TREBALL FINAL DE CARRERA

Energies Renovables Marines: implicació en el món actual i futur i fonts existents. Viabilitat de subministrament energètic d’un port català.

Autor: Denis Pons Fernández
Director: Manuel Rodríguez
Titulació: Diplomatura en Màquines Navals
Facultat de Nàutica de Barcelona. Universitat Politècnica de Catalunya

Any Acadèmic: 2010-2011
Agraïments

A totes aquelles persones que m’han donat suport durant la realització d’aquest projecte, aconsellant-me i orientant-me sobre l’elecció del tema de treball, l’estructuració a realitzar i el millor tractament de la informació exposada, així com aportant-ne d’altra indispensable per assolir el resultat obtingut, fent especial menció:

Als meus pares.

Al professor Manuel Rodríguez.

Al senyor Ricard Prats, director de l’empresa Hidroflot S.A.
Índex:
Motius per la realització de la tesi ... 11
Pròleg .. 12
 Desenvolupament social com a forma de vida: contextualització actual i
 problemàtica fonamental
1. Introducció a l’energia necessària per al desenvolupament 15
 1.1. Concepte d’energia .. 16
 1.2. Origen de tota l’energia i classificació de les formes existents 16
 1.3. Escenari global actual i futur ... 19
2. Energies renovables: Visió global i contextualització a la UE i a Espanya 21
 2.1. Solucions globals als problemes globals .. 22
 2.2. Concepte ... 22
 2.3. E.R.: Una possible solució als problemes globals 23
 2.4. Quantificació i anàlisi de l’evolució de la cobertura energètica de les E.R. en els
 últims anys .. 24
 2.4.1. Unió Europea-25 ... 25
 2.4.1.1. Evolució respecte 1990, any de referència 25
 2.4.1.2. Fonts energètiques renovables principals a la UE 26
 2.4.1.3. Marc legal europeu sobre objectius de cobertura energètica
 Renovable .. 27
 2.4.1.4. Avaluació del progrés d’alguns dels Estats membres cap a l’objectiu
 del 2010 .. 28
 2.4.2. Espanya .. 30
 2.4.2.1. Cobertura energètica global ... 31
 2.4.2.2. Cobertura elèctrica .. 32
2.5. Previsions per l’any 2020 i endavant a Europa, possibilitats futures......... 34

3. Energies Renovables del Mar ... 37

3.1. Concepte.. 38
3.2. Història.. 38
3.3. Previsions del panorama futur a la Unió Europea................................. 40
3.4. Anàlisi de característiques de l’energia maremotriu............................ 40
3.5. Situació econòmica... 41
3.6. Medi ambient: Impactes de les plantes d’energia del mar en l’entorn....... 46

4. Fonts energètiques oceàniques existents ... 48

4.1. Quadre classificatori de les energies marines actuals............................ 49
4.2. Evolució de la potència instal·lada per energia marina
 de l’any 2008 al 2015... 50
4.3. Anàlisi de la cursa cap a la comercialització...................................... 51
4.4. Indrets on es produeixen els fenòmens naturals aprofitables per l’obtenció
 d’energia marina.. 52
4.5. Comparativa de la situació econòmica de les diferents energies............. 53
4.6. Anàlisi individual de les energies marines.. 54

4.6.1. Energia undimotriu .. 54
4.6.1.1. Concepte... 54
4.6.1.2. Onades.. 54
 4.6.1.2.1. Possibles causes.. 54
 4.6.1.2.2. Història científica de l’estudi de la formació........................... 54
 4.6.1.2.3. Resumit estudi de la formació de les onades induïdes pel
 vent.. 56
4.6.1.3. Potencial energètic global i distribució per zones 58

4.6.1.3.1. A nivell mundial .. 58

4.6.1.3.2. A nivell europeu .. 59

4.6.1.4. Anàlisi de l’energia undimotriu .. 59

4.6.1.5. Sistemes d’aprofitament i conversió de l’energia de l’onatge 61

4.6.1.5.1. Primers sistemes .. 61

- El Rectificador Russel
- Ànec de Salter
- Barcassa Cockerell
- Dispositiu Masuda

4.6.1.5.2. Sistemes actuals ... 65

4.6.1.5.2.1. Possibles classificacions segons les característiques dels dispositius .. 65

4.6.1.5.2.2. Taula de classificació dels principals sistemes captadors d’energia undimotriu existents a l’actualitat 66

4.6.1.5.2.3. Sistemes basats en el principi de la columna d’aigua oscil·lant (Oscillating Water Column) 67

- Mk d’Oceanlinx Limited
- OWC Mutriku
- Mighty Whale o Super Ballena

4.6.1.5.2.4. Sistema totalitzador .. 75

- Wave Dragon System

4.6.1.5.2.5. Sistemes basculants .. 79

- Oyster System d’Aquamarine Power
- BioWAVE™ de BioPower Systems Pty. Ltd.
4.6.1.5.2.6. Absorbidors puntuals.. 85

✓ PowerBuoy d’Ocean Power Technologies Inc.(OPT)
✓ Màquina de Wave Star
✓ Arquimedes Wave Swing (AWS) de Teamwork Technology i d’AWS Ocean Energy Limited.

4.6.1.5.2.7. Atenuadors.. 98

✓ Pelamis de Pelamis Wave Power limited
✓ Anaconda de Checkmate Seaenergy Limited

4.6.1.5.2.8. Sistema no classificat... 105

✓ El sistema de propulsió de l’embarcació Suntory Mermaid II

4.6.2. Energia de les corrents marines ... 106

4.6.2.1. Concepte.. 107

4.6.2.2. Anàlisi de les característiques de l’energia de les corrents marines... 109

4.6.2.3. Sistemes d’aprofitament i conversió d’energia de les corrents

4.6.2.3.1. Primers sistemes i evolució tecnològica fins als darrers anys ... 110

4.6.2.3.2. Sistemes existents més actuals 111

✓ Seaflow de Marine Current Turbines Limited (MCT)
✓ Seagen de Marine Current Turbines Limited (MCT)
✓ Turbina de la Corrent del Golf
✓ BioStream™ de BioPower Systems

4.6.3. Energia mareomotriu .. 117

4.6.3.1. Concepte... 117
4.6.3.2. Fenomen natural de les marees

4.6.3.2.1. Concepte

4.6.3.2.2. Estudi filosòfic i científic des dels seus inicis

4.6.3.2.3. Explicació del fenomen natural

4.6.3.2.4. Potencial

4.6.3.3. Anàlisi de característiques

4.6.3.4. Sistemes existents

4.6.3.4.1. Primers sistemes

4.6.3.4.1. Sistemes més recents

✓ Presa de marea a l’estuari del riu Severn, Gran Bretanya

✓ Central a l’estuari del riu la Rance.

4.6.4. Energia maremotèrmica

4.6.4.1. Concepte

4.6.4.2. Components i funcionament dels sistemes

4.6.4.3. Tipus de sistemes existents

✓ El sistema de cicle obert

✓ El sistema de cicle tancat

✓ Cicle híbrid

4.6.4.4. Història

4.6.4.5. Anàlisi de les característiques de l’energia tèrmica oceànica

4.6.4.6. Situació on l’energia maremotèrmica és més aprofitable

4.6.4.7. Usos alternatius de l’energia tèrmica oceànica

4.6.5. Energia de la biomassa marina

4.6.5.1. Concepte

4.6.5.2. Tipus de biomassa marina

4.6.5.3. Aprofitament de la biomassa marina

4.6.5.4. Situació on l’energia de la biomassa marina és més aprofitable
4.6.5.1. Concepte i diferència amb la resta de renovables

4.6.5.2. Dades històriques

4.6.5.3. Avantatges respecte a la producció tradicional de biodièsel mitjançant cultius convencionals terrestres

4.6.5.4. Sistemes existents

4.6.5.5. Altres aspectes rellevants

4.6.6. Energia osmòtica

4.6.6.1. Concepte

4.6.6.2. Història

4.6.6.3. Processos físics d’aprofitament de l’energia osmòtica

4.6.6.4. Anàlisi de les característiques de les membranes utilitzades en ambdós principis d’energia blava

4.6.6.5. Dades sobre potencials disponibles globalment i en els indrets més apropiats per a la instal·lació de plantes

5. Cas pràctic: viabilitat d’aplicació d’un sistema d’energia undimotriu pel subministrament elèctric dels sistemes auxiliars del port de Roses

5.1. Creació i desenvolupament del concepte del prototip Calma

5.2. Estructura, funcionament i especificacions tècniques dels elements del sistema

5.3. Especificacions tècniques del sistema global

5.4. Resposta del sistema en cas de condicions de l’entorn adverses

5.5. Operacions de manteniment a realitzar

5.6. Procés d’elecció d’un indret

5.7. Valoració de la capacitat de subministrament elèctric del port de Roses

5.8. Conclusió del cas pràctic
6. Conclusions .. 165

7. Bibliografia .. 168

Annexos .. Carpetes adjuntes
Motius per la realització d’aquesta tesi

Des dels inicis dels meus estudis nàutics he explorat el món de les energies convencionals més utilitzades en l’actualitat. És un tema indispensable per l’evolució durant segles, que ho seguirà sent en un futur, pel que l’he trobat molt interessant. Tot i això, durant aquest període d’estudi m’he anat sentint atret cada vegada més per altres fonts energètiques alternatives, fet que m’ha motivat a investigar-les donada la oportunitat de realitzar un projecte de lliure temàtica.

La meva motivació, entre altres aspectes, es deu als problemes mediambientals i econòmics que són tan presents a l’actualitat (dels quals en parlaré freqüentment al llarg de tot el projecte), així que crec que és necessària més que mai la realització d’estudis que promoguin el desenvolupament d’energies renovables, ja que són respectuoses amb el medi ambient i significaran un estalvi econòmic a llarg termini.

Tot investigant l’extens món de les energies renovables, he decidit centrar el meu estudi en les energies renovables del mar, pels següents motius:

Crec que en un futur pot arribar a ser una energia líder en el mercat energètic, donada la seva possible capacitat de cobertura de totes les necessitats energètiques mundials i sempre amb el suport primordial d’una gran inversió en investigació i desenvolupament.

A més a més, he tingut la sort d’estar estudiant aquest tema en un dels moments de necessària evolució tecnològica que comporten els objectius fixats per la Unió Europea i el nou Pla d’Energies Renovables 2011-2020 a Espanya. Tot i que ja fa anys que s’investiga sobre aquestes fonts energètiques, fixar objectius estar significant que ens trobem en el punt de màxim auge, amb la conseqüent aparició de nombrosíssims invents i desenvolupament d’uns quants, fet que em facilita l’estudi.
Pròleg
Desenvolupament social com a forma de vida: contextualització actual i problemàtica fonamental

Des de sempre, un important objectiu de l’èsser humà a escala personal, nacional i mundial ha estat el d’actuar d’una forma pròpia determinada que ens porti cap a un desenvolupament i, en conseqüència, cap a una forma de vida considerada en principi millor.

Aquest tipus d’accions són determinades, entre altres aspectes, per la situació social, cultural, política, conflictiva, econòmica... present; amb un ventall de possibilitats tan diverses que, observant el nostre passat històric, sembla quasi infinit.

Avui en dia la major part del territori mundial viu una realitat que està configurada per una xarxa de dependències entre aquests àmbits, dels quals n’hi ha un que destaca per sobre els altres, al que acostumen a dependre les accions de desenvolupament pròpies d’un territori: el factor econòmic. Aquest és resultat d’una forma de vida capitalista adoptada, en el que els diners que ho controlen tot.

En l’any 2008 es va iniciar una pèrdua de l’equilibri econòmic que ens sosté i que és essencial. I d’aquesta manera ens vam submergir en una crisi econòmica de grans magnituds, com poques se’n recorden. El pitjor del problema és que passats quasi 3 anys la greu situació perdura i no es divisa un final pròxim (depenent del país, fent referència a Espanya), cosa que provocarà grans dificultats de recuperació durant anys.

En vista d’aquest endarreriment, les persones procuren donar un pas cap a la solució. No és gens clara i dia a dia es debat sobre ella; però d’allò que més se’n parla, es promou i poc a poc es duu a terme és el canvi, que en el camp científic-tècnic s’obté principalment a través de la innovació. Es pretén possibilitar així la recuperació de l’evolució positiva d’una forma de vida que progressivament es va demostrant que és insostenible.

L’altre gran problema global que actualment es presenta, com a resultat de la forma de desenvolupament que adopten els humans i com a principal causa d’aquesta insostenibilitat, és la incompatibilitat entre la nostra forma de vida i el planeta on vivim. Així doncs, la Terra en els últims anys està experimentant canvis, alguns de propis o naturals i d’altres molt probablement provocats per la forta acció de l’èsser humà, és a dir, forçats. Tot allò que és forçat rep un deteriorament prematuro i si parem atenció a gran quantitat d’estudis mediambientals existents, al noticiari o altres simples percepcions personals del nostre entorn, ens en podem adonar fàcilment que en els últims anys aquest deteriorament s’està constatant (per exemple: alteracions de les condicions climàtiques, un forat a la capa d’ozó, l’escalfament global, l’aument de les catàstrofes naturals a nivell mundial...).
I per evitar un més que possible empitjorament d’aquestes condicions la solució indispensable, d’aplicació imminent però generalment d’efecte a llarg termini, és mostrar una preocupació real per aquesta situació duent a terme certes mesures mediambientals que redueixin dràsticament aquest malbaratament terrestre.
1. Introducció a l’energia necessària per al desenvolupament
1.1. Concepte

L’energia és un terme molt polisèmic, segons el context en que s’utilitzi, però en aquesta tesi s’ha d’entendre de la següent manera:

Fent referencia a l’activitat humana com a causa del desenvolupament, s’utilitzarà la definició des del punt de vista físic:

1- No és un estat físic real, ni una substància tangible, sinó només una magnitud escalar que se li assigna a la capacitat que té un cos o un sistema físic de produir transformacions en el seu propi estat o situació, o en els d’altres amb els quals interactua. És a dir, és un valor imprescindible i fonamental atribuït a tot astre, ésser, sistema, substància... així com també a l’activitat humana.

I fent referència a la font utilitzada i adaptada a unes necessitats (transformació energètica) per poder realitzar les activitats per al desenvolupament, s’utilitzarà des del punt de vista tecnològic i econòmic:

2- És un recurs natural primari o derivat, que permet realitzar treball o donar suport a altres activitats econòmiques independents de la producció energètica.

És adient puntualitzar que la definició anterior és la manera d’entendre el concepte que es mantindrà més present durant la resta de la tesi.

1.2. Origen de l’energia i formes existents

Tota energia que la Terra disposa prové d’una sola font energètica: la reacció nuclear. Quan les reaccions de fusió tenen lloc al Sol s’obté l’energia solar. A partir d’aquí es pot afirmar que les fonts d’energia primària existents tenen sempre origen en l’energia nuclear solar, en la generació nuclear artificial i en la reacció nuclear al centre de la Terra.

Tot i això, hi ha una excepció: l’energia mareomotriu, que es produeix a conseqüència de la força gravitatòria que es genera entre cossos celestes com el Sol, la Lluna i la Terra.

Les principals fonts energètiques es poden classificar segons diversos criteris, però els que es mostren a continuació indiquen les seves característiques més destacables:
1. Fent referència a la seva duració, que pot ser finita o “infinita”:

a) Energies no renovables: s’esgoten

- Nuclear:
 - Fusió
 - Fissió

- De dipòsit o fòssil:
 - Petòli
 - Carbó
 - Gas natural
 - Pissarres bituminoses
 - Sorra bituminosa o asfàltica
 - Hidrats de gas

b) Energies renovables: no s’esgoten

- Radiació solar:
 - Tèrmica
 - Fotovoltaica

- Eòlica
- Geotèrmica
- Biomassa
- Mareomotriu
- Hidràulica
- Undimotriu
2. Segons el seu origen:

a) Energia nuclear:

- Fusió
- Fissió

b) Energia solar: pot ser:

- Directa: és a dir, procedent directament del Sol:
 - Radiació solar
 - Tèrmica
 - Fotovoltaica

- Indirecta: és a dir, es generen mitjançant processos naturals de transformació de l’energia solar. I són:
 - Eòlica
 - Biomassa
 - Hidràulica
 - Undimotriu

c) Energia solar acumulada: formes d’energia solar (matèria orgànica fotosintètica) fossilitzades al llarg del temps. I són:

- Petroli
- Carbó
- Gas natural
- Pissarres bituminoses
- Sorra asfàltica
- Hidrats de gas

d) Energia gravitatòria:

- Mareomotriu
e) Energia del magma terrestre:

- Geotèrmica

Tot i això existeixen moltes altres formes energètiques. Simplement les citades anteriorment prenen altres formes d’energia útil, ja que segons la Llei de Conservació de l’energia: “l’energia ni es crea ni es destrueix, només es transforma”.

1.3. Escenari energètic global present i futur

Segons l’informe “Prospectiva estratègica de l’energia en l’horitzó del 2030”, fonts extretes de l’Institut Català d’Energia (ICAEN): en els últims segles i fins avui en dia el sistema energètic mundial ha estat dominat per les energies de dipòsit no renovables o fòssils, cobrint un 85% del consum energètic primari. L’energia d’origen nuclear cobreix un 6,5%, la hidroelèctrica un 7% i altres fonts d’energia capturada o renovable (sense incloure combustibles no convencionals com la biomassa) un 1,5%.

Es pot observar a través d’aquestes dades que les energies convencionals dominen el mercat energètic d’una manera aclaparadora.

D’entre les possibles tendències futures, la més destacable és la d’una crisi energètica relacionada amb els combustibles fòssils. La causa fonamental és el fet que les reserves de disponibilitat d’aquests combustibles segons el consum actual són limitades, mantenint el nivell de consum actual: entre 35 i 45 anys per al petroli, entre 60 i 70 anys per al gas natural i entre 200 i 235 anys per al carbó. Per altra banda les reserves d’urani permeten un ús màxim de 50 anys.

Així doncs, els jaciments petrolíferos ja comencen a donar mostres d’esgotament. Consecüentment, a mesura que la oferta no pugui cobrir la demanda es produirà una forta inestabilitat de preus. És a dir, es preveu que es produeixi l’anomenada crisi dels preus del petroli, que significaria no poder satisfacer la demanda a preus moderats. I aquesta crisi es preveu que precedeixi el zenit de la capacitat d’extracció del petroli, l’anomenat peak oil.

Per evitar aquests problemes és necessària una reconfiguració de la utilització energètica i, per realitzar-la, algunes de les vies que es podrien prendre són:

- La inversió en la recerca de nous jaciments petrolíferos: ja que encara hi ha reserves importants i expectatives de trobar-ne de noves. El gran problema és que l’extracció seria d’alt risc i d’elevat cost i a conseqüència els preus del combustible seguirien sent alts.
- La inversió en la recerca de nous combustibles fòssils, nombrats en la
classificació: sorres bituminoses o asfàltiques, pissarres bituminoses i hidrats de gas, aquest últim molt rellevant, ja que representen la reserva més gran de metà del planeta (dobra les reserves de petroli, carbó i gas natural juntes). Encara no s’ha explotat perquè l’accés als jaciments és complicat i no s’ha trobat un mètode eficaç d’obtenció d’energia útil.

• La inversió en la investigació i desenvolupament d’energies alternatives: de les que se’n parlarà d’una manera més global més endavant.

Excepte per aquesta tercera opció sostenible, l’escenari tendencial provocaria disfuncions socioeconòmiques: afectació per exemple al sector transport i conseqüentment a tots els sectors econòmics, que en depenen fortement.

D’altra banda la possible utilització de combustibles de més baixa qualitat (carbó o petroli amb més contingut de sofre) provocaria grans impactes mediambientals, empitjorant la greu situació de malbaratament terrestre actual.

Així doncs, tornant a l’actualitat, un 85% de cobertura amb recurs fòssil significa, segons consens científic, l’elevada concentració de gasos d’efecte hivernacle (GEH) i de CO₂ a l’atmosfera, que provoquen i provocaran greus problemes a la superfície terrestre (veure: pròleg– desenvolupament com a forma de vida).

Com a conclusió energètica global es pot afirmar que per solucionar tots aquests problemes i mantenir un equilibri global, seria ideal una energia amb les següents característiques:

• Autònoma: sense necessitat de transformacions d’elevat cost i productores d’emissions a l’atmosfera terrestre.

• Il·limitada.

• No agressiva amb el medi ambient.

• Contributiva amb el creixement sostenible dels països poc desenvolupats.

• Contributiva amb el manteniment del nivell de desenvolupament assolit pels països avançats, a llarg termini.
2. Energies renovables: visió global i contextualització a la UE i a Espanya
2.1. Solucions globals als problemes globals

Per evitar el continu increment de magnitud dels problemes que generen les energies més esteses actualment, hi ha diverses possibles solucions a nivell global:

- La reducció en el consum energètic: a través de la conscienciació global en l’estalvi energètic.
- La substitució progressiva de les energies d’origen fòssil per les energies capturades o renovables com a alternativa neta (0 emissions de CO$_2$ i GEH), inesgotables i que suposin estalvi econòmic.
- L’eliminació dels residus contaminants que emet qualsevol tipus de central alimentada d’energies no renovables mitjançant l’absorció dels mateixos.

Actualment s’està demostrant que les dues primeres alternatives son viables i aplicables contemporàniament.

Tot i això, existeix una gran dificultat de reducció del consum energètic degut a la falta de compromís en el compliment de les consignes pactades en les cimeres internacionals per part d’alguns països, que són imprescindibles per dur a terme una política de reduccions efectiva.

D’aquesta manera es tendeix a optar per la segona opció, així que en els últims anys s’està invertint de manera exponencial en energies renovables.

La tercera via encara es troba en fase inicial d’investigació i és molt desconeguda a nivell global, pel que encara no es pot tenir en compte.

2.2. Concepte

L’energia renovable o capturada és aquella que s’obté de fonts naturals virtualment inesgotables, ja sigui per la immensa quantitat d’energia que conté (mar), o per la pròpia regeneració a través de mecanismes naturals (vent). S’anomena també capturada perquè consisteix en la captació d’aquestes fonts, ja sigui de manera directa (del Sol o de l’interior terrestre com la geotèrmica) o indirecta (per exemple: el vent, d’origen solar, juntament amb altres factors crea les ones, que proporcionen energia undimotriu).

2.3. E.R.: Una possible solució als problemes globals

Les diferents formes energètiques renovables existents poden ser utilitzades per actuar davant els problemes globals que causen les energies d’origen fòssil de la següent manera:

- Respecte a la crisi econòmica: les E.R. són formes d’aproveitament dels propis recursos, evitant així haver de dependre energèticament de l’exterior. És aplicable:
 - A nivell particular: per exemple amb la instal·lació de plaques solars a casa, evitant ser dependent de l’empresa elèctrica proveïdora.
 - A nivell nacional o continental: no havent d’importar petroli de països productors.

Segons es troba publicat en el *Llibre Verd*, la dependència energètica exterior de la UE creix contínuament de la següent manera: els productes d’importació cobreixen actualment un 50% de les necessitats energètiques (75% a Espanya) i, sense canvis, el factor de dependència exterior serà del 70% al 2030, debilitant en major magnitud la posició de la UE en el mercat energètic actual.

Així doncs, per afavorir l’economia de la UE, sembla indispensable un element rectificador d’aquesta tendència, al que s’ajustaria perfectament la utilització de les E.R., estudiada en aquest apartat.

- Respecte als problemes mediambientals: les E.R. són energies netes, és a dir, que no generen residus, per lo que minimitza aquests greus problemes que causaran l’excessiu ús dels combustibles fòssils.

- Respecte a:
 - L’augment significatiu actual dels preus del petroli en relació als registrats des dels inicis dels anys 90.
 - La probable crisi energètica als voltants del 2030 que comportaria un augment extrem dels preus del petroli.

Es pretén que les E.R. progressivament esdevinguin una alternativa substitutiva. Aquestes característiques són les que han motivat als éssers humans a treballar en favor d’un bon desenvolupament i d’un increment de cobertura de les energies renovables en els últims anys.
2.4. Quantificació i anàlisi de l’evolució de la cobertura energètica que han experimentat les energies renovables en els últims anys

Per donar sentit al següent estudi evolutiu inicialment s’ha d’obrir el camp de visió i tenir en compte fins a quin punt les energies renovables poden aprovisionar el món. Només és necessari observar l’esquema representat a continuació:

![Diagrama de recursos energètics](image)

Font: Consell de Coneixement sobre el Canvi Climàtic Alemany del Govern Federal (WBGU).

Capacitat potencial d’aprovisionament de les energies renovables sobre les necessitats energètiques globals.

Les dades que es presenten a continuació demostraran el favorable progrés de les energies fruit d’estudi i permetran fer-se una idea del punt en que es troben a
l’actualitat a Europa i a Espanya.

2.4.1. Unió Europea-25

Referència:

Les següents dades han estat extretes de l’article tècnic:

- *Estado del arte de las energías renovables*. De l’autor Santiago Domínguez, Director d’Explotació Enel Unión Fenosa Renovables, S.A.

I de la webs:

- *Europa. Síntesis de la legislación de la UE.*

- *Greenpeace: Energy [R]evolution report 2010, energy scenario*

2.4.1.1. Evolució respecte 1990, any de referència

Les empreses europees es troben actualment a l’avantguarda mundial del desenvolupament de les tecnologies d’electricitat FER (Fonts d’Energia Renovable). Reben el suport d’una Directiva de la Unió Europea que pretén impulsar l’augment de la contribució en determinades renovables: eòlica, solar, geotèrmica, undimotriu, mareomotriu, hidràulica... sempre respectant els principis del mercat interior global i de l’elèctric (Directiva 96/92/CE), ja que de no ser així podria desestabilitzar-los.

Tot això és gràcies a un factor principal: els objectius plantejats de reducció de les emissions en un 8% al 2010 i en un 20% al 2020 respecte a l’any de referència: 1990.

Així doncs el lideratge esmentat és resultat d’un procés evolutiu molt destacable, especialment durant les últimes dues dècades:
En 15 anys, la xifra de potència útil anual produïda va passar de 300 TWh/any a 435 TWh/any, incrementant així en un 45% la producció elèctrica.

