizada para detectar deficiencias en las estructuras de los materiales tanto orgánicos como inorgánicos.
Tras la resonancia magnética tal como la conocemos hoy en día, hay muchos descubrimientos que la han hecho posible:

1845: Michael Faraday investiga las propiedades magnéticas de la sangre seca.

1936: Linus Pauling y Charles D. Coryell descubren que el estado magnético de la hemoglobina cambia según su estado de oxigenación.

1937: I.I.Rabi desarrolla la resonancia magnética de haces moleculares al hacer pasar un haz de moléculas de cloruro de litio (LiCl) a través de un campo magnético y, a continuación, someterlo a ondas radio.

1945: Con tres semanas de diferencia, los grupos de investigación dirigidos por E.Purcell y F.Bloch demuestran de forma independiente el fenómeno conocido como "resonancia magnética nuclear en materia condensada".

1949: Erwin Hahn descubre el fenómeno del eco de espín en las mediciones de resonancia magnética nuclear.

1960: Richard Ernst y Weston Anderson aplican el análisis de Fourier a las señales de impulso para aumentar la sensibilidad de la resonancia magnética nuclear.

1971: Godfrey Hounsfield construye el primer escáner de tomografía computada, la base de casi todos los sistemas de obtención de imágenes que se usan en la actualidad (figura 3.1).
Figura 3.1: Godfrey Hounsfield junto al primer escáner de tomografía computada

1972: Paul Lauterbur combina la idea del gradiente con la idea del escáner de tomografía computada para realizar varias proyecciones y reconstruirlas para obtener la primera imagen por resonancia magnética.

1976: Mansfield y sus compañeros de Inglaterra publican la primera imagen de un dedo humano obtenida por resonancia magnética.

1990: Seiji Ogawa detecta variaciones en la oxigenación del tejido local al utilizar contraste dependiente del nivel de oxígeno de la sangre.
3.2. Sistemas comerciales de resonancia magnética

El instrumento utilizado para realizar resonancias magnéticas es el escáner, en el apartado 3.2.1 se va a explicar cómo funciona. Para poder realizar una resonancia magnética se precisa, a parte del escáner, unas instalaciones adecuadas como parte de las medidas de seguridad mínimas exigidas por la unión europea en la Directiva 89/391/CEE sobre las disposiciones mínimas de seguridad y salud relativas a la exposición de los trabajadores a los riesgos derivados de los agentes físicos (campos electromagnéticos)[14]. Entre ellas figuran un buen aislamiento del instrumento respecto a los trabajadores, la no presencia de objetos que puedan resultar peligrosos al estar expuestos a las ondas electromagnéticas y a la potencia de las ondas para no ofrecer unos niveles de riesgo altos sobre el paciente. En relación a este último aspecto, en la tabla 3.1 se muestran los valores límite a los que puede estar expuesto el paciente en función de la región sobre la que se realice la resonancia magnética.

3.2.1. El escáner

Un escáner comercial está formado por muchos componentes para poder ver la distribución de los átomos en el cuerpo humano utilizando el fenómeno de la resonancia magnética (RM). El elemento principal del equipo es un imán capaz de generar un campo magnético constante de gran intensidad. Actualmente se utilizan imanes con intensidades de campo de
Cuadro 3.1: Valores límite de exposición [15]

entre 0,5 y 3 teslas. El campo magnético constante alinea los momentos magnéticos de los núcleos atómicos básicamente en dos direcciones, paralela y antiparalela, según si la dirección a la que apunten los vectores es la misma o la opuesta. La intensidad del campo y el momento magnético del núcleo determinan la frecuencia de resonancia de los núcleos, así como la proporción de núcleos que se encuentran en cada uno de los dos estados.

Esta proporción está regida por las leyes de la estadística de Maxwell-Boltzman que, para un átomo de hidrógeno y un campo magnético de 1,5 teslas a temperatura ambiente, dicen que apenas un núcleo por cada millón se orientará paralelamente, mientras que el resto se repartirán equitativamente entre ambos estados, ya que la energía térmica de cada núcleo es mucho mayor que la diferencia de energía entre ambos estados.
La enorme cantidad de núcleos presente en un pequeño volumen hace que esta pequeña diferencia estadística sea suficiente como para ser detectada.

Seguidamente se emite radiación electromagnética a la frecuencia de resonancia. Debido al estado de los núcleos, algunos que estén en sentido paralelo (de baja energía) cambiarán su orientación hasta estar en estado paralelo (alta energía) y re-emitirá la energía, que podrá ser detectada. Como el rango de frecuencias es el de las radiofrecuencias para los imágenes usados, los instrumentos para captar la energía son una bobina, que hace de antena emisora y receptora, un amplificador y un sintetizador de radiofrecuencia (RF).

Como todos los núcleos están sometidos al mismo campo magnético, el momento magnético de todos ellos será igual y, por lo tanto, tendrán la misma frecuencia de resonancia. Esto conlleva que se podrá detectar una señal que ocasione una RM, en estas condiciones, con el mismo valor desde todas las partes del cuerpo. De esta manera no existe información espacial o información de dónde se produce la resonancia.

Para resolver el problema de la detección espacial, se añaden tres bobinas de gradiente. Cada una de ellas genera un campo magnético de una cierta intensidad con una frecuencia controlada. Estos campos magnéticos alteran el campo magnético ya presente y, por tanto, la frecuencia de resonancia de los núcleos. Con la presencia de tres bobinas ortogonales, es posible asignarle a cada región del espacio una frecuencia de resonancia diferente, de manera que cuando se produzca una resonancia a una
frecuencia determinada, será posible determinar la región del espacio de la que proviene.

En lugar de aplicar tres gradientes diferentes que establezcan una relación única entre frecuencia de resonancia y punto del espacio, es posible utilizar diferentes frecuencias para las bobinas de gradiente, de manera que la información queda codificada en espacio de fase. Esta información puede ser transformada en posiciones espaciales utilizando la transformada discreta de Fourier (DFT).

La estructura de un escáner es la que se muestra en la figura 3.2

3.2.2. Propiedades de las ondas electromagnéticas

Una onda electromagnética es la forma de propagación de la radiación electromagnética a través del espacio. Sus aspectos teóricos están relacionados con la solución en forma de onda que admiten las ecuaciones de Maxwell. A diferencia de las ondas mecánicas, las ondas electromagnéticas no necesitan de un medio material para propagarse, es decir, pueden desplazarse por el vacío.

La radiación electromagnética es una combinación de campos eléctricos y magnéticos oscilantes, que se propagan a través del espacio transportando energía de un lugar a otro.

El rango completo de longitudes de onda es lo que se denomina el espectro electromagnético y contempla desde la baja frecuencia (<30 kHz) hasta los rayos gamma (>30 EHz).
Figura 3.2: Esquema de un escáner
<table>
<thead>
<tr>
<th>Banda de Frecuencia</th>
<th>Nombre</th>
<th>Aplicaciones principales</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-300 kHz</td>
<td>LF (Low Frequency)</td>
<td>Navegación</td>
</tr>
<tr>
<td>300-3000 kHz</td>
<td>MF (Medium Frequency)</td>
<td>Radio AM comercial, Ecografías</td>
</tr>
<tr>
<td>3-30 MHz</td>
<td>HF (High Frequency)</td>
<td>Radio de onda corta, Ecografías</td>
</tr>
<tr>
<td>30-300 MHz</td>
<td>VHF (Very High Frequency)</td>
<td>Televisión VHF, Radio FM, Resonancia magnética</td>
</tr>
<tr>
<td>300-3000 MHz</td>
<td>UHF (Ultra High Frequency)</td>
<td>Televisión UHF, Microondas terrestres</td>
</tr>
<tr>
<td>3-30 GHz</td>
<td>SHF (Super High Frequency)</td>
<td>Microondas terrestres y por satélite</td>
</tr>
<tr>
<td>30-300 GHz</td>
<td>EHF (Extremely High Frequency)</td>
<td>Enlaces cercanos con punto a punto experimentales</td>
</tr>
</tbody>
</table>

Cuadro 3.2: Clasificación de ondas de telecomunicaciones

En telecomunicaciones se clasifican las ondas mediante un convenio internacional de frecuencias en función del empleo al que están destinadas, como se puede observar en la tabla [3.2] además se debe considerar un tipo especial llamado microondas, que se sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda entre 30 centímetros y 1 milímetro, que tienen la capacidad de atravesar la ionosfera terrestre, permitiendo la comunicación satelital.

En función de la frecuencia, las ondas electromagnéticas pueden no atravesar medios conductores. Esta es la razón por la cual las transmisiones
de radio no funcionan bajo el mar y los teléfonos móviles se queden sin cobertura dentro de una caja de metal. Sin embargo, como la energía no se crea ni se destruye, cuando una onda electromagnética choca con un conductor pueden suceder dos cosas. La primera es que se transformen en calor: este efecto tiene aplicación en los hornos de microondas. La segunda es que se reflejen en la superficie del conductor, como en un espejo.

En el caso de la resonancia magnética, las frecuencias a las cuales resuenan un átomo dentro de una molécula, son directamente proporcionales a la fuerza del campo magnético ejercido, de acuerdo con la ecuación de la frecuencia de precesión de Larmor, que se puede ver con más detalle en el apéndice 1 (en la página 118). Los campos magnéticos mayores son a menudo preferidos, ya que conllevan un incremento en la sensibilidad de la medida, siempre dentro del rango de valores que ofrezcan poco riesgo al paciente. Existen muchos otros métodos para incrementar la señal observada. El incremento del campo magnético también se traduce en una mayor resolución espectral, cuyos detalles son descritos por el desplazamiento químico y el efecto Zeeman, temas más profundizados en los apéndices 2 (en la página 121) y 3 (en la página 123) respectivamente.
Capítulo 4

Protocolo de adquisición

En este proyecto se ha trabajado con dos tipos de imágenes, la TCS y la RM. Se han realizado las adquisiciones de TCS y RM a seis voluntarios, para cada uno de ellos, la adquisición de ambas imágenes se ha realizado en la misma semana.

