A Programmable UWB-IR Wireless Sensor Node Prototype, Using the Intel WISP Platform

by

Ramon Boixadera Planas

Examiner: Prof. Li-Rong Zheng

Stockholm, November 2010
“If knowledge can create problems, it is not through ignorance that we can solve them.”

Isaac Asimov (1920-1992)
Remote sensing and measuring is becoming more important with accelerating advances in technology. The ability to process large amounts of data using the internet and advanced digital signal processing techniques means that data can be collected, processed, organized, and interpreted as never before in history. This opens up possibilities of detailed monitoring of the environment, wildlife habitats, complex industrial machinery, aerospace vehicle platforms, and consumer equipment and the home environment. Sensing has advanced from manual meter reading to centralized data acquisition systems to a new era of distributed wireless sensor networks.

The aim of this work is to design a programmable prototype for a UWB RFID node. UWB RFID technology develops asymmetric wireless links so as to achieve high throughput, long operating range, high security, low power consumption and low manufacturing cost. This node can be compatible with EPC Global C1 G2 or develop the UWB RFID protocol, and includes a 7-segment display, thermometer and accelerometer. It is built in conjunction with Intel WISP4.1 DL. There is a complete explanation of the hardware and the software designed as well as an analysis of a wide range of performance measurements.

Moreover, in this work, an innovative node prototype is proposed. This node presents, among other features, a power scavenging unit which may be more than twice as powerful than Intel WISP4.1 DL. This improvement is caused by two aspects. Firstly, it includes a positive an a negative branch to develop a multi-stage bridge rectifier, dislike the single one in Intel WISP; one is supplying the node while the other one is charging. Secondly, it permits to adjust the number of stages in each branch so as to maximise the power obtained.
Acknowledgements

I would like to start thanking Kungliga Tekniska Högskolan. Leaving Spain for studies was a hard decision to me, but “you” made it easy and pleasant. I am really grateful for giving me the opportunity and the facilities to carry out my Master’s Thesis here in Sweden and for discovering me this amazing country.

I also want to thank my supervisor David Sarmiento all the support, advices and time he dedicated to me. I am sure that this work would not be the same without all the effort you devoted. Thank you for the whole humanity you demonstrate each and every day.

José and Tuton, thank you for all the “motivating” cigarettes we shared, the knowledge we exchanged and the time we spent together at KTH. Thank also to all the friends I met here (Álvaro, Ricky, Javier, Clément, Willeke, Rosa, Vero, Brice, Christian, Mario, Fabiano, ...) who helped me to enjoy this experience.

To the other side of the continent, Catalunya, I would like to mention the people who drove me to go on my studies for several years: Jordi, Víctor, Marc, Lluís, Miquel, Jesús, Gerard, Aleix, Dani, Yasmina, ... No sé ni a què em dedicaria ara mateix si no fos per vosaltres. Merci a tots!

Last but not least, I need to give special thanks to my big family. Mil gràcies per tot l’amor, per la paciència que heu tingut, per la llibertat que m’heu donat i per ser on sou i com sou. Tots i cadascun de vosaltres m’ha ajudat a ser qui sóc. Moltíssimes gràcies Ramon, Angelina, Jordi, Mary, Eva, Ester i Clara.
Contents

Abstract v

List of Figures xv
List of Tables xix
Abbreviations xxi

1 Introduction 1
1.1 RFID 2
1.2 UWB 4
1.3 UWB RFID system 6
1.4 Existing nodes 7
1.4.1 Intel’s WISP4.1 DL 7
1.4.2 Berkeley’s Mote 7
1.5 Motivation 8
1.6 Thesis overview 9

2 Intel WISP4.1 DL 11
2.1 Hardware 11
2.2 Software 13

3 System implementation 17
3.1 Functional description 18
3.2 Hardware 18
3.2.1 Block diagram 18
3.2.2 Physical connection 21
3.3 Software 22
3.3.1 Adaptation to the Reader 23
3.3.1.1 Reader inspection 23
3.3.1.2 Clock modification 26
3.3.2 Operating modes 28
3.3.2.1 OpMode_1 29
3.3.2.2 OpMode_2 31
3.3.2.3 OpMode_3 33
Measurements

4.1 Transmission line to uplink antenna. Reflection coefficient (S_{11})
4.2 UWB transmission. Pulse shape
4.3 Current consumption
 4.3.1 UWB transmitter
 4.3.2 7-segment display
 4.3.3 Extension PCB
4.4 Communication range
4.5 Performance tests
 4.5.1 “Ordinary” tag
 4.5.2 “Battery-equipped” tag
 4.5.3 “No-display” tag
 4.5.4 “Battery-equipped no-display” tag
 4.5.5 Extra capacitor
4.6 Harvester’s charging time
4.7 System specifications

Conclusions

5.1 Future work

A Intel WISP4.1 DL. Schematic and layout images

A.1 Schematic
A.2 Layout images

B Extension PCB. Schematic, layout images and images

B.1 Schematic
B.2 Layout images
B.3 Images

C Measurements

C.1 Transmission line to uplink antenna. Reflection coefficient (S_{11})
C.2 UWB transmission. Pulse shape
C.3 Current consumption
 C.3.1 UWB transmitter
 C.3.2 7-segment display
 C.3.3 Extension PCB
C.4 Communication range
C.5 Performance tests
 C.5.1 “Ordinary” tag
 C.5.2 “Battery.equipped” tag
 C.5.3 “No-display” tag
 C.5.4 “Battery.equipped no-display” tag
 C.5.5 Extra capacitor
C.6 Harvester’s charging time

D Hardware description of the WISP prototype proposal
List of Figures

1.1 Example of tag inventory and access. Figure E.1 in [2] .. 4
1.2 FCC Spectral Mask for UWB Indoor Communication Systems 4
1.3 UWB Gaussian Pulse. Figures 3.4 and 3.5 in [4] ... 5
1.4 UWB RFID system ... 6

2.1 Intel WISP4.1 DL, also called “Blue WISP” ... 11
2.2 Block diagram of the Blue WISP ... 12
2.3 Flow chart of the proposed code in “WISP wiki” [10] .. 13
2.4 Flow chart of the “switch” part of the proposed code ... 14
2.5 Reader-to-Tag preamble defined by EPC. Figure 6.4 in [2] ... 15
2.6 Miller sequences. Figure 6.13 in [2] ... 15
2.7 Termination of Miller sequences. Figure 6.14 in [2] ... 15
2.8 Texas Instruments’ eZ430-F2013 USB debugger connected to WISP4.1 DL 16

3.1 Perspective view of the Extension PCB ... 17
3.2 WISP4.1 DL with three rows of female headers: 8 + 3 + 8 pins 18
3.3 Block diagram of the Extension PCB ... 19
3.4 Schematic of the UWB transmitter. Figure 1a in [11]. .. 21
3.5 Blue WISP connected to Extension PCB .. 21
3.6 Flow chart of the program ... 23
3.7 **Query** command sent by reader ... 24
3.8 Breakdown of the **Query** command’s preamble. Figures on top: A, B; bottom: C, D .. 24
3.9 Last part of the **Query** command ... 25
3.10 **Query** command definition. Table 6.21 in [2] .. 25
3.11 Piece of WISP code where the system clock is modified (*Clock frequency* in Figure 3.6) ... 27
3.12 Piece of WISP code, of sendToReader() function, where some modifications from the original code are done .. 28
3.13 Piece of WISP code where the operating mode is selected .. 29
3.14 Flow chart of the “switch” part of the program ... 30
3.15 Example of a **BlockWrite** body in two-byte hexadecimal representation 31
3.16 WISP Flow chart for *OpMode-2-activity*() ... 33
3.17 Piece of code where an UWB frame is being sent, in *OpMode-2-activity*() 34
3.18 States transition diagram. Figure 4.12 in [4] ... 36
3.19 Example of the framed slotted ALOHA algorithm. Figure 4.14 in [4] 37
3.20 Example of pipelined scheme. Figure 4.15 in [4] ... 37
3.21 Example of idle slot skipping. Figure 4.16 in [4] ... 37
3.22 Flow chart for OpMode_3 in UWB main loop. (38)
3.23 Kill command functionality. (39)
3.24 Flow chart of TX (A), RX (B) and CMP (C) processes. (39)

4.1 Module of Transmission line S_{11}. (43)
4.2 Capture of an UWB pulse on Extension PCB. (43)
4.3 Transmission of UWB frame (18 bits). Current consumption (green) and UWB TX data (blue). (44)
4.4 Transmission of UWB frame (zoom in). Current consumption (green) and UWB TX data (blue). (45)
4.5 Global functionality. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and UWB TX data (blue). (46)
4.6 Switching on the step-up. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and UWB TX data (blue). (46)
4.7 Switching on the step-up (Zoom in). Current consumption (green), capacitor voltage (yellow), step-up level (purple) and UWB TX data (blue). (47)
4.8 Periodic current peak (green) generated by step-up. (47)
4.9 Current fluctuation because of 7-segment display. Current consumption (green) and decoder output (yellow). (48)
4.10 Current fluctuation of the whole Extension PCB. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue). (48)
4.11 First current peak (A), when step-up is switched on. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue). (50)
4.12 Second current peak (B), before display is switched on. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue). (50)
4.13 Average current consumption, I_{avg} (μA), as a function of DC (%) and T (ms). (51)
4.14 Laboratory distribution for measurements at different distances: oscilloscope (red), Blue WISP + Extension PCB (green) + reader (blue). (51)
4.15 Tag’s functionality 60 cm away from the reader. Capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue). (52)
4.16 Tag’s functionality 1.5 meters away from the reader, without display. Capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue). (54)
4.17 1.8V-battery-equipped tag’s functionality 1.5 meters away from the reader, without display. Capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue). (55)
4.18 Duty cycle, DC (%), evolution. (57)
4.19 Charging time, T_{ch} (ms). (58)

B.1 “Empty” WISP Extension PCB. (70)
B.2 Plan view of WISP Extension PCB. (75)

C.1 Schematic of the S_{11} measurement. (78)
C.2 Schematic of the pulse shape measurement. (78)
C.3 Schematic of the current measurement of the UWB transmitter. (79)
C.4 Captures of UWB transmitter’s current consumption. Figures on top: A, B, C; bottom: D, E, F.
C.5 Captures of Extension PCB (without display) current consumption. Figures on top: A, B, C; bottom: D, E.
C.6 Schematic of the current measurement of the 7-segment display.
C.7 Captures of display’s current consumption. Figures on top: A, B; bottom: C, D.
C.8 Schematic of the current measurement of the global battery consumption.
C.9 Captures of Extension PCB current consumption. Figures on top: A, B, C; bottom: D, E, F.
C.10 Schematic of performance tests.
C.11 Captures of Extension PCB performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.12 Captures of Extension PCB (without display) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.13 Captures of Extension PCB (with battery) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.14 Captures of Extension PCB (with battery and without display) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.15 Captures of Extension PCB (with 47µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.16 Captures of Extension PCB (with 100µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.17 Captures of Extension PCB (with 470µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.18 Captures of Extension PCB (with 1000µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.19 Captures of Extension PCB (with 4700µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.20 Capture of Extension PCB (with 47µF capacitor on Blue WISP) performance 100 cm far from the reader. It is an expanded version of Figure C.15 C.
D.1 Blocks of the WISP prototype.
D.2 Sub-blocks in the power supply and demodulator block.
D.3 Sub-blocks in the Micro-controller, UWB transmitter and RS-232 interface block.
D.4 Sub-blocks in the sensors block.
List of Tables

1.1 Features of Intel’s WISP 4.1 DL. .. 7
1.2 Features of Berkeley’s Motes. .. 8

3.1 OpMode_1 command definition. .. 31
3.2 Relation between data pins and its display equivalence, because of physical connection. ... 32

4.1 Summary of system characteristics in each measurement. 42
4.2 Summary of reader conditions. .. 42
4.3 Performance test of a “simple” Extension PCB. 53
4.4 Performance test of a “battery-equipped” Extension PCB. 53
4.5 Performance test of a Extension PCB with extra capacitor. 56
4.6 Average DC. Measurements without extra capacitor are ignored. 57
4.7 System specifications. .. 59

5.1 Comparison with Intel’s and Berkeley’s devices. 62

C.1 Charging time, $T_{ch} (ms)$, of Intel WISP harvester. 91

D.1 Configuration of the resistors R_1 to R_{21} to adjust Harvester’s functionality. 95
D.2 Example of configuration of the resistors R_1 to R_{21}. 96
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>BW</td>
<td>BandWidth</td>
</tr>
<tr>
<td>BLF</td>
<td>Backscatter-Link Frequency</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analog Converter</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>LDO</td>
<td>Low Dropout regulator</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency IDentification</td>
</tr>
<tr>
<td>TL</td>
<td>Transmission Line</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra WideBand</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
<tr>
<td>WISP</td>
<td>Wireless Identification and Sensing Platform</td>
</tr>
<tr>
<td>WSN</td>
<td>Wireless Sensor Network</td>
</tr>
<tr>
<td>μC</td>
<td>micro-controller</td>
</tr>
</tbody>
</table>
Dedicated to my family, friends and colleagues
Chapter 1

Introduction

Sensors integrated into structures, machinery, and the environment, coupled with the efficient delivery of sensed information, could provide tremendous benefits to society. Potential benefits include: fewer catastrophic failures, conservation of natural resources, improved manufacturing productivity, improved emergency response, and enhanced homeland security. However, barriers to the widespread use of sensors in structures and machines remain. Bundles of lead wires and fiber optic “tails” are subject to breakage and connector failures. Long wire bundles represent a significant installation and long term maintenance cost, limiting the number of sensors that may be deployed, and therefore reducing the overall quality of the data reported. Wireless sensing networks can eliminate these costs, easing installation and eliminating connectors.

The ideal wireless sensing is networked and scalable, consumes very little power, is smart and software programmable, capable of fast data acquisition, reliable and accurate over the long term, costs little to purchase and install, and requires no real maintenance. Selecting the optimum sensors and wireless communications link requires knowledge of the application and problem definition. Battery life, sensor update rates, and size are all major design considerations. Examples of low data rate sensors include temperature, humidity, and peak strain captured passively. Examples of high data rate sensors include strain, acceleration, and vibration.

Recent advances have resulted in the ability to integrate sensors, radio communications, and digital electronics into a single integrated circuit (IC) package. This capability is enabling networks of very low cost sensors that are able to communicate with each other using low power wireless data routing protocols. A wireless sensor network (WSN) generally consists of a base station (or gateway) that can communicate with a number of wireless sensors via a radio link. Data is collected at the wireless sensor node, compressed, and transmitted to the gateway directly or, if required, uses other wireless
sensor nodes to forward data to the gateway. The transmitted data is then presented to
the system by the gateway connection.