L’evolució total va seguir una línia moderadament ascendent fins a meitats any 1996, període durant el qual el creixement entre l’energia hidroelèctrica i la resta de renovables va ser pràcticament paral·lel, amb un lleuger major desenvolupament de la resta de les energies, suportat en gran part per l’eòlica. Finalment es va arribar a l’any 1996 amb un total de 340 TWh/any generats, un augment del 13,3% en 6,5 anys. A partir de llavors i amb el Protocol de Kyoto ja signat (posteriorment se’n parlarà més detalladament), l’any 1996 el panorama renovable europeu va canviar: es van produir més fluctuacions i l’increment total va ser major, del 30% en 8,5 anys. Però el canvi més important es va produir l’any 2002 en les proporcions de cobertura de cada classe energètica: la hidroelèctrica va patir una evolució més estable que va significar la producció d’aproximadament la mateixa potència energètica que en l’any 2005, un valor menor que l’any 1996. Així doncs l’augment durant aquest període es va produir gràcies al bon desenvolupament de la resta d’energies, arribant a generar 148 TWh/any més que l’any 1990, l’equivalent al consum total d’electricitat d’Irlanda, Àustria i Portugal.

2.4.1.2. Fonts energètiques renovables principals a la UE

L’any 2005 l’energia hidroelèctrica seguia sent la principal font dins del mercat de les renovables, produint un 67% de la consumida per la UE, tot i que les seves perspectives de creixement a Europa eren limitades.

Per la seva part, l’energia eòlica encara no és una font significativa, ja que produeix un 2,6% de la electricitat que es consumeix a Europa, però va en camí de fer-ho: marca uns registres impressionants d’augment, ja que compon un 33% de les noves instal·lacions de producció elèctrica i segueix creixent en el mercat mundial.

Finalment la biomassa es troba en un punt de producció similar a l’eòlica, del 2% del consum elèctric de la UE i el seu creixement s’està accelerant en els últims anys.

Apunt: No ha estat possible la localització de les dades de cobriment de les energies renovables a la UE en els últims 5 anys, degut a la manca de publicació de documents per part de la Comissió Europea. Per exemple, les dades sobre la situació de l’any 2000 al 2005 van ser publicades l’any 2007.
2.4.1.3. Marc legal europeu sobre objectius de cobertura energètica renovable

Per assolir una evolució positiva a tan gran escala com la que s’ha pogut apreciar al llarg de l’estudi ja realitzat, és necessari un plantejament d’objectius de manera oficial.

I en aquest cas, la UE ho ha dut a terme amb la redacció del *llibre blanc del 1997*, en el que es proposen fites totals i nacionals determinades cada 10 anys i un informe de seguiment cada 5 anys.

La Directiva 2001/77/CE del Parlament Europeu i del Consell, que obreix al *llibre blanc*, proporciona la següent informació sobre els objectius de cara a la fi de la primera dècada del segle XXI.

Objectius 2010: cobertura per part de les renovables del 12% del total de l’energia i del 22,1% de la elèctrica. Amb l’ampliació del nombre de països que formen la Unió Europea (UE-15 a UE-25 al 2004) l’última cobertura passa a ser del 21%.

Amb aquesta perspectiva es cobreix una gran part del compromís sobre l’emissió de gasos d’efecte hivernacle pactat en la Cimera de Kyoto l’any 1997 i que va quedar redactat en el Protocol de Kyoto* aquell mateix any, però que no va entrar en vigor fins l’any 2005.

Així doncs, el compliment dels objectius proposats a nivell continental depèn exclusivament del nivell d’implicació de cada un dels països que formen el conjunt per assolir els propis objectius. I aquests objectius es fixen de manera desigual, sempre en funció del potencial d’aprofitament de les fonts d’energia renovable en cada un d’ells.**

* La Comisión Europea dispone del Libro Blanco a modo de declaración de intenciones para impulsar el desarrollo comercial de las energías renovables y su introducción en la sociedad. “Alcanzar, en 2010, una penetración mínima del 12% de las fuentes de energía renovables en la Unión Europea”. Este es el objetivo del Libro Blanco de las Energías Renovables, un documento elaborado por la Comisión Europea que pretende trazar una estrategia y un plan de acción para que los estados miembros fomenten el uso de estas fuentes de energía. Como conclusión del debate abierto por el “Libro Verde” en 1996, este documento centra sus prioridades en conseguir una mayor explotación del potencial disponible, una mejor contribución a la reducción del CO2, una reducción de la dependencia energética, el desarrollo de la industria nacional y la creación de empleo.

** El protocolo fue inicialmente adoptado el 11 de diciembre de 1997 en Kioto, Japón y tomó vigor el 16 de febrero de 2005. En noviembre de 2009, 187 estados ya habían firmado y ratificado el protocolo. Desgraciadamente ha entrado en vigor muy recientemente, debido a la negativa a firmarlo por Estados Unidos y Rusia.

*** Los Estados miembros deben adoptar y publicar, a más tardar el 27 de octubre de 2002 y posteriormente cada cinco años, un informe que establezca, para los diez años siguientes, los objetivos indicativos nacionales de consumo futuro de electricidad FER, así como las medidas nacionales adoptadas o previstas para alcanzar esos objetivos. Los objetivos nacionales deben fijarse teniendo en cuenta los valores de referencia que figuran en el anexo de la Directiva 2001/77/CE en relación con los objetivos indicativos nacionales de los Estados miembros de la
Treball Final de Carrera
Energies Renovables Marines

UE respecto a la parte de electricidad producida a partir de fuentes de energía renovables en el consumo bruto de electricidad en 2010.

2.4.1.4. Avaluació del progrés d’alguns dels Estats membres cap a l’objectiu del 2010

La següent gràfica servirà de comparativa de cobertura energètica entre certs països molt representatius dins de la UE, escollits tenint en compte les seves diferents capacïtats d’assoliment d’objectius.

A més a més per realitzar la classificació següent també s’ha tingut en compte la perspectiva dels inversors, que constitueix una bona base per avaluar la viabilitat i la salut del mercat de les renovables en un país determinat.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinamarca</td>
<td>8,7</td>
<td>23,1</td>
<td>29,0</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Alemanya</td>
<td>4,5</td>
<td>10,4</td>
<td>12,5</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Espanya</td>
<td>19,9</td>
<td>17,2</td>
<td>29,4</td>
<td>✔ ✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Finlàndia</td>
<td>24,7</td>
<td>25,0</td>
<td>31,5</td>
<td>✔ ✔ ✔ ✔</td>
</tr>
<tr>
<td>Regne Unit</td>
<td>1,7</td>
<td>4,1</td>
<td>10,0</td>
<td>✔ ✔ ✔</td>
</tr>
<tr>
<td>Portugal</td>
<td>38,5</td>
<td>14,8</td>
<td>39,0</td>
<td>✔ ✔</td>
</tr>
<tr>
<td>França</td>
<td>15,0</td>
<td>11,0</td>
<td>21,0</td>
<td>✔</td>
</tr>
</tbody>
</table>

En funció de la situació de penetració en el mercat i de les polítiques aplicades i tenint en compte el progrés real en els primers cinc anys del període del 2000-2010, es pot avaluar la capacïtat dels Estats membres d’assolir els objectius pel present any, classificant-la en cinc categories:

1. Perfecte: en camí d’acomplir l’objectiu del 2010 ✔ ✔ ✔ ✔ ✔

2. L’evolució actual ofereix probabilitats raonables d’assolir l’objectiu del 2010 ✔ ✔ ✔ ✔

3. S’ha de seguir treballant per atènyer l’objectiu del 2010 ✔ ✔ ✔
4. Són necessaris esforços més ferms para assolir l’objectiu del 2010

5. Lluny del compromís

El primer que es pot observar és que avui en dia el l’evolució de les energies renovables no és directament proporcional a l’economia d’un país. Així doncs, països econòmicament potents com França, Itàlia o Àustria es troben en les últimes posicions del camí cap al compliment d’objectius.

D’altra banda es pot observar que el països líders en compromís, que estaven a punt d’assolir els mínims desitjats per l’any 2010 són, entre d’altres: Dinamarca, Alemanya i Espanya.

La bona posició d’Espanya d’entre les nacions europees, es deu a una bona política en energies renovables en els últims anys i a la situació privilegiada en quan a abundància de fonts energètiques renovables.

Els països amb un major percentatge d’energies renovables aplicades, com els escandinau o Portugal, tenen una classificació de quatre punts o dos respectivament, fet que significa que han potenciat les renovables en el passat, però que a l’actualitat la inversió ja no és tan alta.

També s’ha de considerar que el valor absolut del potencial renovable europeu serà més afavorit per petits increments de grans països com Alemanya i França, que per majors augments de països com Portugal, Àustria, Islàndia... Tot i això, tan elevats percentatges de cobertura proporcionen un fort suport a la UE per mantenir aquest lideratge en el sector renovable.

Així doncs, el valor potencial absolut de cobertura elèctrica segons les últimes dades estudiades, es pot observar de forma global en el següent mapa d’Europa:
Proporció de cobertura energètica renovable en el balanç d’energia elèctrica d’alguns països de la UE. Font: Estudi realitzat per la Comissió de la UE i publicat per l’Eurostat (organisme informatiu de la Comissió Europea) l’any 2007 gràcies a les dades de l’última avaluació de desenvolupament renovable per països de la UE (2005).

2.4.2. Espanya

Referència

Les següents dades han estat extretes de l’article tècnic:

- *Estado del arte de las energías renovables*. De l’autor Santiago Domínguez, Director d’Explotació Enel Unión Fenosa Renovables, S.A.

Dels documents oficials de l’Estat:

- *Plan de Energías Renovables 2005-2010*.

- *Plan de Acción Nacional de Energías Renovables 2010-2020 (PANER)*.

I les gràfiques:

- *Ministerio de Industria, Turismo i Comercio*.

L’estudi que es presenta a continuació justifica la bona classificació d’Espanya dins els països europeus exposada en el l’apartat anterior: 2.4.1.1. *Avaluació del progrés d’alguns dels Estats membres cap a l’objectiu del 2010*. Així doncs, es poden observar les dades detallades de l’evolució de les energies renovables a Espanya durant aquesta última dècada:
Apunt: durant la lectura de les dades sempre s’ha de recordar que segons l’anàlisi de la EU, les probabilitats d’assolir els objectius per Espanya són raonables.

2.4.2.1. Cobertura energètica global

S’ha de tenir en compte que els objectius proposats a Espanya de cara al 2010 són d’una cobertura del 14% del total de l’energia consumida al país:

L’evolució de la cobertura energètica en el període 1998-2009 es pot observar en la gràfica següent:

![Gràfica de cobertura d’energia](image.png)

De l’any 1998 al 2007 la cobertura va estar fluctuant, amb una lluita entre el creixement de les renovables i el del conjunt de la resta d’energies utilitzades, que va finalitzar en una cobertura del 6,9% del total d’energia consumida, que era inferior a la meitat de cobertura que es pretenia assolir 3 anys després.

És de gran interès observar l’augment extraordinari a partir de l’any 2007: 2,5 punts en dos anys, un fet sense precedents i una mostra clara d’intencions per part del país. Tot i això l’objectiu per aquest any no era gens fàcil, ja que havia d’augmentar en un 4,6 punts en un any, tot i ser considerat per la UE un dels països amb millor projecció d’assolir l’objectiu.

El cas d’Espanya és una petita demostració de la dificultat de complir les fites proposades, de la incapacitat d’assoliment de les mateixes per part de la majoria de les nacions i alhora també constata la gran ambició d’aquestes fites.
La contribució de cada font d’energia renovable al consum d’energia primària a Espanya l’any 2009 es pot observar en la representació següent:

![Diagrama de sector](image1.png)

Hi ha 3 grans fonts energètiques que actualment dominen el mercat de les renovables: la biomassa, l’eòlica i la hidroelèctrica, amb una cobertura total del 80% al 2009.

Observarem un contrast entre aquesta gràfica i l’equivalent en cobertura elèctrica a Espanya, ja que com a consum energètic global la biomassa és la més utilitzada, degut a que té altres usos més estesos com l’escalfament tèrmic de l’aigua. En canvi les energies eòlica i hidroelèctrica es limiten a la producció d’electricitat.

2.4.2.2. Cobertura elèctrica

S’ha de tenir en compte que els objectius proposats a Espanya de cara al 2010 són d’una cobertura del 29,4% del total de l’energia elèctrica consumida al país:

L’evolució de la cobertura elèctrica en el període 2001-2009 es pot observar en la gràfica següent:
A partir de l’any 2004 les fortes fluctuacions que s’havien produït a principi de segle van desaparèixer i es va entrar en un període d’increment constant que va proporcionar un augment de 4,6 punts en quatre anys.

Però encara s’havia de realitzar una forta ascensió de 5,4 punts en dos anys si es pretenia arribar al objectiu pel 2010. La política renovable espanyola va demostrar perquè és una de les més potents a la UE i l’any 2009 va assolir uns resultats que des de feia 7 anys no s’aconseguien: 4 punts en un any que facilitaven de gran manera superar les intencions previstes per l’any següent.

La contribució de cada font d’energia renovable respecte al total subministrat l’any 2009 es pot observar en la representació següent:
En aquesta gràfica es dóna a veure l’hegemonia eòlica en el mercat elèctric renovable, superant la meitat de la producció renovable nacional. A més a més, cobria un 18% del mercat elèctric, incloent l’energia produïda per fonts no renovables i l’any 2009 va passar a ser la tercera energia més utilitzada a Espanya, superant el carbó.

Espanya actualment és la tercera potència mundial en producció elèctrica per energia eòlica, després dels Estats Units i Alemanya amb una producció d’un 20% de l’energia eòlica mundial l’any 2009.

Les causes principals d’aquesta millora tan marcada va ser:

- La bona política en energies renovables: va consistir principalment en un increment substancial en el nombre de plans i programes dirigits a la millora de l’eficiència energètica i a destinar a tals programes una quantitat de recursos sense precedents.

- Una situació privilegiada en quan a abundància de fonts energètiques renovables respecte a altres nacions: Espanya és un país amb moltes hores de Sol a l’any, una topografia que afavoreix la generació de vent i l’acumulació d’aigua en embassaments, està rodejada del mar i l’oceà...

- Un fort creixement de l’energia eòlica: posicionant actualment al país com a tercer productor mundial d’aquesta energia. Ho ha aconseguit mitjançant la incorporació a la xarxa elèctrica d’alts nivells de capacitat eòlica intermitent.

Tot i això, l’important increment en el consum elèctric eclipsa aquest forta expansió d’energies renovables.

2.5. Previsions per l’any 2020 i endavant a Europa

Les dades mostrades a continuació que exposaran la tendència evolutiva en els properos anys, per així obtenir un coneixement més profund de les possibilitats nacionals.

El programa energètic europeu fixa un objectiu global d’aportació de les fonts energètiques renovables al consum interior brut del 20% l’any 2020.

D’aquesta manera l’estalvi anual augmentaria a més de 250 Mtep (milions de tones equivalents de petroli) també l’any 2020 i d’aquestes, 200 Mtep correspondrien a les importacions.

Així doncs, l’increment de la cobertura està sent molt important, però no suficient, és a dir, que l’energia renovable encara ha de passar per un procés de desenvolupament de
gran importància per arribar a ser l’energia dominant.

Les principals dificultats que l’obstaculitzen són: problemes tècnics fins al moment insolubles, models de desenvolupament no prou efectius per a un rendiment òptim i l’elevat cost de les Energies Renovables en comparació amb altres fonts d’energia convencionals. Aquests costos han de disminuir a través de la millora de processos de fabricació, l’augment de producció i d’esforços en R+D.

L’aspecte més optimista sobre el seu possible futur és el suport polític, social i institucional que reben i que donen unes importants expectatives de desenvolupament.

Finalment, tant Greenpeace com l’Agència Europea del Medi Ambient han realitzat algunes hipòtesis sobre les diferents possibilitats d’evolució que puguin patir.

La ONG Greenpeace ha establert tres possibles escenaris evolutius també a nivell europeu: el de referència (evolució seguint la tendència actual), el de revolució energètica i el més optimista el de revolució energètica avançat (amb la imposició de gran quantitat de mesures encara no aplicades a l’actualitat). La seva predicció és a més llarg termini, fins l’any 2050 i sempre amb aquests escenaris presents ha publicat:

- Una taula sobre la cobertura per tipus d’energia renovable en valor absolut de potència (veure taula 1.1. dels annexos).
- Una gràfica de barres sobre la comparativa de consum energètic primari entre diferents formes d’energies renovables i no renovables principals (veure taula 1.2. dels annexos).
- Una gràfica de barres sobre la comparativa de producció elèctrica entre diferents formes d’energies renovables i no renovables principals (veure taula 1.3. dels annexos).
- Una taula sobre l’increment dels llocs de treball que podrien generar les energies renovables (veure taula 1.4. dels annexos).

Per la seva part, l’Agència Europea del Medi Ambient ha publicat, entre altres informacions relacionades, taules de prediccions a nivell continental fins l’any 2020 de:

- La cobertura global per sectors (veure taula 2.1. dels annexos).
- La cobertura per tipus d’energia renovable en valor absolut de potència (veure taula 2.2. dels annexos).
- La cobertura per tipus d’energia renovable en percentatge evolutiu (veure taula 2.3. dels annexos).
Sempre s’ha de tenir en compte l’enorme quantitat de factors de dependència d’una evolució a tan gran escala, per lo que és molt probable que els panorames futurs presentats pateixin modificacions; sobretot els de Greenpeace, ja que són a més llargs terminis.
3. Energies renovables del mar
Aquest apartat informa sobre aspectes globals que comparteixen el conjunt de les energies del mar, és a dir, es tracta a l’energia marina com a una única font energètica.

3.1. Concepte

Depenent de la referència que es prengui a l’hora d’identificar el concepte d’energia marina, es pot definir de dues maneres possibles:

1. És una ciència i una tecnologia en procés de desenvolupament. Inclou un extens ventall d’energies renovables que provenen d’oceans i mars, moltes de les quals són explorades per poder arribar a ser considerades font d’energia útil.

2. És tota font natural renovable proveïda per alguna de les característiques de l’aigua (diferència de salinitat o de temperatures) o per les forces que genera el moviment de mars i oceans, que podrien arribar a ser aprofitades de forma útil.

3.2. Història

Contràriament al coneixement popular sobre l’energia del mar, l’aprofitament d’aquesta no és una novetat: els primers molins de marea que es poden trobar arreu d’Europa daten de meitats s. XII (poden arribar a ser anteriors a l’edat mitjana). Per exemple, el moli de gra amb funcionament basat en el fenomen natural de marea de Woodbridge, Suffolk, Anglaterra, datat de 1170.

Moli de gra amb funcionament basat en el fenomen natural de la marea a Woodbridge, Suffolk, Anglaterra, de l’any 1170.

Tot i això, les diferents formes d’energia renovable marina han estat utilitzades per primera vegada en diferents moments i èpoques. Així doncs es produeix un important salt temporal fins al descobriment de la següent font energètica:

No va ser fins l’any 1799 que Girard, un home francès, i el seu fill van presentar la primera patent d’aprofitament de l’energia generada per l’onatge.

Tan sols era un concepte però a Julio Verne se li va acudir utilitzar el gradient de temperatures a diferents profunditats oceàniques per produir energia elèctrica. Va ser
en l’obra: 20.000 Illegües de viatge submarí, publicada l’any 1870.

Durant aquella mateixa època, concretament l’any 1925 va iniciar-se la construcció de la primera planta mareomotriu a Finisterre, però el projecte va ser abandonat 5 anys després degut a l’insufficient finançament que va rebre.

Així doncs, la central mareomotriu més rellevant fins al dia d’avui, la situada a l’estuari de la Rance, França, va ser inaugurada l’any 1966, gràcies a la iniciativa de la seva construcció per part de Gerard Boisner l’any 1921.

La crisi del petroli dels anys 70 va suposar una forta embranzida per les energies renovables del mar, especialment a Gran Bretanya, Japó i Noruega. La Universitat d’Edimburg, en aquest període, va començar a desenvolupar prototips d’aproveitament energètic de les onades.

Però més recentment la indústria va començar a cometre greus errors en les proves realitzades a prototips, que van significar obstacles en el desenvolupament i mala publicitat. L’any 1995, moment en que l’interès per l’energia undimotriu va començar a agafar força, un dispositiu de gran potència d’aproveitament de l’onatge que havia generat gran expectativa, l’anomenat Osprey, va fracassar abans de ser instal·lat a les costes escoceses. A més a més, l’any 2007 una boia elèctrica undimotriu de gran cost (2 milions de dòlars) va enfonsar-se prop de les costes d’Oregó i les pales d’una turbina de corrent de marea van rompre’s a la costa de Nova York.

Osprey: dispositiu d’acer amb funcionament per columna d’aigua oscil·lant.
Aquests errors, sumats al lent desenvolupament de la tecnologia i als elevats costos, van anar paralitzant uns projectes que han anat ressorgint en els últims cinc anys. D’aquesta manera, la recerca de dispositius que aprofitin l’energia d’una manera útil continua. I avui en dia un nombre elevat de promotors treballen en projectes molt avançats.

Els principals països que es troben desenvolupant l’energia de l’onatge són: Dinamarca, la Índia, Irlanda, Escòcia, Japó, Noruega, Portugal, Espanya, el Regne Unit, Hawaii i els Estats Units.

I s’espera que les principals grans potències en energia mareomotriu siguin: Portugal, Irlanda, Escòcia i Hawaii.

3.3. Previsions del panorama futur a la Unió Europea

L’Agència d’Energia Oceànica de la UE ha suggerit que 10 GW d’energia renovable marina podrien ser connectats a les xarxes públiques dels diferents països que componen el conjunt l’any 2020.

D’aquesta manera, si s’introdueixen mesures adequades per assolir els objectius determinats, les energies marines podrien proveir 197 GW totals l’any 2025:

- 115 GW d’energia undimotriu
- 57 GW de corrents de marea
- 20 GW de preses de marea
- 4 GW de corrents oceàniques
- 1 GW energia maremotèrmica

3.4. Anàlisi de características de l’energia mareomotriu

Tot i la petita aportació actual al conjunt de les energies renovables per part de l’energia marina o mareomotriu, aquesta té grans avantatges respecte a la resta, que podrien ser els impulsors d’un canvi d’aquest panorama energètic renovable en uns anys.
Avantatges:

- Els oceanes cobreixen un 71% de la superfície terrestre. Això els converteix en els sistemes amb més alta capacitat de col·lecció i emmagatzematge d’energia solar. Per exemple, segons estudis del National Renewable Energy Laboratory (NREL) als Estats Units: en un dia 60 milions de km² de la superfície dels mares tropicals absorbeixen l’energia equivalent a la produïda per 250.000 milions de barrils de petroli. Només amb un 1% d’aquesta energia emmagatzemada convertida a electricitat, es podria subministrar 200 vegades les necessitats energètiques dels Estats Units en un dia qualsevol. L’extracció desitjada d’aquest contingut, ha provocat una creixent motivació per la investigació i el desenvolupament en aquest camp.

És a dir, l’obtenció d’un molt petit percentatge de l’energia oceànica cobriria el consum energètic mundial. Però sempre gràcies a uns principis bàsics d’investigació, desenvolupament i inversió (entre altres mesures) de grans magnituds i orientació adequada.

- L’energia marina es troba en una fase poc avançada en el camí cap a obtenir un aprofitament raonable, és a dir, és el recurs menys explotat. La seva aplicació es redueix a poquissimes plantes comercials i força plantes pilot a pocs països. Aquest fet és un avantatge en el sentit que existeix una major possibilitat de desenvolupament, el que seria un fort punt de suport pel compliment dels objectius de cobriment energètic del Protocol de Kyoto.

- Un altre gran avantatge respecte, per exemple, a l’energia eòlica és l’elevada densitat energètica de l’aigua respecte a l’aire. Així doncs, per a una mateixa unitat de volum desplaçat, l’aigua proporciona una quantitat d’energia molt superior a l’aire.

Per fer-nos una idea, l’aigua en moviment a una velocitat de 22,22 km/h (12 milles/h) induceix una força igual al vent amb una celeritat de 203,72 km/h (110 milles/h).

Dades de potència proporcionada per cada font:

- Vent: 15 m/seg. ⇒ 2 kW/m²
- Corrents marines: 2 m/seg. ⇒ 4 kW/m²; 3 m/seg. ⇒ 14 kW/m²

La gràfica disposada a continuació indica que el límit potencial dels sistemes d’extracció d’energia marina pot arribar a ser molt més elevat que el que actualment assoleixen els sistemes d’obtenció d’energia eòlica.
O vist des d’un altre punt de vista: amb dues turbines de les mateixes dimensions, una marina i l’altre eólica, la primera obtindria una quantitat d’energia molt superior.

Energia anual capturada (MW) per unitat de dimensió del sistema (m).

- Existeix una gran varietat de tecnologies desenvolupades, principalment d’energia undimotriu, que ofereixen una gran flexibilitat per adaptar el seu aprofitament energètic a cada cas o entorn particular.

- Paral·lelament cada una de les energies proporciona una sèrie d’avantatges propis que les caracteritza (s’explicarà quan es parli extensament de cada font).

Totes aquestes característiques donen a entendre que gràcies a una bona inversió en investigació, en un futur pot arribar a ser una energia líder en el mercat energètic, cobrint totes les necessitats energètiques mundials.

Desgraciadament, el llistat de problemes o inconvenients encara és llarg. Es centren principalment en els diferents sistemes d’explotació energètica marina create fins a l’actualitat, que encara requereixen investigació per la seva optimització.

Inconvenients:

- Molt baix rendiment energètic dels diferents sistemes, que impossibilita l’obtenció d’aquesta enorme acumulació energètica del medi on treballen. És la característica sobre la que més s’ha d’investigar i desenvolupar. Per exemple: les plantes d’energia tèrmica oceànica tenen un rendiment màxim teòric del 8,6%.

- La usual hostilitat del medi marí sobre els sistemes, donades:
 - Unes difícils condicions climàtiques: que malbaraten i destrueixen els
sistemes.

✓ Una elevada salinitat de l’aigua marina: que degrada prematurament els mateixos com a resultat de l’oxidació.

Conseqüentment, serà necessari:

✓ Un manteniment molt freqüent: significarà una despesa.

✓ La separació per blocs del sistema: per aconseguir un desmontatge senzill i ràpid en cas de realitzar un manteniment freqüent.

La solució d’aquests problemes acaba convertint-se en el següent desavantatge:

• Ús de materials d’alta resistència tant als grans esforços com a la corrosió, que signifiquen un desavantatge degut a que:

✓ Per les seves característiques són econòmicament més costosos que els materials utilitzats en energies terrestres.