Una de las ideas principales es poder observar en la ecografía una estructura que sea reconocible en ambas modalidades (marcador) bien definida para facilitar el proceso. Como la posición del transductor está restringida a la fosa temporal, se ha decidido realizar un plano lo más axial posible para poder observar el mesencéfalo, cuya identificación en la ecografía es fácil (tiene forma de mariposa). En la figura 4.1 se puede observar que parte del mesencéfalo se encuentra al nivel de la fosa temporal.

El protocolo seguido para la adquisición de la ecografía transcraneal es muy similar al empleado por Uwe Walter en [16] y contempla las siguientes directrices:
• Se ha realizado la prueba con la cabeza del paciente apoyada sobre una superficie estable para evitar movimientos involuntarios.

• Siempre se ha realizado la prueba situando el transductor sobre el lado derecho de la cabeza del paciente.

• Se ha utilizado un gel con la misma impedancia que la piel humana para evitar tener aire entre el transductor y el cráneo y perjudicar lo mínimo posible el cambio de medio.

• Se han capturado distintas imágenes con distintos ángulos para futuros corregistros, aunque el corte seleccionado para este proyecto corresponde al más axial de todos y que tenga el mesencéfalo mejor definido.

En la figura 4.2 se muestra la realización de una ecografía transcraneal.

El protocolo seguido para la adquisición de la resonancia magnética contempla las siguientes directrices y restricciones:

• Siempre se debe realizar con el paciente en posición transversal.

• El paciente no debe llevar objetos ferromagnéticos durante la prueba. Qedarán excluidos de la prueba personas que tengan 17:

 – Marcapasos cardíaco o desfibrilador implantable o catéter con componentes metálicos que pueden tener el riesgo de producir quemaduras.

 – Bomba para medicamentos (ej. las utilizadas para administrar insulina o analgésicos).
- Implante coclear (oído interno).
- Presencia de grapas quirúrgicas.
- Prótesis ortopédicas, de oído, de globo ocular, dental, vascular, biliar, cardiaca o suturas o catéteres metálicos.
- Presencia de dispositivo intrauterino o diafragma.
- Existencia en el interior del cuerpo de trozos de balas, perdigón, metralla o algún tipo de esquirla metálica ocular u orbitaria.
- Válvulas de derivación.
- Filtros vasculares.
- Alambres de embolización.
- Presencia de neuroestimulador.
- Existencia de tatuaje.
- Presencia de estimulador de crecimiento óseo.

• La prueba se debe realizar con el escáner aislado en una sala y el paciente no puede llevar ni maquillaje ni lacas para obtener imágenes de la máxima calidad posible.

• Para este proyecto únicamente se necesita una imagen estructural del cerebro.

• Es importante que durante la realización de la prueba el paciente no mueva la cabeza porque esto provocaría errores en la imagen.
Figura 4.1: Cráneo y materia blanca (en amarillo el mesencéfalo, en verde la fosa temporal)

Figura 4.2: Realización de una TCS
4.1. Adquisición

4.1.1. Aparataje utilizado

Los dispositivos usados para obtener las imágenes médicas utilizadas en este proyecto han sido el ecógrafo de GE Healthcare Vivid q (figura 4.3) con el transductor M4S-RS (figura 4.4), que tiene una área de contacto con la piel de 20x28 mm a una frecuencia de 2.5 MHz [18]. El escáner con el que se ha realizado la resonancia es un Siemens tim trio 3.0t (figura 4.5), que contiene un imán de 3 Teslas, trabaja a la frecuencia de 123,2 MHz y ofrece un campo de visión de hasta 50 cm (figura 4.6) [19].
Figura 4.4: Transductor M4S-RS

Figura 4.5: Escáner Siemens Tim Trio 3.0T

Figura 4.6: Campo de visión del escáner
4.1.2. Formato y características de las imágenes adquiridas

El ecógrafo utilizado para la adquisición de las ecografías de este proyecto ofrece las imágenes en formato DICOM (Digital Imaging and Communication in Medicine). Se trata de un formato en el que los datos del paciente no se pueden separar de la imagen. Las ecografías tienen un tamaño de 422x636 píxeles y el tamaño de píxel es de 0.336x0.336 mm.

Las imágenes por resonancia magnética también se obtienen en formato DICOM, pero para conformar el volumen se ha transformado al formato NIFTI (Neuroimaging Informatics Technology Initiative), que es un formato que viene apoyado por el "National Institute of Mental Health" y el "National Institute of Neurological Disorders and Stroke". Las ventajas de este formato son las muchas funciones de tratado de imagen que ofrece y su facilidad de uso. El volumen con el que se ha trabajado para este proyecto es un volumen de 256 planos transversales de tamaño 240x256 píxeles y el tamaño del vóxel es de 0.9531x0.9531x1 mm.

Como se puede observar, la ecografía ofrece casi tres veces mejor resolución que la resonancia, un punto favorable para esta técnica de adquisición de imagen.

Para realizar el proyecto, se ha decidido trabajar con las imágenes en el mismo formato. Por este motivo, también se ha transformado la ecografía a formato NIFTI por la versatilidad que ofrece este formato en comparación con el formato DICOM.
4.2. Planos médicos

La cavidad cerebral está formada por diez huesos distintos, 2 impares y los otros 4 pares:

Impares: Frontal, Occipital

Pares: Esfenoides, Etmoides, Parietal y Temporal

En la figura 4.7 se muestra la disposición de los huesos que forman el cráneo.

Figura 4.7: Cráneo

Los huesos del cráneo están firmemente soldados por costuras de tejido conjuntivo, denominados suturas. No están diseñados para realizar movimientos separadamente, excepto en la primera infancia, en que, durante un corto espacio de tiempo, las junturas poseen la movilidad necesaria...
para facilitar la salida del niño en el parto y para su rápido crecimiento posterior.

Las fontanelas son las separaciones que, durante aproximadamente 12 a 18 meses, se observan como parte del desarrollo normal entre los huesos del cráneo de un bebé, en el sitio donde en la edad adulta se formarán las suturas. Después de ese lapso suelen fusionarse, y así permanecerán durante toda la vida adulta de un ser humano.

Para realizar las ecografías transcraneales en personas adultas, se usa la sutura esfenoparietal (o temporal), la unión entre el esfenoides y el hueso parietal (figura 4.8).

![Figura 4.8: Sutura esfenoparietal](image)

El lenguaje médico utiliza una nomenclatura concreta para referirse a las orientaciones de adquisición. En este proyecto se ha trabajado con planos transversales, aunque no son del todo exactos dada la inclinación que pueda haber debido a la posición poco precisa del transductor. A parte de
los transversales, también existen los planos coronales y sagitales (figura 4.9).

Figura 4.9: Planos corporales

4.2.1. Planos Transversales

Como su nombre indica, los planos transversales, horizontales o axiales, se orientan horizontalmente. De esta manera dividen el cuerpo en zona inferior y superior.

Los planos transversales son los que se han utilizado por ser de más fácil adquisición partiendo de la sutura esfenoparietal. También resulta más fácil realizar el corregistro tomando los planos transversales del volumen de resonancia magnética y es en los planos transversales en los que se pueden distinguir mejor marcadores como el mesencéfalo, la cisura interhemisférica (profunda hendidura que divide longitudinalmente el cerebro.
en dos hemisferios unidos entre sí por el cuerpo calloso) o los tálamos, (estructuras neuronales que se hallan en el centro del cerebro, encargadas de recibir los estímulos sensoriales, excepto el olfato) (figura 4.10).

Figura 4.10: Mesencéfalo (A), Tálamos (B) y Cisura interhemisférica (C) en una TCS
Capítulo 5

Tratamiento de los datos

PARA poder determinar qué plano del volumen de resonancia representa la ecografía, se necesita poner en correspondencia un mínimo de tres pares de puntos. Este es el objetivo del corregistro. Dado que la TCS y la MRI son tipos de imágenes de modos distintos, va a ser necesario realizar un corregistro rígido multimodal. Se va a utilizar una transformación afín, pero sin escalar ni reflejar, es decir, trasladar y rotar.

Realizar un corregistro de las imágenes enteras no resultaría fácil y los resultados que se pudieran obtener no serían muy buenos. Es por este motivo que se ha decidido separar el proyecto en distintas fases, incluyendo dos fases de corregistro distintas.

Al plantearse dividir la cabeza en dos regiones, lo más intuitivo y sencillo es separarla en cráneo y cerebro. Por este motivo, en el primer corregistro se va a tener en cuenta únicamente el cráneo, que resulta un proceso más sencillo y en el segundo se va a corregistrar únicamente el cerebro, un
proceso más complejo en el que se tiene en cuenta la textura que ofrece el cerebro a través de la ecografía. No van a ser procesos independientes ya que el segundo corregistro tomará como punto de partida el plano resultante del primero.

Para hacerlo más visual, las distintas fases del proyecto se pueden ver en el diagrama de bloques de la figura 5.1.

![Diagrama de bloques del tratamiento de los datos](image)

Figura 5.1: Diagrama de bloques del tratamiento de los datos

El preprocesado de las imágenes, la primera de las fases (apartado 5.1), consiste en preparar las imágenes para los corregistros, se elimina la información que no es propia de la imagen ecográfica, se realiza la segmentación del cráneo de la ecografía y un skull stripping (aislar el cráneo) del volumen de resonancia (vMRI).

La segunda fase (apartado 5.2) contempla el primer corregistro, consistente en el corregistro de las imágenes del cráneo, tomando como medida la correlación cruzada entre ambas imágenes, más adelante se dará el motivo de esta decisión.

Al final de la fase de corregistro del cráneo se ha obtenido el plano del vMRI que pasa por los puntos encontrados con el corregistro para compararlo con la ecografía y hacer una estimación de la bondad de la primera aproximación (apartado 5.3).

Tras el corregistro del cráneo, se ha procedido a corregistrar en base a la
información que proporcionan las imágenes sobre el cerebro (su contenido textural), usando como método de medida la información mutua (mutual information - MI) (apartado 5.4).

Después de todos los corregistros, un experto se ha encargado de afinar el corte resultante hasta conseguir una solución mejorada.

Por último, se ha realizado un estudio para evaluar los resultados y demostrar las diferencias existentes en una TCS provocadas por la materia blanca, materia gris y el líquido cefalorraquídeo por medio de dos métodos de medida (apartado 6.3).