Radio Frequency IDentification (RFID) is a wireless technology used basically for iden-
tifying. This technology has two main components: tags (or labels) and readers (or
interrogators). Tags are attached to objects, animals or people and contain information
about the object, such as its ID number, manufacture date and other details. Readers
are data collectors; they are continuously looking for tags by emitting known waves.
When a passive RFID tag crosses the field generated by the reader and the reader’s
request matches with the tag number, the last replies with its ID.

On the other hand, Ultra Wideband Impulse Radio (UWB-IR) has been recognized as
a promising solution for wireless sensing and RFID because of its great advantages.
Information in IR-UWB system is typically transmitted through short pulses with low
duty cycle; thus, low power implementation. It can achieve high data rate, several tens
meters of operating distance, low power consumption, centimetre accurate positioning
and low cost implementation. Hence UWB-IR is a powerful candidate for next generation
of RFID.

1.1 RFID

There are two kinds of tags: active and passive. Active tags incorporates a battery
which supplies the power for the operation. It means long range operation and high
performance but they are expensive and big. On the other hand, passive tags obtain
power from the reader using a harvester unit. They reply to the reader through inductive
coupling or electromagnetic backscattering. They are substantially more used than
active tags because of their low cost, small size and unlimited life time. Inductive
coupling offers higher data rate in proximity, while backscattering offers longer operation
distance. In both cases, the returned signal (uplink) is weak, so data rate is limited to few
hundreds of Kb/s and positioning accuracy is not better than 70 cm. However, in new
applications such as wireless sensing, higher data rate with more accurate positioning
capability is desired. [1]

Focusing in passive tags with backscattering, two concepts helps to its power saving:
power harvester and backscattering. The harvester is the first stage after the receiving
antenna in the tag. It yields energy efficiently from the reader command and supplies the
device. On the other hand, backscattering defines the uplink as a impedance variation:
when the tag has to reply to the reader, it changes its antenna load for each symbol
and thereby the reader receives a variation of its echo which is interpreted as a specific symbol.

This technology works in three different bands: Low-frequency (LF: 125 - 134.2 and 140-148.5 kHz), High-frequency (HF: 13.56 MHz) and Ultra-high-frequency (UHF: 868-968 MHz). When UHF is used, this technology is also called UHF RFID. And, in both Uplink and Downlink, narrowband signal is used.

Although it is an expensive technology in comparison to Bar Code, RFID has several interesting features. The first one is robustness. Tags can be encased within rugged materials so that they can be used in any environment. The second one is NLOS (No Line Of Sight) operation; the communication between the reader and the tag can be reached without direct line of sight. The third one is high processing speed; tags are read from long distances and very quick, so that it allows items identification while moving.

There are currently two main air interface standards, one proposed by ISO and another by EPC Global. EPC Global standard is one of the most popular and is called “Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz - 960 MHz. Version 1.2” [2]. This standard defines the physical and logical requirements for a ITF (Interrogator-Talks-First) RFID system. It allows an ASK or PSK modulation and FM0 baseband or Miller data encoding. Using this standard, flags and states defines tag’s current situation: waiting for the reader, replying, killed, ...

Figure 1.1 is an example of a simple interaction between reader and tag in an ordinary inventory round. First of all, the reader issues a Query, that means that it is looking for tags in its field. Tag replies with a RN16 (16-bit Randon Number) whereas Query command parameters match with tag and its slot counter is 0 (slot counter is an anti-collision mechanism). In that case, reader acknowledges the tag by repeating RN16 and, if it matches, tags sends its EPC (Electronic Product Code). It identifies the tag, in the same way as a bar code does. At this point, the reader knows the tag and asks for a new RN16 (called “handle”) to exchange securely information encoded by CRC-16. Thus, in the ‘6’ step, the tag calculates and sends the handle to the reader and, from this point, any access command (from the reader to the tag) shall be done using the handle.

Nowadays, sensors are added to the tag. Thus, a tag is able to give the reader information about variables in the environment. This complete platform is called Wireless Identification and Sensing Platform (WISP) and is usually equipped with thermometer, accelerometer or humidity sensor, and a micro-controller to administer them. Therefore, it involves a higher power consumption.
1.2 UWB

The frequency band authorized for UWB by FCC (Federal Communication Commission) is from 3.1 to 10.6 GHz with the limitation of -41.3 dBm/MHz of maximum average equivalent radiated isotropic power spectral density (Figure 1.2). These signals occupy a fractional bandwidth, $\frac{BW}{f_c}$, greater than 20% (where BW is the transmission bandwidth and f_c is center frequency) or have a minimum bandwidth of 500 MHz [3].

![FCC Spectral Mask for UWB Indoor Communication Systems](image1.png)

Figure 1.2: FCC Spectral Mask for UWB Indoor Communication Systems.
One important advantage of this technique is its low power spectral density that allows coexistence with existing users and represents a low probably of intercept; it means high capacity and security. Another key is its large bandwidth (Figure 1.3) which enables a fine time resolution for network time distribution. Moreover, its simplicity, with regard to analog front-end design, is less than that for a traditional narrowband because it is essentially a baseband system.

There are mainly two possible techniques for implementing UWB: Multi-carrier UWB (MC-UWB) and UWB Impulse Radio (UWB-IR). MC-UWB uses orthogonal frequency division multiplexing (OFDM) techniques which has several advantages such as high spectral efficiency, robustness to RF interference and to multi-path. However, it has several drawbacks. Up and down conversion is required and it is very sensitive to frequency, clock and phase accuracy; in addition, non-linear amplification destroys the orthogonality of OFDM. That is why MC-UWB is not suitable for low-power and low cost applications.

On the other hand, UWB-IR employs a non-carrier wave modulation. It is performed modifying some characteristics of the pulse such as amplitude, phase and position. Therefore, its modulation scheme can be: OOK (On-Off Keying), PPM (Pulse-Position Modulation), BPSK (Binary Phase-Shift Keying) or PAM (Pulse-Amplitude Modulation). The transceiver complexity depends on the demodulation coherence. OOK or M-ary PPM modulations can be detected by low complexity schemes such as energy detection. On the contrary, BPSK or M-ary PAM modulations require higher complexity schemes and cost. Thus, OOK is the chosen scheme in this work because of its simplicity implementation and lower consumption: a pulse is transmitted to represent a binary ‘1’, while no pulse is transmitted for a ‘0’.
1.3 UWB RFID system

Some notable characteristics of RFID and WSN applications are not common with other communication systems [1]:

- **System capacity**: A huge number of tags might appear in reader field simultaneously, so multi-access algorithm is essential.

- **Asymmetrical traffic loads and resources**: The traffic loads are highly asymmetrical between the uplink and the downlink. Data sent by the reader is very few in comparison to the traffic transmitted by the big amount of tags in reader’s zone. Furthermore, hardware in tags presents very limited resources such as memory, power supply and computation, while the reader can be a powerful device.

- **Reading speed**: A high processing speed can be achieved by either a high data rate uplink or an efficient anti-collision algorithm.

- **Low power and low complexity hardware implementation**: Because RFID tags are resource-limited, the implementation must be simple and energy-efficient.

Considering the characteristics above, an UWB RFID protocol is presented in [4]. It is a full-duplex communication with asymmetric wireless links (see Figure 1.4). Narrowband is used in downlink by the reader to transmit a carrier signal that includes data and energy to tags. It gives an adaptive reader-to-tag data rate from 40 to 160 Kb/s, controlled by the reader. In order to supply continually tags, PIE (Pulse Interval Encoding) is utilized due to short pulse duration. On the other hand, uplink works on UWB-IR. Tag-to-reader data rate is fixed at 1 Mb/s and each bit is represented with a sequence of ten pulses (10 dB of processing gain).

![Figure 1.4: UWB RFID system.](image)

Because of the substantial asymmetric between reader and tags, the system works in a master-slave communication mode. The reader initiates all the operations and, consequently, tags respond. In addition, unlike conventional methods where both the tag and
the reader control data integrity, the proposed protocol handles error checking only in the reader part. Hence tag implementation is very simple.

1.4 Existing nodes

1.4.1 Intel’s WISP4.1 DL

Intel designed a EPC Global-compliant node called WISP4.1 DL or “Blue WISP”. It is a passive RFID tag that includes a harvester unit, a 3D-accelerometer, a thermometer and performs electromagnetic backscattering. Its performance is controlled by a Texas Instruments MSP430 micro-controller and easily permits its program modification.

It presents a communication range of three meters [10] and is programmed to develop 4-Miller encoding uplink at 256 KHz. It is described in Chapter 3. The following are some of its features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-controller</td>
<td>TI MSP430</td>
</tr>
<tr>
<td>Band</td>
<td>900 MHz (ISM)</td>
</tr>
<tr>
<td>Modulation</td>
<td>ASK</td>
</tr>
<tr>
<td>Data rate (Kb/s)</td>
<td>64</td>
</tr>
<tr>
<td>Sensors included</td>
<td>Thermometer, Accelerometer</td>
</tr>
<tr>
<td>Battery needed</td>
<td>No</td>
</tr>
<tr>
<td>Minimum supply</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

This device is used as the basis of the UWB RFID tag, taking advantage of its harvester and micro-controller. And, in order to fulfil the features, a UWB transmitter and a display are included.

1.4.2 Berkeley’s Mote

The University of California, Berkeley, has been investigating in WSN and creating devices such as Mote. In fact, they have designed several Mote types such as WeC, Ren, Dot, Mica and Telos, among others. The following are some of their features:
Table 1.2: Features of Berkeley’s Motes.

<table>
<thead>
<tr>
<th></th>
<th>Mica 2</th>
<th>Telos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-controller</td>
<td>ATmega128</td>
<td>TI MSP430</td>
</tr>
<tr>
<td>Band</td>
<td>1 GHz (ISM)</td>
<td>2.4 GHz (ISM)</td>
</tr>
<tr>
<td>Modulation</td>
<td>FSK</td>
<td>Offset QPKS</td>
</tr>
<tr>
<td>Data rate (Kb/s)</td>
<td>38.4</td>
<td>250</td>
</tr>
<tr>
<td>Sensors included</td>
<td>-</td>
<td>Thermometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visible light sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solar light sensor</td>
</tr>
<tr>
<td>Battery needed</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Minimum supply</td>
<td>2.7 V</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

1.5 Motivation

The first goal of this work was to develop a complete UWB RFID node prototype equipped with thermometer, accelerometer, humidity sensor and a display. It had to be a passive programmable node that can be compatible with EPC Global C1 G2 at different data rates and different coding schemes. Also, design a node that works with backscattering or UWB and set-up a programmable platform that can be used for positioning in the future.

Therefore, a programmable sensor tag compatible with commercial readers using the existing Intel WISP4.1 DL and connecting a PCB to it has been build. WISP4.1 DL includes harvester unit and sensors, and manages both WISP and the “Extension PCB”. It permits to use EPC Global C1 G2 at different data rates and coding schemes, and uses backscattering or UWB-IR uplink, implementing UWB RFID protocol. In Extension PCB, the needed features such as UWB transmitter and display have been added. A 7-segment display has to be included, which is a really important load. This is also the reason to add a DC-DC converter in Extension PCB and so interact with higher voltage systems; with paper displays, for example.

However, a new entire prototype for a complete UWB RFID node is shown as a draft in Chapter 5.
1.6 Thesis overview

The content of this work follows a logical structure. First chapters describe the hardware and the software developed to build this node. After that, measurements on the tag are compiled. Then, a draft of a new node prototype is created. Finally, conclusions are done.

These are the chapters:

- **Chapter 2** describes the existing Intel WISP4.1 DL which is reused (reprogrammed) to reach the desired functionality. There are explanations about hardware and software.

- **Chapter 3** explains how this “Extension PCB” is designed so as WISP4.1 DL achieves extra features and shows the way to interconnect both Intel WISP and Extension PCB. Discussions about the design of the hardware and, specially, the software are included.

- **Chapter 4** gives an overview about all the measurements carried out: reflection coefficient of the transmission line to the uplink antenna on Extension PCB, emitted UWB frame shape, current consumption, downlink communication range, performance tests and harvester’s charging time.

- **Chapter 5** is a review, summary and discussion of the development of this work. Furthermore, there is a description of the future work that should be carried out on this project.
Chapter 2

Intel WISP4.1 DL

In this chapter, a description of Intel WISP4.1 DL is done. First, its hardware is explained while showing its power stage, micro-controller and sensors, and afterwards there is an explanation about the software used to control it.

WISP4.1 DL is a commercial WISP, developed at Intel Research Seattle, that is used as a basis for the device in this work. It is also called “Blue WISP” and is a whole battery-free RFID UHF tag which includes 3D-accelerometer and a light and temperature sensor. Its operating range is up to three meters.

![Figure 2.1: Intel WISP4.1 DL, also called “Blue WISP”.
](image)

It is a small and light tag and can be reprogrammed in order to accomplish the desired functionality. All the information about its hardware, proposed software, steps to follow in order to install firmware, discussion forum and more can be found in “WISP wiki” [10]. This “wiki” is handled by Intel.

2.1 Hardware

Blue WISP’s hardware can be divided into three blocks: power stage, micro-controller and sensors (Figure 2.2). See Appendix A for detailed schematics.
The “power stage” includes an antenna (λ/2 at 900 MHz) which is thought to be used as a down and uplink antenna; the uplink uses backscattering. It is followed by a five-stage harvester; it gets power from the input UHF signal and charges a capacitor that acts as a power supply. The third part is an ASK demodulator.

In the “micro-controller” block, there is a voltage regulator connected to the main capacitor of the harvester. It fixes a 1.8 V supply to all the components. Apart from that, there is a micro-controller to supervise the tag functionality. And, finally, there is a voltage comparator that sends an interruption to the micro-controller when there is energy energy stored inside the capacitor.

In the “sensors” block, there are two sensors: a thermometer (LM94021) and an accelerometer (ADXL330). There is also a LED and an electronic switch (TS5A3166). Sensors are only turned-on just before and during the inspection of their outputs in order to avoid leakage. The LED is just a visible output for basic tests. Finally, an electronic switch helps to inspect the voltage level of the battery. Basically, there is an analog-to-digital converter (ADC) which measures a voltage level, but this value must be confined between the supply values (0 to 1.8 V). Since the harvester yields a voltage level up to 5.5 V, it is needed to lower this value to a third part using a voltage divider. So, this divider is connected/disconnected using the switch to save the energy wasted when it is not inspected.
2.2 Software

The code implemented is the EPC Class-1 Generation-2 standard [2] that specifies a protocol for communications at UHF RFID (860 - 960 MHz). There is a proposed code in “WISP wiki” [10] which is not complete, but implements parts of the main tag functionalities. Figure 2.3 shows the summarized program flow diagram.