Tot i això, segons l’article *Uso de la energía proveniente del oleaje atlántico*: els últims avenços tecnològics de l’enginyeria d’ultramar, en especial de la relacionada amb l’extracció d’hidrocarburs a alta mar, introdueixen noves possibilitats: les plataformes petrolíferes avui en dia es construeixen amb una capacitat operacional diària i amb una durabilitat de dècades, gràcies a millores en el disseny d’estructures i comportament dels materials davant d’aquests atacs del medi marí.

• La diversificació tecnològica, que consisteix en l’existència de moltes idees en desenvolupament, però sense haver demostrat cap d’elles un clar lideratge tecnològic. Això succeeix especialment en l’energia undimotriu (de la qual se’n parlarà més endavant). Tot i això, progressivament es van duen a terme prototips i instal·lacions que s’aproximen més a la comercialització.

I aquests problemes frenen el seu procés d’avenç cap a la comercialització i dificulten la seva viabilitat.
3.5. Situació econòmica

Des d’un punt de vista general aquest aspecte és un altre dels principals obstacles per a un desenvolupament tecnològic.

I els experts ho manifesten i corroboren la necessitat de millora:

Segons Xabier Viteri, conseller delegat d’Iberdrola Renovables S.A., el gran repte d’aquest sector recau en reduir els costos, perquè a l’actualitat són de fins a "vint vegades superiors als que generen altres tecnologies convencionals, o fins i tot per sistemes renovables més competitius com els d’energia eòlica".

La dificultat principal resideix en que es necessita una alta inversió inicial per a la construcció de prototips i el període d’amortització és llarg. Tot això és degut a un baix rendiment d’obtenció d’energia elèctrica, que provoca la necessitat de construcció de grans estructures per a la captació d’una quantitat d’energia significativa.

Tot i això, els sistemes tenen un costos operacionals relativament baixos en dispositius costers i força més alts en aquells allunyats de la costa; donat que no hi ha costos de combustibles i que els costos d’operació, reparació i manteniment anuals només representen entre un 3 i un 8 % de la inversió.

Les assegurances poden ser un aspecte negatiu que afavoreix l’elevat cost global: seran altes els primers anys, donada una experiència tecnològica limitada i conseqüentment amb elevats riscos de ruptures, errors o fracassos.

La major part de tecnologies renovables només són rendibles si els costos de capital en les estructures i dispositius utilitzats per kW instal·lat són menors a 1600€.

La seva viabilitat econòmica també està molt interrelacionada amb la tarifa prima elèctrica.

Un aspecte dels més destacats que marcaran el nivell d’investigació i desenvolupament que haurà rebut una tecnologia en un futur serà el cost de les inversions en els propers anys. Donat que totes les previsions indiquen intencions globals d’auge del sector renovable i, per tant, es pot afirmar que a major reducció de cost d’inversió, major viabilitat i desenvolupament dels sistemes utilitzats. Els percentatges evolutius segons el tipus d’energia renovable són observable en la gràfica situada a continuació:
Es pot observar que la caiguda més important s’ha produït en els últims 5 anys i fins l’any 2020 les reduccions podrien ser importants. A partir de llavors el desenvolupament tecnològic seria molt elevat i existirien majors dificultats de millora, per la qual cosa la reducció dels costos s’estabilitzaria.

És de gran importància per les energies renovables marines trobar-se com a segona energia amb major reducció del cost.
Aquesta taula indica que el cost de la unitat de potència no baixa el llindar dels 1600€/kW de rendibilitat positiva fins l’any 2040 en el primer cas (escenari de desenvolupament accelerat respecte la perspectiva de desenvolupament actual) i fins l’any 2030 en el segon cas (escenari de desenvolupament accelerat més avançat respecte la perspectiva de desenvolupament actual).

També es demostra que els costos d’operació i manteniment anuals només representen un petit percentatge de la inversió global necessària.

3.6. Medi ambient: Impactes de les plantes d’energia del mar en l’entorn

Prèviament a la instal·lació d’una planta d’energia marina s’han d’identificar una sèrie de problemes mediambientals que podrien generar aquestes plantes, ja que van en funció de si el sistema es troba a la costa o lluny d’ella. S’ha de tenir en compte que la major part dels impactes són produïts per sistemes costers.

El següent pas consisteix en resoldre’ls o reduir-los. Així doncs podrien ser fàcilment evitats, reversibles o molt poc significatius si hi ha un procés exhaustiu de selecció del lloc més indicat, sempre previ a la instal·lació.

Alguns dels impactes mediambientals que podrien provocar les plantes són:

- La generació d’emissions contaminants en la construcció d’aquestes plantes, encara que són de poca importància si les comaprem a les produïdes per les plantes d’altres fonts no renovables.

- Efectes visuals, que depenen de la dimensió de la planta i de la distància a la
costa. En la major part de les plantes són quasi o completament nuls.. I només es pot donar en aquelles que es troben en el litoral i en aigües poc profundes. També poden ser provocat per les línies de transmissió elèctrica de la costa a la xarxa.

En l’entorn marí on són instal·lades les plantes d’energia del mar es poden produir altres tipus d’impactes, com poden ser:

- Canviar els patrons dels sediments en l’entorn hidrodinàmic.
- Creació de nous hàbitats artificials per part de les sistemes, que atraurien poblacions de diferents éssers marins.
- El soroll, que pot viatjar llargues distàncies sota l’aigua i afectar a la fauna marina (foques, balenes...). Principalment prové de les turbines que sovint formen part de l’estructura d’aquests sistemes, però que es pot reduir fàcilment: insonoritzant-les. Tot i això, encara falten investigacions que determinin si el soroll d’aquests sistemes està afectant a la fauna marina.
- Riscos per a la navegació: en la majoria de dispositius es poden instal·lar senyals visuals i de radar per tal de reduir aquests riscos. En el cas de l’energia mareomotriu, la navegació és impedida.
- Interferència amb activitats recreatives: si no estan situats correctament podrien interferir en usos de les àrees de costa, tals com: el surf, passejos en vaixell i altres usos de la platja.
- Crear zones restringides a la pesca.
4. Fonts energètiques oceàniques existents
Aquest estudi contempla els tipus d’energia identificables amb el concepte d’energia marina redactat a l’apartat 3: Energies Renovables del Mar.

Però el gran interès que suposa el coneixement de l’energia de la biomassa marina com a font energètica innovadora, poc coneguda i amb un possible futur pròsper porta a l’autor a incloure-la dins l’estudi.

4.1. Quadre classificatori de les energies marines existents actualment

Les energies estudiades en aquest apartat del projecte han estat ordenades en la següent taula segons la potència disponible que presenten, ja que aquest és el paràmetre indicatiu dels límits d’exploitació que es podria arribar a assolir en un futur.

<table>
<thead>
<tr>
<th>Energia</th>
<th>Potencial renovable en TW</th>
<th>Densitat energètica</th>
<th>Desenvolupament tècnic</th>
<th>Plantes o sistemes en fase de desenvolupament avançada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maremotèrmica o tèrmica oceànica</td>
<td>40.000</td>
<td>Elevada</td>
<td>En fase de desenvolupament de disseny de sistemes rendibles</td>
<td>Cap</td>
</tr>
<tr>
<td>Blava o del gradient salí</td>
<td>1.600</td>
<td>Elevada</td>
<td>En fase de proves de central pilot</td>
<td>Central Statkraft</td>
</tr>
<tr>
<td>Biomassa marina</td>
<td>10</td>
<td>Baixa</td>
<td>En fase d’investigació i primeres proves</td>
<td>Centre d’investigació Repsol, cotxe de Solazyme</td>
</tr>
<tr>
<td>Corrents marines</td>
<td>5</td>
<td>Elevada</td>
<td>En fase de proves de dispositius precomercials al mar</td>
<td>Seagen</td>
</tr>
<tr>
<td>Mareomotriu o de les preses de mareses</td>
<td>3</td>
<td>Mitja-elevada</td>
<td>En fase de producció</td>
<td>La Rance, 8 a la Xina. Poques centrals amb elevada producció</td>
</tr>
<tr>
<td>Undimotriu o de les onades</td>
<td>2,5</td>
<td>Mitja</td>
<td>En fase de proves de dispositius precomercials al mar</td>
<td>Pelamis, PowerBuoy, Mk, OWC Mutriku...</td>
</tr>
</tbody>
</table>

Font: Universitat de Cantabria Taula classificatori de les diferents energies renovables existents i algunes característiques fonamentals.

És necessari afegir que els valors de potencial anteriors són resultat de diferents estudis científics, amb una dificultat de càlcul tal que es converteixen en hipòtesis modificables amb evolucions i millores en futurs estudis.
4.2. Evolució de la potència instal·lada per energia marina de l’any 2008 al 2015

En aquesta gràfica es pot observar la capacitat potencial real (MW) a nivell mundial dels diferents sistemes implementats de l’any 2008 fins a l’actualitat i amb previsió fins l’any 2015. Inclou l’energia extreta de les corrents dels rius (energia amb principis similars a l’energia de corrents de marea però de la que no se’n fa referència en aquest projecte). Així doncs l’energia de les preses de marea ha estat la líder i ho seguirà sent en els propers anys, ja que les plantes instal·lades tenen un potencial molt més elevat que el que poden oferir les de qualsevol altre font energètica marina.
4.3. Anàlisi de la cursa cap a la comercialització

Segons la gràfica anterior, a l’actualitat l’única font energètica amb instal·lacions en fase comercial és la de preses de marea, amb 4 centrals instal·lades; fet que classifica aquesta energia com a líder en el mercat energètic renovable marí mundial. Això no significa que sigui la que rep major inversió en l’estudi i en plans de desenvolupament, ja que altres energies com la undimotriu (onatge) i la de corrents de marea destaquen per la gran quantitat de sistemes dissenyats i fabricats.

En el primer cas la major part dels sistemes es troben en fase de proves a escala reduïda tan en tancs de proves com en el mar. També és líder en fabricació de prototips a escala real i en producció precomercial, fet indicatiu de la comercialització que assolirà en els propers anys.

En el segon cas la comercialització podria ser menys significativa, ja que alguns dels sistemes en fase precomercial són prototips a escales reduïdes que no arribaran al mercat abans de ser fabricats a escala real (aquest valor en l’energia de les corrents de marea encara és molt baix).
4.4. Localització dels fenòmens naturals aprofitables per l’obtenció d’energia marina

L’esquema mostrat indica la distribució general de les principals energies estudiades (excepte la biomassa marina) per les principals zones del planeta.

Distribució dels indrets on es produeixen els fenòmens naturals aprofitables per l’obtenció d’energia marina. Font: Tecnalia, unitat d’energia (seu Robotiker).
4.5. Comparativa de la situació econòmica de les diferents energies

A la taula a continuació mostra el cost de la producció energètica (en cèntim d’€/kWh) segons la font energètica. A més a més l’ordre d’aparició ha estat seleccionat de manera ascendent (d’energia amb més baix cost a més alt cost).

<table>
<thead>
<tr>
<th>Energia de les corrents de marea</th>
<th>Sistemes de 10 MW</th>
<th>Sistemes de 100 MW</th>
<th>Objectiu per a la competitivitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>3-6,9</td>
<td>3,8</td>
<td></td>
</tr>
<tr>
<td>Energia de les onades</td>
<td>22,9</td>
<td>3,8-24,4</td>
<td>3,8</td>
</tr>
<tr>
<td>Energia de les corrents (altres causes)</td>
<td>Aprox. 15,3-30,6</td>
<td>No existents</td>
<td>3,8</td>
</tr>
<tr>
<td>Energia de les preses de marea</td>
<td>18*</td>
<td>~ 7 (a mig termini)</td>
<td>~ 3 (a llarg termini)</td>
</tr>
<tr>
<td>Energia hidrocinètica dels rius</td>
<td><50</td>
<td>Aprox. 13,7</td>
<td>5,3-7,6</td>
</tr>
<tr>
<td>Energia tèrmica oceànica</td>
<td>>30,6</td>
<td>>15,3</td>
<td>11,4</td>
</tr>
</tbody>
</table>

* Les preses de marea acostumen a tenir un potencial major de 200 MW.
Font: Pike research, EE.UU (conversió realitzada: 1 $= 0,7626 €).

El cost econòmic és un altre dels factors fonamentals que defineixen la viabilitat dels projectes.

Els valors que es poden observar a la taula anterior són una característica molt positiva del conjunt de les energies marines, ja que per exemple l’energia nuclear actualment té un cost energètic de 25 cèntims d’€ en centrals existents de 500 MW o més. Aquest cost més baix es deu, entre altres coses, a que les fonts d’alimentació dels sistemes d’energies renovables són d’origen natural i no suposen un cost addicional.

Es pot observar un dels principals inconvenients de l’energia de les preses de marea que dificulten la implantació de major quantitat de centrals: el seu elevat cost de producció energètica en comparació amb sistemes de menors dimensions com poden ser els de les corrents de marea o els d’energia undimotriu.

Això es deu a l’elevat cost d’amortització que generen les immenses construccions de centrals mareomotrius.
4.6. Anàlisi individual de les energies marines

4.6.1. Energia undimotriu

4.6.1.1. Concepte

L’energia de les onades o energia undimotriu és una font renovable d’origen marí que consisteix en l’aprofitament de qualsevol oscil·lació periòdica produïda en la superfície de l’aigua, anomenada onada, per generar electricitat.

4.6.1.2. Onades

4.6.1.2.1. Possibles causes

El moviment de les partícules d’aigua que es produeix en cada onada pot ser originat per:

- Relleu del fons
- La proximitat als continents
- Condicions meteorològiques: sismes, marees, tempestes, vent...

El vent, però, és el factor que produeix el tipus d’onada més comú i amb major densitat energètica i per això és l’únic factor rellevant com a causa de les onades utilitzables per a l’obtenció d’energia elèctrica.

Per això es pot afirmar que l’onatge és un derivat terciari de l’energia solar: l’escalfament desigual que el Sol produeix sobre l’atmosfera terrestre origina el vent (derivat secundari), que interacciona i transmet energia a la superfície marina, generant-se les onades.

4.6.1.2.2. Història científica de l’estudi de la formació

Realitzar l’estudi rigorós de les onades és essencial pel procés d’optimització del seu aprofitament energètic i és molt recent: no s’inicia fins després de la II Guerra mundial.

Anteriorment, l’any 1925, Jeffreys va publicar les primeres idees científiques sobre el procés d’interacció de les ones amb el vent i d’altres el van seguir.

Però no va ser fins l’any 1957 quan Philip i Miles van proposar les teories acceptades avui en dia:
Philip afirmava que: “les variacions de pressió del vent sobre la superfície de l’aigua produueix fluctuacions en aquesta superfície i és el que li dóna la rugositat”. Però aquesta afirmació era incompleta.

Així doncs el mateix any Miles la va complementar amb la següent afirmació: “les fluctuacions de l’aigua produeixen pertorbacions a l’aire i quan ambdues es posen en fase, fan créixer més les onades”. Tot i això faltava explicar com s’iniciava el creixement de les onades en començar a bufar el vent.

Finalment l’any 1967 Hasselman, un oceanògraf alemany, ho va justificar afegint un concepte, que va completar la teoria que s’accepta actualment: Les onades interactuen entre sí i comparteixen l’energia. Per això és possible el transport de l’energia dins l’espectre entre algunes freqüències determinades.

Actualment s’han assolit grans progressos en l’estudi de les onades, podent-se realitzar pronòstics útils tant per impedir tragèdies com per l’aproveitament de l’onatge com a font d’energia. Per aconseguir-ho s’ha requerit el disseny de nous dispositius d’anàlisi de les onades instal·lats a boies i plataformes flotants o l’ús de satèl·lits de recollida de dades d’uns 40.000 emplaçaments de l’atmosfera i dels oceans.

Per exemple, a Espanya, en concret a una població costera anomenada Armintza (Biscaia), s’està instal·lant un sistema anomenat Bimep (Biscay Marine Energy Platform). Té la funció de detecció i mesura de diversos paràmetres de les onades i del vent per tal de d’analitzar si és viable l’aproveitament d’energia de les aigües en les que s’instal·la.

Les gràfiques dels paràmetres captats pel dispositiu es poden observar al punt 3 dels annexos.
4.6.1.2.3. Resumit estudi de la formació de les onades induïdes pel vent

És fonamental la realització d’un estudi sobre la localització dels sistemes prèviament a la seva instal·lació. Gràcies a això s’obtindrà la millor eficiència i la menor problemàtica oferta pels sistemes possible.

Aquest estudi es realitza amb l’objectiu de conèixer les millors condicions que ha de tenir un indret i la millor situació possible en aquest indret per a la instal·lació d’un sistema de captació d’energia de les onades. Concretament s’analitza i es dóna a conèixer el comportament de les onades per localitzar el seu punt de màxima potencial, entre altres cases.

Així doncs s’han de tenir en compte diferents aspectes per identificar la millor localització:

1- L’energia que adquireix una onada induïda pel vent depèn de 3 factors:
 - La velocitat del vent.
 - El temps durant el qual estigui bufant.
 - L’abast o la superfície sobre la que bufa el vent

Així doncs l’energia de l’onada s’estudia mitjançant gràfiques (com la de la dreta) sobre l’energia espectral en funció de les velocitats del vent, que defineixen l’alçada final de l’onada (proporcional a l’energia que conté) i la freqüència del conjunt.

Es pot observar que a major celeritat, el pic de l’espectre es desplaça i indica una menor freqüència d’onada, però l’energia continguda augmenta i, per tant, l’alçada de l’onada és major.

El coneixement de l’espectre de l’onatge és de gran importància en el disseny d’estructures costeres i d’aigua profunda com: dispositius d’obtenció d’energia, esculleres, plataformes marines, vaixells... amb l’objectiu de poder estudiar la resposta d’aquestes estructures a les condicions de l’onatge.
Altres aspectes a tenir en compte

2- La principal dificultat en l’estudi de la predicció de les onades resideix en que en un punt donat del oceà es pot tenir una sèrie d’onades viatjant amb diferent velocitat, diferents direccions, diferents alçades y períodes.

En realitat l’oceà no es compon d’onades sinusoidals pures, sino més bé són una superposició de moltes d’elles. Aquestes onades sumen les seves amplituds variables al superposar-se, formant una superfície anomenada anàlisi espectral, com la que es presenta a continuació:

3- S’ha de conèixer on es produeix la major quantitat d’energia en una onada, ja que és molt important per al disseny de dispositius de captació de l’energia de la onada per decidir quan s’ha d’introduir sota el nivell de la superfície marina:

El 95% d’aquesta energia es genera entre la superfície i una profunditat d’una quarta part de la longitud d’onada. Per aclarir-ho es pot observar la representació següent:

Línia discontínua superior: superfície.

L: longitud d’ona

h: profunditat fins a la qual es produeix la major quantitat d’energia
4.6.1.3. Potencial energètic global i distribució per zones

4.6.1.3.1. A nivell mundial

S’han realitzat diferents estudis per tal d’aproximar el potencial energètic mundial de les onades. S’ha obtingut com a resultat una energia generable de 2 TWh/any (el doble segons la UNESCO) i a Europa s’estima que les onades poden arribar a cobrir un 50 % del consum total del continent.

Com a font energètica no està completament desenvolupada, però ja hi ha projectes en marxa a les costes dels Estats Units, al Hawaii, a Sudàfrica, a la Gran Bretanya, a Espanya, a Portugal, a Israel, a l’Índia, a Austràlia i al Japó, entre d’altres.

En el següent mapa terrestre es pot observar la distribució dels potencials per metre d’ample de l’onatge de les diverses costes on l’energia generada és apreciable:

Les localitzacions amb màxims potencials d’onatges són: les costes del Pacífic d’Amèrica del Nord i del Sud, les de l’oest d’Europa, les del nord de la Gran Bretanya, la costa de Noruega, les costes de Sudàfrica, les d’Austràlia i les de Nova Zelanda, en els que hi ha majors expectatives generades.
4.6.1.3.2. A nivell europeu

A continuació es pot apreciar amb major detall el potencial de l’onatge a les costes europees:

![Flux d’energia (kW) dels mars i oceans europeus per metre d’onada.](image)

Els països amb el màxim potencial són: Escòcia, Irlanda, Noruega, Islàndia, el nord de Portugal i el nord-oest d’Espanya.

4.6.1.4. Anàlisi de l’energia undimotriu

Per tal de poder estableix una comparativa entre fonts energètiques marines en aquest apartat es classifiquen les seves característiques com a avantatges i inconvenients:

Avantatges com a font energètica

- Alta disponibilitat de l’energia:
 En nombre d’hores/any disponibles es superior a la major part de la resta d’energies renovables. A més a més és disponible en qualsevol clima i època de l’any.

- Producció autònoma:
 No requereix de personal de control, i continua, ja que el mar sempre es mou, encara que en alguna ocasió sigui quasi de forma inapreciable.

Avantatges dels sistemes d’ones

- Elevat nombre de projectes en marxa:
 Degut a una bona viabilitat econòmica la energia renovable marina amb major quantitat de projectes en marxa, prototips construïts, en definitiva, amb més
idees innovadores existents, fet que significa una gran capacitat d’adaptació a les molt variables característiques de les costes existents arreu del món.

- Elevada eficiència general:
 Una gran variació de sistemes comporta diferents característiques entre uns i altres. Així l’eficiència dels sistemes és molt variable, però alhora és d’important rellevància el fet que en alguns d’ells s’hagin pogut assolir eficiències teòriques de fins el 90%, que deixa enrere altres formes energètiques en aquesta important característica. Per exemple l’energia maremotèrmica té un rendiment del 6-7%.

- La creació i el desenvolupament de sistemes s’està investigant des de fa relativament poc temps, per lo que els dispositius tenen un marge ampli d’evolució i probablement siguin progressivament més econòmics. A més a més l’elevada nombre d’empreses dedicades al sector significa un estudi pel seu desenvolupament tecnològic intens.

- L’impacte visual, sonor i d’ocupació és quasi nul:
 Aquestes característiques que acostumen a suposar un dels principals problemes de les instal·lacions de renovables terrestres o altres energies renovables marines amb grans infraestructures no ho és gaire per a la major part de plantes d’energia undimotriu, especialment per a les offshore. Això es deu a una mida moderadament reduïda dels sistemes, conseqüentment amb poca ocupació i juntament amb la distància de la costa fan quasi inapreciable la seva presència. L’impacte sonor és també quasi nul ja que els sistemes es dissenyen amb materials insonoritzats o són fàcils d’insonoritzar.

- Generalment el manteniment és baix en comparació amb altres donat que els sistemes són mecànics i poc complexos.

Inconvenients

- La seva densitat energètica és mitja:
 Un desavantatge respecte a la major part de la resta de les fonts renovables marines, amb una densitat energètica elevada. Això significa que amb una mateixa eficiència en els sistemes dissenyats, s’obtindria menor quantitat d’energia per a un volum d’aigua determinat.

- Potencial energètic baix com a energia marina:
 Només és baix fent referència a la resta d’energies marines. De forma absoluta es pot afirmar que el més destacable de totes les energies del mar és l’elevat potencial disponible que ofereixen.

- Inviabilitat d’obtenir un 100% d’eficiència en l’obtenció d’energia de la onada:
Per capturar la màxima energia d’una onada els dispositius haurien de dissenyar-se per interceptar completament els moviments de les partícules d’aigua, és a dir, haurien de capturar l’energia de tots els moviments circulars de la onada, des de la superfície fins a les profunditats. Tot i això, a una profunditat major de la meitat de la longitud d’onada, el moviment de les òrbites que formen les partícules d’aigua són quasi inapreciables, així que no és viable econòmica ni tècnicament intentar captar l’energia a aquestes profunditats.

4.6.1.5. Sistemes d’aprofitament i conversió de l’energia de l’onatge

4.6.1.5.1. Primers sistemes

Els primers intents que es van realitzar per intentar aprofitar l’energia de les onades, van donar-se al voltant de l’any 1874, quan Henning va dissenyar una embarcació prevista d’una sèrie d’aletes, la funció de les quals, era convertir el moviment oscil·latori de les onades en un moviment de translació.

Uns temps després, a l’any 1929, a Mònaco es va presentar el Rotor de Savonius: un sistema que aprofitava la força horitzontal de l’onatge.

Posteriorment formen part també dels inicis una sèrie de dispositius basats en uns principis en els que actualment s’inspiren els sistemes més moderns.

Resumidament aquests sistemes són:

- El Rectificador Russel

 Consisteix en una gran estructura situada sobre el fons marí amb 2 tancs: un superior i l’altre inferior; separats del mar per comporte.

 Quan les onades arriben a la instal·lació, l’aigua passa mitjançant unes vàlvules al dipòsit superior, on hi romandrà fins que es deixi passar cap a la part inferior. En el seu recorregut, l’aigua acciona una turbina hidràulica que està acoblada a un generador elèctric.
Ànec de Salter

Va ser creat el 1973 per l'enginyer Stephen Salter a la Universitat d'Edimburg. El nom d’Ànec de Salter, és com a conseqüència de la seva geometria, ja que la seva secció transversal té una forma que recorda a un ànec flotant dins l’aigua.

La zona que posseeix major diàmetre es troba submergida dins l’aigua i és cilíndrica per evitar friccions. Opera com a pivot en front de l’acció produïda pel mar.

Per altre banda, és la secció més estreta la que rep els impactes de les onades per tal d’aprofitar-los de la millor manera possible.

Així doncs, es realitzen dos tipus de transformacions:

- Una de primària: consistent en la generació elèctrica dins de cada flotador a partir de les bombes hidràuliques, motors i generador elèctric.
- Una de secundària: tot el flotador o ànec rota al voltant d’un eix que acciona una bomba oleohidràulica que mou una turbina i aquesta un generador.

Amb aquest sistema es considera que es poden arribar a aprofitar el 90 % de les onades.
Barcassa Cockerell

L’any 1974 Cockerell va crear una empresa per tal de comercialitzar aquest sistema de generació d’energia elèctrica. Amb unes dimensions de 50 metres d’amplada i 100 de longitud es va instal·lar a les costes d’Escòcia i va arribar a entregar 2 MW de potència.

Degut a les onades, les barcasses realitzen moviments ascendents i descendents i atemporalment unes a les seves contínues creant un moviment relatiu a les articulacions que comprimeix el fluid que es troba a l’interior d’elles. D’aquesta manera el fluid és impulsat mitjançant un circuit hidràulic fins a un motor que acciona un generador.

La seva eficiència teòrica és del 90%, però els assajos amb prototips han proporcionat una eficiència real del 40-50%.

Les seves enormes dimensions i les grans forces que actuen sobre les seves articulacions fan perdre la competitivitat al sistema.

Esquema bàsic de la barcassa Cockerell i els seus components.