5.1. Extracción del cráneo

5.1.1. Ecografía

Las imágenes que se obtienen del ecógrafo son con formato DICOM. En cambio, el vMRI con el que se trabaja se ha conformado en formato NIFTI. Por motivos de manejabilidad y versatilidad del formato, a la hora de tratar las imágenes se ha decidido transformar las ecografías a formato NIFTI.

Una imagen tomada en el ecógrafo puede ser como la de la figura 5.2.
Figura 5.2: Ecografía original

Las imágenes que ofrece el ecógrafo son de 422x636 píxeles con un tamaño de pixel de 0.336x0.336 milímetros. Una resolución tres veces mayor a la resonancia.

Para poder trabajar correctamente, se debe limpiar la ecografía de la información que no es propia de la imagen ecográfica, para realizarlo, simplemente hay que aplicar la máscara de la figura 5.3 (izquierda).

Como el primer objetivo es corregistrar el cráneo, se debe segmentar tanto en la ecografía como en la resonancia. Para ello se ha determinado una región donde existe una alta probabilidad de encontrarse la totalidad del cráneo que puede mostrar la ecografía. Dado que los voluntarios participantes en este proyecto son personas adultas, la distancia mínima estimada entre el cráneo y la posición del transductor es de 10 centímetros. La máscara que lo refleja es la de la figura 5.3 (derecha). Todo este
proceso es de muy fácil automatización.

Figura 5.3: Primera máscara (izquierda) y segunda máscara (derecha)

La imagen ya limpia se corresponde a una imagen en escala de grises. El corregistro se va a llevar a cabo midiendo la correlación cruzada entre las dos imágenes, por lo que se ha decidido trabajar con señales bimodales. Así pues, se va a proceder a detectar el cráneo y sacar una imagen binaria, tanto en la ecografía como en la resonancia. Como la imagen inicial es en escala de grises, se va a sacar la función de densidad de probabilidad de los píxeles de la imagen, que se espera que presente dos fuertes picos cerca del 0 y del 255. El cráneo únicamente presenta valores altos, por lo que con un simple umbral que separe la imagen en 2 clases, debería ser suficiente para discernir entre el fondo y el cráneo.

Las regiones que no son ni cráneo ni fondo, presentan valores intermedios de gris, por lo que la determinación de un buen umbral permitirá excluirlas de la detección del cráneo. A la imagen de la ecografía obtenida a partir de la segunda máscara, se le ha aplicado un umbral automático determinado por la función "graythresh" de Matlab® para segmentar el cráneo. Antes de binarizar la imagen, se ha realizado un smoothing (emborronado) para así obtener un cráneo más sólido y regular. Como el resultado no es del todo satisfactorio, se ha decidido afinar más el umbral. Se ha decidido modelar la región como una distribución binomial y hallar
el valor medio entre las posiciones de ambos máximos. Los resultados obtenidos con cada método y las fases intermedias se pueden observar en las figuras 5.4, 5.5, 5.6 y 5.7:

Figura 5.4: Smoothing de la ecografía

Figura 5.5: Umbral automático de Matlab®
Figura 5.6: Función de densidad de probabilidad (umbral de Matlab® = 75, umbral mejorado = 144.5)

Figura 5.7: Resultado con el umbral mejorado

Finalmente, para eliminar los píxeles aislados que pudieran aparecer en la imagen, se ha realizado una apertura morfológica con un elemento estructurante cuadrado de 10 píxeles de lado. La parte de la determinación
del umbral a partir de la función de densidad de probabilidad se puede automatizar buscando un nivel entre los picos. Pueden existir distintas estrategias para optimizar la elección del umbral pero, al ser una prueba de concepto, no se ha profundizado en este aspecto. Lo mismo pasa en la determinación del tamaño del elemento estructurante usado en la apertura morfológica.

5.1.2. **Volumen de resonancia magnética**

Uno de los volúmenes de resonancia con los que se ha trabajado es el de la figura 5.8:

![Figura 5.8: Volumen de MRI](image)

Está formado por 256 planos horizontales de tamaño 240x256 píxeles. El tamaño del voxel es de 0.9531x0.9531x1 milímetros.
Como el objetivo es corregistrar los cráneos, necesitamos obtener el volumen únicamente con el cráneo. Para ello se ha utilizado el programa Statistical Parametric Mapping 8 (SPM8) para Matlab® para segmentar la materia blanca (WM), materia gris (GM) y líquido cefalorraquídeo (cerebrospinal fluid - CSF) del volumen de resonancia (figuras 5.9 y 4.1). Los volúmenes segmentados que retorna el programa se encuentran en un espacio normalizado, pero también devuelve una función de transformación para adaptarlo a su espacio original. Una vez se aplica la transformación, simplemente hace falta extraerlos del volumen inicial para quedarse con el cráneo.

Figura 5.9: Volumen de materia gris (izquierda) y de materia blanca (derecha)
5.2. Corregistro del cráneo

La finalidad de corregistrar el cráneo es la de encontrar dos de los tres puntos que constituyen el plano que corte el vMRI. Para encontrarlos se debe corregistrar el cráneo de la ecografía con el de la resonancia.
Como se ha visto en el apartado anterior, ni los tamaños ni las resoluciones de los dos tipos de imagen son iguales. Para poder realizar el corregistro se debe adaptar una de las imágenes a la otra. Dado que la ecografía tiene más resolución que la resonancia, se ha decidido adaptar la imagen de resonancia a la de ecografía.

Esta fase consta de distintas etapas, a través de las cuales se trata el cráneo como un único elemento sólido, que ofrece una primera aproximación muy vulgar, pero que va a servir para facilitar el proceso en la segunda etapa, esta vez tratando el cráneo como dos mitades independientes. Este paso permite obtener un plano inclinado, igualmente muy aproximativo. Al final de esta fase, se obtiene un plano inicial sobre el que trabajar con el corregistro de las texturas del cerebro.

Para hacer más entendedor el corregistro del cráneo, se ha confeccionado el diagrama de bloques de la figura [5.11]

![Diagrama de bloques del corregistro del cráneo]

Figura 5.11: Diagrama de bloques del corregistro del cráneo

5.2.1. Redimensionado y espacio de trabajo

Si bien este apartado podría ir en la sección de preprocesado de las imágenes, está situado en el corregistro del cráneo porque únicamente se han
tratado las imágenes con el cráneo segmentado. Este mismo proceder se ha aplicado al final del corregistro del cerebro para redimensionar el corte resultante, pero ya se verá cuando corresponda.

Para adaptar las dos imágenes se ha interpolado la resonancia con la resolución de la ecografía, de manera que el *grid* (cuadrícula) inicial es de 240x256 píxeles y el resultante debe ser de 681x726 píxeles. El proceso para llegar a esta conclusión se especifica a continuación:

\[
\begin{align*}
\text{Resolución Ecografía} & \Rightarrow 0,336 \cdot 0,336 \ [\text{mm}] \\
\text{Resolución Resonancia} & \Rightarrow 0,953 \cdot 0,953 \ [\text{mm}] \\
TamañoResonanciaX & \Rightarrow 0,953 \cdot 256 = 244 \ [\text{mm}] \\
TamañoResonanciaY & \Rightarrow 0,953 \cdot 240 = 228,75 \ [\text{mm}] \\
PasosDelNuevoGridX & \Rightarrow \frac{244}{0,336} = 726 \ [\text{pasos}] \\
PasosDelNuevoGridY & \Rightarrow \frac{228,75}{0,336} = 681 \ [\text{pasos}]
\end{align*}
\]

Así pues, el tamaño que debe tener la resonancia para tener la misma resolución espacial que la ecografía es de 681x726 píxeles *(Y, X)*. No obstante, al interpolar la imagen de resonancia sobre este *grid* en Matlab®, se obtiene la imagen redimensionada con tamaño 679x724. Este hecho es debido al redondeamiento de los cálculos teóricos realizados. Una diferencia de 2 píxeles para cada dimensión se considera despreciable.
5.2.2. Corregistro del cráneo entero

Una vez se han obtenido las imágenes en los tamaños adecuados, se procede a su corregistro. La medida de similitud que se ha utilizado es la correlación cruzada normalizada. La justificación de esta decisión es que se trata de un método rápido y que se puede aplicar para el corregistro del cráneo dado que las imágenes que se van a corregistrar son imágenes binarias.

Como se ha comentado al inicio de este capítulo, el procedimiento a seguir consta de dos etapas. La primera etapa consiste en corregistrar el cráneo entero de la ecografía sobre todos los planos transversales debidamente redimensionados del volumen de cráneo de la resonancia. De lo que se trata es de ir desplazando y rotando la ecografía y medir el coeficiente de correlación con un conjunto de planos de resonancia. De esta manera se decide qué corte es mejor y cuál es el desplazamiento y rotación con los que se obtienen mejores resultados. Con ello se obtiene un plano y desplazamientos iniciales sobre los que trabajar más adelante.

Tras todo el proceso, se ha obtenido el resultado que muestra la figura 5.12. También se muestran los desplazamientos que se han aplicado para esta solución.

Al mirar de superponer la ecografía sobre el plano 121 de resonancia, se puede observar que el resultado no es satisfactorio (figura 5.13). Es razonable dado que, para que fuera correcto, la ecografía tendría que haber sido tomada con un plano horizontal con un error de inclinación inferior
Figura 5.12: Superposición cráneo entero:
Δx = 157 píxeles Δy = 80 píxeles Plano = 121 (eje Z) Rotación = -0.5 grados
Coeficiente de correlación = 0.8868

a 0.0024 grados respecto a la horizontal, los cálculos se pueden ver en el apéndice 4 (en la página 125).

Como se muestra en la figura 5.13, el mesencéfalo de la resonancia (rojo) y el de la ecografía (naranja) no encajan. De haberse tratado del corte correcto, los distintos marcadores como el mesencéfalo, cisura interhemisférica (línea de separación longitudinal del cerebro), etc. tendrían que encajar.