Definitions about tag’s functionality are defined in the beginning of the code (Step 1 to Step 4 and Clock frequency); the full code is adjusted by modifying them. Each one of the steps fixes an specific feature: the application that the tag has to carry out, then is the sensor that will be inspected, the hardware (reader and tag), which are the protocol specifications and the tag identifier.

The tag starts the operation when a reset is set or when the battery level is higher than 2.2 V, because there is an interruption (IntPort2) generated in this case. Once the program is running main(), it sets up its general operation inside the general setup. After that, setup_to_receive() makes the tag to get ready to receive a command from the reader and keeps waiting for that, working at 3.5 MHz. When a command is received, it is handled and the appropriate reply and handshake is performed, depending on the current state. The switch(state) defines this functionality.

Figure 2.3: Flow chart of the proposed code in “WISP wiki” [10].
Being the tag in a specific state, it reads the received command and follows the scheme defined by EPC in the summarized breakdown of switch(state) in Figure 2.4. For example, if a tag is in READY state and QUERY command is received, the program runs the handle_query(REPLY) procedure. Inside this function, the tag checks several aspects of the command, following EPC description, replies the reader in its turn, exchange its state for REPPLY and setup_to_receive() again. After that, the tag jumps out (break) and go into switch(state) waiting for a new instruction from the reader.

Going back to receiving part, the way to understand a command from the reader is the following. In setup_to_receive(), the tag configures the reception pin (Receive_RFID) in “power stage” block as an interruption (IntPort1) in decreasing edge. It can be seen that there is a delimiter in preamble in Figure 2.5. The delimiter’s beginning (decreasing edge) generates an interruption which enables A0 timer and swaps IntPort1 to raising edge. When the delimiter ends (raising edge), IntPort1 appears again and it stops A0 timer. At this point, A0 timer shows the delimiter’s duration. \(\text{data} - 0 \) , \(\text{RTcal} \) and \(\text{TRcal} \) are calculated following the same steps.

\(\text{data} - 0 \) is the duration of a ‘0’ bit. Since \(\text{RTcal} \) equals to \(\text{data} - 0 \) plus \(\text{data} - 1 \), the duration of a ‘1’ bit can be obtained. So, once preamble is received, command can be
received and interpreted comparing the duration of each received bit to $data_0$ and $data_1$ durations. A1 timer is used to calculate the duration of each received bit.

\[
\text{data} - 0 \quad \text{and} \quad \text{data} - 1 \text{ durations.}
\]

A1 timer is used to calculate the duration of each received bit.

Figure 2.5: Reader-to-Tag preamble defined by EPC. Figure 6.4 in [2].

On the other hand, backscattering is used to reply the reader. The Micro-controller uses the `Transmit_RFID` pin to send the answer back to the reader using a backscattering method. `sendToReader()` is the name of the function that carries up this job: once the frame to reply is built into the tag’s memory, the WISP sends the preamble and the useful bits. Preamble is a sequence of high-to-low level fluctuations, according to protocol features, thus `Transmit_RFID` pin oscillates between 0 and 1.8 V continuously. In order to Miller-modulate each useful bit of the frame, the micro-controller uses the A0 timer. Figure 2.6 shows Miller-modulated sequences for 2 or 4-Miller schemes. Note that Miller encoding has memory. Finally, Miller signalling shall always end with a dummy ‘1’, as shown in Figure 2.7.

Figure 2.6: Miller sequences. Figure 6.13 in [2].

Figure 2.7: Termination of Miller sequences. Figure 6.14 in [2].
Chapter 2 Intel WISP4.1 DL

The clock frequency is changed to 3 MHz only when the tag is replying to the reader. Moreover, at any time within the program, if the battery level is not enough to supply the tag, the program stops and activates IntPort2. The tag wakes up again when the battery level is above 2.2 V.

Finally, in order to download the built code into the Blue WISP a debugger is needed. See “Getting started” ⇒ “Programming the WISP” in “WISP wiki” [10] for more information. The debugger used is a USB Key Debugger (Figure 2.8).

Figure 2.8: Texas Instruments’ eZ430-F2013 USB debugger connected to WISP4.1 DL.
Chapter 3

System implementation

This chapter talks about the design of the “Extension PCB” (Figure 3.1) that will be connected to Intel’s WISP4.1 DL. To explain all the content, the description is separated into three sections: functional description, hardware and software.

![Perspective view of the Extension PCB.](image)

Figure 3.1: Perspective view of the Extension PCB.

Firstly, the “functional description” section explains which are the targets of this PCB, while describing which parts of WISP4.1 DL are used, how it is connected to the Extension PCB and what is included in this PCB to achieve those aims. Afterwards, the “hardware” section describes the schematic designed, while explaining the reason of each component and the global interaction. Finally, the “software” section explains the modifications and the additions to the original code, while describing the three operating modes defined.
3.1 Functional description

WISP4.1 DL is a Wireless Sensor Node. The goal is to construct a platform capable of handling an UWB RFID system and a display, taking advantage of the commercial Blue WISP and adding extra hardware by using the Extension PCB. So, sensing platform capabilities of the WISP4.1 DL are used and the UWB-IR transmitter and display part (in the Extension PCB) are added.

A quick and easy way to connect/disconnect both parts (Blue WISP and Extension PCB) is needed, because this action is done several times while programming the microcontroller. Thus, male/female headers are the connection; three rows of female headers are soldered on the edges of the WISP4.1 DL (see Figure 3.2) and three rows of male headers on the Extension PCB.

![WISP4.1 DL with three rows of female headers: 8 + 3 + 8 pins.](image)

The micro-controller will administer all the actions taken by the RFID emitter and the sensors in the WISP itself, and will also administer all the actions taken by the UWB transmitter and display’s part in the Extension PCB.

3.2 Hardware

3.2.1 Block diagram

As mentioned before, this Extension PCB is designed to be linked to a Intel WISP4.1 DL and show a numeric value in a 7-segment display. The micro-controller in WISP4.1 DL is reprogrammed to accomplish the desired functionality. In this section, a block
Chapter 3 System implementation

The diagram of the Extension PCB is described. See Appendix B for detailed connection. This diagram is divided into several blocks as (see Figure 3.3):

- Paper battery
- Intel WISP4.1 DL
- Voltage regulator
- UWB transmitter
- Display
- Jumpers and voltage dividers

![Figure 3.3: Block diagram of the Extension PCB.](image)

Firstly, a Paper Battery can be added (see top left in Figure 3.3). This battery is used as an additional power supply and has two pins: negative and positive, PB_V^- and PB_V^+. PB_V^- is connected to the common GND node. PB_V^+ is connected to the Energy Jumper which is used to choose which power supply to use: Paper Battery or WISP4.1 DL’s power. In addition, Int.checkpoint is added to measure the current provided by the Paper Battery.

Secondly, in order to physically connect this PCB, three rows of male headers (8 + 3 + 8) are used to match with female headers on the WISP4.1 DL. Only seven of these 19 pins are useful: nodes $WISP_V^-$, $WISP_V^+$, Data, SHDN+, A1, A0 and Strobe in Figure 3.3. $WISP_V^-$ and $WISP_V^+$ pins are the 1.8 V power yielded by the
Chapter 3 System implementation

WISP4.1 DL harvester. The Data pin is used to bring the data output to the UWB transmitter and the Strobe pin is used to control the display. A0 and A1 pins are used to carry the binary coded number to be displayed. Finally, the SHDN* pin enables the Voltage Regulator. These are all the reused pins from the WISP4.1 DL.

Furthermore, there is a step-up DC-DC converter and a LDO regulator to get two power voltage levels in Voltage Regulator block. A step-up DC-DC converter is able to raise up a voltage level from 1.8 V (WISP4.1 DL’s power obtained) to 3.3 V. The following LDO regulator yields a stable voltage level, lower than its supply. The 1.8 V LDO regulator is needed to supply a stable voltage to the UWB transmitter. A 3.3 V voltage is needed by the rest of components; they belong to Display block, which does not work on high frequency and some fluctuations are not dangerous to achieve its desired functionality. Pin SHDN* enables/disables the step-up and, thus, the whole Extension PCB. The DC-DC converter is a Maxim’s MAX1678 and the 1.8 V LDO is an On Semiconductor’s NCP583.

In addition, a UWB-IR transmitter [11] has been used for the uplink implementation, and the schematic is depicted in Figure 3.4. The operation is as follows. A short pulse is generated in every falling edge of the input signal because of applying it and its delayed negative version to a NOR gate. M_F receives this short pulse and sinks a current from the pulse shaping filter that includes L_1, L_2, and C. A 12 Ω resistor (R) is added in series with C, making the final pulse oscillation to converge faster to zero. In order to shape the output signal there are two controls. The first, Amplitude Ctrl. (or AmpCtrl), adjusts the output amplitude and hence the radiated power. In low pulse rate, when the average power is low, it increases the pulse amplitude to have the maximum allowable radiation. On the other hand, when the pulse rate is high, it reduces the output amplitude to meet the power regulation. The second, BW Ctrl. (or PSDCtrl), tunes the delay and hence the output pulse width. Longer pulse width results in narrower radiated spectrum and vice versa. Both voltage levels can be modified independently using the two Voltage Divisors to set a voltage level between 0 and 1.1 V, which is the maximum voltage allowed. Lastly, TXOut carries the UWB-modulated signal to the antenna. There is a SMA connector to link the UWB transmitter and the antenna.

Finally, as the second goal of this PCB, it is desired to show a digit to symbolize the current tag status. To reach this target, an Agilent Technologies’ 7-segment display is used through 2.7 KΩ resistors. These are the maximum resistance values that still allow the display to be seen, while minimizing the energy consumption. The display is controlled by a STMicroelectronics’ HCF4056B BCD to 7-segment decoder. This decoder has two control pins: STROBE and freq.in. The STROBE is used to load the value of the BCD input number (pins A0 and A1) into a latch; it means that the
valid input number does not have to be set continuously. On the other hand, \textit{freq.in} adjusts display-frequency input. It means that the selected segment outputs will be high or low depending on this input. In fact, the segment output is a shifted NOR gate applied to \textit{freq.in} and to each of the theoretical segment outputs. In order to control \textit{freq.in}, \textit{Freq.in jumper} is added and allows to insert an external input. Both pins, \textit{STROBE} and \textit{freq.in}, are useful to save energy.

See schematic in Appendix B for specific connection details and layout images.

3.2.2 Physical connection

The Intel WISP is connected to the PCB with headers. In Figure 3.5 you can see the “plugged” tag. They are connected by three rows of headers (8 + 3 + 8) which means an amount of 19 pins.
Chapter 3 System implementation

In order to operate the UWB transmitter, some pins are needed to control this hardware. Firstly, the supply is obtained from the 1.8 V LDO. The amplitude control (AmpCtrl) and power spectral density control (PSDCtrl) are the middle pins of two potentiometers, that give an adjustable level from 0 to 1.0 V. One of the available pins in the three rows on WISP4.1’s borders, called Data, sends the coded frame from the µC to the UWB transmitter, which modulates this frame (see Data pin Appendix B). Finally, the output of the UWB transmitter is the TXout pin that transfers the signal to the antenna through a 50 Ω transmission line.

Furthermore, five pins are needed to control the 7-segment and its decoder for 16 different values (four data pins and one control pin), but only three are available. That is why only two data pins can be used, giving only four different values. The control pin is called Strobe and it controls the latch; when the data is ready, it gives the command to load the value into the decoder. Data pins are A0 and A1. However, a non-consumption point is needed, the theoretical A2 and A3 are connected to V3.3 and A0, respectively, since that 1111b shows nothing on the 7-segment display. This last connection is really important; if there is some LED of the display trying to turn on, while the Blue WISP is charging, it will never be able to start.

3.3 Software

Intel WISP4.1 DL uses the proposed code in “WISP wiki” [10] which is described in Chapter 2. In this section, there is a description of how this code has been adapted to match the reader and three operating modes (opModes) are defined to accomplish different functionalities.

Figure 3.6 shows the modified diagram of the program flow, in comparison to the proposed code (Figure 2.3). The general functionality of the tag starts when it wakes up because of IntPort2 interruption and does some settings in general setup. If OpMode.3 is chosen, the tag executes UWB RFID functionality by entering into the UWB_main_loop(). Otherwise, the tag gets ready to receive a command from the reader in setup_to_receive() and enters into the switch(state). Inside the switch(state), the tag receives a command from the reader and acts properly depending on the current status. This last part differs from the proposed code, because a different functionality is added to accomplish OpMode.2. After the work is done, the tag gets ready again to receive a new instruction.

Note that the modified parts are coloured in blue and the added ones are in green. In Definitions, Step0 is added to select the operating mode. Clock frequency is modified
to set a higher CPU frequency to transmit UWB. \textit{OpMode}_1, 2 and 3 are described in Subsection 3.3.2.

3.3.1 Adaptation to the Reader

The proposed code has been tested against the Impinj v 3.0.2 reader with Miller-4 encoding, working at 256 KHz Backscatter-Link Frequency (BLF). The reader is a Credipass CPR 303EU and its parameters are different. In order to match the reader to the tag, the reader’s performance is inspected to find communication parameters and, then, modify the proposed code.

3.3.1.1 Reader inspection

In order to find those parameters, some measurements on the shape of the first frame (\textit{Query} command) have been made. The whole \textit{Query} command sent by the reader is in Figure 3.7. It can be seen that the reader gives foremost a continuous waveform for one millisecond to supply the tag. Figures 3.8 A to D are a breakdown of the first part (preamble) and Figure 3.9 is the \textit{Query} command itself.
Chapter 3 System implementation

Figure 3.7: Query command sent by reader.

Figure 3.8: Breakdown of the Query command’s preamble. Figures on top: A, B; bottom: C, D.

Since command’s preamble defined by EPC is shown in Figure 2.5, Figures 3.8 A to D are: delimiter, data – 0 (Tari), RTcal and TRcal, respectively, and their time values are 14.4, 24, 66.4 and 144 µs. EPC Class-1 Generation-2 protocol [2] defines delimiter as a fixed value for any configuration. Tari equals to data – 0 length and RTcal equals to data – 0 plus data – 1 length. And TRcal defines BLF in Equation (3.1).

\[BLF = \frac{DR}{TRcal} \] \hspace{1cm} (3.1)

where \(DR \) is a parameter defined also by the reader, that can be 8 or 64/3. As described in Figure 3.10, a Query command frame is: Command, DR, M, TRext, Sel, Session,
Target, Q and CRC-5. From Figure 3.9, it can be interpreted that the Query command bits are: 1000 0 01 1 00 00 0 0000 10101, which means:

- Command = Query
- DR = 8
- M = 2. 2-Miller encoding
- TRext = 1. Long Tag-to-Reader preamble (Figure 6.15 in [2])
- Sel = All
- Session = S0
- Target = A
- Q = 0
- CRC-5 = 10101

In this case, the reader sets DR bit to zero, thus DR = 8. Using equation (3.1), the resulting BLF is 55.56 KHz. M bits are set to 01, which means 2-Miller encoding is used.