Esquema del sistema complet..
Dispositiu Masuda:

Un dels pioners en el sector, considerat el pare de la tecnologia de l’energia de l’onatge, va ser el japonès Yoshio Masuda que va investigar i crear el sistema que s’explica a continuació:

De manera experimental, es va instal·lar aquest sistema l’any 1970 al Japó en una plataforma flotant anomenada Kaimei de 80 metres d’eslora i 12 de mànega que produïa 2 MW de potència elèctrica màxima. Posteriorment, el 1977 es va construir un buc de 400 metres d’eslora que tornava a utilitzar aquest sistema per tal de generar energia elèctrica.

Un dispositiu que utilitza el mateix principi de funcionament, és el que es coneix com a boia Masuda:

Es una boia que té en el seu interior una turbina Wells doble amb un generador de 40 kW. La càmera és de formigó, construït sobre roca a la costa.
4.6.1.5.2. Sistemes actuals

4.6.1.5.2.1. Possibles classificacions segons les característiques dels dispositius

Es poden distingir diferents tipus de dispositius segons:

a) Principis en els que es basen:

- Columna Oscil·lant d’aigua (OWC):

 Es produeix una oscil·lació de l’aigua dins de una càmera semi submergida d’aire. Com a resultat s’obtenen variacions de pressió en l’aire que són aprofitades per impulsar una turbina d’aire.

- Sistemes Totalitzadors (T):

 Són els més estudiats. Estan situats paral·lelament al front d’onada i capten les onades en un sol temps (no progressivament com els atenuadors) emmagatzemant-les en una superfície tancada elevada. Posteriorment alliberen aquesta aigua que impulsen unes turbinas gràcies a la energia potencial que contenen.

- Sistemes basculants (B):

 El moviment de balanceig que realitzen es transforma a través d’un sistema hidràulic o mecànic en un moviment lineal o rotacional que acciona un generador elèctric.

- Sistemes absorbidors puntuals (AP):

 Són estructures petites, cilíndriques i, per tant, indiferents a la direcció de l’onada. Es poden col·locar en línia o formant una xarxa i mitjançant un efecte antena poden captar una major quantitat d’energia de la onada.

- Sistemes de bombeig (BB):

 Una mànega elàstica fixada verticalment a un flotador i a un sistema d’ancoratge al fons marí incrementa la pressió del fluid al seu interior, tenint així utilitat per accionar una turbina hidràulica que mourà un generador. No serà estudiat cap sistema d’aquesta classe, ja que són poc reconeguts actualment dins el sector.

- Sistemes atenuadors (A):

 Són estructures llargues que es col·loquen perpendicularment al front de la onada i capten l’energia progressivament al llarg de tota l’estructura, rebent d’aquesta manera pocs danys. A més a més tenen sistemes d’ancoratge al fons
marí molt senzills.

b) Situació en la que es troben:

- Sistemes costers o onshore (C):
 Estan situats a terra ferma i es troben en contacte amb el mar.

- Sistemes offshore (OF):
 N’hi ha de dos tipus:
 - Flotants (OFF):
 S’acostumen a trobar semi-submergits, són parcialment visibles des de la superfície o des de terra ferma.
 - Submergits (OFS):
 S’acostumen a trobar al fons marí, no són visibles des de la superfície o des de terra ferma.

4.6.1.5.2.2. Taula de classificació dels principals sistemes captadors d’energia undimotriu existents a l’actualitat segons els criteris anteriors

<table>
<thead>
<tr>
<th>OWC</th>
<th>T</th>
<th>B</th>
<th>AP</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>OWC Mutriku</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>OFF</td>
<td>Mighty whale i Mk</td>
<td>Wave Dragon System</td>
<td>Oyster System (propera a la costa)</td>
<td>PowerBuoy, i Wave Star Machine</td>
</tr>
<tr>
<td>OFS</td>
<td>×</td>
<td>×</td>
<td>Biowave</td>
<td>AWS</td>
</tr>
</tbody>
</table>

És necessari puntualitzar que n’existeixen molts més, però la majoria són variants dels nombrats anteriorment o no s’han desenvolupat suficientment com per ser objecte d’estudi.

Però hi ha una excepció: el sistema de propulsió de l’embarcació Suntory Mermaid II, que no es pot incloure en cap de les classificacions anteriors i no té la mateixa funció que la resta. Tot i això serà estudiat juntament amb els sistemes anteriorment classificats a continuació:
4.6.1.5.2.3. Sistemes basats en el principi de la columna d’aigua oscil·lant (Oscillating Water Column)

✓ Mk d’Oceanlinx Limited

Els dispositius Mk han estat concebuts per la empresa australiana: Oceanlinx Limited (anomenada Energetech fins l’any 2007), creada l’any 1997 i també dedicada a la concepció de dispositius de dessalinització de l’aigua marina.

![Prototip Mk1 a escala real.](image)

Els seus prototips fins a l’actualitat han estat desenvolupats offshore a Port Kembla, New South Wales, Australia.

Realment no existeix un sol dispositiu anomenat Mk; en realitat en són 3:

1- Mk1

Va ser el primer prototip dissenyat per l’empresa i un dels primers fabricats a escala real a tot el món. De l’any 2005 al 2009 va ser provat i validat i finalment va ser retirat de servei, havent significat un punt d’inflexió a la història de l’empresa.

El sistema es basa en el principi de la columna d’aigua oscil·lant, utilitzant una estructura de grans dimensions que consta: d’una càmera oscil·lant que ocupa tota la zona interna del dispositiu i que acumula gran quantitat d’aire.
En l’ascensió de l’onada l’aire és comprimit i tendeix a escapar-se a través d’un únic punt de sortida on es troba la turbina, que és accionada.

Posteriorment, quan es produeix la vall de la onada, a l’interior de la càmera es genera una depressió que absorbeix aire de l’exterior i en entrar torna a circular a través de la turbina, la qual sempre es troba en funcionament.

Dades tècniques

- Potencia màxima: 2x 250 kW
- Pes total del dispositiu: aprox. 500 T
- Profunditat: <50 m
- Dimensió de la càmera oscil·lant: 100 m².
- Turbina *Denniss-Auld* de pales orientables: gràcies a elles independentment del sentit del flux de l’aire es produeix el gir de la turbina de manera unidireccional.
2- **Mk2**

![Prototip Mk2 a escala 1:3.](image1)

3- **Mk3PC o Bluewave**

Les inicials PC del tercer projecte d’*Oceanlinx* signifiquen *Pre Commercial* i indiquen que és un sistema precursor i assimilable al futur Mk3 però escalat amb l’objectiu de simplement servir de mostra i adaptar-se correctament a l’entorn de Port Kembla, on també hi és instal·lat des del 26 de febrer de l’any 2010.

Tot i no ser el definitiu, es creu que pot arribar a ser un dels primers dispositius de la seva mida en ser connectat a la xarxa elèctrica a Austràlia i un dels primers al món.

![Disseny CAD del sistema Mk3PC o Bluewave.](image2)
🔥 OWC Mutriku

El sistema va ser instal·lat l’any 2009 a Mutriku, localitat situada al País Basc, promogut per les entitats següents:

- **Dirección de Puertos del Departamento de Transportes y Obras Públicas** (Govern Basc).
- **Ente Vasco de la Energía (EVE)**
- **Wavegen**: empresa encarregada del desenvolupament de la tecnologia.

A més a més va rebre el suport econòmic del 6è programa marc de la Comissió Europea.

Característiques

El projecte és descrit per l’EVE com a “component d’investigació i demostració”, ja que és el primer de les seves característiques a nivell nacional.

És la primera configuració multi-turbina a nivell mundial basada en el principi de columna oscil·lant d’aigua, instal·lada aprofitant la construcció d’un dic al port del poble.

Així doncs, l’EVE recalca que la condició indispensable per a aquesta instal·lació és que respecti la funció bàsica que ha de realitzar el dic.

Tota l’energia elèctrica produïda per la instal·lació és venuda a la xarxa elèctrica.

Finalment afegir que l’impacte mediambiental és nul.

Estructura i funcionament

La planta consisteix en un conjunt de 16 càmeres d’aire amb 16 turbogeneradors situats a l’extrem superior de cada una de les càmeres. Els subconjunts se situen al llarg del dic i les càmeres es troben obertes al mar per la seva zona inferior, permetent l’entrada a les onades al seu interior.

L’aire que es troba en aquesta zona és comprimit a cada pujada del nivell de l’aigua provocat per una onada i surt per la zona superior accionant la turbina, per la qual circula.

En baixar el nivell del mar es produeix una succió de l’aire exterior per compensar la depressió que es produeix a l’interior de la càmera; i aquesta nova circulació segueix accionant les turbines.
Així doncs aquestes turbines estan dissenyades per girar de manera unidireccional, independentment del sentit del flux de l’aire.

A més a més es troben connectades a generadors que produeixen l’electricitat.

Segons la pressió es regula la velocitat de gir del turbogenerador, optimitzant-la i posteriorment es rectifica l’electricitat per convertir-la sempre a alterna.

![Diagrama del funcionament](image)

Dades tècniques

- Cost aproximat fins a la finalització de la instal·lació (tot inclòs): 6,4 M€.
- Producció anual estimada: 600 MWh.
- Potència per turbogenerador: 18,5 kW.
- Potència total: 296 kW (18,5 kW x 16 unitats).
- Generadors: asíncrons de 450 V.
- Estalvi d’emissions de CO₂: 600 T/any.
Vista general de la població de Mutriku i indicació del díc on s’hi troba instal·lat el sistema OWC.

Per comprovar l’existència d’aquest sistema i observar l’impacte visual i sonor que comporta, clicar l’enllaç següent:

http://www.youtube.com/watch?v=ux6j9AmgUCo&playnext=1&list=PL410F60A3355F00EF&index=8

I per entendre millor el seu funcionament:

http://www.youtube.com/watch?v=5buN8j6ZOsM&feature=related

✓ **Mighty Whale o Super Ballena**

L’any 1987 l’empresa *Japan Marine Science & Technology Center (JAMSTEC)* va iniciar el desenvolupament d’un dispositiu de grans dimensions (el convertidor d’energia flotant més gran del món, en aquells temps): el *Mighty Whale*.

Al setembre del mateix any va ser remolcat i provat a les costes de la província japonesa de *Mei Wataira*.

L’any 2000 es finalitzaren les proves de rendiment, fiabilitat de prestacions i característiques econòmiques.
Estructura i funcionament del sistema

El prototip del *Mighty Whale* al no tenir sistema de propulsió va rebre la classificació de boia, així que es va dissenyar seguint la normativa NK –SeCCIó P (per naus d’acer) de la Societat de Classificació *Nippon Kaiji Kyokai* (estructures especials que no transporten mercaderies, amarrades a llarg termini).

Està constituït per una estructura d’acer lògicament de morfologia semblant a la de les balenes que al seu interior a la part davantera té disposades les càmeres d’aire adherides a tancs de flotació.

Mighty Whale ancorat a aigües japoneses.

Mitjançant una inclinació els tancs mantenen l’estabilitat, ja que redueixen el moviment circular de les onades.

Per altra banda, les càmeres d’aire tenen la obertura inferior, que dóna entrada a les onades a l’interior del sistema, i una obertura superior on s’hi situen unes turbines de pales orientables connectades als generadors.

El principi de funcionament és la columna oscil·lant d’aigua, ja explicat anteriorment.

Però a més a més el sistema pot tenir altre usos com: l’aeració i purificació de l’aigua de mar, l’alimentació elèctrica de piscifactories, que alhora poden aprofitar la creació de zones de calma, degut a que en el procés realitzat per l’aparell es produeix una dissipació de l’alçada de l’onada.
Dades tècniques

- Potència màxima: 110 kW
- Rendiment màxim: del 60% amb onades de 1 a 2 metres i amb longitud d’onada= 1,5*longitud del Mighty whale.
- Període de vida útil: mínim 15 anys.
- Localització: a 1,5 Km de la badia de Gokasho a Mei Wataira.
- Profunditat de les aigües: 40 m.
- Dimensions:
 - Eslora: 50 m.
 - Mànega: 30 m.
 - Alçada total: 12 m.
- Dimensions de les 3 càmeres d’aire (longitud x amplada x alçada): 10x8x12 m.
- Desplaçament: 4.380 T.
- Sistema d’estabilització: component estabilitzador que redueix moviments giratoris de l’estructura sobre l’aigua.
- Sistema d’ancoratge: 6 línies dissenyades per suportar tifons.
- Operativa del sistema de producció elèctrica:
 - Condicions normals del mar: Producció automàtica.
 - Onades massa petites: generadors desconnectats de les turbinas.
 - Onades massa grans: vàlvules de seguretat tanquen el flux d’aire a les turbinas.
- Ús de l’electricitat generada: alimentar càrregues a bord i sistemes de mesura. En condicions normals l’energia produïda excedeix la necessària pels sistemes anteriors, per lo que s’utilitza per carregar bateries auxiliars.
- Sistemes auxiliars:

Sistema d’ancoratge i maquinària interna del dispositiu.
Ús de les bateries: alimentar els sistemes de càrregues i mesura en cas de que el conjunt turbina/generador no generi suficient.

Grup electrogen auxiliar: utilitzat en cas que el nivell de les bateries sigui baix.

• Control i mesura:

 ✓ Autonomía: no hi ha control humà a bord.

 ✓ Sistema de control i mesura: des de l’estació de Mesura i Control a terra amb connexió telemàtica amb el *Mighty Whale*.

4.6.1.5.2.4. Sistema totalitzador

✓ **Wave Dragon System**

L’origen del seu nom prové d’un malentès en la llengua danesa: el propietari pensava que el sistema era semblant a un cometa, però una sòcia seva va traduir el seu nom a l’anglès com a drac, ja que en danès s’utilitza la mateixa paraula per ambdós conceptes.

L’any 1986 Erik Friis-Madsen’s, un enginyer assessor danès, va realitzar els primers esbossos d’un sistema particular d’aproveitament de les onades.

No va ser fins l’any 1997, després de desenvolupar la idea i rebre el suport d’universitats i companyies i el finançament d’EFS per fundar la patent *Wave Dragon Ltd.*, quan es va construir el primer prototip a escala en un tanc d’onades.

El primer prototip de mostra a escala es va instal·lar a les costes de Dinamarca, en concret a *Nissum Bredning* l’any 2003, acumulant 20.000 hores de treball connectat a la xarxa i subministrant energia elèctrica a les llars.

Actualment hi ha un projecte pre-comercial de mostra a escala real pendent d’instal·lació a les costes de Gales, però la crisi econòmica ha provocat retards i l’empresa està buscant altres empreses de capital risc.
Fucionament del sistema

Consisteix en una plataforma situada a alta mar amb dos braços reflectors de les onades estesiós a ambdós costats, que gràcies a un angle òptim calculat de col·locació tenen l’objectiu de focalitzar les onades a la zona central del sistema.

A la zona central se situa una rampa, que fa d’efecte platja incrementant l’alçada de les onades, proporcionant energia potencial i posteriorment fent-les passar a un embassament (*reservoir*) situat a la seva part posterior i a major alçada del nivell del mar.

Una vegada acumulada al gran embassament central accionen unes turbines de baixa pressió simplement circulant a través d’elles en una caiguda a alçada. Les turbines són connectades a generadors que produeixen l’electricitat.
Especificacions tècniques

- **Potencial:** 4 MW màxim, 3MW per onades de 4 m d’alçada.
- **Localització:** usualment a una profunditat entre 20 i 50 metres, a la distància de costa necessària. (per exemple a Dinamarca es troba en un rang de 25-100 km de la costa).
- **Material de construcció i estructura:** formigó armat, entre altres. Els dissenys estructurals estan basats en altres utilitzats en el sector naval des de fa anys.
- **Desplaçament:**
 - 6000 T cos del sistema.
 - 2000 T cada braç reflector.
 - 1000 T aigua continguda en l’embassament.
 - 11000 T totals.
- **Turbines:** de baixa pressió com les de centrals hidroelèctriques ja existents, pel que la fiabilitat està assegurada.
- **Sistema de flotabilitat:** El cos del sistema està recobert de material flotant i la part inferior del sistema (els tancs de llast) està obert al mar amb una reixa que permet l’entrada d’aigua a la estructura. El calat s’ajusta mitjançant un sistema d’aire comprimit instal·lat al tancs de llast. El sistema està dissenyat per flotar amb els tancs de llast plens d’aigua marina.

L’objectiu de regular el calat del sistema és permetre a onades de qualsevol alçada (amb limitació) poder arribar a l’embassament. A la vegada es pretén que per una alçada d’onada determinada es mantingui el sistema lo més elevat possible amb l’objectiu de proporcionar a l’aigua la major quantitat d’energia possible.
• Braços reflectors:

Com es pot observar a la vista en planta del sistema cada braç està dividit en 15 segments rectes iguals (secció 1 a 4). A l’extrem s’afegeix un últim segment amb menor calat i major longitud (secció 5). La curvatura (vista en planta) s’obté amb la col·locació en angle de cada un dels elements. Aquest angle és constant d’1º.

Material: formigó armat la part inferior i xapa d’acer la superior.

Vista transversal dels 15 segments de cada braç reflector, a l’esquerra i del segment situat a l’extrem de cada braç, a la dreta.
Sistema d’ancoratge:

Els braços i l’embassament estan lligats a uns caps (hawsers) que units a una boia, que està connectada a un sistema d’ancoratge al fons marí.

Enllaç online per observar el funcionament exacte del sistema clicar a l’enllaç:

http://www.youtube.com/watch?v=P96w3bwg8zk

4.6.1.5.2.5. Sistemes basculants

✓ Oyster System d’Aquamarine Power

Els dispositius semi-submergits Oyster han estat concebuts per l’empresa escocesa Aquamarine Power, amb seu a Edimburg.

L’empresa es dedica també al disseny de tecnologies per a la dessalinització de l’aigua de mar i per a l’aprofitament de les corrents de marea.

Fins al moment només ha mostrat interès per la instal·lació dels seus dispositius a les illes Orkney, al Centre Europeu d’Energies Marines (EMEC) a Escòcia, un dels punts amb major potència d’onatge d’Europa.

És important destacar en favor de l’empresa que ha rebut subvencions per valor de quasi 30 milions de lliures del Fons de Proves d’Energies Marines
Característiques dels dispositius

- Operació a poques profunditats: on el mar és més constant, fet que assegura un període major d’aprofitament. A més a més el sistema és més accessible que altres que operen a alta mar.

- Una base a terra ferma on és instal·lat el sistema de conversió energètic: un gran avantatge respecte a la resta d’energies renovables del mar, ja que permet la manipulació d’aquesta amb molta major facilitat.

- Base a terra ferma amb sistemes estàndards prefabricats: que proporcionen fiabilitat.

- Dissenyat per a una producció massiva a baix preu del sistema d’aprofitament mecànic de les onades: facilitat per la separació de sistema mecànic i sistema de conversió.

- Bona supervivència enfront condicions climàtiques extremes: no rep els impactes de les grans onades al trobar-se en pràcticament tota la seva dimensió submergit i conseqüentment no ha d’ésser desconnectat en aquestes condicions.

- Utilització d’aigua com a fluid de treball: en comptes d’oli o altres substàncies tòxiques que en cas de fuga tindrien afectació sobre l’ecosistema marí.

- Adaptació dels sistemes per a l’alimentació de plantes de dessalinització: obtenint finalment aigua dolça a través d’un procés d’osmosis inversa

- No ofereix problemes d’affectació a l’entorn marí.
Així doncs els dispositius *Oyster* són alerons articulats a una base que reposa sobre el fons marí que li proporciona estabilitat.

Els alerons pràcticament submergits en la seva totalitat oscil·len enrere i endavant gràcies a l’acció de les onades. Aquests moviments accionen uns pistons hidràulics (subjectes a la base) que augmenten la pressió de l’aigua que es troba al seu interior que posteriorment és enviada a la base a terra.

L’accionament final es produeix sobre una turbina hidroelèctrica situada en aquesta planta costera.

Dispositius d’aprofitament d’energia de les onades concebuts

1. *Oyster 1*

 Va ser instal·lat a les costes de les illes d’Orkney l’estiu de l’any 2009 i va ser connectat a la xarxa elèctrica el Novembre del mateix any.

 Els objectius d’aquest procés van ser l’estudi profund de l’aplicació de la tecnologia al mar i l’obtenció de dades per finalitzar el disseny del nou dispositiu *Oyster 2*.
El primer dispositiu Oyster 1 a escala real.

Video del dispositiu Oyster 1 operatiu l’any 2010:

http://www.youtube.com/watch?v=S4O0JcNfTKo&feature=player_embedded

2- Oyster 2

La nova generació de dispositius ja ha estat desenvolupada i durant l’any 2010 ha estat també construïda. Així doncs tot està preparat per la instal·lació l’any 2011 a la mateixa localització que el seu antecedent.

Consistirà en tres dispositius connectats a la mateixa planta hidroelèctrica costera que produiran una potència total de 2,5 MW. Així aquests compartiran una mateixa línia de connexió fet que comportarà menors pèrdues de càrrega.

Els principis de funcionament i les característiques generals seran aprofitades del dispositiu Oyster 1, però amb algunes millores aplicades:

- Nova forma estructural: proporciona millores d’eficiència.
- Construcció modular: facilita la instal·lació i el manteniment.
BioWAVE™ de BioPower Systems Pty. Ltd.

La jove empresa australiana BioPower Systems Pty. Ltd., amb seu a Sydney, ha estat fundada l’any 2006 i es dedica a la realització de projectes de sistemes d’aprofitament d’energia de les onades i de les corrents de marea. Els seus dissenys es basen sempre en 3 principis: eficiència, rendibilitat i respecte amb el medi ambient.

A més a més existeix un quart concepte que defineix la morfologia i funcionament dels seus sistemes: la “bioimitació”, és a dir, la imitació dels mecanismes utilitzats per la naturalesa per a la seva supervivència, ja que han estat optimitzats durant milions d’anys i els moviments que realitzen són completament concordes amb les forces dels oceans.

Així doncs, en l’àmbit de l’onatge s’està realitzant un projecte anomenat bioWAVE™, que es troba en investigació per ser instal·lat: com a projecte pilot a les costes de l’illa de King, Tasmania, com a projecte de mostra pre-comercial a Espanya i com a projecte comercial a San Francisco.

Només existeix un projecte en fase més avançada de planejament com a projecte pilot i mostra comercial a Port Fairy, Victoria, Australia.

Funcionament

Es basa en el principi de moviment oscil·latori de les plantes marines degut a l’onatge.

Així doncs el sistema consta de tres pales flotants, se situa ancorat sobre el fons marí i oscil·la endavant i enrere, a baixa velocitat i sense connexion a l’exterior que podrien capturar espècies marines.
La conversió energètica es realitza per complert al mateix dispositiu, fet que segons l’empresa evita ineficiències en el bombeig de fluids, tot i que realmente aquest aspecte també crea problemes de manteniment i accessibilitat. Posteriorment l’energia s’envia a terra per cables.

En cas de condicions d’onatge o corrent extremes aquest sistema ha estat dissenyat amb la funció de aturar la producció i reposar sobre el fons marí, permetent així la utilització de materials més lleugers i aconseguint estalvis econòmics.

Aspectes tècnics

- Potencial productiu del dispositiu: 250 kW, 500 kW o 1000 kW segons les característiques de l’entorn.

- Alçada del dispositiu: 20-25 m.

- Eficiència: elevada degut a que la interacció hidrodinàmica entre les pales flotants i el camp oscil·lant de moviment ha estat dissenyada per una absorció energètica màxima.

- Rendibilitat: elevada degut a una bona eficiència que proporciona gran quantitat d’energia absorbida i degut també a que no ha estat dissenyat per suportar extremes condicions i el preu de fabricació del sistema és més baix.

Malauradament no estan publicades característiques tècniques ni de funcionament més detallades.
Per observar més detalladament el que s’ha explicar anteriorment clicar l’enllaç:

http://www.youtube.com/watch?v=snxm1EaDf4g

4.6.1.5.2.6. Absorbidors puntuals

✓ **PowerBuoy d’Ocean Power Technologies Inc. (OPT)**

L’empresa americana *Ocean Power Technologies (OPT)*, amb seu a Pennington, Nova Jersey va ser fundada l’any 1994 pels doctors: Dr. George W. Taylor i Dr. Joseph R. Burns amb la intenció de dedicar-se exclusivament al seu projecte d’aproveitament d’energia de les onades *PowerBuoy*.

Avui en dia han aconseguit:

- Instal·lar el primer prototip de proves a Nova Jersey l’any 1997 amb la col·laboració de la Marina dels Estats Units.

- Inaugurar l’octubre del 2010 de manera comercial la fase inicial d’un projecte anomenat SWEP a la localitat de Santoña, Cantabria juntament amb:
 - L’empresa promotora: Iberdrola Energíes Renovables S.A. (60% del projecte) i líder mundial en energies renovables.
 - Altres empreses col·laboradores: Sodercan (10%) i Total (10%).
 - El govern espanyol: Institut per la Diversificació i Estalvi Energètic
L’entitat col·laboradora: Universitat de Cantabria.

- Realitzar un projecte de prototips en fase de planejament per ser instal·lat a les costes del Regne Unit.
- Inaugurar el desembre de l’any 2009 a Hawaii un projecte d’investigació i desenvolupament amb la utilització d’un sistema a escala real conjuntament amb la Marina dels Estats Units.
- Altres: Oregon (EE.UU.), Orkney Islands (Escòcia)...

Principis tècnics i funcionament del sistema

El sistema és una boia flotant de grans dimensions de producció d’energia elèctrica a baix preu, que realitza un moviment oscil·latori produït per l’onatge assimilable al moviment d’una boia qualsevol.

Aquest balanceig provoca l’accionament d’un generador elèctric directament, fet que minimitza les pèrdues.

![Powerbuoy OPT](image)

L’energia elèctrica generada és transmesa a terra mitjançant un cable submarí observable a la representació anterior. Fins a 10 boies són connectades a una estació submarina, que transforma la baixa tensió generada per les boies (11 kV) en mitja tensió (15 kV) compatible amb la xarxa elèctrica a terra.

A través d’aquest cable s’estableix també una comunicació a terra, ja que el
dipositiu té instal·lat un conjunt de sensors que analitzen l’estat de cada un dels elements de la boia i les condicions de l’entorn marí.

Així doncs, en cas de condicions meteorològiques o d’onatge que puguessin malmetre el sistema, la generació elèctrica atura el seu procés de manera automàtica. Quan les condicions normals de l’entorn es restableixen la producció es reactiva automàticament.