Tras observar que esta primera aproximación no es satisfactoria, se ha pasado a la siguiente fase, en la que se permite obtener un plano inclinado, algo mucho más verosímil. Para realizarlo, se seguirá corregistrando el cráneo, pero esta vez tratando las dos mitades (derecha e izquierda) como imágenes independientes. No obstante, para poder obtener un resultado válido y que sea creíble, como se entiende que se está cerca de una buena solución, se ha aprovechado la posición del plano anterior para determinar el entorno sobre el que se realizará el siguiente corregistro.
5.2.3. **Corregistro de las mitades del cráneo**

Como se ha comentado anteriormente, para ser más estrictos y no obtener resultados aberrantes, se ha restringido el área de búsqueda de esta segunda etapa, corregistrando únicamente sobre los planos colindantes al escogido en la primera etapa (de ahora en adelante, plano principal). Los planos que se han estudiado son aquellos cuya correlación obtenida se encuentra por encima de un percentil 80 de la correlación del plano principal. Para ello, en la primera etapa se han guardado las correlaciones máximas obtenidas en cada plano. El histograma de correlaciones se muestra en la figura 5.14.

Una vez determinados los planos, se debe volver a arrancar el algoritmo de corregistro para cada mitad del cráneo. El resultado se muestra en las
Figura 5.14: Histograma de las correlaciones (percentil 80)

figuras 5.15 y 5.16

Al hacer la superposición se sigue sin obtener un resultado satisfactorio. Cabe comentar que no se esperaba un buen resultado únicamente con esta aproximación.

El tercer punto del plano se podría obtener directamente del punto donde se ha situado el transductor, que viene delimitado por la zona de la ventana temporal del cráneo. Con tres puntos determinados ya se puede sacar el plano, aunque no sea el mejor. En este punto del proyecto ya se ha desarrollado la herramienta para realizar la extracción del plano, que será la que se utilice para todos los corregistros.

5.3. Extracción del plano

Para poder sacar un corte del volumen, lo primero es determinar cuál es el plano que lo debe cortar. Para determinarlo es necesario indicar por
Figura 5.15: Superposición izquierda:
Δx = 100 píxeles Δy = 168 píxeles Plano = 121 (eje Z) Rotación = -1 grados
Coeficiente de correlación = 0.9306

Figura 5.16: Superposición derecha:
Δx = 80 píxeles Δy = 155 píxeles Plano = 120 (eje Z) Rotación = 0 grados
Coeficiente de correlación = 0.9282
qué tres puntos va a pasar. Los tres puntos que se han elegido son los dos correspondientes al cráneo y el tercero se va a discutir más adelante.

5.3.1. Determinación del punto representativo del cráneo de la ecografía

Gracias a la fase de corregistro del cráneo, se han obtenido los desplazamientos necesarios para situar la ecografía sobre el plano de resonancia correctamente. Lo que se desea es obtener únicamente tres puntos, por lo que no sirve aplicar los desplazamientos obtenidos a toda la imagen del cráneo. Hay que reducir cada imagen del cráneo a un solo punto que sea representativo. Las imágenes mostradas en este apartado corresponden a un caso distinto al que se ha utilizado hasta ahora. Se ha hecho para mostrar el proceso con un cráneo que ofrece distintas regiones separadas y no un bloque sólido en cada lado. Después de este apartado, la ecografía utilizada seguirá siendo la de los apartados anteriores.

Las imágenes que se deben tratar pueden ser como las de la figura 5.17.

El objetivo del proceso debe ser el de reducir las imágenes a un sólo punto. Para ello se realizan, sobre cada componente conexa de la imagen, erosiones sucesivas hasta reducir cada región a un solo punto. El resultado es una imagen con tantos puntos como regiones existan (figura 5.18).

Como el objetivo es obtener un único punto, se va a ponderar la posición de cada punto por el área que representa y así obtener un punto lo más
Figura 5.17: Mitades del cráneo

Figura 5.18: Puntos representativos de cada región de cráneo

representativo posible. El resultado es una imagen como la de la figura 5.19.

Aplicando sobre estos puntos los desplazamientos que se han calculado con el corregistro tendremos los puntos sobre el cráneo interpolado, pero no es el espacio sobre el que vamos a obtener el corte, por lo que habrá que transformar los puntos del espacio donde se ha realizado el corregistro al espacio del vMRI original. La figura 5.20 ilustra los distintos espacios con los que se trabaja y qué se realiza en cada uno de ellos (en rojo).
5.3.2. Determinación del tercer punto

Para tener un plano bien definido, únicamente hace falta disponer de tres puntos. Los dos primeros puntos ya se han calculado gracias al corregistro del cráneo. Para determinar el tercero se han planteado dos estrategias.

La primera que se ha probado es la de corregistrar un marcador bien definido tanto en la ecografía como la resonancia, el mesencéfalo. El mesencéfalo tiene forma de mariposa y se puede distinguir fácilmente en la
La determinación del tercer punto del plano ha acabado siendo el que marca la posición del transductor, se ha escogido el punto a mano ya que es fácil fijarlo como una primera aproximación, más adelante se verá que también se ha optimizado este punto.

5.3.3. Transformación de los puntos

El espacio sobre el que se ha corregistrado el cráneo es el del volumen binarizado (de ahora en adelante, espacio interpolado) y el corte debe sacarse del espacio donde se encuentra el volumen original (de ahora en adelante, espacio original). Para poder determinar el plano correctamente, antes se deben transformar los puntos corregistrados en el espacio interpolado al espacio original y antes encontrar la matriz de transformación. Para conseguirlo se siguió el siguiente proceso para uno de los casos estudiados:

Los puntos correspondientes a los dos espacios son los de la figura 5.21

 Nótese que la ecografía únicamente tiene dos coordenadas al tratarse de una imagen en dos dimensiones.
El sistema de ecuaciones que se debe plantear es:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} =
\begin{bmatrix}
 a_1 & a_2 \\
 b_1 & b_2 \\
 c_1 & c_2
\end{bmatrix} \cdot
\begin{bmatrix}
 x \\
 y
\end{bmatrix} +
\begin{bmatrix}
 a_3 \\
 b_3 \\
 c_3
\end{bmatrix}
\]

Donde \(\begin{bmatrix} x \\ y \end{bmatrix} \) son las coordenadas de la ecografía, \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \) son las coordenadas del volumen de resonancia magnética, la matriz \(\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{bmatrix} \) es la
matriz de cambio de coordenadas y el vector \(\begin{bmatrix} a_3 \\ b_3 \\ c_3 \end{bmatrix} \) es el vector de desplazamiento.

Evaluando el sistema para los 3 pares de vectores se obtienen las nueve incógnitas del sistema quedando, así, el problema solucionado. El sistema solucionado es este:

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
467 & -34175 & 92028 \\
-6938 & 92028 & -649 \\
-401 & 377 & 30676
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} + \begin{bmatrix}
17923157 \\
5036794 \\
3716233
\end{bmatrix}
\]

En el apéndice 6 (en la página 134) se muestra los cálculos hasta llegar al resultado.

5.3.4. Extracción del corte

La estrategia que se ha seguido para realizar el corte es muy simple. Se debe crear un plano en el espacio del volumen de resonancia magnética y evaluar los puntos del plano sobre dicho volumen. El cálculo de la ecuación del plano se detalla en el apéndice 7 (en la página 138).

Con la ecuación del plano calculada, únicamente hace falta evaluarla para el tamaño de la ecografía y ya se tendrá el plano bien definido.

Con el plano definido en el espacio original, hay que muestrear el volumen sobre los puntos que forman el plano. Como las posiciones las forman
Figura 5.22: Volumen únicamente con el corte

valores no enteros, se ha decidido elegir el valor entero más cercano al valor real. El resultado del proceso es un volumen en el que únicamente aparecen los píxeles que se encuentran dentro del plano.

Para conseguir la imagen en dos dimensiones, la decisión tomada es la de proyectar directamente todos los planos sobre uno sólo. La imagen resultante, mostrada en otra escala de colores es la de la figura 5.23.

El problema que se plantea sobre la imagen resultante es que aparecen píxeles saturados. Este efecto es debido a que dichos píxeles coinciden en distintos planos. Las líneas generadas marcan los bordes de los distintos planos del volumen generados al capturar el corte. La solución acordada es la de generar una máscara con los píxeles que hayan sufrido la superposición y promediar su valor para obtener un valor intermedio. La
Figura 5.23: Reconstrucción del corte

máscara de promediado se muestra en la figura 5.24.

El resultado de la corrección de la imagen resulta satisfactorio (figura 5.25).
Figura 5.24: Máscara de promediado (píxel rojo de valor 2, píxel azul de valor 1)

Figura 5.25: Corte final
Obtención de los cortes separados por materias

Como no se ha podido segmentar satisfactoriamente el mesencéfalo en las imágenes y el principal objetivo es el de poder diferenciar las distintas materias del cerebro, al disponer ya de esta segmentación, se ha decidido realizar el mismo corte para las distintas clases separadas y para el volumen completo. De esta manera se podrá hacer una comparativa por separado de cada tipo de materia con la ecografía.

El procedimiento a seguir para obtener los cortes de las distintas materias es el mismo que el utilizado para el volumen original, cambiando, en cada caso, el volumen.

Figura 5.26: Corte de materia blanca (izquierda) y de materia gris (derecha)
Para facilitar la tarea de la extracción del corte, se ha diseñado una GUI, explicada con más detalle en el apéndice 8 (en la página 140).

5.3.5. Resultado de la primera aproximación

Tras obtener los distintos cortes, se ha procedido a superponer la materia blanca sobre la ecografía desplazada según el corregistro del cráneo (figura 5.28). Para hacerlo posible, ha sido necesario redimensionar el corte de MRI para que se pueda superponer con la ecografía, se ha procedido de la misma manera como se explica en el apartado 5.2.1.
Como el resultado no es satisfactorio, la estrategia que se ha decidido seguir es la de pasar de un corregistro bimodal, como el que se ha hecho hasta ahora, a un corregistro más rico, en el que se tenga en cuenta el contenido textural de las imágenes. La medida que se ha elegido para realizar este corregistro es el de la Información Mutua Normalizada (Normalized Mutual Information - NMI). La argumentación de esta decisión se encuentra en el apartado 5.4.1.

5.4. Corregistro del cerebro a partir de la información mutua normalizada

5.4.1. Motivación

Ya hemos visto que el corregistro únicamente con el cráneo no ofrece unos resultados satisfactorios, pero nos indica una primera aproximación del
corte, así pues, nos hemos servido de esta posición inicial para proseguir con un corregistro de lo que realmente interesa de la ecografía, las materias del cerebro que se reflejan en ella.