In conclusion, BLF needs to be slowed down from 256 to 56 KHz, and mutate from 4 to 2-Miller encoding.
3.3.1.2 Clock modification

The WISP’s μC has a system clock that feeds several blocks. A Clock System Control administers this clock to Master clock (MCLK) and Sub-main clock (SMCLK). In this case, MCLK feeds the CPU and SMCLK feeds a timer. When this timer (or counter) reaches its target value, it toggles the output in order to build the modulation and starts to count again from zero.

The operation methodology in the proposed code was, basically, as follows:

- First, the system clock is fixed to 3 MHz, like SMCLK (timer), and MCLK is set to 1.5 MHz.
- Then, the target value of the timer is set to 6, as the default value. It means that, unless there is a modification on the target value, the output will be a square wave. Since the target value is 6, the output will be toggled every six SMCLK-periods (2μs); thus, it is 256 KHz BLF.
- At the same time, the CPU processes the bits that are about to be sent. Depending on the current bit and according to Miller encoding, CPU changes the target value of the timer to 12 and, immediately later, sets it again to 6. It will build a long pulse (4 μs) in between short pulses. See Figure 2.6.
- Finally, when all the bits are transmitted, the timer is disabled.

The system clock must be fixed to 12 times the value of BLF in order to reach the desired BLF. So, in order to reach 55.56 KHz of BLF, the system clock is fixed to 666.67 KHz. On the other hand, 2-Miller encoding might be developed, in spite of 4-Miller. It means that the bit-rate raises up from BLF/4 to BLF/2 (∼ 28 Kb/s). Thus, each bit has to be processed twice faster. Taking advantage of the code, it is only needed to double the MCLK (CPU); hence both clocks (MCLK and SMCLK) are set to 666.67 KHz.

These modifications are done in the block *Clock frequency* (Figure 3.6) that consists of several macros. In Figure 3.11, the *SEND_CLOCK* macro redefines the system clock to 666 KHz, in spite of 3 MHz (commented code). There is, in addition, a macro called *SEND_CLOCK_UWB* which defines the clock in 10 MHz. The program applies either the first or the second macro depending on which is the operating mode chosen. This idea is described in the following subsection.

At this point, the code is transmitting at 55.56 KHz BLF and using 2-Miller encoding. Still, there are some problems on timing and synchronism and have been corrected. To be precise, in some points during the transmission, the proposed code does not spend
enough time to develop some loops. Because of this, the tag is not able to communicate
to the reader.

In order to solve this problem, some NOPs (No OPeration) have been added. Specifically,
the modified part of the code is in function “sendToReader()”, after the first settings:

```c
#define SEND_C1OCK  
    BCSTTL = XT2OFF + RSEL2 + RSEL1 ;  
    DCOCNT = 0;                        // approx 666 KHz

/*
    BCSTTL = XT2OFF + RSEL3 + RSEL0 ;  
    DCOCNT = DC02 + DC01 ;            // approx 3.0 MHz
*/

#define SEND_C1OCK_UWB  
    BCSTTL = XT2OFF + RSEL3 + RSEL2 + RSEL1;  
    DCOCNT = DC01 ;                    // approx 10 MHz
```

Figure 3.11: Piece of WISP code where the system clock is modified (Clock frequency
in Figure 3.6).
Chapter 3 System implementation

3.3.2 Operating modes

Three different operating modes are defined in order to accomplish different functionalities:
• **OpMode.1**: EPC Class-1 Generation-2

• **OpMode.2**: UWB test

• **OpMode.3**: UWB RFID

To choose which is desired operating mode, in the first part of the code appears the code in Figure 3.13:

```
#define MODE_EPC_GEN2     1
#define MODE_UWB_TEST     0
#define MODE_UWB_RFID     0
```

Figure 3.13: Piece of WISP code where the operating mode is selected.

3.3.2.1 OpMode.1

The operating mode chosen in Figure 3.13 is the first mode, because there is a ‘1’ written after; if another mode is wanted, this ‘1’ needs to be swapped with the ‘0’ of the desired mode. This mode, EPC mode, is the same provided by the proposed code in “WISP wiki”. It implements an ordinary RFID tag on EPC global Class-1 Generation-2 standard which is capable of answering to general commands, but the proposed code is incomplete.

It is desired to exchange data and send user defined commands to the tag, using a reader application called Credipass. This application allows the user to change the tag identification and does it using a `BlockWrite` command, which is not defined in the proposed code. This feature is used differently: rewriting the tag ID (from reader’s point of view), but interpreting the “new” ID as an instruction. Then, the tag acts as the command defines, without changing its ID. Therefore, the tag **BlockWrite** functionality needs to be defined in this way.
Chapter 3 System implementation

The Figure 3.14 shows the new flow chart of switch(state) code. It can be seen (in green) that SECURED state, its handle() functions and a special contemplation for OpMode_2 (OpMode_2_activity()) are added. Taking advantage from the already written code, the code which identifies a received BlockWrite command has been programmed.

![Flow chart of the “switch” part of the program.](image)

It is important to know that a tag ID is 16 bytes long (Figure 3.15): protocol control (2 bytes), ID body (12 bytes) and 16-CRC (2 bytes). Obviously, all 16 bytes need to be send and Credipass application does it by sending 8 two-byte-long commands. Thus, the tag needs to wait for all the 8 commands before acting in any way. Once the full “new” tag ID is received, the tag reads its bits and will proceed in the defined way.

There are 12 useful bytes (ID body) and an instruction is defined as a command (2 bytes), a parameter (2 bytes) and useless bits (8 bytes). The command collection is:

- **wDisp**: Writes the number received as a parameter into to display’s memory, which will be shown when the display is turned on.
Figure 3.15: Example of a **BlockWrite** body in two-byte hexadecimal representation.

- **dispON**: Turns on the display and shows the stored value.
- **dispOFF**: Turns off the display.
- **rAcce**: Reads the accelerometer values and sends them in a UWB frame.
- **rTemp**: Reads the temperature value and sends it in a UWB frame.
- **sendUWB**: The tag sends a UWB frame with the data received as a parameter.

Using this commands, almost all the available features in the tag can be used. To make it easy and intelligible for the user, commands will be eight bits (two hexadecimal symbols):

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>wDisp</td>
<td>77 - - (x_{1}x_{0}) - - - - - - - - - - - - - - - - - -</td>
</tr>
<tr>
<td>dispON</td>
<td>88 -</td>
</tr>
<tr>
<td>dispOFF</td>
<td>99 -</td>
</tr>
<tr>
<td>rAcce</td>
<td>AA -</td>
</tr>
<tr>
<td>rTemp</td>
<td>BB -</td>
</tr>
<tr>
<td>sendUWB</td>
<td>CC - - (s_{3}s_{2}s_{1}s_{0}) -</td>
</tr>
</tbody>
</table>

`-' symbol means that the value will be ignored. As an example, to write the number four into display’s memory, the whole transmitted **BlockWrite** command should carry:

```
| 3000 | 77 - - | 04 - - | - - - - | - - - - | - - - - | - - - - | - - - - | 16-CRC |
```

3.3.2.2 OpMode_2

The second mode, UWB test mode, implements a transition in between OpMode_1 and UWB RFID (OpMode_3). It is designed to check and measure its functionality, because there is no UWB RFID reader available yet.
Its global algorithm \((\text{OpMode}_2_\text{activity}())\) can be seen in Figure 3.16. After the received Query command, it inspects the power, sampling an Analog-to-Digital Converter (ADC). If the power voltage is higher than 4.5 V, tag saves 11\(_b\) value into the Display latch and turns on the DC-DC step-up converter; at this point, the latch value is 1111\(_b\) that means that there is nothing to display (see Table 3.2), so there is no power consumption. The program also deactivates all the interruptions and activates a Watchdog timer (WD = ON, green background color), which resets µC after a certain time just in case it gets stuck. Afterwards, it waits 200 \(\mu\)s (because of the power-up response of step-up) and waits again until the accumulator level is over 4.5 V. Then, it sends an 18-bit-long UWB frame (1-bit header + 16-bit body + 1-bit ending). Afterwards, it saves 00\(_b\) into latch and switches on display (showing the number ‘4’) until it runs out of battery. Note that, whichever other command is received, there is no activity. Moreover, the display’s value can be changed depending on the application.

Table 3.2: Relation between data pins and its display equivalence, because of physical connection.

<table>
<thead>
<tr>
<th>DATA</th>
<th>VALUE OF DISPLAY’S LATCH</th>
<th>DISPLAY CHARACTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 A0</td>
<td>B3 B2 B1 B0</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>0 1 0 0</td>
<td>4</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 0 1</td>
<td>5</td>
</tr>
<tr>
<td>1 0</td>
<td>1 1 1 0</td>
<td>-</td>
</tr>
<tr>
<td>1 1</td>
<td>1 1 1 1</td>
<td>BLANK</td>
</tr>
</tbody>
</table>

Note that, in \(\text{while}(1)\), the µC switches on and off the WD timer (green and red background color). It is done to control periodically the program status.

The Data pin is the cable that brings the output signal to the UWB transmitter. It needs a high frequency output; however, the maximum µC’s clock frequency is about 16 MHz. Thus, to develop an On-Off Keying (OOK), the µC clock signal is sent directly to the UWB transmitter to transmit a logic “one”, and no signal to transmit a “zero”. The clock has been adjusted to 10 MHz (Figure 3.11) based on the proposed UWB RFID protocol \[4\]. An output signal of 10 MHz equals to 1 Mb/s communication, because each “one” bit is modulated as 10 pulses (processing gain of 10 dBs).

Note that only specific pins of the µC are able to bring the clock signal. Figure 3.17 shows a part of the code that sends the clock to the UWB transmitter. Firstly, system clock is set to 10 Mhz in \(\text{SEND_CLOCK_UWB}\) macro. Afterwards, timers’ interruptions are disabled and 16-bit data is loaded into \(R7\) register. The following block of four commands sets the \(P1.4\) pin as an output, and establishes the system clock as the output wave (\(P1SEL_1 = \text{DEBUG_1.4}\)) because header bit is “one”. After two program cycles (\(NOP\) equals to one cycle), the tag gets ready for the first bit of the frame: \(RLC\ R7\)
rotates left the data, and results in a “carry” if the next bit is “one”. If so, code jumps to nextBitIs1,0 and P1SEL pin is set again to “one”; otherwise P1SEL pin is set to “zero” (P1SEL & = ~DEBUG1,4). After this, the code processes the next bit and repeats the same scheme for all the frame. Basically, the NOPs are added to synchronize “one” and “zero” cases.

3.3.2.3 OpMode_3

Finally, OpMode_3 is the UWB RFID mode. It implements the goal of this project: UHF RFID downlink and UWB uplink. This operation mode is developed for the future work of this project and follows the protocol presented in Subsection 1.3.

UWB RFID protocol [4] defines a set of 5 commands: Wakeup, Request, Write, Modify and Kill. Wakeup activates all tags inside the reader coverage area and Request does the same only to non-identified tags. Write is used to program unconditionally the memory for the first time, and Modify and Kill commands are for a single tag, using access control.
A frame is the time interval confined between reader requests. The frame format defined in this protocol is composed by four phases: **Power up**, **SOF** (Start Of Frame), **Command** and **Process**. Logically, the reader radiates a continuous wave (more than 30 bits ‘1’) to power on tags in **Power up**. **SOF** is used for frame synchronization; it is a sequence of ten ‘0’s and a bit ‘1’. In the **Command** phase, the reader sends the commands and, afterwards, the reader and the tag interact in **Process**.

There are three kinds of **Process**. The primer kind is **TX** (Transmitting) and it appears in all valid operations. For example, after a **Wakeup** command, the tags transmit their data for identification. So, in the **Process** phase, the reader sends clock and continuous
bit ‘1’ for tags’ initialization (load data from memory, generate pseudo-random number **PN code**, ...). After a start bit ‘0’, tags transmit data based on **PN code**. Also, **RX** (Receiving) **Process** is used in **Write** and **Modify** commands, and sets data in tags’ memory using a MSB-first data format. In order to differ **SOF** from data, each data byte is delimited by a start bit (‘0’) and a stop bit (‘1’). The third kind of **Process** is **CMP** (Comparing). It is only used in **Modify** or **Kill** commands: tags compare their own ID to data broadcasted by the reader (bit by bit) and only a unique tag executes the command.

Other items defined in this protocol are the flags and the states. Tags indicate their current status on three control flags: **ACK** (indicates that tag has been identified), **NAK** (is a N-bit counter and increases by one for each failed transmission) and **Kill** (identifies a killed tag). These flags are set while the states are switched. Six states are defined in this protocol and follow the transition diagram in Figure 3.18:

- **Powering Up**: Scavenging units in tags capture the energy from the electromagnetic signal and store it in an accumulator (capacitor).
- **Detecting/Halt**: This is the initial state of every powered tag. Tags are detecting incoming signals in this state, while capturing **SOF** and **Command**. After this state, tags enter a new frame to execute the corresponding operation.
- **Transmitting**: Firstly, tag loads data into cache and generates a **PN code**. Secondly, the **slot counter** in the tag counts down **PN code** until it reaches zero. Finally, the tag sends data and keeps waiting for reader’s **ACK** or **NAK**.
- **Writing**: Tag programs its memory by receiving data from reader.
- **Accessing**: It happens just before an operation to a specific tag (**Modify** or **Kill**). Tag compares its ID to the incoming signal bit by bit, and can be interrupted by any different bit. Only one tag with the same data completes the state.
- **Kill**: It sets the **Kill** flag to permanently disable the tag.

Since there is a big amount of tags attempting to communicate to the reader, an anti-collision method is needed. A collision occurs when more than one tag occupies the same RF communication channel simultaneously. Since this is a multiple-tag environment, system needs a multiple-access scheme (anti-collision algorithm) that allows reader to request data from several tags.

The algorithm chosen by the proposed UWB RFID protocol in [4] is framed slotted **ALOHA**, where a frame consists of a number of slots. Basically, a tag randomly (**PN**
code) selects a slot number in the frame and responds to the reader in that slot. If a collision occurs, tags retransmits in a random slot in the next frame. Figure 3.19 shows an example of its functionality, where frame size is set to three slots. In the first frame, Tag$_1$ and Tag$_3$ transmit data in Slot$_1$, Tag$_2$ and Tag$_5$ do the same in Slot$_2$, and Tag$_4$ in Slot$_3$. Only the Tag$_4$ succeeds and the rest must respond in the next reader request.

Three improvements are done to this algorithm:

- **Pipelined communication scheme.** Slot time usually contains tags packet and reader acknowledgement, and it becomes a bottleneck because downlink speed is
much lower than uplink. It is improved by separating these in two adjacent slots; data is sent in \(Slot_i \) and ACK in \(Slot_{i+1} \) (Figure 3.20). Thus, slot time is reduced.