Per garantir una bona estabilitat i flotabilitat i degut a l’enorme dimensió d’aquests dispositius són necessaris els següents components:

![components](image)

Components de la Powerbuoy d’OPT.

Un enorme flotador juntament amb un tanc de llast situat a la part inferior del dispositiu proporcionen una bona flotabilitat i el calat desitjat.

L’estabilitzador fa funció de contrapèrs, evitant així l’extrem balanceig en condicions de fort onatge.

En el fust se situa tot el sistema de conversió de l’energia de les onades en electricitat, un sistema de col·lecció elèctrica per el posterior enviament a terra (conjunt de condensadors) i l’electrònica del sistema d’anàlisi anteriorment explicat.

Finalment al pont s’hi troben les balises que indiquen la presència de les boies al mar.

Dispositius:

L’empresa OPT ofereix 2 tipus de dispositius segons les necessitats energètiques de l’usuari:

La diferència principal resideix en que la PowerBuoy estàndard s’utilitza per subministrar electricitat a la xarxa elèctrica, mentre que l’Autonomous
PowerBuoy (APB) opera independentment d’aquesta.

Així doncs la primera es fabrica amb potencials més elevats (a partir de 40 kW) i la segona no tant (uns 10 kW), tot i que si l’usuari ho desitja l’empresa pot adaptar una PowerBuoy pel funcionament autònom de la xarxa elèctrica.

A continuació es realitza un anàlisi més profund de cada un dels dispositius:

1. Prototip PB40 PowerBuoy:

Va ser instal·lada per primera i única vegada a Atlantic City, Nova Jersey, l’any 1997, en la que es van realitzar proves durant dos anys per obtenir informació sobre principis que es van aplicar als següents models. D’aquesta manera va significar la base per les generacions successives.

Prototip PB40 PowerBuoy operatiu a les costes d’Atlantic City, Nova Jersey, EE.UU.

No es va arribar a connectar a la xarxa elèctrica i com indica el seu nom va ser dissenyada amb un potencial de 40 kW.
2. **PB40 PowerBuoy**

Va ser utilitzada únicament a les costes de Hawaii com a projecte d’investigació i desenvolupament.

Instal·lada el desembre de 2009 i connectada a la xarxa el setembre del 2010, va demostrar que els dispositius *PowerBuoy d’Ocean Power Technologies Inc.* podien subministrar energia elèctrica d’origen renovable a la xarxa.

Així doncs, aquesta boia segueix sent part del procés de desenvolupament i proves de l’empresa OPT.

Ha incorporat millores en característiques de disseny per tal de millorar la seva eficiència. També té un potencial de 40 kW i fins avui en dia, el sistema ha estat operatiu un total de 4.400 hores.

3. **PB40ES PowerBuoy**

Les inicials ES signifiquen *Enhanced*, és a dir, millorada, per lo que aquesta és la següent generació de la boia anteriorment explicada.

Se’n va utilitzar una en la primera fase del projecte SWEP (Santoña Wave Energy Project) i segueix sent part del programa de desenvolupament i proves de l’empresa.
Les proves realitzades a Santoña han servit per orientar l’empresa en:
l’escala útil, la connexió a la xarxa i la qualitat de l’electricitat
subministrada a la xarxa.

Incorpora a més a més dues importants característiques:

- Un nou sistema d’ ancoratge i una estructura que proporcionen la
 capacitat de funcionament a la boia sota un ampli ventall de
 condicions d’onatge en tempestes, marees, corrents...

- Un sistema de supervisió i control més precís anomenat SCADA,
 que funciona amb fibra òptica.

Així doncs aquest dispositiu ha establert els principis en els que es basa
la nova boia PB150.

4. **PB150 PowerBuoy**

El nou dispositiu de 150 kW és el primer de l’empresa que té una funció
comercial.

Està sent acabat de fabricar a Escòcia i en pocs dies serà llençat al mar a
l’EMEC (Centre Europeu d’Energies Marines) situat a les costes de les
illes Orkney, Escòcia.

Posteriorment també han de ser utilitzades a Reedsport, Oregon, EE.UU.
i en la segona fase del projecte SWEP a Santoña, Cantabria, on
s’instal·laran 9 d’elles.

Generarà energia amb onades entre 1,5 i 7 metres i la instal·lació en conjunt podrà ser configurada en matrius de 2 o 3 files.

5. **Autonomous PowerBuoy (APB)**

Aquest últim dispositiu ha estat provat al mar i ha demostrat efectivitat i fiabilitat també gràcies a la col·laboració de la Marina dels Estats Units.

És un dispositiu de molt més petites dimensions i menor potencial utilitzat per usos més específics desitjats per l’usuari.

![Nova boia PB150 amb les seves dimensions en peus](image)

Autonomous PowerBuoy operatiu en aigües nord-americanes.
Existeixen uns models estàndard que van des dels 250 mW fins als 10 kW, amb un diàmetre de flotador de 7,5 cm a 3,6 m, una llargària del fust que va des d’1 m a 16,5 i un pes des de 18 kg a 18 T.

Alguns dels possibles usos que se li podrien atorgar són:

- Detecció remota i comunicacions
- Rastreig i detecció
- Subministrar energia a sistemes radar
- Observació oceanogràfica
- Detecció geofísica del fons marí
- Vigilància de la costa per Seguretat Marítima

L’enllàc següent proporciona informació sobre la utilització, sobre algunes característiques:

http://www.youtube.com/watch?v=XllM3k6QyQ&feature=related

![Representació d’un conjunt de Powerbuoys sota la superfície marina.](image)

✔ Màquina de *Wave Star Energy*

L’empresa Wave Star Energy va ser fundada l’any 2003 a Dinamarca i està dedicada exclusivament al disseny de sistemes d’aprofitament d’energia de les onades. La família Danfoss és la principal accionista i Jørgen Mads Clausen és el President de la Junta.
El més sorprenent del treball d’aquesta empresa és la seva rapidesa en l’estudi, disseny i fabricació dels seus prototips, com podrem observar a continuació.

Funcionament bàsic

La màquina és una plataforma rectangular elevada fixada al fons marí i que té annexionada a dos dels seus costats braços estesos al mar de forma articulada, a l’extrem dels quals hi ha fixats diversos flotadors semiesfèrics parcialment submergits. Així doncs es podria afirmar que aquest és un sistema absorbidor puntual múltiple.

Als braços articulats hi ha situats uns cilindres hidràulics.

El moviment de les onades va elevant els flotadors un per un, moviment que és resistit pel cilindre hidràulic. Així doncs la força es transmet al fluid del cilindre amb una pressió de fins a 200 bars.

Posteriorment el fluid és enviat a un motor hidràulic al que alimenta i aquest acciona un generador de corrent elèctrica.

En cas de tempesta o de condicions extremes i a partir d’una alçada determinada d’onada, la màquina activa un sistema de protecció que consisteix en elevar els flotadors fora de l’aigua.

Projectes presentats

1- Model a escala 1:10:

Va ser finalitzada la seva construcció i es va instal·lar l’any 2006 a Hanstholm, Dinamarca.

Des de llavors ha sobreviscut sense danys a 15 tempestes fins a avui en dia, un fet lloable en el sector.

![Model a escala 1:10](image)

Va ser connectat a la xarxa i té un potencial de 5,5 kW, suficient per alimentar dues llars familiars.
2- Secció model a escala 1:2

Wave Star va presentar el seu segon prototip el 18 de setembre del 2009 a la mateixa localització.

No era necessària la instal·lació d’un model a escala real i per això es va retallar la longitud i el nou model només consta de dos braços i dos flotadors.

El seu objectiu és el subministrament de dades per les futures proves i optimització de la màquina comercial.

![Secció model a escala 1:2 operatiu instal·lat a Hanstholm, Dinamarca.](image)

Dades tècniques

- **Dimensions:**
 - Longitud: 40 m.
 - Alçada: 6 m.
 - Alçada de les potes: 25 m.
- **Nombre de flotadors:** 2.
- **Diàmetre dels flotadors:** 5 m.
- **Potència proporcionada per flotador:** 25-50 kW (per a una alçada d’onada aproximada de 2,5 m).
3- Màquina comercial

Després de gran quantitat de proves d’optimització, la màquina comercial definitiva de 500 kW està prevista ser finalitzada i llençada al mercat entre els anys 2011 i 2012.

Així doncs, es preveu que pugui alimentar entre 500 i 1000 llars.

El potencial per flotador anirà incrementant-se a mesura que avanci el treball de millora i conseqüentment el potencial total i la producció anual de la màquina també incrementaran.

Les parts crítiques de la màquina així com ordinadors i transmissions seran introduïdes a la carcassa del generador, en condicions climatitzades. I aquest conjunt anirà situat al pont.

Les bones condicions i la situació llunyana al mar proporcionaran protecció davant la salinitat i la humitat de l’aigua marina.

Representació de la futura màquina comercial de Wave Star.

Dades tècniques:

- Localització: a 1 km de la costa al mar del Nord, a Hanstholm.
- Dimensions:
 - Longitud: 70 m.
 - Alçada: 6 m.
✓ Alçada de les potes: 25 m.

- Nombre de flotadors: 20.
- Diàmetre dels flotadors: 5 m.
- Potència proporcionada per flotador: 25-50 kW (per a una alçada d’onada aproximada de 2,5 m).
- Producció anual aproximada: 1,4 a 2,8 GWh (al mar del nord).

Per observar els prototips provats al mar i el seu funcionament:

http://www.youtube.com/watch?v=Fu5AK_a9KN0

✓ Arquimedes Wave Swing (AWS) de Teamwork Technology i d’AWS Ocean Energy Limited.:

L’empresa Teamwork Technology que va ser fundada a Holanda i té la seu a una població anomenada Zijdewind va crear i patentar el dispositiu AWS l’any 1993.

Posteriorment, l’any 2004, l’empresa va decidir vendre el seu projecte al Regne Unit, on el Govern subvencionava molt generosament els dispositius d’aprofitament d’energia marina.

Així doncs la nova empresa AWS Ocean Energy Ltd., situada a la ciutat d’Inverness, Escòcia, va comprar els drets de desenvolupament i venda del producte. Aquesta empresa va ser fundada el mateix any 2004 amb l’objectiu de desenvolupar sistemes d’aprofitament de l’onatge i les corrents marines.

Encara en mans holandeses, el sistema va ser desenvolupat i provat primer a escala 1:20 i 1:50, gràcies als quals l’eficàcia del concepte va ser demostrada i ajustada. Així doncs, els experts van voler provar el sistema a escala real i ho van fer a Portugal, a 5 km de la costa, on el sistema va ser connectat a la xarxa elèctrica. La potència màxima
assolida va ser de 2 MW.

Ja en mans escoceses, el producte s’ha seguit provant i desenvolupant-se:

Actualment l’objectiu és llençar al mercat un sistema flotant anomenat AWS III de producció d’entre 2,4 i 4 MW del que ja s’ha finalitzat un prototip a escala 1:9 i provat al llac Ness.

La flotabilitat com a nou concepte, amb la conseqüent accessibilitat per al manteniment i la simplificació en el disseny d’aquest dispositiu tenen l’objectiu de proporcionar rendibilitat al sistema: un dels principis bàsics de l’empresa.

L’empresa afirma que aquest dispositiu es troba en fase pre-comercial.

Així doncs el dispositiu és una evolució dels precedents AWS I (provat a Portugal) i AWS II (amb suport financer de Carbon Trust).

Principi de funcionament

La generació elèctrica es produeix gràcies al principi d’Arquimedes.

El sistema consisteix en dos cilindres: l’inferior es troba fix al fons marí i el superior es mou verticalment sobre l’altre en posició concèntrica.

L’empenta que genera l’aigua sobre el sistema és constant i s’equilibra amb el pes del sistema i la columna d’aigua que es troba al damunt en condicions de mar plana.

Així doncs, el moviment al que s’ha fet referència és degut a la variació de pressió de la columna d’aigua que provoquen de les onades al passar per damunt, és a dir, la part mòbil descendeix al passar la cresta d’una onada per damunt:

\[E < (mg)_{sist} + (pgh_{1}A)_{columna \ d’\ aigua} \]

En aquest moment es pressuritza l’aire situat a l’interior del cilindre, que generarà una força ascendent sobre el cilindre mòbil.

I així doncs la part mòbil ascendeix a continuació al passar la vall pel damunt:
E + F_{\text{aire del cilindre}} > (mg)_{\text{sist}} + (\rho g h A)_{\text{columna d'agua}}

A aquest moviment ajuda que $h_1 > h_2$, però l’ascensió la provoca fonamentalment la pressió de l’aire interior del cilindre.

El sistema de conversió elèctrica presenta una innovadora forma de producció elèctrica que consisteix en que el cilindre superior porta fixos a la seva part interna uns imants que es desplacen de forma contínua al llarg d’una bobina situada de forma fixa al cilindre inferior. D’aquesta manera es genera un camp electromagnètic, l’electricitat del qual s’envia a terra mitjançant un cable elèctric.

Planta futurista d’AWS.

4.6.1.5.2.7. Atenuadors

✓ Pelamis de Pelamis Wave Power limited

L’empresa PWP (anomenada Ocean Power Delivery fins l’any 2007) va ser constituïda l’any 1998 pels doctors: Dr. Richard Yemm, Dr. Dave Pizer i Dr Chris Retzler. Actualment té seu a Edimburg, Escòcia i dóna feina a 70 persones després d’haver rebut elevats valors de subvenció.

Representació de la “serp marina” Pelamis.
Tot i ser escocesa i tenir nombrosos projectes en marxa a Escòcia, alguns en fase de proves al mar, un dels projectes de més alta capacitat es troba a Portugal, a Aguçadoura, on s’ha implantat de forma comercial l’any 2006 un conjunt de 3 pelamis amb una producció de 2,25 MW i la intenció d’assolir 22,5 MW en el futur. Els projectes de major capacitat potencial es troben a Aegir (illes Shetland, Regne Unit), a Great Bernera (Western Isles, Escòcia) amb una futura producció de 20 MW i a Sutherland (Escòcia) amb una capacitat a la seva futura segona fase de fins a 50 MW.

Per fer-se una idea una planta de 30 MW estaría format per 40 Pelamis i ocuparia un espai d’1 Km², podent alimentar elèctricament a 20.000 llars. (Imatge de dalt a l’esquerra).

Origen etimològic

Pelamis Platurus és una serp marina de ventre groc que habita a les aigües tropicals i subtropicals. Per la semblança del dispositiu a una imponent serp marina se li ha posat aquest nom.

Estructura i funcionament

El sistema convertidor d’energia de les onades Pelamis és una estructura semi-submergida i articulada mitjançant frontisses entre les tres seccions cilíndriques que la formen.

Cada un dels mòduls produeix electricitat per si mateix: el moviment oscil·latori de les juntes en concordança amb les onades és resistit per uns cilindres hidràulics que envien el fluid pressuritzat en el seu interior a un motor hidràulic després d’haver passat per un acumulador d’alta pressió.

El motor acciona un generador elèctric que se situa a continuació.

Finalment l’electricitat produïda pel generador es transmet a terra a través d’un cable connectat a un transformador situat a l’extrem de proa del sistema. Molts sistemes poden ser connectats conjuntament i emetre energia a través d’un sol cable.

Les imatges a continuació poden ajudar a comprendre el funcionament:
Representació de les possibilitats d’agrupació de dispositius (a dalt a l’esquerra), dels mòduls, potència i dimensions del sistema (a dalt a la dreta), el funcionament del sistema globalment (al centre), el funcionament específic del moviment de les articulacions (a baix a l’esquerra) i la xarxa d’interconnexió de diferents sistemes (a baix a la dreta).

Vista de l’interior d’un dels mòduls del Pelamis.
A més a més s’hi ha adaptat un sistema de control de resposta ressonant a les juntes que regula la captació energètica del mar o oceà: es desactiva en condicions extremes, en mode de supervivència, quan es produeixen càrregues límit.

Mar amb condicions adverses per qualsevol sistema d’aproximat d’energia marina.

I s’activa amplificant aquesta energia en petits mars o en condicions de poques onades.

Pelamis operatiu en aigües tranquil·les.
Característiques tècniques

- **Sistema d’ancoratge:**
 Combinació de flotadors i pesos que mantenen el sistema en una posició on els caps d’ancoratge no estiguin tensos.

- **Llast:** Hi ha un tanc de llast (reservoir a l’imatge anterior dels components interns del dispositiu) a cada mòdul.

- **Completa disponibilitat tecnològica:**
 El sistema és un assemblatge de tecnologia provada pel sector del gas i el petroli.

- **Tots els components interns són modulares i no especialitzats i han estat dissenyats per poder instal·lar-se o extreure’s sense la necessitat d’entrar a dic sec, amb una grua de 5T.**

Dades tècniques

- **Dimensions:**
 - Longitud total: 150 m.
 - Diàmetre: 3,5 m.
 - Nas encorbat en forma cònica de 5 m de longitud.

- **Desplaçament:** 700 T.

- **Potència global:** 750 kW.

- **Generació anual:** 2,7 GWh.

- **Profunditat:** >50 m.

- **Corrent:** <1 Kn.

- **Generadors asíncrons:** 157 kVA.

- **Transformador:** 950 kVA, 11 kV o 33 kV.
Pressió de treball als cilindres: 100-350 Bars.

Comparativa amb una turbinina de gas de consum i producció per la mateixa potencia elèctrica produïda:

- Consum de combustible: 600 T/any
- Emissions: 2000 T/any CO₂

Funcionament esquemàtic i real del Pelamis (successivament):

http://www.youtube.com/watch?v=F0zrbfzUpM

http://www.youtube.com/watch?v=JYzocwUfpNg&feature=related

✔ Anaconda de Checkmate Seaenergy Limited

L’empresa Checkmate Seaenergy Limited amb seu a Bowerhill, un poble proper a Melksham, Anglaterra va ser fundada durant l’any 2007 com a part de l’empresa Checkmate Flexible Engineering.

A principis del 2008, va ser elegida entre diferents empreses d’aprofitament d’energia undimotriu per rebre un suport financer del programa Carbon Trust’s Marine Energy Accelerator.

L’únic projecte que aquesta empresa ha dut entre mans, anomenat Anaconda, va ser inventat pels professors Francis Farley and Rod Rainey i va ser inicialment construït com a prototip a escala 1:25 i provat en tancs construïts al Parc de Tecnologia Marina QinetiQ’s Haslar a Gosport, situat a Hampshire, (Anglaterra). Després de 3 setmanes es va poder demostrar que el sistema era capaç d’aprofitar l’energia de l’onatge.

A dia d’avui s’han construït i provat dos dispositius diferents més també a escala 1:25 i paral·lelament se segueixen realitzant altres investigacions relacionades.

La intenció en un futur és crear plantes de 20 dispositius que produeixin més de 20 MW de potència.

Els principals avantatges respecte a sistemes com el Pelamis (posteriorment explicat) són el baix preu d’aquesta tecnologia o la inexistència d’articulacions o juntes, que podrien ser un punt de trencament o fugues crítics.

És un dels dispositius estudiats de més novetat i la seva forma d’aprofitament
és única fins al moment.

Estructura i funcionament

L’Anaconda consta d’un tub de goma estanca de 150 metres de longitud (es té la intenció de que el model definitiu arribi a ser de fins a 200 m) tancat pels 2 extrems i ancorat a una o dues milles de la costa de front a les onades, directament sota la superfície.

L’interior del tub està ple d’aigua de mar, que en ser elevat l’extrem frontal s’acumula en forma de protuberància, que és impulsada per l’oscil·lació de les onades a la seva mateixa velocitat al llarg de tot el dispositiu fins arribar a la popa. Durant aquest procés la continua pressió que realitzen les onades sobre la protuberància fa que aquesta vagi creixent progressivament i augmentant la seva pressió interna.

Finalment a la popa del sistema l’acumulació d’aigua acciona una turbina hidràulica connectada a un generador que crea corrent de l’ordre d’1 mW per cada cicle d’aigua que alimenta la turbina. L’energia elèctrica produïda és enviada a terra mitjançant un cable elèctric independent del sistema d’ancoratge.

Per fer-se una millor idea del funcionament veure:

http://www.youtube.com/watch?v=2BOozAaYGDE
4.6.1.5.2.8. Sistema no classificat

✓ El sistema de propulsió de l’embarcació Suntory Mermaid II

El funcionament del mateix és molt senzill i es pot observar a la imatge a continuació:

El principi en el que es basa és el mateix que utilitzen els dofins per propulsar-se: la component vertical de l’acció de les onades fa ascendir i descendir les aletes de l’embarcació amb una freqüència determinada en principi igual a la de l’ona.

Un mecanisme de biela-manovella amb molles amplifica la freqüència del moviment oscil·latori de les aletes, que a l’hora creen una component horitzontal que per acció-reacció desplaça l’embarcació en la direcció desitjada.

També és interessant ressaltar la completa autonomia de funcionament de l’embarcació, alimentant els seus sistemes electrònics amb plaques solars i amb un casc construït amb alumini reciclat.
Dades tècniques

- Eslora: 9,5 m.
- Mànega: 3,5 m.
- Pes: 3 T.
- Velocitat màxima assolida: entre 3 i 5 Kn.

4.6.2. Energia de les corrents marines

Abans d’iniciar el seu estudi cal remarcar l’existència d’una gran diferència tècnica entre els mètodes d’extracció i els sistemes d’aprofitament de l’energia mareomotriu i l’energia de les corrents de marea (observables durant l’estudi de cada una de les energies), que podrien confondre’s, ja que ambdues se les pot anomenar energia de les marees, degut a la coincidència del seu factor d’origen.

4.6.2.1. Concepte

És una font energètica renovable d’origen marí o oceànic que consisteix en l’aprofitament dels moviments de les masses d’aigua per la generació d’electricitat. Aquests moviments poden ser provocats per diverses causes, fet que es diferencia de la resta d’energies renovables, generades per un únic fenomen natural associat que les determina.

Així doncs els factors naturals que generen les corrents marines poden ser:

- Les marees.

- El vent: les anomenades corrents d’onatge s’estableixen a la superfície marina per l’efecte directe del factor natural en qüestió. La intensitat de la corrent serà major si la incidència és constant i com més extensa sigui la massa d’aigua.

- La diferència de salinitat i temperatura: denominades corrents de densitat, són produïdes per exemple per l’evaporació d’una zona.

- El relleu o tipografia del fons marí.

- La rotació de la Terra: el moviment en direcció est acumula les aigües a les
costes dels continents situats a l'oest dels oceans, degut al retard en el moviment de l'aigua.

- Zones limitades per masses de terreny estretes: el pas del corrent per aquestes zones amplifica les seves intensitats.

Finalment és necessari destacar pel seu elevat potencial i per la seva constància les anomenades corrents oceàniques, resultat de la combinació de diferents factors com: la rotació de la terra, la diferència de densitat, el vent (que provoca corrents de grans intensitats als oceans)... Són destacables les corrents del Golf de Mèxic o de Florida a l’Atlàntic i de Kuroshio o de California al Pacífic.

Representació de la corrent superficial del Golf, transportant calor a Europa.

Per fer-se una idea, un informe del Departament de l’Interior dels Estats Units, publicat l’any 2006 estima que només capturant un 1‰ de l’energia de la corrent del Golf (equivalent 50 vegades el cabal de tots els rius d’aigua dolça existents mundialment) serviria per subministrar un 35% de les necessitats elèctriques de Florida.

L’últim factor que genera aquestes corrents són les corrents termohalines, generades a l’oceà Àrtic, per la congelació de l’aigua i el conseqüent augment de salinitat de l’aigua no congelada (la sal no participa en el procés). Així doncs, a major salinitat major densitat, pel que l’aigua descendeix. El volum desplaçat és enorme, fet que succiona les aigües tropicals que ocupen l’espai lliurat per l’aigua més densa, que a la seva vegada emigra cap al sud.
D’aquesta manera es produeix una circulació profunda al voltant de tota la terra de nord a sud i fins a arribar al mateix punt. Per la superfície es genera la corrent contrària.

És destacable tenir en compte aquest factor ja que és un dels majors reguladors climàtics terrestres: evita diferències de temperatura extremes ja que transporta el calor a zones més fredes i el fred a més càlides.

Per altra banda a Europa s’han identificat més de 100 llocs amb corrents marines importants. El potencial energètic total s’estima en 48 TWh/any, a més a més de zones que ofereixen un potencial de 10 MW/km².

Els països amb corrents més intenses que, per tant, ofereixen majors expectatives són:

- A Europa: el Regne Unit, Irlanda, Noruega, França, Espanya, Italia i Grècia.
- Fora d’Europa: Corea i els Estats Units.
4.6.2.2. Anàlisi de les característiques de l’energia de les corrents marines

Per tal de poder establir una petita comparativa entre fonts energètiques marines en aquest apartat es classifiquen les seves característiques com a avantatges/inconvenients:

Avantatges

Com a font energètica:
- Constància quasi permanent de les corrents oceàniques i de les termohalines.
- Possibilitat de predir la seva disponibilitat.

Dels sistemes d’aproximatment i conversió de l’energia:
- Factors de capacitat* elevats: del 40-60%, significa més del doble que altres fonts d’energia renovables intermitents com l’eòlica.
- Impacte medi ambiental mínim: no produeixen contaminació ni emissions, no tenen efecte visual i són lents, pel que ni generen soroll ni afecten a la vida marina.
- Trobar-se submersits: reben una molt menor afectació per les tempestes i les condicions climàtiques extremes que altres sistemes flotants o costers. Significarà haver d’invertir menys en l’estudi i la compra de materials d’elevada resistència, realitzar menor manteniment... Pel que el desenvolupament amb la conseqüent i necessària futura reducció de costos es trobarà davant menors dificultats.

4.6.2.3. Sistemes d’aprofitament i conversió d’energia de les corrents

Existeixen variacions en el disseny de cada un dels sistemes creats; tot i això la gran majoria d’ells s’inspiren en els aerogeneradors utilitzats per l’aproximatment de l’energia eòlica, aplicant principis similars a instal·lacions submarines. La principal diferència resideix en que l’elevada densitat de l’aigua marina permet el disseny de sistemes de menors dimensions per a l’obtenció de la mateixa quantitat d’energia.

Consisteix en un rotor fixat a una estructura que fa de suport, que pot ser flotant o fixe al fons marí.
4.6.2.3.1. Primers sistemes i evolució tecnològica fins als darrers anys

Existeixen dues fases ben diferenciades en l’evolució dels sistemes d’aprofitament d’energia de les corrents marines:

La primera fase es produeix anteriorment a l’any 1990, que es defineix per l’escassetat d’activitat realitzada:

Utilitzaven components convencionals d’enginyeria per aconseguir una fiabilitat segura al mínim cost.