Si las funciones de intensidad son al menos estadísticamente dependientes (típicamente en el registro multimodo), se pueden usar medidas basadas en la estadística de la imagen, como el ratio de correlación (Correlation Ratio, CR), el criterio de Woods (Woods Criterion, WC) o la información mutua normalizada (Normalized Mutual Information, NMI o Mutual Information, MI). En este caso se ha decidido corregistrar a través de la NMI. Los criterios de registro MI muestran que la información mutua de los valores de intensidad de los correspondientes pares de píxeles es máxima si las imágenes están geométricamente alineadas, que es lo que se está buscando. Como no se impone ningún tipo de limitaciones a la naturaleza de la relación entre las intensidades de las imágenes a ser registradas y no se hacen presunciones sobre el contenido de las imágenes de las modalidades involucradas, el criterio de información mutua resulta ser muy general y potente. Esto nos permite su aplicación para registros completamente automatizados sin segmentación previa o preprocesado, aún y así, para mejorar la medida, se ha decidido segmentar las materias como acción previa al cálculo de la NMI. Como ventaja añadida, con una buena estrategia jerárquica, se puede conseguir acelerar el proceso de optimización del corregistro.
5.4.2. Información Mutua Normalizada (NMI) [20]

La información mutua entre dos variables aleatorias mide el grado de dependencia que hay entre dichas variables. Como lo que se pretende demostrar es que en una ecografía, la imagen mostrada depende del contenido textural que se está mostrando y la resonancia magnética muestra muy bien las distintas regiones del cerebro que, a priori, tienen la misma textura, la NMI es una medida buena para realizar el corregistro de las dos imágenes.

Se ha calculado la información mutua de cada materia por separado (materia blanca, gris y líquido cefalorraquídeo), realizando así tres medidas. Para obtener la normalización, se ha ponderado la medida por el área que ocupa cada materia respecto a la total.

Contando que el corte de MRI y la ecografía están formadas por WM, GM y CSF, las imágenes se pueden descomponer de la siguiente manera:

\[
MRI: \Phi = \phi_1 + \phi_2 + \phi_3 \\
\]

\[
Ecografía: W = \omega_1 + \omega_2 + \omega_3 \\
\]

donde \(\phi_1\) y \(\omega_1\) son la materia blanca, \(\phi_2\) y \(\omega_2\) son la materia gris y \(\phi_3\) y \(\omega_1\) son el líquido cefalorraquídeo.

La fórmula empleada para el cálculo de la información mutua ponderada es la siguiente:

\[
NMI = \sum_{i=1}^{3} \alpha_i \cdot \frac{A_i}{A_T} \cdot \frac{H(\phi_i) + H(\omega_i)}{2 \cdot H(\phi_i, \omega_i)} \\
\]

84
Con $H(\phi_i)$ y $H(\omega_i)$ las entropías de la materia de cada imagen, $H(\phi_i, \omega_i)$ la entropía conjunta, A_i el área de cada materia y A_T el área total. Sumando las medidas de las tres materias se obtiene la NMI conjunta ponderada. El vector de constantes α vale $[1, 1, 1]$ por defecto y está pensado para dar más importancia a una materia u otra, los valores otorgados pueden estar relacionados con la fiabilidad de cada materia, que estaría relacionada con la orientación de las fibras. En cualquier caso, no se ha calculado el factor alpha óptimo dado que resultaría una tarea muy compleja fuera del alcance de este proyecto. Los resultados finales que contemplan las tres materias a la vez se han obtenido para un valor de α_i de 1, para así pasar a ser un elemento neutro y usar como única ponderación la relación de áreas de cada materia. Para tener en cuenta una de las materias, simplemente se ha puesto a 1 una de las posiciones del vector, las otras dos a 0 y se ha obviado la ponderación del área para seguir teniendo valores normalizados a 1.

Entropía y entropía conjunta

Para calcular la entropía conjunta, antes se debe estimar la distribución conjunta entre las imágenes. Se trata de un histograma en 2D que relaciona el valor del mismo píxel en las dos imágenes. En caso de tratarse de imágenes idénticas, el resultado debe ser una sola recta. Se ha realizado una distribución conjunta para cada segmentación. Así los resultados obtenidos son los de las figuras \[5.29\] y \[5.31\]
Figura 5.29: Distribución conjunta de la materia blanca para un caso concreto.

Figura 5.30: Distribución conjunta de la materia gris para un caso concreto.
Figura 5.31: Distribución conjunta del líquido cefalorraquídeo para un caso concreto

Para realizar el cálculo de la probabilidad marginal, hay que recorrer la distribución conjunta y aplicar, a cada posición de la distribución la fórmula de la entropía. Para obtener el resultado, debemos sumar los cálculos de todas las posiciones.

\[
H(\phi, \omega) = -\sum_{i,j} p(i, j) \cdot \log_2(p(i, j))
\]

\[
p(i, j) = \frac{\text{PixelesEn}(i, j)}{\text{PixelesTotales}}
\]

Para realizar el cálculo de la probabilidad marginal de cada imagen, hay que recorrer la distribución conjunta en sentido vertical para obtener la entropía de la imagen de resonancia y en horizontal para la de la ecografía.
La fórmula para calcular la entropía es la misma, la única diferencia es que calcularemos cada probabilidad como la suma de los píxeles de un mismo nivel respecto a los píxeles totales.

Figura 5.32: Entropía de la resonancia (izquierda) y de la ecografía (derecha) para un caso concreto

5.4.3. Estrategia a seguir

Para realizar la búsqueda del mejor plano calculando la NMI, se debe hacer un barrido por los distintos cortes del volumen de imagen de resonancia magnética, evaluar la Información Mutua Normalizada (NMI) para cada clase y quedarse con los mejores resultados. Como lo que se pretende medir es el contenido textural de la ecografía, nos interesa eliminar parte de la aleatoriedad de la ecografía para mejorar la calidad de la imagen. Una posible solución es aplicar un filtro que tenga en cuenta la entropía o la desviación estándar de los píxeles vecinos. Ofrece un mejor resultado el filtro por desviación estándar. La función de Matlab que se ha utilizado es "stdfilt" con un elemento estructurante cuadrado de tamaño 3x3.
Para poder recorrer todos los movimientos posibles del transductor al tomar la TCS, se ha elegido una estrategia que contempla dos corregistros encadenados. El primero, teniendo en cuenta el desplazamiento del transductor por el cráneo y realizando un barrido del haz de ultrasonido en sentido vertical (ver figura 5.36). El segundo corregistro parte del plano que ha ofrecido mayor MI y simula un movimiento cuyo eje de rotación es el plano coronal (ver figura 5.41). Más adelante se va a explicar con más profundidad cada apartado. A modo ilustrativo, se ha confeccionado el diagrama de bloques que muestra el conjunto de etapas del corregistro del cerebro (figura 5.33).

Figura 5.33: Diagrama de bloques del corregistro del cerebro

La ecografía original y la filtrada son las de la figura 5.34.

Figura 5.34: Ecografía original limpia (izquierda) y filtrada (derecha)
A continuación se van a explicar las dos etapas de las que está formado el corregistro del cerebro.

El procedimiento seguido en las dos etapas es el mismo y se muestra en la figura 5.35.

![Diagrama de bloques de una etapa de corregistro del cerebro](image)

La parte del redimensionado sigue siendo igual que en los apartados 5.2.1 y 5.3.5.

Primera etapa: Movimiento sagital

El primer movimiento del plano se realiza fijando el punto del transductor y subiendo y bajando el otro extremo. La inclinación del plano se debe hacer tomando como eje de rotación el plano sagital. Se hace para 15 puntos del transductor distintos y 40 inclinaciones.

Las siguientes imágenes pretenden ilustrar cómo se realiza el movimiento y después se muestran los resultados obtenidos.
En cada movimiento se calcula el valor de información mutua para cada materia por separado. Una vez obtenidos todos los valores, se dibujan las gráficas de información mutua. Las gráficas obtenidas son las mostradas en las figuras 5.38 y 5.39.
Figura 5.38: Gráficas de MI para todo el cerebro. Max = pond_MI[8,2] = 0.0133 (arriba) y la materia gris. Max = GM_MI[1,10] = 0.0124 (debajo)
Figura 5.39: Gráficas de MI para el líquido cefalorraquídeo. Max = CSF_MI[6,3] = 0.0161 (arriba) y la materia blanca. Max = WM_MI[1,14] = 0.0152 (debajo)

Con la materia blanca se ha trabajado únicamente sobre la región del mesencéfalo, el motivo de esto es que la orientación de las fibras (axones de las neuronas) repercute en la reflexión de la onda en la ecografía (y
su visualización en la misma). Se ha decidido centrarse únicamente en el mesencéfalo porque es una región en la que se está seguro que todas las fibras de la región están orientadas verticalmente. El resto de materia blanca está compuesta por fibras con orientación no uniforme ni local ni globalmente y desconocida en estos momentos. La materia gris no contiene fibras, está formado principalmente por los somas (cuerpos) de las neuronas.

Figura 5.40: Estructura de una neurona

Se puede observar que hay una convergencia en la MI de la materia blanca.

Segunda etapa: Movimiento coronal

Partiendo del plano que ha dado mayor MI para la materia blanca en el primer movimiento, se procede a realizar el siguiente movimiento, esta vez tomando como eje el plano coronal. En este paso ya se ha fijado el punto del transductor, por lo que las gráficas de MI que se obtendrán
están en 2D. El movimiento que se va a realizar es el que refleja la figura 5.41:

Figura 5.41: Movimiento coronal

Las funciones de MI que se han obtenido para cada materia son las de las figuras 5.42, 5.43, 5.44 y 5.45:

Figura 5.42: MI del movimiento coronal para todo el cerebro. Max=MI_pond[3]=0.0136
Figura 5.43: MI del movimiento coronal para la materia gris (arriba) y probabilidad conjunta del máximo (debajo). Max=GM_MI[4]=0.0126
Figura 5.44: MI del movimiento coronal para el líquido cefalorraquideo (arriba) y probabilidad conjunta del máximo (debajo). Max=CSF_MI[1]=0.0164
Figura 5.45: MI del movimiento coronal para la materia blanca (arriba) y probabilidad conjunta del máximo (debajo). Max=WM_MI[36]=0.0157

El corte que realmente nos interesa es, como en el caso anterior, el que da...
mayor información mutua para la materia blanca, ya que esta información se restringe únicamente a la zona referente al mesencéfalo. Se podría afinar la medida alternando los dos movimientos partiendo cada vez del punto de máxima MI hasta llegar al punto de convergencia. Habría que ir con cuidado de no quedarse en un máximo local, pero no es el objetivo principal de este proyecto. Aun y así, a modo ilustrativo, un experto se ha encargado de afinar el corte de forma manual para obtener el mejor plano posible.