- **Skipping idle slots.** By detecting incoming signals at the beginning of each slot, reader can determine if there is any transmission in that slot. If it is an idle slot (phase B in Figure 3.21), reader skips this slot and immediately transits into the next slot.

- **Adaptive frame size.** The maximum system efficiency of the framed slotted ALOHA is achieved when the frame size approximately equals to the amount of tags. With the tag number estimation algorithm [5], the reader can optimize the frame size.
The whole operation of this protocol appears as `UWB_main_loop()` function in Figure 3.6. Figure 3.22 shows the flow chart of `UWB_main_loop()` function. Note that background color delimits the current state on each step, and processes (emphasized boxes) are broken down in Figure 3.24. The following is a description of a command handling example: **Kill** command is sent by reader.

Figure 3.22: Flow chart for OpMode_3 in `UWB_main_loop()`.

Tags follow the procedure in Figure 3.23. Firstly, tag receives **SOF** and command, and **CMP** process starts. In this process, the tag waits for the beginning of the ID in *Wait'0'bit*. Then, it starts to compare, bit by bit, the incoming ID to its own ID. If any of the incoming bits does not match, the tag ends its program; otherwise, the tag remains comparing the following bit. If the whole ID matches, the tag is accessed and waits again (*Wait'0'bit*) for and the incoming new ID (**RX** process). It stores its new ID and transmits for handshake in **TX** process. After that, work is **Done** and tag remains listening for a new command.
Figure 3.23: Kill command functionality.

Figure 3.24: Flow chart of TX (A), RX (B) and CMP (C) processes.
Chapter 4

Measurements

In this chapter, a summary of the measurements on Extension PCB linked to Blue WISP is written. These measurements are done to check and inspect Extension PCB’s functionality and the system capabilities. Six measurement have been performed:

- Reflection coefficient, S_{11}, of the transmission line to the uplink antenna
- Shape of an UWB pulse
- Current consumption
- Communication range (downlink)
- Performance tests
- Harvester’s charging time

Table 4.1 explains the system characteristics in each measurement and Table 4.2 describes general reader conditions. In addition, there is a summary of the measurements results and specifications in Section 4.7.

All the data collected and measurements procedure in the laboratory are described in Appendix C.

4.1 Transmission line to uplink antenna. Reflection coefficient (S_{11})

An important part of the Extension PCB is the transmission line (TL) allocated between the UWB transmitter and the uplink antenna. This line carries the UWB-modulated signal, so its quality level is important.
Table 4.1: Summary of system characteristics in each measurement.

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>OpMode</th>
<th>RANGE</th>
<th>EXTRA battery</th>
<th>EXTRA capacitor</th>
<th>7-segment DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection coefficient</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UWB pulse shape</td>
<td>OpMode_2</td>
<td>-</td>
<td>No</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>Current consumption:</td>
<td>OpMode_2</td>
<td>60/150cm</td>
<td>No</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>- UWB transmitter</td>
<td>OpMode_2</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>- 7-segment display</td>
<td>OpMode_2</td>
<td>60/150cm</td>
<td>No</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>- Extension PCB</td>
<td>OpMode_1</td>
<td>variable</td>
<td>No</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>Communication range</td>
<td>OpMode_2</td>
<td>variable</td>
<td>No</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>Performance tests:</td>
<td>OpMode_2</td>
<td>variable</td>
<td>No</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>- ordinary</td>
<td>OpMode_2</td>
<td>variable</td>
<td>Yes</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>- battery</td>
<td>OpMode_2</td>
<td>variable</td>
<td>No</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>- no-display</td>
<td>OpMode_2</td>
<td>variable</td>
<td>No</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>- battery & no-display</td>
<td>OpMode_2</td>
<td>variable</td>
<td>Yes</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>- extra capacitor</td>
<td>OpMode_2</td>
<td>variable</td>
<td>No</td>
<td>variable</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4.2: Summary of reader conditions.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna gain</td>
<td>6dBi</td>
</tr>
<tr>
<td>Antenna type</td>
<td>Circular</td>
</tr>
<tr>
<td>3\text{dB} Beamwidth</td>
<td>20 ° (E-plane)</td>
</tr>
<tr>
<td>RF output</td>
<td>0.5 W</td>
</tr>
<tr>
<td>Data rate</td>
<td>9600 b/s</td>
</tr>
</tbody>
</table>

To measure this coefficient, a signal is injected to the line and the reflected signal is inspected. To do it in an easy way, an empty Extension PCB is used. A 50 Ω resistor is soldered between the two nodes of the TL on the side of the UWB transmitter and the SMA connector is soldered on the other side. Then, an adapted resistor is the load of the TL and the signal is injected through the SMA connector.

The reflection coefficient, S_{11}, acquired is Figure 4.1.

This TL was designed to transport the main part of a UWB signal modulated by the UWB transmitter, from 3.1 to 4.8 GHz (Figure 3d in [11], input signal at 10 MHz). It is possible to see that the measured S_{11} is relatively low inside this band, below 0.25. It means that the energy losses (because of impedance matching) are lower than -12 dB (0.25).
4.2 UWB transmission. Pulse shape

The UWB transmitter, the SMA connector and also the TL establishes to shape of the modulated UWB signal. It is important to check if this shape is the desired and matches with the expected from the UWB transmitter.

The tag is set on OpMode 2, so an UWB frame is sent continually while power is yielded by the tag. The uplink output is connected to a wideband oscilloscope. On every falling edge of the square input signal (at 10 MHz), measurements determine that UWB transmitter generates a short pulse (approximately 0.6 ns long) with the amplitude of the first positive peak slightly higher than 0.11 V. The pulse emitted by the Extension PCB is Figure 4.2.
4.3 Current consumption

To determine which is the energy consumption of the system in several situations, a power consumption analysis is essential to determine its functioning, specially in passive tags. The following are current measurements of the UWB transmitter, the 7-segment display and the whole Extension PCB. Finally, an approximation of the average consumption of the whole tag.

4.3.1 UWB transmitter

The first measurement done is on the UWB transmitter. Blue WISP is connected to Extension PCB, working in OpMode_2, and the whole tag is 60 cm far from the reader. Figure 4.3 gives an overview of the fluctuation of the meaningful signals during a UWB transmission:

- Channel 1 (yellow) represents the voltage charge of the WISP capacitor, which acts as a power accumulator. At this point, it remains slightly over 4.5 V, because the tag has been activated when this capacitor charge crosses this value (Subsection 3.3.2.2) and UWB frame is sent just after.

- Channel 2 (blue) is connected to Data pin which carries the UWB input signal to be modulated. As you can see, its duration is 18 μs, as expected: 18 bits are sent at 10 MHz, where each bit represents 10 cycles.

- Channel 3 (purple) is the step-up output which is 3.3 V, as expected.

Figure 4.3: Transmission of UWB frame (18 bits). Current consumption (green) and UWB TX data (blue).
• Channel 4 (green) represents the current consumption, measured at $WISP.V^+$ pin. Its shape is, like the UWB frame, a 18μs-long burst with maximum and minimum peaks of 3.3 and -3.3 mA.

The bandwidth of the current probe is too low (DC-100 MHz) to measure the current spikes produced by the UWB transmitter. These spikes are composed by different frequencies that are higher than probe BW. Figure 4.4 shows the beginning of the UWB burst and current fluctuation seems to be null in average because of current probe’s BW. This is, obviously, false.

![Figure 4.4: Transmission of UWB frame (zoom in). Current consumption (green) and UWB TX data (blue).](image)

The following are captures of the same signals in the Extension PCB without a 7-segment display, 150 cm away from the reader. So, a UWB frame is sent and display turned on when 4.5 V are yielded, but display load is null (apart from small losses).

In Figure 4.5 the global fluctuation of the meaningful signals is shown. The capacitor in WISP (yellow) is charging during 90 ms until it reaches 4.5 V. At this point, step-up is switched on (purple) and raises its output up to 3.3 V, generating a current consumption peak (green). Immediately after, an UWB frame is sent (blue). Then, tag keeps supplying the PCB until its energy is consumed, 60 ms later, and the cycle begins again.

Figure 4.6 zooms in the part where step-up is turned on. As can be seen in Channel 4 (green), this DC-DC converter generates high current peak (~ 130 mA) followed by 3.4ms-periodic peaks (~ 70 mA). The first one appears to raise up the output level from 2.4 to 3.3 V (in purple) and the following ones, to maintain the 3.3 V level, as described in its data sheet.
Chapter 4 Measurements

Figure 4.5: Global functionality. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and UWB TX data (blue).

Figure 4.6: Switching on the step-up. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and UWB TX data (blue).

The UWB frame generates also a voltage burst, in step-up output, in Figure 4.7. Just before, a 55\(\mu\)s-long group of increasing current peaks with a maximum of 130 mA can be seen; this is the powering-up response of the step-up and it is also as expected in its data sheet. Finally, one of the periodic peaks is captured in Figure 4.8; its maximum is 70 mA and is about 30 \(\mu\)s long.

4.3.2 7-segment display

The main load component in the Extension PCB is the display. It is a “common anode” 7-segment display, which means that the previous decoder sets a low output to turn on
any of its LEDs.

For this measurement, Blue WISP was reprogrammed to only toggle A1 and A0 pins from ‘0’ to ‘1’ every 1.05 ms. In this way, display’s values are ‘4’ and BLANK. Moreover, resistors R_5 to R_{11} have been removed. Thus, the consumption of only one LED (‘F’ cathode, upper left) can be measured and Figure 4.9 describes this oscillation: Channel 2 (green) represents current consumed at “Current checkpoint” (battery is used). Channel 1 (yellow) draws the voltage level of the decoder output, from 0 to 1.8 V.

It is possible to see that, when decoder output is high, current level is null (LED off). On the other hand, when decoder is low, current level is about 0.6 mA (LED on). This is the expected value, because this LED (Agilent Technologies’ HDSP-7511) has a 1.8
Chapter 4 Measurements

Figure 4.9: Current fluctuation because of 7-segment display. Current consumption (green) and decoder output (yellow).

V forward voltage; subtracted from 3.3 V, it represents a voltage difference of 1.7 V applied to a 2.7 KΩ resistor. Hence there is a 0.63 mA current consumption of each LED in 7-segment display, 2.5 mA for four LEDs (displaying number ‘4’) and 4.4 mA for seven LEDs.

4.3.3 Extension PCB

Having a notion about the current consumption of the UWB transmitter and 7-segment display, measurements on the whole Extension PCB are done. Again, tag’s mode is OpMode_2.

Figure 4.10: Current fluctuation of the whole Extension PCB. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue).
Figure 4.10 shows the general functionality of the tag (Blue WISP + Extension PCB) 60 cm away from the reader. These are the important signals:

- **Channel 1** (yellow) represents the voltage charge of the WISP capacitor. It raises from 0 to 4.5 V, then tag is activated. At this moment, step-up raises up its output to 3.3 V and it represents an important consumption. Tag sends an UWB frame and turns on display 30 ms later, until energy is consumed.

- **Channel 3** (purple) is the step-up output. When tag is activated, it maintains at 3.3 V, until energy stored at capacitor is consumed.

- **Channel 2** (blue) is connected to one of display’s cathodes. Decoder starts at 3.3 V (high) and no voltage difference appears between resistor nodes; so, LED is off and cathode at 3.3 V. 30 ms later, the decoder output is set to 0 V, LED switches on and represents a 1.8 voltage difference; cathode is now at 1.7 V. When capacitor (yellow) starts to run out, the same happens to step-up and, likewise, to the cathode.

- **Channel 4** (green) represents the current consumption, measured at $WISP_{V+}$ pin. Two important peaks can be seen: the first (A), when step-up is switched on and, the second (B), when display is activated. Afterwards, 220μs-periodic peaks (C) appear to support display’s consumption.

Peak A in Figure 4.11 differs to from Figure 4.7 because of display load. Its maximum is about 150 mA, but its duration is 220μs. In addition, peak B’s maximum is 130 mA and 65 μs long in Figure 4.12. Finally, each of the peaks (C) is exactly like Figure 4.8, but period is shorter.

From the previous captures, an approximation of the average current consumption can be achieved. This approximation depends on the energy of A, B and C peaks (I_A, I_B and I_C), on C-peaks periodicity (T'), on the time when display is activated (T_{ON}) and on the global periodicity (T, time between successive tag’s ignitions). Equation C.2 gives this approximation in Subsection C.3.3.

This average depends only in T_{ON} and T, because I_A, I_B, I_C and T' are constants. So, defining the duty cycle (DC) as T_{ON}/T, the approximation of average consumption is in Figure 4.13. T sweeps from 60 to 420 ms because these are the minimum and maximum values measured on the Extension PCB (connected to a Blue WISP) with PCB display (in Section 4.5).

It is possible to realise that, the higher the duty cycle and the periodicity are, the more I_{avg} approaches to 2.27 mA. This value is the display’s consumption calculated from
Figure 4.11: First current peak (A), when step-up is switched on. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue).

Figure 4.12: Second current peak (B), before display is switched on. Current consumption (green), capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue).

C peaks (Subsection C.3.3). In fact, this is the expected functionality: when DC and periodicity are high, display is on most of the time, hence the average consumption represents the display consumption.

In addition, using a multimeter, the average current consumption is around 1.5 mA at 60 cm away from the reader, using a battery. The periodicity at this point is 150 ms and the duty cycle is 60 %, so 1.5 mA roughly matches with the approximation.
4.4 Communication range

The following measurements are likewise important and describe the maximum distance where the communication is still possible. In order to check the tag’s maximum range, this measurement shows how far you can communicate Blue WISP to reader, working in OpMode_1. Credipass application is used and issues a beep when a communication between both is established; Extension PCB is not needed, in this case. The maximum distance measured was two meters.

![Figure 4.13: Average current consumption, $I_{avg} \, (\mu A)$, as a function of $DC \, (%)$ and $T \, (ms)$.](image)

Moreover, Extension PCB is connected to Blue WISP (in OpMode_2) and the power voltage level (V_{out}) in WISP is measured, Figure 4.14. Scavenging unit is able to yield power up to, also, a little farther than two meters as well. Display active time,
unfortunately, is insignificant. On the other hand, if an extra capacitor is included in Blue WISP (parallel to 10-µF capacitor), the display active time increases, while charging time considerably increases.

This is the reason why the following measurements, about performance tests using several extra capacitors, are performed.