Un dels primers sistemes va ser instal·lat al fons marí de l’estret de Kurashima (Japó) l’any 1988. La turbina utilitzada tenia un diàmetre de 1,5 metres i oferia un potencial de 3,5 kW.

La segona fase (1990 en endavant) va comportar un augment de la quantitat de sistemes desenvolupats i instal·lats amb una millora tecnològica dels mateixos i un estudi més profund sobre les corrents:

Entre els anys 1992 i 1993 al Regne Unit es dur a terme l’avaluació del recurs energètic estudiat:

El resultat va ser l’estimació de la possible extracció d’uns 20 TWh/any a un cost menor de 15 €/kW per corrents de marea.

Poc temps després, l’any 1994, a Loch Linnhe a Escòcia, l’empresa de major implicació en sector: Marine Current Turbines S.A. (MCT) va realitzar un important avanç instal·lant un rotor flotant de 3,5 m de diàmetre que va assolir una potència de 15 kW amb una velocitat de corrent de 2,25 m/s.

A partir de l’any 1996 es van desenvolupar rotors anomenats de primera generació, de 10-15 m de diàmetre i amb potències de l’ordre dels 200 als 700 kW situats en aigües poc profundes que proporcionen la solució més econòmica.

Tot i això generaven problemes tècnics com la necessitat de trobar un cicle de vida apropiat reduir el cost del manteniment que suposa l’agressivitat del medi marí.

Així doncs van aparèixer dispositius anomenats de segona generació, basats en els primers però amb nous components: com nous generadors multipol per baixes...
velocitats o el sistema de canvi de velocitat hidràulic.

Actualment s’estan desenvolupant nous sistemes considerats de tercera generació amb nous rotors i tècniques de control.

4.6.2.3.2. Sistemes existents més actuals

✓ **Seaflow de Marine Current Turbines Limited (MCT)**

Durant els anys 2003 i 2004 l’empresa MCT amb seu a Bristol, Anglaterra va instal·lar a l’estuari del Severn, a Lynmouth (Devon-Regne Unit), la primera fase del seu ambiciós projecte: l’anomenada Seaflow.

Consisteix en una turbina bipala muntada en una torre ancorada al fons marí, que al girar per l’impacte de la corrent marina acciona un generador elèctric situat a l’interior del tub metàl·lic vertical central, que alhora fa la funció de suport.

![Image of Seaflow](image.png)

Seaflow instal·lat a les costes del Regne Unit, amb el rotor fora l’aigua, fet que en facilita l’accés.

És necessari transformar el gran moment de gir de les pales en velocitat pel generador, i això es fa a través d’una caixa de canvis situada entre la turbina i el grup electrogen.

Va ser necessària la perforació de 15 metres sota el fons marí per fixar els
fonaments del sistema.

A més a més el Seaflow incorpora un sistema que li permet ascendir a la superfície per tal de poder realitzar un manteniment segur i fiable.

També utilitza una boixa que permet el gir del rotor 360° per orientar-se de manera automàtica a la direcció d’origen del flux de la corrent.

Dades tècniques

- Potència desenvolupada: 300 kW (amb velocitat del flux de corrent: 2,5 m/s)
- Eficiència: 40 %
- Diàmetre de la turbina: 11 m
- Àrea circular del rotor ocupada: 95 m²
- Desplaçament: 130 T
- Diàmetre de la torre: 2,1 m
- Profunditat d’instal·lació: 24±5 m

En el seu moment va ser la primera turbina de corrent marina a escala comercial, va ser connectada a la xarxa elèctrica i va estar dissenyada per aprofitar les corrents de marea existents al mar d’Irlanda.

Tot i això el Seagen forma part del projecte de desenvolupament de l’empresa mare. Una vegada assolida la potència màxima, les proves realitzades tenien l’objectiu d’apropar-se als períodes d’operació màxims, que són de 22 h/dia. El procés està sent revisat i validat per la Societat de Classificació Det Norsk Veritas (DNV).

Els principis de funcionament són fonamentalment els mateixos que els de la primera fase del projecte, però amb diversos avenços tecnològics:

La primera novetat fàcilment observable és la incorporació d’un segona turbina de flux axial. Ambdós se situen als extrems dels braços horitzontals que formen un conjunt sòlid, una plataforma transversal. Aquests braços incorporen un sistema patentat que permet l’orientació de les turbines 180° per aprofitar el flux
i el reflux de les marees (flux bidireccional).

El transformador elèctric utilitzat i els sistemes per connexió amb la xarxa elèctrica se situen a la carcassa superior fora de l’aigua.

Dades tècniques:

- Potència desenvolupada: 1,2 MW (amb velocitat del flux de corrent: 2,4 m/s)
- Diàmetre dels rotors: 15-20 m (depenent de les condicions de la localització on s’assenta).
 - Àrea circular dels rotors ocupada: 400 m²
 - Alçada de la torre a partir del nivell del mar: 40,7 m
 - Diàmetre de la torre: 3,025 m
 - Desplaçament amb la plataforma transversal: 151 T
 - Longitud de la plataforma transversal: 29 m
 - Profunditat d’instal·lació: 26,2±2,2 m

Turbina de la Corrent del Golf:

L’empresa Gulf Stream Turbines LLC, situada a Fort Lauderdale, Florida, es troba en fase de desenvolupament d’una turbina especialment concebuda per ser col·locada aprofitant corrents ocèàniques com la Corrent del Golf.

És un concepte únic de dispositiu submergit auto-suportat que utilitza lleis físiques pel control de l’estabilitat i de la profunditat.

La turbina consisteix en dos rotors de fibra de vidre, d’un diàmetre de 30 m cada un, que ha de proporcionar 3MW de potència.

El sistema es trobarà ancorat al fons marí, mitjançant cables.

Incorpora un sistema que detecta la profunditat on es troben situades les velocitats de corrent per les que el dispositiu ha estat dissenyat. Aquest sistema també permet al dispositiu enfonsar-se a grans profunditats i protegir-se en cas de fortes corrents provocades per condicions ambientals adverses.

El cost de fabricació d’una sèrie de 400 turbines seria de 400 euros/kW, fet que proporcionaria una bona competitivitat respecte a una central elèctrica
modernament.

Un ús alternatiu de la turbina en qüestió és produir hidrogen per electròlisi, amb un cost de producció estimat inferior a 2 €/kg.

Disseny CAD de la turbina del Golf.

✓ **BioStreamTM de BioPower Systems**

L’empresa australiana BioPower Systems Pty. Ltd. (veure més informació sobre principis bàsics de l’empresa i dels seus dispositius a l’apartat anterior: energia undimotriu -> sistema BioWaveTM) va concebre també el sistema BioStreamTM.

Representació del sistema bioStreamTM ancorat al fons marí.
Van iniciar-se investigacions preliminars a l’illa de Flinders, Tasmania, Australia amb anàlisis de l’indret per la futura instal·lació d’un prototip del sistema.

Principis tècnics i funcionament

Es tracta d’un sistema submergit i fixat al sòl de l’oceà, que s’inspira en la forma i el moviment de l’eficient sistema de propulsió d’espècies com la tonyina i el tauró. Així doncs una aleta com la de la imatge és desplaçada lateralment pel flux de corrent alternant constantment la direcció i transmetent la seva energia en un par resistent de torsió d’un generador elèctric situat a l’altre extrem del dispositiu, en el seu interior.

Una característica destacable del sistema és el constant aprofitament del flux de corrent donat que s’orienta a la direcció del flux gràcies a un ordinador a bord que ajusta l’angle de la secció de cua.

En condicions extremes de corrent, el dispositiu activa una configuració de desactivació i d’alineació amb la direcció del flux per evitar càrregues elevades i no haver d’utilitzar material d’elevada resistència que suposen major cost de fabricació.

![Components del bioStream™](image)

Els components del sistema són els següents:

- Fin: aleta.
- Tail section: secció de cua
- Column: columna
• Mechanism for tide reversal and survival mode: mecanisme d’orientació i supervivència: permet el moviment horitzontal del sistema d’aprofitament de les corrents i és l’encarregat d’alinear el sistema amb el corrent en cas de condicions extremes.

• Foundation: base: es poden instal·lar diferents models segons els requeriments de l’entorn.

• O-Drive™ power conversion module: mòdul de conversió elèctric O-Drive™: sistema independent amb la funció de convertir l’energia mecànica en energia elèctrica alterna d’alta tensió.

Característiques tècniques

• Potencial productiu del dispositiu: 250 kW, 500 kW o 1000 kW segons les característiques de l’entorn.

• Alçada del dispositiu: 15 m.

• Longitud del dispositiu: 20 m.

4.6.3. Energia mareomotriu

Abans d’iniciar el seu estudi cal remarcar l’existència d’una gran diferència tècnica entre els mètodes d’extracció i els sistemes d’aprofitament de l’energia mareomotriu i els de l’energia de les corrents de marea (observables durant l’estudi de cada una de les energies), que podrien confondre’s, ja que ambdues se les pot anomenar energia de les marees, degut a la coincidència del seu factor d’origen.

4.6.3.1. Concepte

També anomenada energia de preses de marea o energia de les marees, és una font energètica renovable d’origen marí o oceànic que consisteix en l’aprofitament de l’ascens i el descens de l’aigua en els cicles de marees per la producció d’electricitat.

4.6.3.2. Fenomen natural de les marees

4.6.3.2.1. Concepte

És la fluctuació periòdica del nivell del mar degut a l’atracció gravitatòria dels astres i al moviment de rotació de la Terra.
4.6.3.2.2. Estudi filosòfic i científic des dels seus inicis

El fenomen natural és estudiat des de l’antiguitat: Piteas (s. IV a.C.) va ser el primer en descobrir la relació entre l’amplitud de la marea i les fases de la Lluna i la seva periodicitat.

Posteriorment Plinio el Vell (s. I) descriu el fenomen i el relaciona amb la Terra i el Sol.

Després de l’estudi de grans filòsofs i científics com F. Bacon o J. Kepler, Isaac Newton va publicar l’explicació del funcionament del fenomen de les marées tal i com es coneix avui en dia:

4.6.3.2.3. Explicació del fenomen natural

Hi ha dos cossos celestes que influeixen en la formació de les marées:

1- La lluna: influeix de dues maneres:

a) A través del moviment de rotació relatiu amb la terra:
 Degut a que la massa de la terra és molt major que la de la lluna, l’eix de rotació entre ambdós cossos es troba a l’interior de la Terra, com es pot apreciar a la imatge a continuació. Així doncs aquest moviment genera una força centrífuga major als mars i oceans que es troben a la cara oposada de la posició de la lluna (a causa d’una major distància a l’eix de rotació). Així doncs aquests mars i oceans s’agrupen formant una protuberància (plenamar).

b) Per atracció gravitatòria:
 Produint una protuberància (plenamar) de major magnitud sobre mars i oceans posicionats més properament a la lluna.
Efecte gravitatori i força centrífuga que generen les marees.

El resultat és una acció de forces simètriques a ambdós costats de la terra que produeixen una plenamar d’iguals dimensions teòriques.

2- El sol:

Que modifica l’efecte lunar de la següent manera:
El Sol també té un efecte gravitacional sobre la terra, però segons la llei gravitacional de Newton la força de gravetat depèn proporcionalment a la massa dels cossos, però és inversament proporcional al quadrat de la distància entre els cossos. Donat que tant la massa del Sol com la seva distància a la Terra són immensament més elevades que pel que fa a la Lluna, el resultat és que el Sol afecta per gravitació un 46% menys que la Lluna.

Tot i això crea els mateixos efectes gravitacionals en menor magnitud, per tant, es creen dues crestes als mars i oceans que s’interfereixen produint:

- Marees vives: Es produeixen en períodes en què la Lluna, la Terra i el Sol es troben alineats: les crestes es sumen provocant plenamars més altes que la mitjana i baixamars més baixes que la mitjana.

- Marees mortes: es produeixen en períodes en que la Lluna es troba en el primer o en tercer quadrant: L’efecte del Sol redueix l’efecte de la Lluna produint valors menors del mitjana en les plenamars i valors majors que el mitjana en les baixamars.
4.6.3.2.4. Potencial

El potencial aprofitable de les marees principalment va en funció de les seves amplituds*, que difereixen molt segons l’indret:

A la major part de mars interiors la marea és nul·la o molt petita (Mediterrani: 20 a 40 cm).

A l’oceà Pacífic acostuma a ser feble, en canvi, a l’oceà Atlàntic és major.

Hi ha determinats punts a la Terra en que les marees assoleixen unes amplituds per damunt dels valors més usuals, a tenir molt en compte en quan a l’aprofitament energètic:

*Màmplitude de marea: diferència de nivell entre la baixamar (nivell més baix de marea) i la plenamar (nivell més alt de marea) en període determinat.
Indrets de la Terra amb majors amplituds de marea (m).

Les condicions necessàries per l’aprofitament eficaç d’una determinada marea són dues:

La marea ha d’assolir valors d’amplitud no menors de 5 m.

S’han de construir dics de grans amplades: per aconseguir acumular el major volum d’aigua possible i obtenir una quantitat d’energia considerable i comparable amb la d’altres fonts d’energia.

Tenint en compte la limitació que suposa primera característica, s’ha calculat que les marees ofereixen un potencial d’uns 3 TW. Tot i que tenint en compte la segons limitació, el potencial es redueix fins a 1 TW.

Tenint en compte les limitacions tècniques, és a dir, si s’observen les previsions realitzades sobre viabilitat econòmica i sobre els rendiments que poden arribar a oferir les centrals mareomotrius, de l’ordre del 25%, es pot afirmar que el potencial aprofitable serà de 15 GW.

4.6.3.3. Anàlisi de característiques

Per tal de poder establir una petita comparativa entre fonts energètiques marines en aquest apartat es classifiquen les seves característiques com a avantatges i inconvenients:

Avantatges:

- Gran quantitat d’energia obtinguda per cicle de marea
Treball Final de Carrera
Energies Renovables Marines

- Molt previsible (taules de marees)
- Bona fiabilitat
- No és car de mantenir.

Inconvenients:

- Requereix d’una forta inversió inicial per la seva construcció: de cents de milions d’euros, fet que frena a molts inversors a apostar per la tecnologia. Suposa un llarg temps d’amortització o un elevat cost energètic per kW.
- Pocs indretes on és econòmicament rendible: degut a la necessitat de condicions determinades com grans espais i grans amplituds de marea. Aquest aspecte dificulta el desenvolupament a gran escala.
- Extracció energètica inconstant: poques repeticions del cicle de marea per dia, per tant, el període durant el qual es pot generar energia és menor que en altres sistemes. Per exemple: una planta de potència de 8,6 GW com la proposada a la Gran Bretanya acabaria produint l'energia equivalent a una planta de 2 GW.
- Afectació medi ambiental a grans extensions: modificació del paisatge i l’impacte ecològic.

4.6.3.4. Sistemes existents

4.6.3.4.1. Primers sistemes

Els primers molins de marea que es poden trobar arreu d’Europa daten de meitats s. XII (poden arribar a ser anteriors a l’edat mitjana). Per exemple, el molí de marea de gra de Woodbridge, Suffolk, Anglaterra, data de 1170.

Des de 1581 fins a 1822, a Londres, capital d’Anglaterra, va funcionar en el riu Tàmesi, una gran roda accionada per la marea, que permetia bombejar l’aigua fins al centre de la ciutat.

Com es pot observar, els primers sistemes servien per a usos diversos, com generar energia mecànica a partir del moviment d’una roda per moldre gra o bombejar aigua, però l’evolució tecnològica que comporten les noves plantes es basa en l’orientació cap a un nou objectiu: la producció elèctrica.
4.6.3.4.1. Sistemes més recents

A meitats dels anys 60 es va iniciar una revolució tecnològica de l’energia mareomotriu, amb l’estudi de diversos indrets per la instal·lació de diferents plantes:

A la badia de Saint-Michel, l’any 1965 i a la badia de Fundy, al Canadà, l’any 1966, es van descartar les possibilitats d’instal·lació degut a problemes de viabilitat econòmica que es van donar en aquell moment.

L’any 1968 va iniciar el seu funcionament un prototip de central mareomotriu de baixa potència, 8 MW, a la badia de Kislaya.

I posteriorment a la Xina s’han instal·lat 8 centrals amb una potència total de 6,2 MW i al Canadà la central d’Annapolis té una capacitat de 20 MW.

Però dos dels més grans projectes que sobresurten per damunt dels altres són els següents:

- **Presa de marea de la Rance**

 L’any 1966 el president Charles de Gaulle va inaugurar la que va ser la primera planta mareomotriu construïda arreu del món. La construcció havia estat iniciada 6 anys abans a càrrec de l’empresa propietària de la central: EDF.

 El seu nom es deu a que se situa a l’estuari del riu Rance, al nord-oest de França, entre les poblacions de Dinard i Saint-Malo, on es produeix una amplitud de marea de 13,5 metres.

![Estuari del riu Rance, on es situa la presa de marea.](image)
La presa té una longitud de 725 m i separa l’estuari del mar obert. Crea una superfície tancada de 22 km² i emmagatzema 184 milions de m³ d’aigua. A més té una resclosa que permet el pas de la navegació i per damunt seu s’hi va construir l’autopista, pel que la presa tampoc impedeix la circulació rodada.

La central està composta de 24 turbines Kaplan reversibles situades en conductes i acoblades a 24 generadors elèctrics que giren a 5.700 rpm i assoleixen una potència màxima de 240 MW.

La separació del riu per una presa amb diferents obertures inferiors on s’instal·len els turbogeneradors suposa que en variar l’alçada de la marea progressivament s’equilibren els nivells a ambdós costats, pel principi dels vasos comunicants. Durant el procés l’aigua circula a través dels conductes, accionant les pales de les turbines. La direcció del flux varia durant l’increment i la disminució del nivell, fet pel qual les turbines han de ser reversibles, de manera que girin unidireccionalment.

Finalment afegir la generació anual de la planta és de 4400 GWh, suficient per subministrar energia elèctrica a 70.000 llars o el 9% de l’energia de la Bretanya francesa i que el factor de càrrega de la planta és del 26%.

Imatge de la presa de la Rance (superior) i esquema del sistema de generació elèctrica (inferior).

Turbina Kaplan reversible de 10 MW situada a l’interior d’un conducte. En procés de manteniment.
• Presa de marea a l’estuari del riu Severn, Gran Bretanya:

L’any 1981 va iniciar-se l’estudi d’un projecte d’una central mareomotriu per ser instal·lada a l’estuari del riu Severn, prop de les ciutats de Bristol i Cardiff, al sud-oest d’Anglaterra, on es produeix una amplitud màxima de marea d’uns 14 m, una de les més grans a nivell mundial.

![Estuari del riu Severn, al Regne Unit.](image)

La central estaria composada per:

• Un dic de 16 km de longitud, de Lavernock Point a Brean Down que tancaria una superfície de 480 km², contenant milers de milions de m³ d’aigua.

• Un conjunt de 216 turbines que generarien 40 MW cada una, acoblades als seus corresponents generadors elèctrics.

En total 8,64 GW de capacitat total instal·lada, amb una potència mitja oferta de 2 GW. L’energia mitja anual produïda seria de 17 TWh, aproximadament un 6 % de l’energia total d’energia consumida pel Regne Unit en un any, equivalent a la producció de tres centrals nuclears.

![Vista de l’estuari del riu Severn, indret on se situaria la futura instal·lació.](image)
Tot i que l’any 1988 es va desestimar el projecte pel seu elevat cost i els problemes medi ambientals que provocaria, al 2007 el govern va anunciar un nou pla de viabilitat econòmica que podria suposar l’inici del seu funcionament l’any 2018.

4.6.4. Energia maremotèrmica

4.6.4.1. Concepte

També anomenada OTEC (Ocean Thermal Energy Conversion), que significa energia tèrmica oceànica o energia del gradient tèrmic, és una font energètica renovable d’origen marí o oceànic que consisteix en l’aprofitament de la diferència de temperatura entre les capes superiors i inferiors de l’oceà per la generació d’electricitat, la dessalinització de l’aigua marina, el cultiu de flora i fauna, entre altres aspectes.

Tot i ser una de les fonts energètiques amb major potencial també és la l’energia amb menor desenvolupament tecnològic i es troba lluny dels objectius del camí cap a la comercialització.

Això es deu a que l’economia energètica ha aturat el seu finançament de les plantes OTEC ja en projecció.

Plantejats aquests dos punts, alguns experts valoren l’energia maremotèrmica com a prometedora en països de latituds tropicals.

4.6.4.2. Components i funcionament dels sistemes

El diferents sistemes existents estan compostos bàsicament per:

- Evaporador.
- Turbina de vapor i generador.
- Condensador.
- Canonades i bombes.
- Estructura fixe o flotant.
- Sistema d’ancoratge.
- Cable submarí (si la central es flotant).
Les centrals d’energia tèrmica oceànica es basen en els principis de funcionament de les centrals tèrmiques convencionals: el cicle de Rankine (nom donat en honor a l’enginyer i físic britànic William John Macquorn Rankine (1820-1872)). Així doncs, en aquest cicle s’utilitza calor per evaporar un líquid, que posteriorment s’utilitza per accionar una turbina acoblada a un generador elèctric que produeix electricitat.

La diferència més substancial resideix en el sistema d’escalfament (per intercanviador de calor en comptes de per caldera) i en l’origen del fluid utilitzat per l’escalfament i el refredament del cicle (aigua marina).

Així doncs tot tipus de centrals maremotèrmiques utilitza l’aigua de la capes superficials de l’oceà com a focus calent i l’aigua de profunditats d’uns 1000 m com a focus fred.

Quantitativament aquestes plantes ofereixen rendiments molt menys elevats que els de les centrals tèrmiques, ja que la diferència de gradient tèrmic entre ambdós focus també és molt menor.

4.6.4.3. Tipus de sistemes existents

Existeixen tres tipus de sistemes utilitzats:

- Sistema de cicle obert.
- Sistema de cicle tancat.
- Sistema híbrid.

El sistema de cicle obert

També anomenat cicle de Claude, consisteix en la utilització directa de l’aigua calenta de la superfície de l’oceà com a fluid de treball, per accionar la turbina.

Aquesta aigua s’introdueix en un evaporador a l’interior del qual es crea el buit (per això l’evaporador també pot ser anomenat càmera de buit), mitjançant una bomba de buit. L’objectiu és reduir la pressió de l’aigua i així disminuir la temperatura d’ebullició de l’aigua, per lo que acaba evaporant a la temperatura que s’ha aspirat.

I a continuació s’introdueix el vapor a la turbina, un cop havent passat possiblement per un separador de liquid-gas.

A la sortida de la turbina es col·loca un condensador de contacte directe que utilitza aigua freda de les profunditats marines com a refrigerant. L’aigua procedent de
l’evaporador i del condensador és retornada a l’oceà.

El procés es repeteix contínuament.

![Diagrama conceptual d’una central maremotèrmica de cicle obert](image)

Els grans problemes d’aquest sistema són:

- El seu molt baix rendiment: 7%.
- Les baixes pressions de treball comporta la necessitat d’utilitzar turbines de gran dimensió, que dificulten el desenvolupament.

El sistema de cicle tancat

També anomenat cicle d’Anderson fa servir un fluid de treball amb baix punt d’ebullició diferent de l’aigua (propà, freó o amoniàc) per ajustar-se millor a pressions de treball més elevades (uns 10 bars), fet que permet instal·lar turbines de més petites dimensions.
Inicialment s’intercanvia el calor entre l’aigua de la superfície de l’oceà (és refredada) i el fluid de treball (és escalfat i evaporat) a l’evaporador. A continuació s’introduceix el vapor al turbogenerador, que és accionat i produeix electricitat.

A la sortida de la turbina el fluid de treball evaporat s’introduceix al condensador, on és refredat i condensat gràcies a l’aigua de les profunditats marines que actua com a refrigerant.

Una altra diferència fonamental amb la resta, que dóna nom al cicle és que el fluid condensat és pressuritzat i enviat a l’evaporador, on s’aprofita per reiniciar el cicle.
Cicle híbrid

Combina característiques dels dos cicles anteriors amb l'objectiu d'optimitzar el seu funcionament.

Així doncs, l'aigua calenta de l’oceà és evaporada ràpidament a l’evaporador de la mateixa manera que es procedeix al cicle obert. Aquest vapor circularà per l’intercanviador de calor situat a l’interior de l’evaporador amb dos objectius:

1- Condensar-se i així produir aigua dessalinitzada.

2- Evaporar el fluid de treball que es troba al circuit tancat i que realitzarà el mateix procés que en el cicle tancat explicat anteriorment. S’obtindrà així electricitat.

4.6.4.4. Història

Tan sols era un concepte però a Julio Verne se li va acudir com a primera referència documentada utilitzar la diferència de temperatures a diferents profunditats oceàniques per produir energia elèctrica. Va ser en l’obra: 20.000 Legües de viatge submarí, publicada l’any 1870.

Per la seva part, Jacques Arsene d’Arsonval, un físic francès, va proposar l’any 1881 el mateix concepte de Verne de manera científica i aplicable. Posteriorment, l’any 1930, un estudiant seu, Georges Claude, va construir a Cuba la primera planta
d’aproveitat d’aquesta forma energètica, l’anomenada energia maremotèrmica. Va produir 22 kW d’electricitat a través d’una turbina de baixa pressió.

Tot i això l’any 1974 va establir-se a Hawaii el primer laboratori dedicat, entre altres coses, a proves pel desenvolupament tecnològic de l’energia.

Hawaii ha estat identificat com el millor indret per establir sistemes d’aproveitatament de l’energia OTEC, degut a l’escalfor de les aigües de la superfície oceànica, l’excel·lent accés a aigües molt profundes i als elevats preus en energia elèctrica.

Allí va ser instal·lada una de les plantes de producció efectiva ràcord: era una planta d’experimentació de cicle obert que va arribar a operar amb un potencial de 255 kW, però després de 6 anys va ser desmantellada (vista de la planta a la fotografia).

El Japó també és un dels màxims contribuents en el desenvolupament de la tecnologia:

Als inicis dels anys 70 l’empresa Tokyo Electric Power Company va construir i provar una planta de 120 kW a l’illa de la República de Nauru, 90 kW dels quals alimentaven la pròpia planta i els 30 kW restants se subministraven a una escola i altres emplaçaments de l’illa.