La superposición del mejor corte se muestra en el apartado de resultados.
Capítulo 6

Resultados

En este capítulo se van a presentar los resultados que se han conseguido con el proceso descrito en los capítulos anteriores.

6.1. Mejor corte del volumen de MRI

El mejor corte del volumen de MRI para la materia blanca es el de la figura 6.1.

La ecografía con la que este corte ofrece mayor MI es la de la figura 6.2.

El máximo valor de información mutua conseguido con el corregistro es de 0.0157. Tras la fase de afinamiento realizada por un experto, dicho valor ha aumentado hasta 0.0177. Una diferencia suficiente como para ser observable en el resultado final.
Figura 6.1: Mejor corte del volumen de resonancia magnética

Figura 6.2: Ecografía utilizada
6.2. **Superposición de las materias y el cráneo con la ecografía**

A continuación se muestra la superposición de las distintas materias y el cráneo sobre la ecografía. El corte de MRI que se está superponiendo corresponde al que ha dado mayor MI para la materia blanca (figura 6.3).

En rojo se muestra el cráneo, en verde la materia gris, en azul el líquido cefalorraquídeo y en amarillo la materia blanca. Las zonas sin color corresponden a zona del cerebro que el programa utilizado para segmentarlo no ha podido clasificar, por la morfología del cerebro, se ha visto que corresponde a una zona de agua (líquido cefalorraquídeo).

![Figura 6.3: Superposición de las materias con la ecografía](image)
A simple vista se ve como la parte del mesencéfalo y el cráneo cuadran bien, por lo que puede ser un buen resultado.

En el apartado 6.3 se va a demostrar la bondad del resultado numéricamente y se van a marcar los puntos significativos que pueden corroborar que, efectivamente, como se ha comentado en la motivación de este proyecto, existen indicios para pensar que un cambio de medio en una ecografía repercute directamente en la imagen que se muestra.

6.3. Evaluación de los resultados

Para demostrar que la ecografía contiene información textural y que el valor del conjunto de los píxeles está relacionado con el tipo de textura que se muestra (WM, GM y CSF), se ha procedido con dos métodos evaluación de los resultados.

El primero consiste en comprovar si la medida de MI obtenida es el resultado de medir una imagen aleatoria. Es decir, que nuestra medida no tiene dependencia con el ruido de la señal ni cualquier otra señal aleatoria que pueda estar presente en la TCS.

El segundo método de evaluación pretende demostrar que la retrodispersión acústica dada en una TCS es distinta en la WM, la GM y el CSF. Se van a calcular las diferencias entre los tres tipos de materia que constituyen el cerebro. Con este método se pretende demostrar que existen características de la TCS que permiten segmentarla en materias. Es im-
portante destacar que en el presente proyecto no se pretende realizar esta segmentación, sino demostrar que es posible su realización.

6.3.1. Medida de la significancia del corregistro

Se pretende demostrar que el resultado de la MI obtenido no es fruto de una medida sobre una señal aleatoria.

Sirviéndonos de la analogía del experimento de lanzar una moneda, para demostrar que una moneda no está trucada, se debe lanzar varias veces. Si una moneda repite resultados con una probabilidad de aparecer inferior a 0.05, se puede afirmar que la moneda está trucada, que no ofrece resultados aleatorios. Pongamos un ejemplo, la probabilidad de sacar 4 caras seguidas y 5 caras seguidas es:

\[
P(CCCC) = P(C) \cdot P(C) \cdot P(C) \cdot P(C) = 0,5^4 = 0,0625
\]

\[
P(CCCCC) = P(C) \cdot P(C) \cdot P(C) \cdot P(C) \cdot P(C) = 0,5^5 = 0,0313
\]

Si con una moneda se han sacado cuatro caras seguidas, no se puede considerar que esté trucada, en cambio, si la siguiente tirada vuelve a ser cara, ya se podría considerar una moneda trucada cuyos resultados no son aleatorios.

Con nuestro experimento se pretende realizar lo mismo. Se van a realizar 100 medidas reordenando píxeles, obteniendo así una señal aleatoria. Si el valor obtenido con el corregistro tiene una probabilidad de aparecer en una medida aleatoria de 0.05, se va a considerar que el cálculo de
la MI en el corregistro está afectado por la aleatoriedad. Interesa, pues, que la probabilidad sea inferior a 0.05. Este proceso es conocido como bootstrapping [21].

Se han realizado dos experimentos distintos, el primero permutando los píxeles de la misma materia y el segundo permutándolos todos para ver si los píxeles de una materia ofrecen estadísticas distintas que los píxeles de las otras. Para poder comparar los resultados con los valores de MI obtenidos en el corregistro, se ha filtrado la ecografía con la función “stdfilt” de Matlab® y un elemento estructurante cuadrado de 3 píxeles de lado (mismo preprocesado de la ecografía que en el corregistro).

Permutación de píxeles de la misma materia

Orden de ejecución:

Figura 6.4: Orden de ejecución para medir la MI reordenando píxeles de la misma materia
Resultados:

Materia blanca

Figura 6.5: p=0, umbral de MI=0.0177

Materia gris

Figura 6.6: p=0, umbral de MI=0.0120
Líquido cefalorraquídeo

Figura 6.7: p=0, umbral de MI=0.0170

Permutación de píxeles de materias distintas

Se van a permutar los píxeles de la ecografía independientemente de la materia que constituyan, se segmentará la materia que se quiera medir, se va a sacar una estadística de 100 realizaciones y se va a comparar con la mejor medida de NMI del mejor corte. Para demostrar que las medidas realizadas en el corregistro no han sido tomadas sobre una señal altamente aleatoria, la probabilidad de obtener el umbral con una señal aleatoria debe ser igualmente inferior a 0,05.
Orden de ejecución:

> ecografía → filtrado → permutación de los píxeles → segmentación de la materia → cálculo de MI

100 repeticiones

Comparación con el valor del mejor corte (umbral)

Figura 6.8: Orden de ejecución para medir intercambiando materias

Resultados:

Materia blanca

![Gráfico](image)

Figura 6.9: p=0, umbral de MI=0.0177
Materia gris

Figura 6.10: p=0, umbral de MI=0.0120

Líquido cefalorraquídeo

Figura 6.11: p=0.001, umbral de MI=0.0170

Los resultados del bootstrapping para los 6 pacientes son los mostrados
Cuadro 6.1: Resultados del bootstrapping para los 6 pacientes. Cálculos realizados únicamente para la materia blanca.

En la tabla 6.1 En el resto de casos, únicamente nos hemos fijado en la materia blanca y dentro de ella, la región del mesencéfalo.

6.3.2. Diferencias estadísticas entre los tres tipos de tejido del cerebro

Se pretende demostrar que el grupo de píxeles segmentados por el algoritmo pertenecen a una misma población (WM, GM o CSF), que tiene características distintas a otras poblaciones de la imagen (el resto de materias) y que la señal acústica se comporta de distinta manera en función del tipo de materia que esté atravesando. Dado que se dispone de suficientes puntos para realizar un test no paramétrico y se estima que el modelo empleado no es gausiano, se ha optado por hacer servir el test de Kruskal-Wallis.

El método da como resultado un valor de probabilidad de hipótesis nula, que determina si los datos corresponden a grupos distintos. Para considerar correcta la segmentación, el valor de probabilidad debe ser < 0.05.
Antes de aplicar el Kruskal-Wallis, a la ecografía se le ha aplicado un filtrado para distintos tamaños de ventana (3, 7, 11, 15, 19, 23, 27 y 31). Una p<0.05 para una ventana pequeña indica que se podría segmentar la ecografía con una resolución buena; para tamaños de ventana mayores, la “exactitud” sería menor. Para evitar problemas de contaminación de contornos, las regiones donde se toman los píxeles a ser estudiados están bien separadas entre ellas. Los píxeles correspondientes a las fronteras se han desestimado como se puede ver en la figura 6.12.

Los resultados del método para los seis pacientes son los que se muestran en la tabla 6.2.

Cuadro 6.2: Resultados del Kruskal-Wallis para los 6 pacientes. * Valores por debajo de 10^{-8}

<table>
<thead>
<tr>
<th>ventana</th>
<th>3</th>
<th>7</th>
<th>11</th>
<th>15</th>
<th>19</th>
<th>23</th>
<th>27</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>voluntario 1 pval</td>
<td>0.0360</td>
<td>0.0751</td>
<td>0.1039</td>
<td>0.2323</td>
<td>0.8067</td>
<td>0.0168</td>
<td>*0</td>
<td>*0</td>
</tr>
<tr>
<td>voluntario 2 pval</td>
<td>0*</td>
<td>0*</td>
<td>0.0083</td>
<td>0.3297</td>
<td>0.5899</td>
<td>0.5370</td>
<td>0.0801</td>
<td>0.0031</td>
</tr>
<tr>
<td>voluntario 3 pval</td>
<td>0*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0496</td>
<td>0.7321</td>
<td>0.4604</td>
<td>0.0910</td>
</tr>
<tr>
<td>voluntario 4 pval</td>
<td>0.0288</td>
<td>0.0008</td>
<td>*0</td>
<td>*0</td>
<td>*0</td>
<td>*0</td>
<td>*0</td>
<td>*0</td>
</tr>
<tr>
<td>voluntario 5 pval</td>
<td>*0</td>
<td>0.0002</td>
<td>0.0032</td>
<td>*0</td>
<td>*0</td>
<td>0.007</td>
<td>0.0291</td>
<td>0.9760</td>
</tr>
<tr>
<td>voluntario 6 pval</td>
<td>*0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.5·10^{-5}</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

6.3.3. Puntos significativos entre la ecografía y el corte de MRI

Para demostrar que el mejor corte se puede dar como bueno, se va a mostrar la superposición del corte que ha dado mejor valor para la materia blanca (la más fiable según nuestro criterio). Se van a superponer todas las materias y a marcar los puntos donde se observa, sobre la ecografía, un cambio de medio significativo. Se va a examinar la misma superposición contemplando la ecografía en escala de grises y la misma ecografía filtrada para remarcar los picos de señal consecuencia del cambio de medio.
Figura 6.13: Señales de cambio de medio en la ecografía

Se puede observar, en la región marcada de amarillo, los límites del mesencéfalo, el círculo rojo muestra un hueco existente entre el mesencéfalo y el cerebelo, y la elipse blanca marca el cambio de medio debido a la cisura interhemisférica. Se puede observar como se distinguen los dos cambios de medio en esa zona.