4.5 Performance tests

In all the following measurements, the tag is set in OpMode.2: it yields power from the reader, receives a \textbf{QUERY} command, sends an UWB frame and shows a number in the 7-segment display. Figure 4.15 is an example of tag’s performance cycle: the tag charges its power accumulator (yellow), turns on step-up (at 60ms point, from the left border), waits until the capacitor charges again, sends an UWB frame and switches on display (at 90ms) until power gets consumed (at 110ms). Three parameters are defined:

- T_{ON}: time when display is active. 18.8 µs in this example, from 90ms to 110ms point, between the cursors.
- T: display’s ON-OFF-ON periodicity. 120 µs, from 60ms to 180ms points.
- DC: calculated duty cycle. $18.8 / 120 = 15.7 \%$.

![Figure 4.15: Tag’s functionality 60 cm away from the reader. Capacitor voltage (yellow), step-up level (purple) and display’s cathode (blue).](image)
4.5.1 “Ordinary” tag

Samples of those three parameters are obtained on the Extension PCB connected to a “empty” Blue WISP (no extra capacitor). Table 4.3 summarizes those measurements, where \(d \) is the distance to the reader (in cm), \(T \) is the period in ms, \(T_{ON} \) is display’s active time in ms and \(DC \) is the duty cycle in %.

Please, note that \(T \) values have been fitted to 30 ms multiple. It is known that every cycle starts when a \textbf{Query} command is sent by the reader and power is higher than 4.5 V, and the reader sends a \textbf{Query} every 30 ms. In this way, some accuracy errors are avoided.

Table 4.3: Performance test of a “simple” Extension PCB.

<table>
<thead>
<tr>
<th>(d) (cm)</th>
<th>25</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ON}) (ms)</td>
<td>30.8</td>
<td>18.8</td>
<td>12</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(T) (ms)</td>
<td>90</td>
<td>120</td>
<td>210</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>(DC) (%)</td>
<td>34.2</td>
<td>15.7</td>
<td>5.7</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

As is logical, the further the tag is, the harder it is to charge and the less is the active time. Being near to the reader (25 cm), display is on for 34 % of the time and for 2 %, being far (2 m).

4.5.2 “Battery-equipped” tag

Again, an Extension PCB with 7-segments display is checked, but 1.8 V battery (power supply) is included.

Table 4.4: Performance test of a “battery-equipped” Extension PCB.

<table>
<thead>
<tr>
<th>(d) (cm)</th>
<th>25</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ON}) (ms)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>90.4</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>(T) (ms)</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>180</td>
<td>210</td>
</tr>
<tr>
<td>(DC) (%)</td>
<td>100</td>
<td>100</td>
<td>60.3</td>
<td>33.3</td>
<td>28.6</td>
</tr>
</tbody>
</table>

It is possible to see that duty cycle in Table 4.4 increases in comparison to Table 4.3. Display remains active continuously up to 60 cm and remains over 28 % up to 2 meters away from the reader. This improvement happens, obviously, because of the battery; tag’s loading is lighter due to the energy yielded, and is only used to keep the \(\mu \)C on, listen to reader and administer the PCB.
4.5.3 “No-display” tag

WISP power yielded, step-up output and 1.8 V LDO (in the Extension PCB) were inspected, using an Extension PCB without 7-segment display.

1.8 V LDO is always active. Figure 4.16 shows that power yielded (yellow) oscillates from 1.4 V to 4.5 V. Step-up (purple) remains on (at 3.3 V) for 60 ms and off (decreasing) for 90 ms. Even so, LDO (blue) is always on because step-up’s output is still higher than 2 V.

Moreover, it is important to pay attention to the power yielded shape (yellow curve): steps appear in both growing and decreasing slopes. These steps are caused by the reader; it sends a Query command every 30 ms, but it also sends a 20ms-long uniform wave to charge the tag. Each of these 10ms-long step is the time when reader is sending nothing, so tag is not charging (flat) on growing slope or discharging faster on decreasing slope.

4.5.4 “Battery-equipped no-display” tag

The same happens when a battery is included; 1.8 V LDO is always active. The only difference appears during the active time (discharging slope), which is longer in this case, as expected. It is possible to see in Figure 4.17 that the step-up (purple) stays on for about 90 ms, instead of 60 ms without battery in Figure 4.16.

Again, improvement appears thanks to the battery; the power yielded by Blue WISP is only used to keep the μC on, listen to reader and administer Extension PCB. These
three activities are a minor loading and can be carried out longer. On the other hand, it
does not affect growing slope because no loading is considered while power accumulator
is being charged.

4.5.5 Extra capacitor

An extra capacitor can be added into Blue WISP, parallel to 10 µF capacitor (C7 in
Appendix A). It is the power accumulator and, adding and extra capacitor, more energy
can be stored but more time is needed to be filled. To get a notion about which is the
impact, for instance, two example are shown:

- **No extra capacitor (0 µF)**: The time spent to charge the accumulator is about
 90 ms, and display discharges accumulator in 12 ms (Figure C.11 C).

- **Extra capacitor (47 µF)**: The time spent to charge the accumulator is about
 520 ms, and display discharges accumulator in 82 ms (Figure C.15 C).

They are approximately 6 time higher (90 to 520 ms, 12 to 82 ms). This is because of
the values of the capacitors. In the first case, no extra capacitor is added, but there
is already a 10-µF capacitor inside. In the second case, extra capacitor plus 10-µF
capacitor equals to a 57-µF capacitor. Hence there is a relation one to six between
accumulators and means also six times in growing and decreasing times.
Table 4.5 is a compilation of all the measurements done using several extra capacitors (none, 47, 100, 470, 1000 and 4700 μF) and different distances (25, 60, 100, 150 and 200 cm) from the reader.

Table 4.5: Performance test of a Extension PCB with extra capacitor.

<table>
<thead>
<tr>
<th>d (cm)</th>
<th>(T_{\text{ON}}) (ms)</th>
<th>(T) (ms)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>30.8</td>
<td>90</td>
<td>34.2</td>
</tr>
<tr>
<td>60</td>
<td>18.8</td>
<td>120</td>
<td>15.7</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
<td>210</td>
<td>5.7</td>
</tr>
<tr>
<td>150</td>
<td>8</td>
<td>420</td>
<td>1.9</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>420</td>
<td>1.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>47 μF</th>
<th>(T_{\text{ON}}) (ms)</th>
<th>(T) (ms)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1320</td>
<td>110</td>
<td>90.7</td>
</tr>
<tr>
<td>60</td>
<td>120</td>
<td>690</td>
<td>12.9</td>
</tr>
<tr>
<td>100</td>
<td>82</td>
<td>1560</td>
<td>4.6</td>
</tr>
<tr>
<td>150</td>
<td>72</td>
<td>1440</td>
<td>5.3</td>
</tr>
<tr>
<td>200</td>
<td>72</td>
<td>1440</td>
<td>5.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100 μF</th>
<th>(T_{\text{ON}}) (ms)</th>
<th>(T) (ms)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1590</td>
<td>230</td>
<td>89.8</td>
</tr>
<tr>
<td>60</td>
<td>176</td>
<td>1380</td>
<td>12.8</td>
</tr>
<tr>
<td>100</td>
<td>152</td>
<td>2850</td>
<td>5.3</td>
</tr>
<tr>
<td>150</td>
<td>144</td>
<td>2730</td>
<td>5.3</td>
</tr>
<tr>
<td>200</td>
<td>144</td>
<td>2730</td>
<td>5.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4700 μF</th>
<th>(T_{\text{ON}}) (ms)</th>
<th>(T) (ms)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3380</td>
<td>784</td>
<td>84.7</td>
</tr>
<tr>
<td>60</td>
<td>620</td>
<td>6900</td>
<td>6.1</td>
</tr>
<tr>
<td>100</td>
<td>600</td>
<td>9780</td>
<td>5.1</td>
</tr>
<tr>
<td>150</td>
<td>600</td>
<td>11700</td>
<td>5.1</td>
</tr>
<tr>
<td>200</td>
<td>600</td>
<td>11700</td>
<td>5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1000 μF</th>
<th>(T_{\text{ON}}) (ms)</th>
<th>(T) (ms)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>7160</td>
<td>1740</td>
<td>83.3</td>
</tr>
<tr>
<td>60</td>
<td>1280</td>
<td>12840</td>
<td>31.6</td>
</tr>
<tr>
<td>100</td>
<td>1360</td>
<td>17640</td>
<td>10.0</td>
</tr>
<tr>
<td>150</td>
<td>1280</td>
<td>18720</td>
<td>7.7</td>
</tr>
<tr>
<td>200</td>
<td>1280</td>
<td>18720</td>
<td>7.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4700 μF</th>
<th>(T_{\text{ON}}) (ms)</th>
<th>(T) (ms)</th>
<th>DC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>45400</td>
<td>8560</td>
<td>92.7</td>
</tr>
<tr>
<td>60</td>
<td>6000</td>
<td>6000</td>
<td>17.4</td>
</tr>
<tr>
<td>100</td>
<td>6000</td>
<td>6000</td>
<td>7.4</td>
</tr>
<tr>
<td>150</td>
<td>6000</td>
<td>6000</td>
<td>7.4</td>
</tr>
<tr>
<td>200</td>
<td>6000</td>
<td>6000</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Extracted from Table 4.5, Figure 4.18 shows the evolution of duty cycles. Apart from 0-μF curve, DC values keep approximately constant in each distance for any extra capacitor, which means that the charging time keeps a fixed proportion to the discharging time for a certain distance. On the other hand, DC decreases (when distance increases) because harvester obtains energy more slowly (the raising slope is longer) and the display’s load is the same at any distance (the discharging slope is equally fast).

Even so, 0-μF curve is substantially lower. The reason of this effect is the reader. It sends a 30ms-periodic **Query** command that activates the tag; even in the case when the accumulator is full before, the tag waits until another **Query**. It makes periodicity longer and, so, DC lower. This effect is not appreciable in other cases, because raising and decreasing times are considerably higher than 30 ms.

Table 4.6 shows the average DC. These values gives an idea of which is the effective brightness of the display: 25 cm away from the reader, the display is active during the 88% of the time and only 6% when the tag is 2 meters away. Thus, a big extra capacitor will be used only if long active times are required. On the contrary, a small capacitor will be used if fast responses are needed.
Figure 4.18: Duty cycle, DC (%), evolution.

Table 4.6: Average DC. Measurements without extra capacitor are ignored.

<table>
<thead>
<tr>
<th>d (cm)</th>
<th>25</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC_{avg} (%)</td>
<td>88</td>
<td>31</td>
<td>12</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

4.6 Harvester’s charging time

Finally, harvester’s ability in WISP4.1 DL is measured. Figure 4.19 shows different charging times, T_{ch} (ms), as a function of distance and extra capacitor. They represent the time passed since the power accumulator level is 1 V until it reaches 4.5 V. These values have been extracted from Figures C.11, C.15, C.16, C.17, C.18 and C.19.

It can be seen that T_{ch} stretches when distance or extra capacitor increase; this is the expected functionality. T_{ch} increases with the distance because the energy received by the tag is lower when the tag is farther. T_{ch} increases with the capacitor because more energy is needed to fill a bigger capacitor; thus, more time is observed.

Note that T_{ch} is longer than 70 seconds when a 4700-µF capacitor is added, and the tag is farther than 100 cm. So, while designing, the value of the extra capacitor should be chosen properly in order to accomplish the response time specifications.
4.7 System specifications

Table 4.7 summarizes the results obtained in the measurements and gives the specifications of the system. Each measurement is described in the section (SECT.) spot.
Table 4.7: System specifications.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMB.</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>SECT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols developed</td>
<td></td>
<td></td>
<td>EPC Global C1 G2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UWB RFID</td>
<td></td>
</tr>
<tr>
<td>RFID data rate (UL)</td>
<td>R_{RFID}</td>
<td>\leq</td>
<td>580 Kb/s1</td>
<td>4.2</td>
</tr>
<tr>
<td>UWB data rate (UL)</td>
<td>R_{UWB}</td>
<td>\leq</td>
<td>1.6 Mb/s1</td>
<td>5.3</td>
</tr>
<tr>
<td>Hardware included</td>
<td></td>
<td></td>
<td>7-segment display</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thermometer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Accelerometer</td>
<td></td>
</tr>
<tr>
<td>TL Reflection coefficient</td>
<td>S_{11}</td>
<td>In useful BW</td>
<td>\leq -12 dB</td>
<td>4.1</td>
</tr>
<tr>
<td>A current peak</td>
<td>A_1</td>
<td></td>
<td>130 mA</td>
<td></td>
</tr>
<tr>
<td>C current peak</td>
<td>C_1</td>
<td>“No-display” tag</td>
<td>70 mA</td>
<td>4.3</td>
</tr>
<tr>
<td>C peaks’ period</td>
<td>T'_1</td>
<td></td>
<td>3.4 ms</td>
<td></td>
</tr>
<tr>
<td>A current peak</td>
<td>A_2</td>
<td></td>
<td>150 mA</td>
<td></td>
</tr>
<tr>
<td>B current peak</td>
<td>B_2</td>
<td></td>
<td>130 mA</td>
<td>4.3</td>
</tr>
<tr>
<td>C current peak</td>
<td>C_2</td>
<td></td>
<td>70 mA</td>
<td></td>
</tr>
<tr>
<td>C peaks’ period</td>
<td>T'_2</td>
<td></td>
<td>220 μs</td>
<td></td>
</tr>
<tr>
<td>Display consumption</td>
<td>I_{avg}</td>
<td>Display ON4</td>
<td>2.27 mA</td>
<td>4.3</td>
</tr>
<tr>
<td>DL range</td>
<td>d</td>
<td>OpMode 1 and 2</td>
<td>2 m</td>
<td>4.4</td>
</tr>
<tr>
<td>Charging time</td>
<td>T_{ch}</td>
<td></td>
<td>\geq 7 ms5</td>
<td>4.6</td>
</tr>
</tbody>
</table>

1. It depends on the maximum clock of the MSP430F2132 micro-controller (16 MHz [7]).
2. Maximum data rate is 16 MHz (maximum clock) divided by 2 (2-Miller encoding) and by 12 (because of code implementation. See 3.3.1.2).
3. Maximum data rate is 16 MHz (maximum clock) divided by the minimum processing gain (10 b/symb).
4. The display is always showing the number four (‘4’).
5. The tag is 25 cm far and none extra capacitor is added.
Chapter 5

Conclusions

In this work, there is a description of the design of a programmable sensor node compatible with EPC Global C1 G2 that permits different data rates, coding schemes, and backscattering or UWR-IR uplink. It is built above Intel WISP4.1 DL that implements a power scavenging unit, UHF interface, and also controls the rest of the node (UWB interface and 7-segment display) in the “Extension PCB”.

The first part of this work shows the background and motivation of this innovative system. Afterwards, a description of the Intel WISP4.1 DL is given, explaining its hardware as well as the software used to control it. The following part develops the system implementation, while discussing how the “Extension PCB” is designed and how the code is re-used and modified from the original. Since an UWB receiver is not available, the programmed UWB RFID protocol cannot be tested. However, the EPC Global C1 G2 works perfectly and the tag is able to stand the important load of a 7-segment display.