Finalment, l’Índia va posar a prova un sistema flotant amb 1 MW de producció a Tamil Nadu. El seu govern continua patrocinant la investigació del desenvolupament d’instal·lacions OTEC flotants.

Avui en dia en projecte més destacat és el següent:
Les empreses *Lockheed Martin's Alternative Energy Development (EUA)* i *Makai Ocean Engineering (EUA)* han arribat a un acord per finalitzar l’última fase del disseny d’una planta pilot de 10 MW de cicle tancat instal·lada a Hawaii entre 2012 i 2013, amb el suport econòmic de la marina dels Estats Units.

Experts en el sector afirmen que entre les dècades del 2020 i 2030 s’instal·laran plantes amb una capacitat potencial de 100 MW, la necessària per subministrar elèctricament una petita ciutat.

4.6.4.5. Anàlisi de les característiques de l’energia tèrmica oceànica

Per tal de poder establir una petita comparativa entre fonts energètiques marines en aquest apartat es classifiquen les seves característiques com a avantatges/inconvenients:

Avantatges

L’energia en qüestió destaca per damunt de la major part de la resta de fonts energètiques marines per un aspecte:

Està disponible 24 hores al dia, tots els dies de l’any, fet que facilita al sistema la generació de major quantitat d’energia.
Inconvenients

- Baix rendiment teòric màxim (Carnot):
 En condicions usuals com les següents:
 \[T_{focus \, calent} = 30^\circ C \text{ i } T_{focus \, fred} = 4^\circ C, \text{ és de } 8,6 \% \]
 \[T_{focus \, calent} = 28^\circ C \text{ i } T_{focus \, fred} = 6^\circ C, \text{ és de } 7,3 \% \]
 A més a més a la pràctica es redueix a un 3-4 \%.

- Una característica única com a gran desavantatge d’entre les energies renovables que presenta el concepte en qüestió és: el baix nombre de principis utilitzats i mètodes d’extracció d’energia existents, fet que limita en gran manera la localització de l’indret idoni per instal·lar els sistemes.

- Afectació sobre l’entorn marí: la construcció de plantes i la col·locació de canonades properes a la costa poden malmetre esculls i ecosistemes marins.

- Existeixen pocs punts concrets a la terra on es produeix el fenomen necessari per poder implantar el sistema, ja que ha d’estar situat pròxim a la costa i ha de ser instal·lat en zones amb grans profunditats (1000 m).

4.6.4.6. Zona terrestre on l’energia maremotèrmica és més aprofitable

Així doncs com anteriorment s’ha afirmat, en principi el territori propici d’ instal·lació comprèn la zona al voltant de l’equador en tota la seva longitud limitada tant a l’hemisferi sud com al nord per les latituds tropicals, ja que el sol escalfa més la superfície del mar en aquests indrets.

![Representació dels gradients tèrmics arreu de la Terra.](image)
Llegenda

Lila: Profunditat < 1000 m
Blau clar: $\Delta T < 18^\circ C$
Groc: $18^\circ C < \Delta T < 20^\circ C$
Taronja: $20^\circ C < \Delta T < 22^\circ C$
Vermell clar: $22^\circ C < \Delta T < 24^\circ C$
Vermell fosc: $\Delta T > 24^\circ C$

Les indicacions en la representació anterior no indiquen exclusivament les zones de major possibilitat d’explotació, ja que existeixen altres factors limitants com les condicions marines, meteorològiques, tecnològiques... que influeixen decisivament a l’hora d’escollir l’indret idoni. S’ha de valorar a profunditat, des d’un punt de vista tècnic i econòmic, l’energia aprofitable i les possibilitats d’utilització eficaç de qualsevol indret que pugui ser seleccionat.

Així doncs les possibles solucions proposades actualment per ampliar el ventall de possibilitats residirien en evitar l’evaporació de la capa superior aprofitada mitjançant capes d’oli finíssimes (força inviable) o utilitzar instal·lacions flotants (evitant així la necessitat de trobar-se les plantes prop de terra o a terra).

4.6.4.7. Usos alternatuos de l’energia tèrmica oceànica

Finalment tot i no trobar-se en condicions de competir mundialment, les centrals d’energia tèrmica oceànica ofereixen altres usos:

- Producció de grans quantitats d’aigua dolça: 300 T/hora en una central de 3,5 MW.
- Escalfament de l’aigua utilitzada per refrigerar el condensador a una Tª d’uns 16°C, aprofitable per la refrigeració de la maquinària de certes indústries.
- Aqüicultura, ja que l’aigua de les profunditats es molt rica en nutrients, que pot servir per desenvolupar un fitoplàncton que alimentaria a diverses espècies marines.
- Producció d’hidrogen mitjançant la hidròlisi.
4.6.4.8. Informació detallada aportada per un expert en el sector

El doctor Ted Johnson, expert en desenvolupament d’energies renovables, de l’empresa Lockheed Martin explica el funcionament detallat del sistema en el següent vídeo:

http://www.lockheedmartin.com/how/stories/otec_player.html

4.6.5. Energia de la biomassa marina

Representació d’un món més sostenible gràcies a l’ús de biocombustibles.

4.6.5.1. Concepte i diferència amb la resta d’E.R.

La biomassa marina és una font energètica renovable d’origen marí o oceànic, que consisteix en el cultiu de microorganismes, com poden ser algues, per a la producció de combustibles d’origen vegetal o biocombustibles.

Tot i ser renovable (el procés pot absorbir CO₂), no se li pot associar la qualitat de ser una energia del tot neta, ja el producte que s’obté del procés serveix per produir energia a través de la combustió, reacció que genera emissions de gasos a l’atmosfera (major volum de gasos generats que absorbsits).

Tot i això, segons l’empresa Solazyme, la reacció de combustió només genera un 5 % de gasos contaminants respecte a la d’un combustible convencional.
4.6.5.2. Dades històriques

La investigació pel desenvolupament de la biomassa marina va iniciar-se l’any 1960, tot i que a partir de la dècada del 1980-1990 es planteja la possibilitat de producció comercial a gran escala. Els Estats Units d’Amèrica van ser els pioners d’aquestes investigacions.

4.6.5.3. Avantatges respecte a la producció tradicional de biodièsel mitjançant cultius convencionals terrestres

- No interfereix en els cultius d’alimentació: ja que els primers utilitzen colze, civada...
- Absorció de CO₂ y compostos nitrogenats de l’atmosfera.
- El rendiment productiu de les algues és molt major que el de cultius convencionals terrestres i conseqüentment el cost és més baix:
 - Colze: de 100 a 140 m³/km².
 - Mostassa (Brassica nigra): 130 m³/km².
 - Pinyó (Jatropha): 160 m³/km².
 - Oli de palma: 610 m³/km².
 - Algues: De 10.000 a 20.000 m³/km².
- S’utilitzen aigües salines o salobres, fet que evita provocar problemes de sequera y de subministrament d’aigua potable.

4.6.5.4. Sistemes existents

Així doncs existeixen dues possibles vies principals de cultiu de les algues marines:

Sistema obert

Consisteix en la utilització d’estancs i llacs pel cultiu, on les algues aprofiten la llum solar de forma directe, el CO₂ i l’aigua per créixer.

Els principals avantatges d’aquesta forma de cultiu són el seu baix preu i la seva facilitat de construcció, donat que simplement s’han de construir uns estancs.

Però hi ha un risc que crea una gran dificultat en aquesta forma de cultiu i és l’alta probabilitat de ser envaïdes per altres espècies contaminants, ja que les algues amb
major capacitat de producció d’olis no tenen perquè ser les de més ràpid creixement i en aquest cas es dona temps a la invasió.

Per evitar-ho es busquen algues que puguin créixer en condicions en les que altres organismes tinguin dificultat de creixement. Aquestes condicions poden ser: nivells de PH alts o baixos, temperatures específiques, components nutritius específics...

A més a més el creixement de les algues depèn directament de les condicions ambientals de l’entorn, ja que aquestes difícilment poden ser controlades artificialment. Així doncs, el creixement es produeix principalment en els mesos més càlids.

Per aquests motius només unes poques espècies poden ser cultivades mitjançant el sistema obert.

Sistemes tancats

Les dificultats de desenvolupament que comporta el cultiu obert fa que es busquin alternatives que ofereixin millors condicions: aquestes són un conjunt anomenat sistemes de cultiu tancats.

S’han investigat diverses opcions:

1- Hivernacles: permeten el cultiu de major nombre d’espècies, pot controlar-se la temperatura i incrementar-se la quantitat de CO₂ d’alimentació de les algues si es desitja; fet que incrementaria la taxa de creixement de les microalgues.

2- Fotobiorreactors: són tubs fabricats amb diferents materials que utilitzen llum natural o artificial i que proporcionen un control de les condicions internes molt precis. Tot i que les instal·lacions són més costoses que la resta de sistemes, s’obté una eficiència molt major (la producció d’oli és de 10 vegades
o més), pel que finalment el cost de la producció és més baix. Existeixen diferents tipus:

a. Tubs de forma triangular: poden ser de plàstic o de vidre i s’utilitzen de la següent manera: es fa circular CO\textsubscript{2} o O\textsubscript{2} des de la part baixa de la hipotenusa del triangle realitzant cicles tancats i es fa circular les algues i el seu medi de cultiu en el sentit contrari. Pràcticament no s’utilitzen.

b. Tubs situats en posició horitzontal: són d’àcrilic (fibres de diversos polímers com el polietilè) i consisteix en fer circular les algues i el seu medi de cultiu en el sentit oposat als gasos d’alimentació però en direcció horitzontal per evitar que les microalgues precipitin i facilitar que totes rebin la mateixa quantitat de llum i nutrients. Són els més utilitzats.

Una empresa amb bon desenvolupament en aquesta tecnologia és Repsol YPF, que ha creat olis aptes per crear biodièsel a partir del procés fotosintètic de cultiu de microalgues. Una bona aplicació d’aquest procés és que consumeix CO\textsubscript{2} que no s’envia a l’atmosfera i que es pot recollir de les xemeneies de la mateixa empresa petrolera.

A més a més l’empresa té la intenció de promoure aquesta font energètica ja que ha emès recentment un anuncí per la televisió explicant resumidament el seu avenç en aquest camp. Aquest anuncí és un resum del breu reportatge que es pot veure clicant el link a continuació:

http://www.youtube.com/watch?v=jUxT-mnTdU8

c. Columna vertical de bombolles: El principi és el mateix que els anteriors però l’objectiu és reduir el cost del cultiu d’algues a gran escala i simplificar-lo (ocupant menys espai). Tot i això les algues poden precipitar i no totes reben la mateixa quantitat de llum i nutrients. També ho utilitza Repsol en la seva investigació (com es pot observar en el vídeo anterior).

3- Equips de fermentació: algunes empreses estan investigant sobre un principi de cultiu i producció innovador, que ja no es basa en la fotosíntesi per a l’alimentació de les algues, sinó en el contrari: les algues es cultiven en una completa foscor a l’interior de contenidors d’acer hermètics a tota llum i
s’alimenten amb sucs de fermentació provinents d’algunes formes de biomassa no tractada i no alimentària, com pot ser fusta o herbes (cel·lulosa) per tal que les primeres converteixin els sucs en petroli.

Aquest petroli posteriorment és transformat i se n’obté biocombustibles per avions i cotxes, productes químics, aliments per les persones i animals...

![Biodièsel](image)

Aquest sistema té l’vantatge d’utilitzar fonts d’alimentació que no utilitzen els seus competidors, però que ofereixen alguns problemes: la toxicitat de la lignina continguda a la fusta o el major preu de transformació.

L’entitat més destacada en aquest sistema de producció és Solazyme, una jove empresa californiana, fundada l’any 2003, que ja ha aconseguit propulsar un cotxe amb biodièsel provinent d’algues.

![Primer cotxe propulsat amb biodièsel provinent d’algues marines](image)
Segons l’empresa, la reducció d’emissions respecte a combustibles fòssils és del 95% de CO₂, característica que permet considerar-la com energia neta.

Per veure el procés i l’aplicació que realitza aquesta empresa clicar el següent link:

http://www.solazyme.com/cellulosic-diesel-fuel-algae

En conclusió: existeixen 2 maneres d’obtenir oli de les algues: per efecte fotosintètic o alimentant-les amb sucre extrats de biomassa no alimentària per que les algues fermentin. De les dues maneres s’obté un oli aprofitable per produir combustibles. Aquesta classificació defineix en gran manera les característiques del cultiu.

4.6.5.5. Altres aspectes rellevants

Un dels aspectes que les empreses tenen més en compte per tal d’obtenir el major rendiment possible és l’alga utilitzada. A més a més cada tipus d’alga proporciona un oli diferent i tenen diferents velocitats de creixement.

Per això s’ha investigat amb gran varietat d’algues d’arreu del món i s’ha arribat a la conclusió que un dels tipus que més ràpidament creix i que produeix major quantitat d’oli és una alga verda unicel·lular anomenada *Chlorella*, el rendiment de la qual està evolucionant avui en dia.

Altres empreses que es dediquen al desenvolupament de la biomassa marina són: Tecnalia de Biscaia, CDM de Chile, Biofuel Systems d’Alicant o CCI de Mataró, que ja ha fet volar un Boing 737-800 de la companyia aèria Continental Airlines durant 90 minuts amb biocombustible produït a partir de microalgues marines. A més d’AlgaeLink, desenvolupant una nova tecnologia de biocombustibles per avions juntament amb KLM.
4.6.6. Energia blava

És la font energètica marina que es troba en una fase més primària de desenvolupament, tot i això presenta bones expectatives a llarg termini.

4.6.6.1. Concepte

També anomenada energia del gradient salí és una font energètica renovable d’origen marí o oceànic que consisteix en la utilització de d’aigua dolça i salada de les desembocadures dels rius als mars o oceans per a la producció elèctrica a través de diferents processos explicats a continuació.

4.6.6.2. Dades històriques

Les primeres notes sobre el concepte del que avui en dia s’entén com a energia blava van ser realitzades (juntament amb alguns dels seus principis físic-químics) l’any 1899 pel químic holandès Jacobus Henricus van ’t Hoff, honorificat amb el Premi Nobel de química l’any 1901.

Posteriorment van ser tractats altres aspectes tècnics que defineixen la seva actual tecnologia: les membranes utilitzades (punt clau pel desenvolupament), el bombeig d’aigua, les instal·lacions necessàries...

Però no ha estat fins als últims vint anys que s’ha començat a produir un important avenç tecnològic de l’energia, gràcies al desenvolupament de les membranes en altres sectors com: el tractament d’aigües residuals, la dessalinització i la preparació d’aigua potable... i a la conseqüent disminució dels seus preus.

4.6.6.3. Processos físics i químics d’aprofitament de l’energia osmòtica

Així doncs durant aquest període s’han desenvolupat dues vies d’aprofitament de l’energia blava segons les característiques de la membrana, entre altres aspectes:

- *Pressure-retarded Osmosis (PRO)* o Pressió Retardada per Òsmosi (PRO):

Consisteix en introduir aigua salada de mar o oceà, l’anomenat fluid hipertònic, és a dir, de major concentració de sal i aigua dolça de riu, el fluid hipotònic, en dues càmeres separades per una membrana semi-permeable mitjançant bombes d’aspiració. Per diferència de concentracions es produeix una circulació d’un flux de fluid hipotònic a través de la membrana en direcció a la càmera amb fluid hipertònic, per tal d’igualar les concentracions a ambdues càmeres, incrementant la pressió en la càmera on es produeix la mescla.

Aquest increment de pressió s’anomena pressió osmòtica i es pot formular de la següent manera:

\[\Pi = \rho_{\text{resultant}} \cdot g \cdot h \]

On:

- \(\Pi \): pressió osmòtica.
- \(\rho_{\text{resultant}} \): densitat resultant de la mescla d’aigua dolça i salada.
- \(g \): gravetat: 9,81 m/s\(^2\).
- \(h \): alçada de columna d’aigua diferencial.
És a dir, la pressió osmòtica és la que exerceix l’alçada de columna d’aigua diferencial.

Segons l’empresa *Statkraft* la pressió en grans càmeres pot equivaldre a 120 metres de columna d’aigua i s’utilitza per accionar un turbogenerador; com es pot observar a l’esquema a continuació:

![Esquema d’un circuit d’energia blava.](image)

Donada la simplicitat del sistema, només és necessari afegir la baixa problemàtica dels residus generats, ja que per una banda s’obté aigua dolça i per l’altra aigua salobre (*brackish water*), o de menor salinitat que l’aigua salada.

Així doncs, és fonamental que la membrana permeti la circulació del flux, pel que ha de ser semipermeable, és a dir, amb una porositat tal que només les molècules de menor dimensió puguin circular a través d’ella (les molècules d’aigua salada tenen un volum major). L’objectiu del procés de desenvolupament d’aquestes membranes és aconseguir una membrana d’elevada eficiència.
Finalment afegir que en un fiord situat a 60 km d’Oslo, la capital de Noruega, se situa la primera central pilot de producció d’energia pel sistema PRO a nivell mundial. Construïda per l’empresa Statkraft després de 10 anys d’investigació i desenvolupament, va ser inaugurada el Novembre del 2009 i es preveu que en un futur sigui capaç de subministrar energia per a 10.000 llars.

Per veure una animació sobre el funcionament detallat, clicar a:

- **Reverse Electrodialysis (RED)** o Electrodiàlisi Inversa (EDI):

El concepte també va ser inventat per Sidney Loeb, un químic Nord-americà i posteriorment va ser desenvolupat per l’empresa Blue Energy (nom adoptat per l’empresa KEMA per crear aquest sistema) a Holanda l’any 2002.

Consisteix en fer circular l’aigua dolça dels rius i l’aigua salada dels mars en sentit contrari per espais lliures entre diverses membranes apilades anomenades permeselectives, que poden ser de dos tipus: un és permeable pels cations i l’altra pels anions. Les membranes es col·loquen de forma alternativa i tenen les característiques de ser: fabricades d’un polímer elèctricament modificat del polietilè i barates.

Així doncs, l’aigua ja no circula a través de la membrana, sinó que ho fan els ions components de la sal, que han estat prèviament dividits segons la càrrega, com ocorre en qualsevol solució de sal en l’aigua.
Esquema de la transmissió de cations i anions gràcies a la circulació d’aigua dolça i salada al llarg del sistema EDI.

Així doncs els residus són aigües salobres, ja que la concentració en l’aigua salada disminueix i en la dolça augmenta. No provoquen cap problema mediambiental.

El trànsit d’electrons crea una diferència de potencial a través de la membrana que es pot calcular mitjançant l’equació del potencial de Nernst, pel físic-químic alemany Walther Nernst:

\[
E = \frac{RT}{zF} \ln \frac{[\text{ion outside cell}]}{[\text{ion inside cell}]}
\]

On:

- \(E\): potencial elèctric. [V]
- \(R\): constant dels gasos ideals: 8,31 J/(K·mol).
- \(T\): temperatura en Kelvin. [K]
- \(z\): mols d’electrons transferits.
- \(F\): constant de Faraday: \(9,649 \cdot 10^4\) C/mol.
Aquesta equació estableix que quan la membrana queda en equilibri termodinàmic (finalitza el flux d’ions a través de la membrana), queda carregada amb la tensió E.

Col·locant 50 membranes intercanviadors d’anions i 50 de cations, s’obté un potencial de 8,6 V, fet que demostra que encara és necessari una investigació en el desenvolupament d’aquestes membranes.

El potencial total és la suma dels diferents potencials generats en cada una de les membranes. I s’aprofita mitjançant un ànode i un càtode col·locats als dos extrems de la pila de membranes, que transmeten l’electricitat.

Un investigador polac, Piotr Długołęcki, de la Universitat de Twente va intentar optimitzar el camp elèctric amb l’estudi profund del transport d’ions. Va dur a terme la seva investigació al centre Wetsus, un centre pel desenvolupament de tecnologies sostenibles amb funcionament per mitjà d’aigua. I el resultat va ser duplicar i fins i tot triplicar el potencial elèctric obtingut.

Per més detalls, clicar a:

http://www.youtube.com/watch?v=opLU5AsBoFc

4.6.6.4. Anàlisi de les característiques de les membranes utilitzades en ambdós principis d’energia blava

- Deteriorament: en el principi PRO un 99% de la massa d’aigua dolça travessa una sola membrana, mentre que en el EDI només un 1% de la massa, és a dir, la concentració de sal travessa dues membranes, per lo que la primera és molt més deteriorada.

- Desenvolupament: fins a avui en dia s’ha invertit molt en investigació de membranes per PRO, degut a que també poden tenir altres usos com la dessalinització. Així doncs els preus han baixat, el que significa una viabilitat més pròxima que en el cas del EDI. Tot i això s’espera que es vagi invertint cada cop més en membranes de EDI.

- Resistència mecànica: les membranes de PRO han de ser més exigents en aquest camp, ja que reben pressions de 20-25 bars. Tot i que el moviment d’aigua en el sistema EDI genera menors pressions i deteriorament, també s’han de tenir en compte. Per reduir la càrrega de les bombes s’ha d’investigar i millorar els espais lliures entre
membranes de EDI.

- Conversió elèctrica: aquest és el principal avantatge pels sistemes de funcionament per EDI, ja que els elèctrodes generen un potencial directe, mentre que en el PRO, l’aigua ha d’accionar una turbina que genera energia mecànica que acciona un generador, transformant-se en energia elèctrica. Durant tot procés de conversió s’acumulen pèrdues energètiques.

- Salinitat de l’aigua: el PRO té un funcionament més òptim amb majors concentracions d’aquest solut que el EDI. Aquest fet suposa un major avantatge pel primer sistema, ja que a major diferència de concentració, major transmissió i generació elèctrica.

4.6.6.5. Dades sobre potencials disponibles globalment i en els indrets més apropiants per a la instal·lació de plantes

El cabal de descàrrega mundial d’aigua dolça a mars i oceans es calcula que és d’uns 4×10^{13} m3/s. La meitat es descarregat pels 50 rius més cabalosos. A més a més es calcula que augmentarà un 11% a causa del escalfament global.

Així doncs tenint en compte que avui en dia només es pot aprofitar un 10% del potencial ofert per la descàrrega i que les pèrdues de conversió energètica són del 50%, les plantes instal·lades podrien assolir una capacitat de potència de 150 GW o de 170 GW incloent l’escalfament global.

Qualsevol desembocadura pot ser utilitzada per la producció d’energia elèctrica.

Un dels rius europeus més rellevant en quan al possible aprofitament de l’energia blava és l’Elba, amb desembocadura a Alemanya i una descàrrega al Mar del Nord de 800 m3/s. Proporciona una potència de 1900 MW i tenint en compte les mateixes limitacions que en el cas anterior, les plantes instal·lades podrien assolir una capacitat de potència de 100 MW.
Tot i això, les descàrregues de més fàcil accés no les proporcionen els rius, sinó àrees de baix nivell respecte al mar, com poden ser els Països Baixos, en que constantment es bombeja aigua als mars per evitar inundacions.

És per això, que Holanda és un dels indrets amb major possibilitat de desenvolupament de l'energia blava.

Per exemple, la central de bombeig de Afsluitdijk genera un cabal d’aigua dolça de 600 m³/s de mitjana, que la converteix en la més interessant, ja que la resta genera cabals molt menors: Velsen, 90 m³/s i Katwijk, 50 m³/s.
5. Cas pràctic: viabilitat d’aplicació d’un sistema d’energia undimotriu pel subministrament elèctric dels sistemes auxiliars del port de Roses
En tot projecte és necessària una secció pràctica que aproximi més a la realitat l’objecte d’estudi. D’aquesta manera el lector pot comprovar les capacitats reals del mateix i tenir-hi una visió més propera, dipositant un nivell de confiança més adequat en el que s’explica al llarg de l’estudi.

Durant el procés de creació d’aquesta tesi s’ha descrit l’energia undimotriu o de l’onatge com a una font energètica amb grans expectatives de futur. És per això que l’autor ha escollit realitzar una secció de la tesi sobre un sistema d’aprofitament de l’energia de les onades.

A continuació es durà a terme un estudi de viabilitat en el que es demostraran les possibilitats/capacitats de subministrament elèctric d’un port per mitjà d’un dispositiu d’energia undimotriu.

Així doncs, es donaran a conèixer amb major profunditat: les especificacions tècniques del sistema utilitzat, el cost econòmic que pot significar, el manteniment que se li ha d’aplicar, el procés legal a seguir per poder aplicar el sistema i el consum elèctric d’un port, entre altres aspectes d’interès que serviran de suport per assolir l’objectiu desitjat.

Per aconseguir aquests propòsits s’ha requerit escollir un sistema objecte d’estudi, que en aquest cas és el projecte Calma, un dispositiu offshore i absorbidor puntual amb múltiples boies flotants captadores de l’energia de l’onatge. També ha estat necessari consultar les dades del consum per grans blocs d’un port i en aquest cas ha estat escollit el Port de Roses. Finalment s’han suposat condicions ideals del mar per un funcionament a elevat rendiment del sistema.

Les dades han estat facilitades per:

- Ricard Prats, director general de l’empresa Hidroflot, S.A., gràcies a una visita realitzada el 10/01/2011.

 Dades de contacte

 HIDROFLOT, S.A.:
 Av. Piera, 22
 08107- Martorelles (SPAIN)
 T. +34935708179
 www.hidroflot.com

- Juan Sáenz de Santa María, director tècnic del port de Roses, gràcies a una consulta realitzada el 01/02/2011.
5.1. Creació i desenvolupament del concepte del prototip Calma

El disseny del sistema d’aprovatament i conversió d’energia de les onades Calma ha estat resultat del procés de desenvolupament de l’empresa catalana Hidroflot, S.A. des dels seus inicis:

La idea la va concebre el senyor Ricard Prats, director general de l’empresa i navegant, inspirant-se en la diferència d’amplitud de moviment oscil·lant entre vaixells de grans i petites dimensions en repòs a l’aigua. En el futur sistema va decidir que l’estructura de sustentació seria de majors dimensions i s’equipararia al vaixell més gran, pel que tindria poca oscil·lació i cada una de les boies flotants s’equipararien al vaixell petit, donades les seves menors dimensions i conseqüentment oscil·larien amb grans amplituds.

Així doncs, el senyor Prats va fundar la primera empresa: Ceflot s.l. que ja s’enfocava al desenvolupament d’una central d’onatge basat en el principi anteriorment explicat. Aquesta primera central va arribar a ser construïda i va rebre una menció honorífica en el IV Congrés Internacional de Projectes d’Enginyeria, l’any 2002 i la medalla de plata en el Saló Internacional dels Invents de Ginebra l’any 2003, entre altres premis.