Como el cambio de medio más remarcado es el producido por el líquido cefalorraquídeo, se va a superponer la ecografía filtrada únicamente con la segmentación de CSF.
Líquido cefalorraquídeo

Figura 6.14: Puntos significativamente coincidentes del CSF y la ecografía

Las flechas indican las mismas regiones que en la ilustración anterior, pero, al haber filtrado la ecografía y mostrarse únicamente los picos de señal en la imagen, resulta más fácil observarlo.
Capítulo 7

Conclusiones y trabajo futuro

Como se ha podido observar en el apartado 6.3, existen diferencias estadísticas sobretodo entre las regiones de materia blanca y materia gris en la ecografía transcraneal.

Se ha podido observar que, como ya se creía, la medida de la información mutua normalizada es una buena medida en el caso de corregistro de imágenes de ecografía con imágenes de resonancia magnética siempre y cuando se tenga en cuenta la orientación de las fibras, aspecto determinante en la manera como se refleja la onda de ultrasonido en una ecografía.

Como se puede observar en las gráficas de las figuras 5.38 y 5.39, el corregistro en el que se ha podido tener en cuenta la orientación de las fibras (corregistro de materia blanca) ha ofrecido unos resultados que pueden llevar a converger en un punto sin mucha dificultad aparente. En cambio, para el resto de materias, las gráficas obtenidas no ofrecen muchas
esperanzas de convergencia de los resultados con el proceso empleado en este proyecto. No obstante, con un preprocesado de los datos adiante (orientación de las fibras en cada región y otros efectos determinantes en la reflexión de las ondas de ultrasonido), podría llegarse a una solución correcta.

Lo que este proyecto ha conseguido demostrar es simplemente una prueba de concepto que puede servir para abrir nuevos caminos de investigación relacionados con las ecografías transcraneales y demostrar su validez.

Toda la algorítmica implementada para procesar los datos ha sido desarrollada con la idea de realizar una prueba de concepto, por lo que no se ha pretendido en ningún momento obtener un software cerrado a la conclusión del proyecto. Si bien es posible conseguirlo en un futuro, se considera que este problema contiene una dificultad puramente técnica en todos los pasos del proceso. Por esta misma razón, algunas de las alternativas, como la segmentación del mesencéfalo, fueron desestimadas por no ser de fácil automatización, entre otros motivos.
Apéndices
Apéndice 1

Frecuencia de precesión de Larmor

Primero se debería definir el concepto de precesión. La precesión es el movimiento parecido al que realiza una peonza al girar cuando su eje instantáneo de rotación (CIR) no coincide con la perpendicular al suelo donde se sitúa. Si puede ver gráficamente en la figura 1.

Figura 1: Esquema de la precesión
La precesión de Larmor es la precesión de los momentos magnéticos de los electrones, el núcleo atómico y los átomos producida por un campo magnético externo. Este campo magnético ejerce un momento sobre el momento magnético, descrito por la siguiente ecuación.

$$\vec{\Gamma} = \vec{\mu} \times \vec{B} = \gamma \vec{J} \times \vec{B}$$

Donde Γ es el momento, μ es el momento magnético bipolar, J es el vector de momento angular, B es el campo magnético externo, γ es la relación giromagnética que ofrece la proporcionalidad constante entre el momento magnético y el momento angular.

Frecuencia de Larmor

El vector de momento angular J precede según los ejes del campo magnético externo con una frecuencia angular conocida como frecuencia de Larmor ($\omega = -\gamma B$), donde ω es la frecuencia angular. Desarrollando, se obtiene la ecuación:

$$f = \frac{e\gamma B}{2m}$$

Donde f es la frecuencia de Larmor, m es la masa, e, la carga y B, el campo magnético aplicado.

Cada isótopo tiene una frecuencia de Larmor única para una espectroscopía de resonancia magnética nuclear, que se tabula como se muestra en el cuadro[1]
Aplicaciones

Lev Landau y Evgeny Lifshitz predijeron en 1936 la existencia de la resonancia ferromagnética de la precesión de Larmor, que fue verificada independientemente por J.H.E.Griffiths (Reino Unido) y E.K.Zavoiskij (Unidad Soviética) en 1946. La precesión de Larmor es importante en la resonancia magnética nuclear, en la resonancia paramagnética de los electrones y la resonancia del spin de muon, una partícula elemental masiva.
Apéndice 2

Desplazamiento químico

En resonancia nuclear magnética (NMR), el desplazamiento químico describe la dependencia de los niveles de energía del núcleo magnético en el ambiente electrónico de una molécula. Son relevantes en técnicas de espectroscopía de NMR como la NMR de protones y la NMR de carbón-13.

Un núcleo atómico puede tener un momento magnético, que da lugar a frecuencias de resonancia y niveles de energía distintos en un campo magnético. El efecto total producido por un campo magnético sobre un núcleo incluye campos magnéticos inducidos a nivel local por corriente de electrones en las órbitas moleculares. La distribución de electrones del mismo tipo de núcleo varía normalmente dependiendo de la geometría local, y con ello el campo magnético local en cada núcleo. Esto se refleja en el nivel de energía de espín y las frecuencias de resonancia. La variación de la frecuencia de resonancia magnética del núcleo del mismo tipo de núcleo, recibe el nombre de desplazamiento químico. El tamaño del desplazamiento químico se da con respecto a una frecuencia de re-
ferencia, normalmente una molécula con una distribución de electrones
apenas distorsionada.

El desplazamiento químico tiene mucha importancia para la espectros-
copía de NMR, una técnica para explorar las propiedades moleculares
mirando los fenómenos de resonancia magnética nuclear.

Frecuencia de operación

La frecuencia de operación o de Larmor (apéndice 1 en la 118) de un imán
se calcula a través de la ecuación de Larmor.

Donde B_o es la fuerza del imán en Teslas (T) o Gauss (G) y γ la relación
giromagnética del núcleo, su cálculo se puede consultar en el apéndice 1
en la página 118. Así, la frecuencia de operación de un protón para un
Tesla se calcula como:

$$\omega_o = \gamma \cdot B_o = \frac{2,79 \cdot 5,05 \cdot 10^{-27} J/T}{6,62 \cdot 10^{-34} Js \cdot 0,5 \cdot 1T} = 42,5 MHz$$
Apéndice 3

Efecto Zeeman

El efecto Zeeman es la división de una línea espectral en muchas componentes en presencia de un campo magnético estático. Es análogo al efecto Stark, la división de una línea espectral en muchas componentes en presencia de un campo eléctrico. El efecto Zeeman es muy importante en aplicaciones como la espectroscopía de resonancia magnética nuclear, la espectroscopía de la resonancia del espín de electrones, imagen de resonancia magnética y espectroscopía de Mössbauer. También podría ser usada para mejorar la precisión en espectroscopía por absorción atómica. Cuando las líneas espectrales son líneas de absorción, el efecto se llama efecto inverso de Zeeman.

En la mayoría de átomos, existen muchas configuraciones electrónicas con la misma energía, las transiciones entre configuraciones de la misma energía corresponden a una línea espectral. La presencia de un campo magnético rompe esa degeneración desde que el campo magnético interactúa de forma diferente con los electrones de distinto número cuánti-
co, modificando levemente sus energías. El resultado es que, donde había muchas configuraciones con la misma energía, ahora hay diferentes energías, dando lugar a muchas líneas espectrales juntas. Se puede observar este efecto en la figura 2.

\[
\begin{array}{c|c}
\text{B}=0 & \text{B} \neq 0 \\
\hline
\text{a, b, c} & \text{a} \\
\text{d, e, f} & \text{d} \quad \text{e} \quad \text{f}
\end{array}
\]

Figura 2: Separación de líneas espectrales

Sin un campo magnético, las configuraciones a, b, y c tienen la misma energía, así como d, e y f. La presencia de un campo magnético \((B)\) divide los niveles de energía.
Apéndice 4

Cálculo del ángulo theta correspondiente a un voxel

Observando una TCS se puede determinar que el cráneo se encuentra en el límite de la imagen, por lo que la distancia entre el cráneo y el transductor es de 422 píxeles en la TCS.

Aproximando el voxel a un cubo de 1 milímetro de lado, la relación trigonométrica que permite calcular el ángulo mostrado en la figura 126, correspondiente a la precisión de ángulo que debe tener el técnico si pretende sacar una TCS en un plano completamente axial es:

\[\alpha = \arctan \frac{1}{422} = 0,0024^\circ \]
Figura 3: Triángulo representativo del ángulo que supone un voxel
Apéndice 5

Corregistro del mesencéfalo

Una de las estrategias que se han pensado para determinar el plano consiste en corregistrar, a parte del cráneo, alguna parte estructural del cerebro. Como ya se ha comentado con anterioridad, el mesencéfalo y el tálamo son regiones de fácil detección a simple vista de la ecografía. Se ha intentado segmentarlos tanto en la ecografía como en la resonancia magnética para después realizar el corregistro.

Segmentación del mesencéfalo en la ecografía

En la ecografía se puede observar el contorno de la parte de mesencéfalo (figura 4), la complicación viene cuando se desea automatizar la segmentación.
Para conseguirlo se han planteado dos estrategias, la primera consiste en realizar un *smoothing* de la imagen bastante brusco y tratar de detectar el contorno mediante *snakes*. Tras la realización de la prueba, el resultado es el que muestra la figura 5.

Como se puede observar, no es un resultado que se pueda considerar satisfactorio, por lo que se ha desestimado esta estrategia para la segmentación. La alternativa que se ha pensado es la de segmentarla manualmente. Se ha programado un pequeño algoritmo que permite marcar sobre la
imagen la región deseada y genera una máscara de esa misma región, el resultado se puede observar en la figura anexo 5.3.