Next, there is a report of all the measurements made on the whole system: Intel WISP connected to Extension PCB. Tag obtains power and RFID-communicates to the reader up to two meters away from it. Moreover, Extension PCB current consumption presents peaks up to 150 mA and, provided that display is always active, its average is 2.3 mA. Obviously, the average current consumption depends on the application defined.

The following table compares the features achieved by the tag designed in this work to Intel’s WISP4.1 DL and Berkeley’s Motes:
Table 5.1: Comparison with Intel’s and Berkeley’s devices.

<table>
<thead>
<tr>
<th></th>
<th>Berkeley’s Mica 2</th>
<th>Berkeley’s Telos</th>
<th>Intel’s WISP4.1 DL</th>
<th>UWB - RFID tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-controller</td>
<td>ATmega128</td>
<td>TI MSP430</td>
<td>TI MSP430</td>
<td>TI MSP430</td>
</tr>
<tr>
<td>UL/DL Band</td>
<td>1 GHz</td>
<td>2.4 GHz</td>
<td>900 MHz</td>
<td>3.1-4.8 / 0.9 GHz</td>
</tr>
<tr>
<td>UL/DL Modulation</td>
<td>FSK</td>
<td>O-QPKS</td>
<td>ASK</td>
<td>OOK / ASK</td>
</tr>
<tr>
<td>Data rate</td>
<td>38.4 Kb/s</td>
<td>250 Kb/s</td>
<td>64 Kb/s</td>
<td>1.6 Mb/s</td>
</tr>
<tr>
<td>Thermometer</td>
<td>-</td>
<td>-40 - 124 °C</td>
<td>-50 - 150 °C</td>
<td>-50 - 150 °C</td>
</tr>
<tr>
<td>Humidity sensor</td>
<td>-</td>
<td>0 - 100 %RH</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Visible light sensor</td>
<td>-</td>
<td>320 - 730 nm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solar light sensor</td>
<td>-</td>
<td>190 - 1100 nm</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3D-accelerator</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10 000 g</td>
</tr>
<tr>
<td>7-segment display</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery needed</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Minimum supply</td>
<td>2.7 V</td>
<td>1.8 V</td>
<td>1.8 V</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

5.1 Future work

This considers some of the future steps in this project, in order to improve the UWB RFID tag designed in this work.

Firstly, it is still essential to have an available reader to interact through UWB RFID communication. Once the reader is ready, the operation mode OpMode.3 might be tested.

Another important key is the dependence on Intel’s WISP4.1 DL. “Blue WISP” obtains the power from the reader using a 5-stage bridge rectifier. It also includes sensors and the micro-controller that administers the full tag. Hence the Intel’s WISP can be removed and a thermometer, a humidity sensor, a 3D-accelerometer, a micro-controller and a harvester unit might be added on the board. Moreover, the harvester ability might be improved making it adjustable (to the the optimal amount of stages) and adding a negative branch. This last issue would permit to obtain power from electromagnetic field more than twice as faster: while one of the branches is supplying the node, the other is charging.

The second of these improvements will be achieved replacing the 7-segments display by a paper display. The goal of a display in this tag is to give visual information about variables in the environment to users, but a 7-segments display is clearly an important
load because of its high power consumption. Thus, the use of a paper display, which load is notably lighter, would enlarge tag’s features.

The use of printed antennas might also allow this node to be a commercial one. Furthermore, a RS-232 interface can be used to monitor any action taken by the tag, while it is programming and tested.

There is a prototype proposal for a new UWB RFID node in Appendix D, where its hardware is described.
Appendix A

Intel WISP4.1 DL. Schematic and layout images

This appendix complements the Intel WISP4.1 DL description in Chapter 2. It contains schematics and layout images of this device, obtained in “WISP wiki” [10].

A.1 Schematic

(First and second pages) Firstly, there is a general block diagram that shows the relationship between the three main parts of the device. The following three sheets are the schematics themselves.

A.2 Layout images

(Third page) These are the back and front sides of the WISP4.1, antenna not included.
PCB Layout Rules and Guidelines

1/2 oz. 0.7 mils
1 oz. 1.4 mils
2 oz. 2.8 mils

Via 8x12

Hole size 8mil annular ring 12mil

More annular is needed for vias and probe points that will be man handled and repeatedly soldered and re-soldered

RF Signals

(Above routing rules only valid for low frequency signals or digital I/O)

RF need larger vias and careful routing
Transmit: Must be connected to TDI (input A output), usually P1.1
Receive: Code must be checked before this port can be changed. Must be on a low value port number of port 01 (ie port 1.0, 1.2). This has to do with the constant generator in the MSP430 and its ability to quickly source this port.
Supervisor Interrupt: Must be placed on port 2, so it does not collide with the read interrupt.
Appendix B

Extension PCB. Schematic, layout images and images

In order of appearance, this appendix contains: schematic, layout captures and images of the “Extension PCB”. These sheets complement the description in Chapter 3.

B.1 Schematic

(First page) It is obtained by using OrCAD Capture 15.7. This schematic describes the complete board, which is designed to be connected to Intel’s WISP4.1 DL. It is also used to generate a MNL file to design the layout.

B.2 Layout images

(From second to fourth page) They are obtained by using OrCAD Layout 15.7. Parting from that MNL file to initiate the layout design, all the component footprints are assigned, all the paths are routed, all the copper zones are defined and these four images are generated. The first capture is the “assembly layer”, which contains the allocation of all the components:

- **ASSEMBLY layer.** This layer is only used while designing in order to distribute all the components among the PCB. It is only a descriptive layer, does not implement any material in the PCB.

The following four captures represent all the layers of the 4-layer PCB. In order of appearance and from top to bottom in the PCB:
- **TOP layer.** All the components are mounted on this layer. All the copper area is linked to the GND node. On this layer are most of the paths.

- **GND layer.** The common GND node is on this layer.

- **PWR layer.** The 3.3 V node is on this layer. The squares on the corners avoid a short-circuit between GND and PWR through the screws.

- **BOTTOM.** The remaining paths which can not be routed on TOP layer are on BOTTOM layer. In the same way, the copper area is linked to the GND node.

The real size of the PCB (in mm) is 77.25 x 60.75. The PCB used is a four-layer PCB (1.6 mm): 18 um copper on top and bottom layer, 0.36 mm isolation between top and ground and between power and bottom layers, 35 um copper on ground and power layers and 0.79 mm isolation between them.

B.3 Images

(Fifth page) There are two photographies of the Extension PCB. The first is an image of an empty PCB (no components included/soldered). The other is a plan view of the complete PCB.

![Figure B.1: “Empty” WISP Extension PCB.](image)
Figure B.2: Plan view of WISP Extension PCB.
Appendix C

Measurements

This appendix contains the compilation of all the data obtained in the laboratory that is not already published in Chapter 4. In this appendix, there is also a description of the way these measurements are done.

In order of appearance, the measurements are: reflection coefficient of the transmission line, shape of an UWB pulse, current consumption, communication range, performance tests and harvester’s charging time.

C.1 Transmission line to uplink antenna. Reflection coefficient \((S_{11}) \)

This parameter belongs to the transmission line between the output of the UWB transmitter and the SMA connector that sends the signal through the uplink antenna. It gives an idea about which is the energy loss because of impedance matching between them.

To measure this parameter, a signal into one port of a TL is injected, add an adapted resistor on the other port and analyse the reflected signal on the first port. Basically, the vectorial analyser sweeps the whole bandwidth desired and keeps the value of the reflection level on each frequency. The module of \(S_{11} \) is relative, so it is always between 0 and 1.

This measurement is described in Figure C.1. Using an empty Extension PCB, a SMA connector is soldered where the uplink antenna may be allocated and a 50 Ω resistor is soldered on the other port, between TL and the GND node, where the UWB transmitter
Appendix C Measurements

will be allocated. Vectorial analyser is connected to the PCB through the SMA connector and measurement was done.

The capture get from this measurement is Figure 4.1.

C.2 UWB transmission. Pulse shape

It is also important to check if the shape of the emitted UWB frame is as expected. The output UWB-modulated signal can be deformed because of the TL design and the impedance matching between the UWB transmitter, the TL and the SMA connector.

The way to compare this signal to the desired one is by getting a capture of the sent UWB frame (or one of its pulses) and make a comparison of its characteristics. So, the Blue WISP is connected to the Extension PCB and set the tag in OpMode_2; it will send a UWB frame continually, while power is yielded by the tag. Since the UWB-modulated signal is a high-frequency signal, a wideband oscilloscope is required. Figure C.2 shows the system connection.

The capture get from this measurement is Figure 4.2.
C.3 Current consumption

To get data on tag’s consumption, its current fluctuation is measured using Tektronix’s TCP312 current probe and Tektronix’s TCPA300 amplifier [8] [9].

C.3.1 UWB transmitter

To measure UWB transmitter consumption, as can be seen in Figure C.3, Blue WISP’s accumulator (yellow) is connected to oscilloscope’s Channel 1, UWB transmitter’s output (blue) to Channel 2, step-up’s output (purple) to channel 3 and current probe at UWB transmitter’s power node to channel 4 (green). In this case, 7-segments display is not soldered on Extension PCB, which is working in OpMode_2 60 cm away from the reader.

![Figure C.3: Schematic of the current measurement of the UWB transmitter.](image)

Captures that are not included in Chapter 4 are:

- Figure C.4 A: global view of step-up raising and UWB frame sending.
- Figure C.4 B: beginning of the burst.
- Figure C.4 C: middle part of the burst.
- Figure C.4 D: entire UWB frame.
- Figure C.4 E: beginning of the burst. Zoom in.
- Figure C.4 F: middle part of the burst. Zoom in.

As said in Subsection 4.3.1, measurements about current when UWB frame is sent can be ignored because of current probe bandwidth.
Appendix C Measurements

Figure C.4: Captures of UWB transmitter’s current consumption. Figures on top: A, B, C; bottom: D, E, F.

Other captures about the Extension PCB’s global functionality (without 7-segment display) that are not included in Chapter 4 are:

- Figure C.5 A: global functionality.
- Figure C.5 B: global functionality. Zoom in.
- Figure C.5 C: periodical peaks.
- Figure C.5 D: UWB and step-up’s burst.
- Figure C.5 E: UWB and step-up’s burst. Zoom in.

C.3.2 7-segment display

To measure 7-segment display consumption, an Extension PCB with only 7-segment display and its decoder is used. A 3.3 V battery is linked to V3.3 node. Blue WISP is reprogrammed to only toggle A1 and A0 pins from ‘0’ to ‘1’ every 1.05 ms. Channel 1 (yellow) is connected to decoder’s output (before resistor at display) and Channel 4 (green) to battery anode (Figure C.6).

Captures that are not included in Chapter 4 are:

- Figure C.7 A: ON-OFF display’s edge and decoder’s delay.
Appendix C Measurements

Figure C.5: Captures of Extension PCB (without display) current consumption. Figures on top: A, B, C; bottom: D, E.

Figure C.6: Schematic of the current measurement of the 7-segment display.

- Figure C.7 B: OFF-ON display’s edge and decoder’s delay.
- Figure C.7 C: ON-OFF display’s edge. Zoom out.
- Figure C.7 D: OFF-ON display’s edge. Zoom out.

Note that only one segment on display was switching on, as said in Subsection 4.3.2.

C.3.3 Extension PCB

Again, Extension PCB in OpMode 2 is connected to Blue WISP, 150 cm away from the reader. The connection diagram is Figure C.8: accumulator connected to Channel
Appendix C Measurements

Figure C.7: Captures of display’s current consumption. Figures on top: A, B; bottom: C, D.

1, display’s cathode to Channel 2, step-up’s output to Channel 3 and current probe at \textit{WISP}_V+ pin to Channel 4.

Figure C.8: Schematic of the current measurement of the global battery consumption.

Captures that are not included in Chapter 4 are:

- Figure C.9 A: global functionality.
- Figure C.9 B: display’s lighting.
- Figure C.9 C: display’s lighting. Zoom in.
- Figure C.9 D: display’s lighting. Zoom in. Channel 3 (purple) shows the output of UWB transmitter.
• Figure C.9 E: periodical peaks due to display.

• Figure C.9 F: periodical peaks due to display. Zoom in.

Moreover, since peaks A, B, C and C-peaks periodicity are constant, an approximation of average current consumption can be obtained using with the following equation:

\[
I_{\text{avg}} = \frac{I_A + I_B + \frac{I_C}{T}}{T'}
\]

(C.1)

where \(I_A\) is the area of peak A (in A·s) in Figure 4.11, \(I_B\) is the area of peak B (in A·s) in Figure 4.12, \(I_C\) is the area of peak C (in A·s) in Figure 4.8, \(T'\) is the fixed periodicity (220 µs) of peaks C when display in on, \(T_{ON}\) is the absolute time when display is on and \(T\) is the global periodicity.

This equation is the addition of all the current peaks absorbed by the step-up. \(I_A\), \(I_B\) and \(I_C\) are absolute vales and \(T_{ON}/T'\) is equivalent to the number of times that C-peak appears. \(I_A\), \(I_B\) and \(I_C\) are, actually, energy values \((current \cdot time)\), but the average current is obtained dividing the energy consumed in a certain time by this certain time.

\(I_A\) can be calculated as a trapezoid plus two rectangles: 50-to-120-mA high and 30-µs long, 120-mA and 90-µs long, 70-mA high and 100-µs long, respectively; it is 20350 mA·µs. \(I_B\) can be calculated as two trapezoids: 40-to-90-mA high and 40-µs long, 90-to-60-mA high and 40-µs long; it is 5600 mA·µs. \(I_C\) can be calculated as two triangles: 70-mA high and 8-µs long, 20-mA high and 22-µs long; it is 500 mA·µs. Which means:
\[I_{\text{avg}}(\mu A) = \frac{25950 + 2273 \cdot T_{\text{ON}}(ms)}{T\text{(ms)}} = \frac{25950}{T\text{(ms)}} + 2273 \cdot \frac{DC(\%)}{100} \quad (C.2) \]

Note that, this approximation is not valid when tag is always on, because peaks A and B only happens once.

In order to validate these measurement, the average current consumed (while display is on) can be calculated dividing \(I_C \) by its periodicity \((T' = 220 \mu s) \). It is 2.27 mA, close to 2.5 mA calculated in Subsection 4.3.2. Error appears because of current measurements accuracy.

C.4 Communication range

Maximum distance where communication is still possible were measured as can be seen in Figure 4.14; reader is allocated over a fixed table and Blue WISP (in OpMode_1) and oscilloscope are allocated over a moveable table, at reader’s level. The table is moved away until Credipass application stopped beeping. It happened when distance was 2 meters.

Afterwards, Extension PCB is connected to Blue WISP (in OpMode_2) and the same experiment is done, waiting until accumulator stopped charging. It happens when distance is slightly over 2 meters, as well.