Primera central de Ceflot, amb estructura hexaèdrica i 49 boies captadores d’energia undimotriu.
Posteriorment, l’any 2005, es va iniciar el disseny del segon i últim dispositiu i l’empresa va canviar la seva localització (de Barcelona a Martorelles) i va passar a anomenar-se Hidroflot, S.A. Aquest nou projecte, anomenat Calma, va aprofitar els principis constructius i de funcionament de la primera central. Avui en dia el disseny està finalitzat i s’han realitzat assajos en tancs, en els que s’ha pogut comprovar l’efectivitat d’una sola boia. El director de l’empresa preveu que per l’any 2013 la finalització de la construcció i la instal·lació del primer prototip Calma a les costes d’Astúries. Per aconseguir-ho l’empresa Hidroflot, S.A. s’ha associat amb l’empresa asturiana Asturfeito, fabricant de béns d’equips amb grans espais per la construcció de plataformes i gòndoles, fundant la societat d’explotació Asturflot, S.A.

Més informació a l’enllaç: http://www.youtube.com/watch?v=zP4e3pPiaE

5.2. Estructura, funcionament i especificacions tècniques dels elements del sistema

El dispositiu està format per 6 conjunts d’elements principals (observar relació numèrica amb la imatge posterior):

- La plataforma de sustentació: és l’estructura principal, formada “d’acer mari” baix en carboni amb anticorrosius, que proporciona l’estabilitat i solidesa al conjunt.

Està composta per:

- Estructura de barres superior (1): conformen la unió dels components del sistema a la zona superior de la plataforma i serveixen de base pel sistema de transmissió horitzontal.
✓ Columnes verticals (2): un total de 16, una per boia, tenen dues funcions:

1. Columna guia, és a dir, són fixes i al llarg d’elles es produeix el moviment vertical de les boies.

2. Conformen la connexió entre el la zona superior i inferior de la plataforma.

✓ Sistema de flotadors de campana o càmeres de inundació inferiors (3): són 16, se situen a l’extrem inferior de la columna vertical lliscant i en condicions d’entorn normals es troben plens d’aire, exercint l’empenta que proporciona la flotabilitat desitjada. La seva funció d’inundació s’explica a l’apartat següent.

✓ Estructura tubular inferior (4): disposats simètricament entre flotadors de campana en posició ortogonal conformen el suport d’unió entre els diferents flotadors i les columnes guia, aportant la rigidesa a la plataforma global i la unió a l’estructura inferior.

✓ Unions d’equilibri de llast (5): també disposats simètricament entre flotadors de campana en posició ortogonal, impedeixen el desequilibri de flotació de la central en l’aspiració d’aigua a l’interior dels flotadors de campana per la submersió del conjunt. Així doncs, permeten la circulació de l’aigua d’un flotador al següent.

- Boies (6): són els elements captadors de l’energia undimotriu, oscil·lant verticalment al pas les onades. Són un total 16, estan formades per materials compostos que aporten una elevada resistència i cada una té un diàmetre de 9,5 m.

- Sistema de transmissió mecànica (7): eslingues verticals i politges entre les boies i el sistema de transmissió horitzontal per transformar el moviment lineal vertical de les primeres en moviment circular del segon, que es troba situat sobre l’estructura de barres superior. El sistema de transmissió horitzontal (que no apareix a la imatge) transmet el moviment circular als generadors elèctrics a través d’una caixa d’engranatges dins de les gòndoles.

- Maquinària (8): cada conjunt de màquines (8 en total) està format per una caixa d’engranatges i un generador elèctric i es troba situat dins d’una de les 8 gòndoles centrals estanques. Cada maquinaria és accionada per dues boies. La seva funció és convertir l’energia mecànica en energia elèctrica.

✓ La caixa d’engranatges té dues funcions
1. Incrementar les revolucions transmeses al generador elèctric, en detriment del fort moment que les boies han generat sobre el sistema de transmissió Un dels secrets del sistema.

\[P = M \cdot \text{rpm} \cdot \frac{2\pi}{60}; \]

On:

✓ P: potència [W].
✓ M: moment [N \cdot m].
✓ rpm: velocitat circular [rad/s \cdot \frac{2\pi}{60} = \text{rev./min.}].

Suposant el cas de P de operació constant:
Si es pretén \(\uparrow \text{rpm} \Rightarrow \downarrow M \).

2. Incrementar l’eficiència del conjunt: és un dels secrets fonamentals del sistema i consisteix en la transmissió unidireccional del moviment circular a l’entrada, que alterna la direcció en els ascensos i descensos de la boia. D’aquesta manera s’aprofità tant el moviment d’ascens impulsat pel pas de la cresta de l’onada al llarg d’una boia, com el moviment de descens per gravetat pel pas de la vall de l’onada.

✓ El generador elèctric: és un trifàsic que genera mitja tensió alterna de 30 kV i es troba acoblat a la caixa d’engranatges.

Elements de la central Calma.
- Sistema de transmissió elèctric: les 8 gòndoles de cada plataforma transmeten l’energia elèctrica generada a un cable comú dinàmic que es connecta a un centre (hub) o caixa de connexions situada a distància de les plataformes, que alberga 8 entrades per la possibilitat d’interconnectar fins a 8 dispositius. A la sortida del centre es troba un sol cable estàtic que transmet la potència elèctrica a terra.

![Esquema del sistema de connexió elèctric d’un parc format de 8 dispositius Calma.](image)

- Sistema d’ancoratge: compost per 4 línies o cadenes d’ancoratge fixades al fons marí i a cada un dels 4 flotadors de campana situades als extrems, tenint en compte que els 2 més llunyans de terra rebran majors esforços per l’acció del mar d’entrada, per lo que hauran de ancoratges més resitents.

- Boia meteorològica o oceanogràfica: sistema independent de la estructura principal com es pot observar a l’esquema anterior amb funcionament autònom (per plaques solars) que avalua les condicions de l’entorn i les transmet per ràdio a la central de control terrestre.
5.3. Especificacions tècniques del sistema global

- Dimensions de la plataforma:

 ✓ Amplitud x longitud totals: 44,5 m x 44,5 m.

 ✓ Alçada total del dispositiu: 26,3 m.

 ✓ Alçada de l’obra viva (en repòs): 16 m.

 ✓ Alçada de l’obra morta (en repòs): 10,3 m.

- Potència nominal instal·lada:

 ✓ Per generador: 750 kW.

 ✓ Per dispositiu: 8 (generadors) x 750 (kW/generador) = 6 MW

 ✓ Per un parc compost per:

 - 1 plataforma: 6 MW.
 - 4 plataformes: 24 MW.
 - 8 plataformes: 48 MW. El límit legal de producció (considerant a un parc de 8 plataformes com a un sol
sistema) és de 50 MW. Si se’n volen produir més, s’ha d’instal·lar un segon parc.

- Hores equivalents teòriques: és un càlcul que té en compte les hores treballades i el rendiment d’operació durant aquestes hores d’un sistema al llarg d’un any i del que s’obté una equivalència que indica el nombre d’hores treballades en condicions de màxima potència. Se’n diuen teòriques donat que el sistema encara no ha estat provat.

Pel sistema Calma les hores equivalents calculades són 2.833 de les 8.760 hores que té un any.

- Energia teòrica generada al llarg d’un any: es pot calcular tenint en compte la fórmula: \(E = P \cdot t \). Se’n diu teòrica donat que el sistema encara no ha estat provat.

 ☑️ Per un parc compost per:
 - 1 plataforma: 16.998 MWh.
 - 4 plataformes: 67.992 MWh.
 - 8 plataformes: 135.984 MWh. Energia suficient per alimentar 20.000-25.000 vivendes.

- Cost econòmic per MW de capacitat instal·lat:

 ☑️ Per un parc compost per:
 - 1 plataforma: 2,75 M€/MW.
 - 4 plataformes: 2,55 M€/MW.
 - 8 plataformes: 2,34 M€/MW. Cost total: 112,32 M€

- Vida útil de la instal·lació: ≈20 anys, similar als vaixells o a altres sistemes d’aproveitament d’energies renovables.

- Altres funcions dels sensors incorporats als diferents components del sistema: a més de controlar la oscil·lació de les boies com anteriorment s’ha explicat, també detecten errors i deterioraments. L’última de les seves funcions és detectar els períodes d’inactivitat del sistema, fet que facilita una avaluació de la producció i la rendibilitat que proporciona el dispositiu amb l’objectiu de, per exemple, prendre mesures si el sistema no compleix les expectatives.

 Per últim afegir que qualsevol imprevist detectat pels sensors és transmès a
una central costera per mitjà de fibra òptica incorporada al cablejat del sistema de transmissió elèctric.

5.4. Resposta del sistema en cas de condicions de l’entorn adverses

El dispositiu disposa d’uns sensors situats a algunes de les columnes lliscants, que en cas de condicions meteorològiques extremes, que podrien malbaratar els components, detecten una excessiva amplitud d’oscil·lació de les boies i activen automàticament la posició de supervivència.

El procés consisteix en el següent:

S’obren unes vàlvules situades a l’extrem inferior dels 16 flotadors de campana, permetent l’entrada d’aigua d’inundació fins a omplir completament els flotadors i les unions d’equilibri de llast. Per altra banda les cadenes d’ancoratge es desbloquegen i llisquen per l’interior del flotador per reduir la seva distància fons-dispositiu i seguir realitzant la seva funció correctament.

Així doncs, es reduceix dràsticament la magnitud de l’empenta proporcionada pels flotadors de campana buits en un principi i el sistema es submergeix fins a una profunditat de seguretat de 15 metres (des de la superfície al punt més elevat del dispositiu), on les condicions meteorològiques adverses perden efecte. En aquest moment es bloqueja un eslavó de la cadena i queda fixada ancorant perfectament el dispositiu.

Quan es restableixen les condicions de l’entorn normals i el dispositiu es troba fora de perill, aquest acciona unes bombes situades a l’interior dels flotadors de campana, que expulsen l’aigua d’inundació del seu interior, recuperant la posició normal de treball.

5.5. Operacions de manteniment a realitzar

- Manteniment correctiu: és aplicat en produir-se una avaria de qualsevol dels components del sistema que pot afectar a curt o llarg termini les funcions globals del dispositiu.

La operació pot consistir en:

✓ El canvi del component avariat per un de nou: es realitzarà si l’avaria és irreparable o en cas de no ser-ho, si el cost econòmic d’un recanvi i del temps d’aturada per la instal·lació del nou component (inclòs el cost del personal de manteniment) és menor que el cost de reparació del
component avariat i del temps d’aturada.

✓ La reparació del component avariat: es realitzarà si el component es troba en condicions per allargar la seva vida útil i si el cost econòmic d’un recanvi i del temps d’aturada per la instal·lació del nou component (inclòs el cost del personal de manteniment) és major que el cost de reparació del component avariat i del temps d’aturada.

Com anteriorment s’ha explicat els sensors incorporats al sistema faciliten en gran mesura el manteniment correctiu, donat que a l’hora d’aplicar-lo ja es coneix l’origen de l’avaria i no s’ha d’invertir temps en localitzar-lo. Conseqüentment el temps de treball es redueix dràsticament, per lo que es poden restablir les seves condicions de treball més ràpidament i les pèrdues econòmiques per aturada per manteniment són menors.

- Manteniment preventiu: és aplicat de forma periòdica o segons altres criteris prefixats per reduir la probabilitat d’averia o pèrdua de rendiment d’un component.

L’operació de manteniment preventiu a realitzar en el sistema Calma consisteix en:

✓ Programar un seguit de revisions a realitzar cada 6 mesos sobre els diferents ítems que reben una agressió més significativa per les condicions de l’entorn marí o la funció dels quals és de vital importantència pel sistema, entre els que destaquen:

1. Els sistemes de transmissió: el constant moviment genera un elevat desgast per fricció amb els coixinets i elements en contacte. El deteriorament d’aquests podria provocar ruptures en eixos i maquinària d’elevat cost econòmic. La solució consisteix en l’aplicació de lubricant o el canvi dels coixinets desgastats per altres de nous.

2. Les juntes d’estanqueïtat: al deteriorar-se es produiria l’entrada d’aigua salada a l’interior del dispositiu, fet que podria provocar l’avaria de màquines d’elevat cost econòmic i que són fonamentals per mantenir un nivell de generació adequat. També podria afectar a la flotabilitat i l’estabilitat del sistema, evitant així una operació en bones condicions. La solució resideix en el canvi per altres de noves.

3. Les bombes: l’operació d’aquestes genera grans esforços i conseqüentment un ràpid desgast. En avariar-se el sistema no podria extreure l’aigua de l’interior de les càmeres d’inundació i el sistema
quedaria permanentment en posició submergida.

4. La superfície exterior de l’obra viva: que la fauna i la flora marina pot adaptar com a medi on desenvolupar-se i formar incrustacions, que comportaran un pes addicional al conjunt, alterant els calats adequats calculats pel sistema. Per evitar-ho és necessària una neteja de la superfície.

Un manteniment practicat de manera adient, juntament amb l’elecció de materials d’elevada resistència tant a constants esforços de fatiga, com a la corrosió que genera la salinitat de l’aigua marina, proporciona una bona fiabilitat. Aquesta és indispensable per la reducció de costos en reparacions (se’n produeixen menys) i per l’increment de les hores equivalents de treball, que comporta uns valors més elevats de generació elèctrica. Com major sigui el temps d’operació i millors rendiments se’n puguin obtenir, menors seran els costos de la unitat d’energia generada i més curt serà el període d’amortització del sistema.

5.6. Procés d’elecció d’un indret

El procés d’elecció d’un indret on instal·lar un sistema d’aprofitament d’energia marina requereix la col·laboració d’experts en diferents sectors com: enginyers, oceanògrafs, biòlegs, arqueòlegs... degut a l’elevada quantitat d’aspectes a tenir en compte i a la complexitat d’alguns d’ells. Tots els aspectes sobre els que tracten la investigació s’inclouran en un document d’estudi necessari per l’obtenció dels permisos d’instal·lació i operació.

A continuació es descriuran algunes de les característiques indispensables associades a un indret en el que es vulgui instal·lar una de les plataformes Calma. Posteriorment es tractaran altres aspectes a tenir en compte per rebre l’acceptació per part del Ministeri i poder iniciar el procés d’instal·lació.

Característiques de l’indret

✔ Rang d’alçada d’onatge mitjà entre 1,5-6 metres: si és major el sistema es pot trobar sovint en perill de deteriorament o restar un període excessiu de temps en posició de supervivència. Si és menor, el rendiment ofert seria molt baix, la producció molt limitada i el període d’amortització molt llarg. A més a més el màxim rendiment l’ofereix amb una alçada d’onatge de 4 metres i una alçada mitjana de 2,5 metres comporta una bon nivell de potència oferta.

✔ Trobar-se proper a la costa: per qüestions de transmissió energètica. Una llarga
distància a la costa provocaria pèrdues elèctriques molt elevades a través del cablejat, fet que disminuiria la rendibilitat del sistema.

✓ Limit de proximitat de 2 milles: donat que l’obra morta del sistema té una alçada de 10,3 metres, una major proximitat a la costa suposaria un efecte visual excessiu. Tot i això, el baix efecte visual d’aquest tipus de sistemes en comparació per exemple amb aerogeneradors offshore comporta una major acceptació social.

![Comparativa de l’impacte visual generat pel dispositiu Calma i un aerogenerador offshore.](image)

✓ Profunditat de 70-100 metres al fons marí: és l’adequada donat que el dispositiu té una alçada de 26,3 metres i en posició de supervivència s’ha de submergir uns 15 metres (des de la superfície al punt més elevat del dispositiu). La distància restant al fons marí és un marge de seguretat indispensable.

✓ Espai lliure d’aproximadament 740.000 m²: per un parc de 8 dispositius Calma, amb una distància de separació d’uns 50 metres entre cada plataforma i sense comptar l’espai ocupat pel cablejat, que s’estén pel fons marí.

Aspectes a considerar per obtenir els permisos d’instal·lació

✓ Afectació al trànsit marítim: el més probable és que si la zona que es té intenció
d’utilitzar es troba molt sol·licitada per la navegació, no la cedeixin.

✔ Zona de pesca: tenint en compte que la instal·lació d’aquests parcs comporten la restricció a la pesca en la zona ocupada, els pescadors no acceptaran la cessió de l’espai i la dificultat d’obtenir-lo serà major.

✔ Zona amb restes materials humanes de gran valor: si hi ha soterrades runes antigues o tresors, els arqueòlegs impediran l’ús de la zona per la instal·lació.

✔ S’ha de realitzar una avaluació de l’impacte que pot ocasionar la planta a l’entorn marí: així doncs s’ha d’investigar sobre l’affectació que pogués tenir sobre la biodiversitat, sobre el fons marí... o també podria ser una zona protegida, en la que no s’hi pot instal·lar cap planta. Tot i això, en principi el sistema és favorable a la protecció del medi on es troba: la restricció de la pesca comporta una protecció d’espècies de peixos.

A més a més, els grups ecologistes donen suport a aquest tipus generació elèctrica: per exemple Greenpeace va publicar un informe favorable als sistemes d’extracció d’energia de les onades. Tenint en compte els dos últims aspectes és difícil que l’impacte a l’entorn suposi una dificultat a l'hora de tramitar els permisos.

Procés de petició dels permisos d’instal·lació i operació en un l’indret determinat

Una vegada s’hagi escollit un indret amb les característiques adequades per la correcta operació d’un o diversos sistemes Calma i s’hagi realitzat una profunda investigació sobre les interferències que podria suposar a l’entorn, s’iniciarà el procés:

1. S’enviarà una còpia del projecte i de l’avaluació de l’indret al Ministeri encarregat d’aquests assumptes.

2. El Ministeri avaluarà el projecte i l’affectació sobre l’entorn, posteriorment decidint si es tira endavant i en cas afirmatiu, a quins sectors podria concernir.

3. Enviarà còpies del projecte a tots aquells que es poguessin veure afectats pels canvis de condicions de la zona.

4. Els afectats podran presentar al Ministeri al·legacions sobre qualsevol aspecte del projecte durant un període d’un mes, posteriorment ja no s’acceptarà cap més (normalment es realitzen sobre el aspectes descrits al punt anterior).

5. El Ministeri valorarà les al·legacions presentades pels afectats i les
acceptarà o les refusarà segons el seu criteri.

6. Si són acceptades s’enviarà una carta al propietari de l’empresa explicant els motius de la no concessió del permís d’instal·lació.

7. Si són refusades es tramitaran els permisos d’instal·lació i s’enviaran al propietari de l’empresa.

5.7. Valoració de la capacitat de subministrament elèctic del port de Roses

En el següent apartat s’avaluarà l’última de les condicions en l’estudi de viabilitat: la capacitat de la plataforma Calma per subministrar energia elèctrica a un port.

L’utilitzat com a objecte d’estudi és el port de Roses:

- Capacitats del port:
 - Amarratges: 483 (110 per a transeünts).
 - Eslores als amarratges: de 6 fins a 45 m,
 (65 amarratges de més de 18 m).

Port de Roses.
Consums dels diferents sistemes auxiliars que utilitza el port en qüestió:

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Unitat</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2006</td>
</tr>
<tr>
<td>Consum d’energia elèctrica</td>
<td>SD</td>
<td>210.790</td>
</tr>
<tr>
<td>Enllumenat i edifici de l’administració portuària i altres</td>
<td>SD</td>
<td>144.643</td>
</tr>
<tr>
<td>Embarcacions a partir de 14 m d’eslora</td>
<td>SD</td>
<td>25.238</td>
</tr>
<tr>
<td>Serveis (+ EMEN + Benzinera)[1]</td>
<td>SD</td>
<td>257.006</td>
</tr>
<tr>
<td>Total</td>
<td>KWh/any</td>
<td>357.006</td>
</tr>
<tr>
<td>Total per estada</td>
<td>KWh/any·estada</td>
<td>3,15</td>
</tr>
</tbody>
</table>

[1] En aquest indicador s’inclou el consum de l’Escola Municipal d’Esports Nàutics (EMEN) i la benzinera.

Taula indicativa dels consums elèctrics del port de Roses per sistemes auxiliars de l’any 2006 al 2010:

Tenint en compte que la producció anual d’una sola plataforma Calma és de 16.998 MWh, és a dir d’uns 17 milions de kWh i el consum màxim del port en un any ha estat de 424.280 kWh (2008), ràpidament s’observa que el sistema sí que té la capacitat d’alimentar elèctricament el port de Roses.

És més una sola plataforma podria subministrar energia elèctrica a un port que tingués un consum 40 vegades superior al del port de Roses.

 Una alternativa podria ser alimentar el port amb la petita part corresponent d’energia elèctrica i la resta vendre-la a la xarxa elèctrica nacional, fet que avui en dia es realitza per exemple amb plaques fotovoltaiques instal·lades en llars privades.

5.8. Conclusió del cas pràctic:

La instal·lació del dispositiu de captació d’energia undimotriu Calma, localitzat en una zona amb unes condicions de mar determinades anteriormen, obtenint els permisos d’instal·lació i d’operació adients per part del Ministeri i amb l’objectiu de subministrar energia elèctrica al port de Roses és viable.
6. Conclusions
1. És necessari trobar solucions als problemes que comporta la política energètica actual: malbaratament terrestre, curt temps de vida de les energies convencionals i increment progressiu del cost d’aquestes, entre altres.

2. Una possible solució són les energies renovables, pels següents motius:
 - Redueix l’actual elevada dependència energètica europea (un 50% de l’energia prové de l’exterior) i espanyola (un 75% de l’energia prové de l’exterior), és a dir, millora la nostra balança comercial.
 - Són respectuoses amb el medi ambient.
 - Redueixen el cost de producció i, per tant, ajudarien a minimitzar una prevista crisi energètica l’any 2030.
 - Són inesgotables.

4. L’energia renovable del mar ofereix grans avantatges respecte altres fonts energètiques renovables i convencionals.

 Aquests avantatges han de generar un enfocament global positiu que suporti les decisions d’invertir en R+D+i, per tal d’aproximar-se a una millor viabilitat econòmica (un dels principals obstacles del desenvolupament avui en dia).

5. Tot i que l’energia maremotèrmica és la que ofereix un major potencial, també és la de major cost per unitat energètica. L’energia mareomotriu és la més desenvolupada en el mercat energètic, ja que és l’única que està comercialitzada actualment. L’energia unidmotriu, però, és la que contempla major nombre de patents, inversions en I+D i estudis, per tant, és l’energia amb major creixement actual i la possible líder tecnològica a curt termini.
6. Existeix gran varietat de sistemes d’aprofitament d’energia maremotriu, la major part dels quals no passen de la fase conceptual, però molts d’altres es troben en fase de disseny, fabricació i prova de prototipatge.

7. La instal·lació d’un sistema de conversió d’energia de les onades és viable pel subministrament energètic d’un petit port esportiu (p. ex: el port de Roses), donades unes condicions de mar adequades, obtenint els permisos d’instal·lació i operació adients i amb una molt bona disposició econòmica.

8. L’actual crisi financera pot suposar un fre temporal al desenvolupament de les E.R., degut a les fortes inversions inicials a realitzar per la seva instal·lació, alhora que presenta una oportunitat de canvi per tots els punts anteriorment mencionats.
7. Bibliografía
Llibre

- Romero García, Rafael Eugenio (2010). Producción de energía eléctrica a partir de los mares. CSIC. Madrid.

Projectes Final de carrera i tesi doctoral

Publicació universitària

- Estudi energètic de 22 capítols realitzat per la Universidad de Las Palmas de Gran Canaria.

Documents tècnics

 http://www.slideshare.net/mjtecno/energia-mar

 http://www.eve.es/jornadas/ponencias_energia_marina_09/Torre_Enciso_Yago.pdf

 http://www.energiasmarinas.es/cas/descargas.aspx

 http://www.eve.es/jornadas/ponencias/Jornada_ENERGIA_MARINA.pdf
Articles tècnics

http://www.cubasolar.cu/biblioteca/energia/Energia17/HTML/articulo03.htm

http://waste.ideal.es/energiadelmar.htm

http://people.civil.aau.dk/~i5jpk/pdf/wdewec98/wdewec98.pdf

http://www.gabinete.org.ar/Febrero_2006/gales.htm

http://inhabitat.com/oyster-generates-electricity-from-waves/

Documents Oficials

Pàgines web

- Empresa australiana Oceanlinx Limited (Última consulta: 02-11-10) http://www.oceanlinx.com
- Empresa anglo-danesa Wave Dragon (Última consulta: 04-11-10)
 http://www.wavedragon.co.uk/project.html
- Empresa escocesa Aquamarine Power (Última consulta: 07-11-10)
 http://www.aquamarinepower.com/
- Empresa australiana bioPower Systems Pty Ltd. (Última consulta: 07-11-10)
 http://www.biopowersystems.com/
- Empresa nord-americana Ocean Power Technologies Inc. (OPT) (Última consulta: 07-11-10)
 http://www.oceanpowertechnologies.com/
- Empresa Iberdrola Energías Marinas de Cantabria (Última consulta: 08-11-10)
- Empresa danesa Wave Star Energy (Última consulta: 09-11-10)
 www.wavestarenergy.com
- Portal d’energies renovables Inspira (Última consulta: 20-12-11)
 http://www.inspira.es
- Portal d’energies renovables Genitronsviluppo (Última consulta: 23-12-10)
 http://www.genitronsviluppo.com
- Portal d’energia (Última consulta: 29-12-10)
 http://inhabitat.com
- Empresa escocesa Aquamrine Power (Última consulta: 09-11-10)
 http://www.aquamarinepower.com/
- Empresa Robotiker, Tecnalia (Última consulta: 15-11-10)
 http://www.energiasmarinas.es/cas/noticias.aspx
- Empresa Robotiker, Tecnalia (Última consulta: 15-11-10)
 http://www.robotiker.es/robotiker/dominioTecnologico.do?leng=es&method=energiaElectronica
- Ente Vasco de La Energía (Última consulta: 23-11-10)
 http://www.eve.es/web/Portada.aspx
- European Marine Energy Center (Última consulta: 23-11-10)
 http://www.emec.org.uk/wave_energy_developers.asp
- Research Council UK (Última consulta: 23-11-10)
http://www.rcukenergy.org.uk/what-were-funding/marine.html

- Portal d’energies renovables Renewable Energy Focus (Última consulta: 01-12-10)
http://www.renewableenergyfocus.com/view/7435/maximising-wave-power/

- Empresa catalana Hidroflot S.A. (Última consulta: 02-03-11)
www.hidroflot.com