![Figura 6: Detección manual del mesencéfalo](image)

El resultado se puede considerar correcto. El inconveniente es la obligación de la intervención humana. A pesar de ello, la decisión es la de seguir con esta plantilla y pasar a segmentar la misma región en el vMRI.

Segmentación del tálamo y mesencéfalo en la resonancia

En muchas ecografías aparece otro marcador bastante fácil de reconocer. Se trata del tálamo, por lo que se ha decidido segmentarlo en el vMRI. Para segmentar tanto tálamo como mesencéfalo, se requiere nuevamente del uso del SPM8 y del *Automated Anatomical Labeling Atlas* (AAL). Se trata de un atlas, aprobado por la comunidad científica, que se utiliza para segmentar la distintas partes del cerebro.
El AAL está definido sobre un espacio normalizado, para poder utilizarlo a modo de máscara con nuestra resonancia, se debe adaptar dicho atlas a nuestro volumen. Es en este aspecto en el que se debe usar el algoritmo llamado Unified Segmentation Model del SPM8. Lo que hace este algoritmo es transformar un volumen dado a un espacio normalizado devolviendo la función de transformación utilizada. El volumen utilizado para calcular la transformación es el de WM obtenido en la segmentación del vMRI. Como lo que interesa es adaptar el atlas al vMRI, se deberá aplicar la transformación inversa al atlas para conseguirlo. La adaptación conseguida (figura 7) se considera bastante buena.

Figura 7: Adaptación del atlas al vMRI

Cada parte del atlas lleva una etiqueta distinta, lo que simplifica mucho el hecho de seleccionar una región u otra. Las etiquetas del tálamo derecho e izquierdo en el atlas corresponden a los valores 77 y 78. Seleccionando únicamente estos valores, obtenemos un volumen como el de la figura 8.
Fijándonos mejor, en el AAL no está segmentado el mesencéfalo, por lo que este volumen no nos sirve para seleccionarlo del vMRI.

La primera alternativa que se ha propuesto es la de generar un cilindro por debajo de la zona del tálamo (figura 9), pero éste debe tener una inclinación determinada y al aplicarlo como máscara sigue entrando parte del cerebro que no es ni tálamo ni mesencéfalo.
Tanto tálamo como mesencéfalo están constituidos únicamente por materia blanca. Se ha decidido aprovechar este hecho para probar una reconstrucción morfológica por dilatación, situando la semilla en el interior del mesencéfalo. Esta estrategia sirve únicamente si la región que queremos segmentar se encuentra aislada, en cuanto a materia blanca se refiere, del resto del cerebro.

Como se puede observar en la figura 10, el proceso de reconstrucción genera casi al 100% toda la materia blanca del cerebro, por lo que no es una alternativa válida para nuestros fines.

Figura 10: Reconstrucción morfológica de la materia blanca

Como realizar esta segmentación cuesta y lo que se desea es poder estudiar la materia blanca, la decisión que se ha tomado es la de realizar el corte final tanto en el vMRI original, como en los volúmenes de WM, GM, CSF y del cráneo únicamente. Los cortes obtenidos servirán para estudiar las diferencias entre los distintos tipos de tejido en la ecografía.
Apéndice 6

Transformación de los puntos: resolución del sistema de ecuaciones

El sistema de ecuaciones planteado en el apartado 5.3.3 es el siguiente:

\[
\begin{bmatrix}
x'
\end{bmatrix}
\begin{bmatrix}
y'
\end{bmatrix}
\begin{bmatrix}
z'
\end{bmatrix}
=
\begin{bmatrix}
a_1 & a_2 & b_1 & b_2 & c_1 & c_2
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
+
\begin{bmatrix}
a_3 & b_3 & c_3
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
\begin{bmatrix}
y
\end{bmatrix}
\begin{bmatrix}
z
\end{bmatrix}
\]

Donde \(\begin{bmatrix}
x
\end{bmatrix} \) son las coordenadas de la ecografía, \(\begin{bmatrix}
x'
y'
z'
\end{bmatrix} \) son las coordenadas del volumen de resonancia magnética, la matriz \(\begin{bmatrix}
a_1 & a_2 & b_1 & b_2 & c_1 & c_2
\end{bmatrix} \) es la
Figura 11: Puntos en el espacio

matriz de cambio de coordenadas y el vector \[
\begin{bmatrix}
a_3 \\
b_3 \\
c_3 \\
\end{bmatrix}
\]
es el vector de desplazamiento.

Los puntos sobre los que se debe evaluar el sistema son los marcados por la figura 11.

Evaluando los puntos se obtiene este sistema de ecuaciones.

\[
\begin{bmatrix}
57 \\
75 \\
120
\end{bmatrix} = \begin{bmatrix}
a_1 & a_2 \\
b_1 & b_2 \\
c_1 & c_2
\end{bmatrix} \cdot \begin{bmatrix}
442 \\
377
\end{bmatrix} + \begin{bmatrix}
a_3 \\
b_3 \\
c_3
\end{bmatrix}
\]

\[
\begin{bmatrix}
65 \\
152 \\
123
\end{bmatrix} = \begin{bmatrix}
a_1 & a_2 \\
b_1 & b_2 \\
c_1 & c_2
\end{bmatrix} \cdot \begin{bmatrix}
189 \\
352
\end{bmatrix} + \begin{bmatrix}
a_3 \\
b_3 \\
c_3
\end{bmatrix}
\]
\[
\begin{bmatrix}
196 \\
123 \\
117
\end{bmatrix}
= \begin{bmatrix}
a_1 & a_2 \\
b_1 & b_2 \\
c_1 & c_2
\end{bmatrix}
\cdot
\begin{bmatrix}
318 \\
1
\end{bmatrix}
+ \begin{bmatrix}
a_3 \\
b_3 \\
c_3
\end{bmatrix}
\]

El sistema desglosado queda así.

\[
\begin{cases}
57 = a_1 \cdot 442 + a_2 \cdot 377 + a_3 \\
75 = b_1 \cdot 442 + b_2 \cdot 377 + b_3 \\
120 = c_1 \cdot 442 + c_2 \cdot 377 + c_3 \\
65 = a_1 \cdot 189 + a_2 \cdot 352 + a_3 \\
152 = b_1 \cdot 189 + b_2 \cdot 352 + b_3 \\
123 = c_1 \cdot 189 + c_2 \cdot 352 + c_3 \\
196 = a_1 \cdot 318 + a_2 + a_3 \\
123 = b_1 \cdot 318 + b_2 + b_3 \\
117 = c_1 \cdot 318 + c_2 + c_3
\end{cases}
\Rightarrow
\begin{align*}
a_1 &= \frac{467}{92028} \\
a_2 &= -\frac{34175}{92028} \\
a_3 &= \frac{17923157}{92028} \\
b_1 &= -\frac{6938}{23007} \\
b_2 &= -\frac{649}{23007} \\
b_3 &= \frac{5036794}{23007} \\
c_1 &= -\frac{401}{30676} \\
c_2 &= \frac{377}{30676} \\
c_3 &= \frac{3716233}{30676}
\end{align*}
\]

Resolviendo este sistema de ecuaciones lineal y sustituyendo los coeficientes, el sistema resuelto queda:

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix}
= \begin{bmatrix}
\frac{467}{92028} & -\frac{34175}{92028} \\
-\frac{6938}{23007} & -\frac{649}{23007} \\
-\frac{401}{30676} & \frac{377}{30676}
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
+ \begin{bmatrix}
\frac{17923157}{92028} \\
\frac{5036794}{23007} \\
\frac{3716233}{30676}
\end{bmatrix}
\]
Apéndice 7

Cálculo de la ecuación del plano

Para obtener la ecuación del plano simplemente hace falta saber tres puntos por los que debe pasar. En este caso los puntos por los que debe pasar el plano buscado son \((x, y, z)\):

Zona del transductor: \(A = (196, 123, 110)\)

Zona derecha del cráneo: \(B = (58, 77, 105)\)

Zona izquierda del cráneo: \(C = (55, 168, 106)\)

Así pues, para obtener la ecuación del plano se debe proceder de la siguiente manera:

\[
AB = B - A = (-138, -46, -5)
\]

\[
BC = C - B = (-3, 91, 1)
\]
\[PV = AB \times BC = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -138 & -46 & -5 \\ -3 & 91 & 1 \end{vmatrix} = 409 \cdot \hat{i} + 153 \cdot \hat{j} - 12696 \cdot \hat{k} \equiv (a_1, a_2, a_3) \]

Partiendo de la forma cartesiana de la ecuación de un plano, el término independiente se obtiene de la siguiente manera:

\[a_1 \cdot x + a_2 \cdot y + a_3 \cdot z + a_4 = 0 \Rightarrow a_4 = -a_1 \cdot x - a_2 \cdot y - a_3 \cdot z \]

Sustituyendo los valores de \((a_1, a_2, a_3)\) y utilizando uno de los puntos \(A\), \(B\) o \(C\) ...

\[a_4 = -409 \cdot 58 - 153 \cdot 77 + 12696 \cdot 105 = 1297577 \]

Así pues, la ecuación del plano encontrado es:

\[409 \cdot x + 153 \cdot y - 12696 \cdot z + 1297577 = 0 \]
Apéndice 8

GUI

Una GUI (Interfaz Gráfica de Usuario) es un programa que utiliza la interfaz gráfica para interactuar con el usuario y así facilitar su uso.

Para poder realizar los cortes del volumen con más facilidad y superponer los cortes con la ecografía, se ha diseñado una GUI en la que se deben introducir los puntos sobre los que se pretende que pase el plano y los puntos con los que se quiere hacer coincidir la ecografía.

El programa carga directamente la ecografía y el volumen que se indica por código, aunque se podría añadir la opción de cargar el volumen y la ecografía deseados.

La GUI muestra la superposición de la resonancia segmentada por materias con la ecografía, los desplazamientos empleados para hacer coincidir la ecografía con la resonancia y el plano utilizado para cortar el volumen de resonancia magnética (figura 12).
Figura 12: GUI
Bibliografia

15. Cuadro 1 del anexo de la Directiva 89/391/CEE