C.5 Performance tests

In order to inspect tag’s functionality at several distances and using different extra capacitors, performance tests are done as diagram in Figure C.10 shows.

![Figure C.10: Schematic of performance tests.](image)
C.5.1 “Ordinary” tag

Figure C.11 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively.

Figure C.11: Captures of Extension PCB performance for several distances. Figures on top: A, B, C; bottom: D, E.

C.5.2 “Battery-equipped” tag

Figure C.12 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, when no display is soldered on it.

C.5.3 “No-display” tag

Figure C.13 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, when a battery is connected.

C.5.4 “Battery-equipped no-display” tag

Figure C.14 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, when no display is soldered on it and a battery is connected.
Appendix C Measurements

Figure C.12: Captures of Extension PCB (without display) performance for several distances. Figures on top: A, B, C; bottom: D, E.

Figure C.13: Captures of Extension PCB (with battery) performance for several distances. Figures on top: A, B, C; bottom: D, E.

C.5.5 Extra capacitor

Figure C.15 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, with a 47\(\mu\)F extra capacitor.
Appendix C Measurements

Figure C.14: Captures of Extension PCB (with battery and without display) performance for several distances. Figures on top: A, B, C; bottom: D, E.

Figure C.15: Captures of Extension PCB (with 47µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.

Figure C.16 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, with a 100µF extra capacitor.
Figure C.16: Captures of Extension PCB (with 100µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.

Figure C.17 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, with a 470µF extra capacitor.

Figure C.17: Captures of Extension PCB (with 470µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.

Figure C.18 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, with a 1000µF extra capacitor.
Figure C.18: Captures of Extension PCB (with 1000µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.

Figure C.19 A, B, C, D and E represent Extension PCB performance at 25, 60, 100, 150 and 200 cm from the reader, respectively, with a 4700µF extra capacitor.

Figure C.19: Captures of Extension PCB (with 4700µF capacitor on Blue WISP) performance for several distances. Figures on top: A, B, C; bottom: D, E.
C.6 Harvester’s charging time

Finally, to check how powerful the harvester in Intel WISP4.1 DL is, a calculation of the time it spends to charge the power accumulator (capacitor) is done. This measurements depend, of course, on the distance between the reader and the tag and depend also on which is the extra capacitor added to increase the energy stored.

Taking advantage of the captures in the endurance tests (Sections 4.5 and C.5), the time passed while capacitor is charging is measured. In fact, these measurements on the captures are taken from the point where the capacitor’s level is 1.6 V until it is 4.4 V. These levels are chosen because they are easy to frame in the captures obtained and both appear in all the charging slopes for all the cases. Afterwards, an extension factor is applied to get the charging time as if the voltage level raises from 1 to 4.5 V.

As an example, Figure C.20 explains how these times are obtained. The red square represents the voltage level limits (1.6 and 4.4 V) and the time limits (-220 and 200 ms); so, 200 - (-220) ms = 420 ms is the charging time. The orange square represents the full charging slope, from 1 to 4.5 V. It can be seen that the real charging time is 520 ms. Since all the curves inspected present the same shape, the extension factor (520/420 = 1.24) is applied to all the measurements.

Table C.1 is the extract of the values obtained.
Table C.1: Charging time, $T_{ch} \text{(ms)}$, of Intel WISP harvester.

<table>
<thead>
<tr>
<th>d (cm)</th>
<th>25</th>
<th>60</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 μF</td>
<td>7</td>
<td>35</td>
<td>79</td>
<td>173</td>
<td>161</td>
</tr>
<tr>
<td>47 μF</td>
<td>74</td>
<td>235</td>
<td>520</td>
<td>1337</td>
<td>1188</td>
</tr>
<tr>
<td>100 μF</td>
<td>198</td>
<td>482</td>
<td>1139</td>
<td>2575</td>
<td>2525</td>
</tr>
<tr>
<td>470 μF</td>
<td>742</td>
<td>2278</td>
<td>7800</td>
<td>11142</td>
<td>12123</td>
</tr>
<tr>
<td>1000 μF</td>
<td>1733</td>
<td>4209</td>
<td>14114</td>
<td>18819</td>
<td>19314</td>
</tr>
<tr>
<td>4700 μF</td>
<td>4952</td>
<td>18323</td>
<td>38380</td>
<td>92857</td>
<td>74285</td>
</tr>
</tbody>
</table>
Appendix D

Hardware description of the WISP prototype proposal

This appendix contains a description of the hardware designed for a WISP prototype proposal. This prototype is designed to be a WISP with a high-efficiency power supply stage and a UWB uplink. It includes a downlink and an uplink antennas, a power supply stage (with a paper battery), a demodulator, an humidity and temperature sensor, an accelerometer, a micro-controller, a UWB transmitter and a RS-232 interface. It has been designed to be adjustable and thus find the optimal design of power harvesting stage.

In order to divide all the components, the prototype is defined in three different blocks (see Figure D.1):

- **Power supply and Demodulator.** This part processes the incoming power and demodulates the reader’s request (downlink).

- **Micro-controller, UWB transmitter and RS-232 interface.** It controls all the system, communicates to the reader (uplink) and sends every event through RS-232.

- **Sensors.** It includes the humidity and temperature sensors and the accelerometer.

At the end, there are the detailed schematics of these parts of the hardware.
Appendix D Hardware description of the WISP prototype proposal

Figure D.1: Blocks of the WISP prototype.

D.1 Power supply and demodulator

This first block represents the processing of the incoming power and the reader’s request demodulation. In addition, it includes three analog switches which aim will be described later. As shown in Figure D.2, the sub-blocks are: Harvester, Demodulator, Voltage Regulator, Analog switches, LED (+), LED (−), Probe, Sense (+) and Sense (−).

The Harvester implements a Multi-stage bridge rectifier. This is the most common way to obtain power from the reader by using Schottky diodes [14]. The harvester proposed in this work is capable of using 4 to 7 stages in positive or negative branch, independently. The negative branch is added so as that, meanwhile the tag is supplied by either the positive or the negative branch, the other one is charged. In order to select how many stages and weather the negative branch is activated or not, Table D.1 is defined. The first part defines the configuration of Resistors R_1 to R_{10}, R_{11} for the second and R_{12} to R_{21} for the third. #Stages means “number of stages”, OC means “open circuit”, SC means “short circuit” and X means “do not care”. For example, if the desired functionality is six stages for the positive branch and an active negative branch with seven stages, the configuration must be Table D.2.
Figure D.2: Sub-blocks in the power supply and demodulator block.

Table D.1: Configuration of the resistors R1 to R21 to adjust Harvester’s functionality.

<table>
<thead>
<tr>
<th>#Stages</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
<th>R9</th>
<th>R10</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>OC</td>
<td>X</td>
<td>X</td>
<td>SC</td>
<td>OC</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>OC</td>
</tr>
<tr>
<td>5</td>
<td>SC</td>
<td>OC</td>
<td>X</td>
<td>OC</td>
<td>SC</td>
<td>SC</td>
<td>OC</td>
<td>X</td>
<td>X</td>
<td>OC</td>
</tr>
<tr>
<td>6</td>
<td>SC</td>
<td>SC</td>
<td>OC</td>
<td>SC</td>
<td>OC</td>
<td>SC</td>
<td>SC</td>
<td>OC</td>
<td>SC</td>
<td>OC</td>
</tr>
<tr>
<td>7</td>
<td>SC</td>
</tr>
</tbody>
</table>

Moreover, the Harvester ends with two big capacitors (C11 and C12) which act as power supplies. Note that C11 will hold a positive voltage, in V1, whereas C12 will hold a negative voltage, in V2. Into the bargain, the Demodulator is linked to the final stage of the Harvester’s positive branch.

The Demodulator has a voltage comparator which demodulates the input signal. Subsequently, a level translator (On semiconductor’s NLSV1T244) level-adapts the demodulated signal in order to be sent properly to the micro-controller, through Receive_RFID.
Table D.2: Example of configuration of the resistors \(R_1 \) to \(R_{21} \).

\(R_1 \)	\(SC \)	\(R_8 \)	\(SC \)	\(R_{15} \)	\(OC \)
\(R_2 \)	\(SC \)	\(R_9 \)	\(OC \)	\(R_{16} \)	\(SC \)
\(R_3 \)	\(OC \)	\(R_{10} \)	\(OC \)	\(R_{17} \)	\(OC \)
\(R_4 \)	\(OC \)	\(R_{11} \)	\(SC \)	\(R_{18} \)	\(SC \)
\(R_5 \)	\(SC \)	\(R_{12} \)	\(SC \)	\(R_{19} \)	\(OC \)
\(R_6 \)	\(OC \)	\(R_{13} \)	\(SC \)	\(R_{20} \)	\(SC \)
\(R_7 \)	\(SC \)	\(R_{14} \)	\(SC \)	\(R_{21} \)	\(SC \)

In order to supply all the components, the \textit{Voltage Regulator} provides 1.8 V and 3.3 V from \(V_1 \) and \(V_2 \). In one hand, the positive \textit{Harvester}'s output, \(V_1 \), is stabilized using a 1.8 V Low drop-out regulator (LDO). To reach this target, an On semiconductor’s NCP583 is chosen. Consequently, 1.8 V are in \(V_1' \). On the other hand, a switched-capacitor voltage inverter (Maxim’s MAX828, U6) is used to obtain a positive voltage from \(V_2 \) to \(V_2' \). In the same way that has been seen previously, a LDO yields 1.8 V in \(V_2'' \). At this point, \(V_1' \) and \(V_2'' \) hold 1.8 V. One of the \textit{Analog switches} is used to select which power supply to use, controlled by \textit{powerCtrl} pin. Thus, the switch’s output is the supply for all the components which need 1.8 V. This node is tagged as \(VCC_1 \).

There are two other \textit{Analog switches} in Analog Devices’s ADG733. Their aim will be explained in Subsections D.2 and D.3.

Furthermore, a 3.3 V power supply is needed. In this case, only the positive branch is used to feed a step-up DC-DC converter (Maxim’s MAX1606). It raises up its voltage input to 3.3 V in \(VCC_2 \) node, but no LDO regulator is added afterwards because no one of the components (feet with 3.3 V) needs an accurate and stable voltage supply; some fluctuations do not affect on its functionality. Additionally, a paper battery can included in order to obtain extra energy, if necessary.

\textit{LEDs}, \textit{Probe} and \textit{Senses} are auxiliary sub-blocks. As a visual control, \textit{LED} \((+\)\) will switch on if there is energy in the positive branch, provided that \textit{LEDCtrl} is active. Similarly, \textit{LED} \((-\)\) does if negative branch is charged. In order to “wake up” the WISP, \textit{ProbeV1} gives an interruption warning when node \(V_1 \) is charged. If it happens, \textit{Sense} \((+\)\) and \textit{Sense} \((-\)\) are used to measure accurately the energy captured.

These are all the sub-blocks referred to the “Power supply and Demodulator” block.
D.2 Micro-controller, UWB transmitter and RS-232 interface

This second block contains the control unit (*micro-controller*), the uplink transmitter (*UWB transmitter*) and the *RS – 232* interface (to check the WISP real time functionality). As shown in Figure D.3, the *micro-controller* (*µC*) is the connections’ main node between *UWB transmitter, RS – 232* interface and the rest of the blocks.

![Figure D.3: Sub-blocks in the Micro-controller, UWB transmitter and RS-232 interface block.](image)

In temporal order, *µC’s* goals mainly are: enable/disable demodulation, process reader’s request, inspect sensors and transmit reply through UWB, while inform about its acts through RS-232. To reach this goal, a Texas instruments’ MSP430F1611 is chosen because of its low power consumption. Firstly, *µC* receives an interruption through *ProbeV1* meaning that there is some request being received. Afterwards, it inspects the energy captured using *Sense (+), Sense (−)* and, when appropriate, enables RFID demodulation (activates *receive_RFID_enable*). At this point, *µC* demodulates request and disables *Demodulator*, while it processes the demodulated request (in *receive_RFID*).

Due to shakes may happen any time, accelerometer captures are continuously registered. On the other hand, humidity and temperature fluctuate slowly thus they do not need to be always checked. *P4.0 – 2* pins are used to control the first sensor and *P2.0 – 5* pins to get the measurements. *P1.1* pin is used to control the second sensor and *P1.0* pin is used to exchange data.
Once the sensors are inspected, \(\mu C \) processes this data and builds the reply. Afterwards, \(\mu C \) sends it to UWB transmitter, which is 1.8 V supplied, through UWBInput and the subsequent level-translator. The last sends the modulated reply via uplink antenna, while being adjusted by PSDCtrl and AmpCtrl pins.

After the reply is transmitted, the WISP “sleeps” again in order to save energy. Therefore, obviously, \(\mu C \) and accelerometer are still “awake” to register all the shake fluctuation.

After any action happened, \(\mu C \) sends a short description through RS – 232, using RS232IN and RS232OUT, in order to test the WISP’s functionality.

These are all the sub-blocks referred to the “Micro-controller, UWB transmitter and RS-232” block.

D.3 Sensors

Finally, the third block is described. It includes an Accelerometer, three Comparators and a Humidity & Temperature SENSOR; all of them 3.3 V supplied (Figure D.4).

\[\text{Figure D.4: Sub-blocks in the sensors block.} \]

\(P4.0-2 \) pins are used to adjust the Accelerometer (Freescale Semiconductor’s MMA7260QT), which yields the 3-axis measurements through its 13, 14 and 15 pins. These outputs are low-pass filtered and hysteresis-compared. A Digital-to-Analog Converter (DAC)
Appendix D Hardware description of the WISP prototype proposal

output of the μC allow to reach a desired voltage level. So, these (DAC0 and DAC1) outputs are used to set an analog voltage as a reference for the Comparators (National semiconductor’s LMC6762). Due to the μC only has two DACs, these have to be shared with an Analog switch which time-multiplexes its output in “Power supply & Demodulator” block. As said, DACs are used to fix a reference and define the hysteresis region where the μC registers the shakes measurements, ignoring insignificant values. Thus μC is noticed through P2.1, P2.3 or P2.5 pins when the corresponding measurement of the Accelerometer are greater than DAC0. Similarly, μC is noticed through P2.0, P2.2, P2.4 pins when measurements are lower than DAC1; therefore, it stops registering.

On the other hand, the Humidity and Temperature SENSOR is placed. Sensirion’s SHT15 is chosen. This is configured through the P1.0 and P1.1 pins and, when inspected, it sends the measured data through P1.0 pin as well. As said before, due to humidity and temperature are not such fluctuating magnitudes, they do not have to be inspected and registered continuously.

These are all the sub-blocks referred to the “Sensors” block.

D.4 Schematics

The following schematics show the complete board hardware; they are obtained by using OrCAD Capture 15.7.
Bibliography

